xref: /linux/kernel/signal.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47 
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h"	/* audit_signal_info() */
54 
55 /*
56  * SLAB caches for signal bits.
57  */
58 
59 static struct kmem_cache *sigqueue_cachep;
60 
61 int print_fatal_signals __read_mostly;
62 
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 	return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67 
68 static int sig_handler_ignored(void __user *handler, int sig)
69 {
70 	/* Is it explicitly or implicitly ignored? */
71 	return handler == SIG_IGN ||
72 		(handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74 
75 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	void __user *handler;
78 
79 	handler = sig_handler(t, sig);
80 
81 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 		return 1;
84 
85 	return sig_handler_ignored(handler, sig);
86 }
87 
88 static int sig_ignored(struct task_struct *t, int sig, bool force)
89 {
90 	/*
91 	 * Blocked signals are never ignored, since the
92 	 * signal handler may change by the time it is
93 	 * unblocked.
94 	 */
95 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 		return 0;
97 
98 	/*
99 	 * Tracers may want to know about even ignored signal unless it
100 	 * is SIGKILL which can't be reported anyway but can be ignored
101 	 * by SIGNAL_UNKILLABLE task.
102 	 */
103 	if (t->ptrace && sig != SIGKILL)
104 		return 0;
105 
106 	return sig_task_ignored(t, sig, force);
107 }
108 
109 /*
110  * Re-calculate pending state from the set of locally pending
111  * signals, globally pending signals, and blocked signals.
112  */
113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
114 {
115 	unsigned long ready;
116 	long i;
117 
118 	switch (_NSIG_WORDS) {
119 	default:
120 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 			ready |= signal->sig[i] &~ blocked->sig[i];
122 		break;
123 
124 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
125 		ready |= signal->sig[2] &~ blocked->sig[2];
126 		ready |= signal->sig[1] &~ blocked->sig[1];
127 		ready |= signal->sig[0] &~ blocked->sig[0];
128 		break;
129 
130 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
131 		ready |= signal->sig[0] &~ blocked->sig[0];
132 		break;
133 
134 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
135 	}
136 	return ready !=	0;
137 }
138 
139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140 
141 static int recalc_sigpending_tsk(struct task_struct *t)
142 {
143 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 	    PENDING(&t->pending, &t->blocked) ||
145 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
146 		set_tsk_thread_flag(t, TIF_SIGPENDING);
147 		return 1;
148 	}
149 	/*
150 	 * We must never clear the flag in another thread, or in current
151 	 * when it's possible the current syscall is returning -ERESTART*.
152 	 * So we don't clear it here, and only callers who know they should do.
153 	 */
154 	return 0;
155 }
156 
157 /*
158  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
159  * This is superfluous when called on current, the wakeup is a harmless no-op.
160  */
161 void recalc_sigpending_and_wake(struct task_struct *t)
162 {
163 	if (recalc_sigpending_tsk(t))
164 		signal_wake_up(t, 0);
165 }
166 
167 void recalc_sigpending(void)
168 {
169 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
170 	    !klp_patch_pending(current))
171 		clear_thread_flag(TIF_SIGPENDING);
172 
173 }
174 
175 /* Given the mask, find the first available signal that should be serviced. */
176 
177 #define SYNCHRONOUS_MASK \
178 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
179 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
180 
181 int next_signal(struct sigpending *pending, sigset_t *mask)
182 {
183 	unsigned long i, *s, *m, x;
184 	int sig = 0;
185 
186 	s = pending->signal.sig;
187 	m = mask->sig;
188 
189 	/*
190 	 * Handle the first word specially: it contains the
191 	 * synchronous signals that need to be dequeued first.
192 	 */
193 	x = *s &~ *m;
194 	if (x) {
195 		if (x & SYNCHRONOUS_MASK)
196 			x &= SYNCHRONOUS_MASK;
197 		sig = ffz(~x) + 1;
198 		return sig;
199 	}
200 
201 	switch (_NSIG_WORDS) {
202 	default:
203 		for (i = 1; i < _NSIG_WORDS; ++i) {
204 			x = *++s &~ *++m;
205 			if (!x)
206 				continue;
207 			sig = ffz(~x) + i*_NSIG_BPW + 1;
208 			break;
209 		}
210 		break;
211 
212 	case 2:
213 		x = s[1] &~ m[1];
214 		if (!x)
215 			break;
216 		sig = ffz(~x) + _NSIG_BPW + 1;
217 		break;
218 
219 	case 1:
220 		/* Nothing to do */
221 		break;
222 	}
223 
224 	return sig;
225 }
226 
227 static inline void print_dropped_signal(int sig)
228 {
229 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
230 
231 	if (!print_fatal_signals)
232 		return;
233 
234 	if (!__ratelimit(&ratelimit_state))
235 		return;
236 
237 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
238 				current->comm, current->pid, sig);
239 }
240 
241 /**
242  * task_set_jobctl_pending - set jobctl pending bits
243  * @task: target task
244  * @mask: pending bits to set
245  *
246  * Clear @mask from @task->jobctl.  @mask must be subset of
247  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
248  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
249  * cleared.  If @task is already being killed or exiting, this function
250  * becomes noop.
251  *
252  * CONTEXT:
253  * Must be called with @task->sighand->siglock held.
254  *
255  * RETURNS:
256  * %true if @mask is set, %false if made noop because @task was dying.
257  */
258 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
259 {
260 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
261 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
262 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
263 
264 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
265 		return false;
266 
267 	if (mask & JOBCTL_STOP_SIGMASK)
268 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
269 
270 	task->jobctl |= mask;
271 	return true;
272 }
273 
274 /**
275  * task_clear_jobctl_trapping - clear jobctl trapping bit
276  * @task: target task
277  *
278  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
279  * Clear it and wake up the ptracer.  Note that we don't need any further
280  * locking.  @task->siglock guarantees that @task->parent points to the
281  * ptracer.
282  *
283  * CONTEXT:
284  * Must be called with @task->sighand->siglock held.
285  */
286 void task_clear_jobctl_trapping(struct task_struct *task)
287 {
288 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
289 		task->jobctl &= ~JOBCTL_TRAPPING;
290 		smp_mb();	/* advised by wake_up_bit() */
291 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
292 	}
293 }
294 
295 /**
296  * task_clear_jobctl_pending - clear jobctl pending bits
297  * @task: target task
298  * @mask: pending bits to clear
299  *
300  * Clear @mask from @task->jobctl.  @mask must be subset of
301  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
302  * STOP bits are cleared together.
303  *
304  * If clearing of @mask leaves no stop or trap pending, this function calls
305  * task_clear_jobctl_trapping().
306  *
307  * CONTEXT:
308  * Must be called with @task->sighand->siglock held.
309  */
310 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
311 {
312 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
313 
314 	if (mask & JOBCTL_STOP_PENDING)
315 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
316 
317 	task->jobctl &= ~mask;
318 
319 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
320 		task_clear_jobctl_trapping(task);
321 }
322 
323 /**
324  * task_participate_group_stop - participate in a group stop
325  * @task: task participating in a group stop
326  *
327  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
328  * Group stop states are cleared and the group stop count is consumed if
329  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
330  * stop, the appropriate %SIGNAL_* flags are set.
331  *
332  * CONTEXT:
333  * Must be called with @task->sighand->siglock held.
334  *
335  * RETURNS:
336  * %true if group stop completion should be notified to the parent, %false
337  * otherwise.
338  */
339 static bool task_participate_group_stop(struct task_struct *task)
340 {
341 	struct signal_struct *sig = task->signal;
342 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
343 
344 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
345 
346 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
347 
348 	if (!consume)
349 		return false;
350 
351 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
352 		sig->group_stop_count--;
353 
354 	/*
355 	 * Tell the caller to notify completion iff we are entering into a
356 	 * fresh group stop.  Read comment in do_signal_stop() for details.
357 	 */
358 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
359 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
360 		return true;
361 	}
362 	return false;
363 }
364 
365 /*
366  * allocate a new signal queue record
367  * - this may be called without locks if and only if t == current, otherwise an
368  *   appropriate lock must be held to stop the target task from exiting
369  */
370 static struct sigqueue *
371 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
372 {
373 	struct sigqueue *q = NULL;
374 	struct user_struct *user;
375 
376 	/*
377 	 * Protect access to @t credentials. This can go away when all
378 	 * callers hold rcu read lock.
379 	 */
380 	rcu_read_lock();
381 	user = get_uid(__task_cred(t)->user);
382 	atomic_inc(&user->sigpending);
383 	rcu_read_unlock();
384 
385 	if (override_rlimit ||
386 	    atomic_read(&user->sigpending) <=
387 			task_rlimit(t, RLIMIT_SIGPENDING)) {
388 		q = kmem_cache_alloc(sigqueue_cachep, flags);
389 	} else {
390 		print_dropped_signal(sig);
391 	}
392 
393 	if (unlikely(q == NULL)) {
394 		atomic_dec(&user->sigpending);
395 		free_uid(user);
396 	} else {
397 		INIT_LIST_HEAD(&q->list);
398 		q->flags = 0;
399 		q->user = user;
400 	}
401 
402 	return q;
403 }
404 
405 static void __sigqueue_free(struct sigqueue *q)
406 {
407 	if (q->flags & SIGQUEUE_PREALLOC)
408 		return;
409 	atomic_dec(&q->user->sigpending);
410 	free_uid(q->user);
411 	kmem_cache_free(sigqueue_cachep, q);
412 }
413 
414 void flush_sigqueue(struct sigpending *queue)
415 {
416 	struct sigqueue *q;
417 
418 	sigemptyset(&queue->signal);
419 	while (!list_empty(&queue->list)) {
420 		q = list_entry(queue->list.next, struct sigqueue , list);
421 		list_del_init(&q->list);
422 		__sigqueue_free(q);
423 	}
424 }
425 
426 /*
427  * Flush all pending signals for this kthread.
428  */
429 void flush_signals(struct task_struct *t)
430 {
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(&t->sighand->siglock, flags);
434 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
435 	flush_sigqueue(&t->pending);
436 	flush_sigqueue(&t->signal->shared_pending);
437 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
438 }
439 
440 #ifdef CONFIG_POSIX_TIMERS
441 static void __flush_itimer_signals(struct sigpending *pending)
442 {
443 	sigset_t signal, retain;
444 	struct sigqueue *q, *n;
445 
446 	signal = pending->signal;
447 	sigemptyset(&retain);
448 
449 	list_for_each_entry_safe(q, n, &pending->list, list) {
450 		int sig = q->info.si_signo;
451 
452 		if (likely(q->info.si_code != SI_TIMER)) {
453 			sigaddset(&retain, sig);
454 		} else {
455 			sigdelset(&signal, sig);
456 			list_del_init(&q->list);
457 			__sigqueue_free(q);
458 		}
459 	}
460 
461 	sigorsets(&pending->signal, &signal, &retain);
462 }
463 
464 void flush_itimer_signals(void)
465 {
466 	struct task_struct *tsk = current;
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
470 	__flush_itimer_signals(&tsk->pending);
471 	__flush_itimer_signals(&tsk->signal->shared_pending);
472 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
473 }
474 #endif
475 
476 void ignore_signals(struct task_struct *t)
477 {
478 	int i;
479 
480 	for (i = 0; i < _NSIG; ++i)
481 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
482 
483 	flush_signals(t);
484 }
485 
486 /*
487  * Flush all handlers for a task.
488  */
489 
490 void
491 flush_signal_handlers(struct task_struct *t, int force_default)
492 {
493 	int i;
494 	struct k_sigaction *ka = &t->sighand->action[0];
495 	for (i = _NSIG ; i != 0 ; i--) {
496 		if (force_default || ka->sa.sa_handler != SIG_IGN)
497 			ka->sa.sa_handler = SIG_DFL;
498 		ka->sa.sa_flags = 0;
499 #ifdef __ARCH_HAS_SA_RESTORER
500 		ka->sa.sa_restorer = NULL;
501 #endif
502 		sigemptyset(&ka->sa.sa_mask);
503 		ka++;
504 	}
505 }
506 
507 int unhandled_signal(struct task_struct *tsk, int sig)
508 {
509 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
510 	if (is_global_init(tsk))
511 		return 1;
512 	if (handler != SIG_IGN && handler != SIG_DFL)
513 		return 0;
514 	/* if ptraced, let the tracer determine */
515 	return !tsk->ptrace;
516 }
517 
518 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
519 			   bool *resched_timer)
520 {
521 	struct sigqueue *q, *first = NULL;
522 
523 	/*
524 	 * Collect the siginfo appropriate to this signal.  Check if
525 	 * there is another siginfo for the same signal.
526 	*/
527 	list_for_each_entry(q, &list->list, list) {
528 		if (q->info.si_signo == sig) {
529 			if (first)
530 				goto still_pending;
531 			first = q;
532 		}
533 	}
534 
535 	sigdelset(&list->signal, sig);
536 
537 	if (first) {
538 still_pending:
539 		list_del_init(&first->list);
540 		copy_siginfo(info, &first->info);
541 
542 		*resched_timer =
543 			(first->flags & SIGQUEUE_PREALLOC) &&
544 			(info->si_code == SI_TIMER) &&
545 			(info->si_sys_private);
546 
547 		__sigqueue_free(first);
548 	} else {
549 		/*
550 		 * Ok, it wasn't in the queue.  This must be
551 		 * a fast-pathed signal or we must have been
552 		 * out of queue space.  So zero out the info.
553 		 */
554 		clear_siginfo(info);
555 		info->si_signo = sig;
556 		info->si_errno = 0;
557 		info->si_code = SI_USER;
558 		info->si_pid = 0;
559 		info->si_uid = 0;
560 	}
561 }
562 
563 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
564 			siginfo_t *info, bool *resched_timer)
565 {
566 	int sig = next_signal(pending, mask);
567 
568 	if (sig)
569 		collect_signal(sig, pending, info, resched_timer);
570 	return sig;
571 }
572 
573 /*
574  * Dequeue a signal and return the element to the caller, which is
575  * expected to free it.
576  *
577  * All callers have to hold the siglock.
578  */
579 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
580 {
581 	bool resched_timer = false;
582 	int signr;
583 
584 	/* We only dequeue private signals from ourselves, we don't let
585 	 * signalfd steal them
586 	 */
587 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
588 	if (!signr) {
589 		signr = __dequeue_signal(&tsk->signal->shared_pending,
590 					 mask, info, &resched_timer);
591 #ifdef CONFIG_POSIX_TIMERS
592 		/*
593 		 * itimer signal ?
594 		 *
595 		 * itimers are process shared and we restart periodic
596 		 * itimers in the signal delivery path to prevent DoS
597 		 * attacks in the high resolution timer case. This is
598 		 * compliant with the old way of self-restarting
599 		 * itimers, as the SIGALRM is a legacy signal and only
600 		 * queued once. Changing the restart behaviour to
601 		 * restart the timer in the signal dequeue path is
602 		 * reducing the timer noise on heavy loaded !highres
603 		 * systems too.
604 		 */
605 		if (unlikely(signr == SIGALRM)) {
606 			struct hrtimer *tmr = &tsk->signal->real_timer;
607 
608 			if (!hrtimer_is_queued(tmr) &&
609 			    tsk->signal->it_real_incr != 0) {
610 				hrtimer_forward(tmr, tmr->base->get_time(),
611 						tsk->signal->it_real_incr);
612 				hrtimer_restart(tmr);
613 			}
614 		}
615 #endif
616 	}
617 
618 	recalc_sigpending();
619 	if (!signr)
620 		return 0;
621 
622 	if (unlikely(sig_kernel_stop(signr))) {
623 		/*
624 		 * Set a marker that we have dequeued a stop signal.  Our
625 		 * caller might release the siglock and then the pending
626 		 * stop signal it is about to process is no longer in the
627 		 * pending bitmasks, but must still be cleared by a SIGCONT
628 		 * (and overruled by a SIGKILL).  So those cases clear this
629 		 * shared flag after we've set it.  Note that this flag may
630 		 * remain set after the signal we return is ignored or
631 		 * handled.  That doesn't matter because its only purpose
632 		 * is to alert stop-signal processing code when another
633 		 * processor has come along and cleared the flag.
634 		 */
635 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
636 	}
637 #ifdef CONFIG_POSIX_TIMERS
638 	if (resched_timer) {
639 		/*
640 		 * Release the siglock to ensure proper locking order
641 		 * of timer locks outside of siglocks.  Note, we leave
642 		 * irqs disabled here, since the posix-timers code is
643 		 * about to disable them again anyway.
644 		 */
645 		spin_unlock(&tsk->sighand->siglock);
646 		posixtimer_rearm(info);
647 		spin_lock(&tsk->sighand->siglock);
648 
649 		/* Don't expose the si_sys_private value to userspace */
650 		info->si_sys_private = 0;
651 	}
652 #endif
653 	return signr;
654 }
655 
656 /*
657  * Tell a process that it has a new active signal..
658  *
659  * NOTE! we rely on the previous spin_lock to
660  * lock interrupts for us! We can only be called with
661  * "siglock" held, and the local interrupt must
662  * have been disabled when that got acquired!
663  *
664  * No need to set need_resched since signal event passing
665  * goes through ->blocked
666  */
667 void signal_wake_up_state(struct task_struct *t, unsigned int state)
668 {
669 	set_tsk_thread_flag(t, TIF_SIGPENDING);
670 	/*
671 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
672 	 * case. We don't check t->state here because there is a race with it
673 	 * executing another processor and just now entering stopped state.
674 	 * By using wake_up_state, we ensure the process will wake up and
675 	 * handle its death signal.
676 	 */
677 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
678 		kick_process(t);
679 }
680 
681 /*
682  * Remove signals in mask from the pending set and queue.
683  * Returns 1 if any signals were found.
684  *
685  * All callers must be holding the siglock.
686  */
687 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
688 {
689 	struct sigqueue *q, *n;
690 	sigset_t m;
691 
692 	sigandsets(&m, mask, &s->signal);
693 	if (sigisemptyset(&m))
694 		return 0;
695 
696 	sigandnsets(&s->signal, &s->signal, mask);
697 	list_for_each_entry_safe(q, n, &s->list, list) {
698 		if (sigismember(mask, q->info.si_signo)) {
699 			list_del_init(&q->list);
700 			__sigqueue_free(q);
701 		}
702 	}
703 	return 1;
704 }
705 
706 static inline int is_si_special(const struct siginfo *info)
707 {
708 	return info <= SEND_SIG_FORCED;
709 }
710 
711 static inline bool si_fromuser(const struct siginfo *info)
712 {
713 	return info == SEND_SIG_NOINFO ||
714 		(!is_si_special(info) && SI_FROMUSER(info));
715 }
716 
717 /*
718  * called with RCU read lock from check_kill_permission()
719  */
720 static int kill_ok_by_cred(struct task_struct *t)
721 {
722 	const struct cred *cred = current_cred();
723 	const struct cred *tcred = __task_cred(t);
724 
725 	if (uid_eq(cred->euid, tcred->suid) ||
726 	    uid_eq(cred->euid, tcred->uid)  ||
727 	    uid_eq(cred->uid,  tcred->suid) ||
728 	    uid_eq(cred->uid,  tcred->uid))
729 		return 1;
730 
731 	if (ns_capable(tcred->user_ns, CAP_KILL))
732 		return 1;
733 
734 	return 0;
735 }
736 
737 /*
738  * Bad permissions for sending the signal
739  * - the caller must hold the RCU read lock
740  */
741 static int check_kill_permission(int sig, struct siginfo *info,
742 				 struct task_struct *t)
743 {
744 	struct pid *sid;
745 	int error;
746 
747 	if (!valid_signal(sig))
748 		return -EINVAL;
749 
750 	if (!si_fromuser(info))
751 		return 0;
752 
753 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
754 	if (error)
755 		return error;
756 
757 	if (!same_thread_group(current, t) &&
758 	    !kill_ok_by_cred(t)) {
759 		switch (sig) {
760 		case SIGCONT:
761 			sid = task_session(t);
762 			/*
763 			 * We don't return the error if sid == NULL. The
764 			 * task was unhashed, the caller must notice this.
765 			 */
766 			if (!sid || sid == task_session(current))
767 				break;
768 		default:
769 			return -EPERM;
770 		}
771 	}
772 
773 	return security_task_kill(t, info, sig, NULL);
774 }
775 
776 /**
777  * ptrace_trap_notify - schedule trap to notify ptracer
778  * @t: tracee wanting to notify tracer
779  *
780  * This function schedules sticky ptrace trap which is cleared on the next
781  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
782  * ptracer.
783  *
784  * If @t is running, STOP trap will be taken.  If trapped for STOP and
785  * ptracer is listening for events, tracee is woken up so that it can
786  * re-trap for the new event.  If trapped otherwise, STOP trap will be
787  * eventually taken without returning to userland after the existing traps
788  * are finished by PTRACE_CONT.
789  *
790  * CONTEXT:
791  * Must be called with @task->sighand->siglock held.
792  */
793 static void ptrace_trap_notify(struct task_struct *t)
794 {
795 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
796 	assert_spin_locked(&t->sighand->siglock);
797 
798 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
799 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
800 }
801 
802 /*
803  * Handle magic process-wide effects of stop/continue signals. Unlike
804  * the signal actions, these happen immediately at signal-generation
805  * time regardless of blocking, ignoring, or handling.  This does the
806  * actual continuing for SIGCONT, but not the actual stopping for stop
807  * signals. The process stop is done as a signal action for SIG_DFL.
808  *
809  * Returns true if the signal should be actually delivered, otherwise
810  * it should be dropped.
811  */
812 static bool prepare_signal(int sig, struct task_struct *p, bool force)
813 {
814 	struct signal_struct *signal = p->signal;
815 	struct task_struct *t;
816 	sigset_t flush;
817 
818 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
819 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
820 			return sig == SIGKILL;
821 		/*
822 		 * The process is in the middle of dying, nothing to do.
823 		 */
824 	} else if (sig_kernel_stop(sig)) {
825 		/*
826 		 * This is a stop signal.  Remove SIGCONT from all queues.
827 		 */
828 		siginitset(&flush, sigmask(SIGCONT));
829 		flush_sigqueue_mask(&flush, &signal->shared_pending);
830 		for_each_thread(p, t)
831 			flush_sigqueue_mask(&flush, &t->pending);
832 	} else if (sig == SIGCONT) {
833 		unsigned int why;
834 		/*
835 		 * Remove all stop signals from all queues, wake all threads.
836 		 */
837 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
838 		flush_sigqueue_mask(&flush, &signal->shared_pending);
839 		for_each_thread(p, t) {
840 			flush_sigqueue_mask(&flush, &t->pending);
841 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
842 			if (likely(!(t->ptrace & PT_SEIZED)))
843 				wake_up_state(t, __TASK_STOPPED);
844 			else
845 				ptrace_trap_notify(t);
846 		}
847 
848 		/*
849 		 * Notify the parent with CLD_CONTINUED if we were stopped.
850 		 *
851 		 * If we were in the middle of a group stop, we pretend it
852 		 * was already finished, and then continued. Since SIGCHLD
853 		 * doesn't queue we report only CLD_STOPPED, as if the next
854 		 * CLD_CONTINUED was dropped.
855 		 */
856 		why = 0;
857 		if (signal->flags & SIGNAL_STOP_STOPPED)
858 			why |= SIGNAL_CLD_CONTINUED;
859 		else if (signal->group_stop_count)
860 			why |= SIGNAL_CLD_STOPPED;
861 
862 		if (why) {
863 			/*
864 			 * The first thread which returns from do_signal_stop()
865 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
866 			 * notify its parent. See get_signal_to_deliver().
867 			 */
868 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
869 			signal->group_stop_count = 0;
870 			signal->group_exit_code = 0;
871 		}
872 	}
873 
874 	return !sig_ignored(p, sig, force);
875 }
876 
877 /*
878  * Test if P wants to take SIG.  After we've checked all threads with this,
879  * it's equivalent to finding no threads not blocking SIG.  Any threads not
880  * blocking SIG were ruled out because they are not running and already
881  * have pending signals.  Such threads will dequeue from the shared queue
882  * as soon as they're available, so putting the signal on the shared queue
883  * will be equivalent to sending it to one such thread.
884  */
885 static inline int wants_signal(int sig, struct task_struct *p)
886 {
887 	if (sigismember(&p->blocked, sig))
888 		return 0;
889 	if (p->flags & PF_EXITING)
890 		return 0;
891 	if (sig == SIGKILL)
892 		return 1;
893 	if (task_is_stopped_or_traced(p))
894 		return 0;
895 	return task_curr(p) || !signal_pending(p);
896 }
897 
898 static void complete_signal(int sig, struct task_struct *p, int group)
899 {
900 	struct signal_struct *signal = p->signal;
901 	struct task_struct *t;
902 
903 	/*
904 	 * Now find a thread we can wake up to take the signal off the queue.
905 	 *
906 	 * If the main thread wants the signal, it gets first crack.
907 	 * Probably the least surprising to the average bear.
908 	 */
909 	if (wants_signal(sig, p))
910 		t = p;
911 	else if (!group || thread_group_empty(p))
912 		/*
913 		 * There is just one thread and it does not need to be woken.
914 		 * It will dequeue unblocked signals before it runs again.
915 		 */
916 		return;
917 	else {
918 		/*
919 		 * Otherwise try to find a suitable thread.
920 		 */
921 		t = signal->curr_target;
922 		while (!wants_signal(sig, t)) {
923 			t = next_thread(t);
924 			if (t == signal->curr_target)
925 				/*
926 				 * No thread needs to be woken.
927 				 * Any eligible threads will see
928 				 * the signal in the queue soon.
929 				 */
930 				return;
931 		}
932 		signal->curr_target = t;
933 	}
934 
935 	/*
936 	 * Found a killable thread.  If the signal will be fatal,
937 	 * then start taking the whole group down immediately.
938 	 */
939 	if (sig_fatal(p, sig) &&
940 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
941 	    !sigismember(&t->real_blocked, sig) &&
942 	    (sig == SIGKILL || !p->ptrace)) {
943 		/*
944 		 * This signal will be fatal to the whole group.
945 		 */
946 		if (!sig_kernel_coredump(sig)) {
947 			/*
948 			 * Start a group exit and wake everybody up.
949 			 * This way we don't have other threads
950 			 * running and doing things after a slower
951 			 * thread has the fatal signal pending.
952 			 */
953 			signal->flags = SIGNAL_GROUP_EXIT;
954 			signal->group_exit_code = sig;
955 			signal->group_stop_count = 0;
956 			t = p;
957 			do {
958 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
959 				sigaddset(&t->pending.signal, SIGKILL);
960 				signal_wake_up(t, 1);
961 			} while_each_thread(p, t);
962 			return;
963 		}
964 	}
965 
966 	/*
967 	 * The signal is already in the shared-pending queue.
968 	 * Tell the chosen thread to wake up and dequeue it.
969 	 */
970 	signal_wake_up(t, sig == SIGKILL);
971 	return;
972 }
973 
974 static inline int legacy_queue(struct sigpending *signals, int sig)
975 {
976 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
977 }
978 
979 #ifdef CONFIG_USER_NS
980 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
981 {
982 	if (current_user_ns() == task_cred_xxx(t, user_ns))
983 		return;
984 
985 	if (SI_FROMKERNEL(info))
986 		return;
987 
988 	rcu_read_lock();
989 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
990 					make_kuid(current_user_ns(), info->si_uid));
991 	rcu_read_unlock();
992 }
993 #else
994 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
995 {
996 	return;
997 }
998 #endif
999 
1000 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001 			int group, int from_ancestor_ns)
1002 {
1003 	struct sigpending *pending;
1004 	struct sigqueue *q;
1005 	int override_rlimit;
1006 	int ret = 0, result;
1007 
1008 	assert_spin_locked(&t->sighand->siglock);
1009 
1010 	result = TRACE_SIGNAL_IGNORED;
1011 	if (!prepare_signal(sig, t,
1012 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013 		goto ret;
1014 
1015 	pending = group ? &t->signal->shared_pending : &t->pending;
1016 	/*
1017 	 * Short-circuit ignored signals and support queuing
1018 	 * exactly one non-rt signal, so that we can get more
1019 	 * detailed information about the cause of the signal.
1020 	 */
1021 	result = TRACE_SIGNAL_ALREADY_PENDING;
1022 	if (legacy_queue(pending, sig))
1023 		goto ret;
1024 
1025 	result = TRACE_SIGNAL_DELIVERED;
1026 	/*
1027 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1028 	 * or SIGKILL.
1029 	 */
1030 	if (info == SEND_SIG_FORCED)
1031 		goto out_set;
1032 
1033 	/*
1034 	 * Real-time signals must be queued if sent by sigqueue, or
1035 	 * some other real-time mechanism.  It is implementation
1036 	 * defined whether kill() does so.  We attempt to do so, on
1037 	 * the principle of least surprise, but since kill is not
1038 	 * allowed to fail with EAGAIN when low on memory we just
1039 	 * make sure at least one signal gets delivered and don't
1040 	 * pass on the info struct.
1041 	 */
1042 	if (sig < SIGRTMIN)
1043 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044 	else
1045 		override_rlimit = 0;
1046 
1047 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1048 	if (q) {
1049 		list_add_tail(&q->list, &pending->list);
1050 		switch ((unsigned long) info) {
1051 		case (unsigned long) SEND_SIG_NOINFO:
1052 			clear_siginfo(&q->info);
1053 			q->info.si_signo = sig;
1054 			q->info.si_errno = 0;
1055 			q->info.si_code = SI_USER;
1056 			q->info.si_pid = task_tgid_nr_ns(current,
1057 							task_active_pid_ns(t));
1058 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1059 			break;
1060 		case (unsigned long) SEND_SIG_PRIV:
1061 			clear_siginfo(&q->info);
1062 			q->info.si_signo = sig;
1063 			q->info.si_errno = 0;
1064 			q->info.si_code = SI_KERNEL;
1065 			q->info.si_pid = 0;
1066 			q->info.si_uid = 0;
1067 			break;
1068 		default:
1069 			copy_siginfo(&q->info, info);
1070 			if (from_ancestor_ns)
1071 				q->info.si_pid = 0;
1072 			break;
1073 		}
1074 
1075 		userns_fixup_signal_uid(&q->info, t);
1076 
1077 	} else if (!is_si_special(info)) {
1078 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079 			/*
1080 			 * Queue overflow, abort.  We may abort if the
1081 			 * signal was rt and sent by user using something
1082 			 * other than kill().
1083 			 */
1084 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085 			ret = -EAGAIN;
1086 			goto ret;
1087 		} else {
1088 			/*
1089 			 * This is a silent loss of information.  We still
1090 			 * send the signal, but the *info bits are lost.
1091 			 */
1092 			result = TRACE_SIGNAL_LOSE_INFO;
1093 		}
1094 	}
1095 
1096 out_set:
1097 	signalfd_notify(t, sig);
1098 	sigaddset(&pending->signal, sig);
1099 	complete_signal(sig, t, group);
1100 ret:
1101 	trace_signal_generate(sig, info, t, group, result);
1102 	return ret;
1103 }
1104 
1105 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106 			int group)
1107 {
1108 	int from_ancestor_ns = 0;
1109 
1110 #ifdef CONFIG_PID_NS
1111 	from_ancestor_ns = si_fromuser(info) &&
1112 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1113 #endif
1114 
1115 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1116 }
1117 
1118 static void print_fatal_signal(int signr)
1119 {
1120 	struct pt_regs *regs = signal_pt_regs();
1121 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1122 
1123 #if defined(__i386__) && !defined(__arch_um__)
1124 	pr_info("code at %08lx: ", regs->ip);
1125 	{
1126 		int i;
1127 		for (i = 0; i < 16; i++) {
1128 			unsigned char insn;
1129 
1130 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131 				break;
1132 			pr_cont("%02x ", insn);
1133 		}
1134 	}
1135 	pr_cont("\n");
1136 #endif
1137 	preempt_disable();
1138 	show_regs(regs);
1139 	preempt_enable();
1140 }
1141 
1142 static int __init setup_print_fatal_signals(char *str)
1143 {
1144 	get_option (&str, &print_fatal_signals);
1145 
1146 	return 1;
1147 }
1148 
1149 __setup("print-fatal-signals=", setup_print_fatal_signals);
1150 
1151 int
1152 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153 {
1154 	return send_signal(sig, info, p, 1);
1155 }
1156 
1157 static int
1158 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159 {
1160 	return send_signal(sig, info, t, 0);
1161 }
1162 
1163 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164 			bool group)
1165 {
1166 	unsigned long flags;
1167 	int ret = -ESRCH;
1168 
1169 	if (lock_task_sighand(p, &flags)) {
1170 		ret = send_signal(sig, info, p, group);
1171 		unlock_task_sighand(p, &flags);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 /*
1178  * Force a signal that the process can't ignore: if necessary
1179  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180  *
1181  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182  * since we do not want to have a signal handler that was blocked
1183  * be invoked when user space had explicitly blocked it.
1184  *
1185  * We don't want to have recursive SIGSEGV's etc, for example,
1186  * that is why we also clear SIGNAL_UNKILLABLE.
1187  */
1188 int
1189 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1190 {
1191 	unsigned long int flags;
1192 	int ret, blocked, ignored;
1193 	struct k_sigaction *action;
1194 
1195 	spin_lock_irqsave(&t->sighand->siglock, flags);
1196 	action = &t->sighand->action[sig-1];
1197 	ignored = action->sa.sa_handler == SIG_IGN;
1198 	blocked = sigismember(&t->blocked, sig);
1199 	if (blocked || ignored) {
1200 		action->sa.sa_handler = SIG_DFL;
1201 		if (blocked) {
1202 			sigdelset(&t->blocked, sig);
1203 			recalc_sigpending_and_wake(t);
1204 		}
1205 	}
1206 	/*
1207 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208 	 * debugging to leave init killable.
1209 	 */
1210 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1211 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212 	ret = specific_send_sig_info(sig, info, t);
1213 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214 
1215 	return ret;
1216 }
1217 
1218 /*
1219  * Nuke all other threads in the group.
1220  */
1221 int zap_other_threads(struct task_struct *p)
1222 {
1223 	struct task_struct *t = p;
1224 	int count = 0;
1225 
1226 	p->signal->group_stop_count = 0;
1227 
1228 	while_each_thread(p, t) {
1229 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230 		count++;
1231 
1232 		/* Don't bother with already dead threads */
1233 		if (t->exit_state)
1234 			continue;
1235 		sigaddset(&t->pending.signal, SIGKILL);
1236 		signal_wake_up(t, 1);
1237 	}
1238 
1239 	return count;
1240 }
1241 
1242 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243 					   unsigned long *flags)
1244 {
1245 	struct sighand_struct *sighand;
1246 
1247 	for (;;) {
1248 		/*
1249 		 * Disable interrupts early to avoid deadlocks.
1250 		 * See rcu_read_unlock() comment header for details.
1251 		 */
1252 		local_irq_save(*flags);
1253 		rcu_read_lock();
1254 		sighand = rcu_dereference(tsk->sighand);
1255 		if (unlikely(sighand == NULL)) {
1256 			rcu_read_unlock();
1257 			local_irq_restore(*flags);
1258 			break;
1259 		}
1260 		/*
1261 		 * This sighand can be already freed and even reused, but
1262 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263 		 * initializes ->siglock: this slab can't go away, it has
1264 		 * the same object type, ->siglock can't be reinitialized.
1265 		 *
1266 		 * We need to ensure that tsk->sighand is still the same
1267 		 * after we take the lock, we can race with de_thread() or
1268 		 * __exit_signal(). In the latter case the next iteration
1269 		 * must see ->sighand == NULL.
1270 		 */
1271 		spin_lock(&sighand->siglock);
1272 		if (likely(sighand == tsk->sighand)) {
1273 			rcu_read_unlock();
1274 			break;
1275 		}
1276 		spin_unlock(&sighand->siglock);
1277 		rcu_read_unlock();
1278 		local_irq_restore(*flags);
1279 	}
1280 
1281 	return sighand;
1282 }
1283 
1284 /*
1285  * send signal info to all the members of a group
1286  */
1287 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1288 {
1289 	int ret;
1290 
1291 	rcu_read_lock();
1292 	ret = check_kill_permission(sig, info, p);
1293 	rcu_read_unlock();
1294 
1295 	if (!ret && sig)
1296 		ret = do_send_sig_info(sig, info, p, true);
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303  * control characters do (^C, ^Z etc)
1304  * - the caller must hold at least a readlock on tasklist_lock
1305  */
1306 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307 {
1308 	struct task_struct *p = NULL;
1309 	int retval, success;
1310 
1311 	success = 0;
1312 	retval = -ESRCH;
1313 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314 		int err = group_send_sig_info(sig, info, p);
1315 		success |= !err;
1316 		retval = err;
1317 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318 	return success ? 0 : retval;
1319 }
1320 
1321 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322 {
1323 	int error = -ESRCH;
1324 	struct task_struct *p;
1325 
1326 	for (;;) {
1327 		rcu_read_lock();
1328 		p = pid_task(pid, PIDTYPE_PID);
1329 		if (p)
1330 			error = group_send_sig_info(sig, info, p);
1331 		rcu_read_unlock();
1332 		if (likely(!p || error != -ESRCH))
1333 			return error;
1334 
1335 		/*
1336 		 * The task was unhashed in between, try again.  If it
1337 		 * is dead, pid_task() will return NULL, if we race with
1338 		 * de_thread() it will find the new leader.
1339 		 */
1340 	}
1341 }
1342 
1343 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344 {
1345 	int error;
1346 	rcu_read_lock();
1347 	error = kill_pid_info(sig, info, find_vpid(pid));
1348 	rcu_read_unlock();
1349 	return error;
1350 }
1351 
1352 static int kill_as_cred_perm(const struct cred *cred,
1353 			     struct task_struct *target)
1354 {
1355 	const struct cred *pcred = __task_cred(target);
1356 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1358 		return 0;
1359 	return 1;
1360 }
1361 
1362 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364 			 const struct cred *cred)
1365 {
1366 	int ret = -EINVAL;
1367 	struct task_struct *p;
1368 	unsigned long flags;
1369 
1370 	if (!valid_signal(sig))
1371 		return ret;
1372 
1373 	rcu_read_lock();
1374 	p = pid_task(pid, PIDTYPE_PID);
1375 	if (!p) {
1376 		ret = -ESRCH;
1377 		goto out_unlock;
1378 	}
1379 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380 		ret = -EPERM;
1381 		goto out_unlock;
1382 	}
1383 	ret = security_task_kill(p, info, sig, cred);
1384 	if (ret)
1385 		goto out_unlock;
1386 
1387 	if (sig) {
1388 		if (lock_task_sighand(p, &flags)) {
1389 			ret = __send_signal(sig, info, p, 1, 0);
1390 			unlock_task_sighand(p, &flags);
1391 		} else
1392 			ret = -ESRCH;
1393 	}
1394 out_unlock:
1395 	rcu_read_unlock();
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399 
1400 /*
1401  * kill_something_info() interprets pid in interesting ways just like kill(2).
1402  *
1403  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404  * is probably wrong.  Should make it like BSD or SYSV.
1405  */
1406 
1407 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408 {
1409 	int ret;
1410 
1411 	if (pid > 0) {
1412 		rcu_read_lock();
1413 		ret = kill_pid_info(sig, info, find_vpid(pid));
1414 		rcu_read_unlock();
1415 		return ret;
1416 	}
1417 
1418 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1419 	if (pid == INT_MIN)
1420 		return -ESRCH;
1421 
1422 	read_lock(&tasklist_lock);
1423 	if (pid != -1) {
1424 		ret = __kill_pgrp_info(sig, info,
1425 				pid ? find_vpid(-pid) : task_pgrp(current));
1426 	} else {
1427 		int retval = 0, count = 0;
1428 		struct task_struct * p;
1429 
1430 		for_each_process(p) {
1431 			if (task_pid_vnr(p) > 1 &&
1432 					!same_thread_group(p, current)) {
1433 				int err = group_send_sig_info(sig, info, p);
1434 				++count;
1435 				if (err != -EPERM)
1436 					retval = err;
1437 			}
1438 		}
1439 		ret = count ? retval : -ESRCH;
1440 	}
1441 	read_unlock(&tasklist_lock);
1442 
1443 	return ret;
1444 }
1445 
1446 /*
1447  * These are for backward compatibility with the rest of the kernel source.
1448  */
1449 
1450 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451 {
1452 	/*
1453 	 * Make sure legacy kernel users don't send in bad values
1454 	 * (normal paths check this in check_kill_permission).
1455 	 */
1456 	if (!valid_signal(sig))
1457 		return -EINVAL;
1458 
1459 	return do_send_sig_info(sig, info, p, false);
1460 }
1461 
1462 #define __si_special(priv) \
1463 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464 
1465 int
1466 send_sig(int sig, struct task_struct *p, int priv)
1467 {
1468 	return send_sig_info(sig, __si_special(priv), p);
1469 }
1470 
1471 void
1472 force_sig(int sig, struct task_struct *p)
1473 {
1474 	force_sig_info(sig, SEND_SIG_PRIV, p);
1475 }
1476 
1477 /*
1478  * When things go south during signal handling, we
1479  * will force a SIGSEGV. And if the signal that caused
1480  * the problem was already a SIGSEGV, we'll want to
1481  * make sure we don't even try to deliver the signal..
1482  */
1483 int
1484 force_sigsegv(int sig, struct task_struct *p)
1485 {
1486 	if (sig == SIGSEGV) {
1487 		unsigned long flags;
1488 		spin_lock_irqsave(&p->sighand->siglock, flags);
1489 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491 	}
1492 	force_sig(SIGSEGV, p);
1493 	return 0;
1494 }
1495 
1496 int force_sig_fault(int sig, int code, void __user *addr
1497 	___ARCH_SI_TRAPNO(int trapno)
1498 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499 	, struct task_struct *t)
1500 {
1501 	struct siginfo info;
1502 
1503 	clear_siginfo(&info);
1504 	info.si_signo = sig;
1505 	info.si_errno = 0;
1506 	info.si_code  = code;
1507 	info.si_addr  = addr;
1508 #ifdef __ARCH_SI_TRAPNO
1509 	info.si_trapno = trapno;
1510 #endif
1511 #ifdef __ia64__
1512 	info.si_imm = imm;
1513 	info.si_flags = flags;
1514 	info.si_isr = isr;
1515 #endif
1516 	return force_sig_info(info.si_signo, &info, t);
1517 }
1518 
1519 int send_sig_fault(int sig, int code, void __user *addr
1520 	___ARCH_SI_TRAPNO(int trapno)
1521 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522 	, struct task_struct *t)
1523 {
1524 	struct siginfo info;
1525 
1526 	clear_siginfo(&info);
1527 	info.si_signo = sig;
1528 	info.si_errno = 0;
1529 	info.si_code  = code;
1530 	info.si_addr  = addr;
1531 #ifdef __ARCH_SI_TRAPNO
1532 	info.si_trapno = trapno;
1533 #endif
1534 #ifdef __ia64__
1535 	info.si_imm = imm;
1536 	info.si_flags = flags;
1537 	info.si_isr = isr;
1538 #endif
1539 	return send_sig_info(info.si_signo, &info, t);
1540 }
1541 
1542 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1543 {
1544 	struct siginfo info;
1545 
1546 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1547 	clear_siginfo(&info);
1548 	info.si_signo = SIGBUS;
1549 	info.si_errno = 0;
1550 	info.si_code = code;
1551 	info.si_addr = addr;
1552 	info.si_addr_lsb = lsb;
1553 	return force_sig_info(info.si_signo, &info, t);
1554 }
1555 
1556 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1557 {
1558 	struct siginfo info;
1559 
1560 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1561 	clear_siginfo(&info);
1562 	info.si_signo = SIGBUS;
1563 	info.si_errno = 0;
1564 	info.si_code = code;
1565 	info.si_addr = addr;
1566 	info.si_addr_lsb = lsb;
1567 	return send_sig_info(info.si_signo, &info, t);
1568 }
1569 EXPORT_SYMBOL(send_sig_mceerr);
1570 
1571 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1572 {
1573 	struct siginfo info;
1574 
1575 	clear_siginfo(&info);
1576 	info.si_signo = SIGSEGV;
1577 	info.si_errno = 0;
1578 	info.si_code  = SEGV_BNDERR;
1579 	info.si_addr  = addr;
1580 	info.si_lower = lower;
1581 	info.si_upper = upper;
1582 	return force_sig_info(info.si_signo, &info, current);
1583 }
1584 
1585 #ifdef SEGV_PKUERR
1586 int force_sig_pkuerr(void __user *addr, u32 pkey)
1587 {
1588 	struct siginfo info;
1589 
1590 	clear_siginfo(&info);
1591 	info.si_signo = SIGSEGV;
1592 	info.si_errno = 0;
1593 	info.si_code  = SEGV_PKUERR;
1594 	info.si_addr  = addr;
1595 	info.si_pkey  = pkey;
1596 	return force_sig_info(info.si_signo, &info, current);
1597 }
1598 #endif
1599 
1600 /* For the crazy architectures that include trap information in
1601  * the errno field, instead of an actual errno value.
1602  */
1603 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1604 {
1605 	struct siginfo info;
1606 
1607 	clear_siginfo(&info);
1608 	info.si_signo = SIGTRAP;
1609 	info.si_errno = errno;
1610 	info.si_code  = TRAP_HWBKPT;
1611 	info.si_addr  = addr;
1612 	return force_sig_info(info.si_signo, &info, current);
1613 }
1614 
1615 int kill_pgrp(struct pid *pid, int sig, int priv)
1616 {
1617 	int ret;
1618 
1619 	read_lock(&tasklist_lock);
1620 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1621 	read_unlock(&tasklist_lock);
1622 
1623 	return ret;
1624 }
1625 EXPORT_SYMBOL(kill_pgrp);
1626 
1627 int kill_pid(struct pid *pid, int sig, int priv)
1628 {
1629 	return kill_pid_info(sig, __si_special(priv), pid);
1630 }
1631 EXPORT_SYMBOL(kill_pid);
1632 
1633 /*
1634  * These functions support sending signals using preallocated sigqueue
1635  * structures.  This is needed "because realtime applications cannot
1636  * afford to lose notifications of asynchronous events, like timer
1637  * expirations or I/O completions".  In the case of POSIX Timers
1638  * we allocate the sigqueue structure from the timer_create.  If this
1639  * allocation fails we are able to report the failure to the application
1640  * with an EAGAIN error.
1641  */
1642 struct sigqueue *sigqueue_alloc(void)
1643 {
1644 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1645 
1646 	if (q)
1647 		q->flags |= SIGQUEUE_PREALLOC;
1648 
1649 	return q;
1650 }
1651 
1652 void sigqueue_free(struct sigqueue *q)
1653 {
1654 	unsigned long flags;
1655 	spinlock_t *lock = &current->sighand->siglock;
1656 
1657 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1658 	/*
1659 	 * We must hold ->siglock while testing q->list
1660 	 * to serialize with collect_signal() or with
1661 	 * __exit_signal()->flush_sigqueue().
1662 	 */
1663 	spin_lock_irqsave(lock, flags);
1664 	q->flags &= ~SIGQUEUE_PREALLOC;
1665 	/*
1666 	 * If it is queued it will be freed when dequeued,
1667 	 * like the "regular" sigqueue.
1668 	 */
1669 	if (!list_empty(&q->list))
1670 		q = NULL;
1671 	spin_unlock_irqrestore(lock, flags);
1672 
1673 	if (q)
1674 		__sigqueue_free(q);
1675 }
1676 
1677 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1678 {
1679 	int sig = q->info.si_signo;
1680 	struct sigpending *pending;
1681 	unsigned long flags;
1682 	int ret, result;
1683 
1684 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1685 
1686 	ret = -1;
1687 	if (!likely(lock_task_sighand(t, &flags)))
1688 		goto ret;
1689 
1690 	ret = 1; /* the signal is ignored */
1691 	result = TRACE_SIGNAL_IGNORED;
1692 	if (!prepare_signal(sig, t, false))
1693 		goto out;
1694 
1695 	ret = 0;
1696 	if (unlikely(!list_empty(&q->list))) {
1697 		/*
1698 		 * If an SI_TIMER entry is already queue just increment
1699 		 * the overrun count.
1700 		 */
1701 		BUG_ON(q->info.si_code != SI_TIMER);
1702 		q->info.si_overrun++;
1703 		result = TRACE_SIGNAL_ALREADY_PENDING;
1704 		goto out;
1705 	}
1706 	q->info.si_overrun = 0;
1707 
1708 	signalfd_notify(t, sig);
1709 	pending = group ? &t->signal->shared_pending : &t->pending;
1710 	list_add_tail(&q->list, &pending->list);
1711 	sigaddset(&pending->signal, sig);
1712 	complete_signal(sig, t, group);
1713 	result = TRACE_SIGNAL_DELIVERED;
1714 out:
1715 	trace_signal_generate(sig, &q->info, t, group, result);
1716 	unlock_task_sighand(t, &flags);
1717 ret:
1718 	return ret;
1719 }
1720 
1721 /*
1722  * Let a parent know about the death of a child.
1723  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1724  *
1725  * Returns true if our parent ignored us and so we've switched to
1726  * self-reaping.
1727  */
1728 bool do_notify_parent(struct task_struct *tsk, int sig)
1729 {
1730 	struct siginfo info;
1731 	unsigned long flags;
1732 	struct sighand_struct *psig;
1733 	bool autoreap = false;
1734 	u64 utime, stime;
1735 
1736 	BUG_ON(sig == -1);
1737 
1738  	/* do_notify_parent_cldstop should have been called instead.  */
1739  	BUG_ON(task_is_stopped_or_traced(tsk));
1740 
1741 	BUG_ON(!tsk->ptrace &&
1742 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1743 
1744 	if (sig != SIGCHLD) {
1745 		/*
1746 		 * This is only possible if parent == real_parent.
1747 		 * Check if it has changed security domain.
1748 		 */
1749 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1750 			sig = SIGCHLD;
1751 	}
1752 
1753 	clear_siginfo(&info);
1754 	info.si_signo = sig;
1755 	info.si_errno = 0;
1756 	/*
1757 	 * We are under tasklist_lock here so our parent is tied to
1758 	 * us and cannot change.
1759 	 *
1760 	 * task_active_pid_ns will always return the same pid namespace
1761 	 * until a task passes through release_task.
1762 	 *
1763 	 * write_lock() currently calls preempt_disable() which is the
1764 	 * same as rcu_read_lock(), but according to Oleg, this is not
1765 	 * correct to rely on this
1766 	 */
1767 	rcu_read_lock();
1768 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1769 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1770 				       task_uid(tsk));
1771 	rcu_read_unlock();
1772 
1773 	task_cputime(tsk, &utime, &stime);
1774 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1775 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1776 
1777 	info.si_status = tsk->exit_code & 0x7f;
1778 	if (tsk->exit_code & 0x80)
1779 		info.si_code = CLD_DUMPED;
1780 	else if (tsk->exit_code & 0x7f)
1781 		info.si_code = CLD_KILLED;
1782 	else {
1783 		info.si_code = CLD_EXITED;
1784 		info.si_status = tsk->exit_code >> 8;
1785 	}
1786 
1787 	psig = tsk->parent->sighand;
1788 	spin_lock_irqsave(&psig->siglock, flags);
1789 	if (!tsk->ptrace && sig == SIGCHLD &&
1790 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1791 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1792 		/*
1793 		 * We are exiting and our parent doesn't care.  POSIX.1
1794 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1795 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1796 		 * automatically and not left for our parent's wait4 call.
1797 		 * Rather than having the parent do it as a magic kind of
1798 		 * signal handler, we just set this to tell do_exit that we
1799 		 * can be cleaned up without becoming a zombie.  Note that
1800 		 * we still call __wake_up_parent in this case, because a
1801 		 * blocked sys_wait4 might now return -ECHILD.
1802 		 *
1803 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1804 		 * is implementation-defined: we do (if you don't want
1805 		 * it, just use SIG_IGN instead).
1806 		 */
1807 		autoreap = true;
1808 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1809 			sig = 0;
1810 	}
1811 	if (valid_signal(sig) && sig)
1812 		__group_send_sig_info(sig, &info, tsk->parent);
1813 	__wake_up_parent(tsk, tsk->parent);
1814 	spin_unlock_irqrestore(&psig->siglock, flags);
1815 
1816 	return autoreap;
1817 }
1818 
1819 /**
1820  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1821  * @tsk: task reporting the state change
1822  * @for_ptracer: the notification is for ptracer
1823  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1824  *
1825  * Notify @tsk's parent that the stopped/continued state has changed.  If
1826  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1827  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1828  *
1829  * CONTEXT:
1830  * Must be called with tasklist_lock at least read locked.
1831  */
1832 static void do_notify_parent_cldstop(struct task_struct *tsk,
1833 				     bool for_ptracer, int why)
1834 {
1835 	struct siginfo info;
1836 	unsigned long flags;
1837 	struct task_struct *parent;
1838 	struct sighand_struct *sighand;
1839 	u64 utime, stime;
1840 
1841 	if (for_ptracer) {
1842 		parent = tsk->parent;
1843 	} else {
1844 		tsk = tsk->group_leader;
1845 		parent = tsk->real_parent;
1846 	}
1847 
1848 	clear_siginfo(&info);
1849 	info.si_signo = SIGCHLD;
1850 	info.si_errno = 0;
1851 	/*
1852 	 * see comment in do_notify_parent() about the following 4 lines
1853 	 */
1854 	rcu_read_lock();
1855 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1856 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1857 	rcu_read_unlock();
1858 
1859 	task_cputime(tsk, &utime, &stime);
1860 	info.si_utime = nsec_to_clock_t(utime);
1861 	info.si_stime = nsec_to_clock_t(stime);
1862 
1863  	info.si_code = why;
1864  	switch (why) {
1865  	case CLD_CONTINUED:
1866  		info.si_status = SIGCONT;
1867  		break;
1868  	case CLD_STOPPED:
1869  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1870  		break;
1871  	case CLD_TRAPPED:
1872  		info.si_status = tsk->exit_code & 0x7f;
1873  		break;
1874  	default:
1875  		BUG();
1876  	}
1877 
1878 	sighand = parent->sighand;
1879 	spin_lock_irqsave(&sighand->siglock, flags);
1880 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1881 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1882 		__group_send_sig_info(SIGCHLD, &info, parent);
1883 	/*
1884 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1885 	 */
1886 	__wake_up_parent(tsk, parent);
1887 	spin_unlock_irqrestore(&sighand->siglock, flags);
1888 }
1889 
1890 static inline int may_ptrace_stop(void)
1891 {
1892 	if (!likely(current->ptrace))
1893 		return 0;
1894 	/*
1895 	 * Are we in the middle of do_coredump?
1896 	 * If so and our tracer is also part of the coredump stopping
1897 	 * is a deadlock situation, and pointless because our tracer
1898 	 * is dead so don't allow us to stop.
1899 	 * If SIGKILL was already sent before the caller unlocked
1900 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1901 	 * is safe to enter schedule().
1902 	 *
1903 	 * This is almost outdated, a task with the pending SIGKILL can't
1904 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1905 	 * after SIGKILL was already dequeued.
1906 	 */
1907 	if (unlikely(current->mm->core_state) &&
1908 	    unlikely(current->mm == current->parent->mm))
1909 		return 0;
1910 
1911 	return 1;
1912 }
1913 
1914 /*
1915  * Return non-zero if there is a SIGKILL that should be waking us up.
1916  * Called with the siglock held.
1917  */
1918 static int sigkill_pending(struct task_struct *tsk)
1919 {
1920 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1921 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1922 }
1923 
1924 /*
1925  * This must be called with current->sighand->siglock held.
1926  *
1927  * This should be the path for all ptrace stops.
1928  * We always set current->last_siginfo while stopped here.
1929  * That makes it a way to test a stopped process for
1930  * being ptrace-stopped vs being job-control-stopped.
1931  *
1932  * If we actually decide not to stop at all because the tracer
1933  * is gone, we keep current->exit_code unless clear_code.
1934  */
1935 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1936 	__releases(&current->sighand->siglock)
1937 	__acquires(&current->sighand->siglock)
1938 {
1939 	bool gstop_done = false;
1940 
1941 	if (arch_ptrace_stop_needed(exit_code, info)) {
1942 		/*
1943 		 * The arch code has something special to do before a
1944 		 * ptrace stop.  This is allowed to block, e.g. for faults
1945 		 * on user stack pages.  We can't keep the siglock while
1946 		 * calling arch_ptrace_stop, so we must release it now.
1947 		 * To preserve proper semantics, we must do this before
1948 		 * any signal bookkeeping like checking group_stop_count.
1949 		 * Meanwhile, a SIGKILL could come in before we retake the
1950 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1951 		 * So after regaining the lock, we must check for SIGKILL.
1952 		 */
1953 		spin_unlock_irq(&current->sighand->siglock);
1954 		arch_ptrace_stop(exit_code, info);
1955 		spin_lock_irq(&current->sighand->siglock);
1956 		if (sigkill_pending(current))
1957 			return;
1958 	}
1959 
1960 	set_special_state(TASK_TRACED);
1961 
1962 	/*
1963 	 * We're committing to trapping.  TRACED should be visible before
1964 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1965 	 * Also, transition to TRACED and updates to ->jobctl should be
1966 	 * atomic with respect to siglock and should be done after the arch
1967 	 * hook as siglock is released and regrabbed across it.
1968 	 *
1969 	 *     TRACER				    TRACEE
1970 	 *
1971 	 *     ptrace_attach()
1972 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
1973 	 *     do_wait()
1974 	 *       set_current_state()                smp_wmb();
1975 	 *       ptrace_do_wait()
1976 	 *         wait_task_stopped()
1977 	 *           task_stopped_code()
1978 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
1979 	 */
1980 	smp_wmb();
1981 
1982 	current->last_siginfo = info;
1983 	current->exit_code = exit_code;
1984 
1985 	/*
1986 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1987 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1988 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1989 	 * could be clear now.  We act as if SIGCONT is received after
1990 	 * TASK_TRACED is entered - ignore it.
1991 	 */
1992 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1993 		gstop_done = task_participate_group_stop(current);
1994 
1995 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1996 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1997 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1998 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1999 
2000 	/* entering a trap, clear TRAPPING */
2001 	task_clear_jobctl_trapping(current);
2002 
2003 	spin_unlock_irq(&current->sighand->siglock);
2004 	read_lock(&tasklist_lock);
2005 	if (may_ptrace_stop()) {
2006 		/*
2007 		 * Notify parents of the stop.
2008 		 *
2009 		 * While ptraced, there are two parents - the ptracer and
2010 		 * the real_parent of the group_leader.  The ptracer should
2011 		 * know about every stop while the real parent is only
2012 		 * interested in the completion of group stop.  The states
2013 		 * for the two don't interact with each other.  Notify
2014 		 * separately unless they're gonna be duplicates.
2015 		 */
2016 		do_notify_parent_cldstop(current, true, why);
2017 		if (gstop_done && ptrace_reparented(current))
2018 			do_notify_parent_cldstop(current, false, why);
2019 
2020 		/*
2021 		 * Don't want to allow preemption here, because
2022 		 * sys_ptrace() needs this task to be inactive.
2023 		 *
2024 		 * XXX: implement read_unlock_no_resched().
2025 		 */
2026 		preempt_disable();
2027 		read_unlock(&tasklist_lock);
2028 		preempt_enable_no_resched();
2029 		freezable_schedule();
2030 	} else {
2031 		/*
2032 		 * By the time we got the lock, our tracer went away.
2033 		 * Don't drop the lock yet, another tracer may come.
2034 		 *
2035 		 * If @gstop_done, the ptracer went away between group stop
2036 		 * completion and here.  During detach, it would have set
2037 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2038 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2039 		 * the real parent of the group stop completion is enough.
2040 		 */
2041 		if (gstop_done)
2042 			do_notify_parent_cldstop(current, false, why);
2043 
2044 		/* tasklist protects us from ptrace_freeze_traced() */
2045 		__set_current_state(TASK_RUNNING);
2046 		if (clear_code)
2047 			current->exit_code = 0;
2048 		read_unlock(&tasklist_lock);
2049 	}
2050 
2051 	/*
2052 	 * We are back.  Now reacquire the siglock before touching
2053 	 * last_siginfo, so that we are sure to have synchronized with
2054 	 * any signal-sending on another CPU that wants to examine it.
2055 	 */
2056 	spin_lock_irq(&current->sighand->siglock);
2057 	current->last_siginfo = NULL;
2058 
2059 	/* LISTENING can be set only during STOP traps, clear it */
2060 	current->jobctl &= ~JOBCTL_LISTENING;
2061 
2062 	/*
2063 	 * Queued signals ignored us while we were stopped for tracing.
2064 	 * So check for any that we should take before resuming user mode.
2065 	 * This sets TIF_SIGPENDING, but never clears it.
2066 	 */
2067 	recalc_sigpending_tsk(current);
2068 }
2069 
2070 static void ptrace_do_notify(int signr, int exit_code, int why)
2071 {
2072 	siginfo_t info;
2073 
2074 	clear_siginfo(&info);
2075 	info.si_signo = signr;
2076 	info.si_code = exit_code;
2077 	info.si_pid = task_pid_vnr(current);
2078 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2079 
2080 	/* Let the debugger run.  */
2081 	ptrace_stop(exit_code, why, 1, &info);
2082 }
2083 
2084 void ptrace_notify(int exit_code)
2085 {
2086 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2087 	if (unlikely(current->task_works))
2088 		task_work_run();
2089 
2090 	spin_lock_irq(&current->sighand->siglock);
2091 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2092 	spin_unlock_irq(&current->sighand->siglock);
2093 }
2094 
2095 /**
2096  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2097  * @signr: signr causing group stop if initiating
2098  *
2099  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2100  * and participate in it.  If already set, participate in the existing
2101  * group stop.  If participated in a group stop (and thus slept), %true is
2102  * returned with siglock released.
2103  *
2104  * If ptraced, this function doesn't handle stop itself.  Instead,
2105  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2106  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2107  * places afterwards.
2108  *
2109  * CONTEXT:
2110  * Must be called with @current->sighand->siglock held, which is released
2111  * on %true return.
2112  *
2113  * RETURNS:
2114  * %false if group stop is already cancelled or ptrace trap is scheduled.
2115  * %true if participated in group stop.
2116  */
2117 static bool do_signal_stop(int signr)
2118 	__releases(&current->sighand->siglock)
2119 {
2120 	struct signal_struct *sig = current->signal;
2121 
2122 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2123 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2124 		struct task_struct *t;
2125 
2126 		/* signr will be recorded in task->jobctl for retries */
2127 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2128 
2129 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2130 		    unlikely(signal_group_exit(sig)))
2131 			return false;
2132 		/*
2133 		 * There is no group stop already in progress.  We must
2134 		 * initiate one now.
2135 		 *
2136 		 * While ptraced, a task may be resumed while group stop is
2137 		 * still in effect and then receive a stop signal and
2138 		 * initiate another group stop.  This deviates from the
2139 		 * usual behavior as two consecutive stop signals can't
2140 		 * cause two group stops when !ptraced.  That is why we
2141 		 * also check !task_is_stopped(t) below.
2142 		 *
2143 		 * The condition can be distinguished by testing whether
2144 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2145 		 * group_exit_code in such case.
2146 		 *
2147 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2148 		 * an intervening stop signal is required to cause two
2149 		 * continued events regardless of ptrace.
2150 		 */
2151 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2152 			sig->group_exit_code = signr;
2153 
2154 		sig->group_stop_count = 0;
2155 
2156 		if (task_set_jobctl_pending(current, signr | gstop))
2157 			sig->group_stop_count++;
2158 
2159 		t = current;
2160 		while_each_thread(current, t) {
2161 			/*
2162 			 * Setting state to TASK_STOPPED for a group
2163 			 * stop is always done with the siglock held,
2164 			 * so this check has no races.
2165 			 */
2166 			if (!task_is_stopped(t) &&
2167 			    task_set_jobctl_pending(t, signr | gstop)) {
2168 				sig->group_stop_count++;
2169 				if (likely(!(t->ptrace & PT_SEIZED)))
2170 					signal_wake_up(t, 0);
2171 				else
2172 					ptrace_trap_notify(t);
2173 			}
2174 		}
2175 	}
2176 
2177 	if (likely(!current->ptrace)) {
2178 		int notify = 0;
2179 
2180 		/*
2181 		 * If there are no other threads in the group, or if there
2182 		 * is a group stop in progress and we are the last to stop,
2183 		 * report to the parent.
2184 		 */
2185 		if (task_participate_group_stop(current))
2186 			notify = CLD_STOPPED;
2187 
2188 		set_special_state(TASK_STOPPED);
2189 		spin_unlock_irq(&current->sighand->siglock);
2190 
2191 		/*
2192 		 * Notify the parent of the group stop completion.  Because
2193 		 * we're not holding either the siglock or tasklist_lock
2194 		 * here, ptracer may attach inbetween; however, this is for
2195 		 * group stop and should always be delivered to the real
2196 		 * parent of the group leader.  The new ptracer will get
2197 		 * its notification when this task transitions into
2198 		 * TASK_TRACED.
2199 		 */
2200 		if (notify) {
2201 			read_lock(&tasklist_lock);
2202 			do_notify_parent_cldstop(current, false, notify);
2203 			read_unlock(&tasklist_lock);
2204 		}
2205 
2206 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2207 		freezable_schedule();
2208 		return true;
2209 	} else {
2210 		/*
2211 		 * While ptraced, group stop is handled by STOP trap.
2212 		 * Schedule it and let the caller deal with it.
2213 		 */
2214 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2215 		return false;
2216 	}
2217 }
2218 
2219 /**
2220  * do_jobctl_trap - take care of ptrace jobctl traps
2221  *
2222  * When PT_SEIZED, it's used for both group stop and explicit
2223  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2224  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2225  * the stop signal; otherwise, %SIGTRAP.
2226  *
2227  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2228  * number as exit_code and no siginfo.
2229  *
2230  * CONTEXT:
2231  * Must be called with @current->sighand->siglock held, which may be
2232  * released and re-acquired before returning with intervening sleep.
2233  */
2234 static void do_jobctl_trap(void)
2235 {
2236 	struct signal_struct *signal = current->signal;
2237 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2238 
2239 	if (current->ptrace & PT_SEIZED) {
2240 		if (!signal->group_stop_count &&
2241 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2242 			signr = SIGTRAP;
2243 		WARN_ON_ONCE(!signr);
2244 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2245 				 CLD_STOPPED);
2246 	} else {
2247 		WARN_ON_ONCE(!signr);
2248 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2249 		current->exit_code = 0;
2250 	}
2251 }
2252 
2253 static int ptrace_signal(int signr, siginfo_t *info)
2254 {
2255 	/*
2256 	 * We do not check sig_kernel_stop(signr) but set this marker
2257 	 * unconditionally because we do not know whether debugger will
2258 	 * change signr. This flag has no meaning unless we are going
2259 	 * to stop after return from ptrace_stop(). In this case it will
2260 	 * be checked in do_signal_stop(), we should only stop if it was
2261 	 * not cleared by SIGCONT while we were sleeping. See also the
2262 	 * comment in dequeue_signal().
2263 	 */
2264 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2265 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2266 
2267 	/* We're back.  Did the debugger cancel the sig?  */
2268 	signr = current->exit_code;
2269 	if (signr == 0)
2270 		return signr;
2271 
2272 	current->exit_code = 0;
2273 
2274 	/*
2275 	 * Update the siginfo structure if the signal has
2276 	 * changed.  If the debugger wanted something
2277 	 * specific in the siginfo structure then it should
2278 	 * have updated *info via PTRACE_SETSIGINFO.
2279 	 */
2280 	if (signr != info->si_signo) {
2281 		clear_siginfo(info);
2282 		info->si_signo = signr;
2283 		info->si_errno = 0;
2284 		info->si_code = SI_USER;
2285 		rcu_read_lock();
2286 		info->si_pid = task_pid_vnr(current->parent);
2287 		info->si_uid = from_kuid_munged(current_user_ns(),
2288 						task_uid(current->parent));
2289 		rcu_read_unlock();
2290 	}
2291 
2292 	/* If the (new) signal is now blocked, requeue it.  */
2293 	if (sigismember(&current->blocked, signr)) {
2294 		specific_send_sig_info(signr, info, current);
2295 		signr = 0;
2296 	}
2297 
2298 	return signr;
2299 }
2300 
2301 int get_signal(struct ksignal *ksig)
2302 {
2303 	struct sighand_struct *sighand = current->sighand;
2304 	struct signal_struct *signal = current->signal;
2305 	int signr;
2306 
2307 	if (unlikely(current->task_works))
2308 		task_work_run();
2309 
2310 	if (unlikely(uprobe_deny_signal()))
2311 		return 0;
2312 
2313 	/*
2314 	 * Do this once, we can't return to user-mode if freezing() == T.
2315 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2316 	 * thus do not need another check after return.
2317 	 */
2318 	try_to_freeze();
2319 
2320 relock:
2321 	spin_lock_irq(&sighand->siglock);
2322 	/*
2323 	 * Every stopped thread goes here after wakeup. Check to see if
2324 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2325 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2326 	 */
2327 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2328 		int why;
2329 
2330 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2331 			why = CLD_CONTINUED;
2332 		else
2333 			why = CLD_STOPPED;
2334 
2335 		signal->flags &= ~SIGNAL_CLD_MASK;
2336 
2337 		spin_unlock_irq(&sighand->siglock);
2338 
2339 		/*
2340 		 * Notify the parent that we're continuing.  This event is
2341 		 * always per-process and doesn't make whole lot of sense
2342 		 * for ptracers, who shouldn't consume the state via
2343 		 * wait(2) either, but, for backward compatibility, notify
2344 		 * the ptracer of the group leader too unless it's gonna be
2345 		 * a duplicate.
2346 		 */
2347 		read_lock(&tasklist_lock);
2348 		do_notify_parent_cldstop(current, false, why);
2349 
2350 		if (ptrace_reparented(current->group_leader))
2351 			do_notify_parent_cldstop(current->group_leader,
2352 						true, why);
2353 		read_unlock(&tasklist_lock);
2354 
2355 		goto relock;
2356 	}
2357 
2358 	for (;;) {
2359 		struct k_sigaction *ka;
2360 
2361 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2362 		    do_signal_stop(0))
2363 			goto relock;
2364 
2365 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2366 			do_jobctl_trap();
2367 			spin_unlock_irq(&sighand->siglock);
2368 			goto relock;
2369 		}
2370 
2371 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2372 
2373 		if (!signr)
2374 			break; /* will return 0 */
2375 
2376 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2377 			signr = ptrace_signal(signr, &ksig->info);
2378 			if (!signr)
2379 				continue;
2380 		}
2381 
2382 		ka = &sighand->action[signr-1];
2383 
2384 		/* Trace actually delivered signals. */
2385 		trace_signal_deliver(signr, &ksig->info, ka);
2386 
2387 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2388 			continue;
2389 		if (ka->sa.sa_handler != SIG_DFL) {
2390 			/* Run the handler.  */
2391 			ksig->ka = *ka;
2392 
2393 			if (ka->sa.sa_flags & SA_ONESHOT)
2394 				ka->sa.sa_handler = SIG_DFL;
2395 
2396 			break; /* will return non-zero "signr" value */
2397 		}
2398 
2399 		/*
2400 		 * Now we are doing the default action for this signal.
2401 		 */
2402 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2403 			continue;
2404 
2405 		/*
2406 		 * Global init gets no signals it doesn't want.
2407 		 * Container-init gets no signals it doesn't want from same
2408 		 * container.
2409 		 *
2410 		 * Note that if global/container-init sees a sig_kernel_only()
2411 		 * signal here, the signal must have been generated internally
2412 		 * or must have come from an ancestor namespace. In either
2413 		 * case, the signal cannot be dropped.
2414 		 */
2415 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2416 				!sig_kernel_only(signr))
2417 			continue;
2418 
2419 		if (sig_kernel_stop(signr)) {
2420 			/*
2421 			 * The default action is to stop all threads in
2422 			 * the thread group.  The job control signals
2423 			 * do nothing in an orphaned pgrp, but SIGSTOP
2424 			 * always works.  Note that siglock needs to be
2425 			 * dropped during the call to is_orphaned_pgrp()
2426 			 * because of lock ordering with tasklist_lock.
2427 			 * This allows an intervening SIGCONT to be posted.
2428 			 * We need to check for that and bail out if necessary.
2429 			 */
2430 			if (signr != SIGSTOP) {
2431 				spin_unlock_irq(&sighand->siglock);
2432 
2433 				/* signals can be posted during this window */
2434 
2435 				if (is_current_pgrp_orphaned())
2436 					goto relock;
2437 
2438 				spin_lock_irq(&sighand->siglock);
2439 			}
2440 
2441 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2442 				/* It released the siglock.  */
2443 				goto relock;
2444 			}
2445 
2446 			/*
2447 			 * We didn't actually stop, due to a race
2448 			 * with SIGCONT or something like that.
2449 			 */
2450 			continue;
2451 		}
2452 
2453 		spin_unlock_irq(&sighand->siglock);
2454 
2455 		/*
2456 		 * Anything else is fatal, maybe with a core dump.
2457 		 */
2458 		current->flags |= PF_SIGNALED;
2459 
2460 		if (sig_kernel_coredump(signr)) {
2461 			if (print_fatal_signals)
2462 				print_fatal_signal(ksig->info.si_signo);
2463 			proc_coredump_connector(current);
2464 			/*
2465 			 * If it was able to dump core, this kills all
2466 			 * other threads in the group and synchronizes with
2467 			 * their demise.  If we lost the race with another
2468 			 * thread getting here, it set group_exit_code
2469 			 * first and our do_group_exit call below will use
2470 			 * that value and ignore the one we pass it.
2471 			 */
2472 			do_coredump(&ksig->info);
2473 		}
2474 
2475 		/*
2476 		 * Death signals, no core dump.
2477 		 */
2478 		do_group_exit(ksig->info.si_signo);
2479 		/* NOTREACHED */
2480 	}
2481 	spin_unlock_irq(&sighand->siglock);
2482 
2483 	ksig->sig = signr;
2484 	return ksig->sig > 0;
2485 }
2486 
2487 /**
2488  * signal_delivered -
2489  * @ksig:		kernel signal struct
2490  * @stepping:		nonzero if debugger single-step or block-step in use
2491  *
2492  * This function should be called when a signal has successfully been
2493  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2494  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2495  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2496  */
2497 static void signal_delivered(struct ksignal *ksig, int stepping)
2498 {
2499 	sigset_t blocked;
2500 
2501 	/* A signal was successfully delivered, and the
2502 	   saved sigmask was stored on the signal frame,
2503 	   and will be restored by sigreturn.  So we can
2504 	   simply clear the restore sigmask flag.  */
2505 	clear_restore_sigmask();
2506 
2507 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2508 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2509 		sigaddset(&blocked, ksig->sig);
2510 	set_current_blocked(&blocked);
2511 	tracehook_signal_handler(stepping);
2512 }
2513 
2514 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2515 {
2516 	if (failed)
2517 		force_sigsegv(ksig->sig, current);
2518 	else
2519 		signal_delivered(ksig, stepping);
2520 }
2521 
2522 /*
2523  * It could be that complete_signal() picked us to notify about the
2524  * group-wide signal. Other threads should be notified now to take
2525  * the shared signals in @which since we will not.
2526  */
2527 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2528 {
2529 	sigset_t retarget;
2530 	struct task_struct *t;
2531 
2532 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2533 	if (sigisemptyset(&retarget))
2534 		return;
2535 
2536 	t = tsk;
2537 	while_each_thread(tsk, t) {
2538 		if (t->flags & PF_EXITING)
2539 			continue;
2540 
2541 		if (!has_pending_signals(&retarget, &t->blocked))
2542 			continue;
2543 		/* Remove the signals this thread can handle. */
2544 		sigandsets(&retarget, &retarget, &t->blocked);
2545 
2546 		if (!signal_pending(t))
2547 			signal_wake_up(t, 0);
2548 
2549 		if (sigisemptyset(&retarget))
2550 			break;
2551 	}
2552 }
2553 
2554 void exit_signals(struct task_struct *tsk)
2555 {
2556 	int group_stop = 0;
2557 	sigset_t unblocked;
2558 
2559 	/*
2560 	 * @tsk is about to have PF_EXITING set - lock out users which
2561 	 * expect stable threadgroup.
2562 	 */
2563 	cgroup_threadgroup_change_begin(tsk);
2564 
2565 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2566 		tsk->flags |= PF_EXITING;
2567 		cgroup_threadgroup_change_end(tsk);
2568 		return;
2569 	}
2570 
2571 	spin_lock_irq(&tsk->sighand->siglock);
2572 	/*
2573 	 * From now this task is not visible for group-wide signals,
2574 	 * see wants_signal(), do_signal_stop().
2575 	 */
2576 	tsk->flags |= PF_EXITING;
2577 
2578 	cgroup_threadgroup_change_end(tsk);
2579 
2580 	if (!signal_pending(tsk))
2581 		goto out;
2582 
2583 	unblocked = tsk->blocked;
2584 	signotset(&unblocked);
2585 	retarget_shared_pending(tsk, &unblocked);
2586 
2587 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2588 	    task_participate_group_stop(tsk))
2589 		group_stop = CLD_STOPPED;
2590 out:
2591 	spin_unlock_irq(&tsk->sighand->siglock);
2592 
2593 	/*
2594 	 * If group stop has completed, deliver the notification.  This
2595 	 * should always go to the real parent of the group leader.
2596 	 */
2597 	if (unlikely(group_stop)) {
2598 		read_lock(&tasklist_lock);
2599 		do_notify_parent_cldstop(tsk, false, group_stop);
2600 		read_unlock(&tasklist_lock);
2601 	}
2602 }
2603 
2604 EXPORT_SYMBOL(recalc_sigpending);
2605 EXPORT_SYMBOL_GPL(dequeue_signal);
2606 EXPORT_SYMBOL(flush_signals);
2607 EXPORT_SYMBOL(force_sig);
2608 EXPORT_SYMBOL(send_sig);
2609 EXPORT_SYMBOL(send_sig_info);
2610 EXPORT_SYMBOL(sigprocmask);
2611 
2612 /*
2613  * System call entry points.
2614  */
2615 
2616 /**
2617  *  sys_restart_syscall - restart a system call
2618  */
2619 SYSCALL_DEFINE0(restart_syscall)
2620 {
2621 	struct restart_block *restart = &current->restart_block;
2622 	return restart->fn(restart);
2623 }
2624 
2625 long do_no_restart_syscall(struct restart_block *param)
2626 {
2627 	return -EINTR;
2628 }
2629 
2630 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2631 {
2632 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2633 		sigset_t newblocked;
2634 		/* A set of now blocked but previously unblocked signals. */
2635 		sigandnsets(&newblocked, newset, &current->blocked);
2636 		retarget_shared_pending(tsk, &newblocked);
2637 	}
2638 	tsk->blocked = *newset;
2639 	recalc_sigpending();
2640 }
2641 
2642 /**
2643  * set_current_blocked - change current->blocked mask
2644  * @newset: new mask
2645  *
2646  * It is wrong to change ->blocked directly, this helper should be used
2647  * to ensure the process can't miss a shared signal we are going to block.
2648  */
2649 void set_current_blocked(sigset_t *newset)
2650 {
2651 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2652 	__set_current_blocked(newset);
2653 }
2654 
2655 void __set_current_blocked(const sigset_t *newset)
2656 {
2657 	struct task_struct *tsk = current;
2658 
2659 	/*
2660 	 * In case the signal mask hasn't changed, there is nothing we need
2661 	 * to do. The current->blocked shouldn't be modified by other task.
2662 	 */
2663 	if (sigequalsets(&tsk->blocked, newset))
2664 		return;
2665 
2666 	spin_lock_irq(&tsk->sighand->siglock);
2667 	__set_task_blocked(tsk, newset);
2668 	spin_unlock_irq(&tsk->sighand->siglock);
2669 }
2670 
2671 /*
2672  * This is also useful for kernel threads that want to temporarily
2673  * (or permanently) block certain signals.
2674  *
2675  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2676  * interface happily blocks "unblockable" signals like SIGKILL
2677  * and friends.
2678  */
2679 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2680 {
2681 	struct task_struct *tsk = current;
2682 	sigset_t newset;
2683 
2684 	/* Lockless, only current can change ->blocked, never from irq */
2685 	if (oldset)
2686 		*oldset = tsk->blocked;
2687 
2688 	switch (how) {
2689 	case SIG_BLOCK:
2690 		sigorsets(&newset, &tsk->blocked, set);
2691 		break;
2692 	case SIG_UNBLOCK:
2693 		sigandnsets(&newset, &tsk->blocked, set);
2694 		break;
2695 	case SIG_SETMASK:
2696 		newset = *set;
2697 		break;
2698 	default:
2699 		return -EINVAL;
2700 	}
2701 
2702 	__set_current_blocked(&newset);
2703 	return 0;
2704 }
2705 
2706 /**
2707  *  sys_rt_sigprocmask - change the list of currently blocked signals
2708  *  @how: whether to add, remove, or set signals
2709  *  @nset: stores pending signals
2710  *  @oset: previous value of signal mask if non-null
2711  *  @sigsetsize: size of sigset_t type
2712  */
2713 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2714 		sigset_t __user *, oset, size_t, sigsetsize)
2715 {
2716 	sigset_t old_set, new_set;
2717 	int error;
2718 
2719 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2720 	if (sigsetsize != sizeof(sigset_t))
2721 		return -EINVAL;
2722 
2723 	old_set = current->blocked;
2724 
2725 	if (nset) {
2726 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2727 			return -EFAULT;
2728 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2729 
2730 		error = sigprocmask(how, &new_set, NULL);
2731 		if (error)
2732 			return error;
2733 	}
2734 
2735 	if (oset) {
2736 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2737 			return -EFAULT;
2738 	}
2739 
2740 	return 0;
2741 }
2742 
2743 #ifdef CONFIG_COMPAT
2744 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2745 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2746 {
2747 	sigset_t old_set = current->blocked;
2748 
2749 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2750 	if (sigsetsize != sizeof(sigset_t))
2751 		return -EINVAL;
2752 
2753 	if (nset) {
2754 		sigset_t new_set;
2755 		int error;
2756 		if (get_compat_sigset(&new_set, nset))
2757 			return -EFAULT;
2758 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2759 
2760 		error = sigprocmask(how, &new_set, NULL);
2761 		if (error)
2762 			return error;
2763 	}
2764 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2765 }
2766 #endif
2767 
2768 static int do_sigpending(sigset_t *set)
2769 {
2770 	spin_lock_irq(&current->sighand->siglock);
2771 	sigorsets(set, &current->pending.signal,
2772 		  &current->signal->shared_pending.signal);
2773 	spin_unlock_irq(&current->sighand->siglock);
2774 
2775 	/* Outside the lock because only this thread touches it.  */
2776 	sigandsets(set, &current->blocked, set);
2777 	return 0;
2778 }
2779 
2780 /**
2781  *  sys_rt_sigpending - examine a pending signal that has been raised
2782  *			while blocked
2783  *  @uset: stores pending signals
2784  *  @sigsetsize: size of sigset_t type or larger
2785  */
2786 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2787 {
2788 	sigset_t set;
2789 	int err;
2790 
2791 	if (sigsetsize > sizeof(*uset))
2792 		return -EINVAL;
2793 
2794 	err = do_sigpending(&set);
2795 	if (!err && copy_to_user(uset, &set, sigsetsize))
2796 		err = -EFAULT;
2797 	return err;
2798 }
2799 
2800 #ifdef CONFIG_COMPAT
2801 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2802 		compat_size_t, sigsetsize)
2803 {
2804 	sigset_t set;
2805 	int err;
2806 
2807 	if (sigsetsize > sizeof(*uset))
2808 		return -EINVAL;
2809 
2810 	err = do_sigpending(&set);
2811 	if (!err)
2812 		err = put_compat_sigset(uset, &set, sigsetsize);
2813 	return err;
2814 }
2815 #endif
2816 
2817 enum siginfo_layout siginfo_layout(int sig, int si_code)
2818 {
2819 	enum siginfo_layout layout = SIL_KILL;
2820 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2821 		static const struct {
2822 			unsigned char limit, layout;
2823 		} filter[] = {
2824 			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2825 			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2826 			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2827 			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2828 			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2829 #if defined(SIGEMT) && defined(NSIGEMT)
2830 			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2831 #endif
2832 			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2833 			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2834 			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2835 		};
2836 		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) {
2837 			layout = filter[sig].layout;
2838 			/* Handle the exceptions */
2839 			if ((sig == SIGBUS) &&
2840 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
2841 				layout = SIL_FAULT_MCEERR;
2842 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
2843 				layout = SIL_FAULT_BNDERR;
2844 #ifdef SEGV_PKUERR
2845 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
2846 				layout = SIL_FAULT_PKUERR;
2847 #endif
2848 		}
2849 		else if (si_code <= NSIGPOLL)
2850 			layout = SIL_POLL;
2851 	} else {
2852 		if (si_code == SI_TIMER)
2853 			layout = SIL_TIMER;
2854 		else if (si_code == SI_SIGIO)
2855 			layout = SIL_POLL;
2856 		else if (si_code < 0)
2857 			layout = SIL_RT;
2858 	}
2859 	return layout;
2860 }
2861 
2862 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2863 {
2864 	if (copy_to_user(to, from , sizeof(struct siginfo)))
2865 		return -EFAULT;
2866 	return 0;
2867 }
2868 
2869 #ifdef CONFIG_COMPAT
2870 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2871 			   const struct siginfo *from)
2872 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2873 {
2874 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2875 }
2876 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2877 			     const struct siginfo *from, bool x32_ABI)
2878 #endif
2879 {
2880 	struct compat_siginfo new;
2881 	memset(&new, 0, sizeof(new));
2882 
2883 	new.si_signo = from->si_signo;
2884 	new.si_errno = from->si_errno;
2885 	new.si_code  = from->si_code;
2886 	switch(siginfo_layout(from->si_signo, from->si_code)) {
2887 	case SIL_KILL:
2888 		new.si_pid = from->si_pid;
2889 		new.si_uid = from->si_uid;
2890 		break;
2891 	case SIL_TIMER:
2892 		new.si_tid     = from->si_tid;
2893 		new.si_overrun = from->si_overrun;
2894 		new.si_int     = from->si_int;
2895 		break;
2896 	case SIL_POLL:
2897 		new.si_band = from->si_band;
2898 		new.si_fd   = from->si_fd;
2899 		break;
2900 	case SIL_FAULT:
2901 		new.si_addr = ptr_to_compat(from->si_addr);
2902 #ifdef __ARCH_SI_TRAPNO
2903 		new.si_trapno = from->si_trapno;
2904 #endif
2905 		break;
2906 	case SIL_FAULT_MCEERR:
2907 		new.si_addr = ptr_to_compat(from->si_addr);
2908 #ifdef __ARCH_SI_TRAPNO
2909 		new.si_trapno = from->si_trapno;
2910 #endif
2911 		new.si_addr_lsb = from->si_addr_lsb;
2912 		break;
2913 	case SIL_FAULT_BNDERR:
2914 		new.si_addr = ptr_to_compat(from->si_addr);
2915 #ifdef __ARCH_SI_TRAPNO
2916 		new.si_trapno = from->si_trapno;
2917 #endif
2918 		new.si_lower = ptr_to_compat(from->si_lower);
2919 		new.si_upper = ptr_to_compat(from->si_upper);
2920 		break;
2921 	case SIL_FAULT_PKUERR:
2922 		new.si_addr = ptr_to_compat(from->si_addr);
2923 #ifdef __ARCH_SI_TRAPNO
2924 		new.si_trapno = from->si_trapno;
2925 #endif
2926 		new.si_pkey = from->si_pkey;
2927 		break;
2928 	case SIL_CHLD:
2929 		new.si_pid    = from->si_pid;
2930 		new.si_uid    = from->si_uid;
2931 		new.si_status = from->si_status;
2932 #ifdef CONFIG_X86_X32_ABI
2933 		if (x32_ABI) {
2934 			new._sifields._sigchld_x32._utime = from->si_utime;
2935 			new._sifields._sigchld_x32._stime = from->si_stime;
2936 		} else
2937 #endif
2938 		{
2939 			new.si_utime = from->si_utime;
2940 			new.si_stime = from->si_stime;
2941 		}
2942 		break;
2943 	case SIL_RT:
2944 		new.si_pid = from->si_pid;
2945 		new.si_uid = from->si_uid;
2946 		new.si_int = from->si_int;
2947 		break;
2948 	case SIL_SYS:
2949 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
2950 		new.si_syscall   = from->si_syscall;
2951 		new.si_arch      = from->si_arch;
2952 		break;
2953 	}
2954 
2955 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
2956 		return -EFAULT;
2957 
2958 	return 0;
2959 }
2960 
2961 int copy_siginfo_from_user32(struct siginfo *to,
2962 			     const struct compat_siginfo __user *ufrom)
2963 {
2964 	struct compat_siginfo from;
2965 
2966 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
2967 		return -EFAULT;
2968 
2969 	clear_siginfo(to);
2970 	to->si_signo = from.si_signo;
2971 	to->si_errno = from.si_errno;
2972 	to->si_code  = from.si_code;
2973 	switch(siginfo_layout(from.si_signo, from.si_code)) {
2974 	case SIL_KILL:
2975 		to->si_pid = from.si_pid;
2976 		to->si_uid = from.si_uid;
2977 		break;
2978 	case SIL_TIMER:
2979 		to->si_tid     = from.si_tid;
2980 		to->si_overrun = from.si_overrun;
2981 		to->si_int     = from.si_int;
2982 		break;
2983 	case SIL_POLL:
2984 		to->si_band = from.si_band;
2985 		to->si_fd   = from.si_fd;
2986 		break;
2987 	case SIL_FAULT:
2988 		to->si_addr = compat_ptr(from.si_addr);
2989 #ifdef __ARCH_SI_TRAPNO
2990 		to->si_trapno = from.si_trapno;
2991 #endif
2992 		break;
2993 	case SIL_FAULT_MCEERR:
2994 		to->si_addr = compat_ptr(from.si_addr);
2995 #ifdef __ARCH_SI_TRAPNO
2996 		to->si_trapno = from.si_trapno;
2997 #endif
2998 		to->si_addr_lsb = from.si_addr_lsb;
2999 		break;
3000 	case SIL_FAULT_BNDERR:
3001 		to->si_addr = compat_ptr(from.si_addr);
3002 #ifdef __ARCH_SI_TRAPNO
3003 		to->si_trapno = from.si_trapno;
3004 #endif
3005 		to->si_lower = compat_ptr(from.si_lower);
3006 		to->si_upper = compat_ptr(from.si_upper);
3007 		break;
3008 	case SIL_FAULT_PKUERR:
3009 		to->si_addr = compat_ptr(from.si_addr);
3010 #ifdef __ARCH_SI_TRAPNO
3011 		to->si_trapno = from.si_trapno;
3012 #endif
3013 		to->si_pkey = from.si_pkey;
3014 		break;
3015 	case SIL_CHLD:
3016 		to->si_pid    = from.si_pid;
3017 		to->si_uid    = from.si_uid;
3018 		to->si_status = from.si_status;
3019 #ifdef CONFIG_X86_X32_ABI
3020 		if (in_x32_syscall()) {
3021 			to->si_utime = from._sifields._sigchld_x32._utime;
3022 			to->si_stime = from._sifields._sigchld_x32._stime;
3023 		} else
3024 #endif
3025 		{
3026 			to->si_utime = from.si_utime;
3027 			to->si_stime = from.si_stime;
3028 		}
3029 		break;
3030 	case SIL_RT:
3031 		to->si_pid = from.si_pid;
3032 		to->si_uid = from.si_uid;
3033 		to->si_int = from.si_int;
3034 		break;
3035 	case SIL_SYS:
3036 		to->si_call_addr = compat_ptr(from.si_call_addr);
3037 		to->si_syscall   = from.si_syscall;
3038 		to->si_arch      = from.si_arch;
3039 		break;
3040 	}
3041 	return 0;
3042 }
3043 #endif /* CONFIG_COMPAT */
3044 
3045 /**
3046  *  do_sigtimedwait - wait for queued signals specified in @which
3047  *  @which: queued signals to wait for
3048  *  @info: if non-null, the signal's siginfo is returned here
3049  *  @ts: upper bound on process time suspension
3050  */
3051 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3052 		    const struct timespec *ts)
3053 {
3054 	ktime_t *to = NULL, timeout = KTIME_MAX;
3055 	struct task_struct *tsk = current;
3056 	sigset_t mask = *which;
3057 	int sig, ret = 0;
3058 
3059 	if (ts) {
3060 		if (!timespec_valid(ts))
3061 			return -EINVAL;
3062 		timeout = timespec_to_ktime(*ts);
3063 		to = &timeout;
3064 	}
3065 
3066 	/*
3067 	 * Invert the set of allowed signals to get those we want to block.
3068 	 */
3069 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3070 	signotset(&mask);
3071 
3072 	spin_lock_irq(&tsk->sighand->siglock);
3073 	sig = dequeue_signal(tsk, &mask, info);
3074 	if (!sig && timeout) {
3075 		/*
3076 		 * None ready, temporarily unblock those we're interested
3077 		 * while we are sleeping in so that we'll be awakened when
3078 		 * they arrive. Unblocking is always fine, we can avoid
3079 		 * set_current_blocked().
3080 		 */
3081 		tsk->real_blocked = tsk->blocked;
3082 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3083 		recalc_sigpending();
3084 		spin_unlock_irq(&tsk->sighand->siglock);
3085 
3086 		__set_current_state(TASK_INTERRUPTIBLE);
3087 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3088 							 HRTIMER_MODE_REL);
3089 		spin_lock_irq(&tsk->sighand->siglock);
3090 		__set_task_blocked(tsk, &tsk->real_blocked);
3091 		sigemptyset(&tsk->real_blocked);
3092 		sig = dequeue_signal(tsk, &mask, info);
3093 	}
3094 	spin_unlock_irq(&tsk->sighand->siglock);
3095 
3096 	if (sig)
3097 		return sig;
3098 	return ret ? -EINTR : -EAGAIN;
3099 }
3100 
3101 /**
3102  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3103  *			in @uthese
3104  *  @uthese: queued signals to wait for
3105  *  @uinfo: if non-null, the signal's siginfo is returned here
3106  *  @uts: upper bound on process time suspension
3107  *  @sigsetsize: size of sigset_t type
3108  */
3109 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3110 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3111 		size_t, sigsetsize)
3112 {
3113 	sigset_t these;
3114 	struct timespec ts;
3115 	siginfo_t info;
3116 	int ret;
3117 
3118 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3119 	if (sigsetsize != sizeof(sigset_t))
3120 		return -EINVAL;
3121 
3122 	if (copy_from_user(&these, uthese, sizeof(these)))
3123 		return -EFAULT;
3124 
3125 	if (uts) {
3126 		if (copy_from_user(&ts, uts, sizeof(ts)))
3127 			return -EFAULT;
3128 	}
3129 
3130 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3131 
3132 	if (ret > 0 && uinfo) {
3133 		if (copy_siginfo_to_user(uinfo, &info))
3134 			ret = -EFAULT;
3135 	}
3136 
3137 	return ret;
3138 }
3139 
3140 #ifdef CONFIG_COMPAT
3141 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3142 		struct compat_siginfo __user *, uinfo,
3143 		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3144 {
3145 	sigset_t s;
3146 	struct timespec t;
3147 	siginfo_t info;
3148 	long ret;
3149 
3150 	if (sigsetsize != sizeof(sigset_t))
3151 		return -EINVAL;
3152 
3153 	if (get_compat_sigset(&s, uthese))
3154 		return -EFAULT;
3155 
3156 	if (uts) {
3157 		if (compat_get_timespec(&t, uts))
3158 			return -EFAULT;
3159 	}
3160 
3161 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3162 
3163 	if (ret > 0 && uinfo) {
3164 		if (copy_siginfo_to_user32(uinfo, &info))
3165 			ret = -EFAULT;
3166 	}
3167 
3168 	return ret;
3169 }
3170 #endif
3171 
3172 /**
3173  *  sys_kill - send a signal to a process
3174  *  @pid: the PID of the process
3175  *  @sig: signal to be sent
3176  */
3177 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3178 {
3179 	struct siginfo info;
3180 
3181 	clear_siginfo(&info);
3182 	info.si_signo = sig;
3183 	info.si_errno = 0;
3184 	info.si_code = SI_USER;
3185 	info.si_pid = task_tgid_vnr(current);
3186 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3187 
3188 	return kill_something_info(sig, &info, pid);
3189 }
3190 
3191 static int
3192 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3193 {
3194 	struct task_struct *p;
3195 	int error = -ESRCH;
3196 
3197 	rcu_read_lock();
3198 	p = find_task_by_vpid(pid);
3199 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3200 		error = check_kill_permission(sig, info, p);
3201 		/*
3202 		 * The null signal is a permissions and process existence
3203 		 * probe.  No signal is actually delivered.
3204 		 */
3205 		if (!error && sig) {
3206 			error = do_send_sig_info(sig, info, p, false);
3207 			/*
3208 			 * If lock_task_sighand() failed we pretend the task
3209 			 * dies after receiving the signal. The window is tiny,
3210 			 * and the signal is private anyway.
3211 			 */
3212 			if (unlikely(error == -ESRCH))
3213 				error = 0;
3214 		}
3215 	}
3216 	rcu_read_unlock();
3217 
3218 	return error;
3219 }
3220 
3221 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3222 {
3223 	struct siginfo info;
3224 
3225 	clear_siginfo(&info);
3226 	info.si_signo = sig;
3227 	info.si_errno = 0;
3228 	info.si_code = SI_TKILL;
3229 	info.si_pid = task_tgid_vnr(current);
3230 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3231 
3232 	return do_send_specific(tgid, pid, sig, &info);
3233 }
3234 
3235 /**
3236  *  sys_tgkill - send signal to one specific thread
3237  *  @tgid: the thread group ID of the thread
3238  *  @pid: the PID of the thread
3239  *  @sig: signal to be sent
3240  *
3241  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3242  *  exists but it's not belonging to the target process anymore. This
3243  *  method solves the problem of threads exiting and PIDs getting reused.
3244  */
3245 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3246 {
3247 	/* This is only valid for single tasks */
3248 	if (pid <= 0 || tgid <= 0)
3249 		return -EINVAL;
3250 
3251 	return do_tkill(tgid, pid, sig);
3252 }
3253 
3254 /**
3255  *  sys_tkill - send signal to one specific task
3256  *  @pid: the PID of the task
3257  *  @sig: signal to be sent
3258  *
3259  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3260  */
3261 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3262 {
3263 	/* This is only valid for single tasks */
3264 	if (pid <= 0)
3265 		return -EINVAL;
3266 
3267 	return do_tkill(0, pid, sig);
3268 }
3269 
3270 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3271 {
3272 	/* Not even root can pretend to send signals from the kernel.
3273 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3274 	 */
3275 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3276 	    (task_pid_vnr(current) != pid))
3277 		return -EPERM;
3278 
3279 	info->si_signo = sig;
3280 
3281 	/* POSIX.1b doesn't mention process groups.  */
3282 	return kill_proc_info(sig, info, pid);
3283 }
3284 
3285 /**
3286  *  sys_rt_sigqueueinfo - send signal information to a signal
3287  *  @pid: the PID of the thread
3288  *  @sig: signal to be sent
3289  *  @uinfo: signal info to be sent
3290  */
3291 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3292 		siginfo_t __user *, uinfo)
3293 {
3294 	siginfo_t info;
3295 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3296 		return -EFAULT;
3297 	return do_rt_sigqueueinfo(pid, sig, &info);
3298 }
3299 
3300 #ifdef CONFIG_COMPAT
3301 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3302 			compat_pid_t, pid,
3303 			int, sig,
3304 			struct compat_siginfo __user *, uinfo)
3305 {
3306 	siginfo_t info;
3307 	int ret = copy_siginfo_from_user32(&info, uinfo);
3308 	if (unlikely(ret))
3309 		return ret;
3310 	return do_rt_sigqueueinfo(pid, sig, &info);
3311 }
3312 #endif
3313 
3314 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3315 {
3316 	/* This is only valid for single tasks */
3317 	if (pid <= 0 || tgid <= 0)
3318 		return -EINVAL;
3319 
3320 	/* Not even root can pretend to send signals from the kernel.
3321 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3322 	 */
3323 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3324 	    (task_pid_vnr(current) != pid))
3325 		return -EPERM;
3326 
3327 	info->si_signo = sig;
3328 
3329 	return do_send_specific(tgid, pid, sig, info);
3330 }
3331 
3332 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3333 		siginfo_t __user *, uinfo)
3334 {
3335 	siginfo_t info;
3336 
3337 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3338 		return -EFAULT;
3339 
3340 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3341 }
3342 
3343 #ifdef CONFIG_COMPAT
3344 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3345 			compat_pid_t, tgid,
3346 			compat_pid_t, pid,
3347 			int, sig,
3348 			struct compat_siginfo __user *, uinfo)
3349 {
3350 	siginfo_t info;
3351 
3352 	if (copy_siginfo_from_user32(&info, uinfo))
3353 		return -EFAULT;
3354 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3355 }
3356 #endif
3357 
3358 /*
3359  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3360  */
3361 void kernel_sigaction(int sig, __sighandler_t action)
3362 {
3363 	spin_lock_irq(&current->sighand->siglock);
3364 	current->sighand->action[sig - 1].sa.sa_handler = action;
3365 	if (action == SIG_IGN) {
3366 		sigset_t mask;
3367 
3368 		sigemptyset(&mask);
3369 		sigaddset(&mask, sig);
3370 
3371 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3372 		flush_sigqueue_mask(&mask, &current->pending);
3373 		recalc_sigpending();
3374 	}
3375 	spin_unlock_irq(&current->sighand->siglock);
3376 }
3377 EXPORT_SYMBOL(kernel_sigaction);
3378 
3379 void __weak sigaction_compat_abi(struct k_sigaction *act,
3380 		struct k_sigaction *oact)
3381 {
3382 }
3383 
3384 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3385 {
3386 	struct task_struct *p = current, *t;
3387 	struct k_sigaction *k;
3388 	sigset_t mask;
3389 
3390 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3391 		return -EINVAL;
3392 
3393 	k = &p->sighand->action[sig-1];
3394 
3395 	spin_lock_irq(&p->sighand->siglock);
3396 	if (oact)
3397 		*oact = *k;
3398 
3399 	sigaction_compat_abi(act, oact);
3400 
3401 	if (act) {
3402 		sigdelsetmask(&act->sa.sa_mask,
3403 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3404 		*k = *act;
3405 		/*
3406 		 * POSIX 3.3.1.3:
3407 		 *  "Setting a signal action to SIG_IGN for a signal that is
3408 		 *   pending shall cause the pending signal to be discarded,
3409 		 *   whether or not it is blocked."
3410 		 *
3411 		 *  "Setting a signal action to SIG_DFL for a signal that is
3412 		 *   pending and whose default action is to ignore the signal
3413 		 *   (for example, SIGCHLD), shall cause the pending signal to
3414 		 *   be discarded, whether or not it is blocked"
3415 		 */
3416 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3417 			sigemptyset(&mask);
3418 			sigaddset(&mask, sig);
3419 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3420 			for_each_thread(p, t)
3421 				flush_sigqueue_mask(&mask, &t->pending);
3422 		}
3423 	}
3424 
3425 	spin_unlock_irq(&p->sighand->siglock);
3426 	return 0;
3427 }
3428 
3429 static int
3430 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3431 {
3432 	struct task_struct *t = current;
3433 
3434 	if (oss) {
3435 		memset(oss, 0, sizeof(stack_t));
3436 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3437 		oss->ss_size = t->sas_ss_size;
3438 		oss->ss_flags = sas_ss_flags(sp) |
3439 			(current->sas_ss_flags & SS_FLAG_BITS);
3440 	}
3441 
3442 	if (ss) {
3443 		void __user *ss_sp = ss->ss_sp;
3444 		size_t ss_size = ss->ss_size;
3445 		unsigned ss_flags = ss->ss_flags;
3446 		int ss_mode;
3447 
3448 		if (unlikely(on_sig_stack(sp)))
3449 			return -EPERM;
3450 
3451 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3452 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3453 				ss_mode != 0))
3454 			return -EINVAL;
3455 
3456 		if (ss_mode == SS_DISABLE) {
3457 			ss_size = 0;
3458 			ss_sp = NULL;
3459 		} else {
3460 			if (unlikely(ss_size < MINSIGSTKSZ))
3461 				return -ENOMEM;
3462 		}
3463 
3464 		t->sas_ss_sp = (unsigned long) ss_sp;
3465 		t->sas_ss_size = ss_size;
3466 		t->sas_ss_flags = ss_flags;
3467 	}
3468 	return 0;
3469 }
3470 
3471 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3472 {
3473 	stack_t new, old;
3474 	int err;
3475 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3476 		return -EFAULT;
3477 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3478 			      current_user_stack_pointer());
3479 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3480 		err = -EFAULT;
3481 	return err;
3482 }
3483 
3484 int restore_altstack(const stack_t __user *uss)
3485 {
3486 	stack_t new;
3487 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3488 		return -EFAULT;
3489 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3490 	/* squash all but EFAULT for now */
3491 	return 0;
3492 }
3493 
3494 int __save_altstack(stack_t __user *uss, unsigned long sp)
3495 {
3496 	struct task_struct *t = current;
3497 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3498 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3499 		__put_user(t->sas_ss_size, &uss->ss_size);
3500 	if (err)
3501 		return err;
3502 	if (t->sas_ss_flags & SS_AUTODISARM)
3503 		sas_ss_reset(t);
3504 	return 0;
3505 }
3506 
3507 #ifdef CONFIG_COMPAT
3508 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3509 				 compat_stack_t __user *uoss_ptr)
3510 {
3511 	stack_t uss, uoss;
3512 	int ret;
3513 
3514 	if (uss_ptr) {
3515 		compat_stack_t uss32;
3516 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3517 			return -EFAULT;
3518 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3519 		uss.ss_flags = uss32.ss_flags;
3520 		uss.ss_size = uss32.ss_size;
3521 	}
3522 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3523 			     compat_user_stack_pointer());
3524 	if (ret >= 0 && uoss_ptr)  {
3525 		compat_stack_t old;
3526 		memset(&old, 0, sizeof(old));
3527 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3528 		old.ss_flags = uoss.ss_flags;
3529 		old.ss_size = uoss.ss_size;
3530 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3531 			ret = -EFAULT;
3532 	}
3533 	return ret;
3534 }
3535 
3536 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3537 			const compat_stack_t __user *, uss_ptr,
3538 			compat_stack_t __user *, uoss_ptr)
3539 {
3540 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3541 }
3542 
3543 int compat_restore_altstack(const compat_stack_t __user *uss)
3544 {
3545 	int err = do_compat_sigaltstack(uss, NULL);
3546 	/* squash all but -EFAULT for now */
3547 	return err == -EFAULT ? err : 0;
3548 }
3549 
3550 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3551 {
3552 	int err;
3553 	struct task_struct *t = current;
3554 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3555 			 &uss->ss_sp) |
3556 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3557 		__put_user(t->sas_ss_size, &uss->ss_size);
3558 	if (err)
3559 		return err;
3560 	if (t->sas_ss_flags & SS_AUTODISARM)
3561 		sas_ss_reset(t);
3562 	return 0;
3563 }
3564 #endif
3565 
3566 #ifdef __ARCH_WANT_SYS_SIGPENDING
3567 
3568 /**
3569  *  sys_sigpending - examine pending signals
3570  *  @uset: where mask of pending signal is returned
3571  */
3572 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3573 {
3574 	sigset_t set;
3575 	int err;
3576 
3577 	if (sizeof(old_sigset_t) > sizeof(*uset))
3578 		return -EINVAL;
3579 
3580 	err = do_sigpending(&set);
3581 	if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3582 		err = -EFAULT;
3583 	return err;
3584 }
3585 
3586 #ifdef CONFIG_COMPAT
3587 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3588 {
3589 	sigset_t set;
3590 	int err = do_sigpending(&set);
3591 	if (!err)
3592 		err = put_user(set.sig[0], set32);
3593 	return err;
3594 }
3595 #endif
3596 
3597 #endif
3598 
3599 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3600 /**
3601  *  sys_sigprocmask - examine and change blocked signals
3602  *  @how: whether to add, remove, or set signals
3603  *  @nset: signals to add or remove (if non-null)
3604  *  @oset: previous value of signal mask if non-null
3605  *
3606  * Some platforms have their own version with special arguments;
3607  * others support only sys_rt_sigprocmask.
3608  */
3609 
3610 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3611 		old_sigset_t __user *, oset)
3612 {
3613 	old_sigset_t old_set, new_set;
3614 	sigset_t new_blocked;
3615 
3616 	old_set = current->blocked.sig[0];
3617 
3618 	if (nset) {
3619 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3620 			return -EFAULT;
3621 
3622 		new_blocked = current->blocked;
3623 
3624 		switch (how) {
3625 		case SIG_BLOCK:
3626 			sigaddsetmask(&new_blocked, new_set);
3627 			break;
3628 		case SIG_UNBLOCK:
3629 			sigdelsetmask(&new_blocked, new_set);
3630 			break;
3631 		case SIG_SETMASK:
3632 			new_blocked.sig[0] = new_set;
3633 			break;
3634 		default:
3635 			return -EINVAL;
3636 		}
3637 
3638 		set_current_blocked(&new_blocked);
3639 	}
3640 
3641 	if (oset) {
3642 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3643 			return -EFAULT;
3644 	}
3645 
3646 	return 0;
3647 }
3648 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3649 
3650 #ifndef CONFIG_ODD_RT_SIGACTION
3651 /**
3652  *  sys_rt_sigaction - alter an action taken by a process
3653  *  @sig: signal to be sent
3654  *  @act: new sigaction
3655  *  @oact: used to save the previous sigaction
3656  *  @sigsetsize: size of sigset_t type
3657  */
3658 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3659 		const struct sigaction __user *, act,
3660 		struct sigaction __user *, oact,
3661 		size_t, sigsetsize)
3662 {
3663 	struct k_sigaction new_sa, old_sa;
3664 	int ret = -EINVAL;
3665 
3666 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3667 	if (sigsetsize != sizeof(sigset_t))
3668 		goto out;
3669 
3670 	if (act) {
3671 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3672 			return -EFAULT;
3673 	}
3674 
3675 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3676 
3677 	if (!ret && oact) {
3678 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3679 			return -EFAULT;
3680 	}
3681 out:
3682 	return ret;
3683 }
3684 #ifdef CONFIG_COMPAT
3685 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3686 		const struct compat_sigaction __user *, act,
3687 		struct compat_sigaction __user *, oact,
3688 		compat_size_t, sigsetsize)
3689 {
3690 	struct k_sigaction new_ka, old_ka;
3691 #ifdef __ARCH_HAS_SA_RESTORER
3692 	compat_uptr_t restorer;
3693 #endif
3694 	int ret;
3695 
3696 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3697 	if (sigsetsize != sizeof(compat_sigset_t))
3698 		return -EINVAL;
3699 
3700 	if (act) {
3701 		compat_uptr_t handler;
3702 		ret = get_user(handler, &act->sa_handler);
3703 		new_ka.sa.sa_handler = compat_ptr(handler);
3704 #ifdef __ARCH_HAS_SA_RESTORER
3705 		ret |= get_user(restorer, &act->sa_restorer);
3706 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3707 #endif
3708 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3709 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3710 		if (ret)
3711 			return -EFAULT;
3712 	}
3713 
3714 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3715 	if (!ret && oact) {
3716 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3717 			       &oact->sa_handler);
3718 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3719 					 sizeof(oact->sa_mask));
3720 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3721 #ifdef __ARCH_HAS_SA_RESTORER
3722 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3723 				&oact->sa_restorer);
3724 #endif
3725 	}
3726 	return ret;
3727 }
3728 #endif
3729 #endif /* !CONFIG_ODD_RT_SIGACTION */
3730 
3731 #ifdef CONFIG_OLD_SIGACTION
3732 SYSCALL_DEFINE3(sigaction, int, sig,
3733 		const struct old_sigaction __user *, act,
3734 	        struct old_sigaction __user *, oact)
3735 {
3736 	struct k_sigaction new_ka, old_ka;
3737 	int ret;
3738 
3739 	if (act) {
3740 		old_sigset_t mask;
3741 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3742 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3743 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3744 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3745 		    __get_user(mask, &act->sa_mask))
3746 			return -EFAULT;
3747 #ifdef __ARCH_HAS_KA_RESTORER
3748 		new_ka.ka_restorer = NULL;
3749 #endif
3750 		siginitset(&new_ka.sa.sa_mask, mask);
3751 	}
3752 
3753 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3754 
3755 	if (!ret && oact) {
3756 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3757 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3758 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3759 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3760 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3761 			return -EFAULT;
3762 	}
3763 
3764 	return ret;
3765 }
3766 #endif
3767 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3768 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3769 		const struct compat_old_sigaction __user *, act,
3770 	        struct compat_old_sigaction __user *, oact)
3771 {
3772 	struct k_sigaction new_ka, old_ka;
3773 	int ret;
3774 	compat_old_sigset_t mask;
3775 	compat_uptr_t handler, restorer;
3776 
3777 	if (act) {
3778 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3779 		    __get_user(handler, &act->sa_handler) ||
3780 		    __get_user(restorer, &act->sa_restorer) ||
3781 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3782 		    __get_user(mask, &act->sa_mask))
3783 			return -EFAULT;
3784 
3785 #ifdef __ARCH_HAS_KA_RESTORER
3786 		new_ka.ka_restorer = NULL;
3787 #endif
3788 		new_ka.sa.sa_handler = compat_ptr(handler);
3789 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3790 		siginitset(&new_ka.sa.sa_mask, mask);
3791 	}
3792 
3793 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3794 
3795 	if (!ret && oact) {
3796 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3797 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3798 			       &oact->sa_handler) ||
3799 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3800 			       &oact->sa_restorer) ||
3801 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3802 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3803 			return -EFAULT;
3804 	}
3805 	return ret;
3806 }
3807 #endif
3808 
3809 #ifdef CONFIG_SGETMASK_SYSCALL
3810 
3811 /*
3812  * For backwards compatibility.  Functionality superseded by sigprocmask.
3813  */
3814 SYSCALL_DEFINE0(sgetmask)
3815 {
3816 	/* SMP safe */
3817 	return current->blocked.sig[0];
3818 }
3819 
3820 SYSCALL_DEFINE1(ssetmask, int, newmask)
3821 {
3822 	int old = current->blocked.sig[0];
3823 	sigset_t newset;
3824 
3825 	siginitset(&newset, newmask);
3826 	set_current_blocked(&newset);
3827 
3828 	return old;
3829 }
3830 #endif /* CONFIG_SGETMASK_SYSCALL */
3831 
3832 #ifdef __ARCH_WANT_SYS_SIGNAL
3833 /*
3834  * For backwards compatibility.  Functionality superseded by sigaction.
3835  */
3836 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3837 {
3838 	struct k_sigaction new_sa, old_sa;
3839 	int ret;
3840 
3841 	new_sa.sa.sa_handler = handler;
3842 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3843 	sigemptyset(&new_sa.sa.sa_mask);
3844 
3845 	ret = do_sigaction(sig, &new_sa, &old_sa);
3846 
3847 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3848 }
3849 #endif /* __ARCH_WANT_SYS_SIGNAL */
3850 
3851 #ifdef __ARCH_WANT_SYS_PAUSE
3852 
3853 SYSCALL_DEFINE0(pause)
3854 {
3855 	while (!signal_pending(current)) {
3856 		__set_current_state(TASK_INTERRUPTIBLE);
3857 		schedule();
3858 	}
3859 	return -ERESTARTNOHAND;
3860 }
3861 
3862 #endif
3863 
3864 static int sigsuspend(sigset_t *set)
3865 {
3866 	current->saved_sigmask = current->blocked;
3867 	set_current_blocked(set);
3868 
3869 	while (!signal_pending(current)) {
3870 		__set_current_state(TASK_INTERRUPTIBLE);
3871 		schedule();
3872 	}
3873 	set_restore_sigmask();
3874 	return -ERESTARTNOHAND;
3875 }
3876 
3877 /**
3878  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3879  *	@unewset value until a signal is received
3880  *  @unewset: new signal mask value
3881  *  @sigsetsize: size of sigset_t type
3882  */
3883 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3884 {
3885 	sigset_t newset;
3886 
3887 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3888 	if (sigsetsize != sizeof(sigset_t))
3889 		return -EINVAL;
3890 
3891 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3892 		return -EFAULT;
3893 	return sigsuspend(&newset);
3894 }
3895 
3896 #ifdef CONFIG_COMPAT
3897 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3898 {
3899 	sigset_t newset;
3900 
3901 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3902 	if (sigsetsize != sizeof(sigset_t))
3903 		return -EINVAL;
3904 
3905 	if (get_compat_sigset(&newset, unewset))
3906 		return -EFAULT;
3907 	return sigsuspend(&newset);
3908 }
3909 #endif
3910 
3911 #ifdef CONFIG_OLD_SIGSUSPEND
3912 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3913 {
3914 	sigset_t blocked;
3915 	siginitset(&blocked, mask);
3916 	return sigsuspend(&blocked);
3917 }
3918 #endif
3919 #ifdef CONFIG_OLD_SIGSUSPEND3
3920 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3921 {
3922 	sigset_t blocked;
3923 	siginitset(&blocked, mask);
3924 	return sigsuspend(&blocked);
3925 }
3926 #endif
3927 
3928 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3929 {
3930 	return NULL;
3931 }
3932 
3933 void __init signals_init(void)
3934 {
3935 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3936 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3937 		!= offsetof(struct siginfo, _sifields._pad));
3938 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
3939 
3940 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3941 }
3942 
3943 #ifdef CONFIG_KGDB_KDB
3944 #include <linux/kdb.h>
3945 /*
3946  * kdb_send_sig - Allows kdb to send signals without exposing
3947  * signal internals.  This function checks if the required locks are
3948  * available before calling the main signal code, to avoid kdb
3949  * deadlocks.
3950  */
3951 void kdb_send_sig(struct task_struct *t, int sig)
3952 {
3953 	static struct task_struct *kdb_prev_t;
3954 	int new_t, ret;
3955 	if (!spin_trylock(&t->sighand->siglock)) {
3956 		kdb_printf("Can't do kill command now.\n"
3957 			   "The sigmask lock is held somewhere else in "
3958 			   "kernel, try again later\n");
3959 		return;
3960 	}
3961 	new_t = kdb_prev_t != t;
3962 	kdb_prev_t = t;
3963 	if (t->state != TASK_RUNNING && new_t) {
3964 		spin_unlock(&t->sighand->siglock);
3965 		kdb_printf("Process is not RUNNING, sending a signal from "
3966 			   "kdb risks deadlock\n"
3967 			   "on the run queue locks. "
3968 			   "The signal has _not_ been sent.\n"
3969 			   "Reissue the kill command if you want to risk "
3970 			   "the deadlock.\n");
3971 		return;
3972 	}
3973 	ret = send_signal(sig, SEND_SIG_PRIV, t, false);
3974 	spin_unlock(&t->sighand->siglock);
3975 	if (ret)
3976 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3977 			   sig, t->pid);
3978 	else
3979 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3980 }
3981 #endif	/* CONFIG_KGDB_KDB */
3982