xref: /linux/kernel/signal.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32 
33 /*
34  * SLAB caches for signal bits.
35  */
36 
37 static kmem_cache_t *sigqueue_cachep;
38 
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore	- Nothing Happens
50  *   terminate	- kill the process, i.e. all threads in the group,
51  * 		  similar to exit_group.  The group leader (only) reports
52  *		  WIFSIGNALED status to its parent.
53  *   coredump	- write a core dump file describing all threads using
54  *		  the same mm and then kill all those threads
55  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *	+--------------------+------------------+
62  *	|  POSIX signal      |  default action  |
63  *	+--------------------+------------------+
64  *	|  SIGHUP            |  terminate	|
65  *	|  SIGINT            |	terminate	|
66  *	|  SIGQUIT           |	coredump 	|
67  *	|  SIGILL            |	coredump 	|
68  *	|  SIGTRAP           |	coredump 	|
69  *	|  SIGABRT/SIGIOT    |	coredump 	|
70  *	|  SIGBUS            |	coredump 	|
71  *	|  SIGFPE            |	coredump 	|
72  *	|  SIGKILL           |	terminate(+)	|
73  *	|  SIGUSR1           |	terminate	|
74  *	|  SIGSEGV           |	coredump 	|
75  *	|  SIGUSR2           |	terminate	|
76  *	|  SIGPIPE           |	terminate	|
77  *	|  SIGALRM           |	terminate	|
78  *	|  SIGTERM           |	terminate	|
79  *	|  SIGCHLD           |	ignore   	|
80  *	|  SIGCONT           |	ignore(*)	|
81  *	|  SIGSTOP           |	stop(*)(+)  	|
82  *	|  SIGTSTP           |	stop(*)  	|
83  *	|  SIGTTIN           |	stop(*)  	|
84  *	|  SIGTTOU           |	stop(*)  	|
85  *	|  SIGURG            |	ignore   	|
86  *	|  SIGXCPU           |	coredump 	|
87  *	|  SIGXFSZ           |	coredump 	|
88  *	|  SIGVTALRM         |	terminate	|
89  *	|  SIGPROF           |	terminate	|
90  *	|  SIGPOLL/SIGIO     |	terminate	|
91  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
92  *	|  SIGSTKFLT         |	terminate	|
93  *	|  SIGWINCH          |	ignore   	|
94  *	|  SIGPWR            |	terminate	|
95  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
96  *	+--------------------+------------------+
97  *	|  non-POSIX signal  |  default action  |
98  *	+--------------------+------------------+
99  *	|  SIGEMT            |  coredump	|
100  *	+--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112 
113 #ifdef SIGEMT
114 #define M_SIGEMT	M(SIGEMT)
115 #else
116 #define M_SIGEMT	0
117 #endif
118 
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125 
126 #define SIG_KERNEL_ONLY_MASK (\
127 	M(SIGKILL)   |  M(SIGSTOP)                                   )
128 
129 #define SIG_KERNEL_STOP_MASK (\
130 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131 
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136 
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139 
140 #define sig_kernel_only(sig) \
141 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148 
149 #define sig_user_defined(t, signr) \
150 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
151 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152 
153 #define sig_fatal(t, signr) \
154 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156 
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159 	void __user * handler;
160 
161 	/*
162 	 * Tracers always want to know about signals..
163 	 */
164 	if (t->ptrace & PT_PTRACED)
165 		return 0;
166 
167 	/*
168 	 * Blocked signals are never ignored, since the
169 	 * signal handler may change by the time it is
170 	 * unblocked.
171 	 */
172 	if (sigismember(&t->blocked, sig))
173 		return 0;
174 
175 	/* Is it explicitly or implicitly ignored? */
176 	handler = t->sighand->action[sig-1].sa.sa_handler;
177 	return   handler == SIG_IGN ||
178 		(handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180 
181 /*
182  * Re-calculate pending state from the set of locally pending
183  * signals, globally pending signals, and blocked signals.
184  */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187 	unsigned long ready;
188 	long i;
189 
190 	switch (_NSIG_WORDS) {
191 	default:
192 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 			ready |= signal->sig[i] &~ blocked->sig[i];
194 		break;
195 
196 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
197 		ready |= signal->sig[2] &~ blocked->sig[2];
198 		ready |= signal->sig[1] &~ blocked->sig[1];
199 		ready |= signal->sig[0] &~ blocked->sig[0];
200 		break;
201 
202 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
203 		ready |= signal->sig[0] &~ blocked->sig[0];
204 		break;
205 
206 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
207 	}
208 	return ready !=	0;
209 }
210 
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212 
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215 	if (t->signal->group_stop_count > 0 ||
216 	    PENDING(&t->pending, &t->blocked) ||
217 	    PENDING(&t->signal->shared_pending, &t->blocked))
218 		set_tsk_thread_flag(t, TIF_SIGPENDING);
219 	else
220 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
221 }
222 
223 void recalc_sigpending(void)
224 {
225 	recalc_sigpending_tsk(current);
226 }
227 
228 /* Given the mask, find the first available signal that should be serviced. */
229 
230 static int
231 next_signal(struct sigpending *pending, sigset_t *mask)
232 {
233 	unsigned long i, *s, *m, x;
234 	int sig = 0;
235 
236 	s = pending->signal.sig;
237 	m = mask->sig;
238 	switch (_NSIG_WORDS) {
239 	default:
240 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
241 			if ((x = *s &~ *m) != 0) {
242 				sig = ffz(~x) + i*_NSIG_BPW + 1;
243 				break;
244 			}
245 		break;
246 
247 	case 2: if ((x = s[0] &~ m[0]) != 0)
248 			sig = 1;
249 		else if ((x = s[1] &~ m[1]) != 0)
250 			sig = _NSIG_BPW + 1;
251 		else
252 			break;
253 		sig += ffz(~x);
254 		break;
255 
256 	case 1: if ((x = *s &~ *m) != 0)
257 			sig = ffz(~x) + 1;
258 		break;
259 	}
260 
261 	return sig;
262 }
263 
264 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
265 					 int override_rlimit)
266 {
267 	struct sigqueue *q = NULL;
268 
269 	atomic_inc(&t->user->sigpending);
270 	if (override_rlimit ||
271 	    atomic_read(&t->user->sigpending) <=
272 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
273 		q = kmem_cache_alloc(sigqueue_cachep, flags);
274 	if (unlikely(q == NULL)) {
275 		atomic_dec(&t->user->sigpending);
276 	} else {
277 		INIT_LIST_HEAD(&q->list);
278 		q->flags = 0;
279 		q->lock = NULL;
280 		q->user = get_uid(t->user);
281 	}
282 	return(q);
283 }
284 
285 static inline void __sigqueue_free(struct sigqueue *q)
286 {
287 	if (q->flags & SIGQUEUE_PREALLOC)
288 		return;
289 	atomic_dec(&q->user->sigpending);
290 	free_uid(q->user);
291 	kmem_cache_free(sigqueue_cachep, q);
292 }
293 
294 static void flush_sigqueue(struct sigpending *queue)
295 {
296 	struct sigqueue *q;
297 
298 	sigemptyset(&queue->signal);
299 	while (!list_empty(&queue->list)) {
300 		q = list_entry(queue->list.next, struct sigqueue , list);
301 		list_del_init(&q->list);
302 		__sigqueue_free(q);
303 	}
304 }
305 
306 /*
307  * Flush all pending signals for a task.
308  */
309 
310 void
311 flush_signals(struct task_struct *t)
312 {
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&t->sighand->siglock, flags);
316 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 	flush_sigqueue(&t->pending);
318 	flush_sigqueue(&t->signal->shared_pending);
319 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321 
322 /*
323  * This function expects the tasklist_lock write-locked.
324  */
325 void __exit_sighand(struct task_struct *tsk)
326 {
327 	struct sighand_struct * sighand = tsk->sighand;
328 
329 	/* Ok, we're done with the signal handlers */
330 	tsk->sighand = NULL;
331 	if (atomic_dec_and_test(&sighand->count))
332 		kmem_cache_free(sighand_cachep, sighand);
333 }
334 
335 void exit_sighand(struct task_struct *tsk)
336 {
337 	write_lock_irq(&tasklist_lock);
338 	__exit_sighand(tsk);
339 	write_unlock_irq(&tasklist_lock);
340 }
341 
342 /*
343  * This function expects the tasklist_lock write-locked.
344  */
345 void __exit_signal(struct task_struct *tsk)
346 {
347 	struct signal_struct * sig = tsk->signal;
348 	struct sighand_struct * sighand = tsk->sighand;
349 
350 	if (!sig)
351 		BUG();
352 	if (!atomic_read(&sig->count))
353 		BUG();
354 	spin_lock(&sighand->siglock);
355 	posix_cpu_timers_exit(tsk);
356 	if (atomic_dec_and_test(&sig->count)) {
357 		posix_cpu_timers_exit_group(tsk);
358 		if (tsk == sig->curr_target)
359 			sig->curr_target = next_thread(tsk);
360 		tsk->signal = NULL;
361 		spin_unlock(&sighand->siglock);
362 		flush_sigqueue(&sig->shared_pending);
363 	} else {
364 		/*
365 		 * If there is any task waiting for the group exit
366 		 * then notify it:
367 		 */
368 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 			wake_up_process(sig->group_exit_task);
370 			sig->group_exit_task = NULL;
371 		}
372 		if (tsk == sig->curr_target)
373 			sig->curr_target = next_thread(tsk);
374 		tsk->signal = NULL;
375 		/*
376 		 * Accumulate here the counters for all threads but the
377 		 * group leader as they die, so they can be added into
378 		 * the process-wide totals when those are taken.
379 		 * The group leader stays around as a zombie as long
380 		 * as there are other threads.  When it gets reaped,
381 		 * the exit.c code will add its counts into these totals.
382 		 * We won't ever get here for the group leader, since it
383 		 * will have been the last reference on the signal_struct.
384 		 */
385 		sig->utime = cputime_add(sig->utime, tsk->utime);
386 		sig->stime = cputime_add(sig->stime, tsk->stime);
387 		sig->min_flt += tsk->min_flt;
388 		sig->maj_flt += tsk->maj_flt;
389 		sig->nvcsw += tsk->nvcsw;
390 		sig->nivcsw += tsk->nivcsw;
391 		sig->sched_time += tsk->sched_time;
392 		spin_unlock(&sighand->siglock);
393 		sig = NULL;	/* Marker for below.  */
394 	}
395 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 	flush_sigqueue(&tsk->pending);
397 	if (sig) {
398 		/*
399 		 * We are cleaning up the signal_struct here.  We delayed
400 		 * calling exit_itimers until after flush_sigqueue, just in
401 		 * case our thread-local pending queue contained a queued
402 		 * timer signal that would have been cleared in
403 		 * exit_itimers.  When that called sigqueue_free, it would
404 		 * attempt to re-take the tasklist_lock and deadlock.  This
405 		 * can never happen if we ensure that all queues the
406 		 * timer's signal might be queued on have been flushed
407 		 * first.  The shared_pending queue, and our own pending
408 		 * queue are the only queues the timer could be on, since
409 		 * there are no other threads left in the group and timer
410 		 * signals are constrained to threads inside the group.
411 		 */
412 		exit_itimers(sig);
413 		exit_thread_group_keys(sig);
414 		kmem_cache_free(signal_cachep, sig);
415 	}
416 }
417 
418 void exit_signal(struct task_struct *tsk)
419 {
420 	write_lock_irq(&tasklist_lock);
421 	__exit_signal(tsk);
422 	write_unlock_irq(&tasklist_lock);
423 }
424 
425 /*
426  * Flush all handlers for a task.
427  */
428 
429 void
430 flush_signal_handlers(struct task_struct *t, int force_default)
431 {
432 	int i;
433 	struct k_sigaction *ka = &t->sighand->action[0];
434 	for (i = _NSIG ; i != 0 ; i--) {
435 		if (force_default || ka->sa.sa_handler != SIG_IGN)
436 			ka->sa.sa_handler = SIG_DFL;
437 		ka->sa.sa_flags = 0;
438 		sigemptyset(&ka->sa.sa_mask);
439 		ka++;
440 	}
441 }
442 
443 
444 /* Notify the system that a driver wants to block all signals for this
445  * process, and wants to be notified if any signals at all were to be
446  * sent/acted upon.  If the notifier routine returns non-zero, then the
447  * signal will be acted upon after all.  If the notifier routine returns 0,
448  * then then signal will be blocked.  Only one block per process is
449  * allowed.  priv is a pointer to private data that the notifier routine
450  * can use to determine if the signal should be blocked or not.  */
451 
452 void
453 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
454 {
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&current->sighand->siglock, flags);
458 	current->notifier_mask = mask;
459 	current->notifier_data = priv;
460 	current->notifier = notifier;
461 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
462 }
463 
464 /* Notify the system that blocking has ended. */
465 
466 void
467 unblock_all_signals(void)
468 {
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&current->sighand->siglock, flags);
472 	current->notifier = NULL;
473 	current->notifier_data = NULL;
474 	recalc_sigpending();
475 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
476 }
477 
478 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
479 {
480 	struct sigqueue *q, *first = NULL;
481 	int still_pending = 0;
482 
483 	if (unlikely(!sigismember(&list->signal, sig)))
484 		return 0;
485 
486 	/*
487 	 * Collect the siginfo appropriate to this signal.  Check if
488 	 * there is another siginfo for the same signal.
489 	*/
490 	list_for_each_entry(q, &list->list, list) {
491 		if (q->info.si_signo == sig) {
492 			if (first) {
493 				still_pending = 1;
494 				break;
495 			}
496 			first = q;
497 		}
498 	}
499 	if (first) {
500 		list_del_init(&first->list);
501 		copy_siginfo(info, &first->info);
502 		__sigqueue_free(first);
503 		if (!still_pending)
504 			sigdelset(&list->signal, sig);
505 	} else {
506 
507 		/* Ok, it wasn't in the queue.  This must be
508 		   a fast-pathed signal or we must have been
509 		   out of queue space.  So zero out the info.
510 		 */
511 		sigdelset(&list->signal, sig);
512 		info->si_signo = sig;
513 		info->si_errno = 0;
514 		info->si_code = 0;
515 		info->si_pid = 0;
516 		info->si_uid = 0;
517 	}
518 	return 1;
519 }
520 
521 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
522 			siginfo_t *info)
523 {
524 	int sig = 0;
525 
526 	/* SIGKILL must have priority, otherwise it is quite easy
527 	 * to create an unkillable process, sending sig < SIGKILL
528 	 * to self */
529 	if (unlikely(sigismember(&pending->signal, SIGKILL))) {
530 		if (!sigismember(mask, SIGKILL))
531 			sig = SIGKILL;
532 	}
533 
534 	if (likely(!sig))
535 		sig = next_signal(pending, mask);
536 	if (sig) {
537 		if (current->notifier) {
538 			if (sigismember(current->notifier_mask, sig)) {
539 				if (!(current->notifier)(current->notifier_data)) {
540 					clear_thread_flag(TIF_SIGPENDING);
541 					return 0;
542 				}
543 			}
544 		}
545 
546 		if (!collect_signal(sig, pending, info))
547 			sig = 0;
548 
549 	}
550 	recalc_sigpending();
551 
552 	return sig;
553 }
554 
555 /*
556  * Dequeue a signal and return the element to the caller, which is
557  * expected to free it.
558  *
559  * All callers have to hold the siglock.
560  */
561 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
562 {
563 	int signr = __dequeue_signal(&tsk->pending, mask, info);
564 	if (!signr)
565 		signr = __dequeue_signal(&tsk->signal->shared_pending,
566 					 mask, info);
567  	if (signr && unlikely(sig_kernel_stop(signr))) {
568  		/*
569  		 * Set a marker that we have dequeued a stop signal.  Our
570  		 * caller might release the siglock and then the pending
571  		 * stop signal it is about to process is no longer in the
572  		 * pending bitmasks, but must still be cleared by a SIGCONT
573  		 * (and overruled by a SIGKILL).  So those cases clear this
574  		 * shared flag after we've set it.  Note that this flag may
575  		 * remain set after the signal we return is ignored or
576  		 * handled.  That doesn't matter because its only purpose
577  		 * is to alert stop-signal processing code when another
578  		 * processor has come along and cleared the flag.
579  		 */
580  		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
581  	}
582 	if ( signr &&
583 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
584 	     info->si_sys_private){
585 		/*
586 		 * Release the siglock to ensure proper locking order
587 		 * of timer locks outside of siglocks.  Note, we leave
588 		 * irqs disabled here, since the posix-timers code is
589 		 * about to disable them again anyway.
590 		 */
591 		spin_unlock(&tsk->sighand->siglock);
592 		do_schedule_next_timer(info);
593 		spin_lock(&tsk->sighand->siglock);
594 	}
595 	return signr;
596 }
597 
598 /*
599  * Tell a process that it has a new active signal..
600  *
601  * NOTE! we rely on the previous spin_lock to
602  * lock interrupts for us! We can only be called with
603  * "siglock" held, and the local interrupt must
604  * have been disabled when that got acquired!
605  *
606  * No need to set need_resched since signal event passing
607  * goes through ->blocked
608  */
609 void signal_wake_up(struct task_struct *t, int resume)
610 {
611 	unsigned int mask;
612 
613 	set_tsk_thread_flag(t, TIF_SIGPENDING);
614 
615 	/*
616 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
617 	 * We don't check t->state here because there is a race with it
618 	 * executing another processor and just now entering stopped state.
619 	 * By using wake_up_state, we ensure the process will wake up and
620 	 * handle its death signal.
621 	 */
622 	mask = TASK_INTERRUPTIBLE;
623 	if (resume)
624 		mask |= TASK_STOPPED | TASK_TRACED;
625 	if (!wake_up_state(t, mask))
626 		kick_process(t);
627 }
628 
629 /*
630  * Remove signals in mask from the pending set and queue.
631  * Returns 1 if any signals were found.
632  *
633  * All callers must be holding the siglock.
634  */
635 static int rm_from_queue(unsigned long mask, struct sigpending *s)
636 {
637 	struct sigqueue *q, *n;
638 
639 	if (!sigtestsetmask(&s->signal, mask))
640 		return 0;
641 
642 	sigdelsetmask(&s->signal, mask);
643 	list_for_each_entry_safe(q, n, &s->list, list) {
644 		if (q->info.si_signo < SIGRTMIN &&
645 		    (mask & sigmask(q->info.si_signo))) {
646 			list_del_init(&q->list);
647 			__sigqueue_free(q);
648 		}
649 	}
650 	return 1;
651 }
652 
653 /*
654  * Bad permissions for sending the signal
655  */
656 static int check_kill_permission(int sig, struct siginfo *info,
657 				 struct task_struct *t)
658 {
659 	int error = -EINVAL;
660 	if (!valid_signal(sig))
661 		return error;
662 	error = -EPERM;
663 	if ((!info || ((unsigned long)info != 1 &&
664 			(unsigned long)info != 2 && SI_FROMUSER(info)))
665 	    && ((sig != SIGCONT) ||
666 		(current->signal->session != t->signal->session))
667 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
668 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
669 	    && !capable(CAP_KILL))
670 		return error;
671 
672 	error = security_task_kill(t, info, sig);
673 	if (!error)
674 		audit_signal_info(sig, t); /* Let audit system see the signal */
675 	return error;
676 }
677 
678 /* forward decl */
679 static void do_notify_parent_cldstop(struct task_struct *tsk,
680 				     struct task_struct *parent,
681 				     int why);
682 
683 /*
684  * Handle magic process-wide effects of stop/continue signals.
685  * Unlike the signal actions, these happen immediately at signal-generation
686  * time regardless of blocking, ignoring, or handling.  This does the
687  * actual continuing for SIGCONT, but not the actual stopping for stop
688  * signals.  The process stop is done as a signal action for SIG_DFL.
689  */
690 static void handle_stop_signal(int sig, struct task_struct *p)
691 {
692 	struct task_struct *t;
693 
694 	if (p->flags & SIGNAL_GROUP_EXIT)
695 		/*
696 		 * The process is in the middle of dying already.
697 		 */
698 		return;
699 
700 	if (sig_kernel_stop(sig)) {
701 		/*
702 		 * This is a stop signal.  Remove SIGCONT from all queues.
703 		 */
704 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
705 		t = p;
706 		do {
707 			rm_from_queue(sigmask(SIGCONT), &t->pending);
708 			t = next_thread(t);
709 		} while (t != p);
710 	} else if (sig == SIGCONT) {
711 		/*
712 		 * Remove all stop signals from all queues,
713 		 * and wake all threads.
714 		 */
715 		if (unlikely(p->signal->group_stop_count > 0)) {
716 			/*
717 			 * There was a group stop in progress.  We'll
718 			 * pretend it finished before we got here.  We are
719 			 * obliged to report it to the parent: if the
720 			 * SIGSTOP happened "after" this SIGCONT, then it
721 			 * would have cleared this pending SIGCONT.  If it
722 			 * happened "before" this SIGCONT, then the parent
723 			 * got the SIGCHLD about the stop finishing before
724 			 * the continue happened.  We do the notification
725 			 * now, and it's as if the stop had finished and
726 			 * the SIGCHLD was pending on entry to this kill.
727 			 */
728 			p->signal->group_stop_count = 0;
729 			p->signal->flags = SIGNAL_STOP_CONTINUED;
730 			spin_unlock(&p->sighand->siglock);
731 			if (p->ptrace & PT_PTRACED)
732 				do_notify_parent_cldstop(p, p->parent,
733 							 CLD_STOPPED);
734 			else
735 				do_notify_parent_cldstop(
736 					p->group_leader,
737 					p->group_leader->real_parent,
738 							 CLD_STOPPED);
739 			spin_lock(&p->sighand->siglock);
740 		}
741 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
742 		t = p;
743 		do {
744 			unsigned int state;
745 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
746 
747 			/*
748 			 * If there is a handler for SIGCONT, we must make
749 			 * sure that no thread returns to user mode before
750 			 * we post the signal, in case it was the only
751 			 * thread eligible to run the signal handler--then
752 			 * it must not do anything between resuming and
753 			 * running the handler.  With the TIF_SIGPENDING
754 			 * flag set, the thread will pause and acquire the
755 			 * siglock that we hold now and until we've queued
756 			 * the pending signal.
757 			 *
758 			 * Wake up the stopped thread _after_ setting
759 			 * TIF_SIGPENDING
760 			 */
761 			state = TASK_STOPPED;
762 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
763 				set_tsk_thread_flag(t, TIF_SIGPENDING);
764 				state |= TASK_INTERRUPTIBLE;
765 			}
766 			wake_up_state(t, state);
767 
768 			t = next_thread(t);
769 		} while (t != p);
770 
771 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
772 			/*
773 			 * We were in fact stopped, and are now continued.
774 			 * Notify the parent with CLD_CONTINUED.
775 			 */
776 			p->signal->flags = SIGNAL_STOP_CONTINUED;
777 			p->signal->group_exit_code = 0;
778 			spin_unlock(&p->sighand->siglock);
779 			if (p->ptrace & PT_PTRACED)
780 				do_notify_parent_cldstop(p, p->parent,
781 							 CLD_CONTINUED);
782 			else
783 				do_notify_parent_cldstop(
784 					p->group_leader,
785 					p->group_leader->real_parent,
786 							 CLD_CONTINUED);
787 			spin_lock(&p->sighand->siglock);
788 		} else {
789 			/*
790 			 * We are not stopped, but there could be a stop
791 			 * signal in the middle of being processed after
792 			 * being removed from the queue.  Clear that too.
793 			 */
794 			p->signal->flags = 0;
795 		}
796 	} else if (sig == SIGKILL) {
797 		/*
798 		 * Make sure that any pending stop signal already dequeued
799 		 * is undone by the wakeup for SIGKILL.
800 		 */
801 		p->signal->flags = 0;
802 	}
803 }
804 
805 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
806 			struct sigpending *signals)
807 {
808 	struct sigqueue * q = NULL;
809 	int ret = 0;
810 
811 	/*
812 	 * fast-pathed signals for kernel-internal things like SIGSTOP
813 	 * or SIGKILL.
814 	 */
815 	if ((unsigned long)info == 2)
816 		goto out_set;
817 
818 	/* Real-time signals must be queued if sent by sigqueue, or
819 	   some other real-time mechanism.  It is implementation
820 	   defined whether kill() does so.  We attempt to do so, on
821 	   the principle of least surprise, but since kill is not
822 	   allowed to fail with EAGAIN when low on memory we just
823 	   make sure at least one signal gets delivered and don't
824 	   pass on the info struct.  */
825 
826 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
827 					     ((unsigned long) info < 2 ||
828 					      info->si_code >= 0)));
829 	if (q) {
830 		list_add_tail(&q->list, &signals->list);
831 		switch ((unsigned long) info) {
832 		case 0:
833 			q->info.si_signo = sig;
834 			q->info.si_errno = 0;
835 			q->info.si_code = SI_USER;
836 			q->info.si_pid = current->pid;
837 			q->info.si_uid = current->uid;
838 			break;
839 		case 1:
840 			q->info.si_signo = sig;
841 			q->info.si_errno = 0;
842 			q->info.si_code = SI_KERNEL;
843 			q->info.si_pid = 0;
844 			q->info.si_uid = 0;
845 			break;
846 		default:
847 			copy_siginfo(&q->info, info);
848 			break;
849 		}
850 	} else {
851 		if (sig >= SIGRTMIN && info && (unsigned long)info != 1
852 		   && info->si_code != SI_USER)
853 		/*
854 		 * Queue overflow, abort.  We may abort if the signal was rt
855 		 * and sent by user using something other than kill().
856 		 */
857 			return -EAGAIN;
858 		if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
859 			/*
860 			 * Set up a return to indicate that we dropped
861 			 * the signal.
862 			 */
863 			ret = info->si_sys_private;
864 	}
865 
866 out_set:
867 	sigaddset(&signals->signal, sig);
868 	return ret;
869 }
870 
871 #define LEGACY_QUEUE(sigptr, sig) \
872 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
873 
874 
875 static int
876 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
877 {
878 	int ret = 0;
879 
880 	if (!irqs_disabled())
881 		BUG();
882 	assert_spin_locked(&t->sighand->siglock);
883 
884 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
885 		/*
886 		 * Set up a return to indicate that we dropped the signal.
887 		 */
888 		ret = info->si_sys_private;
889 
890 	/* Short-circuit ignored signals.  */
891 	if (sig_ignored(t, sig))
892 		goto out;
893 
894 	/* Support queueing exactly one non-rt signal, so that we
895 	   can get more detailed information about the cause of
896 	   the signal. */
897 	if (LEGACY_QUEUE(&t->pending, sig))
898 		goto out;
899 
900 	ret = send_signal(sig, info, t, &t->pending);
901 	if (!ret && !sigismember(&t->blocked, sig))
902 		signal_wake_up(t, sig == SIGKILL);
903 out:
904 	return ret;
905 }
906 
907 /*
908  * Force a signal that the process can't ignore: if necessary
909  * we unblock the signal and change any SIG_IGN to SIG_DFL.
910  */
911 
912 int
913 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
914 {
915 	unsigned long int flags;
916 	int ret;
917 
918 	spin_lock_irqsave(&t->sighand->siglock, flags);
919 	if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
920 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
921 		sigdelset(&t->blocked, sig);
922 		recalc_sigpending_tsk(t);
923 	}
924 	ret = specific_send_sig_info(sig, info, t);
925 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
926 
927 	return ret;
928 }
929 
930 void
931 force_sig_specific(int sig, struct task_struct *t)
932 {
933 	unsigned long int flags;
934 
935 	spin_lock_irqsave(&t->sighand->siglock, flags);
936 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
937 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
938 	sigdelset(&t->blocked, sig);
939 	recalc_sigpending_tsk(t);
940 	specific_send_sig_info(sig, (void *)2, t);
941 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
942 }
943 
944 /*
945  * Test if P wants to take SIG.  After we've checked all threads with this,
946  * it's equivalent to finding no threads not blocking SIG.  Any threads not
947  * blocking SIG were ruled out because they are not running and already
948  * have pending signals.  Such threads will dequeue from the shared queue
949  * as soon as they're available, so putting the signal on the shared queue
950  * will be equivalent to sending it to one such thread.
951  */
952 #define wants_signal(sig, p, mask) 			\
953 	(!sigismember(&(p)->blocked, sig)		\
954 	 && !((p)->state & mask)			\
955 	 && !((p)->flags & PF_EXITING)			\
956 	 && (task_curr(p) || !signal_pending(p)))
957 
958 
959 static void
960 __group_complete_signal(int sig, struct task_struct *p)
961 {
962 	unsigned int mask;
963 	struct task_struct *t;
964 
965 	/*
966 	 * Don't bother traced and stopped tasks (but
967 	 * SIGKILL will punch through that).
968 	 */
969 	mask = TASK_STOPPED | TASK_TRACED;
970 	if (sig == SIGKILL)
971 		mask = 0;
972 
973 	/*
974 	 * Now find a thread we can wake up to take the signal off the queue.
975 	 *
976 	 * If the main thread wants the signal, it gets first crack.
977 	 * Probably the least surprising to the average bear.
978 	 */
979 	if (wants_signal(sig, p, mask))
980 		t = p;
981 	else if (thread_group_empty(p))
982 		/*
983 		 * There is just one thread and it does not need to be woken.
984 		 * It will dequeue unblocked signals before it runs again.
985 		 */
986 		return;
987 	else {
988 		/*
989 		 * Otherwise try to find a suitable thread.
990 		 */
991 		t = p->signal->curr_target;
992 		if (t == NULL)
993 			/* restart balancing at this thread */
994 			t = p->signal->curr_target = p;
995 		BUG_ON(t->tgid != p->tgid);
996 
997 		while (!wants_signal(sig, t, mask)) {
998 			t = next_thread(t);
999 			if (t == p->signal->curr_target)
1000 				/*
1001 				 * No thread needs to be woken.
1002 				 * Any eligible threads will see
1003 				 * the signal in the queue soon.
1004 				 */
1005 				return;
1006 		}
1007 		p->signal->curr_target = t;
1008 	}
1009 
1010 	/*
1011 	 * Found a killable thread.  If the signal will be fatal,
1012 	 * then start taking the whole group down immediately.
1013 	 */
1014 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1015 	    !sigismember(&t->real_blocked, sig) &&
1016 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1017 		/*
1018 		 * This signal will be fatal to the whole group.
1019 		 */
1020 		if (!sig_kernel_coredump(sig)) {
1021 			/*
1022 			 * Start a group exit and wake everybody up.
1023 			 * This way we don't have other threads
1024 			 * running and doing things after a slower
1025 			 * thread has the fatal signal pending.
1026 			 */
1027 			p->signal->flags = SIGNAL_GROUP_EXIT;
1028 			p->signal->group_exit_code = sig;
1029 			p->signal->group_stop_count = 0;
1030 			t = p;
1031 			do {
1032 				sigaddset(&t->pending.signal, SIGKILL);
1033 				signal_wake_up(t, 1);
1034 				t = next_thread(t);
1035 			} while (t != p);
1036 			return;
1037 		}
1038 
1039 		/*
1040 		 * There will be a core dump.  We make all threads other
1041 		 * than the chosen one go into a group stop so that nothing
1042 		 * happens until it gets scheduled, takes the signal off
1043 		 * the shared queue, and does the core dump.  This is a
1044 		 * little more complicated than strictly necessary, but it
1045 		 * keeps the signal state that winds up in the core dump
1046 		 * unchanged from the death state, e.g. which thread had
1047 		 * the core-dump signal unblocked.
1048 		 */
1049 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1050 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1051 		p->signal->group_stop_count = 0;
1052 		p->signal->group_exit_task = t;
1053 		t = p;
1054 		do {
1055 			p->signal->group_stop_count++;
1056 			signal_wake_up(t, 0);
1057 			t = next_thread(t);
1058 		} while (t != p);
1059 		wake_up_process(p->signal->group_exit_task);
1060 		return;
1061 	}
1062 
1063 	/*
1064 	 * The signal is already in the shared-pending queue.
1065 	 * Tell the chosen thread to wake up and dequeue it.
1066 	 */
1067 	signal_wake_up(t, sig == SIGKILL);
1068 	return;
1069 }
1070 
1071 int
1072 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1073 {
1074 	int ret = 0;
1075 
1076 	assert_spin_locked(&p->sighand->siglock);
1077 	handle_stop_signal(sig, p);
1078 
1079 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1080 		/*
1081 		 * Set up a return to indicate that we dropped the signal.
1082 		 */
1083 		ret = info->si_sys_private;
1084 
1085 	/* Short-circuit ignored signals.  */
1086 	if (sig_ignored(p, sig))
1087 		return ret;
1088 
1089 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1090 		/* This is a non-RT signal and we already have one queued.  */
1091 		return ret;
1092 
1093 	/*
1094 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1095 	 * We always use the shared queue for process-wide signals,
1096 	 * to avoid several races.
1097 	 */
1098 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
1099 	if (unlikely(ret))
1100 		return ret;
1101 
1102 	__group_complete_signal(sig, p);
1103 	return 0;
1104 }
1105 
1106 /*
1107  * Nuke all other threads in the group.
1108  */
1109 void zap_other_threads(struct task_struct *p)
1110 {
1111 	struct task_struct *t;
1112 
1113 	p->signal->flags = SIGNAL_GROUP_EXIT;
1114 	p->signal->group_stop_count = 0;
1115 
1116 	if (thread_group_empty(p))
1117 		return;
1118 
1119 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1120 		/*
1121 		 * Don't bother with already dead threads
1122 		 */
1123 		if (t->exit_state)
1124 			continue;
1125 
1126 		/*
1127 		 * We don't want to notify the parent, since we are
1128 		 * killed as part of a thread group due to another
1129 		 * thread doing an execve() or similar. So set the
1130 		 * exit signal to -1 to allow immediate reaping of
1131 		 * the process.  But don't detach the thread group
1132 		 * leader.
1133 		 */
1134 		if (t != p->group_leader)
1135 			t->exit_signal = -1;
1136 
1137 		sigaddset(&t->pending.signal, SIGKILL);
1138 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1139 		signal_wake_up(t, 1);
1140 	}
1141 }
1142 
1143 /*
1144  * Must be called with the tasklist_lock held for reading!
1145  */
1146 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1147 {
1148 	unsigned long flags;
1149 	int ret;
1150 
1151 	ret = check_kill_permission(sig, info, p);
1152 	if (!ret && sig && p->sighand) {
1153 		spin_lock_irqsave(&p->sighand->siglock, flags);
1154 		ret = __group_send_sig_info(sig, info, p);
1155 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1156 	}
1157 
1158 	return ret;
1159 }
1160 
1161 /*
1162  * kill_pg_info() sends a signal to a process group: this is what the tty
1163  * control characters do (^C, ^Z etc)
1164  */
1165 
1166 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1167 {
1168 	struct task_struct *p = NULL;
1169 	int retval, success;
1170 
1171 	if (pgrp <= 0)
1172 		return -EINVAL;
1173 
1174 	success = 0;
1175 	retval = -ESRCH;
1176 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1177 		int err = group_send_sig_info(sig, info, p);
1178 		success |= !err;
1179 		retval = err;
1180 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1181 	return success ? 0 : retval;
1182 }
1183 
1184 int
1185 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1186 {
1187 	int retval;
1188 
1189 	read_lock(&tasklist_lock);
1190 	retval = __kill_pg_info(sig, info, pgrp);
1191 	read_unlock(&tasklist_lock);
1192 
1193 	return retval;
1194 }
1195 
1196 int
1197 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1198 {
1199 	int error;
1200 	struct task_struct *p;
1201 
1202 	read_lock(&tasklist_lock);
1203 	p = find_task_by_pid(pid);
1204 	error = -ESRCH;
1205 	if (p)
1206 		error = group_send_sig_info(sig, info, p);
1207 	read_unlock(&tasklist_lock);
1208 	return error;
1209 }
1210 
1211 
1212 /*
1213  * kill_something_info() interprets pid in interesting ways just like kill(2).
1214  *
1215  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1216  * is probably wrong.  Should make it like BSD or SYSV.
1217  */
1218 
1219 static int kill_something_info(int sig, struct siginfo *info, int pid)
1220 {
1221 	if (!pid) {
1222 		return kill_pg_info(sig, info, process_group(current));
1223 	} else if (pid == -1) {
1224 		int retval = 0, count = 0;
1225 		struct task_struct * p;
1226 
1227 		read_lock(&tasklist_lock);
1228 		for_each_process(p) {
1229 			if (p->pid > 1 && p->tgid != current->tgid) {
1230 				int err = group_send_sig_info(sig, info, p);
1231 				++count;
1232 				if (err != -EPERM)
1233 					retval = err;
1234 			}
1235 		}
1236 		read_unlock(&tasklist_lock);
1237 		return count ? retval : -ESRCH;
1238 	} else if (pid < 0) {
1239 		return kill_pg_info(sig, info, -pid);
1240 	} else {
1241 		return kill_proc_info(sig, info, pid);
1242 	}
1243 }
1244 
1245 /*
1246  * These are for backward compatibility with the rest of the kernel source.
1247  */
1248 
1249 /*
1250  * These two are the most common entry points.  They send a signal
1251  * just to the specific thread.
1252  */
1253 int
1254 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1255 {
1256 	int ret;
1257 	unsigned long flags;
1258 
1259 	/*
1260 	 * Make sure legacy kernel users don't send in bad values
1261 	 * (normal paths check this in check_kill_permission).
1262 	 */
1263 	if (!valid_signal(sig))
1264 		return -EINVAL;
1265 
1266 	/*
1267 	 * We need the tasklist lock even for the specific
1268 	 * thread case (when we don't need to follow the group
1269 	 * lists) in order to avoid races with "p->sighand"
1270 	 * going away or changing from under us.
1271 	 */
1272 	read_lock(&tasklist_lock);
1273 	spin_lock_irqsave(&p->sighand->siglock, flags);
1274 	ret = specific_send_sig_info(sig, info, p);
1275 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1276 	read_unlock(&tasklist_lock);
1277 	return ret;
1278 }
1279 
1280 int
1281 send_sig(int sig, struct task_struct *p, int priv)
1282 {
1283 	return send_sig_info(sig, (void*)(long)(priv != 0), p);
1284 }
1285 
1286 /*
1287  * This is the entry point for "process-wide" signals.
1288  * They will go to an appropriate thread in the thread group.
1289  */
1290 int
1291 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1292 {
1293 	int ret;
1294 	read_lock(&tasklist_lock);
1295 	ret = group_send_sig_info(sig, info, p);
1296 	read_unlock(&tasklist_lock);
1297 	return ret;
1298 }
1299 
1300 void
1301 force_sig(int sig, struct task_struct *p)
1302 {
1303 	force_sig_info(sig, (void*)1L, p);
1304 }
1305 
1306 /*
1307  * When things go south during signal handling, we
1308  * will force a SIGSEGV. And if the signal that caused
1309  * the problem was already a SIGSEGV, we'll want to
1310  * make sure we don't even try to deliver the signal..
1311  */
1312 int
1313 force_sigsegv(int sig, struct task_struct *p)
1314 {
1315 	if (sig == SIGSEGV) {
1316 		unsigned long flags;
1317 		spin_lock_irqsave(&p->sighand->siglock, flags);
1318 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1319 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1320 	}
1321 	force_sig(SIGSEGV, p);
1322 	return 0;
1323 }
1324 
1325 int
1326 kill_pg(pid_t pgrp, int sig, int priv)
1327 {
1328 	return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1329 }
1330 
1331 int
1332 kill_proc(pid_t pid, int sig, int priv)
1333 {
1334 	return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1335 }
1336 
1337 /*
1338  * These functions support sending signals using preallocated sigqueue
1339  * structures.  This is needed "because realtime applications cannot
1340  * afford to lose notifications of asynchronous events, like timer
1341  * expirations or I/O completions".  In the case of Posix Timers
1342  * we allocate the sigqueue structure from the timer_create.  If this
1343  * allocation fails we are able to report the failure to the application
1344  * with an EAGAIN error.
1345  */
1346 
1347 struct sigqueue *sigqueue_alloc(void)
1348 {
1349 	struct sigqueue *q;
1350 
1351 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1352 		q->flags |= SIGQUEUE_PREALLOC;
1353 	return(q);
1354 }
1355 
1356 void sigqueue_free(struct sigqueue *q)
1357 {
1358 	unsigned long flags;
1359 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1360 	/*
1361 	 * If the signal is still pending remove it from the
1362 	 * pending queue.
1363 	 */
1364 	if (unlikely(!list_empty(&q->list))) {
1365 		read_lock(&tasklist_lock);
1366 		spin_lock_irqsave(q->lock, flags);
1367 		if (!list_empty(&q->list))
1368 			list_del_init(&q->list);
1369 		spin_unlock_irqrestore(q->lock, flags);
1370 		read_unlock(&tasklist_lock);
1371 	}
1372 	q->flags &= ~SIGQUEUE_PREALLOC;
1373 	__sigqueue_free(q);
1374 }
1375 
1376 int
1377 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1378 {
1379 	unsigned long flags;
1380 	int ret = 0;
1381 
1382 	/*
1383 	 * We need the tasklist lock even for the specific
1384 	 * thread case (when we don't need to follow the group
1385 	 * lists) in order to avoid races with "p->sighand"
1386 	 * going away or changing from under us.
1387 	 */
1388 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1389 	read_lock(&tasklist_lock);
1390 	spin_lock_irqsave(&p->sighand->siglock, flags);
1391 
1392 	if (unlikely(!list_empty(&q->list))) {
1393 		/*
1394 		 * If an SI_TIMER entry is already queue just increment
1395 		 * the overrun count.
1396 		 */
1397 		if (q->info.si_code != SI_TIMER)
1398 			BUG();
1399 		q->info.si_overrun++;
1400 		goto out;
1401 	}
1402 	/* Short-circuit ignored signals.  */
1403 	if (sig_ignored(p, sig)) {
1404 		ret = 1;
1405 		goto out;
1406 	}
1407 
1408 	q->lock = &p->sighand->siglock;
1409 	list_add_tail(&q->list, &p->pending.list);
1410 	sigaddset(&p->pending.signal, sig);
1411 	if (!sigismember(&p->blocked, sig))
1412 		signal_wake_up(p, sig == SIGKILL);
1413 
1414 out:
1415 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1416 	read_unlock(&tasklist_lock);
1417 	return(ret);
1418 }
1419 
1420 int
1421 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1422 {
1423 	unsigned long flags;
1424 	int ret = 0;
1425 
1426 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1427 	read_lock(&tasklist_lock);
1428 	spin_lock_irqsave(&p->sighand->siglock, flags);
1429 	handle_stop_signal(sig, p);
1430 
1431 	/* Short-circuit ignored signals.  */
1432 	if (sig_ignored(p, sig)) {
1433 		ret = 1;
1434 		goto out;
1435 	}
1436 
1437 	if (unlikely(!list_empty(&q->list))) {
1438 		/*
1439 		 * If an SI_TIMER entry is already queue just increment
1440 		 * the overrun count.  Other uses should not try to
1441 		 * send the signal multiple times.
1442 		 */
1443 		if (q->info.si_code != SI_TIMER)
1444 			BUG();
1445 		q->info.si_overrun++;
1446 		goto out;
1447 	}
1448 
1449 	/*
1450 	 * Put this signal on the shared-pending queue.
1451 	 * We always use the shared queue for process-wide signals,
1452 	 * to avoid several races.
1453 	 */
1454 	q->lock = &p->sighand->siglock;
1455 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1456 	sigaddset(&p->signal->shared_pending.signal, sig);
1457 
1458 	__group_complete_signal(sig, p);
1459 out:
1460 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1461 	read_unlock(&tasklist_lock);
1462 	return(ret);
1463 }
1464 
1465 /*
1466  * Wake up any threads in the parent blocked in wait* syscalls.
1467  */
1468 static inline void __wake_up_parent(struct task_struct *p,
1469 				    struct task_struct *parent)
1470 {
1471 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1472 }
1473 
1474 /*
1475  * Let a parent know about the death of a child.
1476  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1477  */
1478 
1479 void do_notify_parent(struct task_struct *tsk, int sig)
1480 {
1481 	struct siginfo info;
1482 	unsigned long flags;
1483 	struct sighand_struct *psig;
1484 
1485 	BUG_ON(sig == -1);
1486 
1487  	/* do_notify_parent_cldstop should have been called instead.  */
1488  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1489 
1490 	BUG_ON(!tsk->ptrace &&
1491 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1492 
1493 	info.si_signo = sig;
1494 	info.si_errno = 0;
1495 	info.si_pid = tsk->pid;
1496 	info.si_uid = tsk->uid;
1497 
1498 	/* FIXME: find out whether or not this is supposed to be c*time. */
1499 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1500 						       tsk->signal->utime));
1501 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1502 						       tsk->signal->stime));
1503 
1504 	info.si_status = tsk->exit_code & 0x7f;
1505 	if (tsk->exit_code & 0x80)
1506 		info.si_code = CLD_DUMPED;
1507 	else if (tsk->exit_code & 0x7f)
1508 		info.si_code = CLD_KILLED;
1509 	else {
1510 		info.si_code = CLD_EXITED;
1511 		info.si_status = tsk->exit_code >> 8;
1512 	}
1513 
1514 	psig = tsk->parent->sighand;
1515 	spin_lock_irqsave(&psig->siglock, flags);
1516 	if (sig == SIGCHLD &&
1517 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1518 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1519 		/*
1520 		 * We are exiting and our parent doesn't care.  POSIX.1
1521 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1522 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1523 		 * automatically and not left for our parent's wait4 call.
1524 		 * Rather than having the parent do it as a magic kind of
1525 		 * signal handler, we just set this to tell do_exit that we
1526 		 * can be cleaned up without becoming a zombie.  Note that
1527 		 * we still call __wake_up_parent in this case, because a
1528 		 * blocked sys_wait4 might now return -ECHILD.
1529 		 *
1530 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1531 		 * is implementation-defined: we do (if you don't want
1532 		 * it, just use SIG_IGN instead).
1533 		 */
1534 		tsk->exit_signal = -1;
1535 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1536 			sig = 0;
1537 	}
1538 	if (valid_signal(sig) && sig > 0)
1539 		__group_send_sig_info(sig, &info, tsk->parent);
1540 	__wake_up_parent(tsk, tsk->parent);
1541 	spin_unlock_irqrestore(&psig->siglock, flags);
1542 }
1543 
1544 static void
1545 do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent,
1546 			 int why)
1547 {
1548 	struct siginfo info;
1549 	unsigned long flags;
1550 	struct sighand_struct *sighand;
1551 
1552 	info.si_signo = SIGCHLD;
1553 	info.si_errno = 0;
1554 	info.si_pid = tsk->pid;
1555 	info.si_uid = tsk->uid;
1556 
1557 	/* FIXME: find out whether or not this is supposed to be c*time. */
1558 	info.si_utime = cputime_to_jiffies(tsk->utime);
1559 	info.si_stime = cputime_to_jiffies(tsk->stime);
1560 
1561  	info.si_code = why;
1562  	switch (why) {
1563  	case CLD_CONTINUED:
1564  		info.si_status = SIGCONT;
1565  		break;
1566  	case CLD_STOPPED:
1567  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1568  		break;
1569  	case CLD_TRAPPED:
1570  		info.si_status = tsk->exit_code & 0x7f;
1571  		break;
1572  	default:
1573  		BUG();
1574  	}
1575 
1576 	sighand = parent->sighand;
1577 	spin_lock_irqsave(&sighand->siglock, flags);
1578 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1579 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1580 		__group_send_sig_info(SIGCHLD, &info, parent);
1581 	/*
1582 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1583 	 */
1584 	__wake_up_parent(tsk, parent);
1585 	spin_unlock_irqrestore(&sighand->siglock, flags);
1586 }
1587 
1588 /*
1589  * This must be called with current->sighand->siglock held.
1590  *
1591  * This should be the path for all ptrace stops.
1592  * We always set current->last_siginfo while stopped here.
1593  * That makes it a way to test a stopped process for
1594  * being ptrace-stopped vs being job-control-stopped.
1595  *
1596  * If we actually decide not to stop at all because the tracer is gone,
1597  * we leave nostop_code in current->exit_code.
1598  */
1599 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1600 {
1601 	/*
1602 	 * If there is a group stop in progress,
1603 	 * we must participate in the bookkeeping.
1604 	 */
1605 	if (current->signal->group_stop_count > 0)
1606 		--current->signal->group_stop_count;
1607 
1608 	current->last_siginfo = info;
1609 	current->exit_code = exit_code;
1610 
1611 	/* Let the debugger run.  */
1612 	set_current_state(TASK_TRACED);
1613 	spin_unlock_irq(&current->sighand->siglock);
1614 	read_lock(&tasklist_lock);
1615 	if (likely(current->ptrace & PT_PTRACED) &&
1616 	    likely(current->parent != current->real_parent ||
1617 		   !(current->ptrace & PT_ATTACHED)) &&
1618 	    (likely(current->parent->signal != current->signal) ||
1619 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1620 		do_notify_parent_cldstop(current, current->parent,
1621 					 CLD_TRAPPED);
1622 		read_unlock(&tasklist_lock);
1623 		schedule();
1624 	} else {
1625 		/*
1626 		 * By the time we got the lock, our tracer went away.
1627 		 * Don't stop here.
1628 		 */
1629 		read_unlock(&tasklist_lock);
1630 		set_current_state(TASK_RUNNING);
1631 		current->exit_code = nostop_code;
1632 	}
1633 
1634 	/*
1635 	 * We are back.  Now reacquire the siglock before touching
1636 	 * last_siginfo, so that we are sure to have synchronized with
1637 	 * any signal-sending on another CPU that wants to examine it.
1638 	 */
1639 	spin_lock_irq(&current->sighand->siglock);
1640 	current->last_siginfo = NULL;
1641 
1642 	/*
1643 	 * Queued signals ignored us while we were stopped for tracing.
1644 	 * So check for any that we should take before resuming user mode.
1645 	 */
1646 	recalc_sigpending();
1647 }
1648 
1649 void ptrace_notify(int exit_code)
1650 {
1651 	siginfo_t info;
1652 
1653 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1654 
1655 	memset(&info, 0, sizeof info);
1656 	info.si_signo = SIGTRAP;
1657 	info.si_code = exit_code;
1658 	info.si_pid = current->pid;
1659 	info.si_uid = current->uid;
1660 
1661 	/* Let the debugger run.  */
1662 	spin_lock_irq(&current->sighand->siglock);
1663 	ptrace_stop(exit_code, 0, &info);
1664 	spin_unlock_irq(&current->sighand->siglock);
1665 }
1666 
1667 static void
1668 finish_stop(int stop_count)
1669 {
1670 	/*
1671 	 * If there are no other threads in the group, or if there is
1672 	 * a group stop in progress and we are the last to stop,
1673 	 * report to the parent.  When ptraced, every thread reports itself.
1674 	 */
1675 	if (stop_count < 0 || (current->ptrace & PT_PTRACED)) {
1676 		read_lock(&tasklist_lock);
1677 		do_notify_parent_cldstop(current, current->parent,
1678 					 CLD_STOPPED);
1679 		read_unlock(&tasklist_lock);
1680 	}
1681 	else if (stop_count == 0) {
1682 		read_lock(&tasklist_lock);
1683 		do_notify_parent_cldstop(current->group_leader,
1684 					 current->group_leader->real_parent,
1685 					 CLD_STOPPED);
1686 		read_unlock(&tasklist_lock);
1687 	}
1688 
1689 	schedule();
1690 	/*
1691 	 * Now we don't run again until continued.
1692 	 */
1693 	current->exit_code = 0;
1694 }
1695 
1696 /*
1697  * This performs the stopping for SIGSTOP and other stop signals.
1698  * We have to stop all threads in the thread group.
1699  * Returns nonzero if we've actually stopped and released the siglock.
1700  * Returns zero if we didn't stop and still hold the siglock.
1701  */
1702 static int
1703 do_signal_stop(int signr)
1704 {
1705 	struct signal_struct *sig = current->signal;
1706 	struct sighand_struct *sighand = current->sighand;
1707 	int stop_count = -1;
1708 
1709 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1710 		return 0;
1711 
1712 	if (sig->group_stop_count > 0) {
1713 		/*
1714 		 * There is a group stop in progress.  We don't need to
1715 		 * start another one.
1716 		 */
1717 		signr = sig->group_exit_code;
1718 		stop_count = --sig->group_stop_count;
1719 		current->exit_code = signr;
1720 		set_current_state(TASK_STOPPED);
1721 		if (stop_count == 0)
1722 			sig->flags = SIGNAL_STOP_STOPPED;
1723 		spin_unlock_irq(&sighand->siglock);
1724 	}
1725 	else if (thread_group_empty(current)) {
1726 		/*
1727 		 * Lock must be held through transition to stopped state.
1728 		 */
1729 		current->exit_code = current->signal->group_exit_code = signr;
1730 		set_current_state(TASK_STOPPED);
1731 		sig->flags = SIGNAL_STOP_STOPPED;
1732 		spin_unlock_irq(&sighand->siglock);
1733 	}
1734 	else {
1735 		/*
1736 		 * There is no group stop already in progress.
1737 		 * We must initiate one now, but that requires
1738 		 * dropping siglock to get both the tasklist lock
1739 		 * and siglock again in the proper order.  Note that
1740 		 * this allows an intervening SIGCONT to be posted.
1741 		 * We need to check for that and bail out if necessary.
1742 		 */
1743 		struct task_struct *t;
1744 
1745 		spin_unlock_irq(&sighand->siglock);
1746 
1747 		/* signals can be posted during this window */
1748 
1749 		read_lock(&tasklist_lock);
1750 		spin_lock_irq(&sighand->siglock);
1751 
1752 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1753 			/*
1754 			 * Another stop or continue happened while we
1755 			 * didn't have the lock.  We can just swallow this
1756 			 * signal now.  If we raced with a SIGCONT, that
1757 			 * should have just cleared it now.  If we raced
1758 			 * with another processor delivering a stop signal,
1759 			 * then the SIGCONT that wakes us up should clear it.
1760 			 */
1761 			read_unlock(&tasklist_lock);
1762 			return 0;
1763 		}
1764 
1765 		if (sig->group_stop_count == 0) {
1766 			sig->group_exit_code = signr;
1767 			stop_count = 0;
1768 			for (t = next_thread(current); t != current;
1769 			     t = next_thread(t))
1770 				/*
1771 				 * Setting state to TASK_STOPPED for a group
1772 				 * stop is always done with the siglock held,
1773 				 * so this check has no races.
1774 				 */
1775 				if (t->state < TASK_STOPPED) {
1776 					stop_count++;
1777 					signal_wake_up(t, 0);
1778 				}
1779 			sig->group_stop_count = stop_count;
1780 		}
1781 		else {
1782 			/* A race with another thread while unlocked.  */
1783 			signr = sig->group_exit_code;
1784 			stop_count = --sig->group_stop_count;
1785 		}
1786 
1787 		current->exit_code = signr;
1788 		set_current_state(TASK_STOPPED);
1789 		if (stop_count == 0)
1790 			sig->flags = SIGNAL_STOP_STOPPED;
1791 
1792 		spin_unlock_irq(&sighand->siglock);
1793 		read_unlock(&tasklist_lock);
1794 	}
1795 
1796 	finish_stop(stop_count);
1797 	return 1;
1798 }
1799 
1800 /*
1801  * Do appropriate magic when group_stop_count > 0.
1802  * We return nonzero if we stopped, after releasing the siglock.
1803  * We return zero if we still hold the siglock and should look
1804  * for another signal without checking group_stop_count again.
1805  */
1806 static inline int handle_group_stop(void)
1807 {
1808 	int stop_count;
1809 
1810 	if (current->signal->group_exit_task == current) {
1811 		/*
1812 		 * Group stop is so we can do a core dump,
1813 		 * We are the initiating thread, so get on with it.
1814 		 */
1815 		current->signal->group_exit_task = NULL;
1816 		return 0;
1817 	}
1818 
1819 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1820 		/*
1821 		 * Group stop is so another thread can do a core dump,
1822 		 * or else we are racing against a death signal.
1823 		 * Just punt the stop so we can get the next signal.
1824 		 */
1825 		return 0;
1826 
1827 	/*
1828 	 * There is a group stop in progress.  We stop
1829 	 * without any associated signal being in our queue.
1830 	 */
1831 	stop_count = --current->signal->group_stop_count;
1832 	if (stop_count == 0)
1833 		current->signal->flags = SIGNAL_STOP_STOPPED;
1834 	current->exit_code = current->signal->group_exit_code;
1835 	set_current_state(TASK_STOPPED);
1836 	spin_unlock_irq(&current->sighand->siglock);
1837 	finish_stop(stop_count);
1838 	return 1;
1839 }
1840 
1841 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1842 			  struct pt_regs *regs, void *cookie)
1843 {
1844 	sigset_t *mask = &current->blocked;
1845 	int signr = 0;
1846 
1847 relock:
1848 	spin_lock_irq(&current->sighand->siglock);
1849 	for (;;) {
1850 		struct k_sigaction *ka;
1851 
1852 		if (unlikely(current->signal->group_stop_count > 0) &&
1853 		    handle_group_stop())
1854 			goto relock;
1855 
1856 		signr = dequeue_signal(current, mask, info);
1857 
1858 		if (!signr)
1859 			break; /* will return 0 */
1860 
1861 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1862 			ptrace_signal_deliver(regs, cookie);
1863 
1864 			/* Let the debugger run.  */
1865 			ptrace_stop(signr, signr, info);
1866 
1867 			/* We're back.  Did the debugger cancel the sig?  */
1868 			signr = current->exit_code;
1869 			if (signr == 0)
1870 				continue;
1871 
1872 			current->exit_code = 0;
1873 
1874 			/* Update the siginfo structure if the signal has
1875 			   changed.  If the debugger wanted something
1876 			   specific in the siginfo structure then it should
1877 			   have updated *info via PTRACE_SETSIGINFO.  */
1878 			if (signr != info->si_signo) {
1879 				info->si_signo = signr;
1880 				info->si_errno = 0;
1881 				info->si_code = SI_USER;
1882 				info->si_pid = current->parent->pid;
1883 				info->si_uid = current->parent->uid;
1884 			}
1885 
1886 			/* If the (new) signal is now blocked, requeue it.  */
1887 			if (sigismember(&current->blocked, signr)) {
1888 				specific_send_sig_info(signr, info, current);
1889 				continue;
1890 			}
1891 		}
1892 
1893 		ka = &current->sighand->action[signr-1];
1894 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1895 			continue;
1896 		if (ka->sa.sa_handler != SIG_DFL) {
1897 			/* Run the handler.  */
1898 			*return_ka = *ka;
1899 
1900 			if (ka->sa.sa_flags & SA_ONESHOT)
1901 				ka->sa.sa_handler = SIG_DFL;
1902 
1903 			break; /* will return non-zero "signr" value */
1904 		}
1905 
1906 		/*
1907 		 * Now we are doing the default action for this signal.
1908 		 */
1909 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1910 			continue;
1911 
1912 		/* Init gets no signals it doesn't want.  */
1913 		if (current->pid == 1)
1914 			continue;
1915 
1916 		if (sig_kernel_stop(signr)) {
1917 			/*
1918 			 * The default action is to stop all threads in
1919 			 * the thread group.  The job control signals
1920 			 * do nothing in an orphaned pgrp, but SIGSTOP
1921 			 * always works.  Note that siglock needs to be
1922 			 * dropped during the call to is_orphaned_pgrp()
1923 			 * because of lock ordering with tasklist_lock.
1924 			 * This allows an intervening SIGCONT to be posted.
1925 			 * We need to check for that and bail out if necessary.
1926 			 */
1927 			if (signr != SIGSTOP) {
1928 				spin_unlock_irq(&current->sighand->siglock);
1929 
1930 				/* signals can be posted during this window */
1931 
1932 				if (is_orphaned_pgrp(process_group(current)))
1933 					goto relock;
1934 
1935 				spin_lock_irq(&current->sighand->siglock);
1936 			}
1937 
1938 			if (likely(do_signal_stop(signr))) {
1939 				/* It released the siglock.  */
1940 				goto relock;
1941 			}
1942 
1943 			/*
1944 			 * We didn't actually stop, due to a race
1945 			 * with SIGCONT or something like that.
1946 			 */
1947 			continue;
1948 		}
1949 
1950 		spin_unlock_irq(&current->sighand->siglock);
1951 
1952 		/*
1953 		 * Anything else is fatal, maybe with a core dump.
1954 		 */
1955 		current->flags |= PF_SIGNALED;
1956 		if (sig_kernel_coredump(signr)) {
1957 			/*
1958 			 * If it was able to dump core, this kills all
1959 			 * other threads in the group and synchronizes with
1960 			 * their demise.  If we lost the race with another
1961 			 * thread getting here, it set group_exit_code
1962 			 * first and our do_group_exit call below will use
1963 			 * that value and ignore the one we pass it.
1964 			 */
1965 			do_coredump((long)signr, signr, regs);
1966 		}
1967 
1968 		/*
1969 		 * Death signals, no core dump.
1970 		 */
1971 		do_group_exit(signr);
1972 		/* NOTREACHED */
1973 	}
1974 	spin_unlock_irq(&current->sighand->siglock);
1975 	return signr;
1976 }
1977 
1978 EXPORT_SYMBOL(recalc_sigpending);
1979 EXPORT_SYMBOL_GPL(dequeue_signal);
1980 EXPORT_SYMBOL(flush_signals);
1981 EXPORT_SYMBOL(force_sig);
1982 EXPORT_SYMBOL(kill_pg);
1983 EXPORT_SYMBOL(kill_proc);
1984 EXPORT_SYMBOL(ptrace_notify);
1985 EXPORT_SYMBOL(send_sig);
1986 EXPORT_SYMBOL(send_sig_info);
1987 EXPORT_SYMBOL(sigprocmask);
1988 EXPORT_SYMBOL(block_all_signals);
1989 EXPORT_SYMBOL(unblock_all_signals);
1990 
1991 
1992 /*
1993  * System call entry points.
1994  */
1995 
1996 asmlinkage long sys_restart_syscall(void)
1997 {
1998 	struct restart_block *restart = &current_thread_info()->restart_block;
1999 	return restart->fn(restart);
2000 }
2001 
2002 long do_no_restart_syscall(struct restart_block *param)
2003 {
2004 	return -EINTR;
2005 }
2006 
2007 /*
2008  * We don't need to get the kernel lock - this is all local to this
2009  * particular thread.. (and that's good, because this is _heavily_
2010  * used by various programs)
2011  */
2012 
2013 /*
2014  * This is also useful for kernel threads that want to temporarily
2015  * (or permanently) block certain signals.
2016  *
2017  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2018  * interface happily blocks "unblockable" signals like SIGKILL
2019  * and friends.
2020  */
2021 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2022 {
2023 	int error;
2024 	sigset_t old_block;
2025 
2026 	spin_lock_irq(&current->sighand->siglock);
2027 	old_block = current->blocked;
2028 	error = 0;
2029 	switch (how) {
2030 	case SIG_BLOCK:
2031 		sigorsets(&current->blocked, &current->blocked, set);
2032 		break;
2033 	case SIG_UNBLOCK:
2034 		signandsets(&current->blocked, &current->blocked, set);
2035 		break;
2036 	case SIG_SETMASK:
2037 		current->blocked = *set;
2038 		break;
2039 	default:
2040 		error = -EINVAL;
2041 	}
2042 	recalc_sigpending();
2043 	spin_unlock_irq(&current->sighand->siglock);
2044 	if (oldset)
2045 		*oldset = old_block;
2046 	return error;
2047 }
2048 
2049 asmlinkage long
2050 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2051 {
2052 	int error = -EINVAL;
2053 	sigset_t old_set, new_set;
2054 
2055 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2056 	if (sigsetsize != sizeof(sigset_t))
2057 		goto out;
2058 
2059 	if (set) {
2060 		error = -EFAULT;
2061 		if (copy_from_user(&new_set, set, sizeof(*set)))
2062 			goto out;
2063 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2064 
2065 		error = sigprocmask(how, &new_set, &old_set);
2066 		if (error)
2067 			goto out;
2068 		if (oset)
2069 			goto set_old;
2070 	} else if (oset) {
2071 		spin_lock_irq(&current->sighand->siglock);
2072 		old_set = current->blocked;
2073 		spin_unlock_irq(&current->sighand->siglock);
2074 
2075 	set_old:
2076 		error = -EFAULT;
2077 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2078 			goto out;
2079 	}
2080 	error = 0;
2081 out:
2082 	return error;
2083 }
2084 
2085 long do_sigpending(void __user *set, unsigned long sigsetsize)
2086 {
2087 	long error = -EINVAL;
2088 	sigset_t pending;
2089 
2090 	if (sigsetsize > sizeof(sigset_t))
2091 		goto out;
2092 
2093 	spin_lock_irq(&current->sighand->siglock);
2094 	sigorsets(&pending, &current->pending.signal,
2095 		  &current->signal->shared_pending.signal);
2096 	spin_unlock_irq(&current->sighand->siglock);
2097 
2098 	/* Outside the lock because only this thread touches it.  */
2099 	sigandsets(&pending, &current->blocked, &pending);
2100 
2101 	error = -EFAULT;
2102 	if (!copy_to_user(set, &pending, sigsetsize))
2103 		error = 0;
2104 
2105 out:
2106 	return error;
2107 }
2108 
2109 asmlinkage long
2110 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2111 {
2112 	return do_sigpending(set, sigsetsize);
2113 }
2114 
2115 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2116 
2117 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2118 {
2119 	int err;
2120 
2121 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2122 		return -EFAULT;
2123 	if (from->si_code < 0)
2124 		return __copy_to_user(to, from, sizeof(siginfo_t))
2125 			? -EFAULT : 0;
2126 	/*
2127 	 * If you change siginfo_t structure, please be sure
2128 	 * this code is fixed accordingly.
2129 	 * It should never copy any pad contained in the structure
2130 	 * to avoid security leaks, but must copy the generic
2131 	 * 3 ints plus the relevant union member.
2132 	 */
2133 	err = __put_user(from->si_signo, &to->si_signo);
2134 	err |= __put_user(from->si_errno, &to->si_errno);
2135 	err |= __put_user((short)from->si_code, &to->si_code);
2136 	switch (from->si_code & __SI_MASK) {
2137 	case __SI_KILL:
2138 		err |= __put_user(from->si_pid, &to->si_pid);
2139 		err |= __put_user(from->si_uid, &to->si_uid);
2140 		break;
2141 	case __SI_TIMER:
2142 		 err |= __put_user(from->si_tid, &to->si_tid);
2143 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2144 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2145 		break;
2146 	case __SI_POLL:
2147 		err |= __put_user(from->si_band, &to->si_band);
2148 		err |= __put_user(from->si_fd, &to->si_fd);
2149 		break;
2150 	case __SI_FAULT:
2151 		err |= __put_user(from->si_addr, &to->si_addr);
2152 #ifdef __ARCH_SI_TRAPNO
2153 		err |= __put_user(from->si_trapno, &to->si_trapno);
2154 #endif
2155 		break;
2156 	case __SI_CHLD:
2157 		err |= __put_user(from->si_pid, &to->si_pid);
2158 		err |= __put_user(from->si_uid, &to->si_uid);
2159 		err |= __put_user(from->si_status, &to->si_status);
2160 		err |= __put_user(from->si_utime, &to->si_utime);
2161 		err |= __put_user(from->si_stime, &to->si_stime);
2162 		break;
2163 	case __SI_RT: /* This is not generated by the kernel as of now. */
2164 	case __SI_MESGQ: /* But this is */
2165 		err |= __put_user(from->si_pid, &to->si_pid);
2166 		err |= __put_user(from->si_uid, &to->si_uid);
2167 		err |= __put_user(from->si_ptr, &to->si_ptr);
2168 		break;
2169 	default: /* this is just in case for now ... */
2170 		err |= __put_user(from->si_pid, &to->si_pid);
2171 		err |= __put_user(from->si_uid, &to->si_uid);
2172 		break;
2173 	}
2174 	return err;
2175 }
2176 
2177 #endif
2178 
2179 asmlinkage long
2180 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2181 		    siginfo_t __user *uinfo,
2182 		    const struct timespec __user *uts,
2183 		    size_t sigsetsize)
2184 {
2185 	int ret, sig;
2186 	sigset_t these;
2187 	struct timespec ts;
2188 	siginfo_t info;
2189 	long timeout = 0;
2190 
2191 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2192 	if (sigsetsize != sizeof(sigset_t))
2193 		return -EINVAL;
2194 
2195 	if (copy_from_user(&these, uthese, sizeof(these)))
2196 		return -EFAULT;
2197 
2198 	/*
2199 	 * Invert the set of allowed signals to get those we
2200 	 * want to block.
2201 	 */
2202 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2203 	signotset(&these);
2204 
2205 	if (uts) {
2206 		if (copy_from_user(&ts, uts, sizeof(ts)))
2207 			return -EFAULT;
2208 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2209 		    || ts.tv_sec < 0)
2210 			return -EINVAL;
2211 	}
2212 
2213 	spin_lock_irq(&current->sighand->siglock);
2214 	sig = dequeue_signal(current, &these, &info);
2215 	if (!sig) {
2216 		timeout = MAX_SCHEDULE_TIMEOUT;
2217 		if (uts)
2218 			timeout = (timespec_to_jiffies(&ts)
2219 				   + (ts.tv_sec || ts.tv_nsec));
2220 
2221 		if (timeout) {
2222 			/* None ready -- temporarily unblock those we're
2223 			 * interested while we are sleeping in so that we'll
2224 			 * be awakened when they arrive.  */
2225 			current->real_blocked = current->blocked;
2226 			sigandsets(&current->blocked, &current->blocked, &these);
2227 			recalc_sigpending();
2228 			spin_unlock_irq(&current->sighand->siglock);
2229 
2230 			current->state = TASK_INTERRUPTIBLE;
2231 			timeout = schedule_timeout(timeout);
2232 
2233 			if (current->flags & PF_FREEZE)
2234 				refrigerator(PF_FREEZE);
2235 			spin_lock_irq(&current->sighand->siglock);
2236 			sig = dequeue_signal(current, &these, &info);
2237 			current->blocked = current->real_blocked;
2238 			siginitset(&current->real_blocked, 0);
2239 			recalc_sigpending();
2240 		}
2241 	}
2242 	spin_unlock_irq(&current->sighand->siglock);
2243 
2244 	if (sig) {
2245 		ret = sig;
2246 		if (uinfo) {
2247 			if (copy_siginfo_to_user(uinfo, &info))
2248 				ret = -EFAULT;
2249 		}
2250 	} else {
2251 		ret = -EAGAIN;
2252 		if (timeout)
2253 			ret = -EINTR;
2254 	}
2255 
2256 	return ret;
2257 }
2258 
2259 asmlinkage long
2260 sys_kill(int pid, int sig)
2261 {
2262 	struct siginfo info;
2263 
2264 	info.si_signo = sig;
2265 	info.si_errno = 0;
2266 	info.si_code = SI_USER;
2267 	info.si_pid = current->tgid;
2268 	info.si_uid = current->uid;
2269 
2270 	return kill_something_info(sig, &info, pid);
2271 }
2272 
2273 /**
2274  *  sys_tgkill - send signal to one specific thread
2275  *  @tgid: the thread group ID of the thread
2276  *  @pid: the PID of the thread
2277  *  @sig: signal to be sent
2278  *
2279  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2280  *  exists but it's not belonging to the target process anymore. This
2281  *  method solves the problem of threads exiting and PIDs getting reused.
2282  */
2283 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2284 {
2285 	struct siginfo info;
2286 	int error;
2287 	struct task_struct *p;
2288 
2289 	/* This is only valid for single tasks */
2290 	if (pid <= 0 || tgid <= 0)
2291 		return -EINVAL;
2292 
2293 	info.si_signo = sig;
2294 	info.si_errno = 0;
2295 	info.si_code = SI_TKILL;
2296 	info.si_pid = current->tgid;
2297 	info.si_uid = current->uid;
2298 
2299 	read_lock(&tasklist_lock);
2300 	p = find_task_by_pid(pid);
2301 	error = -ESRCH;
2302 	if (p && (p->tgid == tgid)) {
2303 		error = check_kill_permission(sig, &info, p);
2304 		/*
2305 		 * The null signal is a permissions and process existence
2306 		 * probe.  No signal is actually delivered.
2307 		 */
2308 		if (!error && sig && p->sighand) {
2309 			spin_lock_irq(&p->sighand->siglock);
2310 			handle_stop_signal(sig, p);
2311 			error = specific_send_sig_info(sig, &info, p);
2312 			spin_unlock_irq(&p->sighand->siglock);
2313 		}
2314 	}
2315 	read_unlock(&tasklist_lock);
2316 	return error;
2317 }
2318 
2319 /*
2320  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2321  */
2322 asmlinkage long
2323 sys_tkill(int pid, int sig)
2324 {
2325 	struct siginfo info;
2326 	int error;
2327 	struct task_struct *p;
2328 
2329 	/* This is only valid for single tasks */
2330 	if (pid <= 0)
2331 		return -EINVAL;
2332 
2333 	info.si_signo = sig;
2334 	info.si_errno = 0;
2335 	info.si_code = SI_TKILL;
2336 	info.si_pid = current->tgid;
2337 	info.si_uid = current->uid;
2338 
2339 	read_lock(&tasklist_lock);
2340 	p = find_task_by_pid(pid);
2341 	error = -ESRCH;
2342 	if (p) {
2343 		error = check_kill_permission(sig, &info, p);
2344 		/*
2345 		 * The null signal is a permissions and process existence
2346 		 * probe.  No signal is actually delivered.
2347 		 */
2348 		if (!error && sig && p->sighand) {
2349 			spin_lock_irq(&p->sighand->siglock);
2350 			handle_stop_signal(sig, p);
2351 			error = specific_send_sig_info(sig, &info, p);
2352 			spin_unlock_irq(&p->sighand->siglock);
2353 		}
2354 	}
2355 	read_unlock(&tasklist_lock);
2356 	return error;
2357 }
2358 
2359 asmlinkage long
2360 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2361 {
2362 	siginfo_t info;
2363 
2364 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2365 		return -EFAULT;
2366 
2367 	/* Not even root can pretend to send signals from the kernel.
2368 	   Nor can they impersonate a kill(), which adds source info.  */
2369 	if (info.si_code >= 0)
2370 		return -EPERM;
2371 	info.si_signo = sig;
2372 
2373 	/* POSIX.1b doesn't mention process groups.  */
2374 	return kill_proc_info(sig, &info, pid);
2375 }
2376 
2377 int
2378 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2379 {
2380 	struct k_sigaction *k;
2381 
2382 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2383 		return -EINVAL;
2384 
2385 	k = &current->sighand->action[sig-1];
2386 
2387 	spin_lock_irq(&current->sighand->siglock);
2388 	if (signal_pending(current)) {
2389 		/*
2390 		 * If there might be a fatal signal pending on multiple
2391 		 * threads, make sure we take it before changing the action.
2392 		 */
2393 		spin_unlock_irq(&current->sighand->siglock);
2394 		return -ERESTARTNOINTR;
2395 	}
2396 
2397 	if (oact)
2398 		*oact = *k;
2399 
2400 	if (act) {
2401 		/*
2402 		 * POSIX 3.3.1.3:
2403 		 *  "Setting a signal action to SIG_IGN for a signal that is
2404 		 *   pending shall cause the pending signal to be discarded,
2405 		 *   whether or not it is blocked."
2406 		 *
2407 		 *  "Setting a signal action to SIG_DFL for a signal that is
2408 		 *   pending and whose default action is to ignore the signal
2409 		 *   (for example, SIGCHLD), shall cause the pending signal to
2410 		 *   be discarded, whether or not it is blocked"
2411 		 */
2412 		if (act->sa.sa_handler == SIG_IGN ||
2413 		    (act->sa.sa_handler == SIG_DFL &&
2414 		     sig_kernel_ignore(sig))) {
2415 			/*
2416 			 * This is a fairly rare case, so we only take the
2417 			 * tasklist_lock once we're sure we'll need it.
2418 			 * Now we must do this little unlock and relock
2419 			 * dance to maintain the lock hierarchy.
2420 			 */
2421 			struct task_struct *t = current;
2422 			spin_unlock_irq(&t->sighand->siglock);
2423 			read_lock(&tasklist_lock);
2424 			spin_lock_irq(&t->sighand->siglock);
2425 			*k = *act;
2426 			sigdelsetmask(&k->sa.sa_mask,
2427 				      sigmask(SIGKILL) | sigmask(SIGSTOP));
2428 			rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2429 			do {
2430 				rm_from_queue(sigmask(sig), &t->pending);
2431 				recalc_sigpending_tsk(t);
2432 				t = next_thread(t);
2433 			} while (t != current);
2434 			spin_unlock_irq(&current->sighand->siglock);
2435 			read_unlock(&tasklist_lock);
2436 			return 0;
2437 		}
2438 
2439 		*k = *act;
2440 		sigdelsetmask(&k->sa.sa_mask,
2441 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2442 	}
2443 
2444 	spin_unlock_irq(&current->sighand->siglock);
2445 	return 0;
2446 }
2447 
2448 int
2449 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2450 {
2451 	stack_t oss;
2452 	int error;
2453 
2454 	if (uoss) {
2455 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2456 		oss.ss_size = current->sas_ss_size;
2457 		oss.ss_flags = sas_ss_flags(sp);
2458 	}
2459 
2460 	if (uss) {
2461 		void __user *ss_sp;
2462 		size_t ss_size;
2463 		int ss_flags;
2464 
2465 		error = -EFAULT;
2466 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2467 		    || __get_user(ss_sp, &uss->ss_sp)
2468 		    || __get_user(ss_flags, &uss->ss_flags)
2469 		    || __get_user(ss_size, &uss->ss_size))
2470 			goto out;
2471 
2472 		error = -EPERM;
2473 		if (on_sig_stack(sp))
2474 			goto out;
2475 
2476 		error = -EINVAL;
2477 		/*
2478 		 *
2479 		 * Note - this code used to test ss_flags incorrectly
2480 		 *  	  old code may have been written using ss_flags==0
2481 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2482 		 *	  way that worked) - this fix preserves that older
2483 		 *	  mechanism
2484 		 */
2485 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2486 			goto out;
2487 
2488 		if (ss_flags == SS_DISABLE) {
2489 			ss_size = 0;
2490 			ss_sp = NULL;
2491 		} else {
2492 			error = -ENOMEM;
2493 			if (ss_size < MINSIGSTKSZ)
2494 				goto out;
2495 		}
2496 
2497 		current->sas_ss_sp = (unsigned long) ss_sp;
2498 		current->sas_ss_size = ss_size;
2499 	}
2500 
2501 	if (uoss) {
2502 		error = -EFAULT;
2503 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2504 			goto out;
2505 	}
2506 
2507 	error = 0;
2508 out:
2509 	return error;
2510 }
2511 
2512 #ifdef __ARCH_WANT_SYS_SIGPENDING
2513 
2514 asmlinkage long
2515 sys_sigpending(old_sigset_t __user *set)
2516 {
2517 	return do_sigpending(set, sizeof(*set));
2518 }
2519 
2520 #endif
2521 
2522 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2523 /* Some platforms have their own version with special arguments others
2524    support only sys_rt_sigprocmask.  */
2525 
2526 asmlinkage long
2527 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2528 {
2529 	int error;
2530 	old_sigset_t old_set, new_set;
2531 
2532 	if (set) {
2533 		error = -EFAULT;
2534 		if (copy_from_user(&new_set, set, sizeof(*set)))
2535 			goto out;
2536 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2537 
2538 		spin_lock_irq(&current->sighand->siglock);
2539 		old_set = current->blocked.sig[0];
2540 
2541 		error = 0;
2542 		switch (how) {
2543 		default:
2544 			error = -EINVAL;
2545 			break;
2546 		case SIG_BLOCK:
2547 			sigaddsetmask(&current->blocked, new_set);
2548 			break;
2549 		case SIG_UNBLOCK:
2550 			sigdelsetmask(&current->blocked, new_set);
2551 			break;
2552 		case SIG_SETMASK:
2553 			current->blocked.sig[0] = new_set;
2554 			break;
2555 		}
2556 
2557 		recalc_sigpending();
2558 		spin_unlock_irq(&current->sighand->siglock);
2559 		if (error)
2560 			goto out;
2561 		if (oset)
2562 			goto set_old;
2563 	} else if (oset) {
2564 		old_set = current->blocked.sig[0];
2565 	set_old:
2566 		error = -EFAULT;
2567 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2568 			goto out;
2569 	}
2570 	error = 0;
2571 out:
2572 	return error;
2573 }
2574 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2575 
2576 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2577 asmlinkage long
2578 sys_rt_sigaction(int sig,
2579 		 const struct sigaction __user *act,
2580 		 struct sigaction __user *oact,
2581 		 size_t sigsetsize)
2582 {
2583 	struct k_sigaction new_sa, old_sa;
2584 	int ret = -EINVAL;
2585 
2586 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2587 	if (sigsetsize != sizeof(sigset_t))
2588 		goto out;
2589 
2590 	if (act) {
2591 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2592 			return -EFAULT;
2593 	}
2594 
2595 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2596 
2597 	if (!ret && oact) {
2598 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2599 			return -EFAULT;
2600 	}
2601 out:
2602 	return ret;
2603 }
2604 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2605 
2606 #ifdef __ARCH_WANT_SYS_SGETMASK
2607 
2608 /*
2609  * For backwards compatibility.  Functionality superseded by sigprocmask.
2610  */
2611 asmlinkage long
2612 sys_sgetmask(void)
2613 {
2614 	/* SMP safe */
2615 	return current->blocked.sig[0];
2616 }
2617 
2618 asmlinkage long
2619 sys_ssetmask(int newmask)
2620 {
2621 	int old;
2622 
2623 	spin_lock_irq(&current->sighand->siglock);
2624 	old = current->blocked.sig[0];
2625 
2626 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2627 						  sigmask(SIGSTOP)));
2628 	recalc_sigpending();
2629 	spin_unlock_irq(&current->sighand->siglock);
2630 
2631 	return old;
2632 }
2633 #endif /* __ARCH_WANT_SGETMASK */
2634 
2635 #ifdef __ARCH_WANT_SYS_SIGNAL
2636 /*
2637  * For backwards compatibility.  Functionality superseded by sigaction.
2638  */
2639 asmlinkage unsigned long
2640 sys_signal(int sig, __sighandler_t handler)
2641 {
2642 	struct k_sigaction new_sa, old_sa;
2643 	int ret;
2644 
2645 	new_sa.sa.sa_handler = handler;
2646 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2647 
2648 	ret = do_sigaction(sig, &new_sa, &old_sa);
2649 
2650 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2651 }
2652 #endif /* __ARCH_WANT_SYS_SIGNAL */
2653 
2654 #ifdef __ARCH_WANT_SYS_PAUSE
2655 
2656 asmlinkage long
2657 sys_pause(void)
2658 {
2659 	current->state = TASK_INTERRUPTIBLE;
2660 	schedule();
2661 	return -ERESTARTNOHAND;
2662 }
2663 
2664 #endif
2665 
2666 void __init signals_init(void)
2667 {
2668 	sigqueue_cachep =
2669 		kmem_cache_create("sigqueue",
2670 				  sizeof(struct sigqueue),
2671 				  __alignof__(struct sigqueue),
2672 				  SLAB_PANIC, NULL, NULL);
2673 }
2674