1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/config.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/smp_lock.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/tty.h> 21 #include <linux/binfmts.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/ptrace.h> 25 #include <linux/signal.h> 26 #include <linux/audit.h> 27 #include <linux/capability.h> 28 #include <asm/param.h> 29 #include <asm/uaccess.h> 30 #include <asm/unistd.h> 31 #include <asm/siginfo.h> 32 33 /* 34 * SLAB caches for signal bits. 35 */ 36 37 static kmem_cache_t *sigqueue_cachep; 38 39 /* 40 * In POSIX a signal is sent either to a specific thread (Linux task) 41 * or to the process as a whole (Linux thread group). How the signal 42 * is sent determines whether it's to one thread or the whole group, 43 * which determines which signal mask(s) are involved in blocking it 44 * from being delivered until later. When the signal is delivered, 45 * either it's caught or ignored by a user handler or it has a default 46 * effect that applies to the whole thread group (POSIX process). 47 * 48 * The possible effects an unblocked signal set to SIG_DFL can have are: 49 * ignore - Nothing Happens 50 * terminate - kill the process, i.e. all threads in the group, 51 * similar to exit_group. The group leader (only) reports 52 * WIFSIGNALED status to its parent. 53 * coredump - write a core dump file describing all threads using 54 * the same mm and then kill all those threads 55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 56 * 57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 58 * Other signals when not blocked and set to SIG_DFL behaves as follows. 59 * The job control signals also have other special effects. 60 * 61 * +--------------------+------------------+ 62 * | POSIX signal | default action | 63 * +--------------------+------------------+ 64 * | SIGHUP | terminate | 65 * | SIGINT | terminate | 66 * | SIGQUIT | coredump | 67 * | SIGILL | coredump | 68 * | SIGTRAP | coredump | 69 * | SIGABRT/SIGIOT | coredump | 70 * | SIGBUS | coredump | 71 * | SIGFPE | coredump | 72 * | SIGKILL | terminate(+) | 73 * | SIGUSR1 | terminate | 74 * | SIGSEGV | coredump | 75 * | SIGUSR2 | terminate | 76 * | SIGPIPE | terminate | 77 * | SIGALRM | terminate | 78 * | SIGTERM | terminate | 79 * | SIGCHLD | ignore | 80 * | SIGCONT | ignore(*) | 81 * | SIGSTOP | stop(*)(+) | 82 * | SIGTSTP | stop(*) | 83 * | SIGTTIN | stop(*) | 84 * | SIGTTOU | stop(*) | 85 * | SIGURG | ignore | 86 * | SIGXCPU | coredump | 87 * | SIGXFSZ | coredump | 88 * | SIGVTALRM | terminate | 89 * | SIGPROF | terminate | 90 * | SIGPOLL/SIGIO | terminate | 91 * | SIGSYS/SIGUNUSED | coredump | 92 * | SIGSTKFLT | terminate | 93 * | SIGWINCH | ignore | 94 * | SIGPWR | terminate | 95 * | SIGRTMIN-SIGRTMAX | terminate | 96 * +--------------------+------------------+ 97 * | non-POSIX signal | default action | 98 * +--------------------+------------------+ 99 * | SIGEMT | coredump | 100 * +--------------------+------------------+ 101 * 102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 103 * (*) Special job control effects: 104 * When SIGCONT is sent, it resumes the process (all threads in the group) 105 * from TASK_STOPPED state and also clears any pending/queued stop signals 106 * (any of those marked with "stop(*)"). This happens regardless of blocking, 107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 108 * any pending/queued SIGCONT signals; this happens regardless of blocking, 109 * catching, or ignored the stop signal, though (except for SIGSTOP) the 110 * default action of stopping the process may happen later or never. 111 */ 112 113 #ifdef SIGEMT 114 #define M_SIGEMT M(SIGEMT) 115 #else 116 #define M_SIGEMT 0 117 #endif 118 119 #if SIGRTMIN > BITS_PER_LONG 120 #define M(sig) (1ULL << ((sig)-1)) 121 #else 122 #define M(sig) (1UL << ((sig)-1)) 123 #endif 124 #define T(sig, mask) (M(sig) & (mask)) 125 126 #define SIG_KERNEL_ONLY_MASK (\ 127 M(SIGKILL) | M(SIGSTOP) ) 128 129 #define SIG_KERNEL_STOP_MASK (\ 130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 131 132 #define SIG_KERNEL_COREDUMP_MASK (\ 133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 136 137 #define SIG_KERNEL_IGNORE_MASK (\ 138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 139 140 #define sig_kernel_only(sig) \ 141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 142 #define sig_kernel_coredump(sig) \ 143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 144 #define sig_kernel_ignore(sig) \ 145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 146 #define sig_kernel_stop(sig) \ 147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 148 149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT) 150 151 #define sig_user_defined(t, signr) \ 152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 154 155 #define sig_fatal(t, signr) \ 156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 158 159 static int sig_ignored(struct task_struct *t, int sig) 160 { 161 void __user * handler; 162 163 /* 164 * Tracers always want to know about signals.. 165 */ 166 if (t->ptrace & PT_PTRACED) 167 return 0; 168 169 /* 170 * Blocked signals are never ignored, since the 171 * signal handler may change by the time it is 172 * unblocked. 173 */ 174 if (sigismember(&t->blocked, sig)) 175 return 0; 176 177 /* Is it explicitly or implicitly ignored? */ 178 handler = t->sighand->action[sig-1].sa.sa_handler; 179 return handler == SIG_IGN || 180 (handler == SIG_DFL && sig_kernel_ignore(sig)); 181 } 182 183 /* 184 * Re-calculate pending state from the set of locally pending 185 * signals, globally pending signals, and blocked signals. 186 */ 187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 188 { 189 unsigned long ready; 190 long i; 191 192 switch (_NSIG_WORDS) { 193 default: 194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 195 ready |= signal->sig[i] &~ blocked->sig[i]; 196 break; 197 198 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 199 ready |= signal->sig[2] &~ blocked->sig[2]; 200 ready |= signal->sig[1] &~ blocked->sig[1]; 201 ready |= signal->sig[0] &~ blocked->sig[0]; 202 break; 203 204 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 205 ready |= signal->sig[0] &~ blocked->sig[0]; 206 break; 207 208 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 209 } 210 return ready != 0; 211 } 212 213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 214 215 fastcall void recalc_sigpending_tsk(struct task_struct *t) 216 { 217 if (t->signal->group_stop_count > 0 || 218 (freezing(t)) || 219 PENDING(&t->pending, &t->blocked) || 220 PENDING(&t->signal->shared_pending, &t->blocked)) 221 set_tsk_thread_flag(t, TIF_SIGPENDING); 222 else 223 clear_tsk_thread_flag(t, TIF_SIGPENDING); 224 } 225 226 void recalc_sigpending(void) 227 { 228 recalc_sigpending_tsk(current); 229 } 230 231 /* Given the mask, find the first available signal that should be serviced. */ 232 233 static int 234 next_signal(struct sigpending *pending, sigset_t *mask) 235 { 236 unsigned long i, *s, *m, x; 237 int sig = 0; 238 239 s = pending->signal.sig; 240 m = mask->sig; 241 switch (_NSIG_WORDS) { 242 default: 243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 244 if ((x = *s &~ *m) != 0) { 245 sig = ffz(~x) + i*_NSIG_BPW + 1; 246 break; 247 } 248 break; 249 250 case 2: if ((x = s[0] &~ m[0]) != 0) 251 sig = 1; 252 else if ((x = s[1] &~ m[1]) != 0) 253 sig = _NSIG_BPW + 1; 254 else 255 break; 256 sig += ffz(~x); 257 break; 258 259 case 1: if ((x = *s &~ *m) != 0) 260 sig = ffz(~x) + 1; 261 break; 262 } 263 264 return sig; 265 } 266 267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 268 int override_rlimit) 269 { 270 struct sigqueue *q = NULL; 271 272 atomic_inc(&t->user->sigpending); 273 if (override_rlimit || 274 atomic_read(&t->user->sigpending) <= 275 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 276 q = kmem_cache_alloc(sigqueue_cachep, flags); 277 if (unlikely(q == NULL)) { 278 atomic_dec(&t->user->sigpending); 279 } else { 280 INIT_LIST_HEAD(&q->list); 281 q->flags = 0; 282 q->user = get_uid(t->user); 283 } 284 return(q); 285 } 286 287 static void __sigqueue_free(struct sigqueue *q) 288 { 289 if (q->flags & SIGQUEUE_PREALLOC) 290 return; 291 atomic_dec(&q->user->sigpending); 292 free_uid(q->user); 293 kmem_cache_free(sigqueue_cachep, q); 294 } 295 296 void flush_sigqueue(struct sigpending *queue) 297 { 298 struct sigqueue *q; 299 300 sigemptyset(&queue->signal); 301 while (!list_empty(&queue->list)) { 302 q = list_entry(queue->list.next, struct sigqueue , list); 303 list_del_init(&q->list); 304 __sigqueue_free(q); 305 } 306 } 307 308 /* 309 * Flush all pending signals for a task. 310 */ 311 void flush_signals(struct task_struct *t) 312 { 313 unsigned long flags; 314 315 spin_lock_irqsave(&t->sighand->siglock, flags); 316 clear_tsk_thread_flag(t,TIF_SIGPENDING); 317 flush_sigqueue(&t->pending); 318 flush_sigqueue(&t->signal->shared_pending); 319 spin_unlock_irqrestore(&t->sighand->siglock, flags); 320 } 321 322 /* 323 * Flush all handlers for a task. 324 */ 325 326 void 327 flush_signal_handlers(struct task_struct *t, int force_default) 328 { 329 int i; 330 struct k_sigaction *ka = &t->sighand->action[0]; 331 for (i = _NSIG ; i != 0 ; i--) { 332 if (force_default || ka->sa.sa_handler != SIG_IGN) 333 ka->sa.sa_handler = SIG_DFL; 334 ka->sa.sa_flags = 0; 335 sigemptyset(&ka->sa.sa_mask); 336 ka++; 337 } 338 } 339 340 341 /* Notify the system that a driver wants to block all signals for this 342 * process, and wants to be notified if any signals at all were to be 343 * sent/acted upon. If the notifier routine returns non-zero, then the 344 * signal will be acted upon after all. If the notifier routine returns 0, 345 * then then signal will be blocked. Only one block per process is 346 * allowed. priv is a pointer to private data that the notifier routine 347 * can use to determine if the signal should be blocked or not. */ 348 349 void 350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 351 { 352 unsigned long flags; 353 354 spin_lock_irqsave(¤t->sighand->siglock, flags); 355 current->notifier_mask = mask; 356 current->notifier_data = priv; 357 current->notifier = notifier; 358 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 359 } 360 361 /* Notify the system that blocking has ended. */ 362 363 void 364 unblock_all_signals(void) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(¤t->sighand->siglock, flags); 369 current->notifier = NULL; 370 current->notifier_data = NULL; 371 recalc_sigpending(); 372 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 373 } 374 375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 376 { 377 struct sigqueue *q, *first = NULL; 378 int still_pending = 0; 379 380 if (unlikely(!sigismember(&list->signal, sig))) 381 return 0; 382 383 /* 384 * Collect the siginfo appropriate to this signal. Check if 385 * there is another siginfo for the same signal. 386 */ 387 list_for_each_entry(q, &list->list, list) { 388 if (q->info.si_signo == sig) { 389 if (first) { 390 still_pending = 1; 391 break; 392 } 393 first = q; 394 } 395 } 396 if (first) { 397 list_del_init(&first->list); 398 copy_siginfo(info, &first->info); 399 __sigqueue_free(first); 400 if (!still_pending) 401 sigdelset(&list->signal, sig); 402 } else { 403 404 /* Ok, it wasn't in the queue. This must be 405 a fast-pathed signal or we must have been 406 out of queue space. So zero out the info. 407 */ 408 sigdelset(&list->signal, sig); 409 info->si_signo = sig; 410 info->si_errno = 0; 411 info->si_code = 0; 412 info->si_pid = 0; 413 info->si_uid = 0; 414 } 415 return 1; 416 } 417 418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 419 siginfo_t *info) 420 { 421 int sig = 0; 422 423 sig = next_signal(pending, mask); 424 if (sig) { 425 if (current->notifier) { 426 if (sigismember(current->notifier_mask, sig)) { 427 if (!(current->notifier)(current->notifier_data)) { 428 clear_thread_flag(TIF_SIGPENDING); 429 return 0; 430 } 431 } 432 } 433 434 if (!collect_signal(sig, pending, info)) 435 sig = 0; 436 437 } 438 recalc_sigpending(); 439 440 return sig; 441 } 442 443 /* 444 * Dequeue a signal and return the element to the caller, which is 445 * expected to free it. 446 * 447 * All callers have to hold the siglock. 448 */ 449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 450 { 451 int signr = __dequeue_signal(&tsk->pending, mask, info); 452 if (!signr) 453 signr = __dequeue_signal(&tsk->signal->shared_pending, 454 mask, info); 455 if (signr && unlikely(sig_kernel_stop(signr))) { 456 /* 457 * Set a marker that we have dequeued a stop signal. Our 458 * caller might release the siglock and then the pending 459 * stop signal it is about to process is no longer in the 460 * pending bitmasks, but must still be cleared by a SIGCONT 461 * (and overruled by a SIGKILL). So those cases clear this 462 * shared flag after we've set it. Note that this flag may 463 * remain set after the signal we return is ignored or 464 * handled. That doesn't matter because its only purpose 465 * is to alert stop-signal processing code when another 466 * processor has come along and cleared the flag. 467 */ 468 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 469 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 470 } 471 if ( signr && 472 ((info->si_code & __SI_MASK) == __SI_TIMER) && 473 info->si_sys_private){ 474 /* 475 * Release the siglock to ensure proper locking order 476 * of timer locks outside of siglocks. Note, we leave 477 * irqs disabled here, since the posix-timers code is 478 * about to disable them again anyway. 479 */ 480 spin_unlock(&tsk->sighand->siglock); 481 do_schedule_next_timer(info); 482 spin_lock(&tsk->sighand->siglock); 483 } 484 return signr; 485 } 486 487 /* 488 * Tell a process that it has a new active signal.. 489 * 490 * NOTE! we rely on the previous spin_lock to 491 * lock interrupts for us! We can only be called with 492 * "siglock" held, and the local interrupt must 493 * have been disabled when that got acquired! 494 * 495 * No need to set need_resched since signal event passing 496 * goes through ->blocked 497 */ 498 void signal_wake_up(struct task_struct *t, int resume) 499 { 500 unsigned int mask; 501 502 set_tsk_thread_flag(t, TIF_SIGPENDING); 503 504 /* 505 * For SIGKILL, we want to wake it up in the stopped/traced case. 506 * We don't check t->state here because there is a race with it 507 * executing another processor and just now entering stopped state. 508 * By using wake_up_state, we ensure the process will wake up and 509 * handle its death signal. 510 */ 511 mask = TASK_INTERRUPTIBLE; 512 if (resume) 513 mask |= TASK_STOPPED | TASK_TRACED; 514 if (!wake_up_state(t, mask)) 515 kick_process(t); 516 } 517 518 /* 519 * Remove signals in mask from the pending set and queue. 520 * Returns 1 if any signals were found. 521 * 522 * All callers must be holding the siglock. 523 * 524 * This version takes a sigset mask and looks at all signals, 525 * not just those in the first mask word. 526 */ 527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 528 { 529 struct sigqueue *q, *n; 530 sigset_t m; 531 532 sigandsets(&m, mask, &s->signal); 533 if (sigisemptyset(&m)) 534 return 0; 535 536 signandsets(&s->signal, &s->signal, mask); 537 list_for_each_entry_safe(q, n, &s->list, list) { 538 if (sigismember(mask, q->info.si_signo)) { 539 list_del_init(&q->list); 540 __sigqueue_free(q); 541 } 542 } 543 return 1; 544 } 545 /* 546 * Remove signals in mask from the pending set and queue. 547 * Returns 1 if any signals were found. 548 * 549 * All callers must be holding the siglock. 550 */ 551 static int rm_from_queue(unsigned long mask, struct sigpending *s) 552 { 553 struct sigqueue *q, *n; 554 555 if (!sigtestsetmask(&s->signal, mask)) 556 return 0; 557 558 sigdelsetmask(&s->signal, mask); 559 list_for_each_entry_safe(q, n, &s->list, list) { 560 if (q->info.si_signo < SIGRTMIN && 561 (mask & sigmask(q->info.si_signo))) { 562 list_del_init(&q->list); 563 __sigqueue_free(q); 564 } 565 } 566 return 1; 567 } 568 569 /* 570 * Bad permissions for sending the signal 571 */ 572 static int check_kill_permission(int sig, struct siginfo *info, 573 struct task_struct *t) 574 { 575 int error = -EINVAL; 576 if (!valid_signal(sig)) 577 return error; 578 error = -EPERM; 579 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 580 && ((sig != SIGCONT) || 581 (current->signal->session != t->signal->session)) 582 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 583 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 584 && !capable(CAP_KILL)) 585 return error; 586 587 error = security_task_kill(t, info, sig); 588 if (!error) 589 audit_signal_info(sig, t); /* Let audit system see the signal */ 590 return error; 591 } 592 593 /* forward decl */ 594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 595 596 /* 597 * Handle magic process-wide effects of stop/continue signals. 598 * Unlike the signal actions, these happen immediately at signal-generation 599 * time regardless of blocking, ignoring, or handling. This does the 600 * actual continuing for SIGCONT, but not the actual stopping for stop 601 * signals. The process stop is done as a signal action for SIG_DFL. 602 */ 603 static void handle_stop_signal(int sig, struct task_struct *p) 604 { 605 struct task_struct *t; 606 607 if (p->signal->flags & SIGNAL_GROUP_EXIT) 608 /* 609 * The process is in the middle of dying already. 610 */ 611 return; 612 613 if (sig_kernel_stop(sig)) { 614 /* 615 * This is a stop signal. Remove SIGCONT from all queues. 616 */ 617 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 618 t = p; 619 do { 620 rm_from_queue(sigmask(SIGCONT), &t->pending); 621 t = next_thread(t); 622 } while (t != p); 623 } else if (sig == SIGCONT) { 624 /* 625 * Remove all stop signals from all queues, 626 * and wake all threads. 627 */ 628 if (unlikely(p->signal->group_stop_count > 0)) { 629 /* 630 * There was a group stop in progress. We'll 631 * pretend it finished before we got here. We are 632 * obliged to report it to the parent: if the 633 * SIGSTOP happened "after" this SIGCONT, then it 634 * would have cleared this pending SIGCONT. If it 635 * happened "before" this SIGCONT, then the parent 636 * got the SIGCHLD about the stop finishing before 637 * the continue happened. We do the notification 638 * now, and it's as if the stop had finished and 639 * the SIGCHLD was pending on entry to this kill. 640 */ 641 p->signal->group_stop_count = 0; 642 p->signal->flags = SIGNAL_STOP_CONTINUED; 643 spin_unlock(&p->sighand->siglock); 644 do_notify_parent_cldstop(p, CLD_STOPPED); 645 spin_lock(&p->sighand->siglock); 646 } 647 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 648 t = p; 649 do { 650 unsigned int state; 651 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 652 653 /* 654 * If there is a handler for SIGCONT, we must make 655 * sure that no thread returns to user mode before 656 * we post the signal, in case it was the only 657 * thread eligible to run the signal handler--then 658 * it must not do anything between resuming and 659 * running the handler. With the TIF_SIGPENDING 660 * flag set, the thread will pause and acquire the 661 * siglock that we hold now and until we've queued 662 * the pending signal. 663 * 664 * Wake up the stopped thread _after_ setting 665 * TIF_SIGPENDING 666 */ 667 state = TASK_STOPPED; 668 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 669 set_tsk_thread_flag(t, TIF_SIGPENDING); 670 state |= TASK_INTERRUPTIBLE; 671 } 672 wake_up_state(t, state); 673 674 t = next_thread(t); 675 } while (t != p); 676 677 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 678 /* 679 * We were in fact stopped, and are now continued. 680 * Notify the parent with CLD_CONTINUED. 681 */ 682 p->signal->flags = SIGNAL_STOP_CONTINUED; 683 p->signal->group_exit_code = 0; 684 spin_unlock(&p->sighand->siglock); 685 do_notify_parent_cldstop(p, CLD_CONTINUED); 686 spin_lock(&p->sighand->siglock); 687 } else { 688 /* 689 * We are not stopped, but there could be a stop 690 * signal in the middle of being processed after 691 * being removed from the queue. Clear that too. 692 */ 693 p->signal->flags = 0; 694 } 695 } else if (sig == SIGKILL) { 696 /* 697 * Make sure that any pending stop signal already dequeued 698 * is undone by the wakeup for SIGKILL. 699 */ 700 p->signal->flags = 0; 701 } 702 } 703 704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 705 struct sigpending *signals) 706 { 707 struct sigqueue * q = NULL; 708 int ret = 0; 709 710 /* 711 * fast-pathed signals for kernel-internal things like SIGSTOP 712 * or SIGKILL. 713 */ 714 if (info == SEND_SIG_FORCED) 715 goto out_set; 716 717 /* Real-time signals must be queued if sent by sigqueue, or 718 some other real-time mechanism. It is implementation 719 defined whether kill() does so. We attempt to do so, on 720 the principle of least surprise, but since kill is not 721 allowed to fail with EAGAIN when low on memory we just 722 make sure at least one signal gets delivered and don't 723 pass on the info struct. */ 724 725 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 726 (is_si_special(info) || 727 info->si_code >= 0))); 728 if (q) { 729 list_add_tail(&q->list, &signals->list); 730 switch ((unsigned long) info) { 731 case (unsigned long) SEND_SIG_NOINFO: 732 q->info.si_signo = sig; 733 q->info.si_errno = 0; 734 q->info.si_code = SI_USER; 735 q->info.si_pid = current->pid; 736 q->info.si_uid = current->uid; 737 break; 738 case (unsigned long) SEND_SIG_PRIV: 739 q->info.si_signo = sig; 740 q->info.si_errno = 0; 741 q->info.si_code = SI_KERNEL; 742 q->info.si_pid = 0; 743 q->info.si_uid = 0; 744 break; 745 default: 746 copy_siginfo(&q->info, info); 747 break; 748 } 749 } else if (!is_si_special(info)) { 750 if (sig >= SIGRTMIN && info->si_code != SI_USER) 751 /* 752 * Queue overflow, abort. We may abort if the signal was rt 753 * and sent by user using something other than kill(). 754 */ 755 return -EAGAIN; 756 } 757 758 out_set: 759 sigaddset(&signals->signal, sig); 760 return ret; 761 } 762 763 #define LEGACY_QUEUE(sigptr, sig) \ 764 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 765 766 767 static int 768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 769 { 770 int ret = 0; 771 772 if (!irqs_disabled()) 773 BUG(); 774 assert_spin_locked(&t->sighand->siglock); 775 776 /* Short-circuit ignored signals. */ 777 if (sig_ignored(t, sig)) 778 goto out; 779 780 /* Support queueing exactly one non-rt signal, so that we 781 can get more detailed information about the cause of 782 the signal. */ 783 if (LEGACY_QUEUE(&t->pending, sig)) 784 goto out; 785 786 ret = send_signal(sig, info, t, &t->pending); 787 if (!ret && !sigismember(&t->blocked, sig)) 788 signal_wake_up(t, sig == SIGKILL); 789 out: 790 return ret; 791 } 792 793 /* 794 * Force a signal that the process can't ignore: if necessary 795 * we unblock the signal and change any SIG_IGN to SIG_DFL. 796 */ 797 798 int 799 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 800 { 801 unsigned long int flags; 802 int ret; 803 804 spin_lock_irqsave(&t->sighand->siglock, flags); 805 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { 806 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 807 } 808 if (sigismember(&t->blocked, sig)) { 809 sigdelset(&t->blocked, sig); 810 } 811 recalc_sigpending_tsk(t); 812 ret = specific_send_sig_info(sig, info, t); 813 spin_unlock_irqrestore(&t->sighand->siglock, flags); 814 815 return ret; 816 } 817 818 void 819 force_sig_specific(int sig, struct task_struct *t) 820 { 821 force_sig_info(sig, SEND_SIG_FORCED, t); 822 } 823 824 /* 825 * Test if P wants to take SIG. After we've checked all threads with this, 826 * it's equivalent to finding no threads not blocking SIG. Any threads not 827 * blocking SIG were ruled out because they are not running and already 828 * have pending signals. Such threads will dequeue from the shared queue 829 * as soon as they're available, so putting the signal on the shared queue 830 * will be equivalent to sending it to one such thread. 831 */ 832 static inline int wants_signal(int sig, struct task_struct *p) 833 { 834 if (sigismember(&p->blocked, sig)) 835 return 0; 836 if (p->flags & PF_EXITING) 837 return 0; 838 if (sig == SIGKILL) 839 return 1; 840 if (p->state & (TASK_STOPPED | TASK_TRACED)) 841 return 0; 842 return task_curr(p) || !signal_pending(p); 843 } 844 845 static void 846 __group_complete_signal(int sig, struct task_struct *p) 847 { 848 struct task_struct *t; 849 850 /* 851 * Now find a thread we can wake up to take the signal off the queue. 852 * 853 * If the main thread wants the signal, it gets first crack. 854 * Probably the least surprising to the average bear. 855 */ 856 if (wants_signal(sig, p)) 857 t = p; 858 else if (thread_group_empty(p)) 859 /* 860 * There is just one thread and it does not need to be woken. 861 * It will dequeue unblocked signals before it runs again. 862 */ 863 return; 864 else { 865 /* 866 * Otherwise try to find a suitable thread. 867 */ 868 t = p->signal->curr_target; 869 if (t == NULL) 870 /* restart balancing at this thread */ 871 t = p->signal->curr_target = p; 872 BUG_ON(t->tgid != p->tgid); 873 874 while (!wants_signal(sig, t)) { 875 t = next_thread(t); 876 if (t == p->signal->curr_target) 877 /* 878 * No thread needs to be woken. 879 * Any eligible threads will see 880 * the signal in the queue soon. 881 */ 882 return; 883 } 884 p->signal->curr_target = t; 885 } 886 887 /* 888 * Found a killable thread. If the signal will be fatal, 889 * then start taking the whole group down immediately. 890 */ 891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 892 !sigismember(&t->real_blocked, sig) && 893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 894 /* 895 * This signal will be fatal to the whole group. 896 */ 897 if (!sig_kernel_coredump(sig)) { 898 /* 899 * Start a group exit and wake everybody up. 900 * This way we don't have other threads 901 * running and doing things after a slower 902 * thread has the fatal signal pending. 903 */ 904 p->signal->flags = SIGNAL_GROUP_EXIT; 905 p->signal->group_exit_code = sig; 906 p->signal->group_stop_count = 0; 907 t = p; 908 do { 909 sigaddset(&t->pending.signal, SIGKILL); 910 signal_wake_up(t, 1); 911 t = next_thread(t); 912 } while (t != p); 913 return; 914 } 915 916 /* 917 * There will be a core dump. We make all threads other 918 * than the chosen one go into a group stop so that nothing 919 * happens until it gets scheduled, takes the signal off 920 * the shared queue, and does the core dump. This is a 921 * little more complicated than strictly necessary, but it 922 * keeps the signal state that winds up in the core dump 923 * unchanged from the death state, e.g. which thread had 924 * the core-dump signal unblocked. 925 */ 926 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 927 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 928 p->signal->group_stop_count = 0; 929 p->signal->group_exit_task = t; 930 t = p; 931 do { 932 p->signal->group_stop_count++; 933 signal_wake_up(t, 0); 934 t = next_thread(t); 935 } while (t != p); 936 wake_up_process(p->signal->group_exit_task); 937 return; 938 } 939 940 /* 941 * The signal is already in the shared-pending queue. 942 * Tell the chosen thread to wake up and dequeue it. 943 */ 944 signal_wake_up(t, sig == SIGKILL); 945 return; 946 } 947 948 int 949 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 950 { 951 int ret = 0; 952 953 assert_spin_locked(&p->sighand->siglock); 954 handle_stop_signal(sig, p); 955 956 /* Short-circuit ignored signals. */ 957 if (sig_ignored(p, sig)) 958 return ret; 959 960 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 961 /* This is a non-RT signal and we already have one queued. */ 962 return ret; 963 964 /* 965 * Put this signal on the shared-pending queue, or fail with EAGAIN. 966 * We always use the shared queue for process-wide signals, 967 * to avoid several races. 968 */ 969 ret = send_signal(sig, info, p, &p->signal->shared_pending); 970 if (unlikely(ret)) 971 return ret; 972 973 __group_complete_signal(sig, p); 974 return 0; 975 } 976 977 /* 978 * Nuke all other threads in the group. 979 */ 980 void zap_other_threads(struct task_struct *p) 981 { 982 struct task_struct *t; 983 984 p->signal->flags = SIGNAL_GROUP_EXIT; 985 p->signal->group_stop_count = 0; 986 987 if (thread_group_empty(p)) 988 return; 989 990 for (t = next_thread(p); t != p; t = next_thread(t)) { 991 /* 992 * Don't bother with already dead threads 993 */ 994 if (t->exit_state) 995 continue; 996 997 /* 998 * We don't want to notify the parent, since we are 999 * killed as part of a thread group due to another 1000 * thread doing an execve() or similar. So set the 1001 * exit signal to -1 to allow immediate reaping of 1002 * the process. But don't detach the thread group 1003 * leader. 1004 */ 1005 if (t != p->group_leader) 1006 t->exit_signal = -1; 1007 1008 /* SIGKILL will be handled before any pending SIGSTOP */ 1009 sigaddset(&t->pending.signal, SIGKILL); 1010 signal_wake_up(t, 1); 1011 } 1012 } 1013 1014 /* 1015 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1016 */ 1017 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1018 { 1019 struct sighand_struct *sighand; 1020 1021 for (;;) { 1022 sighand = rcu_dereference(tsk->sighand); 1023 if (unlikely(sighand == NULL)) 1024 break; 1025 1026 spin_lock_irqsave(&sighand->siglock, *flags); 1027 if (likely(sighand == tsk->sighand)) 1028 break; 1029 spin_unlock_irqrestore(&sighand->siglock, *flags); 1030 } 1031 1032 return sighand; 1033 } 1034 1035 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1036 { 1037 unsigned long flags; 1038 int ret; 1039 1040 ret = check_kill_permission(sig, info, p); 1041 1042 if (!ret && sig) { 1043 ret = -ESRCH; 1044 if (lock_task_sighand(p, &flags)) { 1045 ret = __group_send_sig_info(sig, info, p); 1046 unlock_task_sighand(p, &flags); 1047 } 1048 } 1049 1050 return ret; 1051 } 1052 1053 /* 1054 * kill_pg_info() sends a signal to a process group: this is what the tty 1055 * control characters do (^C, ^Z etc) 1056 */ 1057 1058 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1059 { 1060 struct task_struct *p = NULL; 1061 int retval, success; 1062 1063 if (pgrp <= 0) 1064 return -EINVAL; 1065 1066 success = 0; 1067 retval = -ESRCH; 1068 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1069 int err = group_send_sig_info(sig, info, p); 1070 success |= !err; 1071 retval = err; 1072 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1073 return success ? 0 : retval; 1074 } 1075 1076 int 1077 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1078 { 1079 int retval; 1080 1081 read_lock(&tasklist_lock); 1082 retval = __kill_pg_info(sig, info, pgrp); 1083 read_unlock(&tasklist_lock); 1084 1085 return retval; 1086 } 1087 1088 int 1089 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1090 { 1091 int error; 1092 int acquired_tasklist_lock = 0; 1093 struct task_struct *p; 1094 1095 rcu_read_lock(); 1096 if (unlikely(sig_needs_tasklist(sig))) { 1097 read_lock(&tasklist_lock); 1098 acquired_tasklist_lock = 1; 1099 } 1100 p = find_task_by_pid(pid); 1101 error = -ESRCH; 1102 if (p) 1103 error = group_send_sig_info(sig, info, p); 1104 if (unlikely(acquired_tasklist_lock)) 1105 read_unlock(&tasklist_lock); 1106 rcu_read_unlock(); 1107 return error; 1108 } 1109 1110 /* like kill_proc_info(), but doesn't use uid/euid of "current" */ 1111 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, 1112 uid_t uid, uid_t euid) 1113 { 1114 int ret = -EINVAL; 1115 struct task_struct *p; 1116 1117 if (!valid_signal(sig)) 1118 return ret; 1119 1120 read_lock(&tasklist_lock); 1121 p = find_task_by_pid(pid); 1122 if (!p) { 1123 ret = -ESRCH; 1124 goto out_unlock; 1125 } 1126 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1127 && (euid != p->suid) && (euid != p->uid) 1128 && (uid != p->suid) && (uid != p->uid)) { 1129 ret = -EPERM; 1130 goto out_unlock; 1131 } 1132 if (sig && p->sighand) { 1133 unsigned long flags; 1134 spin_lock_irqsave(&p->sighand->siglock, flags); 1135 ret = __group_send_sig_info(sig, info, p); 1136 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1137 } 1138 out_unlock: 1139 read_unlock(&tasklist_lock); 1140 return ret; 1141 } 1142 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); 1143 1144 /* 1145 * kill_something_info() interprets pid in interesting ways just like kill(2). 1146 * 1147 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1148 * is probably wrong. Should make it like BSD or SYSV. 1149 */ 1150 1151 static int kill_something_info(int sig, struct siginfo *info, int pid) 1152 { 1153 if (!pid) { 1154 return kill_pg_info(sig, info, process_group(current)); 1155 } else if (pid == -1) { 1156 int retval = 0, count = 0; 1157 struct task_struct * p; 1158 1159 read_lock(&tasklist_lock); 1160 for_each_process(p) { 1161 if (p->pid > 1 && p->tgid != current->tgid) { 1162 int err = group_send_sig_info(sig, info, p); 1163 ++count; 1164 if (err != -EPERM) 1165 retval = err; 1166 } 1167 } 1168 read_unlock(&tasklist_lock); 1169 return count ? retval : -ESRCH; 1170 } else if (pid < 0) { 1171 return kill_pg_info(sig, info, -pid); 1172 } else { 1173 return kill_proc_info(sig, info, pid); 1174 } 1175 } 1176 1177 /* 1178 * These are for backward compatibility with the rest of the kernel source. 1179 */ 1180 1181 /* 1182 * These two are the most common entry points. They send a signal 1183 * just to the specific thread. 1184 */ 1185 int 1186 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1187 { 1188 int ret; 1189 unsigned long flags; 1190 1191 /* 1192 * Make sure legacy kernel users don't send in bad values 1193 * (normal paths check this in check_kill_permission). 1194 */ 1195 if (!valid_signal(sig)) 1196 return -EINVAL; 1197 1198 /* 1199 * We need the tasklist lock even for the specific 1200 * thread case (when we don't need to follow the group 1201 * lists) in order to avoid races with "p->sighand" 1202 * going away or changing from under us. 1203 */ 1204 read_lock(&tasklist_lock); 1205 spin_lock_irqsave(&p->sighand->siglock, flags); 1206 ret = specific_send_sig_info(sig, info, p); 1207 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1208 read_unlock(&tasklist_lock); 1209 return ret; 1210 } 1211 1212 #define __si_special(priv) \ 1213 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1214 1215 int 1216 send_sig(int sig, struct task_struct *p, int priv) 1217 { 1218 return send_sig_info(sig, __si_special(priv), p); 1219 } 1220 1221 /* 1222 * This is the entry point for "process-wide" signals. 1223 * They will go to an appropriate thread in the thread group. 1224 */ 1225 int 1226 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1227 { 1228 int ret; 1229 read_lock(&tasklist_lock); 1230 ret = group_send_sig_info(sig, info, p); 1231 read_unlock(&tasklist_lock); 1232 return ret; 1233 } 1234 1235 void 1236 force_sig(int sig, struct task_struct *p) 1237 { 1238 force_sig_info(sig, SEND_SIG_PRIV, p); 1239 } 1240 1241 /* 1242 * When things go south during signal handling, we 1243 * will force a SIGSEGV. And if the signal that caused 1244 * the problem was already a SIGSEGV, we'll want to 1245 * make sure we don't even try to deliver the signal.. 1246 */ 1247 int 1248 force_sigsegv(int sig, struct task_struct *p) 1249 { 1250 if (sig == SIGSEGV) { 1251 unsigned long flags; 1252 spin_lock_irqsave(&p->sighand->siglock, flags); 1253 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1254 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1255 } 1256 force_sig(SIGSEGV, p); 1257 return 0; 1258 } 1259 1260 int 1261 kill_pg(pid_t pgrp, int sig, int priv) 1262 { 1263 return kill_pg_info(sig, __si_special(priv), pgrp); 1264 } 1265 1266 int 1267 kill_proc(pid_t pid, int sig, int priv) 1268 { 1269 return kill_proc_info(sig, __si_special(priv), pid); 1270 } 1271 1272 /* 1273 * These functions support sending signals using preallocated sigqueue 1274 * structures. This is needed "because realtime applications cannot 1275 * afford to lose notifications of asynchronous events, like timer 1276 * expirations or I/O completions". In the case of Posix Timers 1277 * we allocate the sigqueue structure from the timer_create. If this 1278 * allocation fails we are able to report the failure to the application 1279 * with an EAGAIN error. 1280 */ 1281 1282 struct sigqueue *sigqueue_alloc(void) 1283 { 1284 struct sigqueue *q; 1285 1286 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1287 q->flags |= SIGQUEUE_PREALLOC; 1288 return(q); 1289 } 1290 1291 void sigqueue_free(struct sigqueue *q) 1292 { 1293 unsigned long flags; 1294 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1295 /* 1296 * If the signal is still pending remove it from the 1297 * pending queue. 1298 */ 1299 if (unlikely(!list_empty(&q->list))) { 1300 spinlock_t *lock = ¤t->sighand->siglock; 1301 read_lock(&tasklist_lock); 1302 spin_lock_irqsave(lock, flags); 1303 if (!list_empty(&q->list)) 1304 list_del_init(&q->list); 1305 spin_unlock_irqrestore(lock, flags); 1306 read_unlock(&tasklist_lock); 1307 } 1308 q->flags &= ~SIGQUEUE_PREALLOC; 1309 __sigqueue_free(q); 1310 } 1311 1312 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1313 { 1314 unsigned long flags; 1315 int ret = 0; 1316 1317 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1318 1319 /* 1320 * The rcu based delayed sighand destroy makes it possible to 1321 * run this without tasklist lock held. The task struct itself 1322 * cannot go away as create_timer did get_task_struct(). 1323 * 1324 * We return -1, when the task is marked exiting, so 1325 * posix_timer_event can redirect it to the group leader 1326 */ 1327 rcu_read_lock(); 1328 1329 if (!likely(lock_task_sighand(p, &flags))) { 1330 ret = -1; 1331 goto out_err; 1332 } 1333 1334 if (unlikely(!list_empty(&q->list))) { 1335 /* 1336 * If an SI_TIMER entry is already queue just increment 1337 * the overrun count. 1338 */ 1339 BUG_ON(q->info.si_code != SI_TIMER); 1340 q->info.si_overrun++; 1341 goto out; 1342 } 1343 /* Short-circuit ignored signals. */ 1344 if (sig_ignored(p, sig)) { 1345 ret = 1; 1346 goto out; 1347 } 1348 1349 list_add_tail(&q->list, &p->pending.list); 1350 sigaddset(&p->pending.signal, sig); 1351 if (!sigismember(&p->blocked, sig)) 1352 signal_wake_up(p, sig == SIGKILL); 1353 1354 out: 1355 unlock_task_sighand(p, &flags); 1356 out_err: 1357 rcu_read_unlock(); 1358 1359 return ret; 1360 } 1361 1362 int 1363 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1364 { 1365 unsigned long flags; 1366 int ret = 0; 1367 1368 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1369 1370 read_lock(&tasklist_lock); 1371 /* Since it_lock is held, p->sighand cannot be NULL. */ 1372 spin_lock_irqsave(&p->sighand->siglock, flags); 1373 handle_stop_signal(sig, p); 1374 1375 /* Short-circuit ignored signals. */ 1376 if (sig_ignored(p, sig)) { 1377 ret = 1; 1378 goto out; 1379 } 1380 1381 if (unlikely(!list_empty(&q->list))) { 1382 /* 1383 * If an SI_TIMER entry is already queue just increment 1384 * the overrun count. Other uses should not try to 1385 * send the signal multiple times. 1386 */ 1387 if (q->info.si_code != SI_TIMER) 1388 BUG(); 1389 q->info.si_overrun++; 1390 goto out; 1391 } 1392 1393 /* 1394 * Put this signal on the shared-pending queue. 1395 * We always use the shared queue for process-wide signals, 1396 * to avoid several races. 1397 */ 1398 list_add_tail(&q->list, &p->signal->shared_pending.list); 1399 sigaddset(&p->signal->shared_pending.signal, sig); 1400 1401 __group_complete_signal(sig, p); 1402 out: 1403 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1404 read_unlock(&tasklist_lock); 1405 return ret; 1406 } 1407 1408 /* 1409 * Wake up any threads in the parent blocked in wait* syscalls. 1410 */ 1411 static inline void __wake_up_parent(struct task_struct *p, 1412 struct task_struct *parent) 1413 { 1414 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1415 } 1416 1417 /* 1418 * Let a parent know about the death of a child. 1419 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1420 */ 1421 1422 void do_notify_parent(struct task_struct *tsk, int sig) 1423 { 1424 struct siginfo info; 1425 unsigned long flags; 1426 struct sighand_struct *psig; 1427 1428 BUG_ON(sig == -1); 1429 1430 /* do_notify_parent_cldstop should have been called instead. */ 1431 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1432 1433 BUG_ON(!tsk->ptrace && 1434 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1435 1436 info.si_signo = sig; 1437 info.si_errno = 0; 1438 info.si_pid = tsk->pid; 1439 info.si_uid = tsk->uid; 1440 1441 /* FIXME: find out whether or not this is supposed to be c*time. */ 1442 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1443 tsk->signal->utime)); 1444 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1445 tsk->signal->stime)); 1446 1447 info.si_status = tsk->exit_code & 0x7f; 1448 if (tsk->exit_code & 0x80) 1449 info.si_code = CLD_DUMPED; 1450 else if (tsk->exit_code & 0x7f) 1451 info.si_code = CLD_KILLED; 1452 else { 1453 info.si_code = CLD_EXITED; 1454 info.si_status = tsk->exit_code >> 8; 1455 } 1456 1457 psig = tsk->parent->sighand; 1458 spin_lock_irqsave(&psig->siglock, flags); 1459 if (!tsk->ptrace && sig == SIGCHLD && 1460 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1461 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1462 /* 1463 * We are exiting and our parent doesn't care. POSIX.1 1464 * defines special semantics for setting SIGCHLD to SIG_IGN 1465 * or setting the SA_NOCLDWAIT flag: we should be reaped 1466 * automatically and not left for our parent's wait4 call. 1467 * Rather than having the parent do it as a magic kind of 1468 * signal handler, we just set this to tell do_exit that we 1469 * can be cleaned up without becoming a zombie. Note that 1470 * we still call __wake_up_parent in this case, because a 1471 * blocked sys_wait4 might now return -ECHILD. 1472 * 1473 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1474 * is implementation-defined: we do (if you don't want 1475 * it, just use SIG_IGN instead). 1476 */ 1477 tsk->exit_signal = -1; 1478 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1479 sig = 0; 1480 } 1481 if (valid_signal(sig) && sig > 0) 1482 __group_send_sig_info(sig, &info, tsk->parent); 1483 __wake_up_parent(tsk, tsk->parent); 1484 spin_unlock_irqrestore(&psig->siglock, flags); 1485 } 1486 1487 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1488 { 1489 struct siginfo info; 1490 unsigned long flags; 1491 struct task_struct *parent; 1492 struct sighand_struct *sighand; 1493 1494 if (tsk->ptrace & PT_PTRACED) 1495 parent = tsk->parent; 1496 else { 1497 tsk = tsk->group_leader; 1498 parent = tsk->real_parent; 1499 } 1500 1501 info.si_signo = SIGCHLD; 1502 info.si_errno = 0; 1503 info.si_pid = tsk->pid; 1504 info.si_uid = tsk->uid; 1505 1506 /* FIXME: find out whether or not this is supposed to be c*time. */ 1507 info.si_utime = cputime_to_jiffies(tsk->utime); 1508 info.si_stime = cputime_to_jiffies(tsk->stime); 1509 1510 info.si_code = why; 1511 switch (why) { 1512 case CLD_CONTINUED: 1513 info.si_status = SIGCONT; 1514 break; 1515 case CLD_STOPPED: 1516 info.si_status = tsk->signal->group_exit_code & 0x7f; 1517 break; 1518 case CLD_TRAPPED: 1519 info.si_status = tsk->exit_code & 0x7f; 1520 break; 1521 default: 1522 BUG(); 1523 } 1524 1525 sighand = parent->sighand; 1526 spin_lock_irqsave(&sighand->siglock, flags); 1527 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1528 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1529 __group_send_sig_info(SIGCHLD, &info, parent); 1530 /* 1531 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1532 */ 1533 __wake_up_parent(tsk, parent); 1534 spin_unlock_irqrestore(&sighand->siglock, flags); 1535 } 1536 1537 /* 1538 * This must be called with current->sighand->siglock held. 1539 * 1540 * This should be the path for all ptrace stops. 1541 * We always set current->last_siginfo while stopped here. 1542 * That makes it a way to test a stopped process for 1543 * being ptrace-stopped vs being job-control-stopped. 1544 * 1545 * If we actually decide not to stop at all because the tracer is gone, 1546 * we leave nostop_code in current->exit_code. 1547 */ 1548 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1549 { 1550 /* 1551 * If there is a group stop in progress, 1552 * we must participate in the bookkeeping. 1553 */ 1554 if (current->signal->group_stop_count > 0) 1555 --current->signal->group_stop_count; 1556 1557 current->last_siginfo = info; 1558 current->exit_code = exit_code; 1559 1560 /* Let the debugger run. */ 1561 set_current_state(TASK_TRACED); 1562 spin_unlock_irq(¤t->sighand->siglock); 1563 try_to_freeze(); 1564 read_lock(&tasklist_lock); 1565 if (likely(current->ptrace & PT_PTRACED) && 1566 likely(current->parent != current->real_parent || 1567 !(current->ptrace & PT_ATTACHED)) && 1568 (likely(current->parent->signal != current->signal) || 1569 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { 1570 do_notify_parent_cldstop(current, CLD_TRAPPED); 1571 read_unlock(&tasklist_lock); 1572 schedule(); 1573 } else { 1574 /* 1575 * By the time we got the lock, our tracer went away. 1576 * Don't stop here. 1577 */ 1578 read_unlock(&tasklist_lock); 1579 set_current_state(TASK_RUNNING); 1580 current->exit_code = nostop_code; 1581 } 1582 1583 /* 1584 * We are back. Now reacquire the siglock before touching 1585 * last_siginfo, so that we are sure to have synchronized with 1586 * any signal-sending on another CPU that wants to examine it. 1587 */ 1588 spin_lock_irq(¤t->sighand->siglock); 1589 current->last_siginfo = NULL; 1590 1591 /* 1592 * Queued signals ignored us while we were stopped for tracing. 1593 * So check for any that we should take before resuming user mode. 1594 */ 1595 recalc_sigpending(); 1596 } 1597 1598 void ptrace_notify(int exit_code) 1599 { 1600 siginfo_t info; 1601 1602 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1603 1604 memset(&info, 0, sizeof info); 1605 info.si_signo = SIGTRAP; 1606 info.si_code = exit_code; 1607 info.si_pid = current->pid; 1608 info.si_uid = current->uid; 1609 1610 /* Let the debugger run. */ 1611 spin_lock_irq(¤t->sighand->siglock); 1612 ptrace_stop(exit_code, 0, &info); 1613 spin_unlock_irq(¤t->sighand->siglock); 1614 } 1615 1616 static void 1617 finish_stop(int stop_count) 1618 { 1619 /* 1620 * If there are no other threads in the group, or if there is 1621 * a group stop in progress and we are the last to stop, 1622 * report to the parent. When ptraced, every thread reports itself. 1623 */ 1624 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1625 read_lock(&tasklist_lock); 1626 do_notify_parent_cldstop(current, CLD_STOPPED); 1627 read_unlock(&tasklist_lock); 1628 } 1629 1630 schedule(); 1631 /* 1632 * Now we don't run again until continued. 1633 */ 1634 current->exit_code = 0; 1635 } 1636 1637 /* 1638 * This performs the stopping for SIGSTOP and other stop signals. 1639 * We have to stop all threads in the thread group. 1640 * Returns nonzero if we've actually stopped and released the siglock. 1641 * Returns zero if we didn't stop and still hold the siglock. 1642 */ 1643 static int do_signal_stop(int signr) 1644 { 1645 struct signal_struct *sig = current->signal; 1646 int stop_count; 1647 1648 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1649 return 0; 1650 1651 if (sig->group_stop_count > 0) { 1652 /* 1653 * There is a group stop in progress. We don't need to 1654 * start another one. 1655 */ 1656 stop_count = --sig->group_stop_count; 1657 } else { 1658 /* 1659 * There is no group stop already in progress. 1660 * We must initiate one now. 1661 */ 1662 struct task_struct *t; 1663 1664 sig->group_exit_code = signr; 1665 1666 stop_count = 0; 1667 for (t = next_thread(current); t != current; t = next_thread(t)) 1668 /* 1669 * Setting state to TASK_STOPPED for a group 1670 * stop is always done with the siglock held, 1671 * so this check has no races. 1672 */ 1673 if (!t->exit_state && 1674 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1675 stop_count++; 1676 signal_wake_up(t, 0); 1677 } 1678 sig->group_stop_count = stop_count; 1679 } 1680 1681 if (stop_count == 0) 1682 sig->flags = SIGNAL_STOP_STOPPED; 1683 current->exit_code = sig->group_exit_code; 1684 __set_current_state(TASK_STOPPED); 1685 1686 spin_unlock_irq(¤t->sighand->siglock); 1687 finish_stop(stop_count); 1688 return 1; 1689 } 1690 1691 /* 1692 * Do appropriate magic when group_stop_count > 0. 1693 * We return nonzero if we stopped, after releasing the siglock. 1694 * We return zero if we still hold the siglock and should look 1695 * for another signal without checking group_stop_count again. 1696 */ 1697 static int handle_group_stop(void) 1698 { 1699 int stop_count; 1700 1701 if (current->signal->group_exit_task == current) { 1702 /* 1703 * Group stop is so we can do a core dump, 1704 * We are the initiating thread, so get on with it. 1705 */ 1706 current->signal->group_exit_task = NULL; 1707 return 0; 1708 } 1709 1710 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1711 /* 1712 * Group stop is so another thread can do a core dump, 1713 * or else we are racing against a death signal. 1714 * Just punt the stop so we can get the next signal. 1715 */ 1716 return 0; 1717 1718 /* 1719 * There is a group stop in progress. We stop 1720 * without any associated signal being in our queue. 1721 */ 1722 stop_count = --current->signal->group_stop_count; 1723 if (stop_count == 0) 1724 current->signal->flags = SIGNAL_STOP_STOPPED; 1725 current->exit_code = current->signal->group_exit_code; 1726 set_current_state(TASK_STOPPED); 1727 spin_unlock_irq(¤t->sighand->siglock); 1728 finish_stop(stop_count); 1729 return 1; 1730 } 1731 1732 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1733 struct pt_regs *regs, void *cookie) 1734 { 1735 sigset_t *mask = ¤t->blocked; 1736 int signr = 0; 1737 1738 try_to_freeze(); 1739 1740 relock: 1741 spin_lock_irq(¤t->sighand->siglock); 1742 for (;;) { 1743 struct k_sigaction *ka; 1744 1745 if (unlikely(current->signal->group_stop_count > 0) && 1746 handle_group_stop()) 1747 goto relock; 1748 1749 signr = dequeue_signal(current, mask, info); 1750 1751 if (!signr) 1752 break; /* will return 0 */ 1753 1754 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1755 ptrace_signal_deliver(regs, cookie); 1756 1757 /* Let the debugger run. */ 1758 ptrace_stop(signr, signr, info); 1759 1760 /* We're back. Did the debugger cancel the sig or group_exit? */ 1761 signr = current->exit_code; 1762 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT) 1763 continue; 1764 1765 current->exit_code = 0; 1766 1767 /* Update the siginfo structure if the signal has 1768 changed. If the debugger wanted something 1769 specific in the siginfo structure then it should 1770 have updated *info via PTRACE_SETSIGINFO. */ 1771 if (signr != info->si_signo) { 1772 info->si_signo = signr; 1773 info->si_errno = 0; 1774 info->si_code = SI_USER; 1775 info->si_pid = current->parent->pid; 1776 info->si_uid = current->parent->uid; 1777 } 1778 1779 /* If the (new) signal is now blocked, requeue it. */ 1780 if (sigismember(¤t->blocked, signr)) { 1781 specific_send_sig_info(signr, info, current); 1782 continue; 1783 } 1784 } 1785 1786 ka = ¤t->sighand->action[signr-1]; 1787 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1788 continue; 1789 if (ka->sa.sa_handler != SIG_DFL) { 1790 /* Run the handler. */ 1791 *return_ka = *ka; 1792 1793 if (ka->sa.sa_flags & SA_ONESHOT) 1794 ka->sa.sa_handler = SIG_DFL; 1795 1796 break; /* will return non-zero "signr" value */ 1797 } 1798 1799 /* 1800 * Now we are doing the default action for this signal. 1801 */ 1802 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1803 continue; 1804 1805 /* Init gets no signals it doesn't want. */ 1806 if (current == child_reaper) 1807 continue; 1808 1809 if (sig_kernel_stop(signr)) { 1810 /* 1811 * The default action is to stop all threads in 1812 * the thread group. The job control signals 1813 * do nothing in an orphaned pgrp, but SIGSTOP 1814 * always works. Note that siglock needs to be 1815 * dropped during the call to is_orphaned_pgrp() 1816 * because of lock ordering with tasklist_lock. 1817 * This allows an intervening SIGCONT to be posted. 1818 * We need to check for that and bail out if necessary. 1819 */ 1820 if (signr != SIGSTOP) { 1821 spin_unlock_irq(¤t->sighand->siglock); 1822 1823 /* signals can be posted during this window */ 1824 1825 if (is_orphaned_pgrp(process_group(current))) 1826 goto relock; 1827 1828 spin_lock_irq(¤t->sighand->siglock); 1829 } 1830 1831 if (likely(do_signal_stop(signr))) { 1832 /* It released the siglock. */ 1833 goto relock; 1834 } 1835 1836 /* 1837 * We didn't actually stop, due to a race 1838 * with SIGCONT or something like that. 1839 */ 1840 continue; 1841 } 1842 1843 spin_unlock_irq(¤t->sighand->siglock); 1844 1845 /* 1846 * Anything else is fatal, maybe with a core dump. 1847 */ 1848 current->flags |= PF_SIGNALED; 1849 if (sig_kernel_coredump(signr)) { 1850 /* 1851 * If it was able to dump core, this kills all 1852 * other threads in the group and synchronizes with 1853 * their demise. If we lost the race with another 1854 * thread getting here, it set group_exit_code 1855 * first and our do_group_exit call below will use 1856 * that value and ignore the one we pass it. 1857 */ 1858 do_coredump((long)signr, signr, regs); 1859 } 1860 1861 /* 1862 * Death signals, no core dump. 1863 */ 1864 do_group_exit(signr); 1865 /* NOTREACHED */ 1866 } 1867 spin_unlock_irq(¤t->sighand->siglock); 1868 return signr; 1869 } 1870 1871 EXPORT_SYMBOL(recalc_sigpending); 1872 EXPORT_SYMBOL_GPL(dequeue_signal); 1873 EXPORT_SYMBOL(flush_signals); 1874 EXPORT_SYMBOL(force_sig); 1875 EXPORT_SYMBOL(kill_pg); 1876 EXPORT_SYMBOL(kill_proc); 1877 EXPORT_SYMBOL(ptrace_notify); 1878 EXPORT_SYMBOL(send_sig); 1879 EXPORT_SYMBOL(send_sig_info); 1880 EXPORT_SYMBOL(sigprocmask); 1881 EXPORT_SYMBOL(block_all_signals); 1882 EXPORT_SYMBOL(unblock_all_signals); 1883 1884 1885 /* 1886 * System call entry points. 1887 */ 1888 1889 asmlinkage long sys_restart_syscall(void) 1890 { 1891 struct restart_block *restart = ¤t_thread_info()->restart_block; 1892 return restart->fn(restart); 1893 } 1894 1895 long do_no_restart_syscall(struct restart_block *param) 1896 { 1897 return -EINTR; 1898 } 1899 1900 /* 1901 * We don't need to get the kernel lock - this is all local to this 1902 * particular thread.. (and that's good, because this is _heavily_ 1903 * used by various programs) 1904 */ 1905 1906 /* 1907 * This is also useful for kernel threads that want to temporarily 1908 * (or permanently) block certain signals. 1909 * 1910 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1911 * interface happily blocks "unblockable" signals like SIGKILL 1912 * and friends. 1913 */ 1914 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1915 { 1916 int error; 1917 1918 spin_lock_irq(¤t->sighand->siglock); 1919 if (oldset) 1920 *oldset = current->blocked; 1921 1922 error = 0; 1923 switch (how) { 1924 case SIG_BLOCK: 1925 sigorsets(¤t->blocked, ¤t->blocked, set); 1926 break; 1927 case SIG_UNBLOCK: 1928 signandsets(¤t->blocked, ¤t->blocked, set); 1929 break; 1930 case SIG_SETMASK: 1931 current->blocked = *set; 1932 break; 1933 default: 1934 error = -EINVAL; 1935 } 1936 recalc_sigpending(); 1937 spin_unlock_irq(¤t->sighand->siglock); 1938 1939 return error; 1940 } 1941 1942 asmlinkage long 1943 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1944 { 1945 int error = -EINVAL; 1946 sigset_t old_set, new_set; 1947 1948 /* XXX: Don't preclude handling different sized sigset_t's. */ 1949 if (sigsetsize != sizeof(sigset_t)) 1950 goto out; 1951 1952 if (set) { 1953 error = -EFAULT; 1954 if (copy_from_user(&new_set, set, sizeof(*set))) 1955 goto out; 1956 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1957 1958 error = sigprocmask(how, &new_set, &old_set); 1959 if (error) 1960 goto out; 1961 if (oset) 1962 goto set_old; 1963 } else if (oset) { 1964 spin_lock_irq(¤t->sighand->siglock); 1965 old_set = current->blocked; 1966 spin_unlock_irq(¤t->sighand->siglock); 1967 1968 set_old: 1969 error = -EFAULT; 1970 if (copy_to_user(oset, &old_set, sizeof(*oset))) 1971 goto out; 1972 } 1973 error = 0; 1974 out: 1975 return error; 1976 } 1977 1978 long do_sigpending(void __user *set, unsigned long sigsetsize) 1979 { 1980 long error = -EINVAL; 1981 sigset_t pending; 1982 1983 if (sigsetsize > sizeof(sigset_t)) 1984 goto out; 1985 1986 spin_lock_irq(¤t->sighand->siglock); 1987 sigorsets(&pending, ¤t->pending.signal, 1988 ¤t->signal->shared_pending.signal); 1989 spin_unlock_irq(¤t->sighand->siglock); 1990 1991 /* Outside the lock because only this thread touches it. */ 1992 sigandsets(&pending, ¤t->blocked, &pending); 1993 1994 error = -EFAULT; 1995 if (!copy_to_user(set, &pending, sigsetsize)) 1996 error = 0; 1997 1998 out: 1999 return error; 2000 } 2001 2002 asmlinkage long 2003 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2004 { 2005 return do_sigpending(set, sigsetsize); 2006 } 2007 2008 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2009 2010 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2011 { 2012 int err; 2013 2014 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2015 return -EFAULT; 2016 if (from->si_code < 0) 2017 return __copy_to_user(to, from, sizeof(siginfo_t)) 2018 ? -EFAULT : 0; 2019 /* 2020 * If you change siginfo_t structure, please be sure 2021 * this code is fixed accordingly. 2022 * It should never copy any pad contained in the structure 2023 * to avoid security leaks, but must copy the generic 2024 * 3 ints plus the relevant union member. 2025 */ 2026 err = __put_user(from->si_signo, &to->si_signo); 2027 err |= __put_user(from->si_errno, &to->si_errno); 2028 err |= __put_user((short)from->si_code, &to->si_code); 2029 switch (from->si_code & __SI_MASK) { 2030 case __SI_KILL: 2031 err |= __put_user(from->si_pid, &to->si_pid); 2032 err |= __put_user(from->si_uid, &to->si_uid); 2033 break; 2034 case __SI_TIMER: 2035 err |= __put_user(from->si_tid, &to->si_tid); 2036 err |= __put_user(from->si_overrun, &to->si_overrun); 2037 err |= __put_user(from->si_ptr, &to->si_ptr); 2038 break; 2039 case __SI_POLL: 2040 err |= __put_user(from->si_band, &to->si_band); 2041 err |= __put_user(from->si_fd, &to->si_fd); 2042 break; 2043 case __SI_FAULT: 2044 err |= __put_user(from->si_addr, &to->si_addr); 2045 #ifdef __ARCH_SI_TRAPNO 2046 err |= __put_user(from->si_trapno, &to->si_trapno); 2047 #endif 2048 break; 2049 case __SI_CHLD: 2050 err |= __put_user(from->si_pid, &to->si_pid); 2051 err |= __put_user(from->si_uid, &to->si_uid); 2052 err |= __put_user(from->si_status, &to->si_status); 2053 err |= __put_user(from->si_utime, &to->si_utime); 2054 err |= __put_user(from->si_stime, &to->si_stime); 2055 break; 2056 case __SI_RT: /* This is not generated by the kernel as of now. */ 2057 case __SI_MESGQ: /* But this is */ 2058 err |= __put_user(from->si_pid, &to->si_pid); 2059 err |= __put_user(from->si_uid, &to->si_uid); 2060 err |= __put_user(from->si_ptr, &to->si_ptr); 2061 break; 2062 default: /* this is just in case for now ... */ 2063 err |= __put_user(from->si_pid, &to->si_pid); 2064 err |= __put_user(from->si_uid, &to->si_uid); 2065 break; 2066 } 2067 return err; 2068 } 2069 2070 #endif 2071 2072 asmlinkage long 2073 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2074 siginfo_t __user *uinfo, 2075 const struct timespec __user *uts, 2076 size_t sigsetsize) 2077 { 2078 int ret, sig; 2079 sigset_t these; 2080 struct timespec ts; 2081 siginfo_t info; 2082 long timeout = 0; 2083 2084 /* XXX: Don't preclude handling different sized sigset_t's. */ 2085 if (sigsetsize != sizeof(sigset_t)) 2086 return -EINVAL; 2087 2088 if (copy_from_user(&these, uthese, sizeof(these))) 2089 return -EFAULT; 2090 2091 /* 2092 * Invert the set of allowed signals to get those we 2093 * want to block. 2094 */ 2095 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2096 signotset(&these); 2097 2098 if (uts) { 2099 if (copy_from_user(&ts, uts, sizeof(ts))) 2100 return -EFAULT; 2101 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2102 || ts.tv_sec < 0) 2103 return -EINVAL; 2104 } 2105 2106 spin_lock_irq(¤t->sighand->siglock); 2107 sig = dequeue_signal(current, &these, &info); 2108 if (!sig) { 2109 timeout = MAX_SCHEDULE_TIMEOUT; 2110 if (uts) 2111 timeout = (timespec_to_jiffies(&ts) 2112 + (ts.tv_sec || ts.tv_nsec)); 2113 2114 if (timeout) { 2115 /* None ready -- temporarily unblock those we're 2116 * interested while we are sleeping in so that we'll 2117 * be awakened when they arrive. */ 2118 current->real_blocked = current->blocked; 2119 sigandsets(¤t->blocked, ¤t->blocked, &these); 2120 recalc_sigpending(); 2121 spin_unlock_irq(¤t->sighand->siglock); 2122 2123 timeout = schedule_timeout_interruptible(timeout); 2124 2125 spin_lock_irq(¤t->sighand->siglock); 2126 sig = dequeue_signal(current, &these, &info); 2127 current->blocked = current->real_blocked; 2128 siginitset(¤t->real_blocked, 0); 2129 recalc_sigpending(); 2130 } 2131 } 2132 spin_unlock_irq(¤t->sighand->siglock); 2133 2134 if (sig) { 2135 ret = sig; 2136 if (uinfo) { 2137 if (copy_siginfo_to_user(uinfo, &info)) 2138 ret = -EFAULT; 2139 } 2140 } else { 2141 ret = -EAGAIN; 2142 if (timeout) 2143 ret = -EINTR; 2144 } 2145 2146 return ret; 2147 } 2148 2149 asmlinkage long 2150 sys_kill(int pid, int sig) 2151 { 2152 struct siginfo info; 2153 2154 info.si_signo = sig; 2155 info.si_errno = 0; 2156 info.si_code = SI_USER; 2157 info.si_pid = current->tgid; 2158 info.si_uid = current->uid; 2159 2160 return kill_something_info(sig, &info, pid); 2161 } 2162 2163 static int do_tkill(int tgid, int pid, int sig) 2164 { 2165 int error; 2166 struct siginfo info; 2167 struct task_struct *p; 2168 2169 error = -ESRCH; 2170 info.si_signo = sig; 2171 info.si_errno = 0; 2172 info.si_code = SI_TKILL; 2173 info.si_pid = current->tgid; 2174 info.si_uid = current->uid; 2175 2176 read_lock(&tasklist_lock); 2177 p = find_task_by_pid(pid); 2178 if (p && (tgid <= 0 || p->tgid == tgid)) { 2179 error = check_kill_permission(sig, &info, p); 2180 /* 2181 * The null signal is a permissions and process existence 2182 * probe. No signal is actually delivered. 2183 */ 2184 if (!error && sig && p->sighand) { 2185 spin_lock_irq(&p->sighand->siglock); 2186 handle_stop_signal(sig, p); 2187 error = specific_send_sig_info(sig, &info, p); 2188 spin_unlock_irq(&p->sighand->siglock); 2189 } 2190 } 2191 read_unlock(&tasklist_lock); 2192 2193 return error; 2194 } 2195 2196 /** 2197 * sys_tgkill - send signal to one specific thread 2198 * @tgid: the thread group ID of the thread 2199 * @pid: the PID of the thread 2200 * @sig: signal to be sent 2201 * 2202 * This syscall also checks the tgid and returns -ESRCH even if the PID 2203 * exists but it's not belonging to the target process anymore. This 2204 * method solves the problem of threads exiting and PIDs getting reused. 2205 */ 2206 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2207 { 2208 /* This is only valid for single tasks */ 2209 if (pid <= 0 || tgid <= 0) 2210 return -EINVAL; 2211 2212 return do_tkill(tgid, pid, sig); 2213 } 2214 2215 /* 2216 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2217 */ 2218 asmlinkage long 2219 sys_tkill(int pid, int sig) 2220 { 2221 /* This is only valid for single tasks */ 2222 if (pid <= 0) 2223 return -EINVAL; 2224 2225 return do_tkill(0, pid, sig); 2226 } 2227 2228 asmlinkage long 2229 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2230 { 2231 siginfo_t info; 2232 2233 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2234 return -EFAULT; 2235 2236 /* Not even root can pretend to send signals from the kernel. 2237 Nor can they impersonate a kill(), which adds source info. */ 2238 if (info.si_code >= 0) 2239 return -EPERM; 2240 info.si_signo = sig; 2241 2242 /* POSIX.1b doesn't mention process groups. */ 2243 return kill_proc_info(sig, &info, pid); 2244 } 2245 2246 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2247 { 2248 struct k_sigaction *k; 2249 sigset_t mask; 2250 2251 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2252 return -EINVAL; 2253 2254 k = ¤t->sighand->action[sig-1]; 2255 2256 spin_lock_irq(¤t->sighand->siglock); 2257 if (signal_pending(current)) { 2258 /* 2259 * If there might be a fatal signal pending on multiple 2260 * threads, make sure we take it before changing the action. 2261 */ 2262 spin_unlock_irq(¤t->sighand->siglock); 2263 return -ERESTARTNOINTR; 2264 } 2265 2266 if (oact) 2267 *oact = *k; 2268 2269 if (act) { 2270 sigdelsetmask(&act->sa.sa_mask, 2271 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2272 *k = *act; 2273 /* 2274 * POSIX 3.3.1.3: 2275 * "Setting a signal action to SIG_IGN for a signal that is 2276 * pending shall cause the pending signal to be discarded, 2277 * whether or not it is blocked." 2278 * 2279 * "Setting a signal action to SIG_DFL for a signal that is 2280 * pending and whose default action is to ignore the signal 2281 * (for example, SIGCHLD), shall cause the pending signal to 2282 * be discarded, whether or not it is blocked" 2283 */ 2284 if (act->sa.sa_handler == SIG_IGN || 2285 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2286 struct task_struct *t = current; 2287 sigemptyset(&mask); 2288 sigaddset(&mask, sig); 2289 rm_from_queue_full(&mask, &t->signal->shared_pending); 2290 do { 2291 rm_from_queue_full(&mask, &t->pending); 2292 recalc_sigpending_tsk(t); 2293 t = next_thread(t); 2294 } while (t != current); 2295 } 2296 } 2297 2298 spin_unlock_irq(¤t->sighand->siglock); 2299 return 0; 2300 } 2301 2302 int 2303 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2304 { 2305 stack_t oss; 2306 int error; 2307 2308 if (uoss) { 2309 oss.ss_sp = (void __user *) current->sas_ss_sp; 2310 oss.ss_size = current->sas_ss_size; 2311 oss.ss_flags = sas_ss_flags(sp); 2312 } 2313 2314 if (uss) { 2315 void __user *ss_sp; 2316 size_t ss_size; 2317 int ss_flags; 2318 2319 error = -EFAULT; 2320 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2321 || __get_user(ss_sp, &uss->ss_sp) 2322 || __get_user(ss_flags, &uss->ss_flags) 2323 || __get_user(ss_size, &uss->ss_size)) 2324 goto out; 2325 2326 error = -EPERM; 2327 if (on_sig_stack(sp)) 2328 goto out; 2329 2330 error = -EINVAL; 2331 /* 2332 * 2333 * Note - this code used to test ss_flags incorrectly 2334 * old code may have been written using ss_flags==0 2335 * to mean ss_flags==SS_ONSTACK (as this was the only 2336 * way that worked) - this fix preserves that older 2337 * mechanism 2338 */ 2339 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2340 goto out; 2341 2342 if (ss_flags == SS_DISABLE) { 2343 ss_size = 0; 2344 ss_sp = NULL; 2345 } else { 2346 error = -ENOMEM; 2347 if (ss_size < MINSIGSTKSZ) 2348 goto out; 2349 } 2350 2351 current->sas_ss_sp = (unsigned long) ss_sp; 2352 current->sas_ss_size = ss_size; 2353 } 2354 2355 if (uoss) { 2356 error = -EFAULT; 2357 if (copy_to_user(uoss, &oss, sizeof(oss))) 2358 goto out; 2359 } 2360 2361 error = 0; 2362 out: 2363 return error; 2364 } 2365 2366 #ifdef __ARCH_WANT_SYS_SIGPENDING 2367 2368 asmlinkage long 2369 sys_sigpending(old_sigset_t __user *set) 2370 { 2371 return do_sigpending(set, sizeof(*set)); 2372 } 2373 2374 #endif 2375 2376 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2377 /* Some platforms have their own version with special arguments others 2378 support only sys_rt_sigprocmask. */ 2379 2380 asmlinkage long 2381 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2382 { 2383 int error; 2384 old_sigset_t old_set, new_set; 2385 2386 if (set) { 2387 error = -EFAULT; 2388 if (copy_from_user(&new_set, set, sizeof(*set))) 2389 goto out; 2390 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2391 2392 spin_lock_irq(¤t->sighand->siglock); 2393 old_set = current->blocked.sig[0]; 2394 2395 error = 0; 2396 switch (how) { 2397 default: 2398 error = -EINVAL; 2399 break; 2400 case SIG_BLOCK: 2401 sigaddsetmask(¤t->blocked, new_set); 2402 break; 2403 case SIG_UNBLOCK: 2404 sigdelsetmask(¤t->blocked, new_set); 2405 break; 2406 case SIG_SETMASK: 2407 current->blocked.sig[0] = new_set; 2408 break; 2409 } 2410 2411 recalc_sigpending(); 2412 spin_unlock_irq(¤t->sighand->siglock); 2413 if (error) 2414 goto out; 2415 if (oset) 2416 goto set_old; 2417 } else if (oset) { 2418 old_set = current->blocked.sig[0]; 2419 set_old: 2420 error = -EFAULT; 2421 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2422 goto out; 2423 } 2424 error = 0; 2425 out: 2426 return error; 2427 } 2428 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2429 2430 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2431 asmlinkage long 2432 sys_rt_sigaction(int sig, 2433 const struct sigaction __user *act, 2434 struct sigaction __user *oact, 2435 size_t sigsetsize) 2436 { 2437 struct k_sigaction new_sa, old_sa; 2438 int ret = -EINVAL; 2439 2440 /* XXX: Don't preclude handling different sized sigset_t's. */ 2441 if (sigsetsize != sizeof(sigset_t)) 2442 goto out; 2443 2444 if (act) { 2445 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2446 return -EFAULT; 2447 } 2448 2449 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2450 2451 if (!ret && oact) { 2452 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2453 return -EFAULT; 2454 } 2455 out: 2456 return ret; 2457 } 2458 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2459 2460 #ifdef __ARCH_WANT_SYS_SGETMASK 2461 2462 /* 2463 * For backwards compatibility. Functionality superseded by sigprocmask. 2464 */ 2465 asmlinkage long 2466 sys_sgetmask(void) 2467 { 2468 /* SMP safe */ 2469 return current->blocked.sig[0]; 2470 } 2471 2472 asmlinkage long 2473 sys_ssetmask(int newmask) 2474 { 2475 int old; 2476 2477 spin_lock_irq(¤t->sighand->siglock); 2478 old = current->blocked.sig[0]; 2479 2480 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2481 sigmask(SIGSTOP))); 2482 recalc_sigpending(); 2483 spin_unlock_irq(¤t->sighand->siglock); 2484 2485 return old; 2486 } 2487 #endif /* __ARCH_WANT_SGETMASK */ 2488 2489 #ifdef __ARCH_WANT_SYS_SIGNAL 2490 /* 2491 * For backwards compatibility. Functionality superseded by sigaction. 2492 */ 2493 asmlinkage unsigned long 2494 sys_signal(int sig, __sighandler_t handler) 2495 { 2496 struct k_sigaction new_sa, old_sa; 2497 int ret; 2498 2499 new_sa.sa.sa_handler = handler; 2500 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2501 sigemptyset(&new_sa.sa.sa_mask); 2502 2503 ret = do_sigaction(sig, &new_sa, &old_sa); 2504 2505 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2506 } 2507 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2508 2509 #ifdef __ARCH_WANT_SYS_PAUSE 2510 2511 asmlinkage long 2512 sys_pause(void) 2513 { 2514 current->state = TASK_INTERRUPTIBLE; 2515 schedule(); 2516 return -ERESTARTNOHAND; 2517 } 2518 2519 #endif 2520 2521 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2522 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2523 { 2524 sigset_t newset; 2525 2526 /* XXX: Don't preclude handling different sized sigset_t's. */ 2527 if (sigsetsize != sizeof(sigset_t)) 2528 return -EINVAL; 2529 2530 if (copy_from_user(&newset, unewset, sizeof(newset))) 2531 return -EFAULT; 2532 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2533 2534 spin_lock_irq(¤t->sighand->siglock); 2535 current->saved_sigmask = current->blocked; 2536 current->blocked = newset; 2537 recalc_sigpending(); 2538 spin_unlock_irq(¤t->sighand->siglock); 2539 2540 current->state = TASK_INTERRUPTIBLE; 2541 schedule(); 2542 set_thread_flag(TIF_RESTORE_SIGMASK); 2543 return -ERESTARTNOHAND; 2544 } 2545 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2546 2547 void __init signals_init(void) 2548 { 2549 sigqueue_cachep = 2550 kmem_cache_create("sigqueue", 2551 sizeof(struct sigqueue), 2552 __alignof__(struct sigqueue), 2553 SLAB_PANIC, NULL, NULL); 2554 } 2555