xref: /linux/kernel/signal.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/signal.h>
26 #include <linux/audit.h>
27 #include <linux/capability.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32 
33 /*
34  * SLAB caches for signal bits.
35  */
36 
37 static kmem_cache_t *sigqueue_cachep;
38 
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore	- Nothing Happens
50  *   terminate	- kill the process, i.e. all threads in the group,
51  * 		  similar to exit_group.  The group leader (only) reports
52  *		  WIFSIGNALED status to its parent.
53  *   coredump	- write a core dump file describing all threads using
54  *		  the same mm and then kill all those threads
55  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *	+--------------------+------------------+
62  *	|  POSIX signal      |  default action  |
63  *	+--------------------+------------------+
64  *	|  SIGHUP            |  terminate	|
65  *	|  SIGINT            |	terminate	|
66  *	|  SIGQUIT           |	coredump 	|
67  *	|  SIGILL            |	coredump 	|
68  *	|  SIGTRAP           |	coredump 	|
69  *	|  SIGABRT/SIGIOT    |	coredump 	|
70  *	|  SIGBUS            |	coredump 	|
71  *	|  SIGFPE            |	coredump 	|
72  *	|  SIGKILL           |	terminate(+)	|
73  *	|  SIGUSR1           |	terminate	|
74  *	|  SIGSEGV           |	coredump 	|
75  *	|  SIGUSR2           |	terminate	|
76  *	|  SIGPIPE           |	terminate	|
77  *	|  SIGALRM           |	terminate	|
78  *	|  SIGTERM           |	terminate	|
79  *	|  SIGCHLD           |	ignore   	|
80  *	|  SIGCONT           |	ignore(*)	|
81  *	|  SIGSTOP           |	stop(*)(+)  	|
82  *	|  SIGTSTP           |	stop(*)  	|
83  *	|  SIGTTIN           |	stop(*)  	|
84  *	|  SIGTTOU           |	stop(*)  	|
85  *	|  SIGURG            |	ignore   	|
86  *	|  SIGXCPU           |	coredump 	|
87  *	|  SIGXFSZ           |	coredump 	|
88  *	|  SIGVTALRM         |	terminate	|
89  *	|  SIGPROF           |	terminate	|
90  *	|  SIGPOLL/SIGIO     |	terminate	|
91  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
92  *	|  SIGSTKFLT         |	terminate	|
93  *	|  SIGWINCH          |	ignore   	|
94  *	|  SIGPWR            |	terminate	|
95  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
96  *	+--------------------+------------------+
97  *	|  non-POSIX signal  |  default action  |
98  *	+--------------------+------------------+
99  *	|  SIGEMT            |  coredump	|
100  *	+--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112 
113 #ifdef SIGEMT
114 #define M_SIGEMT	M(SIGEMT)
115 #else
116 #define M_SIGEMT	0
117 #endif
118 
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125 
126 #define SIG_KERNEL_ONLY_MASK (\
127 	M(SIGKILL)   |  M(SIGSTOP)                                   )
128 
129 #define SIG_KERNEL_STOP_MASK (\
130 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131 
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136 
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139 
140 #define sig_kernel_only(sig) \
141 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148 
149 #define sig_needs_tasklist(sig)	((sig) == SIGCONT)
150 
151 #define sig_user_defined(t, signr) \
152 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
153 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 
155 #define sig_fatal(t, signr) \
156 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
157 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 
159 static int sig_ignored(struct task_struct *t, int sig)
160 {
161 	void __user * handler;
162 
163 	/*
164 	 * Tracers always want to know about signals..
165 	 */
166 	if (t->ptrace & PT_PTRACED)
167 		return 0;
168 
169 	/*
170 	 * Blocked signals are never ignored, since the
171 	 * signal handler may change by the time it is
172 	 * unblocked.
173 	 */
174 	if (sigismember(&t->blocked, sig))
175 		return 0;
176 
177 	/* Is it explicitly or implicitly ignored? */
178 	handler = t->sighand->action[sig-1].sa.sa_handler;
179 	return   handler == SIG_IGN ||
180 		(handler == SIG_DFL && sig_kernel_ignore(sig));
181 }
182 
183 /*
184  * Re-calculate pending state from the set of locally pending
185  * signals, globally pending signals, and blocked signals.
186  */
187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 {
189 	unsigned long ready;
190 	long i;
191 
192 	switch (_NSIG_WORDS) {
193 	default:
194 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
195 			ready |= signal->sig[i] &~ blocked->sig[i];
196 		break;
197 
198 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
199 		ready |= signal->sig[2] &~ blocked->sig[2];
200 		ready |= signal->sig[1] &~ blocked->sig[1];
201 		ready |= signal->sig[0] &~ blocked->sig[0];
202 		break;
203 
204 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
205 		ready |= signal->sig[0] &~ blocked->sig[0];
206 		break;
207 
208 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
209 	}
210 	return ready !=	0;
211 }
212 
213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 
215 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 {
217 	if (t->signal->group_stop_count > 0 ||
218 	    (freezing(t)) ||
219 	    PENDING(&t->pending, &t->blocked) ||
220 	    PENDING(&t->signal->shared_pending, &t->blocked))
221 		set_tsk_thread_flag(t, TIF_SIGPENDING);
222 	else
223 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 }
225 
226 void recalc_sigpending(void)
227 {
228 	recalc_sigpending_tsk(current);
229 }
230 
231 /* Given the mask, find the first available signal that should be serviced. */
232 
233 static int
234 next_signal(struct sigpending *pending, sigset_t *mask)
235 {
236 	unsigned long i, *s, *m, x;
237 	int sig = 0;
238 
239 	s = pending->signal.sig;
240 	m = mask->sig;
241 	switch (_NSIG_WORDS) {
242 	default:
243 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
244 			if ((x = *s &~ *m) != 0) {
245 				sig = ffz(~x) + i*_NSIG_BPW + 1;
246 				break;
247 			}
248 		break;
249 
250 	case 2: if ((x = s[0] &~ m[0]) != 0)
251 			sig = 1;
252 		else if ((x = s[1] &~ m[1]) != 0)
253 			sig = _NSIG_BPW + 1;
254 		else
255 			break;
256 		sig += ffz(~x);
257 		break;
258 
259 	case 1: if ((x = *s &~ *m) != 0)
260 			sig = ffz(~x) + 1;
261 		break;
262 	}
263 
264 	return sig;
265 }
266 
267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 					 int override_rlimit)
269 {
270 	struct sigqueue *q = NULL;
271 
272 	atomic_inc(&t->user->sigpending);
273 	if (override_rlimit ||
274 	    atomic_read(&t->user->sigpending) <=
275 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
276 		q = kmem_cache_alloc(sigqueue_cachep, flags);
277 	if (unlikely(q == NULL)) {
278 		atomic_dec(&t->user->sigpending);
279 	} else {
280 		INIT_LIST_HEAD(&q->list);
281 		q->flags = 0;
282 		q->user = get_uid(t->user);
283 	}
284 	return(q);
285 }
286 
287 static void __sigqueue_free(struct sigqueue *q)
288 {
289 	if (q->flags & SIGQUEUE_PREALLOC)
290 		return;
291 	atomic_dec(&q->user->sigpending);
292 	free_uid(q->user);
293 	kmem_cache_free(sigqueue_cachep, q);
294 }
295 
296 void flush_sigqueue(struct sigpending *queue)
297 {
298 	struct sigqueue *q;
299 
300 	sigemptyset(&queue->signal);
301 	while (!list_empty(&queue->list)) {
302 		q = list_entry(queue->list.next, struct sigqueue , list);
303 		list_del_init(&q->list);
304 		__sigqueue_free(q);
305 	}
306 }
307 
308 /*
309  * Flush all pending signals for a task.
310  */
311 void flush_signals(struct task_struct *t)
312 {
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&t->sighand->siglock, flags);
316 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 	flush_sigqueue(&t->pending);
318 	flush_sigqueue(&t->signal->shared_pending);
319 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321 
322 /*
323  * Flush all handlers for a task.
324  */
325 
326 void
327 flush_signal_handlers(struct task_struct *t, int force_default)
328 {
329 	int i;
330 	struct k_sigaction *ka = &t->sighand->action[0];
331 	for (i = _NSIG ; i != 0 ; i--) {
332 		if (force_default || ka->sa.sa_handler != SIG_IGN)
333 			ka->sa.sa_handler = SIG_DFL;
334 		ka->sa.sa_flags = 0;
335 		sigemptyset(&ka->sa.sa_mask);
336 		ka++;
337 	}
338 }
339 
340 
341 /* Notify the system that a driver wants to block all signals for this
342  * process, and wants to be notified if any signals at all were to be
343  * sent/acted upon.  If the notifier routine returns non-zero, then the
344  * signal will be acted upon after all.  If the notifier routine returns 0,
345  * then then signal will be blocked.  Only one block per process is
346  * allowed.  priv is a pointer to private data that the notifier routine
347  * can use to determine if the signal should be blocked or not.  */
348 
349 void
350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
351 {
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&current->sighand->siglock, flags);
355 	current->notifier_mask = mask;
356 	current->notifier_data = priv;
357 	current->notifier = notifier;
358 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
359 }
360 
361 /* Notify the system that blocking has ended. */
362 
363 void
364 unblock_all_signals(void)
365 {
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&current->sighand->siglock, flags);
369 	current->notifier = NULL;
370 	current->notifier_data = NULL;
371 	recalc_sigpending();
372 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
373 }
374 
375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 {
377 	struct sigqueue *q, *first = NULL;
378 	int still_pending = 0;
379 
380 	if (unlikely(!sigismember(&list->signal, sig)))
381 		return 0;
382 
383 	/*
384 	 * Collect the siginfo appropriate to this signal.  Check if
385 	 * there is another siginfo for the same signal.
386 	*/
387 	list_for_each_entry(q, &list->list, list) {
388 		if (q->info.si_signo == sig) {
389 			if (first) {
390 				still_pending = 1;
391 				break;
392 			}
393 			first = q;
394 		}
395 	}
396 	if (first) {
397 		list_del_init(&first->list);
398 		copy_siginfo(info, &first->info);
399 		__sigqueue_free(first);
400 		if (!still_pending)
401 			sigdelset(&list->signal, sig);
402 	} else {
403 
404 		/* Ok, it wasn't in the queue.  This must be
405 		   a fast-pathed signal or we must have been
406 		   out of queue space.  So zero out the info.
407 		 */
408 		sigdelset(&list->signal, sig);
409 		info->si_signo = sig;
410 		info->si_errno = 0;
411 		info->si_code = 0;
412 		info->si_pid = 0;
413 		info->si_uid = 0;
414 	}
415 	return 1;
416 }
417 
418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
419 			siginfo_t *info)
420 {
421 	int sig = 0;
422 
423 	sig = next_signal(pending, mask);
424 	if (sig) {
425 		if (current->notifier) {
426 			if (sigismember(current->notifier_mask, sig)) {
427 				if (!(current->notifier)(current->notifier_data)) {
428 					clear_thread_flag(TIF_SIGPENDING);
429 					return 0;
430 				}
431 			}
432 		}
433 
434 		if (!collect_signal(sig, pending, info))
435 			sig = 0;
436 
437 	}
438 	recalc_sigpending();
439 
440 	return sig;
441 }
442 
443 /*
444  * Dequeue a signal and return the element to the caller, which is
445  * expected to free it.
446  *
447  * All callers have to hold the siglock.
448  */
449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
450 {
451 	int signr = __dequeue_signal(&tsk->pending, mask, info);
452 	if (!signr)
453 		signr = __dequeue_signal(&tsk->signal->shared_pending,
454 					 mask, info);
455  	if (signr && unlikely(sig_kernel_stop(signr))) {
456  		/*
457  		 * Set a marker that we have dequeued a stop signal.  Our
458  		 * caller might release the siglock and then the pending
459  		 * stop signal it is about to process is no longer in the
460  		 * pending bitmasks, but must still be cleared by a SIGCONT
461  		 * (and overruled by a SIGKILL).  So those cases clear this
462  		 * shared flag after we've set it.  Note that this flag may
463  		 * remain set after the signal we return is ignored or
464  		 * handled.  That doesn't matter because its only purpose
465  		 * is to alert stop-signal processing code when another
466  		 * processor has come along and cleared the flag.
467  		 */
468  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
469  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
470  	}
471 	if ( signr &&
472 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
473 	     info->si_sys_private){
474 		/*
475 		 * Release the siglock to ensure proper locking order
476 		 * of timer locks outside of siglocks.  Note, we leave
477 		 * irqs disabled here, since the posix-timers code is
478 		 * about to disable them again anyway.
479 		 */
480 		spin_unlock(&tsk->sighand->siglock);
481 		do_schedule_next_timer(info);
482 		spin_lock(&tsk->sighand->siglock);
483 	}
484 	return signr;
485 }
486 
487 /*
488  * Tell a process that it has a new active signal..
489  *
490  * NOTE! we rely on the previous spin_lock to
491  * lock interrupts for us! We can only be called with
492  * "siglock" held, and the local interrupt must
493  * have been disabled when that got acquired!
494  *
495  * No need to set need_resched since signal event passing
496  * goes through ->blocked
497  */
498 void signal_wake_up(struct task_struct *t, int resume)
499 {
500 	unsigned int mask;
501 
502 	set_tsk_thread_flag(t, TIF_SIGPENDING);
503 
504 	/*
505 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
506 	 * We don't check t->state here because there is a race with it
507 	 * executing another processor and just now entering stopped state.
508 	 * By using wake_up_state, we ensure the process will wake up and
509 	 * handle its death signal.
510 	 */
511 	mask = TASK_INTERRUPTIBLE;
512 	if (resume)
513 		mask |= TASK_STOPPED | TASK_TRACED;
514 	if (!wake_up_state(t, mask))
515 		kick_process(t);
516 }
517 
518 /*
519  * Remove signals in mask from the pending set and queue.
520  * Returns 1 if any signals were found.
521  *
522  * All callers must be holding the siglock.
523  *
524  * This version takes a sigset mask and looks at all signals,
525  * not just those in the first mask word.
526  */
527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
528 {
529 	struct sigqueue *q, *n;
530 	sigset_t m;
531 
532 	sigandsets(&m, mask, &s->signal);
533 	if (sigisemptyset(&m))
534 		return 0;
535 
536 	signandsets(&s->signal, &s->signal, mask);
537 	list_for_each_entry_safe(q, n, &s->list, list) {
538 		if (sigismember(mask, q->info.si_signo)) {
539 			list_del_init(&q->list);
540 			__sigqueue_free(q);
541 		}
542 	}
543 	return 1;
544 }
545 /*
546  * Remove signals in mask from the pending set and queue.
547  * Returns 1 if any signals were found.
548  *
549  * All callers must be holding the siglock.
550  */
551 static int rm_from_queue(unsigned long mask, struct sigpending *s)
552 {
553 	struct sigqueue *q, *n;
554 
555 	if (!sigtestsetmask(&s->signal, mask))
556 		return 0;
557 
558 	sigdelsetmask(&s->signal, mask);
559 	list_for_each_entry_safe(q, n, &s->list, list) {
560 		if (q->info.si_signo < SIGRTMIN &&
561 		    (mask & sigmask(q->info.si_signo))) {
562 			list_del_init(&q->list);
563 			__sigqueue_free(q);
564 		}
565 	}
566 	return 1;
567 }
568 
569 /*
570  * Bad permissions for sending the signal
571  */
572 static int check_kill_permission(int sig, struct siginfo *info,
573 				 struct task_struct *t)
574 {
575 	int error = -EINVAL;
576 	if (!valid_signal(sig))
577 		return error;
578 	error = -EPERM;
579 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
580 	    && ((sig != SIGCONT) ||
581 		(current->signal->session != t->signal->session))
582 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
583 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
584 	    && !capable(CAP_KILL))
585 		return error;
586 
587 	error = security_task_kill(t, info, sig);
588 	if (!error)
589 		audit_signal_info(sig, t); /* Let audit system see the signal */
590 	return error;
591 }
592 
593 /* forward decl */
594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
595 
596 /*
597  * Handle magic process-wide effects of stop/continue signals.
598  * Unlike the signal actions, these happen immediately at signal-generation
599  * time regardless of blocking, ignoring, or handling.  This does the
600  * actual continuing for SIGCONT, but not the actual stopping for stop
601  * signals.  The process stop is done as a signal action for SIG_DFL.
602  */
603 static void handle_stop_signal(int sig, struct task_struct *p)
604 {
605 	struct task_struct *t;
606 
607 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
608 		/*
609 		 * The process is in the middle of dying already.
610 		 */
611 		return;
612 
613 	if (sig_kernel_stop(sig)) {
614 		/*
615 		 * This is a stop signal.  Remove SIGCONT from all queues.
616 		 */
617 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
618 		t = p;
619 		do {
620 			rm_from_queue(sigmask(SIGCONT), &t->pending);
621 			t = next_thread(t);
622 		} while (t != p);
623 	} else if (sig == SIGCONT) {
624 		/*
625 		 * Remove all stop signals from all queues,
626 		 * and wake all threads.
627 		 */
628 		if (unlikely(p->signal->group_stop_count > 0)) {
629 			/*
630 			 * There was a group stop in progress.  We'll
631 			 * pretend it finished before we got here.  We are
632 			 * obliged to report it to the parent: if the
633 			 * SIGSTOP happened "after" this SIGCONT, then it
634 			 * would have cleared this pending SIGCONT.  If it
635 			 * happened "before" this SIGCONT, then the parent
636 			 * got the SIGCHLD about the stop finishing before
637 			 * the continue happened.  We do the notification
638 			 * now, and it's as if the stop had finished and
639 			 * the SIGCHLD was pending on entry to this kill.
640 			 */
641 			p->signal->group_stop_count = 0;
642 			p->signal->flags = SIGNAL_STOP_CONTINUED;
643 			spin_unlock(&p->sighand->siglock);
644 			do_notify_parent_cldstop(p, CLD_STOPPED);
645 			spin_lock(&p->sighand->siglock);
646 		}
647 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
648 		t = p;
649 		do {
650 			unsigned int state;
651 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
652 
653 			/*
654 			 * If there is a handler for SIGCONT, we must make
655 			 * sure that no thread returns to user mode before
656 			 * we post the signal, in case it was the only
657 			 * thread eligible to run the signal handler--then
658 			 * it must not do anything between resuming and
659 			 * running the handler.  With the TIF_SIGPENDING
660 			 * flag set, the thread will pause and acquire the
661 			 * siglock that we hold now and until we've queued
662 			 * the pending signal.
663 			 *
664 			 * Wake up the stopped thread _after_ setting
665 			 * TIF_SIGPENDING
666 			 */
667 			state = TASK_STOPPED;
668 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
669 				set_tsk_thread_flag(t, TIF_SIGPENDING);
670 				state |= TASK_INTERRUPTIBLE;
671 			}
672 			wake_up_state(t, state);
673 
674 			t = next_thread(t);
675 		} while (t != p);
676 
677 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
678 			/*
679 			 * We were in fact stopped, and are now continued.
680 			 * Notify the parent with CLD_CONTINUED.
681 			 */
682 			p->signal->flags = SIGNAL_STOP_CONTINUED;
683 			p->signal->group_exit_code = 0;
684 			spin_unlock(&p->sighand->siglock);
685 			do_notify_parent_cldstop(p, CLD_CONTINUED);
686 			spin_lock(&p->sighand->siglock);
687 		} else {
688 			/*
689 			 * We are not stopped, but there could be a stop
690 			 * signal in the middle of being processed after
691 			 * being removed from the queue.  Clear that too.
692 			 */
693 			p->signal->flags = 0;
694 		}
695 	} else if (sig == SIGKILL) {
696 		/*
697 		 * Make sure that any pending stop signal already dequeued
698 		 * is undone by the wakeup for SIGKILL.
699 		 */
700 		p->signal->flags = 0;
701 	}
702 }
703 
704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
705 			struct sigpending *signals)
706 {
707 	struct sigqueue * q = NULL;
708 	int ret = 0;
709 
710 	/*
711 	 * fast-pathed signals for kernel-internal things like SIGSTOP
712 	 * or SIGKILL.
713 	 */
714 	if (info == SEND_SIG_FORCED)
715 		goto out_set;
716 
717 	/* Real-time signals must be queued if sent by sigqueue, or
718 	   some other real-time mechanism.  It is implementation
719 	   defined whether kill() does so.  We attempt to do so, on
720 	   the principle of least surprise, but since kill is not
721 	   allowed to fail with EAGAIN when low on memory we just
722 	   make sure at least one signal gets delivered and don't
723 	   pass on the info struct.  */
724 
725 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
726 					     (is_si_special(info) ||
727 					      info->si_code >= 0)));
728 	if (q) {
729 		list_add_tail(&q->list, &signals->list);
730 		switch ((unsigned long) info) {
731 		case (unsigned long) SEND_SIG_NOINFO:
732 			q->info.si_signo = sig;
733 			q->info.si_errno = 0;
734 			q->info.si_code = SI_USER;
735 			q->info.si_pid = current->pid;
736 			q->info.si_uid = current->uid;
737 			break;
738 		case (unsigned long) SEND_SIG_PRIV:
739 			q->info.si_signo = sig;
740 			q->info.si_errno = 0;
741 			q->info.si_code = SI_KERNEL;
742 			q->info.si_pid = 0;
743 			q->info.si_uid = 0;
744 			break;
745 		default:
746 			copy_siginfo(&q->info, info);
747 			break;
748 		}
749 	} else if (!is_si_special(info)) {
750 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
751 		/*
752 		 * Queue overflow, abort.  We may abort if the signal was rt
753 		 * and sent by user using something other than kill().
754 		 */
755 			return -EAGAIN;
756 	}
757 
758 out_set:
759 	sigaddset(&signals->signal, sig);
760 	return ret;
761 }
762 
763 #define LEGACY_QUEUE(sigptr, sig) \
764 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
765 
766 
767 static int
768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
769 {
770 	int ret = 0;
771 
772 	if (!irqs_disabled())
773 		BUG();
774 	assert_spin_locked(&t->sighand->siglock);
775 
776 	/* Short-circuit ignored signals.  */
777 	if (sig_ignored(t, sig))
778 		goto out;
779 
780 	/* Support queueing exactly one non-rt signal, so that we
781 	   can get more detailed information about the cause of
782 	   the signal. */
783 	if (LEGACY_QUEUE(&t->pending, sig))
784 		goto out;
785 
786 	ret = send_signal(sig, info, t, &t->pending);
787 	if (!ret && !sigismember(&t->blocked, sig))
788 		signal_wake_up(t, sig == SIGKILL);
789 out:
790 	return ret;
791 }
792 
793 /*
794  * Force a signal that the process can't ignore: if necessary
795  * we unblock the signal and change any SIG_IGN to SIG_DFL.
796  */
797 
798 int
799 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
800 {
801 	unsigned long int flags;
802 	int ret;
803 
804 	spin_lock_irqsave(&t->sighand->siglock, flags);
805 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
806 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
807 	}
808 	if (sigismember(&t->blocked, sig)) {
809 		sigdelset(&t->blocked, sig);
810 	}
811 	recalc_sigpending_tsk(t);
812 	ret = specific_send_sig_info(sig, info, t);
813 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
814 
815 	return ret;
816 }
817 
818 void
819 force_sig_specific(int sig, struct task_struct *t)
820 {
821 	force_sig_info(sig, SEND_SIG_FORCED, t);
822 }
823 
824 /*
825  * Test if P wants to take SIG.  After we've checked all threads with this,
826  * it's equivalent to finding no threads not blocking SIG.  Any threads not
827  * blocking SIG were ruled out because they are not running and already
828  * have pending signals.  Such threads will dequeue from the shared queue
829  * as soon as they're available, so putting the signal on the shared queue
830  * will be equivalent to sending it to one such thread.
831  */
832 static inline int wants_signal(int sig, struct task_struct *p)
833 {
834 	if (sigismember(&p->blocked, sig))
835 		return 0;
836 	if (p->flags & PF_EXITING)
837 		return 0;
838 	if (sig == SIGKILL)
839 		return 1;
840 	if (p->state & (TASK_STOPPED | TASK_TRACED))
841 		return 0;
842 	return task_curr(p) || !signal_pending(p);
843 }
844 
845 static void
846 __group_complete_signal(int sig, struct task_struct *p)
847 {
848 	struct task_struct *t;
849 
850 	/*
851 	 * Now find a thread we can wake up to take the signal off the queue.
852 	 *
853 	 * If the main thread wants the signal, it gets first crack.
854 	 * Probably the least surprising to the average bear.
855 	 */
856 	if (wants_signal(sig, p))
857 		t = p;
858 	else if (thread_group_empty(p))
859 		/*
860 		 * There is just one thread and it does not need to be woken.
861 		 * It will dequeue unblocked signals before it runs again.
862 		 */
863 		return;
864 	else {
865 		/*
866 		 * Otherwise try to find a suitable thread.
867 		 */
868 		t = p->signal->curr_target;
869 		if (t == NULL)
870 			/* restart balancing at this thread */
871 			t = p->signal->curr_target = p;
872 		BUG_ON(t->tgid != p->tgid);
873 
874 		while (!wants_signal(sig, t)) {
875 			t = next_thread(t);
876 			if (t == p->signal->curr_target)
877 				/*
878 				 * No thread needs to be woken.
879 				 * Any eligible threads will see
880 				 * the signal in the queue soon.
881 				 */
882 				return;
883 		}
884 		p->signal->curr_target = t;
885 	}
886 
887 	/*
888 	 * Found a killable thread.  If the signal will be fatal,
889 	 * then start taking the whole group down immediately.
890 	 */
891 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 	    !sigismember(&t->real_blocked, sig) &&
893 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 		/*
895 		 * This signal will be fatal to the whole group.
896 		 */
897 		if (!sig_kernel_coredump(sig)) {
898 			/*
899 			 * Start a group exit and wake everybody up.
900 			 * This way we don't have other threads
901 			 * running and doing things after a slower
902 			 * thread has the fatal signal pending.
903 			 */
904 			p->signal->flags = SIGNAL_GROUP_EXIT;
905 			p->signal->group_exit_code = sig;
906 			p->signal->group_stop_count = 0;
907 			t = p;
908 			do {
909 				sigaddset(&t->pending.signal, SIGKILL);
910 				signal_wake_up(t, 1);
911 				t = next_thread(t);
912 			} while (t != p);
913 			return;
914 		}
915 
916 		/*
917 		 * There will be a core dump.  We make all threads other
918 		 * than the chosen one go into a group stop so that nothing
919 		 * happens until it gets scheduled, takes the signal off
920 		 * the shared queue, and does the core dump.  This is a
921 		 * little more complicated than strictly necessary, but it
922 		 * keeps the signal state that winds up in the core dump
923 		 * unchanged from the death state, e.g. which thread had
924 		 * the core-dump signal unblocked.
925 		 */
926 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
927 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
928 		p->signal->group_stop_count = 0;
929 		p->signal->group_exit_task = t;
930 		t = p;
931 		do {
932 			p->signal->group_stop_count++;
933 			signal_wake_up(t, 0);
934 			t = next_thread(t);
935 		} while (t != p);
936 		wake_up_process(p->signal->group_exit_task);
937 		return;
938 	}
939 
940 	/*
941 	 * The signal is already in the shared-pending queue.
942 	 * Tell the chosen thread to wake up and dequeue it.
943 	 */
944 	signal_wake_up(t, sig == SIGKILL);
945 	return;
946 }
947 
948 int
949 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
950 {
951 	int ret = 0;
952 
953 	assert_spin_locked(&p->sighand->siglock);
954 	handle_stop_signal(sig, p);
955 
956 	/* Short-circuit ignored signals.  */
957 	if (sig_ignored(p, sig))
958 		return ret;
959 
960 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
961 		/* This is a non-RT signal and we already have one queued.  */
962 		return ret;
963 
964 	/*
965 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
966 	 * We always use the shared queue for process-wide signals,
967 	 * to avoid several races.
968 	 */
969 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
970 	if (unlikely(ret))
971 		return ret;
972 
973 	__group_complete_signal(sig, p);
974 	return 0;
975 }
976 
977 /*
978  * Nuke all other threads in the group.
979  */
980 void zap_other_threads(struct task_struct *p)
981 {
982 	struct task_struct *t;
983 
984 	p->signal->flags = SIGNAL_GROUP_EXIT;
985 	p->signal->group_stop_count = 0;
986 
987 	if (thread_group_empty(p))
988 		return;
989 
990 	for (t = next_thread(p); t != p; t = next_thread(t)) {
991 		/*
992 		 * Don't bother with already dead threads
993 		 */
994 		if (t->exit_state)
995 			continue;
996 
997 		/*
998 		 * We don't want to notify the parent, since we are
999 		 * killed as part of a thread group due to another
1000 		 * thread doing an execve() or similar. So set the
1001 		 * exit signal to -1 to allow immediate reaping of
1002 		 * the process.  But don't detach the thread group
1003 		 * leader.
1004 		 */
1005 		if (t != p->group_leader)
1006 			t->exit_signal = -1;
1007 
1008 		/* SIGKILL will be handled before any pending SIGSTOP */
1009 		sigaddset(&t->pending.signal, SIGKILL);
1010 		signal_wake_up(t, 1);
1011 	}
1012 }
1013 
1014 /*
1015  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1016  */
1017 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1018 {
1019 	struct sighand_struct *sighand;
1020 
1021 	for (;;) {
1022 		sighand = rcu_dereference(tsk->sighand);
1023 		if (unlikely(sighand == NULL))
1024 			break;
1025 
1026 		spin_lock_irqsave(&sighand->siglock, *flags);
1027 		if (likely(sighand == tsk->sighand))
1028 			break;
1029 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1030 	}
1031 
1032 	return sighand;
1033 }
1034 
1035 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1036 {
1037 	unsigned long flags;
1038 	int ret;
1039 
1040 	ret = check_kill_permission(sig, info, p);
1041 
1042 	if (!ret && sig) {
1043 		ret = -ESRCH;
1044 		if (lock_task_sighand(p, &flags)) {
1045 			ret = __group_send_sig_info(sig, info, p);
1046 			unlock_task_sighand(p, &flags);
1047 		}
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 /*
1054  * kill_pg_info() sends a signal to a process group: this is what the tty
1055  * control characters do (^C, ^Z etc)
1056  */
1057 
1058 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1059 {
1060 	struct task_struct *p = NULL;
1061 	int retval, success;
1062 
1063 	if (pgrp <= 0)
1064 		return -EINVAL;
1065 
1066 	success = 0;
1067 	retval = -ESRCH;
1068 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1069 		int err = group_send_sig_info(sig, info, p);
1070 		success |= !err;
1071 		retval = err;
1072 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1073 	return success ? 0 : retval;
1074 }
1075 
1076 int
1077 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1078 {
1079 	int retval;
1080 
1081 	read_lock(&tasklist_lock);
1082 	retval = __kill_pg_info(sig, info, pgrp);
1083 	read_unlock(&tasklist_lock);
1084 
1085 	return retval;
1086 }
1087 
1088 int
1089 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1090 {
1091 	int error;
1092 	int acquired_tasklist_lock = 0;
1093 	struct task_struct *p;
1094 
1095 	rcu_read_lock();
1096 	if (unlikely(sig_needs_tasklist(sig))) {
1097 		read_lock(&tasklist_lock);
1098 		acquired_tasklist_lock = 1;
1099 	}
1100 	p = find_task_by_pid(pid);
1101 	error = -ESRCH;
1102 	if (p)
1103 		error = group_send_sig_info(sig, info, p);
1104 	if (unlikely(acquired_tasklist_lock))
1105 		read_unlock(&tasklist_lock);
1106 	rcu_read_unlock();
1107 	return error;
1108 }
1109 
1110 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1111 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1112 		      uid_t uid, uid_t euid)
1113 {
1114 	int ret = -EINVAL;
1115 	struct task_struct *p;
1116 
1117 	if (!valid_signal(sig))
1118 		return ret;
1119 
1120 	read_lock(&tasklist_lock);
1121 	p = find_task_by_pid(pid);
1122 	if (!p) {
1123 		ret = -ESRCH;
1124 		goto out_unlock;
1125 	}
1126 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1127 	    && (euid != p->suid) && (euid != p->uid)
1128 	    && (uid != p->suid) && (uid != p->uid)) {
1129 		ret = -EPERM;
1130 		goto out_unlock;
1131 	}
1132 	if (sig && p->sighand) {
1133 		unsigned long flags;
1134 		spin_lock_irqsave(&p->sighand->siglock, flags);
1135 		ret = __group_send_sig_info(sig, info, p);
1136 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1137 	}
1138 out_unlock:
1139 	read_unlock(&tasklist_lock);
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1143 
1144 /*
1145  * kill_something_info() interprets pid in interesting ways just like kill(2).
1146  *
1147  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1148  * is probably wrong.  Should make it like BSD or SYSV.
1149  */
1150 
1151 static int kill_something_info(int sig, struct siginfo *info, int pid)
1152 {
1153 	if (!pid) {
1154 		return kill_pg_info(sig, info, process_group(current));
1155 	} else if (pid == -1) {
1156 		int retval = 0, count = 0;
1157 		struct task_struct * p;
1158 
1159 		read_lock(&tasklist_lock);
1160 		for_each_process(p) {
1161 			if (p->pid > 1 && p->tgid != current->tgid) {
1162 				int err = group_send_sig_info(sig, info, p);
1163 				++count;
1164 				if (err != -EPERM)
1165 					retval = err;
1166 			}
1167 		}
1168 		read_unlock(&tasklist_lock);
1169 		return count ? retval : -ESRCH;
1170 	} else if (pid < 0) {
1171 		return kill_pg_info(sig, info, -pid);
1172 	} else {
1173 		return kill_proc_info(sig, info, pid);
1174 	}
1175 }
1176 
1177 /*
1178  * These are for backward compatibility with the rest of the kernel source.
1179  */
1180 
1181 /*
1182  * These two are the most common entry points.  They send a signal
1183  * just to the specific thread.
1184  */
1185 int
1186 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1187 {
1188 	int ret;
1189 	unsigned long flags;
1190 
1191 	/*
1192 	 * Make sure legacy kernel users don't send in bad values
1193 	 * (normal paths check this in check_kill_permission).
1194 	 */
1195 	if (!valid_signal(sig))
1196 		return -EINVAL;
1197 
1198 	/*
1199 	 * We need the tasklist lock even for the specific
1200 	 * thread case (when we don't need to follow the group
1201 	 * lists) in order to avoid races with "p->sighand"
1202 	 * going away or changing from under us.
1203 	 */
1204 	read_lock(&tasklist_lock);
1205 	spin_lock_irqsave(&p->sighand->siglock, flags);
1206 	ret = specific_send_sig_info(sig, info, p);
1207 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 	read_unlock(&tasklist_lock);
1209 	return ret;
1210 }
1211 
1212 #define __si_special(priv) \
1213 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1214 
1215 int
1216 send_sig(int sig, struct task_struct *p, int priv)
1217 {
1218 	return send_sig_info(sig, __si_special(priv), p);
1219 }
1220 
1221 /*
1222  * This is the entry point for "process-wide" signals.
1223  * They will go to an appropriate thread in the thread group.
1224  */
1225 int
1226 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1227 {
1228 	int ret;
1229 	read_lock(&tasklist_lock);
1230 	ret = group_send_sig_info(sig, info, p);
1231 	read_unlock(&tasklist_lock);
1232 	return ret;
1233 }
1234 
1235 void
1236 force_sig(int sig, struct task_struct *p)
1237 {
1238 	force_sig_info(sig, SEND_SIG_PRIV, p);
1239 }
1240 
1241 /*
1242  * When things go south during signal handling, we
1243  * will force a SIGSEGV. And if the signal that caused
1244  * the problem was already a SIGSEGV, we'll want to
1245  * make sure we don't even try to deliver the signal..
1246  */
1247 int
1248 force_sigsegv(int sig, struct task_struct *p)
1249 {
1250 	if (sig == SIGSEGV) {
1251 		unsigned long flags;
1252 		spin_lock_irqsave(&p->sighand->siglock, flags);
1253 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1254 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1255 	}
1256 	force_sig(SIGSEGV, p);
1257 	return 0;
1258 }
1259 
1260 int
1261 kill_pg(pid_t pgrp, int sig, int priv)
1262 {
1263 	return kill_pg_info(sig, __si_special(priv), pgrp);
1264 }
1265 
1266 int
1267 kill_proc(pid_t pid, int sig, int priv)
1268 {
1269 	return kill_proc_info(sig, __si_special(priv), pid);
1270 }
1271 
1272 /*
1273  * These functions support sending signals using preallocated sigqueue
1274  * structures.  This is needed "because realtime applications cannot
1275  * afford to lose notifications of asynchronous events, like timer
1276  * expirations or I/O completions".  In the case of Posix Timers
1277  * we allocate the sigqueue structure from the timer_create.  If this
1278  * allocation fails we are able to report the failure to the application
1279  * with an EAGAIN error.
1280  */
1281 
1282 struct sigqueue *sigqueue_alloc(void)
1283 {
1284 	struct sigqueue *q;
1285 
1286 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1287 		q->flags |= SIGQUEUE_PREALLOC;
1288 	return(q);
1289 }
1290 
1291 void sigqueue_free(struct sigqueue *q)
1292 {
1293 	unsigned long flags;
1294 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1295 	/*
1296 	 * If the signal is still pending remove it from the
1297 	 * pending queue.
1298 	 */
1299 	if (unlikely(!list_empty(&q->list))) {
1300 		spinlock_t *lock = &current->sighand->siglock;
1301 		read_lock(&tasklist_lock);
1302 		spin_lock_irqsave(lock, flags);
1303 		if (!list_empty(&q->list))
1304 			list_del_init(&q->list);
1305 		spin_unlock_irqrestore(lock, flags);
1306 		read_unlock(&tasklist_lock);
1307 	}
1308 	q->flags &= ~SIGQUEUE_PREALLOC;
1309 	__sigqueue_free(q);
1310 }
1311 
1312 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1313 {
1314 	unsigned long flags;
1315 	int ret = 0;
1316 
1317 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1318 
1319 	/*
1320 	 * The rcu based delayed sighand destroy makes it possible to
1321 	 * run this without tasklist lock held. The task struct itself
1322 	 * cannot go away as create_timer did get_task_struct().
1323 	 *
1324 	 * We return -1, when the task is marked exiting, so
1325 	 * posix_timer_event can redirect it to the group leader
1326 	 */
1327 	rcu_read_lock();
1328 
1329 	if (!likely(lock_task_sighand(p, &flags))) {
1330 		ret = -1;
1331 		goto out_err;
1332 	}
1333 
1334 	if (unlikely(!list_empty(&q->list))) {
1335 		/*
1336 		 * If an SI_TIMER entry is already queue just increment
1337 		 * the overrun count.
1338 		 */
1339 		BUG_ON(q->info.si_code != SI_TIMER);
1340 		q->info.si_overrun++;
1341 		goto out;
1342 	}
1343 	/* Short-circuit ignored signals.  */
1344 	if (sig_ignored(p, sig)) {
1345 		ret = 1;
1346 		goto out;
1347 	}
1348 
1349 	list_add_tail(&q->list, &p->pending.list);
1350 	sigaddset(&p->pending.signal, sig);
1351 	if (!sigismember(&p->blocked, sig))
1352 		signal_wake_up(p, sig == SIGKILL);
1353 
1354 out:
1355 	unlock_task_sighand(p, &flags);
1356 out_err:
1357 	rcu_read_unlock();
1358 
1359 	return ret;
1360 }
1361 
1362 int
1363 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1364 {
1365 	unsigned long flags;
1366 	int ret = 0;
1367 
1368 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1369 
1370 	read_lock(&tasklist_lock);
1371 	/* Since it_lock is held, p->sighand cannot be NULL. */
1372 	spin_lock_irqsave(&p->sighand->siglock, flags);
1373 	handle_stop_signal(sig, p);
1374 
1375 	/* Short-circuit ignored signals.  */
1376 	if (sig_ignored(p, sig)) {
1377 		ret = 1;
1378 		goto out;
1379 	}
1380 
1381 	if (unlikely(!list_empty(&q->list))) {
1382 		/*
1383 		 * If an SI_TIMER entry is already queue just increment
1384 		 * the overrun count.  Other uses should not try to
1385 		 * send the signal multiple times.
1386 		 */
1387 		if (q->info.si_code != SI_TIMER)
1388 			BUG();
1389 		q->info.si_overrun++;
1390 		goto out;
1391 	}
1392 
1393 	/*
1394 	 * Put this signal on the shared-pending queue.
1395 	 * We always use the shared queue for process-wide signals,
1396 	 * to avoid several races.
1397 	 */
1398 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1399 	sigaddset(&p->signal->shared_pending.signal, sig);
1400 
1401 	__group_complete_signal(sig, p);
1402 out:
1403 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1404 	read_unlock(&tasklist_lock);
1405 	return ret;
1406 }
1407 
1408 /*
1409  * Wake up any threads in the parent blocked in wait* syscalls.
1410  */
1411 static inline void __wake_up_parent(struct task_struct *p,
1412 				    struct task_struct *parent)
1413 {
1414 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1415 }
1416 
1417 /*
1418  * Let a parent know about the death of a child.
1419  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1420  */
1421 
1422 void do_notify_parent(struct task_struct *tsk, int sig)
1423 {
1424 	struct siginfo info;
1425 	unsigned long flags;
1426 	struct sighand_struct *psig;
1427 
1428 	BUG_ON(sig == -1);
1429 
1430  	/* do_notify_parent_cldstop should have been called instead.  */
1431  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1432 
1433 	BUG_ON(!tsk->ptrace &&
1434 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1435 
1436 	info.si_signo = sig;
1437 	info.si_errno = 0;
1438 	info.si_pid = tsk->pid;
1439 	info.si_uid = tsk->uid;
1440 
1441 	/* FIXME: find out whether or not this is supposed to be c*time. */
1442 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1443 						       tsk->signal->utime));
1444 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1445 						       tsk->signal->stime));
1446 
1447 	info.si_status = tsk->exit_code & 0x7f;
1448 	if (tsk->exit_code & 0x80)
1449 		info.si_code = CLD_DUMPED;
1450 	else if (tsk->exit_code & 0x7f)
1451 		info.si_code = CLD_KILLED;
1452 	else {
1453 		info.si_code = CLD_EXITED;
1454 		info.si_status = tsk->exit_code >> 8;
1455 	}
1456 
1457 	psig = tsk->parent->sighand;
1458 	spin_lock_irqsave(&psig->siglock, flags);
1459 	if (!tsk->ptrace && sig == SIGCHLD &&
1460 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1461 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1462 		/*
1463 		 * We are exiting and our parent doesn't care.  POSIX.1
1464 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1465 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1466 		 * automatically and not left for our parent's wait4 call.
1467 		 * Rather than having the parent do it as a magic kind of
1468 		 * signal handler, we just set this to tell do_exit that we
1469 		 * can be cleaned up without becoming a zombie.  Note that
1470 		 * we still call __wake_up_parent in this case, because a
1471 		 * blocked sys_wait4 might now return -ECHILD.
1472 		 *
1473 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1474 		 * is implementation-defined: we do (if you don't want
1475 		 * it, just use SIG_IGN instead).
1476 		 */
1477 		tsk->exit_signal = -1;
1478 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1479 			sig = 0;
1480 	}
1481 	if (valid_signal(sig) && sig > 0)
1482 		__group_send_sig_info(sig, &info, tsk->parent);
1483 	__wake_up_parent(tsk, tsk->parent);
1484 	spin_unlock_irqrestore(&psig->siglock, flags);
1485 }
1486 
1487 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1488 {
1489 	struct siginfo info;
1490 	unsigned long flags;
1491 	struct task_struct *parent;
1492 	struct sighand_struct *sighand;
1493 
1494 	if (tsk->ptrace & PT_PTRACED)
1495 		parent = tsk->parent;
1496 	else {
1497 		tsk = tsk->group_leader;
1498 		parent = tsk->real_parent;
1499 	}
1500 
1501 	info.si_signo = SIGCHLD;
1502 	info.si_errno = 0;
1503 	info.si_pid = tsk->pid;
1504 	info.si_uid = tsk->uid;
1505 
1506 	/* FIXME: find out whether or not this is supposed to be c*time. */
1507 	info.si_utime = cputime_to_jiffies(tsk->utime);
1508 	info.si_stime = cputime_to_jiffies(tsk->stime);
1509 
1510  	info.si_code = why;
1511  	switch (why) {
1512  	case CLD_CONTINUED:
1513  		info.si_status = SIGCONT;
1514  		break;
1515  	case CLD_STOPPED:
1516  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1517  		break;
1518  	case CLD_TRAPPED:
1519  		info.si_status = tsk->exit_code & 0x7f;
1520  		break;
1521  	default:
1522  		BUG();
1523  	}
1524 
1525 	sighand = parent->sighand;
1526 	spin_lock_irqsave(&sighand->siglock, flags);
1527 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1528 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1529 		__group_send_sig_info(SIGCHLD, &info, parent);
1530 	/*
1531 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1532 	 */
1533 	__wake_up_parent(tsk, parent);
1534 	spin_unlock_irqrestore(&sighand->siglock, flags);
1535 }
1536 
1537 /*
1538  * This must be called with current->sighand->siglock held.
1539  *
1540  * This should be the path for all ptrace stops.
1541  * We always set current->last_siginfo while stopped here.
1542  * That makes it a way to test a stopped process for
1543  * being ptrace-stopped vs being job-control-stopped.
1544  *
1545  * If we actually decide not to stop at all because the tracer is gone,
1546  * we leave nostop_code in current->exit_code.
1547  */
1548 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1549 {
1550 	/*
1551 	 * If there is a group stop in progress,
1552 	 * we must participate in the bookkeeping.
1553 	 */
1554 	if (current->signal->group_stop_count > 0)
1555 		--current->signal->group_stop_count;
1556 
1557 	current->last_siginfo = info;
1558 	current->exit_code = exit_code;
1559 
1560 	/* Let the debugger run.  */
1561 	set_current_state(TASK_TRACED);
1562 	spin_unlock_irq(&current->sighand->siglock);
1563 	try_to_freeze();
1564 	read_lock(&tasklist_lock);
1565 	if (likely(current->ptrace & PT_PTRACED) &&
1566 	    likely(current->parent != current->real_parent ||
1567 		   !(current->ptrace & PT_ATTACHED)) &&
1568 	    (likely(current->parent->signal != current->signal) ||
1569 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1570 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1571 		read_unlock(&tasklist_lock);
1572 		schedule();
1573 	} else {
1574 		/*
1575 		 * By the time we got the lock, our tracer went away.
1576 		 * Don't stop here.
1577 		 */
1578 		read_unlock(&tasklist_lock);
1579 		set_current_state(TASK_RUNNING);
1580 		current->exit_code = nostop_code;
1581 	}
1582 
1583 	/*
1584 	 * We are back.  Now reacquire the siglock before touching
1585 	 * last_siginfo, so that we are sure to have synchronized with
1586 	 * any signal-sending on another CPU that wants to examine it.
1587 	 */
1588 	spin_lock_irq(&current->sighand->siglock);
1589 	current->last_siginfo = NULL;
1590 
1591 	/*
1592 	 * Queued signals ignored us while we were stopped for tracing.
1593 	 * So check for any that we should take before resuming user mode.
1594 	 */
1595 	recalc_sigpending();
1596 }
1597 
1598 void ptrace_notify(int exit_code)
1599 {
1600 	siginfo_t info;
1601 
1602 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1603 
1604 	memset(&info, 0, sizeof info);
1605 	info.si_signo = SIGTRAP;
1606 	info.si_code = exit_code;
1607 	info.si_pid = current->pid;
1608 	info.si_uid = current->uid;
1609 
1610 	/* Let the debugger run.  */
1611 	spin_lock_irq(&current->sighand->siglock);
1612 	ptrace_stop(exit_code, 0, &info);
1613 	spin_unlock_irq(&current->sighand->siglock);
1614 }
1615 
1616 static void
1617 finish_stop(int stop_count)
1618 {
1619 	/*
1620 	 * If there are no other threads in the group, or if there is
1621 	 * a group stop in progress and we are the last to stop,
1622 	 * report to the parent.  When ptraced, every thread reports itself.
1623 	 */
1624 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1625 		read_lock(&tasklist_lock);
1626 		do_notify_parent_cldstop(current, CLD_STOPPED);
1627 		read_unlock(&tasklist_lock);
1628 	}
1629 
1630 	schedule();
1631 	/*
1632 	 * Now we don't run again until continued.
1633 	 */
1634 	current->exit_code = 0;
1635 }
1636 
1637 /*
1638  * This performs the stopping for SIGSTOP and other stop signals.
1639  * We have to stop all threads in the thread group.
1640  * Returns nonzero if we've actually stopped and released the siglock.
1641  * Returns zero if we didn't stop and still hold the siglock.
1642  */
1643 static int do_signal_stop(int signr)
1644 {
1645 	struct signal_struct *sig = current->signal;
1646 	int stop_count;
1647 
1648 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1649 		return 0;
1650 
1651 	if (sig->group_stop_count > 0) {
1652 		/*
1653 		 * There is a group stop in progress.  We don't need to
1654 		 * start another one.
1655 		 */
1656 		stop_count = --sig->group_stop_count;
1657 	} else {
1658 		/*
1659 		 * There is no group stop already in progress.
1660 		 * We must initiate one now.
1661 		 */
1662 		struct task_struct *t;
1663 
1664 		sig->group_exit_code = signr;
1665 
1666 		stop_count = 0;
1667 		for (t = next_thread(current); t != current; t = next_thread(t))
1668 			/*
1669 			 * Setting state to TASK_STOPPED for a group
1670 			 * stop is always done with the siglock held,
1671 			 * so this check has no races.
1672 			 */
1673 			if (!t->exit_state &&
1674 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1675 				stop_count++;
1676 				signal_wake_up(t, 0);
1677 			}
1678 		sig->group_stop_count = stop_count;
1679 	}
1680 
1681 	if (stop_count == 0)
1682 		sig->flags = SIGNAL_STOP_STOPPED;
1683 	current->exit_code = sig->group_exit_code;
1684 	__set_current_state(TASK_STOPPED);
1685 
1686 	spin_unlock_irq(&current->sighand->siglock);
1687 	finish_stop(stop_count);
1688 	return 1;
1689 }
1690 
1691 /*
1692  * Do appropriate magic when group_stop_count > 0.
1693  * We return nonzero if we stopped, after releasing the siglock.
1694  * We return zero if we still hold the siglock and should look
1695  * for another signal without checking group_stop_count again.
1696  */
1697 static int handle_group_stop(void)
1698 {
1699 	int stop_count;
1700 
1701 	if (current->signal->group_exit_task == current) {
1702 		/*
1703 		 * Group stop is so we can do a core dump,
1704 		 * We are the initiating thread, so get on with it.
1705 		 */
1706 		current->signal->group_exit_task = NULL;
1707 		return 0;
1708 	}
1709 
1710 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1711 		/*
1712 		 * Group stop is so another thread can do a core dump,
1713 		 * or else we are racing against a death signal.
1714 		 * Just punt the stop so we can get the next signal.
1715 		 */
1716 		return 0;
1717 
1718 	/*
1719 	 * There is a group stop in progress.  We stop
1720 	 * without any associated signal being in our queue.
1721 	 */
1722 	stop_count = --current->signal->group_stop_count;
1723 	if (stop_count == 0)
1724 		current->signal->flags = SIGNAL_STOP_STOPPED;
1725 	current->exit_code = current->signal->group_exit_code;
1726 	set_current_state(TASK_STOPPED);
1727 	spin_unlock_irq(&current->sighand->siglock);
1728 	finish_stop(stop_count);
1729 	return 1;
1730 }
1731 
1732 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1733 			  struct pt_regs *regs, void *cookie)
1734 {
1735 	sigset_t *mask = &current->blocked;
1736 	int signr = 0;
1737 
1738 	try_to_freeze();
1739 
1740 relock:
1741 	spin_lock_irq(&current->sighand->siglock);
1742 	for (;;) {
1743 		struct k_sigaction *ka;
1744 
1745 		if (unlikely(current->signal->group_stop_count > 0) &&
1746 		    handle_group_stop())
1747 			goto relock;
1748 
1749 		signr = dequeue_signal(current, mask, info);
1750 
1751 		if (!signr)
1752 			break; /* will return 0 */
1753 
1754 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1755 			ptrace_signal_deliver(regs, cookie);
1756 
1757 			/* Let the debugger run.  */
1758 			ptrace_stop(signr, signr, info);
1759 
1760 			/* We're back.  Did the debugger cancel the sig or group_exit? */
1761 			signr = current->exit_code;
1762 			if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1763 				continue;
1764 
1765 			current->exit_code = 0;
1766 
1767 			/* Update the siginfo structure if the signal has
1768 			   changed.  If the debugger wanted something
1769 			   specific in the siginfo structure then it should
1770 			   have updated *info via PTRACE_SETSIGINFO.  */
1771 			if (signr != info->si_signo) {
1772 				info->si_signo = signr;
1773 				info->si_errno = 0;
1774 				info->si_code = SI_USER;
1775 				info->si_pid = current->parent->pid;
1776 				info->si_uid = current->parent->uid;
1777 			}
1778 
1779 			/* If the (new) signal is now blocked, requeue it.  */
1780 			if (sigismember(&current->blocked, signr)) {
1781 				specific_send_sig_info(signr, info, current);
1782 				continue;
1783 			}
1784 		}
1785 
1786 		ka = &current->sighand->action[signr-1];
1787 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1788 			continue;
1789 		if (ka->sa.sa_handler != SIG_DFL) {
1790 			/* Run the handler.  */
1791 			*return_ka = *ka;
1792 
1793 			if (ka->sa.sa_flags & SA_ONESHOT)
1794 				ka->sa.sa_handler = SIG_DFL;
1795 
1796 			break; /* will return non-zero "signr" value */
1797 		}
1798 
1799 		/*
1800 		 * Now we are doing the default action for this signal.
1801 		 */
1802 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1803 			continue;
1804 
1805 		/* Init gets no signals it doesn't want.  */
1806 		if (current == child_reaper)
1807 			continue;
1808 
1809 		if (sig_kernel_stop(signr)) {
1810 			/*
1811 			 * The default action is to stop all threads in
1812 			 * the thread group.  The job control signals
1813 			 * do nothing in an orphaned pgrp, but SIGSTOP
1814 			 * always works.  Note that siglock needs to be
1815 			 * dropped during the call to is_orphaned_pgrp()
1816 			 * because of lock ordering with tasklist_lock.
1817 			 * This allows an intervening SIGCONT to be posted.
1818 			 * We need to check for that and bail out if necessary.
1819 			 */
1820 			if (signr != SIGSTOP) {
1821 				spin_unlock_irq(&current->sighand->siglock);
1822 
1823 				/* signals can be posted during this window */
1824 
1825 				if (is_orphaned_pgrp(process_group(current)))
1826 					goto relock;
1827 
1828 				spin_lock_irq(&current->sighand->siglock);
1829 			}
1830 
1831 			if (likely(do_signal_stop(signr))) {
1832 				/* It released the siglock.  */
1833 				goto relock;
1834 			}
1835 
1836 			/*
1837 			 * We didn't actually stop, due to a race
1838 			 * with SIGCONT or something like that.
1839 			 */
1840 			continue;
1841 		}
1842 
1843 		spin_unlock_irq(&current->sighand->siglock);
1844 
1845 		/*
1846 		 * Anything else is fatal, maybe with a core dump.
1847 		 */
1848 		current->flags |= PF_SIGNALED;
1849 		if (sig_kernel_coredump(signr)) {
1850 			/*
1851 			 * If it was able to dump core, this kills all
1852 			 * other threads in the group and synchronizes with
1853 			 * their demise.  If we lost the race with another
1854 			 * thread getting here, it set group_exit_code
1855 			 * first and our do_group_exit call below will use
1856 			 * that value and ignore the one we pass it.
1857 			 */
1858 			do_coredump((long)signr, signr, regs);
1859 		}
1860 
1861 		/*
1862 		 * Death signals, no core dump.
1863 		 */
1864 		do_group_exit(signr);
1865 		/* NOTREACHED */
1866 	}
1867 	spin_unlock_irq(&current->sighand->siglock);
1868 	return signr;
1869 }
1870 
1871 EXPORT_SYMBOL(recalc_sigpending);
1872 EXPORT_SYMBOL_GPL(dequeue_signal);
1873 EXPORT_SYMBOL(flush_signals);
1874 EXPORT_SYMBOL(force_sig);
1875 EXPORT_SYMBOL(kill_pg);
1876 EXPORT_SYMBOL(kill_proc);
1877 EXPORT_SYMBOL(ptrace_notify);
1878 EXPORT_SYMBOL(send_sig);
1879 EXPORT_SYMBOL(send_sig_info);
1880 EXPORT_SYMBOL(sigprocmask);
1881 EXPORT_SYMBOL(block_all_signals);
1882 EXPORT_SYMBOL(unblock_all_signals);
1883 
1884 
1885 /*
1886  * System call entry points.
1887  */
1888 
1889 asmlinkage long sys_restart_syscall(void)
1890 {
1891 	struct restart_block *restart = &current_thread_info()->restart_block;
1892 	return restart->fn(restart);
1893 }
1894 
1895 long do_no_restart_syscall(struct restart_block *param)
1896 {
1897 	return -EINTR;
1898 }
1899 
1900 /*
1901  * We don't need to get the kernel lock - this is all local to this
1902  * particular thread.. (and that's good, because this is _heavily_
1903  * used by various programs)
1904  */
1905 
1906 /*
1907  * This is also useful for kernel threads that want to temporarily
1908  * (or permanently) block certain signals.
1909  *
1910  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1911  * interface happily blocks "unblockable" signals like SIGKILL
1912  * and friends.
1913  */
1914 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1915 {
1916 	int error;
1917 
1918 	spin_lock_irq(&current->sighand->siglock);
1919 	if (oldset)
1920 		*oldset = current->blocked;
1921 
1922 	error = 0;
1923 	switch (how) {
1924 	case SIG_BLOCK:
1925 		sigorsets(&current->blocked, &current->blocked, set);
1926 		break;
1927 	case SIG_UNBLOCK:
1928 		signandsets(&current->blocked, &current->blocked, set);
1929 		break;
1930 	case SIG_SETMASK:
1931 		current->blocked = *set;
1932 		break;
1933 	default:
1934 		error = -EINVAL;
1935 	}
1936 	recalc_sigpending();
1937 	spin_unlock_irq(&current->sighand->siglock);
1938 
1939 	return error;
1940 }
1941 
1942 asmlinkage long
1943 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1944 {
1945 	int error = -EINVAL;
1946 	sigset_t old_set, new_set;
1947 
1948 	/* XXX: Don't preclude handling different sized sigset_t's.  */
1949 	if (sigsetsize != sizeof(sigset_t))
1950 		goto out;
1951 
1952 	if (set) {
1953 		error = -EFAULT;
1954 		if (copy_from_user(&new_set, set, sizeof(*set)))
1955 			goto out;
1956 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1957 
1958 		error = sigprocmask(how, &new_set, &old_set);
1959 		if (error)
1960 			goto out;
1961 		if (oset)
1962 			goto set_old;
1963 	} else if (oset) {
1964 		spin_lock_irq(&current->sighand->siglock);
1965 		old_set = current->blocked;
1966 		spin_unlock_irq(&current->sighand->siglock);
1967 
1968 	set_old:
1969 		error = -EFAULT;
1970 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
1971 			goto out;
1972 	}
1973 	error = 0;
1974 out:
1975 	return error;
1976 }
1977 
1978 long do_sigpending(void __user *set, unsigned long sigsetsize)
1979 {
1980 	long error = -EINVAL;
1981 	sigset_t pending;
1982 
1983 	if (sigsetsize > sizeof(sigset_t))
1984 		goto out;
1985 
1986 	spin_lock_irq(&current->sighand->siglock);
1987 	sigorsets(&pending, &current->pending.signal,
1988 		  &current->signal->shared_pending.signal);
1989 	spin_unlock_irq(&current->sighand->siglock);
1990 
1991 	/* Outside the lock because only this thread touches it.  */
1992 	sigandsets(&pending, &current->blocked, &pending);
1993 
1994 	error = -EFAULT;
1995 	if (!copy_to_user(set, &pending, sigsetsize))
1996 		error = 0;
1997 
1998 out:
1999 	return error;
2000 }
2001 
2002 asmlinkage long
2003 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2004 {
2005 	return do_sigpending(set, sigsetsize);
2006 }
2007 
2008 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2009 
2010 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2011 {
2012 	int err;
2013 
2014 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2015 		return -EFAULT;
2016 	if (from->si_code < 0)
2017 		return __copy_to_user(to, from, sizeof(siginfo_t))
2018 			? -EFAULT : 0;
2019 	/*
2020 	 * If you change siginfo_t structure, please be sure
2021 	 * this code is fixed accordingly.
2022 	 * It should never copy any pad contained in the structure
2023 	 * to avoid security leaks, but must copy the generic
2024 	 * 3 ints plus the relevant union member.
2025 	 */
2026 	err = __put_user(from->si_signo, &to->si_signo);
2027 	err |= __put_user(from->si_errno, &to->si_errno);
2028 	err |= __put_user((short)from->si_code, &to->si_code);
2029 	switch (from->si_code & __SI_MASK) {
2030 	case __SI_KILL:
2031 		err |= __put_user(from->si_pid, &to->si_pid);
2032 		err |= __put_user(from->si_uid, &to->si_uid);
2033 		break;
2034 	case __SI_TIMER:
2035 		 err |= __put_user(from->si_tid, &to->si_tid);
2036 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2037 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2038 		break;
2039 	case __SI_POLL:
2040 		err |= __put_user(from->si_band, &to->si_band);
2041 		err |= __put_user(from->si_fd, &to->si_fd);
2042 		break;
2043 	case __SI_FAULT:
2044 		err |= __put_user(from->si_addr, &to->si_addr);
2045 #ifdef __ARCH_SI_TRAPNO
2046 		err |= __put_user(from->si_trapno, &to->si_trapno);
2047 #endif
2048 		break;
2049 	case __SI_CHLD:
2050 		err |= __put_user(from->si_pid, &to->si_pid);
2051 		err |= __put_user(from->si_uid, &to->si_uid);
2052 		err |= __put_user(from->si_status, &to->si_status);
2053 		err |= __put_user(from->si_utime, &to->si_utime);
2054 		err |= __put_user(from->si_stime, &to->si_stime);
2055 		break;
2056 	case __SI_RT: /* This is not generated by the kernel as of now. */
2057 	case __SI_MESGQ: /* But this is */
2058 		err |= __put_user(from->si_pid, &to->si_pid);
2059 		err |= __put_user(from->si_uid, &to->si_uid);
2060 		err |= __put_user(from->si_ptr, &to->si_ptr);
2061 		break;
2062 	default: /* this is just in case for now ... */
2063 		err |= __put_user(from->si_pid, &to->si_pid);
2064 		err |= __put_user(from->si_uid, &to->si_uid);
2065 		break;
2066 	}
2067 	return err;
2068 }
2069 
2070 #endif
2071 
2072 asmlinkage long
2073 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2074 		    siginfo_t __user *uinfo,
2075 		    const struct timespec __user *uts,
2076 		    size_t sigsetsize)
2077 {
2078 	int ret, sig;
2079 	sigset_t these;
2080 	struct timespec ts;
2081 	siginfo_t info;
2082 	long timeout = 0;
2083 
2084 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2085 	if (sigsetsize != sizeof(sigset_t))
2086 		return -EINVAL;
2087 
2088 	if (copy_from_user(&these, uthese, sizeof(these)))
2089 		return -EFAULT;
2090 
2091 	/*
2092 	 * Invert the set of allowed signals to get those we
2093 	 * want to block.
2094 	 */
2095 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2096 	signotset(&these);
2097 
2098 	if (uts) {
2099 		if (copy_from_user(&ts, uts, sizeof(ts)))
2100 			return -EFAULT;
2101 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2102 		    || ts.tv_sec < 0)
2103 			return -EINVAL;
2104 	}
2105 
2106 	spin_lock_irq(&current->sighand->siglock);
2107 	sig = dequeue_signal(current, &these, &info);
2108 	if (!sig) {
2109 		timeout = MAX_SCHEDULE_TIMEOUT;
2110 		if (uts)
2111 			timeout = (timespec_to_jiffies(&ts)
2112 				   + (ts.tv_sec || ts.tv_nsec));
2113 
2114 		if (timeout) {
2115 			/* None ready -- temporarily unblock those we're
2116 			 * interested while we are sleeping in so that we'll
2117 			 * be awakened when they arrive.  */
2118 			current->real_blocked = current->blocked;
2119 			sigandsets(&current->blocked, &current->blocked, &these);
2120 			recalc_sigpending();
2121 			spin_unlock_irq(&current->sighand->siglock);
2122 
2123 			timeout = schedule_timeout_interruptible(timeout);
2124 
2125 			spin_lock_irq(&current->sighand->siglock);
2126 			sig = dequeue_signal(current, &these, &info);
2127 			current->blocked = current->real_blocked;
2128 			siginitset(&current->real_blocked, 0);
2129 			recalc_sigpending();
2130 		}
2131 	}
2132 	spin_unlock_irq(&current->sighand->siglock);
2133 
2134 	if (sig) {
2135 		ret = sig;
2136 		if (uinfo) {
2137 			if (copy_siginfo_to_user(uinfo, &info))
2138 				ret = -EFAULT;
2139 		}
2140 	} else {
2141 		ret = -EAGAIN;
2142 		if (timeout)
2143 			ret = -EINTR;
2144 	}
2145 
2146 	return ret;
2147 }
2148 
2149 asmlinkage long
2150 sys_kill(int pid, int sig)
2151 {
2152 	struct siginfo info;
2153 
2154 	info.si_signo = sig;
2155 	info.si_errno = 0;
2156 	info.si_code = SI_USER;
2157 	info.si_pid = current->tgid;
2158 	info.si_uid = current->uid;
2159 
2160 	return kill_something_info(sig, &info, pid);
2161 }
2162 
2163 static int do_tkill(int tgid, int pid, int sig)
2164 {
2165 	int error;
2166 	struct siginfo info;
2167 	struct task_struct *p;
2168 
2169 	error = -ESRCH;
2170 	info.si_signo = sig;
2171 	info.si_errno = 0;
2172 	info.si_code = SI_TKILL;
2173 	info.si_pid = current->tgid;
2174 	info.si_uid = current->uid;
2175 
2176 	read_lock(&tasklist_lock);
2177 	p = find_task_by_pid(pid);
2178 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2179 		error = check_kill_permission(sig, &info, p);
2180 		/*
2181 		 * The null signal is a permissions and process existence
2182 		 * probe.  No signal is actually delivered.
2183 		 */
2184 		if (!error && sig && p->sighand) {
2185 			spin_lock_irq(&p->sighand->siglock);
2186 			handle_stop_signal(sig, p);
2187 			error = specific_send_sig_info(sig, &info, p);
2188 			spin_unlock_irq(&p->sighand->siglock);
2189 		}
2190 	}
2191 	read_unlock(&tasklist_lock);
2192 
2193 	return error;
2194 }
2195 
2196 /**
2197  *  sys_tgkill - send signal to one specific thread
2198  *  @tgid: the thread group ID of the thread
2199  *  @pid: the PID of the thread
2200  *  @sig: signal to be sent
2201  *
2202  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2203  *  exists but it's not belonging to the target process anymore. This
2204  *  method solves the problem of threads exiting and PIDs getting reused.
2205  */
2206 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2207 {
2208 	/* This is only valid for single tasks */
2209 	if (pid <= 0 || tgid <= 0)
2210 		return -EINVAL;
2211 
2212 	return do_tkill(tgid, pid, sig);
2213 }
2214 
2215 /*
2216  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2217  */
2218 asmlinkage long
2219 sys_tkill(int pid, int sig)
2220 {
2221 	/* This is only valid for single tasks */
2222 	if (pid <= 0)
2223 		return -EINVAL;
2224 
2225 	return do_tkill(0, pid, sig);
2226 }
2227 
2228 asmlinkage long
2229 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2230 {
2231 	siginfo_t info;
2232 
2233 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2234 		return -EFAULT;
2235 
2236 	/* Not even root can pretend to send signals from the kernel.
2237 	   Nor can they impersonate a kill(), which adds source info.  */
2238 	if (info.si_code >= 0)
2239 		return -EPERM;
2240 	info.si_signo = sig;
2241 
2242 	/* POSIX.1b doesn't mention process groups.  */
2243 	return kill_proc_info(sig, &info, pid);
2244 }
2245 
2246 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2247 {
2248 	struct k_sigaction *k;
2249 	sigset_t mask;
2250 
2251 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2252 		return -EINVAL;
2253 
2254 	k = &current->sighand->action[sig-1];
2255 
2256 	spin_lock_irq(&current->sighand->siglock);
2257 	if (signal_pending(current)) {
2258 		/*
2259 		 * If there might be a fatal signal pending on multiple
2260 		 * threads, make sure we take it before changing the action.
2261 		 */
2262 		spin_unlock_irq(&current->sighand->siglock);
2263 		return -ERESTARTNOINTR;
2264 	}
2265 
2266 	if (oact)
2267 		*oact = *k;
2268 
2269 	if (act) {
2270 		sigdelsetmask(&act->sa.sa_mask,
2271 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2272 		*k = *act;
2273 		/*
2274 		 * POSIX 3.3.1.3:
2275 		 *  "Setting a signal action to SIG_IGN for a signal that is
2276 		 *   pending shall cause the pending signal to be discarded,
2277 		 *   whether or not it is blocked."
2278 		 *
2279 		 *  "Setting a signal action to SIG_DFL for a signal that is
2280 		 *   pending and whose default action is to ignore the signal
2281 		 *   (for example, SIGCHLD), shall cause the pending signal to
2282 		 *   be discarded, whether or not it is blocked"
2283 		 */
2284 		if (act->sa.sa_handler == SIG_IGN ||
2285 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2286 			struct task_struct *t = current;
2287 			sigemptyset(&mask);
2288 			sigaddset(&mask, sig);
2289 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2290 			do {
2291 				rm_from_queue_full(&mask, &t->pending);
2292 				recalc_sigpending_tsk(t);
2293 				t = next_thread(t);
2294 			} while (t != current);
2295 		}
2296 	}
2297 
2298 	spin_unlock_irq(&current->sighand->siglock);
2299 	return 0;
2300 }
2301 
2302 int
2303 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2304 {
2305 	stack_t oss;
2306 	int error;
2307 
2308 	if (uoss) {
2309 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2310 		oss.ss_size = current->sas_ss_size;
2311 		oss.ss_flags = sas_ss_flags(sp);
2312 	}
2313 
2314 	if (uss) {
2315 		void __user *ss_sp;
2316 		size_t ss_size;
2317 		int ss_flags;
2318 
2319 		error = -EFAULT;
2320 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2321 		    || __get_user(ss_sp, &uss->ss_sp)
2322 		    || __get_user(ss_flags, &uss->ss_flags)
2323 		    || __get_user(ss_size, &uss->ss_size))
2324 			goto out;
2325 
2326 		error = -EPERM;
2327 		if (on_sig_stack(sp))
2328 			goto out;
2329 
2330 		error = -EINVAL;
2331 		/*
2332 		 *
2333 		 * Note - this code used to test ss_flags incorrectly
2334 		 *  	  old code may have been written using ss_flags==0
2335 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2336 		 *	  way that worked) - this fix preserves that older
2337 		 *	  mechanism
2338 		 */
2339 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2340 			goto out;
2341 
2342 		if (ss_flags == SS_DISABLE) {
2343 			ss_size = 0;
2344 			ss_sp = NULL;
2345 		} else {
2346 			error = -ENOMEM;
2347 			if (ss_size < MINSIGSTKSZ)
2348 				goto out;
2349 		}
2350 
2351 		current->sas_ss_sp = (unsigned long) ss_sp;
2352 		current->sas_ss_size = ss_size;
2353 	}
2354 
2355 	if (uoss) {
2356 		error = -EFAULT;
2357 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2358 			goto out;
2359 	}
2360 
2361 	error = 0;
2362 out:
2363 	return error;
2364 }
2365 
2366 #ifdef __ARCH_WANT_SYS_SIGPENDING
2367 
2368 asmlinkage long
2369 sys_sigpending(old_sigset_t __user *set)
2370 {
2371 	return do_sigpending(set, sizeof(*set));
2372 }
2373 
2374 #endif
2375 
2376 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2377 /* Some platforms have their own version with special arguments others
2378    support only sys_rt_sigprocmask.  */
2379 
2380 asmlinkage long
2381 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2382 {
2383 	int error;
2384 	old_sigset_t old_set, new_set;
2385 
2386 	if (set) {
2387 		error = -EFAULT;
2388 		if (copy_from_user(&new_set, set, sizeof(*set)))
2389 			goto out;
2390 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2391 
2392 		spin_lock_irq(&current->sighand->siglock);
2393 		old_set = current->blocked.sig[0];
2394 
2395 		error = 0;
2396 		switch (how) {
2397 		default:
2398 			error = -EINVAL;
2399 			break;
2400 		case SIG_BLOCK:
2401 			sigaddsetmask(&current->blocked, new_set);
2402 			break;
2403 		case SIG_UNBLOCK:
2404 			sigdelsetmask(&current->blocked, new_set);
2405 			break;
2406 		case SIG_SETMASK:
2407 			current->blocked.sig[0] = new_set;
2408 			break;
2409 		}
2410 
2411 		recalc_sigpending();
2412 		spin_unlock_irq(&current->sighand->siglock);
2413 		if (error)
2414 			goto out;
2415 		if (oset)
2416 			goto set_old;
2417 	} else if (oset) {
2418 		old_set = current->blocked.sig[0];
2419 	set_old:
2420 		error = -EFAULT;
2421 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2422 			goto out;
2423 	}
2424 	error = 0;
2425 out:
2426 	return error;
2427 }
2428 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2429 
2430 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2431 asmlinkage long
2432 sys_rt_sigaction(int sig,
2433 		 const struct sigaction __user *act,
2434 		 struct sigaction __user *oact,
2435 		 size_t sigsetsize)
2436 {
2437 	struct k_sigaction new_sa, old_sa;
2438 	int ret = -EINVAL;
2439 
2440 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2441 	if (sigsetsize != sizeof(sigset_t))
2442 		goto out;
2443 
2444 	if (act) {
2445 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2446 			return -EFAULT;
2447 	}
2448 
2449 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2450 
2451 	if (!ret && oact) {
2452 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2453 			return -EFAULT;
2454 	}
2455 out:
2456 	return ret;
2457 }
2458 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2459 
2460 #ifdef __ARCH_WANT_SYS_SGETMASK
2461 
2462 /*
2463  * For backwards compatibility.  Functionality superseded by sigprocmask.
2464  */
2465 asmlinkage long
2466 sys_sgetmask(void)
2467 {
2468 	/* SMP safe */
2469 	return current->blocked.sig[0];
2470 }
2471 
2472 asmlinkage long
2473 sys_ssetmask(int newmask)
2474 {
2475 	int old;
2476 
2477 	spin_lock_irq(&current->sighand->siglock);
2478 	old = current->blocked.sig[0];
2479 
2480 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2481 						  sigmask(SIGSTOP)));
2482 	recalc_sigpending();
2483 	spin_unlock_irq(&current->sighand->siglock);
2484 
2485 	return old;
2486 }
2487 #endif /* __ARCH_WANT_SGETMASK */
2488 
2489 #ifdef __ARCH_WANT_SYS_SIGNAL
2490 /*
2491  * For backwards compatibility.  Functionality superseded by sigaction.
2492  */
2493 asmlinkage unsigned long
2494 sys_signal(int sig, __sighandler_t handler)
2495 {
2496 	struct k_sigaction new_sa, old_sa;
2497 	int ret;
2498 
2499 	new_sa.sa.sa_handler = handler;
2500 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2501 	sigemptyset(&new_sa.sa.sa_mask);
2502 
2503 	ret = do_sigaction(sig, &new_sa, &old_sa);
2504 
2505 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2506 }
2507 #endif /* __ARCH_WANT_SYS_SIGNAL */
2508 
2509 #ifdef __ARCH_WANT_SYS_PAUSE
2510 
2511 asmlinkage long
2512 sys_pause(void)
2513 {
2514 	current->state = TASK_INTERRUPTIBLE;
2515 	schedule();
2516 	return -ERESTARTNOHAND;
2517 }
2518 
2519 #endif
2520 
2521 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2522 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2523 {
2524 	sigset_t newset;
2525 
2526 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2527 	if (sigsetsize != sizeof(sigset_t))
2528 		return -EINVAL;
2529 
2530 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2531 		return -EFAULT;
2532 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2533 
2534 	spin_lock_irq(&current->sighand->siglock);
2535 	current->saved_sigmask = current->blocked;
2536 	current->blocked = newset;
2537 	recalc_sigpending();
2538 	spin_unlock_irq(&current->sighand->siglock);
2539 
2540 	current->state = TASK_INTERRUPTIBLE;
2541 	schedule();
2542 	set_thread_flag(TIF_RESTORE_SIGMASK);
2543 	return -ERESTARTNOHAND;
2544 }
2545 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2546 
2547 void __init signals_init(void)
2548 {
2549 	sigqueue_cachep =
2550 		kmem_cache_create("sigqueue",
2551 				  sizeof(struct sigqueue),
2552 				  __alignof__(struct sigqueue),
2553 				  SLAB_PANIC, NULL, NULL);
2554 }
2555