xref: /linux/kernel/sched/rt.c (revision 803f69144f0d48863c68f9d111b56849c7cef5bb)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11 
12 struct rt_bandwidth def_rt_bandwidth;
13 
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16 	struct rt_bandwidth *rt_b =
17 		container_of(timer, struct rt_bandwidth, rt_period_timer);
18 	ktime_t now;
19 	int overrun;
20 	int idle = 0;
21 
22 	for (;;) {
23 		now = hrtimer_cb_get_time(timer);
24 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25 
26 		if (!overrun)
27 			break;
28 
29 		idle = do_sched_rt_period_timer(rt_b, overrun);
30 	}
31 
32 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34 
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37 	rt_b->rt_period = ns_to_ktime(period);
38 	rt_b->rt_runtime = runtime;
39 
40 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
41 
42 	hrtimer_init(&rt_b->rt_period_timer,
43 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 	rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46 
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 		return;
51 
52 	if (hrtimer_active(&rt_b->rt_period_timer))
53 		return;
54 
55 	raw_spin_lock(&rt_b->rt_runtime_lock);
56 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 	raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59 
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62 	struct rt_prio_array *array;
63 	int i;
64 
65 	array = &rt_rq->active;
66 	for (i = 0; i < MAX_RT_PRIO; i++) {
67 		INIT_LIST_HEAD(array->queue + i);
68 		__clear_bit(i, array->bitmap);
69 	}
70 	/* delimiter for bitsearch: */
71 	__set_bit(MAX_RT_PRIO, array->bitmap);
72 
73 #if defined CONFIG_SMP
74 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 	rt_rq->highest_prio.next = MAX_RT_PRIO;
76 	rt_rq->rt_nr_migratory = 0;
77 	rt_rq->overloaded = 0;
78 	plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80 
81 	rt_rq->rt_time = 0;
82 	rt_rq->rt_throttled = 0;
83 	rt_rq->rt_runtime = 0;
84 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86 
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90 	hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92 
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94 
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100 	return container_of(rt_se, struct task_struct, rt);
101 }
102 
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105 	return rt_rq->rq;
106 }
107 
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110 	return rt_se->rt_rq;
111 }
112 
113 void free_rt_sched_group(struct task_group *tg)
114 {
115 	int i;
116 
117 	if (tg->rt_se)
118 		destroy_rt_bandwidth(&tg->rt_bandwidth);
119 
120 	for_each_possible_cpu(i) {
121 		if (tg->rt_rq)
122 			kfree(tg->rt_rq[i]);
123 		if (tg->rt_se)
124 			kfree(tg->rt_se[i]);
125 	}
126 
127 	kfree(tg->rt_rq);
128 	kfree(tg->rt_se);
129 }
130 
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 		struct sched_rt_entity *rt_se, int cpu,
133 		struct sched_rt_entity *parent)
134 {
135 	struct rq *rq = cpu_rq(cpu);
136 
137 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 	rt_rq->rt_nr_boosted = 0;
139 	rt_rq->rq = rq;
140 	rt_rq->tg = tg;
141 
142 	tg->rt_rq[cpu] = rt_rq;
143 	tg->rt_se[cpu] = rt_se;
144 
145 	if (!rt_se)
146 		return;
147 
148 	if (!parent)
149 		rt_se->rt_rq = &rq->rt;
150 	else
151 		rt_se->rt_rq = parent->my_q;
152 
153 	rt_se->my_q = rt_rq;
154 	rt_se->parent = parent;
155 	INIT_LIST_HEAD(&rt_se->run_list);
156 }
157 
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160 	struct rt_rq *rt_rq;
161 	struct sched_rt_entity *rt_se;
162 	int i;
163 
164 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 	if (!tg->rt_rq)
166 		goto err;
167 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 	if (!tg->rt_se)
169 		goto err;
170 
171 	init_rt_bandwidth(&tg->rt_bandwidth,
172 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173 
174 	for_each_possible_cpu(i) {
175 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 				     GFP_KERNEL, cpu_to_node(i));
177 		if (!rt_rq)
178 			goto err;
179 
180 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 				     GFP_KERNEL, cpu_to_node(i));
182 		if (!rt_se)
183 			goto err_free_rq;
184 
185 		init_rt_rq(rt_rq, cpu_rq(i));
186 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188 	}
189 
190 	return 1;
191 
192 err_free_rq:
193 	kfree(rt_rq);
194 err:
195 	return 0;
196 }
197 
198 #else /* CONFIG_RT_GROUP_SCHED */
199 
200 #define rt_entity_is_task(rt_se) (1)
201 
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204 	return container_of(rt_se, struct task_struct, rt);
205 }
206 
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209 	return container_of(rt_rq, struct rq, rt);
210 }
211 
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214 	struct task_struct *p = rt_task_of(rt_se);
215 	struct rq *rq = task_rq(p);
216 
217 	return &rq->rt;
218 }
219 
220 void free_rt_sched_group(struct task_group *tg) { }
221 
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224 	return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227 
228 #ifdef CONFIG_SMP
229 
230 static inline int rt_overloaded(struct rq *rq)
231 {
232 	return atomic_read(&rq->rd->rto_count);
233 }
234 
235 static inline void rt_set_overload(struct rq *rq)
236 {
237 	if (!rq->online)
238 		return;
239 
240 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241 	/*
242 	 * Make sure the mask is visible before we set
243 	 * the overload count. That is checked to determine
244 	 * if we should look at the mask. It would be a shame
245 	 * if we looked at the mask, but the mask was not
246 	 * updated yet.
247 	 */
248 	wmb();
249 	atomic_inc(&rq->rd->rto_count);
250 }
251 
252 static inline void rt_clear_overload(struct rq *rq)
253 {
254 	if (!rq->online)
255 		return;
256 
257 	/* the order here really doesn't matter */
258 	atomic_dec(&rq->rd->rto_count);
259 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261 
262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 		if (!rt_rq->overloaded) {
266 			rt_set_overload(rq_of_rt_rq(rt_rq));
267 			rt_rq->overloaded = 1;
268 		}
269 	} else if (rt_rq->overloaded) {
270 		rt_clear_overload(rq_of_rt_rq(rt_rq));
271 		rt_rq->overloaded = 0;
272 	}
273 }
274 
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277 	if (!rt_entity_is_task(rt_se))
278 		return;
279 
280 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
281 
282 	rt_rq->rt_nr_total++;
283 	if (rt_se->nr_cpus_allowed > 1)
284 		rt_rq->rt_nr_migratory++;
285 
286 	update_rt_migration(rt_rq);
287 }
288 
289 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
290 {
291 	if (!rt_entity_is_task(rt_se))
292 		return;
293 
294 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
295 
296 	rt_rq->rt_nr_total--;
297 	if (rt_se->nr_cpus_allowed > 1)
298 		rt_rq->rt_nr_migratory--;
299 
300 	update_rt_migration(rt_rq);
301 }
302 
303 static inline int has_pushable_tasks(struct rq *rq)
304 {
305 	return !plist_head_empty(&rq->rt.pushable_tasks);
306 }
307 
308 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
309 {
310 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
311 	plist_node_init(&p->pushable_tasks, p->prio);
312 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
313 
314 	/* Update the highest prio pushable task */
315 	if (p->prio < rq->rt.highest_prio.next)
316 		rq->rt.highest_prio.next = p->prio;
317 }
318 
319 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
320 {
321 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
322 
323 	/* Update the new highest prio pushable task */
324 	if (has_pushable_tasks(rq)) {
325 		p = plist_first_entry(&rq->rt.pushable_tasks,
326 				      struct task_struct, pushable_tasks);
327 		rq->rt.highest_prio.next = p->prio;
328 	} else
329 		rq->rt.highest_prio.next = MAX_RT_PRIO;
330 }
331 
332 #else
333 
334 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
335 {
336 }
337 
338 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
339 {
340 }
341 
342 static inline
343 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 }
346 
347 static inline
348 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
349 {
350 }
351 
352 #endif /* CONFIG_SMP */
353 
354 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
355 {
356 	return !list_empty(&rt_se->run_list);
357 }
358 
359 #ifdef CONFIG_RT_GROUP_SCHED
360 
361 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
362 {
363 	if (!rt_rq->tg)
364 		return RUNTIME_INF;
365 
366 	return rt_rq->rt_runtime;
367 }
368 
369 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
370 {
371 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
372 }
373 
374 typedef struct task_group *rt_rq_iter_t;
375 
376 static inline struct task_group *next_task_group(struct task_group *tg)
377 {
378 	do {
379 		tg = list_entry_rcu(tg->list.next,
380 			typeof(struct task_group), list);
381 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
382 
383 	if (&tg->list == &task_groups)
384 		tg = NULL;
385 
386 	return tg;
387 }
388 
389 #define for_each_rt_rq(rt_rq, iter, rq)					\
390 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
391 		(iter = next_task_group(iter)) &&			\
392 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
393 
394 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
395 {
396 	list_add_rcu(&rt_rq->leaf_rt_rq_list,
397 			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
398 }
399 
400 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402 	list_del_rcu(&rt_rq->leaf_rt_rq_list);
403 }
404 
405 #define for_each_leaf_rt_rq(rt_rq, rq) \
406 	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
407 
408 #define for_each_sched_rt_entity(rt_se) \
409 	for (; rt_se; rt_se = rt_se->parent)
410 
411 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
412 {
413 	return rt_se->my_q;
414 }
415 
416 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
417 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
418 
419 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
420 {
421 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
422 	struct sched_rt_entity *rt_se;
423 
424 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
425 
426 	rt_se = rt_rq->tg->rt_se[cpu];
427 
428 	if (rt_rq->rt_nr_running) {
429 		if (rt_se && !on_rt_rq(rt_se))
430 			enqueue_rt_entity(rt_se, false);
431 		if (rt_rq->highest_prio.curr < curr->prio)
432 			resched_task(curr);
433 	}
434 }
435 
436 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
437 {
438 	struct sched_rt_entity *rt_se;
439 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
440 
441 	rt_se = rt_rq->tg->rt_se[cpu];
442 
443 	if (rt_se && on_rt_rq(rt_se))
444 		dequeue_rt_entity(rt_se);
445 }
446 
447 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
448 {
449 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
450 }
451 
452 static int rt_se_boosted(struct sched_rt_entity *rt_se)
453 {
454 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
455 	struct task_struct *p;
456 
457 	if (rt_rq)
458 		return !!rt_rq->rt_nr_boosted;
459 
460 	p = rt_task_of(rt_se);
461 	return p->prio != p->normal_prio;
462 }
463 
464 #ifdef CONFIG_SMP
465 static inline const struct cpumask *sched_rt_period_mask(void)
466 {
467 	return cpu_rq(smp_processor_id())->rd->span;
468 }
469 #else
470 static inline const struct cpumask *sched_rt_period_mask(void)
471 {
472 	return cpu_online_mask;
473 }
474 #endif
475 
476 static inline
477 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
478 {
479 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
480 }
481 
482 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
483 {
484 	return &rt_rq->tg->rt_bandwidth;
485 }
486 
487 #else /* !CONFIG_RT_GROUP_SCHED */
488 
489 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
490 {
491 	return rt_rq->rt_runtime;
492 }
493 
494 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495 {
496 	return ktime_to_ns(def_rt_bandwidth.rt_period);
497 }
498 
499 typedef struct rt_rq *rt_rq_iter_t;
500 
501 #define for_each_rt_rq(rt_rq, iter, rq) \
502 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
503 
504 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
505 {
506 }
507 
508 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
509 {
510 }
511 
512 #define for_each_leaf_rt_rq(rt_rq, rq) \
513 	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
514 
515 #define for_each_sched_rt_entity(rt_se) \
516 	for (; rt_se; rt_se = NULL)
517 
518 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
519 {
520 	return NULL;
521 }
522 
523 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
524 {
525 	if (rt_rq->rt_nr_running)
526 		resched_task(rq_of_rt_rq(rt_rq)->curr);
527 }
528 
529 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
530 {
531 }
532 
533 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
534 {
535 	return rt_rq->rt_throttled;
536 }
537 
538 static inline const struct cpumask *sched_rt_period_mask(void)
539 {
540 	return cpu_online_mask;
541 }
542 
543 static inline
544 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
545 {
546 	return &cpu_rq(cpu)->rt;
547 }
548 
549 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
550 {
551 	return &def_rt_bandwidth;
552 }
553 
554 #endif /* CONFIG_RT_GROUP_SCHED */
555 
556 #ifdef CONFIG_SMP
557 /*
558  * We ran out of runtime, see if we can borrow some from our neighbours.
559  */
560 static int do_balance_runtime(struct rt_rq *rt_rq)
561 {
562 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
563 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
564 	int i, weight, more = 0;
565 	u64 rt_period;
566 
567 	weight = cpumask_weight(rd->span);
568 
569 	raw_spin_lock(&rt_b->rt_runtime_lock);
570 	rt_period = ktime_to_ns(rt_b->rt_period);
571 	for_each_cpu(i, rd->span) {
572 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
573 		s64 diff;
574 
575 		if (iter == rt_rq)
576 			continue;
577 
578 		raw_spin_lock(&iter->rt_runtime_lock);
579 		/*
580 		 * Either all rqs have inf runtime and there's nothing to steal
581 		 * or __disable_runtime() below sets a specific rq to inf to
582 		 * indicate its been disabled and disalow stealing.
583 		 */
584 		if (iter->rt_runtime == RUNTIME_INF)
585 			goto next;
586 
587 		/*
588 		 * From runqueues with spare time, take 1/n part of their
589 		 * spare time, but no more than our period.
590 		 */
591 		diff = iter->rt_runtime - iter->rt_time;
592 		if (diff > 0) {
593 			diff = div_u64((u64)diff, weight);
594 			if (rt_rq->rt_runtime + diff > rt_period)
595 				diff = rt_period - rt_rq->rt_runtime;
596 			iter->rt_runtime -= diff;
597 			rt_rq->rt_runtime += diff;
598 			more = 1;
599 			if (rt_rq->rt_runtime == rt_period) {
600 				raw_spin_unlock(&iter->rt_runtime_lock);
601 				break;
602 			}
603 		}
604 next:
605 		raw_spin_unlock(&iter->rt_runtime_lock);
606 	}
607 	raw_spin_unlock(&rt_b->rt_runtime_lock);
608 
609 	return more;
610 }
611 
612 /*
613  * Ensure this RQ takes back all the runtime it lend to its neighbours.
614  */
615 static void __disable_runtime(struct rq *rq)
616 {
617 	struct root_domain *rd = rq->rd;
618 	rt_rq_iter_t iter;
619 	struct rt_rq *rt_rq;
620 
621 	if (unlikely(!scheduler_running))
622 		return;
623 
624 	for_each_rt_rq(rt_rq, iter, rq) {
625 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
626 		s64 want;
627 		int i;
628 
629 		raw_spin_lock(&rt_b->rt_runtime_lock);
630 		raw_spin_lock(&rt_rq->rt_runtime_lock);
631 		/*
632 		 * Either we're all inf and nobody needs to borrow, or we're
633 		 * already disabled and thus have nothing to do, or we have
634 		 * exactly the right amount of runtime to take out.
635 		 */
636 		if (rt_rq->rt_runtime == RUNTIME_INF ||
637 				rt_rq->rt_runtime == rt_b->rt_runtime)
638 			goto balanced;
639 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
640 
641 		/*
642 		 * Calculate the difference between what we started out with
643 		 * and what we current have, that's the amount of runtime
644 		 * we lend and now have to reclaim.
645 		 */
646 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
647 
648 		/*
649 		 * Greedy reclaim, take back as much as we can.
650 		 */
651 		for_each_cpu(i, rd->span) {
652 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653 			s64 diff;
654 
655 			/*
656 			 * Can't reclaim from ourselves or disabled runqueues.
657 			 */
658 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
659 				continue;
660 
661 			raw_spin_lock(&iter->rt_runtime_lock);
662 			if (want > 0) {
663 				diff = min_t(s64, iter->rt_runtime, want);
664 				iter->rt_runtime -= diff;
665 				want -= diff;
666 			} else {
667 				iter->rt_runtime -= want;
668 				want -= want;
669 			}
670 			raw_spin_unlock(&iter->rt_runtime_lock);
671 
672 			if (!want)
673 				break;
674 		}
675 
676 		raw_spin_lock(&rt_rq->rt_runtime_lock);
677 		/*
678 		 * We cannot be left wanting - that would mean some runtime
679 		 * leaked out of the system.
680 		 */
681 		BUG_ON(want);
682 balanced:
683 		/*
684 		 * Disable all the borrow logic by pretending we have inf
685 		 * runtime - in which case borrowing doesn't make sense.
686 		 */
687 		rt_rq->rt_runtime = RUNTIME_INF;
688 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
689 		raw_spin_unlock(&rt_b->rt_runtime_lock);
690 	}
691 }
692 
693 static void disable_runtime(struct rq *rq)
694 {
695 	unsigned long flags;
696 
697 	raw_spin_lock_irqsave(&rq->lock, flags);
698 	__disable_runtime(rq);
699 	raw_spin_unlock_irqrestore(&rq->lock, flags);
700 }
701 
702 static void __enable_runtime(struct rq *rq)
703 {
704 	rt_rq_iter_t iter;
705 	struct rt_rq *rt_rq;
706 
707 	if (unlikely(!scheduler_running))
708 		return;
709 
710 	/*
711 	 * Reset each runqueue's bandwidth settings
712 	 */
713 	for_each_rt_rq(rt_rq, iter, rq) {
714 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
715 
716 		raw_spin_lock(&rt_b->rt_runtime_lock);
717 		raw_spin_lock(&rt_rq->rt_runtime_lock);
718 		rt_rq->rt_runtime = rt_b->rt_runtime;
719 		rt_rq->rt_time = 0;
720 		rt_rq->rt_throttled = 0;
721 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
722 		raw_spin_unlock(&rt_b->rt_runtime_lock);
723 	}
724 }
725 
726 static void enable_runtime(struct rq *rq)
727 {
728 	unsigned long flags;
729 
730 	raw_spin_lock_irqsave(&rq->lock, flags);
731 	__enable_runtime(rq);
732 	raw_spin_unlock_irqrestore(&rq->lock, flags);
733 }
734 
735 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
736 {
737 	int cpu = (int)(long)hcpu;
738 
739 	switch (action) {
740 	case CPU_DOWN_PREPARE:
741 	case CPU_DOWN_PREPARE_FROZEN:
742 		disable_runtime(cpu_rq(cpu));
743 		return NOTIFY_OK;
744 
745 	case CPU_DOWN_FAILED:
746 	case CPU_DOWN_FAILED_FROZEN:
747 	case CPU_ONLINE:
748 	case CPU_ONLINE_FROZEN:
749 		enable_runtime(cpu_rq(cpu));
750 		return NOTIFY_OK;
751 
752 	default:
753 		return NOTIFY_DONE;
754 	}
755 }
756 
757 static int balance_runtime(struct rt_rq *rt_rq)
758 {
759 	int more = 0;
760 
761 	if (!sched_feat(RT_RUNTIME_SHARE))
762 		return more;
763 
764 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
765 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
766 		more = do_balance_runtime(rt_rq);
767 		raw_spin_lock(&rt_rq->rt_runtime_lock);
768 	}
769 
770 	return more;
771 }
772 #else /* !CONFIG_SMP */
773 static inline int balance_runtime(struct rt_rq *rt_rq)
774 {
775 	return 0;
776 }
777 #endif /* CONFIG_SMP */
778 
779 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
780 {
781 	int i, idle = 1, throttled = 0;
782 	const struct cpumask *span;
783 
784 	span = sched_rt_period_mask();
785 	for_each_cpu(i, span) {
786 		int enqueue = 0;
787 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
788 		struct rq *rq = rq_of_rt_rq(rt_rq);
789 
790 		raw_spin_lock(&rq->lock);
791 		if (rt_rq->rt_time) {
792 			u64 runtime;
793 
794 			raw_spin_lock(&rt_rq->rt_runtime_lock);
795 			if (rt_rq->rt_throttled)
796 				balance_runtime(rt_rq);
797 			runtime = rt_rq->rt_runtime;
798 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
799 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
800 				rt_rq->rt_throttled = 0;
801 				enqueue = 1;
802 
803 				/*
804 				 * Force a clock update if the CPU was idle,
805 				 * lest wakeup -> unthrottle time accumulate.
806 				 */
807 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
808 					rq->skip_clock_update = -1;
809 			}
810 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
811 				idle = 0;
812 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
813 		} else if (rt_rq->rt_nr_running) {
814 			idle = 0;
815 			if (!rt_rq_throttled(rt_rq))
816 				enqueue = 1;
817 		}
818 		if (rt_rq->rt_throttled)
819 			throttled = 1;
820 
821 		if (enqueue)
822 			sched_rt_rq_enqueue(rt_rq);
823 		raw_spin_unlock(&rq->lock);
824 	}
825 
826 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
827 		return 1;
828 
829 	return idle;
830 }
831 
832 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
833 {
834 #ifdef CONFIG_RT_GROUP_SCHED
835 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
836 
837 	if (rt_rq)
838 		return rt_rq->highest_prio.curr;
839 #endif
840 
841 	return rt_task_of(rt_se)->prio;
842 }
843 
844 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
845 {
846 	u64 runtime = sched_rt_runtime(rt_rq);
847 
848 	if (rt_rq->rt_throttled)
849 		return rt_rq_throttled(rt_rq);
850 
851 	if (runtime >= sched_rt_period(rt_rq))
852 		return 0;
853 
854 	balance_runtime(rt_rq);
855 	runtime = sched_rt_runtime(rt_rq);
856 	if (runtime == RUNTIME_INF)
857 		return 0;
858 
859 	if (rt_rq->rt_time > runtime) {
860 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
861 
862 		/*
863 		 * Don't actually throttle groups that have no runtime assigned
864 		 * but accrue some time due to boosting.
865 		 */
866 		if (likely(rt_b->rt_runtime)) {
867 			static bool once = false;
868 
869 			rt_rq->rt_throttled = 1;
870 
871 			if (!once) {
872 				once = true;
873 				printk_sched("sched: RT throttling activated\n");
874 			}
875 		} else {
876 			/*
877 			 * In case we did anyway, make it go away,
878 			 * replenishment is a joke, since it will replenish us
879 			 * with exactly 0 ns.
880 			 */
881 			rt_rq->rt_time = 0;
882 		}
883 
884 		if (rt_rq_throttled(rt_rq)) {
885 			sched_rt_rq_dequeue(rt_rq);
886 			return 1;
887 		}
888 	}
889 
890 	return 0;
891 }
892 
893 /*
894  * Update the current task's runtime statistics. Skip current tasks that
895  * are not in our scheduling class.
896  */
897 static void update_curr_rt(struct rq *rq)
898 {
899 	struct task_struct *curr = rq->curr;
900 	struct sched_rt_entity *rt_se = &curr->rt;
901 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
902 	u64 delta_exec;
903 
904 	if (curr->sched_class != &rt_sched_class)
905 		return;
906 
907 	delta_exec = rq->clock_task - curr->se.exec_start;
908 	if (unlikely((s64)delta_exec < 0))
909 		delta_exec = 0;
910 
911 	schedstat_set(curr->se.statistics.exec_max,
912 		      max(curr->se.statistics.exec_max, delta_exec));
913 
914 	curr->se.sum_exec_runtime += delta_exec;
915 	account_group_exec_runtime(curr, delta_exec);
916 
917 	curr->se.exec_start = rq->clock_task;
918 	cpuacct_charge(curr, delta_exec);
919 
920 	sched_rt_avg_update(rq, delta_exec);
921 
922 	if (!rt_bandwidth_enabled())
923 		return;
924 
925 	for_each_sched_rt_entity(rt_se) {
926 		rt_rq = rt_rq_of_se(rt_se);
927 
928 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
929 			raw_spin_lock(&rt_rq->rt_runtime_lock);
930 			rt_rq->rt_time += delta_exec;
931 			if (sched_rt_runtime_exceeded(rt_rq))
932 				resched_task(curr);
933 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
934 		}
935 	}
936 }
937 
938 #if defined CONFIG_SMP
939 
940 static void
941 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
942 {
943 	struct rq *rq = rq_of_rt_rq(rt_rq);
944 
945 	if (rq->online && prio < prev_prio)
946 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
947 }
948 
949 static void
950 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
951 {
952 	struct rq *rq = rq_of_rt_rq(rt_rq);
953 
954 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
955 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
956 }
957 
958 #else /* CONFIG_SMP */
959 
960 static inline
961 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
962 static inline
963 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
964 
965 #endif /* CONFIG_SMP */
966 
967 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
968 static void
969 inc_rt_prio(struct rt_rq *rt_rq, int prio)
970 {
971 	int prev_prio = rt_rq->highest_prio.curr;
972 
973 	if (prio < prev_prio)
974 		rt_rq->highest_prio.curr = prio;
975 
976 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
977 }
978 
979 static void
980 dec_rt_prio(struct rt_rq *rt_rq, int prio)
981 {
982 	int prev_prio = rt_rq->highest_prio.curr;
983 
984 	if (rt_rq->rt_nr_running) {
985 
986 		WARN_ON(prio < prev_prio);
987 
988 		/*
989 		 * This may have been our highest task, and therefore
990 		 * we may have some recomputation to do
991 		 */
992 		if (prio == prev_prio) {
993 			struct rt_prio_array *array = &rt_rq->active;
994 
995 			rt_rq->highest_prio.curr =
996 				sched_find_first_bit(array->bitmap);
997 		}
998 
999 	} else
1000 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1001 
1002 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1003 }
1004 
1005 #else
1006 
1007 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1008 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1009 
1010 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1011 
1012 #ifdef CONFIG_RT_GROUP_SCHED
1013 
1014 static void
1015 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1016 {
1017 	if (rt_se_boosted(rt_se))
1018 		rt_rq->rt_nr_boosted++;
1019 
1020 	if (rt_rq->tg)
1021 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1022 }
1023 
1024 static void
1025 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1026 {
1027 	if (rt_se_boosted(rt_se))
1028 		rt_rq->rt_nr_boosted--;
1029 
1030 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1031 }
1032 
1033 #else /* CONFIG_RT_GROUP_SCHED */
1034 
1035 static void
1036 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1037 {
1038 	start_rt_bandwidth(&def_rt_bandwidth);
1039 }
1040 
1041 static inline
1042 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1043 
1044 #endif /* CONFIG_RT_GROUP_SCHED */
1045 
1046 static inline
1047 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1048 {
1049 	int prio = rt_se_prio(rt_se);
1050 
1051 	WARN_ON(!rt_prio(prio));
1052 	rt_rq->rt_nr_running++;
1053 
1054 	inc_rt_prio(rt_rq, prio);
1055 	inc_rt_migration(rt_se, rt_rq);
1056 	inc_rt_group(rt_se, rt_rq);
1057 }
1058 
1059 static inline
1060 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1061 {
1062 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1063 	WARN_ON(!rt_rq->rt_nr_running);
1064 	rt_rq->rt_nr_running--;
1065 
1066 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1067 	dec_rt_migration(rt_se, rt_rq);
1068 	dec_rt_group(rt_se, rt_rq);
1069 }
1070 
1071 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1072 {
1073 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1074 	struct rt_prio_array *array = &rt_rq->active;
1075 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1076 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1077 
1078 	/*
1079 	 * Don't enqueue the group if its throttled, or when empty.
1080 	 * The latter is a consequence of the former when a child group
1081 	 * get throttled and the current group doesn't have any other
1082 	 * active members.
1083 	 */
1084 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1085 		return;
1086 
1087 	if (!rt_rq->rt_nr_running)
1088 		list_add_leaf_rt_rq(rt_rq);
1089 
1090 	if (head)
1091 		list_add(&rt_se->run_list, queue);
1092 	else
1093 		list_add_tail(&rt_se->run_list, queue);
1094 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1095 
1096 	inc_rt_tasks(rt_se, rt_rq);
1097 }
1098 
1099 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1100 {
1101 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1102 	struct rt_prio_array *array = &rt_rq->active;
1103 
1104 	list_del_init(&rt_se->run_list);
1105 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1106 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1107 
1108 	dec_rt_tasks(rt_se, rt_rq);
1109 	if (!rt_rq->rt_nr_running)
1110 		list_del_leaf_rt_rq(rt_rq);
1111 }
1112 
1113 /*
1114  * Because the prio of an upper entry depends on the lower
1115  * entries, we must remove entries top - down.
1116  */
1117 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1118 {
1119 	struct sched_rt_entity *back = NULL;
1120 
1121 	for_each_sched_rt_entity(rt_se) {
1122 		rt_se->back = back;
1123 		back = rt_se;
1124 	}
1125 
1126 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1127 		if (on_rt_rq(rt_se))
1128 			__dequeue_rt_entity(rt_se);
1129 	}
1130 }
1131 
1132 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1133 {
1134 	dequeue_rt_stack(rt_se);
1135 	for_each_sched_rt_entity(rt_se)
1136 		__enqueue_rt_entity(rt_se, head);
1137 }
1138 
1139 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1140 {
1141 	dequeue_rt_stack(rt_se);
1142 
1143 	for_each_sched_rt_entity(rt_se) {
1144 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1145 
1146 		if (rt_rq && rt_rq->rt_nr_running)
1147 			__enqueue_rt_entity(rt_se, false);
1148 	}
1149 }
1150 
1151 /*
1152  * Adding/removing a task to/from a priority array:
1153  */
1154 static void
1155 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1156 {
1157 	struct sched_rt_entity *rt_se = &p->rt;
1158 
1159 	if (flags & ENQUEUE_WAKEUP)
1160 		rt_se->timeout = 0;
1161 
1162 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1163 
1164 	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
1165 		enqueue_pushable_task(rq, p);
1166 
1167 	inc_nr_running(rq);
1168 }
1169 
1170 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1171 {
1172 	struct sched_rt_entity *rt_se = &p->rt;
1173 
1174 	update_curr_rt(rq);
1175 	dequeue_rt_entity(rt_se);
1176 
1177 	dequeue_pushable_task(rq, p);
1178 
1179 	dec_nr_running(rq);
1180 }
1181 
1182 /*
1183  * Put task to the head or the end of the run list without the overhead of
1184  * dequeue followed by enqueue.
1185  */
1186 static void
1187 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1188 {
1189 	if (on_rt_rq(rt_se)) {
1190 		struct rt_prio_array *array = &rt_rq->active;
1191 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1192 
1193 		if (head)
1194 			list_move(&rt_se->run_list, queue);
1195 		else
1196 			list_move_tail(&rt_se->run_list, queue);
1197 	}
1198 }
1199 
1200 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1201 {
1202 	struct sched_rt_entity *rt_se = &p->rt;
1203 	struct rt_rq *rt_rq;
1204 
1205 	for_each_sched_rt_entity(rt_se) {
1206 		rt_rq = rt_rq_of_se(rt_se);
1207 		requeue_rt_entity(rt_rq, rt_se, head);
1208 	}
1209 }
1210 
1211 static void yield_task_rt(struct rq *rq)
1212 {
1213 	requeue_task_rt(rq, rq->curr, 0);
1214 }
1215 
1216 #ifdef CONFIG_SMP
1217 static int find_lowest_rq(struct task_struct *task);
1218 
1219 static int
1220 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1221 {
1222 	struct task_struct *curr;
1223 	struct rq *rq;
1224 	int cpu;
1225 
1226 	cpu = task_cpu(p);
1227 
1228 	if (p->rt.nr_cpus_allowed == 1)
1229 		goto out;
1230 
1231 	/* For anything but wake ups, just return the task_cpu */
1232 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1233 		goto out;
1234 
1235 	rq = cpu_rq(cpu);
1236 
1237 	rcu_read_lock();
1238 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1239 
1240 	/*
1241 	 * If the current task on @p's runqueue is an RT task, then
1242 	 * try to see if we can wake this RT task up on another
1243 	 * runqueue. Otherwise simply start this RT task
1244 	 * on its current runqueue.
1245 	 *
1246 	 * We want to avoid overloading runqueues. If the woken
1247 	 * task is a higher priority, then it will stay on this CPU
1248 	 * and the lower prio task should be moved to another CPU.
1249 	 * Even though this will probably make the lower prio task
1250 	 * lose its cache, we do not want to bounce a higher task
1251 	 * around just because it gave up its CPU, perhaps for a
1252 	 * lock?
1253 	 *
1254 	 * For equal prio tasks, we just let the scheduler sort it out.
1255 	 *
1256 	 * Otherwise, just let it ride on the affined RQ and the
1257 	 * post-schedule router will push the preempted task away
1258 	 *
1259 	 * This test is optimistic, if we get it wrong the load-balancer
1260 	 * will have to sort it out.
1261 	 */
1262 	if (curr && unlikely(rt_task(curr)) &&
1263 	    (curr->rt.nr_cpus_allowed < 2 ||
1264 	     curr->prio <= p->prio) &&
1265 	    (p->rt.nr_cpus_allowed > 1)) {
1266 		int target = find_lowest_rq(p);
1267 
1268 		if (target != -1)
1269 			cpu = target;
1270 	}
1271 	rcu_read_unlock();
1272 
1273 out:
1274 	return cpu;
1275 }
1276 
1277 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1278 {
1279 	if (rq->curr->rt.nr_cpus_allowed == 1)
1280 		return;
1281 
1282 	if (p->rt.nr_cpus_allowed != 1
1283 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1284 		return;
1285 
1286 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1287 		return;
1288 
1289 	/*
1290 	 * There appears to be other cpus that can accept
1291 	 * current and none to run 'p', so lets reschedule
1292 	 * to try and push current away:
1293 	 */
1294 	requeue_task_rt(rq, p, 1);
1295 	resched_task(rq->curr);
1296 }
1297 
1298 #endif /* CONFIG_SMP */
1299 
1300 /*
1301  * Preempt the current task with a newly woken task if needed:
1302  */
1303 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1304 {
1305 	if (p->prio < rq->curr->prio) {
1306 		resched_task(rq->curr);
1307 		return;
1308 	}
1309 
1310 #ifdef CONFIG_SMP
1311 	/*
1312 	 * If:
1313 	 *
1314 	 * - the newly woken task is of equal priority to the current task
1315 	 * - the newly woken task is non-migratable while current is migratable
1316 	 * - current will be preempted on the next reschedule
1317 	 *
1318 	 * we should check to see if current can readily move to a different
1319 	 * cpu.  If so, we will reschedule to allow the push logic to try
1320 	 * to move current somewhere else, making room for our non-migratable
1321 	 * task.
1322 	 */
1323 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1324 		check_preempt_equal_prio(rq, p);
1325 #endif
1326 }
1327 
1328 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1329 						   struct rt_rq *rt_rq)
1330 {
1331 	struct rt_prio_array *array = &rt_rq->active;
1332 	struct sched_rt_entity *next = NULL;
1333 	struct list_head *queue;
1334 	int idx;
1335 
1336 	idx = sched_find_first_bit(array->bitmap);
1337 	BUG_ON(idx >= MAX_RT_PRIO);
1338 
1339 	queue = array->queue + idx;
1340 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1341 
1342 	return next;
1343 }
1344 
1345 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1346 {
1347 	struct sched_rt_entity *rt_se;
1348 	struct task_struct *p;
1349 	struct rt_rq *rt_rq;
1350 
1351 	rt_rq = &rq->rt;
1352 
1353 	if (!rt_rq->rt_nr_running)
1354 		return NULL;
1355 
1356 	if (rt_rq_throttled(rt_rq))
1357 		return NULL;
1358 
1359 	do {
1360 		rt_se = pick_next_rt_entity(rq, rt_rq);
1361 		BUG_ON(!rt_se);
1362 		rt_rq = group_rt_rq(rt_se);
1363 	} while (rt_rq);
1364 
1365 	p = rt_task_of(rt_se);
1366 	p->se.exec_start = rq->clock_task;
1367 
1368 	return p;
1369 }
1370 
1371 static struct task_struct *pick_next_task_rt(struct rq *rq)
1372 {
1373 	struct task_struct *p = _pick_next_task_rt(rq);
1374 
1375 	/* The running task is never eligible for pushing */
1376 	if (p)
1377 		dequeue_pushable_task(rq, p);
1378 
1379 #ifdef CONFIG_SMP
1380 	/*
1381 	 * We detect this state here so that we can avoid taking the RQ
1382 	 * lock again later if there is no need to push
1383 	 */
1384 	rq->post_schedule = has_pushable_tasks(rq);
1385 #endif
1386 
1387 	return p;
1388 }
1389 
1390 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1391 {
1392 	update_curr_rt(rq);
1393 
1394 	/*
1395 	 * The previous task needs to be made eligible for pushing
1396 	 * if it is still active
1397 	 */
1398 	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1399 		enqueue_pushable_task(rq, p);
1400 }
1401 
1402 #ifdef CONFIG_SMP
1403 
1404 /* Only try algorithms three times */
1405 #define RT_MAX_TRIES 3
1406 
1407 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1408 {
1409 	if (!task_running(rq, p) &&
1410 	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1411 	    (p->rt.nr_cpus_allowed > 1))
1412 		return 1;
1413 	return 0;
1414 }
1415 
1416 /* Return the second highest RT task, NULL otherwise */
1417 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1418 {
1419 	struct task_struct *next = NULL;
1420 	struct sched_rt_entity *rt_se;
1421 	struct rt_prio_array *array;
1422 	struct rt_rq *rt_rq;
1423 	int idx;
1424 
1425 	for_each_leaf_rt_rq(rt_rq, rq) {
1426 		array = &rt_rq->active;
1427 		idx = sched_find_first_bit(array->bitmap);
1428 next_idx:
1429 		if (idx >= MAX_RT_PRIO)
1430 			continue;
1431 		if (next && next->prio < idx)
1432 			continue;
1433 		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1434 			struct task_struct *p;
1435 
1436 			if (!rt_entity_is_task(rt_se))
1437 				continue;
1438 
1439 			p = rt_task_of(rt_se);
1440 			if (pick_rt_task(rq, p, cpu)) {
1441 				next = p;
1442 				break;
1443 			}
1444 		}
1445 		if (!next) {
1446 			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1447 			goto next_idx;
1448 		}
1449 	}
1450 
1451 	return next;
1452 }
1453 
1454 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1455 
1456 static int find_lowest_rq(struct task_struct *task)
1457 {
1458 	struct sched_domain *sd;
1459 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1460 	int this_cpu = smp_processor_id();
1461 	int cpu      = task_cpu(task);
1462 
1463 	/* Make sure the mask is initialized first */
1464 	if (unlikely(!lowest_mask))
1465 		return -1;
1466 
1467 	if (task->rt.nr_cpus_allowed == 1)
1468 		return -1; /* No other targets possible */
1469 
1470 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1471 		return -1; /* No targets found */
1472 
1473 	/*
1474 	 * At this point we have built a mask of cpus representing the
1475 	 * lowest priority tasks in the system.  Now we want to elect
1476 	 * the best one based on our affinity and topology.
1477 	 *
1478 	 * We prioritize the last cpu that the task executed on since
1479 	 * it is most likely cache-hot in that location.
1480 	 */
1481 	if (cpumask_test_cpu(cpu, lowest_mask))
1482 		return cpu;
1483 
1484 	/*
1485 	 * Otherwise, we consult the sched_domains span maps to figure
1486 	 * out which cpu is logically closest to our hot cache data.
1487 	 */
1488 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1489 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1490 
1491 	rcu_read_lock();
1492 	for_each_domain(cpu, sd) {
1493 		if (sd->flags & SD_WAKE_AFFINE) {
1494 			int best_cpu;
1495 
1496 			/*
1497 			 * "this_cpu" is cheaper to preempt than a
1498 			 * remote processor.
1499 			 */
1500 			if (this_cpu != -1 &&
1501 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1502 				rcu_read_unlock();
1503 				return this_cpu;
1504 			}
1505 
1506 			best_cpu = cpumask_first_and(lowest_mask,
1507 						     sched_domain_span(sd));
1508 			if (best_cpu < nr_cpu_ids) {
1509 				rcu_read_unlock();
1510 				return best_cpu;
1511 			}
1512 		}
1513 	}
1514 	rcu_read_unlock();
1515 
1516 	/*
1517 	 * And finally, if there were no matches within the domains
1518 	 * just give the caller *something* to work with from the compatible
1519 	 * locations.
1520 	 */
1521 	if (this_cpu != -1)
1522 		return this_cpu;
1523 
1524 	cpu = cpumask_any(lowest_mask);
1525 	if (cpu < nr_cpu_ids)
1526 		return cpu;
1527 	return -1;
1528 }
1529 
1530 /* Will lock the rq it finds */
1531 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1532 {
1533 	struct rq *lowest_rq = NULL;
1534 	int tries;
1535 	int cpu;
1536 
1537 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1538 		cpu = find_lowest_rq(task);
1539 
1540 		if ((cpu == -1) || (cpu == rq->cpu))
1541 			break;
1542 
1543 		lowest_rq = cpu_rq(cpu);
1544 
1545 		/* if the prio of this runqueue changed, try again */
1546 		if (double_lock_balance(rq, lowest_rq)) {
1547 			/*
1548 			 * We had to unlock the run queue. In
1549 			 * the mean time, task could have
1550 			 * migrated already or had its affinity changed.
1551 			 * Also make sure that it wasn't scheduled on its rq.
1552 			 */
1553 			if (unlikely(task_rq(task) != rq ||
1554 				     !cpumask_test_cpu(lowest_rq->cpu,
1555 						       tsk_cpus_allowed(task)) ||
1556 				     task_running(rq, task) ||
1557 				     !task->on_rq)) {
1558 
1559 				raw_spin_unlock(&lowest_rq->lock);
1560 				lowest_rq = NULL;
1561 				break;
1562 			}
1563 		}
1564 
1565 		/* If this rq is still suitable use it. */
1566 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1567 			break;
1568 
1569 		/* try again */
1570 		double_unlock_balance(rq, lowest_rq);
1571 		lowest_rq = NULL;
1572 	}
1573 
1574 	return lowest_rq;
1575 }
1576 
1577 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1578 {
1579 	struct task_struct *p;
1580 
1581 	if (!has_pushable_tasks(rq))
1582 		return NULL;
1583 
1584 	p = plist_first_entry(&rq->rt.pushable_tasks,
1585 			      struct task_struct, pushable_tasks);
1586 
1587 	BUG_ON(rq->cpu != task_cpu(p));
1588 	BUG_ON(task_current(rq, p));
1589 	BUG_ON(p->rt.nr_cpus_allowed <= 1);
1590 
1591 	BUG_ON(!p->on_rq);
1592 	BUG_ON(!rt_task(p));
1593 
1594 	return p;
1595 }
1596 
1597 /*
1598  * If the current CPU has more than one RT task, see if the non
1599  * running task can migrate over to a CPU that is running a task
1600  * of lesser priority.
1601  */
1602 static int push_rt_task(struct rq *rq)
1603 {
1604 	struct task_struct *next_task;
1605 	struct rq *lowest_rq;
1606 	int ret = 0;
1607 
1608 	if (!rq->rt.overloaded)
1609 		return 0;
1610 
1611 	next_task = pick_next_pushable_task(rq);
1612 	if (!next_task)
1613 		return 0;
1614 
1615 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1616        if (unlikely(task_running(rq, next_task)))
1617                return 0;
1618 #endif
1619 
1620 retry:
1621 	if (unlikely(next_task == rq->curr)) {
1622 		WARN_ON(1);
1623 		return 0;
1624 	}
1625 
1626 	/*
1627 	 * It's possible that the next_task slipped in of
1628 	 * higher priority than current. If that's the case
1629 	 * just reschedule current.
1630 	 */
1631 	if (unlikely(next_task->prio < rq->curr->prio)) {
1632 		resched_task(rq->curr);
1633 		return 0;
1634 	}
1635 
1636 	/* We might release rq lock */
1637 	get_task_struct(next_task);
1638 
1639 	/* find_lock_lowest_rq locks the rq if found */
1640 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1641 	if (!lowest_rq) {
1642 		struct task_struct *task;
1643 		/*
1644 		 * find_lock_lowest_rq releases rq->lock
1645 		 * so it is possible that next_task has migrated.
1646 		 *
1647 		 * We need to make sure that the task is still on the same
1648 		 * run-queue and is also still the next task eligible for
1649 		 * pushing.
1650 		 */
1651 		task = pick_next_pushable_task(rq);
1652 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1653 			/*
1654 			 * The task hasn't migrated, and is still the next
1655 			 * eligible task, but we failed to find a run-queue
1656 			 * to push it to.  Do not retry in this case, since
1657 			 * other cpus will pull from us when ready.
1658 			 */
1659 			goto out;
1660 		}
1661 
1662 		if (!task)
1663 			/* No more tasks, just exit */
1664 			goto out;
1665 
1666 		/*
1667 		 * Something has shifted, try again.
1668 		 */
1669 		put_task_struct(next_task);
1670 		next_task = task;
1671 		goto retry;
1672 	}
1673 
1674 	deactivate_task(rq, next_task, 0);
1675 	set_task_cpu(next_task, lowest_rq->cpu);
1676 	activate_task(lowest_rq, next_task, 0);
1677 	ret = 1;
1678 
1679 	resched_task(lowest_rq->curr);
1680 
1681 	double_unlock_balance(rq, lowest_rq);
1682 
1683 out:
1684 	put_task_struct(next_task);
1685 
1686 	return ret;
1687 }
1688 
1689 static void push_rt_tasks(struct rq *rq)
1690 {
1691 	/* push_rt_task will return true if it moved an RT */
1692 	while (push_rt_task(rq))
1693 		;
1694 }
1695 
1696 static int pull_rt_task(struct rq *this_rq)
1697 {
1698 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1699 	struct task_struct *p;
1700 	struct rq *src_rq;
1701 
1702 	if (likely(!rt_overloaded(this_rq)))
1703 		return 0;
1704 
1705 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1706 		if (this_cpu == cpu)
1707 			continue;
1708 
1709 		src_rq = cpu_rq(cpu);
1710 
1711 		/*
1712 		 * Don't bother taking the src_rq->lock if the next highest
1713 		 * task is known to be lower-priority than our current task.
1714 		 * This may look racy, but if this value is about to go
1715 		 * logically higher, the src_rq will push this task away.
1716 		 * And if its going logically lower, we do not care
1717 		 */
1718 		if (src_rq->rt.highest_prio.next >=
1719 		    this_rq->rt.highest_prio.curr)
1720 			continue;
1721 
1722 		/*
1723 		 * We can potentially drop this_rq's lock in
1724 		 * double_lock_balance, and another CPU could
1725 		 * alter this_rq
1726 		 */
1727 		double_lock_balance(this_rq, src_rq);
1728 
1729 		/*
1730 		 * Are there still pullable RT tasks?
1731 		 */
1732 		if (src_rq->rt.rt_nr_running <= 1)
1733 			goto skip;
1734 
1735 		p = pick_next_highest_task_rt(src_rq, this_cpu);
1736 
1737 		/*
1738 		 * Do we have an RT task that preempts
1739 		 * the to-be-scheduled task?
1740 		 */
1741 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1742 			WARN_ON(p == src_rq->curr);
1743 			WARN_ON(!p->on_rq);
1744 
1745 			/*
1746 			 * There's a chance that p is higher in priority
1747 			 * than what's currently running on its cpu.
1748 			 * This is just that p is wakeing up and hasn't
1749 			 * had a chance to schedule. We only pull
1750 			 * p if it is lower in priority than the
1751 			 * current task on the run queue
1752 			 */
1753 			if (p->prio < src_rq->curr->prio)
1754 				goto skip;
1755 
1756 			ret = 1;
1757 
1758 			deactivate_task(src_rq, p, 0);
1759 			set_task_cpu(p, this_cpu);
1760 			activate_task(this_rq, p, 0);
1761 			/*
1762 			 * We continue with the search, just in
1763 			 * case there's an even higher prio task
1764 			 * in another runqueue. (low likelihood
1765 			 * but possible)
1766 			 */
1767 		}
1768 skip:
1769 		double_unlock_balance(this_rq, src_rq);
1770 	}
1771 
1772 	return ret;
1773 }
1774 
1775 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1776 {
1777 	/* Try to pull RT tasks here if we lower this rq's prio */
1778 	if (rq->rt.highest_prio.curr > prev->prio)
1779 		pull_rt_task(rq);
1780 }
1781 
1782 static void post_schedule_rt(struct rq *rq)
1783 {
1784 	push_rt_tasks(rq);
1785 }
1786 
1787 /*
1788  * If we are not running and we are not going to reschedule soon, we should
1789  * try to push tasks away now
1790  */
1791 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1792 {
1793 	if (!task_running(rq, p) &&
1794 	    !test_tsk_need_resched(rq->curr) &&
1795 	    has_pushable_tasks(rq) &&
1796 	    p->rt.nr_cpus_allowed > 1 &&
1797 	    rt_task(rq->curr) &&
1798 	    (rq->curr->rt.nr_cpus_allowed < 2 ||
1799 	     rq->curr->prio <= p->prio))
1800 		push_rt_tasks(rq);
1801 }
1802 
1803 static void set_cpus_allowed_rt(struct task_struct *p,
1804 				const struct cpumask *new_mask)
1805 {
1806 	int weight = cpumask_weight(new_mask);
1807 
1808 	BUG_ON(!rt_task(p));
1809 
1810 	/*
1811 	 * Update the migration status of the RQ if we have an RT task
1812 	 * which is running AND changing its weight value.
1813 	 */
1814 	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1815 		struct rq *rq = task_rq(p);
1816 
1817 		if (!task_current(rq, p)) {
1818 			/*
1819 			 * Make sure we dequeue this task from the pushable list
1820 			 * before going further.  It will either remain off of
1821 			 * the list because we are no longer pushable, or it
1822 			 * will be requeued.
1823 			 */
1824 			if (p->rt.nr_cpus_allowed > 1)
1825 				dequeue_pushable_task(rq, p);
1826 
1827 			/*
1828 			 * Requeue if our weight is changing and still > 1
1829 			 */
1830 			if (weight > 1)
1831 				enqueue_pushable_task(rq, p);
1832 
1833 		}
1834 
1835 		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1836 			rq->rt.rt_nr_migratory++;
1837 		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1838 			BUG_ON(!rq->rt.rt_nr_migratory);
1839 			rq->rt.rt_nr_migratory--;
1840 		}
1841 
1842 		update_rt_migration(&rq->rt);
1843 	}
1844 }
1845 
1846 /* Assumes rq->lock is held */
1847 static void rq_online_rt(struct rq *rq)
1848 {
1849 	if (rq->rt.overloaded)
1850 		rt_set_overload(rq);
1851 
1852 	__enable_runtime(rq);
1853 
1854 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1855 }
1856 
1857 /* Assumes rq->lock is held */
1858 static void rq_offline_rt(struct rq *rq)
1859 {
1860 	if (rq->rt.overloaded)
1861 		rt_clear_overload(rq);
1862 
1863 	__disable_runtime(rq);
1864 
1865 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1866 }
1867 
1868 /*
1869  * When switch from the rt queue, we bring ourselves to a position
1870  * that we might want to pull RT tasks from other runqueues.
1871  */
1872 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1873 {
1874 	/*
1875 	 * If there are other RT tasks then we will reschedule
1876 	 * and the scheduling of the other RT tasks will handle
1877 	 * the balancing. But if we are the last RT task
1878 	 * we may need to handle the pulling of RT tasks
1879 	 * now.
1880 	 */
1881 	if (p->on_rq && !rq->rt.rt_nr_running)
1882 		pull_rt_task(rq);
1883 }
1884 
1885 void init_sched_rt_class(void)
1886 {
1887 	unsigned int i;
1888 
1889 	for_each_possible_cpu(i) {
1890 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1891 					GFP_KERNEL, cpu_to_node(i));
1892 	}
1893 }
1894 #endif /* CONFIG_SMP */
1895 
1896 /*
1897  * When switching a task to RT, we may overload the runqueue
1898  * with RT tasks. In this case we try to push them off to
1899  * other runqueues.
1900  */
1901 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1902 {
1903 	int check_resched = 1;
1904 
1905 	/*
1906 	 * If we are already running, then there's nothing
1907 	 * that needs to be done. But if we are not running
1908 	 * we may need to preempt the current running task.
1909 	 * If that current running task is also an RT task
1910 	 * then see if we can move to another run queue.
1911 	 */
1912 	if (p->on_rq && rq->curr != p) {
1913 #ifdef CONFIG_SMP
1914 		if (rq->rt.overloaded && push_rt_task(rq) &&
1915 		    /* Don't resched if we changed runqueues */
1916 		    rq != task_rq(p))
1917 			check_resched = 0;
1918 #endif /* CONFIG_SMP */
1919 		if (check_resched && p->prio < rq->curr->prio)
1920 			resched_task(rq->curr);
1921 	}
1922 }
1923 
1924 /*
1925  * Priority of the task has changed. This may cause
1926  * us to initiate a push or pull.
1927  */
1928 static void
1929 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1930 {
1931 	if (!p->on_rq)
1932 		return;
1933 
1934 	if (rq->curr == p) {
1935 #ifdef CONFIG_SMP
1936 		/*
1937 		 * If our priority decreases while running, we
1938 		 * may need to pull tasks to this runqueue.
1939 		 */
1940 		if (oldprio < p->prio)
1941 			pull_rt_task(rq);
1942 		/*
1943 		 * If there's a higher priority task waiting to run
1944 		 * then reschedule. Note, the above pull_rt_task
1945 		 * can release the rq lock and p could migrate.
1946 		 * Only reschedule if p is still on the same runqueue.
1947 		 */
1948 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1949 			resched_task(p);
1950 #else
1951 		/* For UP simply resched on drop of prio */
1952 		if (oldprio < p->prio)
1953 			resched_task(p);
1954 #endif /* CONFIG_SMP */
1955 	} else {
1956 		/*
1957 		 * This task is not running, but if it is
1958 		 * greater than the current running task
1959 		 * then reschedule.
1960 		 */
1961 		if (p->prio < rq->curr->prio)
1962 			resched_task(rq->curr);
1963 	}
1964 }
1965 
1966 static void watchdog(struct rq *rq, struct task_struct *p)
1967 {
1968 	unsigned long soft, hard;
1969 
1970 	/* max may change after cur was read, this will be fixed next tick */
1971 	soft = task_rlimit(p, RLIMIT_RTTIME);
1972 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1973 
1974 	if (soft != RLIM_INFINITY) {
1975 		unsigned long next;
1976 
1977 		p->rt.timeout++;
1978 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1979 		if (p->rt.timeout > next)
1980 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1981 	}
1982 }
1983 
1984 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1985 {
1986 	update_curr_rt(rq);
1987 
1988 	watchdog(rq, p);
1989 
1990 	/*
1991 	 * RR tasks need a special form of timeslice management.
1992 	 * FIFO tasks have no timeslices.
1993 	 */
1994 	if (p->policy != SCHED_RR)
1995 		return;
1996 
1997 	if (--p->rt.time_slice)
1998 		return;
1999 
2000 	p->rt.time_slice = RR_TIMESLICE;
2001 
2002 	/*
2003 	 * Requeue to the end of queue if we are not the only element
2004 	 * on the queue:
2005 	 */
2006 	if (p->rt.run_list.prev != p->rt.run_list.next) {
2007 		requeue_task_rt(rq, p, 0);
2008 		set_tsk_need_resched(p);
2009 	}
2010 }
2011 
2012 static void set_curr_task_rt(struct rq *rq)
2013 {
2014 	struct task_struct *p = rq->curr;
2015 
2016 	p->se.exec_start = rq->clock_task;
2017 
2018 	/* The running task is never eligible for pushing */
2019 	dequeue_pushable_task(rq, p);
2020 }
2021 
2022 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2023 {
2024 	/*
2025 	 * Time slice is 0 for SCHED_FIFO tasks
2026 	 */
2027 	if (task->policy == SCHED_RR)
2028 		return RR_TIMESLICE;
2029 	else
2030 		return 0;
2031 }
2032 
2033 const struct sched_class rt_sched_class = {
2034 	.next			= &fair_sched_class,
2035 	.enqueue_task		= enqueue_task_rt,
2036 	.dequeue_task		= dequeue_task_rt,
2037 	.yield_task		= yield_task_rt,
2038 
2039 	.check_preempt_curr	= check_preempt_curr_rt,
2040 
2041 	.pick_next_task		= pick_next_task_rt,
2042 	.put_prev_task		= put_prev_task_rt,
2043 
2044 #ifdef CONFIG_SMP
2045 	.select_task_rq		= select_task_rq_rt,
2046 
2047 	.set_cpus_allowed       = set_cpus_allowed_rt,
2048 	.rq_online              = rq_online_rt,
2049 	.rq_offline             = rq_offline_rt,
2050 	.pre_schedule		= pre_schedule_rt,
2051 	.post_schedule		= post_schedule_rt,
2052 	.task_woken		= task_woken_rt,
2053 	.switched_from		= switched_from_rt,
2054 #endif
2055 
2056 	.set_curr_task          = set_curr_task_rt,
2057 	.task_tick		= task_tick_rt,
2058 
2059 	.get_rr_interval	= get_rr_interval_rt,
2060 
2061 	.prio_changed		= prio_changed_rt,
2062 	.switched_to		= switched_to_rt,
2063 };
2064 
2065 #ifdef CONFIG_SCHED_DEBUG
2066 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2067 
2068 void print_rt_stats(struct seq_file *m, int cpu)
2069 {
2070 	rt_rq_iter_t iter;
2071 	struct rt_rq *rt_rq;
2072 
2073 	rcu_read_lock();
2074 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2075 		print_rt_rq(m, cpu, rt_rq);
2076 	rcu_read_unlock();
2077 }
2078 #endif /* CONFIG_SCHED_DEBUG */
2079