xref: /linux/kernel/sched/topology.c (revision 785cdec46e9227f9433884ed3b436471e944007c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 void sched_domains_mutex_lock(void)
10 {
11 	mutex_lock(&sched_domains_mutex);
12 }
13 void sched_domains_mutex_unlock(void)
14 {
15 	mutex_unlock(&sched_domains_mutex);
16 }
17 
18 /* Protected by sched_domains_mutex: */
19 static cpumask_var_t sched_domains_tmpmask;
20 static cpumask_var_t sched_domains_tmpmask2;
21 
22 static int __init sched_debug_setup(char *str)
23 {
24 	sched_debug_verbose = true;
25 
26 	return 0;
27 }
28 early_param("sched_verbose", sched_debug_setup);
29 
30 static inline bool sched_debug(void)
31 {
32 	return sched_debug_verbose;
33 }
34 
35 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
36 const struct sd_flag_debug sd_flag_debug[] = {
37 #include <linux/sched/sd_flags.h>
38 };
39 #undef SD_FLAG
40 
41 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
42 				  struct cpumask *groupmask)
43 {
44 	struct sched_group *group = sd->groups;
45 	unsigned long flags = sd->flags;
46 	unsigned int idx;
47 
48 	cpumask_clear(groupmask);
49 
50 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
51 	printk(KERN_CONT "span=%*pbl level=%s\n",
52 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
53 
54 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
55 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
56 	}
57 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
58 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
59 	}
60 
61 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
62 		unsigned int flag = BIT(idx);
63 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
64 
65 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
66 		    !(sd->child->flags & flag))
67 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
68 			       sd_flag_debug[idx].name);
69 
70 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
71 		    !(sd->parent->flags & flag))
72 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
73 			       sd_flag_debug[idx].name);
74 	}
75 
76 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
77 	do {
78 		if (!group) {
79 			printk("\n");
80 			printk(KERN_ERR "ERROR: group is NULL\n");
81 			break;
82 		}
83 
84 		if (cpumask_empty(sched_group_span(group))) {
85 			printk(KERN_CONT "\n");
86 			printk(KERN_ERR "ERROR: empty group\n");
87 			break;
88 		}
89 
90 		if (!(sd->flags & SD_OVERLAP) &&
91 		    cpumask_intersects(groupmask, sched_group_span(group))) {
92 			printk(KERN_CONT "\n");
93 			printk(KERN_ERR "ERROR: repeated CPUs\n");
94 			break;
95 		}
96 
97 		cpumask_or(groupmask, groupmask, sched_group_span(group));
98 
99 		printk(KERN_CONT " %d:{ span=%*pbl",
100 				group->sgc->id,
101 				cpumask_pr_args(sched_group_span(group)));
102 
103 		if ((sd->flags & SD_OVERLAP) &&
104 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
105 			printk(KERN_CONT " mask=%*pbl",
106 				cpumask_pr_args(group_balance_mask(group)));
107 		}
108 
109 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
110 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
111 
112 		if (group == sd->groups && sd->child &&
113 		    !cpumask_equal(sched_domain_span(sd->child),
114 				   sched_group_span(group))) {
115 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
116 		}
117 
118 		printk(KERN_CONT " }");
119 
120 		group = group->next;
121 
122 		if (group != sd->groups)
123 			printk(KERN_CONT ",");
124 
125 	} while (group != sd->groups);
126 	printk(KERN_CONT "\n");
127 
128 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
129 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
130 
131 	if (sd->parent &&
132 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
133 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
134 	return 0;
135 }
136 
137 static void sched_domain_debug(struct sched_domain *sd, int cpu)
138 {
139 	int level = 0;
140 
141 	if (!sched_debug_verbose)
142 		return;
143 
144 	if (!sd) {
145 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
146 		return;
147 	}
148 
149 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
150 
151 	for (;;) {
152 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
153 			break;
154 		level++;
155 		sd = sd->parent;
156 		if (!sd)
157 			break;
158 	}
159 }
160 
161 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
162 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
163 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
164 #include <linux/sched/sd_flags.h>
165 0;
166 #undef SD_FLAG
167 
168 static int sd_degenerate(struct sched_domain *sd)
169 {
170 	if (cpumask_weight(sched_domain_span(sd)) == 1)
171 		return 1;
172 
173 	/* Following flags need at least 2 groups */
174 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
175 	    (sd->groups != sd->groups->next))
176 		return 0;
177 
178 	/* Following flags don't use groups */
179 	if (sd->flags & (SD_WAKE_AFFINE))
180 		return 0;
181 
182 	return 1;
183 }
184 
185 static int
186 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
187 {
188 	unsigned long cflags = sd->flags, pflags = parent->flags;
189 
190 	if (sd_degenerate(parent))
191 		return 1;
192 
193 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
194 		return 0;
195 
196 	/* Flags needing groups don't count if only 1 group in parent */
197 	if (parent->groups == parent->groups->next)
198 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
199 
200 	if (~cflags & pflags)
201 		return 0;
202 
203 	return 1;
204 }
205 
206 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
207 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
208 static unsigned int sysctl_sched_energy_aware = 1;
209 static DEFINE_MUTEX(sched_energy_mutex);
210 static bool sched_energy_update;
211 
212 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
213 {
214 	bool any_asym_capacity = false;
215 	struct cpufreq_policy *policy;
216 	struct cpufreq_governor *gov;
217 	int i;
218 
219 	/* EAS is enabled for asymmetric CPU capacity topologies. */
220 	for_each_cpu(i, cpu_mask) {
221 		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
222 			any_asym_capacity = true;
223 			break;
224 		}
225 	}
226 	if (!any_asym_capacity) {
227 		if (sched_debug()) {
228 			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
229 				cpumask_pr_args(cpu_mask));
230 		}
231 		return false;
232 	}
233 
234 	/* EAS definitely does *not* handle SMT */
235 	if (sched_smt_active()) {
236 		if (sched_debug()) {
237 			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
238 				cpumask_pr_args(cpu_mask));
239 		}
240 		return false;
241 	}
242 
243 	if (!arch_scale_freq_invariant()) {
244 		if (sched_debug()) {
245 			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
246 				cpumask_pr_args(cpu_mask));
247 		}
248 		return false;
249 	}
250 
251 	/* Do not attempt EAS if schedutil is not being used. */
252 	for_each_cpu(i, cpu_mask) {
253 		policy = cpufreq_cpu_get(i);
254 		if (!policy) {
255 			if (sched_debug()) {
256 				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
257 					cpumask_pr_args(cpu_mask), i);
258 			}
259 			return false;
260 		}
261 		gov = policy->governor;
262 		cpufreq_cpu_put(policy);
263 		if (gov != &schedutil_gov) {
264 			if (sched_debug()) {
265 				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
266 					cpumask_pr_args(cpu_mask));
267 			}
268 			return false;
269 		}
270 	}
271 
272 	return true;
273 }
274 
275 void rebuild_sched_domains_energy(void)
276 {
277 	mutex_lock(&sched_energy_mutex);
278 	sched_energy_update = true;
279 	rebuild_sched_domains();
280 	sched_energy_update = false;
281 	mutex_unlock(&sched_energy_mutex);
282 }
283 
284 #ifdef CONFIG_PROC_SYSCTL
285 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
286 		void *buffer, size_t *lenp, loff_t *ppos)
287 {
288 	int ret, state;
289 
290 	if (write && !capable(CAP_SYS_ADMIN))
291 		return -EPERM;
292 
293 	if (!sched_is_eas_possible(cpu_active_mask)) {
294 		if (write) {
295 			return -EOPNOTSUPP;
296 		} else {
297 			*lenp = 0;
298 			return 0;
299 		}
300 	}
301 
302 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
303 	if (!ret && write) {
304 		state = static_branch_unlikely(&sched_energy_present);
305 		if (state != sysctl_sched_energy_aware)
306 			rebuild_sched_domains_energy();
307 	}
308 
309 	return ret;
310 }
311 
312 static const struct ctl_table sched_energy_aware_sysctls[] = {
313 	{
314 		.procname       = "sched_energy_aware",
315 		.data           = &sysctl_sched_energy_aware,
316 		.maxlen         = sizeof(unsigned int),
317 		.mode           = 0644,
318 		.proc_handler   = sched_energy_aware_handler,
319 		.extra1         = SYSCTL_ZERO,
320 		.extra2         = SYSCTL_ONE,
321 	},
322 };
323 
324 static int __init sched_energy_aware_sysctl_init(void)
325 {
326 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
327 	return 0;
328 }
329 
330 late_initcall(sched_energy_aware_sysctl_init);
331 #endif
332 
333 static void free_pd(struct perf_domain *pd)
334 {
335 	struct perf_domain *tmp;
336 
337 	while (pd) {
338 		tmp = pd->next;
339 		kfree(pd);
340 		pd = tmp;
341 	}
342 }
343 
344 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
345 {
346 	while (pd) {
347 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
348 			return pd;
349 		pd = pd->next;
350 	}
351 
352 	return NULL;
353 }
354 
355 static struct perf_domain *pd_init(int cpu)
356 {
357 	struct em_perf_domain *obj = em_cpu_get(cpu);
358 	struct perf_domain *pd;
359 
360 	if (!obj) {
361 		if (sched_debug())
362 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
363 		return NULL;
364 	}
365 
366 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
367 	if (!pd)
368 		return NULL;
369 	pd->em_pd = obj;
370 
371 	return pd;
372 }
373 
374 static void perf_domain_debug(const struct cpumask *cpu_map,
375 						struct perf_domain *pd)
376 {
377 	if (!sched_debug() || !pd)
378 		return;
379 
380 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
381 
382 	while (pd) {
383 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
384 				cpumask_first(perf_domain_span(pd)),
385 				cpumask_pr_args(perf_domain_span(pd)),
386 				em_pd_nr_perf_states(pd->em_pd));
387 		pd = pd->next;
388 	}
389 
390 	printk(KERN_CONT "\n");
391 }
392 
393 static void destroy_perf_domain_rcu(struct rcu_head *rp)
394 {
395 	struct perf_domain *pd;
396 
397 	pd = container_of(rp, struct perf_domain, rcu);
398 	free_pd(pd);
399 }
400 
401 static void sched_energy_set(bool has_eas)
402 {
403 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
404 		if (sched_debug())
405 			pr_info("%s: stopping EAS\n", __func__);
406 		static_branch_disable_cpuslocked(&sched_energy_present);
407 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
408 		if (sched_debug())
409 			pr_info("%s: starting EAS\n", __func__);
410 		static_branch_enable_cpuslocked(&sched_energy_present);
411 	}
412 }
413 
414 /*
415  * EAS can be used on a root domain if it meets all the following conditions:
416  *    1. an Energy Model (EM) is available;
417  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
418  *    3. no SMT is detected.
419  *    4. schedutil is driving the frequency of all CPUs of the rd;
420  *    5. frequency invariance support is present;
421  */
422 static bool build_perf_domains(const struct cpumask *cpu_map)
423 {
424 	int i;
425 	struct perf_domain *pd = NULL, *tmp;
426 	int cpu = cpumask_first(cpu_map);
427 	struct root_domain *rd = cpu_rq(cpu)->rd;
428 
429 	if (!sysctl_sched_energy_aware)
430 		goto free;
431 
432 	if (!sched_is_eas_possible(cpu_map))
433 		goto free;
434 
435 	for_each_cpu(i, cpu_map) {
436 		/* Skip already covered CPUs. */
437 		if (find_pd(pd, i))
438 			continue;
439 
440 		/* Create the new pd and add it to the local list. */
441 		tmp = pd_init(i);
442 		if (!tmp)
443 			goto free;
444 		tmp->next = pd;
445 		pd = tmp;
446 	}
447 
448 	perf_domain_debug(cpu_map, pd);
449 
450 	/* Attach the new list of performance domains to the root domain. */
451 	tmp = rd->pd;
452 	rcu_assign_pointer(rd->pd, pd);
453 	if (tmp)
454 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
455 
456 	return !!pd;
457 
458 free:
459 	free_pd(pd);
460 	tmp = rd->pd;
461 	rcu_assign_pointer(rd->pd, NULL);
462 	if (tmp)
463 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
464 
465 	return false;
466 }
467 #else
468 static void free_pd(struct perf_domain *pd) { }
469 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
470 
471 static void free_rootdomain(struct rcu_head *rcu)
472 {
473 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
474 
475 	cpupri_cleanup(&rd->cpupri);
476 	cpudl_cleanup(&rd->cpudl);
477 	free_cpumask_var(rd->dlo_mask);
478 	free_cpumask_var(rd->rto_mask);
479 	free_cpumask_var(rd->online);
480 	free_cpumask_var(rd->span);
481 	free_pd(rd->pd);
482 	kfree(rd);
483 }
484 
485 void rq_attach_root(struct rq *rq, struct root_domain *rd)
486 {
487 	struct root_domain *old_rd = NULL;
488 	struct rq_flags rf;
489 
490 	rq_lock_irqsave(rq, &rf);
491 
492 	if (rq->rd) {
493 		old_rd = rq->rd;
494 
495 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
496 			set_rq_offline(rq);
497 
498 		cpumask_clear_cpu(rq->cpu, old_rd->span);
499 
500 		/*
501 		 * If we don't want to free the old_rd yet then
502 		 * set old_rd to NULL to skip the freeing later
503 		 * in this function:
504 		 */
505 		if (!atomic_dec_and_test(&old_rd->refcount))
506 			old_rd = NULL;
507 	}
508 
509 	atomic_inc(&rd->refcount);
510 	rq->rd = rd;
511 
512 	cpumask_set_cpu(rq->cpu, rd->span);
513 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
514 		set_rq_online(rq);
515 
516 	/*
517 	 * Because the rq is not a task, dl_add_task_root_domain() did not
518 	 * move the fair server bw to the rd if it already started.
519 	 * Add it now.
520 	 */
521 	if (rq->fair_server.dl_server)
522 		__dl_server_attach_root(&rq->fair_server, rq);
523 
524 	rq_unlock_irqrestore(rq, &rf);
525 
526 	if (old_rd)
527 		call_rcu(&old_rd->rcu, free_rootdomain);
528 }
529 
530 void sched_get_rd(struct root_domain *rd)
531 {
532 	atomic_inc(&rd->refcount);
533 }
534 
535 void sched_put_rd(struct root_domain *rd)
536 {
537 	if (!atomic_dec_and_test(&rd->refcount))
538 		return;
539 
540 	call_rcu(&rd->rcu, free_rootdomain);
541 }
542 
543 static int init_rootdomain(struct root_domain *rd)
544 {
545 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
546 		goto out;
547 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
548 		goto free_span;
549 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
550 		goto free_online;
551 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
552 		goto free_dlo_mask;
553 
554 #ifdef HAVE_RT_PUSH_IPI
555 	rd->rto_cpu = -1;
556 	raw_spin_lock_init(&rd->rto_lock);
557 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
558 #endif
559 
560 	rd->visit_cookie = 0;
561 	init_dl_bw(&rd->dl_bw);
562 	if (cpudl_init(&rd->cpudl) != 0)
563 		goto free_rto_mask;
564 
565 	if (cpupri_init(&rd->cpupri) != 0)
566 		goto free_cpudl;
567 	return 0;
568 
569 free_cpudl:
570 	cpudl_cleanup(&rd->cpudl);
571 free_rto_mask:
572 	free_cpumask_var(rd->rto_mask);
573 free_dlo_mask:
574 	free_cpumask_var(rd->dlo_mask);
575 free_online:
576 	free_cpumask_var(rd->online);
577 free_span:
578 	free_cpumask_var(rd->span);
579 out:
580 	return -ENOMEM;
581 }
582 
583 /*
584  * By default the system creates a single root-domain with all CPUs as
585  * members (mimicking the global state we have today).
586  */
587 struct root_domain def_root_domain;
588 
589 void __init init_defrootdomain(void)
590 {
591 	init_rootdomain(&def_root_domain);
592 
593 	atomic_set(&def_root_domain.refcount, 1);
594 }
595 
596 static struct root_domain *alloc_rootdomain(void)
597 {
598 	struct root_domain *rd;
599 
600 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
601 	if (!rd)
602 		return NULL;
603 
604 	if (init_rootdomain(rd) != 0) {
605 		kfree(rd);
606 		return NULL;
607 	}
608 
609 	return rd;
610 }
611 
612 static void free_sched_groups(struct sched_group *sg, int free_sgc)
613 {
614 	struct sched_group *tmp, *first;
615 
616 	if (!sg)
617 		return;
618 
619 	first = sg;
620 	do {
621 		tmp = sg->next;
622 
623 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
624 			kfree(sg->sgc);
625 
626 		if (atomic_dec_and_test(&sg->ref))
627 			kfree(sg);
628 		sg = tmp;
629 	} while (sg != first);
630 }
631 
632 static void destroy_sched_domain(struct sched_domain *sd)
633 {
634 	/*
635 	 * A normal sched domain may have multiple group references, an
636 	 * overlapping domain, having private groups, only one.  Iterate,
637 	 * dropping group/capacity references, freeing where none remain.
638 	 */
639 	free_sched_groups(sd->groups, 1);
640 
641 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
642 		kfree(sd->shared);
643 	kfree(sd);
644 }
645 
646 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
647 {
648 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
649 
650 	while (sd) {
651 		struct sched_domain *parent = sd->parent;
652 		destroy_sched_domain(sd);
653 		sd = parent;
654 	}
655 }
656 
657 static void destroy_sched_domains(struct sched_domain *sd)
658 {
659 	if (sd)
660 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
661 }
662 
663 /*
664  * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
665  * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
666  * select_idle_sibling().
667  *
668  * Also keep a unique ID per domain (we use the first CPU number in the cpumask
669  * of the domain), this allows us to quickly tell if two CPUs are in the same
670  * cache domain, see cpus_share_cache().
671  */
672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
673 DEFINE_PER_CPU(int, sd_llc_size);
674 DEFINE_PER_CPU(int, sd_llc_id);
675 DEFINE_PER_CPU(int, sd_share_id);
676 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
677 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
678 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
679 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
680 
681 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
682 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
683 
684 static void update_top_cache_domain(int cpu)
685 {
686 	struct sched_domain_shared *sds = NULL;
687 	struct sched_domain *sd;
688 	int id = cpu;
689 	int size = 1;
690 
691 	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
692 	if (sd) {
693 		id = cpumask_first(sched_domain_span(sd));
694 		size = cpumask_weight(sched_domain_span(sd));
695 		sds = sd->shared;
696 	}
697 
698 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
699 	per_cpu(sd_llc_size, cpu) = size;
700 	per_cpu(sd_llc_id, cpu) = id;
701 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
702 
703 	sd = lowest_flag_domain(cpu, SD_CLUSTER);
704 	if (sd)
705 		id = cpumask_first(sched_domain_span(sd));
706 
707 	/*
708 	 * This assignment should be placed after the sd_llc_id as
709 	 * we want this id equals to cluster id on cluster machines
710 	 * but equals to LLC id on non-Cluster machines.
711 	 */
712 	per_cpu(sd_share_id, cpu) = id;
713 
714 	sd = lowest_flag_domain(cpu, SD_NUMA);
715 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
716 
717 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
718 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
719 
720 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
721 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
722 }
723 
724 /*
725  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
726  * hold the hotplug lock.
727  */
728 static void
729 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
730 {
731 	struct rq *rq = cpu_rq(cpu);
732 	struct sched_domain *tmp;
733 
734 	/* Remove the sched domains which do not contribute to scheduling. */
735 	for (tmp = sd; tmp; ) {
736 		struct sched_domain *parent = tmp->parent;
737 		if (!parent)
738 			break;
739 
740 		if (sd_parent_degenerate(tmp, parent)) {
741 			tmp->parent = parent->parent;
742 
743 			if (parent->parent) {
744 				parent->parent->child = tmp;
745 				parent->parent->groups->flags = tmp->flags;
746 			}
747 
748 			/*
749 			 * Transfer SD_PREFER_SIBLING down in case of a
750 			 * degenerate parent; the spans match for this
751 			 * so the property transfers.
752 			 */
753 			if (parent->flags & SD_PREFER_SIBLING)
754 				tmp->flags |= SD_PREFER_SIBLING;
755 			destroy_sched_domain(parent);
756 		} else
757 			tmp = tmp->parent;
758 	}
759 
760 	if (sd && sd_degenerate(sd)) {
761 		tmp = sd;
762 		sd = sd->parent;
763 		destroy_sched_domain(tmp);
764 		if (sd) {
765 			struct sched_group *sg = sd->groups;
766 
767 			/*
768 			 * sched groups hold the flags of the child sched
769 			 * domain for convenience. Clear such flags since
770 			 * the child is being destroyed.
771 			 */
772 			do {
773 				sg->flags = 0;
774 			} while (sg != sd->groups);
775 
776 			sd->child = NULL;
777 		}
778 	}
779 
780 	sched_domain_debug(sd, cpu);
781 
782 	rq_attach_root(rq, rd);
783 	tmp = rq->sd;
784 	rcu_assign_pointer(rq->sd, sd);
785 	dirty_sched_domain_sysctl(cpu);
786 	destroy_sched_domains(tmp);
787 
788 	update_top_cache_domain(cpu);
789 }
790 
791 struct s_data {
792 	struct sched_domain * __percpu *sd;
793 	struct root_domain	*rd;
794 };
795 
796 enum s_alloc {
797 	sa_rootdomain,
798 	sa_sd,
799 	sa_sd_storage,
800 	sa_none,
801 };
802 
803 /*
804  * Return the canonical balance CPU for this group, this is the first CPU
805  * of this group that's also in the balance mask.
806  *
807  * The balance mask are all those CPUs that could actually end up at this
808  * group. See build_balance_mask().
809  *
810  * Also see should_we_balance().
811  */
812 int group_balance_cpu(struct sched_group *sg)
813 {
814 	return cpumask_first(group_balance_mask(sg));
815 }
816 
817 
818 /*
819  * NUMA topology (first read the regular topology blurb below)
820  *
821  * Given a node-distance table, for example:
822  *
823  *   node   0   1   2   3
824  *     0:  10  20  30  20
825  *     1:  20  10  20  30
826  *     2:  30  20  10  20
827  *     3:  20  30  20  10
828  *
829  * which represents a 4 node ring topology like:
830  *
831  *   0 ----- 1
832  *   |       |
833  *   |       |
834  *   |       |
835  *   3 ----- 2
836  *
837  * We want to construct domains and groups to represent this. The way we go
838  * about doing this is to build the domains on 'hops'. For each NUMA level we
839  * construct the mask of all nodes reachable in @level hops.
840  *
841  * For the above NUMA topology that gives 3 levels:
842  *
843  * NUMA-2	0-3		0-3		0-3		0-3
844  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
845  *
846  * NUMA-1	0-1,3		0-2		1-3		0,2-3
847  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
848  *
849  * NUMA-0	0		1		2		3
850  *
851  *
852  * As can be seen; things don't nicely line up as with the regular topology.
853  * When we iterate a domain in child domain chunks some nodes can be
854  * represented multiple times -- hence the "overlap" naming for this part of
855  * the topology.
856  *
857  * In order to minimize this overlap, we only build enough groups to cover the
858  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
859  *
860  * Because:
861  *
862  *  - the first group of each domain is its child domain; this
863  *    gets us the first 0-1,3
864  *  - the only uncovered node is 2, who's child domain is 1-3.
865  *
866  * However, because of the overlap, computing a unique CPU for each group is
867  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
868  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
869  * end up at those groups (they would end up in group: 0-1,3).
870  *
871  * To correct this we have to introduce the group balance mask. This mask
872  * will contain those CPUs in the group that can reach this group given the
873  * (child) domain tree.
874  *
875  * With this we can once again compute balance_cpu and sched_group_capacity
876  * relations.
877  *
878  * XXX include words on how balance_cpu is unique and therefore can be
879  * used for sched_group_capacity links.
880  *
881  *
882  * Another 'interesting' topology is:
883  *
884  *   node   0   1   2   3
885  *     0:  10  20  20  30
886  *     1:  20  10  20  20
887  *     2:  20  20  10  20
888  *     3:  30  20  20  10
889  *
890  * Which looks a little like:
891  *
892  *   0 ----- 1
893  *   |     / |
894  *   |   /   |
895  *   | /     |
896  *   2 ----- 3
897  *
898  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
899  * are not.
900  *
901  * This leads to a few particularly weird cases where the sched_domain's are
902  * not of the same number for each CPU. Consider:
903  *
904  * NUMA-2	0-3						0-3
905  *  groups:	{0-2},{1-3}					{1-3},{0-2}
906  *
907  * NUMA-1	0-2		0-3		0-3		1-3
908  *
909  * NUMA-0	0		1		2		3
910  *
911  */
912 
913 
914 /*
915  * Build the balance mask; it contains only those CPUs that can arrive at this
916  * group and should be considered to continue balancing.
917  *
918  * We do this during the group creation pass, therefore the group information
919  * isn't complete yet, however since each group represents a (child) domain we
920  * can fully construct this using the sched_domain bits (which are already
921  * complete).
922  */
923 static void
924 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
925 {
926 	const struct cpumask *sg_span = sched_group_span(sg);
927 	struct sd_data *sdd = sd->private;
928 	struct sched_domain *sibling;
929 	int i;
930 
931 	cpumask_clear(mask);
932 
933 	for_each_cpu(i, sg_span) {
934 		sibling = *per_cpu_ptr(sdd->sd, i);
935 
936 		/*
937 		 * Can happen in the asymmetric case, where these siblings are
938 		 * unused. The mask will not be empty because those CPUs that
939 		 * do have the top domain _should_ span the domain.
940 		 */
941 		if (!sibling->child)
942 			continue;
943 
944 		/* If we would not end up here, we can't continue from here */
945 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
946 			continue;
947 
948 		cpumask_set_cpu(i, mask);
949 	}
950 
951 	/* We must not have empty masks here */
952 	WARN_ON_ONCE(cpumask_empty(mask));
953 }
954 
955 /*
956  * XXX: This creates per-node group entries; since the load-balancer will
957  * immediately access remote memory to construct this group's load-balance
958  * statistics having the groups node local is of dubious benefit.
959  */
960 static struct sched_group *
961 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
962 {
963 	struct sched_group *sg;
964 	struct cpumask *sg_span;
965 
966 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
967 			GFP_KERNEL, cpu_to_node(cpu));
968 
969 	if (!sg)
970 		return NULL;
971 
972 	sg_span = sched_group_span(sg);
973 	if (sd->child) {
974 		cpumask_copy(sg_span, sched_domain_span(sd->child));
975 		sg->flags = sd->child->flags;
976 	} else {
977 		cpumask_copy(sg_span, sched_domain_span(sd));
978 	}
979 
980 	atomic_inc(&sg->ref);
981 	return sg;
982 }
983 
984 static void init_overlap_sched_group(struct sched_domain *sd,
985 				     struct sched_group *sg)
986 {
987 	struct cpumask *mask = sched_domains_tmpmask2;
988 	struct sd_data *sdd = sd->private;
989 	struct cpumask *sg_span;
990 	int cpu;
991 
992 	build_balance_mask(sd, sg, mask);
993 	cpu = cpumask_first(mask);
994 
995 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
996 	if (atomic_inc_return(&sg->sgc->ref) == 1)
997 		cpumask_copy(group_balance_mask(sg), mask);
998 	else
999 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1000 
1001 	/*
1002 	 * Initialize sgc->capacity such that even if we mess up the
1003 	 * domains and no possible iteration will get us here, we won't
1004 	 * die on a /0 trap.
1005 	 */
1006 	sg_span = sched_group_span(sg);
1007 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1008 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1009 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1010 }
1011 
1012 static struct sched_domain *
1013 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1014 {
1015 	/*
1016 	 * The proper descendant would be the one whose child won't span out
1017 	 * of sd
1018 	 */
1019 	while (sibling->child &&
1020 	       !cpumask_subset(sched_domain_span(sibling->child),
1021 			       sched_domain_span(sd)))
1022 		sibling = sibling->child;
1023 
1024 	/*
1025 	 * As we are referencing sgc across different topology level, we need
1026 	 * to go down to skip those sched_domains which don't contribute to
1027 	 * scheduling because they will be degenerated in cpu_attach_domain
1028 	 */
1029 	while (sibling->child &&
1030 	       cpumask_equal(sched_domain_span(sibling->child),
1031 			     sched_domain_span(sibling)))
1032 		sibling = sibling->child;
1033 
1034 	return sibling;
1035 }
1036 
1037 static int
1038 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1039 {
1040 	struct sched_group *first = NULL, *last = NULL, *sg;
1041 	const struct cpumask *span = sched_domain_span(sd);
1042 	struct cpumask *covered = sched_domains_tmpmask;
1043 	struct sd_data *sdd = sd->private;
1044 	struct sched_domain *sibling;
1045 	int i;
1046 
1047 	cpumask_clear(covered);
1048 
1049 	for_each_cpu_wrap(i, span, cpu) {
1050 		struct cpumask *sg_span;
1051 
1052 		if (cpumask_test_cpu(i, covered))
1053 			continue;
1054 
1055 		sibling = *per_cpu_ptr(sdd->sd, i);
1056 
1057 		/*
1058 		 * Asymmetric node setups can result in situations where the
1059 		 * domain tree is of unequal depth, make sure to skip domains
1060 		 * that already cover the entire range.
1061 		 *
1062 		 * In that case build_sched_domains() will have terminated the
1063 		 * iteration early and our sibling sd spans will be empty.
1064 		 * Domains should always include the CPU they're built on, so
1065 		 * check that.
1066 		 */
1067 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1068 			continue;
1069 
1070 		/*
1071 		 * Usually we build sched_group by sibling's child sched_domain
1072 		 * But for machines whose NUMA diameter are 3 or above, we move
1073 		 * to build sched_group by sibling's proper descendant's child
1074 		 * domain because sibling's child sched_domain will span out of
1075 		 * the sched_domain being built as below.
1076 		 *
1077 		 * Smallest diameter=3 topology is:
1078 		 *
1079 		 *   node   0   1   2   3
1080 		 *     0:  10  20  30  40
1081 		 *     1:  20  10  20  30
1082 		 *     2:  30  20  10  20
1083 		 *     3:  40  30  20  10
1084 		 *
1085 		 *   0 --- 1 --- 2 --- 3
1086 		 *
1087 		 * NUMA-3       0-3             N/A             N/A             0-3
1088 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1089 		 *
1090 		 * NUMA-2       0-2             0-3             0-3             1-3
1091 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1092 		 *
1093 		 * NUMA-1       0-1             0-2             1-3             2-3
1094 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1095 		 *
1096 		 * NUMA-0       0               1               2               3
1097 		 *
1098 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1099 		 * group span isn't a subset of the domain span.
1100 		 */
1101 		if (sibling->child &&
1102 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1103 			sibling = find_descended_sibling(sd, sibling);
1104 
1105 		sg = build_group_from_child_sched_domain(sibling, cpu);
1106 		if (!sg)
1107 			goto fail;
1108 
1109 		sg_span = sched_group_span(sg);
1110 		cpumask_or(covered, covered, sg_span);
1111 
1112 		init_overlap_sched_group(sibling, sg);
1113 
1114 		if (!first)
1115 			first = sg;
1116 		if (last)
1117 			last->next = sg;
1118 		last = sg;
1119 		last->next = first;
1120 	}
1121 	sd->groups = first;
1122 
1123 	return 0;
1124 
1125 fail:
1126 	free_sched_groups(first, 0);
1127 
1128 	return -ENOMEM;
1129 }
1130 
1131 
1132 /*
1133  * Package topology (also see the load-balance blurb in fair.c)
1134  *
1135  * The scheduler builds a tree structure to represent a number of important
1136  * topology features. By default (default_topology[]) these include:
1137  *
1138  *  - Simultaneous multithreading (SMT)
1139  *  - Multi-Core Cache (MC)
1140  *  - Package (PKG)
1141  *
1142  * Where the last one more or less denotes everything up to a NUMA node.
1143  *
1144  * The tree consists of 3 primary data structures:
1145  *
1146  *	sched_domain -> sched_group -> sched_group_capacity
1147  *	    ^ ^             ^ ^
1148  *          `-'             `-'
1149  *
1150  * The sched_domains are per-CPU and have a two way link (parent & child) and
1151  * denote the ever growing mask of CPUs belonging to that level of topology.
1152  *
1153  * Each sched_domain has a circular (double) linked list of sched_group's, each
1154  * denoting the domains of the level below (or individual CPUs in case of the
1155  * first domain level). The sched_group linked by a sched_domain includes the
1156  * CPU of that sched_domain [*].
1157  *
1158  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1159  *
1160  * CPU   0   1   2   3   4   5   6   7
1161  *
1162  * PKG  [                             ]
1163  * MC   [             ] [             ]
1164  * SMT  [     ] [     ] [     ] [     ]
1165  *
1166  *  - or -
1167  *
1168  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1169  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1170  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1171  *
1172  * CPU   0   1   2   3   4   5   6   7
1173  *
1174  * One way to think about it is: sched_domain moves you up and down among these
1175  * topology levels, while sched_group moves you sideways through it, at child
1176  * domain granularity.
1177  *
1178  * sched_group_capacity ensures each unique sched_group has shared storage.
1179  *
1180  * There are two related construction problems, both require a CPU that
1181  * uniquely identify each group (for a given domain):
1182  *
1183  *  - The first is the balance_cpu (see should_we_balance() and the
1184  *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1185  *    continue balancing at a higher domain.
1186  *
1187  *  - The second is the sched_group_capacity; we want all identical groups
1188  *    to share a single sched_group_capacity.
1189  *
1190  * Since these topologies are exclusive by construction. That is, its
1191  * impossible for an SMT thread to belong to multiple cores, and cores to
1192  * be part of multiple caches. There is a very clear and unique location
1193  * for each CPU in the hierarchy.
1194  *
1195  * Therefore computing a unique CPU for each group is trivial (the iteration
1196  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1197  * group), we can simply pick the first CPU in each group.
1198  *
1199  *
1200  * [*] in other words, the first group of each domain is its child domain.
1201  */
1202 
1203 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1204 {
1205 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1206 	struct sched_domain *child = sd->child;
1207 	struct sched_group *sg;
1208 	bool already_visited;
1209 
1210 	if (child)
1211 		cpu = cpumask_first(sched_domain_span(child));
1212 
1213 	sg = *per_cpu_ptr(sdd->sg, cpu);
1214 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1215 
1216 	/* Increase refcounts for claim_allocations: */
1217 	already_visited = atomic_inc_return(&sg->ref) > 1;
1218 	/* sgc visits should follow a similar trend as sg */
1219 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1220 
1221 	/* If we have already visited that group, it's already initialized. */
1222 	if (already_visited)
1223 		return sg;
1224 
1225 	if (child) {
1226 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1227 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1228 		sg->flags = child->flags;
1229 	} else {
1230 		cpumask_set_cpu(cpu, sched_group_span(sg));
1231 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1232 	}
1233 
1234 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1235 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1236 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1237 
1238 	return sg;
1239 }
1240 
1241 /*
1242  * build_sched_groups will build a circular linked list of the groups
1243  * covered by the given span, will set each group's ->cpumask correctly,
1244  * and will initialize their ->sgc.
1245  *
1246  * Assumes the sched_domain tree is fully constructed
1247  */
1248 static int
1249 build_sched_groups(struct sched_domain *sd, int cpu)
1250 {
1251 	struct sched_group *first = NULL, *last = NULL;
1252 	struct sd_data *sdd = sd->private;
1253 	const struct cpumask *span = sched_domain_span(sd);
1254 	struct cpumask *covered;
1255 	int i;
1256 
1257 	lockdep_assert_held(&sched_domains_mutex);
1258 	covered = sched_domains_tmpmask;
1259 
1260 	cpumask_clear(covered);
1261 
1262 	for_each_cpu_wrap(i, span, cpu) {
1263 		struct sched_group *sg;
1264 
1265 		if (cpumask_test_cpu(i, covered))
1266 			continue;
1267 
1268 		sg = get_group(i, sdd);
1269 
1270 		cpumask_or(covered, covered, sched_group_span(sg));
1271 
1272 		if (!first)
1273 			first = sg;
1274 		if (last)
1275 			last->next = sg;
1276 		last = sg;
1277 	}
1278 	last->next = first;
1279 	sd->groups = first;
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Initialize sched groups cpu_capacity.
1286  *
1287  * cpu_capacity indicates the capacity of sched group, which is used while
1288  * distributing the load between different sched groups in a sched domain.
1289  * Typically cpu_capacity for all the groups in a sched domain will be same
1290  * unless there are asymmetries in the topology. If there are asymmetries,
1291  * group having more cpu_capacity will pickup more load compared to the
1292  * group having less cpu_capacity.
1293  */
1294 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1295 {
1296 	struct sched_group *sg = sd->groups;
1297 	struct cpumask *mask = sched_domains_tmpmask2;
1298 
1299 	WARN_ON(!sg);
1300 
1301 	do {
1302 		int cpu, cores = 0, max_cpu = -1;
1303 
1304 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1305 
1306 		cpumask_copy(mask, sched_group_span(sg));
1307 		for_each_cpu(cpu, mask) {
1308 			cores++;
1309 #ifdef CONFIG_SCHED_SMT
1310 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1311 #endif
1312 		}
1313 		sg->cores = cores;
1314 
1315 		if (!(sd->flags & SD_ASYM_PACKING))
1316 			goto next;
1317 
1318 		for_each_cpu(cpu, sched_group_span(sg)) {
1319 			if (max_cpu < 0)
1320 				max_cpu = cpu;
1321 			else if (sched_asym_prefer(cpu, max_cpu))
1322 				max_cpu = cpu;
1323 		}
1324 		sg->asym_prefer_cpu = max_cpu;
1325 
1326 next:
1327 		sg = sg->next;
1328 	} while (sg != sd->groups);
1329 
1330 	if (cpu != group_balance_cpu(sg))
1331 		return;
1332 
1333 	update_group_capacity(sd, cpu);
1334 }
1335 
1336 #ifdef CONFIG_SMP
1337 
1338 /* Update the "asym_prefer_cpu" when arch_asym_cpu_priority() changes. */
1339 void sched_update_asym_prefer_cpu(int cpu, int old_prio, int new_prio)
1340 {
1341 	int asym_prefer_cpu = cpu;
1342 	struct sched_domain *sd;
1343 
1344 	guard(rcu)();
1345 
1346 	for_each_domain(cpu, sd) {
1347 		struct sched_group *sg;
1348 		int group_cpu;
1349 
1350 		if (!(sd->flags & SD_ASYM_PACKING))
1351 			continue;
1352 
1353 		/*
1354 		 * Groups of overlapping domain are replicated per NUMA
1355 		 * node and will require updating "asym_prefer_cpu" on
1356 		 * each local copy.
1357 		 *
1358 		 * If you are hitting this warning, consider moving
1359 		 * "sg->asym_prefer_cpu" to "sg->sgc->asym_prefer_cpu"
1360 		 * which is shared by all the overlapping groups.
1361 		 */
1362 		WARN_ON_ONCE(sd->flags & SD_OVERLAP);
1363 
1364 		sg = sd->groups;
1365 		if (cpu != sg->asym_prefer_cpu) {
1366 			/*
1367 			 * Since the parent is a superset of the current group,
1368 			 * if the cpu is not the "asym_prefer_cpu" at the
1369 			 * current level, it cannot be the preferred CPU at a
1370 			 * higher levels either.
1371 			 */
1372 			if (!sched_asym_prefer(cpu, sg->asym_prefer_cpu))
1373 				return;
1374 
1375 			WRITE_ONCE(sg->asym_prefer_cpu, cpu);
1376 			continue;
1377 		}
1378 
1379 		/* Ranking has improved; CPU is still the preferred one. */
1380 		if (new_prio >= old_prio)
1381 			continue;
1382 
1383 		for_each_cpu(group_cpu, sched_group_span(sg)) {
1384 			if (sched_asym_prefer(group_cpu, asym_prefer_cpu))
1385 				asym_prefer_cpu = group_cpu;
1386 		}
1387 
1388 		WRITE_ONCE(sg->asym_prefer_cpu, asym_prefer_cpu);
1389 	}
1390 }
1391 
1392 #endif /* CONFIG_SMP */
1393 
1394 /*
1395  * Set of available CPUs grouped by their corresponding capacities
1396  * Each list entry contains a CPU mask reflecting CPUs that share the same
1397  * capacity.
1398  * The lifespan of data is unlimited.
1399  */
1400 LIST_HEAD(asym_cap_list);
1401 
1402 /*
1403  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1404  * Provides sd_flags reflecting the asymmetry scope.
1405  */
1406 static inline int
1407 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1408 			   const struct cpumask *cpu_map)
1409 {
1410 	struct asym_cap_data *entry;
1411 	int count = 0, miss = 0;
1412 
1413 	/*
1414 	 * Count how many unique CPU capacities this domain spans across
1415 	 * (compare sched_domain CPUs mask with ones representing  available
1416 	 * CPUs capacities). Take into account CPUs that might be offline:
1417 	 * skip those.
1418 	 */
1419 	list_for_each_entry(entry, &asym_cap_list, link) {
1420 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1421 			++count;
1422 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1423 			++miss;
1424 	}
1425 
1426 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1427 
1428 	/* No asymmetry detected */
1429 	if (count < 2)
1430 		return 0;
1431 	/* Some of the available CPU capacity values have not been detected */
1432 	if (miss)
1433 		return SD_ASYM_CPUCAPACITY;
1434 
1435 	/* Full asymmetry */
1436 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1437 
1438 }
1439 
1440 static void free_asym_cap_entry(struct rcu_head *head)
1441 {
1442 	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1443 	kfree(entry);
1444 }
1445 
1446 static inline void asym_cpu_capacity_update_data(int cpu)
1447 {
1448 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1449 	struct asym_cap_data *insert_entry = NULL;
1450 	struct asym_cap_data *entry;
1451 
1452 	/*
1453 	 * Search if capacity already exits. If not, track which the entry
1454 	 * where we should insert to keep the list ordered descending.
1455 	 */
1456 	list_for_each_entry(entry, &asym_cap_list, link) {
1457 		if (capacity == entry->capacity)
1458 			goto done;
1459 		else if (!insert_entry && capacity > entry->capacity)
1460 			insert_entry = list_prev_entry(entry, link);
1461 	}
1462 
1463 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1464 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1465 		return;
1466 	entry->capacity = capacity;
1467 
1468 	/* If NULL then the new capacity is the smallest, add last. */
1469 	if (!insert_entry)
1470 		list_add_tail_rcu(&entry->link, &asym_cap_list);
1471 	else
1472 		list_add_rcu(&entry->link, &insert_entry->link);
1473 done:
1474 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1475 }
1476 
1477 /*
1478  * Build-up/update list of CPUs grouped by their capacities
1479  * An update requires explicit request to rebuild sched domains
1480  * with state indicating CPU topology changes.
1481  */
1482 static void asym_cpu_capacity_scan(void)
1483 {
1484 	struct asym_cap_data *entry, *next;
1485 	int cpu;
1486 
1487 	list_for_each_entry(entry, &asym_cap_list, link)
1488 		cpumask_clear(cpu_capacity_span(entry));
1489 
1490 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1491 		asym_cpu_capacity_update_data(cpu);
1492 
1493 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1494 		if (cpumask_empty(cpu_capacity_span(entry))) {
1495 			list_del_rcu(&entry->link);
1496 			call_rcu(&entry->rcu, free_asym_cap_entry);
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Only one capacity value has been detected i.e. this system is symmetric.
1502 	 * No need to keep this data around.
1503 	 */
1504 	if (list_is_singular(&asym_cap_list)) {
1505 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1506 		list_del_rcu(&entry->link);
1507 		call_rcu(&entry->rcu, free_asym_cap_entry);
1508 	}
1509 }
1510 
1511 /*
1512  * Initializers for schedule domains
1513  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1514  */
1515 
1516 static int default_relax_domain_level = -1;
1517 int sched_domain_level_max;
1518 
1519 static int __init setup_relax_domain_level(char *str)
1520 {
1521 	if (kstrtoint(str, 0, &default_relax_domain_level))
1522 		pr_warn("Unable to set relax_domain_level\n");
1523 
1524 	return 1;
1525 }
1526 __setup("relax_domain_level=", setup_relax_domain_level);
1527 
1528 static void set_domain_attribute(struct sched_domain *sd,
1529 				 struct sched_domain_attr *attr)
1530 {
1531 	int request;
1532 
1533 	if (!attr || attr->relax_domain_level < 0) {
1534 		if (default_relax_domain_level < 0)
1535 			return;
1536 		request = default_relax_domain_level;
1537 	} else
1538 		request = attr->relax_domain_level;
1539 
1540 	if (sd->level >= request) {
1541 		/* Turn off idle balance on this domain: */
1542 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1543 	}
1544 }
1545 
1546 static void __sdt_free(const struct cpumask *cpu_map);
1547 static int __sdt_alloc(const struct cpumask *cpu_map);
1548 
1549 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1550 				 const struct cpumask *cpu_map)
1551 {
1552 	switch (what) {
1553 	case sa_rootdomain:
1554 		if (!atomic_read(&d->rd->refcount))
1555 			free_rootdomain(&d->rd->rcu);
1556 		fallthrough;
1557 	case sa_sd:
1558 		free_percpu(d->sd);
1559 		fallthrough;
1560 	case sa_sd_storage:
1561 		__sdt_free(cpu_map);
1562 		fallthrough;
1563 	case sa_none:
1564 		break;
1565 	}
1566 }
1567 
1568 static enum s_alloc
1569 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1570 {
1571 	memset(d, 0, sizeof(*d));
1572 
1573 	if (__sdt_alloc(cpu_map))
1574 		return sa_sd_storage;
1575 	d->sd = alloc_percpu(struct sched_domain *);
1576 	if (!d->sd)
1577 		return sa_sd_storage;
1578 	d->rd = alloc_rootdomain();
1579 	if (!d->rd)
1580 		return sa_sd;
1581 
1582 	return sa_rootdomain;
1583 }
1584 
1585 /*
1586  * NULL the sd_data elements we've used to build the sched_domain and
1587  * sched_group structure so that the subsequent __free_domain_allocs()
1588  * will not free the data we're using.
1589  */
1590 static void claim_allocations(int cpu, struct sched_domain *sd)
1591 {
1592 	struct sd_data *sdd = sd->private;
1593 
1594 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1595 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1596 
1597 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1598 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1599 
1600 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1601 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1602 
1603 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1604 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1605 }
1606 
1607 #ifdef CONFIG_NUMA
1608 enum numa_topology_type sched_numa_topology_type;
1609 
1610 static int			sched_domains_numa_levels;
1611 static int			sched_domains_curr_level;
1612 
1613 int				sched_max_numa_distance;
1614 static int			*sched_domains_numa_distance;
1615 static struct cpumask		***sched_domains_numa_masks;
1616 #endif
1617 
1618 /*
1619  * SD_flags allowed in topology descriptions.
1620  *
1621  * These flags are purely descriptive of the topology and do not prescribe
1622  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1623  * function. For details, see include/linux/sched/sd_flags.h.
1624  *
1625  *   SD_SHARE_CPUCAPACITY
1626  *   SD_SHARE_LLC
1627  *   SD_CLUSTER
1628  *   SD_NUMA
1629  *
1630  * Odd one out, which beside describing the topology has a quirk also
1631  * prescribes the desired behaviour that goes along with it:
1632  *
1633  *   SD_ASYM_PACKING        - describes SMT quirks
1634  */
1635 #define TOPOLOGY_SD_FLAGS		\
1636 	(SD_SHARE_CPUCAPACITY	|	\
1637 	 SD_CLUSTER		|	\
1638 	 SD_SHARE_LLC		|	\
1639 	 SD_NUMA		|	\
1640 	 SD_ASYM_PACKING)
1641 
1642 static struct sched_domain *
1643 sd_init(struct sched_domain_topology_level *tl,
1644 	const struct cpumask *cpu_map,
1645 	struct sched_domain *child, int cpu)
1646 {
1647 	struct sd_data *sdd = &tl->data;
1648 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1649 	int sd_id, sd_weight, sd_flags = 0;
1650 	struct cpumask *sd_span;
1651 
1652 #ifdef CONFIG_NUMA
1653 	/*
1654 	 * Ugly hack to pass state to sd_numa_mask()...
1655 	 */
1656 	sched_domains_curr_level = tl->numa_level;
1657 #endif
1658 
1659 	sd_weight = cpumask_weight(tl->mask(cpu));
1660 
1661 	if (tl->sd_flags)
1662 		sd_flags = (*tl->sd_flags)();
1663 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1664 			"wrong sd_flags in topology description\n"))
1665 		sd_flags &= TOPOLOGY_SD_FLAGS;
1666 
1667 	*sd = (struct sched_domain){
1668 		.min_interval		= sd_weight,
1669 		.max_interval		= 2*sd_weight,
1670 		.busy_factor		= 16,
1671 		.imbalance_pct		= 117,
1672 
1673 		.cache_nice_tries	= 0,
1674 
1675 		.flags			= 1*SD_BALANCE_NEWIDLE
1676 					| 1*SD_BALANCE_EXEC
1677 					| 1*SD_BALANCE_FORK
1678 					| 0*SD_BALANCE_WAKE
1679 					| 1*SD_WAKE_AFFINE
1680 					| 0*SD_SHARE_CPUCAPACITY
1681 					| 0*SD_SHARE_LLC
1682 					| 0*SD_SERIALIZE
1683 					| 1*SD_PREFER_SIBLING
1684 					| 0*SD_NUMA
1685 					| sd_flags
1686 					,
1687 
1688 		.last_balance		= jiffies,
1689 		.balance_interval	= sd_weight,
1690 		.max_newidle_lb_cost	= 0,
1691 		.last_decay_max_lb_cost	= jiffies,
1692 		.child			= child,
1693 		.name			= tl->name,
1694 	};
1695 
1696 	sd_span = sched_domain_span(sd);
1697 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1698 	sd_id = cpumask_first(sd_span);
1699 
1700 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1701 
1702 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1703 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1704 		  "CPU capacity asymmetry not supported on SMT\n");
1705 
1706 	/*
1707 	 * Convert topological properties into behaviour.
1708 	 */
1709 	/* Don't attempt to spread across CPUs of different capacities. */
1710 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1711 		sd->child->flags &= ~SD_PREFER_SIBLING;
1712 
1713 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1714 		sd->imbalance_pct = 110;
1715 
1716 	} else if (sd->flags & SD_SHARE_LLC) {
1717 		sd->imbalance_pct = 117;
1718 		sd->cache_nice_tries = 1;
1719 
1720 #ifdef CONFIG_NUMA
1721 	} else if (sd->flags & SD_NUMA) {
1722 		sd->cache_nice_tries = 2;
1723 
1724 		sd->flags &= ~SD_PREFER_SIBLING;
1725 		sd->flags |= SD_SERIALIZE;
1726 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1727 			sd->flags &= ~(SD_BALANCE_EXEC |
1728 				       SD_BALANCE_FORK |
1729 				       SD_WAKE_AFFINE);
1730 		}
1731 
1732 #endif
1733 	} else {
1734 		sd->cache_nice_tries = 1;
1735 	}
1736 
1737 	/*
1738 	 * For all levels sharing cache; connect a sched_domain_shared
1739 	 * instance.
1740 	 */
1741 	if (sd->flags & SD_SHARE_LLC) {
1742 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1743 		atomic_inc(&sd->shared->ref);
1744 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1745 	}
1746 
1747 	sd->private = sdd;
1748 
1749 	return sd;
1750 }
1751 
1752 /*
1753  * Topology list, bottom-up.
1754  */
1755 static struct sched_domain_topology_level default_topology[] = {
1756 #ifdef CONFIG_SCHED_SMT
1757 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1758 #endif
1759 
1760 #ifdef CONFIG_SCHED_CLUSTER
1761 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1762 #endif
1763 
1764 #ifdef CONFIG_SCHED_MC
1765 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1766 #endif
1767 	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1768 	{ NULL, },
1769 };
1770 
1771 static struct sched_domain_topology_level *sched_domain_topology =
1772 	default_topology;
1773 static struct sched_domain_topology_level *sched_domain_topology_saved;
1774 
1775 #define for_each_sd_topology(tl)			\
1776 	for (tl = sched_domain_topology; tl->mask; tl++)
1777 
1778 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1779 {
1780 	if (WARN_ON_ONCE(sched_smp_initialized))
1781 		return;
1782 
1783 	sched_domain_topology = tl;
1784 	sched_domain_topology_saved = NULL;
1785 }
1786 
1787 #ifdef CONFIG_NUMA
1788 
1789 static const struct cpumask *sd_numa_mask(int cpu)
1790 {
1791 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1792 }
1793 
1794 static void sched_numa_warn(const char *str)
1795 {
1796 	static int done = false;
1797 	int i,j;
1798 
1799 	if (done)
1800 		return;
1801 
1802 	done = true;
1803 
1804 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1805 
1806 	for (i = 0; i < nr_node_ids; i++) {
1807 		printk(KERN_WARNING "  ");
1808 		for (j = 0; j < nr_node_ids; j++) {
1809 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1810 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1811 			else
1812 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1813 		}
1814 		printk(KERN_CONT "\n");
1815 	}
1816 	printk(KERN_WARNING "\n");
1817 }
1818 
1819 bool find_numa_distance(int distance)
1820 {
1821 	bool found = false;
1822 	int i, *distances;
1823 
1824 	if (distance == node_distance(0, 0))
1825 		return true;
1826 
1827 	rcu_read_lock();
1828 	distances = rcu_dereference(sched_domains_numa_distance);
1829 	if (!distances)
1830 		goto unlock;
1831 	for (i = 0; i < sched_domains_numa_levels; i++) {
1832 		if (distances[i] == distance) {
1833 			found = true;
1834 			break;
1835 		}
1836 	}
1837 unlock:
1838 	rcu_read_unlock();
1839 
1840 	return found;
1841 }
1842 
1843 #define for_each_cpu_node_but(n, nbut)		\
1844 	for_each_node_state(n, N_CPU)		\
1845 		if (n == nbut)			\
1846 			continue;		\
1847 		else
1848 
1849 /*
1850  * A system can have three types of NUMA topology:
1851  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1852  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1853  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1854  *
1855  * The difference between a glueless mesh topology and a backplane
1856  * topology lies in whether communication between not directly
1857  * connected nodes goes through intermediary nodes (where programs
1858  * could run), or through backplane controllers. This affects
1859  * placement of programs.
1860  *
1861  * The type of topology can be discerned with the following tests:
1862  * - If the maximum distance between any nodes is 1 hop, the system
1863  *   is directly connected.
1864  * - If for two nodes A and B, located N > 1 hops away from each other,
1865  *   there is an intermediary node C, which is < N hops away from both
1866  *   nodes A and B, the system is a glueless mesh.
1867  */
1868 static void init_numa_topology_type(int offline_node)
1869 {
1870 	int a, b, c, n;
1871 
1872 	n = sched_max_numa_distance;
1873 
1874 	if (sched_domains_numa_levels <= 2) {
1875 		sched_numa_topology_type = NUMA_DIRECT;
1876 		return;
1877 	}
1878 
1879 	for_each_cpu_node_but(a, offline_node) {
1880 		for_each_cpu_node_but(b, offline_node) {
1881 			/* Find two nodes furthest removed from each other. */
1882 			if (node_distance(a, b) < n)
1883 				continue;
1884 
1885 			/* Is there an intermediary node between a and b? */
1886 			for_each_cpu_node_but(c, offline_node) {
1887 				if (node_distance(a, c) < n &&
1888 				    node_distance(b, c) < n) {
1889 					sched_numa_topology_type =
1890 							NUMA_GLUELESS_MESH;
1891 					return;
1892 				}
1893 			}
1894 
1895 			sched_numa_topology_type = NUMA_BACKPLANE;
1896 			return;
1897 		}
1898 	}
1899 
1900 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1901 	sched_numa_topology_type = NUMA_DIRECT;
1902 }
1903 
1904 
1905 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1906 
1907 void sched_init_numa(int offline_node)
1908 {
1909 	struct sched_domain_topology_level *tl;
1910 	unsigned long *distance_map;
1911 	int nr_levels = 0;
1912 	int i, j;
1913 	int *distances;
1914 	struct cpumask ***masks;
1915 
1916 	/*
1917 	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1918 	 * unique distances in the node_distance() table.
1919 	 */
1920 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1921 	if (!distance_map)
1922 		return;
1923 
1924 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1925 	for_each_cpu_node_but(i, offline_node) {
1926 		for_each_cpu_node_but(j, offline_node) {
1927 			int distance = node_distance(i, j);
1928 
1929 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1930 				sched_numa_warn("Invalid distance value range");
1931 				bitmap_free(distance_map);
1932 				return;
1933 			}
1934 
1935 			bitmap_set(distance_map, distance, 1);
1936 		}
1937 	}
1938 	/*
1939 	 * We can now figure out how many unique distance values there are and
1940 	 * allocate memory accordingly.
1941 	 */
1942 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1943 
1944 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1945 	if (!distances) {
1946 		bitmap_free(distance_map);
1947 		return;
1948 	}
1949 
1950 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1951 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1952 		distances[i] = j;
1953 	}
1954 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1955 
1956 	bitmap_free(distance_map);
1957 
1958 	/*
1959 	 * 'nr_levels' contains the number of unique distances
1960 	 *
1961 	 * The sched_domains_numa_distance[] array includes the actual distance
1962 	 * numbers.
1963 	 */
1964 
1965 	/*
1966 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1967 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1968 	 * the array will contain less then 'nr_levels' members. This could be
1969 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1970 	 * in other functions.
1971 	 *
1972 	 * We reset it to 'nr_levels' at the end of this function.
1973 	 */
1974 	sched_domains_numa_levels = 0;
1975 
1976 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1977 	if (!masks)
1978 		return;
1979 
1980 	/*
1981 	 * Now for each level, construct a mask per node which contains all
1982 	 * CPUs of nodes that are that many hops away from us.
1983 	 */
1984 	for (i = 0; i < nr_levels; i++) {
1985 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1986 		if (!masks[i])
1987 			return;
1988 
1989 		for_each_cpu_node_but(j, offline_node) {
1990 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1991 			int k;
1992 
1993 			if (!mask)
1994 				return;
1995 
1996 			masks[i][j] = mask;
1997 
1998 			for_each_cpu_node_but(k, offline_node) {
1999 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
2000 					sched_numa_warn("Node-distance not symmetric");
2001 
2002 				if (node_distance(j, k) > sched_domains_numa_distance[i])
2003 					continue;
2004 
2005 				cpumask_or(mask, mask, cpumask_of_node(k));
2006 			}
2007 		}
2008 	}
2009 	rcu_assign_pointer(sched_domains_numa_masks, masks);
2010 
2011 	/* Compute default topology size */
2012 	for (i = 0; sched_domain_topology[i].mask; i++);
2013 
2014 	tl = kzalloc((i + nr_levels + 1) *
2015 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
2016 	if (!tl)
2017 		return;
2018 
2019 	/*
2020 	 * Copy the default topology bits..
2021 	 */
2022 	for (i = 0; sched_domain_topology[i].mask; i++)
2023 		tl[i] = sched_domain_topology[i];
2024 
2025 	/*
2026 	 * Add the NUMA identity distance, aka single NODE.
2027 	 */
2028 	tl[i++] = (struct sched_domain_topology_level){
2029 		.mask = sd_numa_mask,
2030 		.numa_level = 0,
2031 		SD_INIT_NAME(NODE)
2032 	};
2033 
2034 	/*
2035 	 * .. and append 'j' levels of NUMA goodness.
2036 	 */
2037 	for (j = 1; j < nr_levels; i++, j++) {
2038 		tl[i] = (struct sched_domain_topology_level){
2039 			.mask = sd_numa_mask,
2040 			.sd_flags = cpu_numa_flags,
2041 			.flags = SDTL_OVERLAP,
2042 			.numa_level = j,
2043 			SD_INIT_NAME(NUMA)
2044 		};
2045 	}
2046 
2047 	sched_domain_topology_saved = sched_domain_topology;
2048 	sched_domain_topology = tl;
2049 
2050 	sched_domains_numa_levels = nr_levels;
2051 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
2052 
2053 	init_numa_topology_type(offline_node);
2054 }
2055 
2056 
2057 static void sched_reset_numa(void)
2058 {
2059 	int nr_levels, *distances;
2060 	struct cpumask ***masks;
2061 
2062 	nr_levels = sched_domains_numa_levels;
2063 	sched_domains_numa_levels = 0;
2064 	sched_max_numa_distance = 0;
2065 	sched_numa_topology_type = NUMA_DIRECT;
2066 	distances = sched_domains_numa_distance;
2067 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2068 	masks = sched_domains_numa_masks;
2069 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2070 	if (distances || masks) {
2071 		int i, j;
2072 
2073 		synchronize_rcu();
2074 		kfree(distances);
2075 		for (i = 0; i < nr_levels && masks; i++) {
2076 			if (!masks[i])
2077 				continue;
2078 			for_each_node(j)
2079 				kfree(masks[i][j]);
2080 			kfree(masks[i]);
2081 		}
2082 		kfree(masks);
2083 	}
2084 	if (sched_domain_topology_saved) {
2085 		kfree(sched_domain_topology);
2086 		sched_domain_topology = sched_domain_topology_saved;
2087 		sched_domain_topology_saved = NULL;
2088 	}
2089 }
2090 
2091 /*
2092  * Call with hotplug lock held
2093  */
2094 void sched_update_numa(int cpu, bool online)
2095 {
2096 	int node;
2097 
2098 	node = cpu_to_node(cpu);
2099 	/*
2100 	 * Scheduler NUMA topology is updated when the first CPU of a
2101 	 * node is onlined or the last CPU of a node is offlined.
2102 	 */
2103 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2104 		return;
2105 
2106 	sched_reset_numa();
2107 	sched_init_numa(online ? NUMA_NO_NODE : node);
2108 }
2109 
2110 void sched_domains_numa_masks_set(unsigned int cpu)
2111 {
2112 	int node = cpu_to_node(cpu);
2113 	int i, j;
2114 
2115 	for (i = 0; i < sched_domains_numa_levels; i++) {
2116 		for (j = 0; j < nr_node_ids; j++) {
2117 			if (!node_state(j, N_CPU))
2118 				continue;
2119 
2120 			/* Set ourselves in the remote node's masks */
2121 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2122 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2123 		}
2124 	}
2125 }
2126 
2127 void sched_domains_numa_masks_clear(unsigned int cpu)
2128 {
2129 	int i, j;
2130 
2131 	for (i = 0; i < sched_domains_numa_levels; i++) {
2132 		for (j = 0; j < nr_node_ids; j++) {
2133 			if (sched_domains_numa_masks[i][j])
2134 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2135 		}
2136 	}
2137 }
2138 
2139 /*
2140  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2141  *                             closest to @cpu from @cpumask.
2142  * cpumask: cpumask to find a cpu from
2143  * cpu: cpu to be close to
2144  *
2145  * returns: cpu, or nr_cpu_ids when nothing found.
2146  */
2147 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2148 {
2149 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2150 	struct cpumask ***masks;
2151 
2152 	rcu_read_lock();
2153 	masks = rcu_dereference(sched_domains_numa_masks);
2154 	if (!masks)
2155 		goto unlock;
2156 	for (i = 0; i < sched_domains_numa_levels; i++) {
2157 		if (!masks[i][j])
2158 			break;
2159 		cpu = cpumask_any_and_distribute(cpus, masks[i][j]);
2160 		if (cpu < nr_cpu_ids) {
2161 			found = cpu;
2162 			break;
2163 		}
2164 	}
2165 unlock:
2166 	rcu_read_unlock();
2167 
2168 	return found;
2169 }
2170 
2171 struct __cmp_key {
2172 	const struct cpumask *cpus;
2173 	struct cpumask ***masks;
2174 	int node;
2175 	int cpu;
2176 	int w;
2177 };
2178 
2179 static int hop_cmp(const void *a, const void *b)
2180 {
2181 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2182 	struct __cmp_key *k = (struct __cmp_key *)a;
2183 
2184 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2185 		return 1;
2186 
2187 	if (b == k->masks) {
2188 		k->w = 0;
2189 		return 0;
2190 	}
2191 
2192 	prev_hop = *((struct cpumask ***)b - 1);
2193 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2194 	if (k->w <= k->cpu)
2195 		return 0;
2196 
2197 	return -1;
2198 }
2199 
2200 /**
2201  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2202  *                             from @cpus to @cpu, taking into account distance
2203  *                             from a given @node.
2204  * @cpus: cpumask to find a cpu from
2205  * @cpu: CPU to start searching
2206  * @node: NUMA node to order CPUs by distance
2207  *
2208  * Return: cpu, or nr_cpu_ids when nothing found.
2209  */
2210 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2211 {
2212 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2213 	struct cpumask ***hop_masks;
2214 	int hop, ret = nr_cpu_ids;
2215 
2216 	if (node == NUMA_NO_NODE)
2217 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2218 
2219 	rcu_read_lock();
2220 
2221 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2222 	node = numa_nearest_node(node, N_CPU);
2223 	k.node = node;
2224 
2225 	k.masks = rcu_dereference(sched_domains_numa_masks);
2226 	if (!k.masks)
2227 		goto unlock;
2228 
2229 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2230 	hop = hop_masks	- k.masks;
2231 
2232 	ret = hop ?
2233 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2234 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2235 unlock:
2236 	rcu_read_unlock();
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2240 
2241 /**
2242  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2243  *                         @node
2244  * @node: The node to count hops from.
2245  * @hops: Include CPUs up to that many hops away. 0 means local node.
2246  *
2247  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2248  * @node, an error value otherwise.
2249  *
2250  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2251  * read-side section, copy it if required beyond that.
2252  *
2253  * Note that not all hops are equal in distance; see sched_init_numa() for how
2254  * distances and masks are handled.
2255  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2256  * during the lifetime of the system (offline nodes are taken out of the masks).
2257  */
2258 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2259 {
2260 	struct cpumask ***masks;
2261 
2262 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2263 		return ERR_PTR(-EINVAL);
2264 
2265 	masks = rcu_dereference(sched_domains_numa_masks);
2266 	if (!masks)
2267 		return ERR_PTR(-EBUSY);
2268 
2269 	return masks[hops][node];
2270 }
2271 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2272 
2273 #endif /* CONFIG_NUMA */
2274 
2275 static int __sdt_alloc(const struct cpumask *cpu_map)
2276 {
2277 	struct sched_domain_topology_level *tl;
2278 	int j;
2279 
2280 	for_each_sd_topology(tl) {
2281 		struct sd_data *sdd = &tl->data;
2282 
2283 		sdd->sd = alloc_percpu(struct sched_domain *);
2284 		if (!sdd->sd)
2285 			return -ENOMEM;
2286 
2287 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2288 		if (!sdd->sds)
2289 			return -ENOMEM;
2290 
2291 		sdd->sg = alloc_percpu(struct sched_group *);
2292 		if (!sdd->sg)
2293 			return -ENOMEM;
2294 
2295 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2296 		if (!sdd->sgc)
2297 			return -ENOMEM;
2298 
2299 		for_each_cpu(j, cpu_map) {
2300 			struct sched_domain *sd;
2301 			struct sched_domain_shared *sds;
2302 			struct sched_group *sg;
2303 			struct sched_group_capacity *sgc;
2304 
2305 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2306 					GFP_KERNEL, cpu_to_node(j));
2307 			if (!sd)
2308 				return -ENOMEM;
2309 
2310 			*per_cpu_ptr(sdd->sd, j) = sd;
2311 
2312 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2313 					GFP_KERNEL, cpu_to_node(j));
2314 			if (!sds)
2315 				return -ENOMEM;
2316 
2317 			*per_cpu_ptr(sdd->sds, j) = sds;
2318 
2319 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2320 					GFP_KERNEL, cpu_to_node(j));
2321 			if (!sg)
2322 				return -ENOMEM;
2323 
2324 			sg->next = sg;
2325 
2326 			*per_cpu_ptr(sdd->sg, j) = sg;
2327 
2328 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2329 					GFP_KERNEL, cpu_to_node(j));
2330 			if (!sgc)
2331 				return -ENOMEM;
2332 
2333 			sgc->id = j;
2334 
2335 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2336 		}
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 static void __sdt_free(const struct cpumask *cpu_map)
2343 {
2344 	struct sched_domain_topology_level *tl;
2345 	int j;
2346 
2347 	for_each_sd_topology(tl) {
2348 		struct sd_data *sdd = &tl->data;
2349 
2350 		for_each_cpu(j, cpu_map) {
2351 			struct sched_domain *sd;
2352 
2353 			if (sdd->sd) {
2354 				sd = *per_cpu_ptr(sdd->sd, j);
2355 				if (sd && (sd->flags & SD_OVERLAP))
2356 					free_sched_groups(sd->groups, 0);
2357 				kfree(*per_cpu_ptr(sdd->sd, j));
2358 			}
2359 
2360 			if (sdd->sds)
2361 				kfree(*per_cpu_ptr(sdd->sds, j));
2362 			if (sdd->sg)
2363 				kfree(*per_cpu_ptr(sdd->sg, j));
2364 			if (sdd->sgc)
2365 				kfree(*per_cpu_ptr(sdd->sgc, j));
2366 		}
2367 		free_percpu(sdd->sd);
2368 		sdd->sd = NULL;
2369 		free_percpu(sdd->sds);
2370 		sdd->sds = NULL;
2371 		free_percpu(sdd->sg);
2372 		sdd->sg = NULL;
2373 		free_percpu(sdd->sgc);
2374 		sdd->sgc = NULL;
2375 	}
2376 }
2377 
2378 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2379 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2380 		struct sched_domain *child, int cpu)
2381 {
2382 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2383 
2384 	if (child) {
2385 		sd->level = child->level + 1;
2386 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2387 		child->parent = sd;
2388 
2389 		if (!cpumask_subset(sched_domain_span(child),
2390 				    sched_domain_span(sd))) {
2391 			pr_err("BUG: arch topology borken\n");
2392 			pr_err("     the %s domain not a subset of the %s domain\n",
2393 					child->name, sd->name);
2394 			/* Fixup, ensure @sd has at least @child CPUs. */
2395 			cpumask_or(sched_domain_span(sd),
2396 				   sched_domain_span(sd),
2397 				   sched_domain_span(child));
2398 		}
2399 
2400 	}
2401 	set_domain_attribute(sd, attr);
2402 
2403 	return sd;
2404 }
2405 
2406 /*
2407  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2408  * any two given CPUs on non-NUMA topology levels.
2409  */
2410 static bool topology_span_sane(const struct cpumask *cpu_map)
2411 {
2412 	struct sched_domain_topology_level *tl;
2413 	struct cpumask *covered, *id_seen;
2414 	int cpu;
2415 
2416 	lockdep_assert_held(&sched_domains_mutex);
2417 	covered = sched_domains_tmpmask;
2418 	id_seen = sched_domains_tmpmask2;
2419 
2420 	for_each_sd_topology(tl) {
2421 
2422 		/* NUMA levels are allowed to overlap */
2423 		if (tl->flags & SDTL_OVERLAP)
2424 			continue;
2425 
2426 		cpumask_clear(covered);
2427 		cpumask_clear(id_seen);
2428 
2429 		/*
2430 		 * Non-NUMA levels cannot partially overlap - they must be either
2431 		 * completely equal or completely disjoint. Otherwise we can end up
2432 		 * breaking the sched_group lists - i.e. a later get_group() pass
2433 		 * breaks the linking done for an earlier span.
2434 		 */
2435 		for_each_cpu(cpu, cpu_map) {
2436 			const struct cpumask *tl_cpu_mask = tl->mask(cpu);
2437 			int id;
2438 
2439 			/* lowest bit set in this mask is used as a unique id */
2440 			id = cpumask_first(tl_cpu_mask);
2441 
2442 			if (cpumask_test_cpu(id, id_seen)) {
2443 				/* First CPU has already been seen, ensure identical spans */
2444 				if (!cpumask_equal(tl->mask(id), tl_cpu_mask))
2445 					return false;
2446 			} else {
2447 				/* First CPU hasn't been seen before, ensure it's a completely new span */
2448 				if (cpumask_intersects(tl_cpu_mask, covered))
2449 					return false;
2450 
2451 				cpumask_or(covered, covered, tl_cpu_mask);
2452 				cpumask_set_cpu(id, id_seen);
2453 			}
2454 		}
2455 	}
2456 	return true;
2457 }
2458 
2459 /*
2460  * Build sched domains for a given set of CPUs and attach the sched domains
2461  * to the individual CPUs
2462  */
2463 static int
2464 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2465 {
2466 	enum s_alloc alloc_state = sa_none;
2467 	struct sched_domain *sd;
2468 	struct s_data d;
2469 	struct rq *rq = NULL;
2470 	int i, ret = -ENOMEM;
2471 	bool has_asym = false;
2472 	bool has_cluster = false;
2473 
2474 	if (WARN_ON(cpumask_empty(cpu_map)))
2475 		goto error;
2476 
2477 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2478 	if (alloc_state != sa_rootdomain)
2479 		goto error;
2480 
2481 	/* Set up domains for CPUs specified by the cpu_map: */
2482 	for_each_cpu(i, cpu_map) {
2483 		struct sched_domain_topology_level *tl;
2484 
2485 		sd = NULL;
2486 		for_each_sd_topology(tl) {
2487 
2488 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2489 
2490 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2491 
2492 			if (tl == sched_domain_topology)
2493 				*per_cpu_ptr(d.sd, i) = sd;
2494 			if (tl->flags & SDTL_OVERLAP)
2495 				sd->flags |= SD_OVERLAP;
2496 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2497 				break;
2498 		}
2499 	}
2500 
2501 	if (WARN_ON(!topology_span_sane(cpu_map)))
2502 		goto error;
2503 
2504 	/* Build the groups for the domains */
2505 	for_each_cpu(i, cpu_map) {
2506 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2507 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2508 			if (sd->flags & SD_OVERLAP) {
2509 				if (build_overlap_sched_groups(sd, i))
2510 					goto error;
2511 			} else {
2512 				if (build_sched_groups(sd, i))
2513 					goto error;
2514 			}
2515 		}
2516 	}
2517 
2518 	/*
2519 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2520 	 * imbalanced.
2521 	 */
2522 	for_each_cpu(i, cpu_map) {
2523 		unsigned int imb = 0;
2524 		unsigned int imb_span = 1;
2525 
2526 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2527 			struct sched_domain *child = sd->child;
2528 
2529 			if (!(sd->flags & SD_SHARE_LLC) && child &&
2530 			    (child->flags & SD_SHARE_LLC)) {
2531 				struct sched_domain __rcu *top_p;
2532 				unsigned int nr_llcs;
2533 
2534 				/*
2535 				 * For a single LLC per node, allow an
2536 				 * imbalance up to 12.5% of the node. This is
2537 				 * arbitrary cutoff based two factors -- SMT and
2538 				 * memory channels. For SMT-2, the intent is to
2539 				 * avoid premature sharing of HT resources but
2540 				 * SMT-4 or SMT-8 *may* benefit from a different
2541 				 * cutoff. For memory channels, this is a very
2542 				 * rough estimate of how many channels may be
2543 				 * active and is based on recent CPUs with
2544 				 * many cores.
2545 				 *
2546 				 * For multiple LLCs, allow an imbalance
2547 				 * until multiple tasks would share an LLC
2548 				 * on one node while LLCs on another node
2549 				 * remain idle. This assumes that there are
2550 				 * enough logical CPUs per LLC to avoid SMT
2551 				 * factors and that there is a correlation
2552 				 * between LLCs and memory channels.
2553 				 */
2554 				nr_llcs = sd->span_weight / child->span_weight;
2555 				if (nr_llcs == 1)
2556 					imb = sd->span_weight >> 3;
2557 				else
2558 					imb = nr_llcs;
2559 				imb = max(1U, imb);
2560 				sd->imb_numa_nr = imb;
2561 
2562 				/* Set span based on the first NUMA domain. */
2563 				top_p = sd->parent;
2564 				while (top_p && !(top_p->flags & SD_NUMA)) {
2565 					top_p = top_p->parent;
2566 				}
2567 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2568 			} else {
2569 				int factor = max(1U, (sd->span_weight / imb_span));
2570 
2571 				sd->imb_numa_nr = imb * factor;
2572 			}
2573 		}
2574 	}
2575 
2576 	/* Calculate CPU capacity for physical packages and nodes */
2577 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2578 		if (!cpumask_test_cpu(i, cpu_map))
2579 			continue;
2580 
2581 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2582 			claim_allocations(i, sd);
2583 			init_sched_groups_capacity(i, sd);
2584 		}
2585 	}
2586 
2587 	/* Attach the domains */
2588 	rcu_read_lock();
2589 	for_each_cpu(i, cpu_map) {
2590 		rq = cpu_rq(i);
2591 		sd = *per_cpu_ptr(d.sd, i);
2592 
2593 		cpu_attach_domain(sd, d.rd, i);
2594 
2595 		if (lowest_flag_domain(i, SD_CLUSTER))
2596 			has_cluster = true;
2597 	}
2598 	rcu_read_unlock();
2599 
2600 	if (has_asym)
2601 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2602 
2603 	if (has_cluster)
2604 		static_branch_inc_cpuslocked(&sched_cluster_active);
2605 
2606 	if (rq && sched_debug_verbose)
2607 		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2608 
2609 	ret = 0;
2610 error:
2611 	__free_domain_allocs(&d, alloc_state, cpu_map);
2612 
2613 	return ret;
2614 }
2615 
2616 /* Current sched domains: */
2617 static cpumask_var_t			*doms_cur;
2618 
2619 /* Number of sched domains in 'doms_cur': */
2620 static int				ndoms_cur;
2621 
2622 /* Attributes of custom domains in 'doms_cur' */
2623 static struct sched_domain_attr		*dattr_cur;
2624 
2625 /*
2626  * Special case: If a kmalloc() of a doms_cur partition (array of
2627  * cpumask) fails, then fallback to a single sched domain,
2628  * as determined by the single cpumask fallback_doms.
2629  */
2630 static cpumask_var_t			fallback_doms;
2631 
2632 /*
2633  * arch_update_cpu_topology lets virtualized architectures update the
2634  * CPU core maps. It is supposed to return 1 if the topology changed
2635  * or 0 if it stayed the same.
2636  */
2637 int __weak arch_update_cpu_topology(void)
2638 {
2639 	return 0;
2640 }
2641 
2642 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2643 {
2644 	int i;
2645 	cpumask_var_t *doms;
2646 
2647 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2648 	if (!doms)
2649 		return NULL;
2650 	for (i = 0; i < ndoms; i++) {
2651 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2652 			free_sched_domains(doms, i);
2653 			return NULL;
2654 		}
2655 	}
2656 	return doms;
2657 }
2658 
2659 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2660 {
2661 	unsigned int i;
2662 	for (i = 0; i < ndoms; i++)
2663 		free_cpumask_var(doms[i]);
2664 	kfree(doms);
2665 }
2666 
2667 /*
2668  * Set up scheduler domains and groups.  For now this just excludes isolated
2669  * CPUs, but could be used to exclude other special cases in the future.
2670  */
2671 int __init sched_init_domains(const struct cpumask *cpu_map)
2672 {
2673 	int err;
2674 
2675 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2676 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2677 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2678 
2679 	arch_update_cpu_topology();
2680 	asym_cpu_capacity_scan();
2681 	ndoms_cur = 1;
2682 	doms_cur = alloc_sched_domains(ndoms_cur);
2683 	if (!doms_cur)
2684 		doms_cur = &fallback_doms;
2685 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2686 	err = build_sched_domains(doms_cur[0], NULL);
2687 
2688 	return err;
2689 }
2690 
2691 /*
2692  * Detach sched domains from a group of CPUs specified in cpu_map
2693  * These CPUs will now be attached to the NULL domain
2694  */
2695 static void detach_destroy_domains(const struct cpumask *cpu_map)
2696 {
2697 	unsigned int cpu = cpumask_any(cpu_map);
2698 	int i;
2699 
2700 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2701 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2702 
2703 	if (static_branch_unlikely(&sched_cluster_active))
2704 		static_branch_dec_cpuslocked(&sched_cluster_active);
2705 
2706 	rcu_read_lock();
2707 	for_each_cpu(i, cpu_map)
2708 		cpu_attach_domain(NULL, &def_root_domain, i);
2709 	rcu_read_unlock();
2710 }
2711 
2712 /* handle null as "default" */
2713 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2714 			struct sched_domain_attr *new, int idx_new)
2715 {
2716 	struct sched_domain_attr tmp;
2717 
2718 	/* Fast path: */
2719 	if (!new && !cur)
2720 		return 1;
2721 
2722 	tmp = SD_ATTR_INIT;
2723 
2724 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2725 			new ? (new + idx_new) : &tmp,
2726 			sizeof(struct sched_domain_attr));
2727 }
2728 
2729 /*
2730  * Partition sched domains as specified by the 'ndoms_new'
2731  * cpumasks in the array doms_new[] of cpumasks. This compares
2732  * doms_new[] to the current sched domain partitioning, doms_cur[].
2733  * It destroys each deleted domain and builds each new domain.
2734  *
2735  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2736  * The masks don't intersect (don't overlap.) We should setup one
2737  * sched domain for each mask. CPUs not in any of the cpumasks will
2738  * not be load balanced. If the same cpumask appears both in the
2739  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2740  * it as it is.
2741  *
2742  * The passed in 'doms_new' should be allocated using
2743  * alloc_sched_domains.  This routine takes ownership of it and will
2744  * free_sched_domains it when done with it. If the caller failed the
2745  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2746  * and partition_sched_domains() will fallback to the single partition
2747  * 'fallback_doms', it also forces the domains to be rebuilt.
2748  *
2749  * If doms_new == NULL it will be replaced with cpu_online_mask.
2750  * ndoms_new == 0 is a special case for destroying existing domains,
2751  * and it will not create the default domain.
2752  *
2753  * Call with hotplug lock and sched_domains_mutex held
2754  */
2755 static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2756 				    struct sched_domain_attr *dattr_new)
2757 {
2758 	bool __maybe_unused has_eas = false;
2759 	int i, j, n;
2760 	int new_topology;
2761 
2762 	lockdep_assert_held(&sched_domains_mutex);
2763 
2764 	/* Let the architecture update CPU core mappings: */
2765 	new_topology = arch_update_cpu_topology();
2766 	/* Trigger rebuilding CPU capacity asymmetry data */
2767 	if (new_topology)
2768 		asym_cpu_capacity_scan();
2769 
2770 	if (!doms_new) {
2771 		WARN_ON_ONCE(dattr_new);
2772 		n = 0;
2773 		doms_new = alloc_sched_domains(1);
2774 		if (doms_new) {
2775 			n = 1;
2776 			cpumask_and(doms_new[0], cpu_active_mask,
2777 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2778 		}
2779 	} else {
2780 		n = ndoms_new;
2781 	}
2782 
2783 	/* Destroy deleted domains: */
2784 	for (i = 0; i < ndoms_cur; i++) {
2785 		for (j = 0; j < n && !new_topology; j++) {
2786 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2787 			    dattrs_equal(dattr_cur, i, dattr_new, j))
2788 				goto match1;
2789 		}
2790 		/* No match - a current sched domain not in new doms_new[] */
2791 		detach_destroy_domains(doms_cur[i]);
2792 match1:
2793 		;
2794 	}
2795 
2796 	n = ndoms_cur;
2797 	if (!doms_new) {
2798 		n = 0;
2799 		doms_new = &fallback_doms;
2800 		cpumask_and(doms_new[0], cpu_active_mask,
2801 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2802 	}
2803 
2804 	/* Build new domains: */
2805 	for (i = 0; i < ndoms_new; i++) {
2806 		for (j = 0; j < n && !new_topology; j++) {
2807 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2808 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2809 				goto match2;
2810 		}
2811 		/* No match - add a new doms_new */
2812 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2813 match2:
2814 		;
2815 	}
2816 
2817 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2818 	/* Build perf domains: */
2819 	for (i = 0; i < ndoms_new; i++) {
2820 		for (j = 0; j < n && !sched_energy_update; j++) {
2821 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2822 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2823 				has_eas = true;
2824 				goto match3;
2825 			}
2826 		}
2827 		/* No match - add perf domains for a new rd */
2828 		has_eas |= build_perf_domains(doms_new[i]);
2829 match3:
2830 		;
2831 	}
2832 	sched_energy_set(has_eas);
2833 #endif
2834 
2835 	/* Remember the new sched domains: */
2836 	if (doms_cur != &fallback_doms)
2837 		free_sched_domains(doms_cur, ndoms_cur);
2838 
2839 	kfree(dattr_cur);
2840 	doms_cur = doms_new;
2841 	dattr_cur = dattr_new;
2842 	ndoms_cur = ndoms_new;
2843 
2844 	update_sched_domain_debugfs();
2845 	dl_rebuild_rd_accounting();
2846 }
2847 
2848 /*
2849  * Call with hotplug lock held
2850  */
2851 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2852 			     struct sched_domain_attr *dattr_new)
2853 {
2854 	sched_domains_mutex_lock();
2855 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2856 	sched_domains_mutex_unlock();
2857 }
2858