xref: /linux/kernel/sched/fair.c (revision e9246c8726312aae36202b9e50c7e76a8609b712)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 	u32 slice;
678 
679 	p->se.avg.decay_count = 0;
680 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 	p->se.avg.runnable_avg_sum = slice;
682 	p->se.avg.runnable_avg_period = slice;
683 	__update_task_entity_contrib(&p->se);
684 }
685 #else
686 void init_task_runnable_average(struct task_struct *p)
687 {
688 }
689 #endif
690 
691 /*
692  * Update the current task's runtime statistics.
693  */
694 static void update_curr(struct cfs_rq *cfs_rq)
695 {
696 	struct sched_entity *curr = cfs_rq->curr;
697 	u64 now = rq_clock_task(rq_of(cfs_rq));
698 	u64 delta_exec;
699 
700 	if (unlikely(!curr))
701 		return;
702 
703 	delta_exec = now - curr->exec_start;
704 	if (unlikely((s64)delta_exec <= 0))
705 		return;
706 
707 	curr->exec_start = now;
708 
709 	schedstat_set(curr->statistics.exec_max,
710 		      max(delta_exec, curr->statistics.exec_max));
711 
712 	curr->sum_exec_runtime += delta_exec;
713 	schedstat_add(cfs_rq, exec_clock, delta_exec);
714 
715 	curr->vruntime += calc_delta_fair(delta_exec, curr);
716 	update_min_vruntime(cfs_rq);
717 
718 	if (entity_is_task(curr)) {
719 		struct task_struct *curtask = task_of(curr);
720 
721 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 		cpuacct_charge(curtask, delta_exec);
723 		account_group_exec_runtime(curtask, delta_exec);
724 	}
725 
726 	account_cfs_rq_runtime(cfs_rq, delta_exec);
727 }
728 
729 static inline void
730 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
733 }
734 
735 /*
736  * Task is being enqueued - update stats:
737  */
738 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	/*
741 	 * Are we enqueueing a waiting task? (for current tasks
742 	 * a dequeue/enqueue event is a NOP)
743 	 */
744 	if (se != cfs_rq->curr)
745 		update_stats_wait_start(cfs_rq, se);
746 }
747 
748 static void
749 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
750 {
751 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
752 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
753 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
755 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
756 #ifdef CONFIG_SCHEDSTATS
757 	if (entity_is_task(se)) {
758 		trace_sched_stat_wait(task_of(se),
759 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 	}
761 #endif
762 	schedstat_set(se->statistics.wait_start, 0);
763 }
764 
765 static inline void
766 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
767 {
768 	/*
769 	 * Mark the end of the wait period if dequeueing a
770 	 * waiting task:
771 	 */
772 	if (se != cfs_rq->curr)
773 		update_stats_wait_end(cfs_rq, se);
774 }
775 
776 /*
777  * We are picking a new current task - update its stats:
778  */
779 static inline void
780 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 {
782 	/*
783 	 * We are starting a new run period:
784 	 */
785 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
786 }
787 
788 /**************************************************
789  * Scheduling class queueing methods:
790  */
791 
792 #ifdef CONFIG_NUMA_BALANCING
793 /*
794  * Approximate time to scan a full NUMA task in ms. The task scan period is
795  * calculated based on the tasks virtual memory size and
796  * numa_balancing_scan_size.
797  */
798 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
800 
801 /* Portion of address space to scan in MB */
802 unsigned int sysctl_numa_balancing_scan_size = 256;
803 
804 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805 unsigned int sysctl_numa_balancing_scan_delay = 1000;
806 
807 static unsigned int task_nr_scan_windows(struct task_struct *p)
808 {
809 	unsigned long rss = 0;
810 	unsigned long nr_scan_pages;
811 
812 	/*
813 	 * Calculations based on RSS as non-present and empty pages are skipped
814 	 * by the PTE scanner and NUMA hinting faults should be trapped based
815 	 * on resident pages
816 	 */
817 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 	rss = get_mm_rss(p->mm);
819 	if (!rss)
820 		rss = nr_scan_pages;
821 
822 	rss = round_up(rss, nr_scan_pages);
823 	return rss / nr_scan_pages;
824 }
825 
826 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827 #define MAX_SCAN_WINDOW 2560
828 
829 static unsigned int task_scan_min(struct task_struct *p)
830 {
831 	unsigned int scan, floor;
832 	unsigned int windows = 1;
833 
834 	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
835 		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
836 	floor = 1000 / windows;
837 
838 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
839 	return max_t(unsigned int, floor, scan);
840 }
841 
842 static unsigned int task_scan_max(struct task_struct *p)
843 {
844 	unsigned int smin = task_scan_min(p);
845 	unsigned int smax;
846 
847 	/* Watch for min being lower than max due to floor calculations */
848 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
849 	return max(smin, smax);
850 }
851 
852 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
853 {
854 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
855 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
856 }
857 
858 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
859 {
860 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
861 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
862 }
863 
864 struct numa_group {
865 	atomic_t refcount;
866 
867 	spinlock_t lock; /* nr_tasks, tasks */
868 	int nr_tasks;
869 	pid_t gid;
870 	struct list_head task_list;
871 
872 	struct rcu_head rcu;
873 	nodemask_t active_nodes;
874 	unsigned long total_faults;
875 	/*
876 	 * Faults_cpu is used to decide whether memory should move
877 	 * towards the CPU. As a consequence, these stats are weighted
878 	 * more by CPU use than by memory faults.
879 	 */
880 	unsigned long *faults_cpu;
881 	unsigned long faults[0];
882 };
883 
884 /* Shared or private faults. */
885 #define NR_NUMA_HINT_FAULT_TYPES 2
886 
887 /* Memory and CPU locality */
888 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
889 
890 /* Averaged statistics, and temporary buffers. */
891 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
892 
893 pid_t task_numa_group_id(struct task_struct *p)
894 {
895 	return p->numa_group ? p->numa_group->gid : 0;
896 }
897 
898 static inline int task_faults_idx(int nid, int priv)
899 {
900 	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
901 }
902 
903 static inline unsigned long task_faults(struct task_struct *p, int nid)
904 {
905 	if (!p->numa_faults_memory)
906 		return 0;
907 
908 	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
909 		p->numa_faults_memory[task_faults_idx(nid, 1)];
910 }
911 
912 static inline unsigned long group_faults(struct task_struct *p, int nid)
913 {
914 	if (!p->numa_group)
915 		return 0;
916 
917 	return p->numa_group->faults[task_faults_idx(nid, 0)] +
918 		p->numa_group->faults[task_faults_idx(nid, 1)];
919 }
920 
921 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
922 {
923 	return group->faults_cpu[task_faults_idx(nid, 0)] +
924 		group->faults_cpu[task_faults_idx(nid, 1)];
925 }
926 
927 /*
928  * These return the fraction of accesses done by a particular task, or
929  * task group, on a particular numa node.  The group weight is given a
930  * larger multiplier, in order to group tasks together that are almost
931  * evenly spread out between numa nodes.
932  */
933 static inline unsigned long task_weight(struct task_struct *p, int nid)
934 {
935 	unsigned long total_faults;
936 
937 	if (!p->numa_faults_memory)
938 		return 0;
939 
940 	total_faults = p->total_numa_faults;
941 
942 	if (!total_faults)
943 		return 0;
944 
945 	return 1000 * task_faults(p, nid) / total_faults;
946 }
947 
948 static inline unsigned long group_weight(struct task_struct *p, int nid)
949 {
950 	if (!p->numa_group || !p->numa_group->total_faults)
951 		return 0;
952 
953 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
954 }
955 
956 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
957 				int src_nid, int dst_cpu)
958 {
959 	struct numa_group *ng = p->numa_group;
960 	int dst_nid = cpu_to_node(dst_cpu);
961 	int last_cpupid, this_cpupid;
962 
963 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
964 
965 	/*
966 	 * Multi-stage node selection is used in conjunction with a periodic
967 	 * migration fault to build a temporal task<->page relation. By using
968 	 * a two-stage filter we remove short/unlikely relations.
969 	 *
970 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
971 	 * a task's usage of a particular page (n_p) per total usage of this
972 	 * page (n_t) (in a given time-span) to a probability.
973 	 *
974 	 * Our periodic faults will sample this probability and getting the
975 	 * same result twice in a row, given these samples are fully
976 	 * independent, is then given by P(n)^2, provided our sample period
977 	 * is sufficiently short compared to the usage pattern.
978 	 *
979 	 * This quadric squishes small probabilities, making it less likely we
980 	 * act on an unlikely task<->page relation.
981 	 */
982 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
983 	if (!cpupid_pid_unset(last_cpupid) &&
984 				cpupid_to_nid(last_cpupid) != dst_nid)
985 		return false;
986 
987 	/* Always allow migrate on private faults */
988 	if (cpupid_match_pid(p, last_cpupid))
989 		return true;
990 
991 	/* A shared fault, but p->numa_group has not been set up yet. */
992 	if (!ng)
993 		return true;
994 
995 	/*
996 	 * Do not migrate if the destination is not a node that
997 	 * is actively used by this numa group.
998 	 */
999 	if (!node_isset(dst_nid, ng->active_nodes))
1000 		return false;
1001 
1002 	/*
1003 	 * Source is a node that is not actively used by this
1004 	 * numa group, while the destination is. Migrate.
1005 	 */
1006 	if (!node_isset(src_nid, ng->active_nodes))
1007 		return true;
1008 
1009 	/*
1010 	 * Both source and destination are nodes in active
1011 	 * use by this numa group. Maximize memory bandwidth
1012 	 * by migrating from more heavily used groups, to less
1013 	 * heavily used ones, spreading the load around.
1014 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1015 	 */
1016 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1017 }
1018 
1019 static unsigned long weighted_cpuload(const int cpu);
1020 static unsigned long source_load(int cpu, int type);
1021 static unsigned long target_load(int cpu, int type);
1022 static unsigned long capacity_of(int cpu);
1023 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1024 
1025 /* Cached statistics for all CPUs within a node */
1026 struct numa_stats {
1027 	unsigned long nr_running;
1028 	unsigned long load;
1029 
1030 	/* Total compute capacity of CPUs on a node */
1031 	unsigned long compute_capacity;
1032 
1033 	/* Approximate capacity in terms of runnable tasks on a node */
1034 	unsigned long task_capacity;
1035 	int has_free_capacity;
1036 };
1037 
1038 /*
1039  * XXX borrowed from update_sg_lb_stats
1040  */
1041 static void update_numa_stats(struct numa_stats *ns, int nid)
1042 {
1043 	int smt, cpu, cpus = 0;
1044 	unsigned long capacity;
1045 
1046 	memset(ns, 0, sizeof(*ns));
1047 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1048 		struct rq *rq = cpu_rq(cpu);
1049 
1050 		ns->nr_running += rq->nr_running;
1051 		ns->load += weighted_cpuload(cpu);
1052 		ns->compute_capacity += capacity_of(cpu);
1053 
1054 		cpus++;
1055 	}
1056 
1057 	/*
1058 	 * If we raced with hotplug and there are no CPUs left in our mask
1059 	 * the @ns structure is NULL'ed and task_numa_compare() will
1060 	 * not find this node attractive.
1061 	 *
1062 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1063 	 * imbalance and bail there.
1064 	 */
1065 	if (!cpus)
1066 		return;
1067 
1068 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1069 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1070 	capacity = cpus / smt; /* cores */
1071 
1072 	ns->task_capacity = min_t(unsigned, capacity,
1073 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1074 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1075 }
1076 
1077 struct task_numa_env {
1078 	struct task_struct *p;
1079 
1080 	int src_cpu, src_nid;
1081 	int dst_cpu, dst_nid;
1082 
1083 	struct numa_stats src_stats, dst_stats;
1084 
1085 	int imbalance_pct;
1086 
1087 	struct task_struct *best_task;
1088 	long best_imp;
1089 	int best_cpu;
1090 };
1091 
1092 static void task_numa_assign(struct task_numa_env *env,
1093 			     struct task_struct *p, long imp)
1094 {
1095 	if (env->best_task)
1096 		put_task_struct(env->best_task);
1097 	if (p)
1098 		get_task_struct(p);
1099 
1100 	env->best_task = p;
1101 	env->best_imp = imp;
1102 	env->best_cpu = env->dst_cpu;
1103 }
1104 
1105 static bool load_too_imbalanced(long src_load, long dst_load,
1106 				struct task_numa_env *env)
1107 {
1108 	long imb, old_imb;
1109 	long orig_src_load, orig_dst_load;
1110 	long src_capacity, dst_capacity;
1111 
1112 	/*
1113 	 * The load is corrected for the CPU capacity available on each node.
1114 	 *
1115 	 * src_load        dst_load
1116 	 * ------------ vs ---------
1117 	 * src_capacity    dst_capacity
1118 	 */
1119 	src_capacity = env->src_stats.compute_capacity;
1120 	dst_capacity = env->dst_stats.compute_capacity;
1121 
1122 	/* We care about the slope of the imbalance, not the direction. */
1123 	if (dst_load < src_load)
1124 		swap(dst_load, src_load);
1125 
1126 	/* Is the difference below the threshold? */
1127 	imb = dst_load * src_capacity * 100 -
1128 	      src_load * dst_capacity * env->imbalance_pct;
1129 	if (imb <= 0)
1130 		return false;
1131 
1132 	/*
1133 	 * The imbalance is above the allowed threshold.
1134 	 * Compare it with the old imbalance.
1135 	 */
1136 	orig_src_load = env->src_stats.load;
1137 	orig_dst_load = env->dst_stats.load;
1138 
1139 	if (orig_dst_load < orig_src_load)
1140 		swap(orig_dst_load, orig_src_load);
1141 
1142 	old_imb = orig_dst_load * src_capacity * 100 -
1143 		  orig_src_load * dst_capacity * env->imbalance_pct;
1144 
1145 	/* Would this change make things worse? */
1146 	return (imb > old_imb);
1147 }
1148 
1149 /*
1150  * This checks if the overall compute and NUMA accesses of the system would
1151  * be improved if the source tasks was migrated to the target dst_cpu taking
1152  * into account that it might be best if task running on the dst_cpu should
1153  * be exchanged with the source task
1154  */
1155 static void task_numa_compare(struct task_numa_env *env,
1156 			      long taskimp, long groupimp)
1157 {
1158 	struct rq *src_rq = cpu_rq(env->src_cpu);
1159 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1160 	struct task_struct *cur;
1161 	long src_load, dst_load;
1162 	long load;
1163 	long imp = env->p->numa_group ? groupimp : taskimp;
1164 	long moveimp = imp;
1165 
1166 	rcu_read_lock();
1167 	cur = ACCESS_ONCE(dst_rq->curr);
1168 	if (cur->pid == 0) /* idle */
1169 		cur = NULL;
1170 
1171 	/*
1172 	 * "imp" is the fault differential for the source task between the
1173 	 * source and destination node. Calculate the total differential for
1174 	 * the source task and potential destination task. The more negative
1175 	 * the value is, the more rmeote accesses that would be expected to
1176 	 * be incurred if the tasks were swapped.
1177 	 */
1178 	if (cur) {
1179 		/* Skip this swap candidate if cannot move to the source cpu */
1180 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1181 			goto unlock;
1182 
1183 		/*
1184 		 * If dst and source tasks are in the same NUMA group, or not
1185 		 * in any group then look only at task weights.
1186 		 */
1187 		if (cur->numa_group == env->p->numa_group) {
1188 			imp = taskimp + task_weight(cur, env->src_nid) -
1189 			      task_weight(cur, env->dst_nid);
1190 			/*
1191 			 * Add some hysteresis to prevent swapping the
1192 			 * tasks within a group over tiny differences.
1193 			 */
1194 			if (cur->numa_group)
1195 				imp -= imp/16;
1196 		} else {
1197 			/*
1198 			 * Compare the group weights. If a task is all by
1199 			 * itself (not part of a group), use the task weight
1200 			 * instead.
1201 			 */
1202 			if (cur->numa_group)
1203 				imp += group_weight(cur, env->src_nid) -
1204 				       group_weight(cur, env->dst_nid);
1205 			else
1206 				imp += task_weight(cur, env->src_nid) -
1207 				       task_weight(cur, env->dst_nid);
1208 		}
1209 	}
1210 
1211 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1212 		goto unlock;
1213 
1214 	if (!cur) {
1215 		/* Is there capacity at our destination? */
1216 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1217 		    !env->dst_stats.has_free_capacity)
1218 			goto unlock;
1219 
1220 		goto balance;
1221 	}
1222 
1223 	/* Balance doesn't matter much if we're running a task per cpu */
1224 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1225 			dst_rq->nr_running == 1)
1226 		goto assign;
1227 
1228 	/*
1229 	 * In the overloaded case, try and keep the load balanced.
1230 	 */
1231 balance:
1232 	load = task_h_load(env->p);
1233 	dst_load = env->dst_stats.load + load;
1234 	src_load = env->src_stats.load - load;
1235 
1236 	if (moveimp > imp && moveimp > env->best_imp) {
1237 		/*
1238 		 * If the improvement from just moving env->p direction is
1239 		 * better than swapping tasks around, check if a move is
1240 		 * possible. Store a slightly smaller score than moveimp,
1241 		 * so an actually idle CPU will win.
1242 		 */
1243 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1244 			imp = moveimp - 1;
1245 			cur = NULL;
1246 			goto assign;
1247 		}
1248 	}
1249 
1250 	if (imp <= env->best_imp)
1251 		goto unlock;
1252 
1253 	if (cur) {
1254 		load = task_h_load(cur);
1255 		dst_load -= load;
1256 		src_load += load;
1257 	}
1258 
1259 	if (load_too_imbalanced(src_load, dst_load, env))
1260 		goto unlock;
1261 
1262 	/*
1263 	 * One idle CPU per node is evaluated for a task numa move.
1264 	 * Call select_idle_sibling to maybe find a better one.
1265 	 */
1266 	if (!cur)
1267 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1268 
1269 assign:
1270 	task_numa_assign(env, cur, imp);
1271 unlock:
1272 	rcu_read_unlock();
1273 }
1274 
1275 static void task_numa_find_cpu(struct task_numa_env *env,
1276 				long taskimp, long groupimp)
1277 {
1278 	int cpu;
1279 
1280 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1281 		/* Skip this CPU if the source task cannot migrate */
1282 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1283 			continue;
1284 
1285 		env->dst_cpu = cpu;
1286 		task_numa_compare(env, taskimp, groupimp);
1287 	}
1288 }
1289 
1290 static int task_numa_migrate(struct task_struct *p)
1291 {
1292 	struct task_numa_env env = {
1293 		.p = p,
1294 
1295 		.src_cpu = task_cpu(p),
1296 		.src_nid = task_node(p),
1297 
1298 		.imbalance_pct = 112,
1299 
1300 		.best_task = NULL,
1301 		.best_imp = 0,
1302 		.best_cpu = -1
1303 	};
1304 	struct sched_domain *sd;
1305 	unsigned long taskweight, groupweight;
1306 	int nid, ret;
1307 	long taskimp, groupimp;
1308 
1309 	/*
1310 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1311 	 * imbalance and would be the first to start moving tasks about.
1312 	 *
1313 	 * And we want to avoid any moving of tasks about, as that would create
1314 	 * random movement of tasks -- counter the numa conditions we're trying
1315 	 * to satisfy here.
1316 	 */
1317 	rcu_read_lock();
1318 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1319 	if (sd)
1320 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1321 	rcu_read_unlock();
1322 
1323 	/*
1324 	 * Cpusets can break the scheduler domain tree into smaller
1325 	 * balance domains, some of which do not cross NUMA boundaries.
1326 	 * Tasks that are "trapped" in such domains cannot be migrated
1327 	 * elsewhere, so there is no point in (re)trying.
1328 	 */
1329 	if (unlikely(!sd)) {
1330 		p->numa_preferred_nid = task_node(p);
1331 		return -EINVAL;
1332 	}
1333 
1334 	taskweight = task_weight(p, env.src_nid);
1335 	groupweight = group_weight(p, env.src_nid);
1336 	update_numa_stats(&env.src_stats, env.src_nid);
1337 	env.dst_nid = p->numa_preferred_nid;
1338 	taskimp = task_weight(p, env.dst_nid) - taskweight;
1339 	groupimp = group_weight(p, env.dst_nid) - groupweight;
1340 	update_numa_stats(&env.dst_stats, env.dst_nid);
1341 
1342 	/* Try to find a spot on the preferred nid. */
1343 	task_numa_find_cpu(&env, taskimp, groupimp);
1344 
1345 	/* No space available on the preferred nid. Look elsewhere. */
1346 	if (env.best_cpu == -1) {
1347 		for_each_online_node(nid) {
1348 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1349 				continue;
1350 
1351 			/* Only consider nodes where both task and groups benefit */
1352 			taskimp = task_weight(p, nid) - taskweight;
1353 			groupimp = group_weight(p, nid) - groupweight;
1354 			if (taskimp < 0 && groupimp < 0)
1355 				continue;
1356 
1357 			env.dst_nid = nid;
1358 			update_numa_stats(&env.dst_stats, env.dst_nid);
1359 			task_numa_find_cpu(&env, taskimp, groupimp);
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * If the task is part of a workload that spans multiple NUMA nodes,
1365 	 * and is migrating into one of the workload's active nodes, remember
1366 	 * this node as the task's preferred numa node, so the workload can
1367 	 * settle down.
1368 	 * A task that migrated to a second choice node will be better off
1369 	 * trying for a better one later. Do not set the preferred node here.
1370 	 */
1371 	if (p->numa_group) {
1372 		if (env.best_cpu == -1)
1373 			nid = env.src_nid;
1374 		else
1375 			nid = env.dst_nid;
1376 
1377 		if (node_isset(nid, p->numa_group->active_nodes))
1378 			sched_setnuma(p, env.dst_nid);
1379 	}
1380 
1381 	/* No better CPU than the current one was found. */
1382 	if (env.best_cpu == -1)
1383 		return -EAGAIN;
1384 
1385 	/*
1386 	 * Reset the scan period if the task is being rescheduled on an
1387 	 * alternative node to recheck if the tasks is now properly placed.
1388 	 */
1389 	p->numa_scan_period = task_scan_min(p);
1390 
1391 	if (env.best_task == NULL) {
1392 		ret = migrate_task_to(p, env.best_cpu);
1393 		if (ret != 0)
1394 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1395 		return ret;
1396 	}
1397 
1398 	ret = migrate_swap(p, env.best_task);
1399 	if (ret != 0)
1400 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1401 	put_task_struct(env.best_task);
1402 	return ret;
1403 }
1404 
1405 /* Attempt to migrate a task to a CPU on the preferred node. */
1406 static void numa_migrate_preferred(struct task_struct *p)
1407 {
1408 	unsigned long interval = HZ;
1409 
1410 	/* This task has no NUMA fault statistics yet */
1411 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1412 		return;
1413 
1414 	/* Periodically retry migrating the task to the preferred node */
1415 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1416 	p->numa_migrate_retry = jiffies + interval;
1417 
1418 	/* Success if task is already running on preferred CPU */
1419 	if (task_node(p) == p->numa_preferred_nid)
1420 		return;
1421 
1422 	/* Otherwise, try migrate to a CPU on the preferred node */
1423 	task_numa_migrate(p);
1424 }
1425 
1426 /*
1427  * Find the nodes on which the workload is actively running. We do this by
1428  * tracking the nodes from which NUMA hinting faults are triggered. This can
1429  * be different from the set of nodes where the workload's memory is currently
1430  * located.
1431  *
1432  * The bitmask is used to make smarter decisions on when to do NUMA page
1433  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1434  * are added when they cause over 6/16 of the maximum number of faults, but
1435  * only removed when they drop below 3/16.
1436  */
1437 static void update_numa_active_node_mask(struct numa_group *numa_group)
1438 {
1439 	unsigned long faults, max_faults = 0;
1440 	int nid;
1441 
1442 	for_each_online_node(nid) {
1443 		faults = group_faults_cpu(numa_group, nid);
1444 		if (faults > max_faults)
1445 			max_faults = faults;
1446 	}
1447 
1448 	for_each_online_node(nid) {
1449 		faults = group_faults_cpu(numa_group, nid);
1450 		if (!node_isset(nid, numa_group->active_nodes)) {
1451 			if (faults > max_faults * 6 / 16)
1452 				node_set(nid, numa_group->active_nodes);
1453 		} else if (faults < max_faults * 3 / 16)
1454 			node_clear(nid, numa_group->active_nodes);
1455 	}
1456 }
1457 
1458 /*
1459  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1460  * increments. The more local the fault statistics are, the higher the scan
1461  * period will be for the next scan window. If local/(local+remote) ratio is
1462  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1463  * the scan period will decrease. Aim for 70% local accesses.
1464  */
1465 #define NUMA_PERIOD_SLOTS 10
1466 #define NUMA_PERIOD_THRESHOLD 7
1467 
1468 /*
1469  * Increase the scan period (slow down scanning) if the majority of
1470  * our memory is already on our local node, or if the majority of
1471  * the page accesses are shared with other processes.
1472  * Otherwise, decrease the scan period.
1473  */
1474 static void update_task_scan_period(struct task_struct *p,
1475 			unsigned long shared, unsigned long private)
1476 {
1477 	unsigned int period_slot;
1478 	int ratio;
1479 	int diff;
1480 
1481 	unsigned long remote = p->numa_faults_locality[0];
1482 	unsigned long local = p->numa_faults_locality[1];
1483 
1484 	/*
1485 	 * If there were no record hinting faults then either the task is
1486 	 * completely idle or all activity is areas that are not of interest
1487 	 * to automatic numa balancing. Scan slower
1488 	 */
1489 	if (local + shared == 0) {
1490 		p->numa_scan_period = min(p->numa_scan_period_max,
1491 			p->numa_scan_period << 1);
1492 
1493 		p->mm->numa_next_scan = jiffies +
1494 			msecs_to_jiffies(p->numa_scan_period);
1495 
1496 		return;
1497 	}
1498 
1499 	/*
1500 	 * Prepare to scale scan period relative to the current period.
1501 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1502 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1503 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1504 	 */
1505 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1506 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1507 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1508 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1509 		if (!slot)
1510 			slot = 1;
1511 		diff = slot * period_slot;
1512 	} else {
1513 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1514 
1515 		/*
1516 		 * Scale scan rate increases based on sharing. There is an
1517 		 * inverse relationship between the degree of sharing and
1518 		 * the adjustment made to the scanning period. Broadly
1519 		 * speaking the intent is that there is little point
1520 		 * scanning faster if shared accesses dominate as it may
1521 		 * simply bounce migrations uselessly
1522 		 */
1523 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1524 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1525 	}
1526 
1527 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1528 			task_scan_min(p), task_scan_max(p));
1529 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1530 }
1531 
1532 /*
1533  * Get the fraction of time the task has been running since the last
1534  * NUMA placement cycle. The scheduler keeps similar statistics, but
1535  * decays those on a 32ms period, which is orders of magnitude off
1536  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1537  * stats only if the task is so new there are no NUMA statistics yet.
1538  */
1539 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1540 {
1541 	u64 runtime, delta, now;
1542 	/* Use the start of this time slice to avoid calculations. */
1543 	now = p->se.exec_start;
1544 	runtime = p->se.sum_exec_runtime;
1545 
1546 	if (p->last_task_numa_placement) {
1547 		delta = runtime - p->last_sum_exec_runtime;
1548 		*period = now - p->last_task_numa_placement;
1549 	} else {
1550 		delta = p->se.avg.runnable_avg_sum;
1551 		*period = p->se.avg.runnable_avg_period;
1552 	}
1553 
1554 	p->last_sum_exec_runtime = runtime;
1555 	p->last_task_numa_placement = now;
1556 
1557 	return delta;
1558 }
1559 
1560 static void task_numa_placement(struct task_struct *p)
1561 {
1562 	int seq, nid, max_nid = -1, max_group_nid = -1;
1563 	unsigned long max_faults = 0, max_group_faults = 0;
1564 	unsigned long fault_types[2] = { 0, 0 };
1565 	unsigned long total_faults;
1566 	u64 runtime, period;
1567 	spinlock_t *group_lock = NULL;
1568 
1569 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1570 	if (p->numa_scan_seq == seq)
1571 		return;
1572 	p->numa_scan_seq = seq;
1573 	p->numa_scan_period_max = task_scan_max(p);
1574 
1575 	total_faults = p->numa_faults_locality[0] +
1576 		       p->numa_faults_locality[1];
1577 	runtime = numa_get_avg_runtime(p, &period);
1578 
1579 	/* If the task is part of a group prevent parallel updates to group stats */
1580 	if (p->numa_group) {
1581 		group_lock = &p->numa_group->lock;
1582 		spin_lock_irq(group_lock);
1583 	}
1584 
1585 	/* Find the node with the highest number of faults */
1586 	for_each_online_node(nid) {
1587 		unsigned long faults = 0, group_faults = 0;
1588 		int priv, i;
1589 
1590 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1591 			long diff, f_diff, f_weight;
1592 
1593 			i = task_faults_idx(nid, priv);
1594 
1595 			/* Decay existing window, copy faults since last scan */
1596 			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1597 			fault_types[priv] += p->numa_faults_buffer_memory[i];
1598 			p->numa_faults_buffer_memory[i] = 0;
1599 
1600 			/*
1601 			 * Normalize the faults_from, so all tasks in a group
1602 			 * count according to CPU use, instead of by the raw
1603 			 * number of faults. Tasks with little runtime have
1604 			 * little over-all impact on throughput, and thus their
1605 			 * faults are less important.
1606 			 */
1607 			f_weight = div64_u64(runtime << 16, period + 1);
1608 			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1609 				   (total_faults + 1);
1610 			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1611 			p->numa_faults_buffer_cpu[i] = 0;
1612 
1613 			p->numa_faults_memory[i] += diff;
1614 			p->numa_faults_cpu[i] += f_diff;
1615 			faults += p->numa_faults_memory[i];
1616 			p->total_numa_faults += diff;
1617 			if (p->numa_group) {
1618 				/* safe because we can only change our own group */
1619 				p->numa_group->faults[i] += diff;
1620 				p->numa_group->faults_cpu[i] += f_diff;
1621 				p->numa_group->total_faults += diff;
1622 				group_faults += p->numa_group->faults[i];
1623 			}
1624 		}
1625 
1626 		if (faults > max_faults) {
1627 			max_faults = faults;
1628 			max_nid = nid;
1629 		}
1630 
1631 		if (group_faults > max_group_faults) {
1632 			max_group_faults = group_faults;
1633 			max_group_nid = nid;
1634 		}
1635 	}
1636 
1637 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1638 
1639 	if (p->numa_group) {
1640 		update_numa_active_node_mask(p->numa_group);
1641 		spin_unlock_irq(group_lock);
1642 		max_nid = max_group_nid;
1643 	}
1644 
1645 	if (max_faults) {
1646 		/* Set the new preferred node */
1647 		if (max_nid != p->numa_preferred_nid)
1648 			sched_setnuma(p, max_nid);
1649 
1650 		if (task_node(p) != p->numa_preferred_nid)
1651 			numa_migrate_preferred(p);
1652 	}
1653 }
1654 
1655 static inline int get_numa_group(struct numa_group *grp)
1656 {
1657 	return atomic_inc_not_zero(&grp->refcount);
1658 }
1659 
1660 static inline void put_numa_group(struct numa_group *grp)
1661 {
1662 	if (atomic_dec_and_test(&grp->refcount))
1663 		kfree_rcu(grp, rcu);
1664 }
1665 
1666 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1667 			int *priv)
1668 {
1669 	struct numa_group *grp, *my_grp;
1670 	struct task_struct *tsk;
1671 	bool join = false;
1672 	int cpu = cpupid_to_cpu(cpupid);
1673 	int i;
1674 
1675 	if (unlikely(!p->numa_group)) {
1676 		unsigned int size = sizeof(struct numa_group) +
1677 				    4*nr_node_ids*sizeof(unsigned long);
1678 
1679 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1680 		if (!grp)
1681 			return;
1682 
1683 		atomic_set(&grp->refcount, 1);
1684 		spin_lock_init(&grp->lock);
1685 		INIT_LIST_HEAD(&grp->task_list);
1686 		grp->gid = p->pid;
1687 		/* Second half of the array tracks nids where faults happen */
1688 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1689 						nr_node_ids;
1690 
1691 		node_set(task_node(current), grp->active_nodes);
1692 
1693 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1694 			grp->faults[i] = p->numa_faults_memory[i];
1695 
1696 		grp->total_faults = p->total_numa_faults;
1697 
1698 		list_add(&p->numa_entry, &grp->task_list);
1699 		grp->nr_tasks++;
1700 		rcu_assign_pointer(p->numa_group, grp);
1701 	}
1702 
1703 	rcu_read_lock();
1704 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1705 
1706 	if (!cpupid_match_pid(tsk, cpupid))
1707 		goto no_join;
1708 
1709 	grp = rcu_dereference(tsk->numa_group);
1710 	if (!grp)
1711 		goto no_join;
1712 
1713 	my_grp = p->numa_group;
1714 	if (grp == my_grp)
1715 		goto no_join;
1716 
1717 	/*
1718 	 * Only join the other group if its bigger; if we're the bigger group,
1719 	 * the other task will join us.
1720 	 */
1721 	if (my_grp->nr_tasks > grp->nr_tasks)
1722 		goto no_join;
1723 
1724 	/*
1725 	 * Tie-break on the grp address.
1726 	 */
1727 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1728 		goto no_join;
1729 
1730 	/* Always join threads in the same process. */
1731 	if (tsk->mm == current->mm)
1732 		join = true;
1733 
1734 	/* Simple filter to avoid false positives due to PID collisions */
1735 	if (flags & TNF_SHARED)
1736 		join = true;
1737 
1738 	/* Update priv based on whether false sharing was detected */
1739 	*priv = !join;
1740 
1741 	if (join && !get_numa_group(grp))
1742 		goto no_join;
1743 
1744 	rcu_read_unlock();
1745 
1746 	if (!join)
1747 		return;
1748 
1749 	BUG_ON(irqs_disabled());
1750 	double_lock_irq(&my_grp->lock, &grp->lock);
1751 
1752 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1753 		my_grp->faults[i] -= p->numa_faults_memory[i];
1754 		grp->faults[i] += p->numa_faults_memory[i];
1755 	}
1756 	my_grp->total_faults -= p->total_numa_faults;
1757 	grp->total_faults += p->total_numa_faults;
1758 
1759 	list_move(&p->numa_entry, &grp->task_list);
1760 	my_grp->nr_tasks--;
1761 	grp->nr_tasks++;
1762 
1763 	spin_unlock(&my_grp->lock);
1764 	spin_unlock_irq(&grp->lock);
1765 
1766 	rcu_assign_pointer(p->numa_group, grp);
1767 
1768 	put_numa_group(my_grp);
1769 	return;
1770 
1771 no_join:
1772 	rcu_read_unlock();
1773 	return;
1774 }
1775 
1776 void task_numa_free(struct task_struct *p)
1777 {
1778 	struct numa_group *grp = p->numa_group;
1779 	void *numa_faults = p->numa_faults_memory;
1780 	unsigned long flags;
1781 	int i;
1782 
1783 	if (grp) {
1784 		spin_lock_irqsave(&grp->lock, flags);
1785 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1786 			grp->faults[i] -= p->numa_faults_memory[i];
1787 		grp->total_faults -= p->total_numa_faults;
1788 
1789 		list_del(&p->numa_entry);
1790 		grp->nr_tasks--;
1791 		spin_unlock_irqrestore(&grp->lock, flags);
1792 		RCU_INIT_POINTER(p->numa_group, NULL);
1793 		put_numa_group(grp);
1794 	}
1795 
1796 	p->numa_faults_memory = NULL;
1797 	p->numa_faults_buffer_memory = NULL;
1798 	p->numa_faults_cpu= NULL;
1799 	p->numa_faults_buffer_cpu = NULL;
1800 	kfree(numa_faults);
1801 }
1802 
1803 /*
1804  * Got a PROT_NONE fault for a page on @node.
1805  */
1806 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1807 {
1808 	struct task_struct *p = current;
1809 	bool migrated = flags & TNF_MIGRATED;
1810 	int cpu_node = task_node(current);
1811 	int local = !!(flags & TNF_FAULT_LOCAL);
1812 	int priv;
1813 
1814 	if (!numabalancing_enabled)
1815 		return;
1816 
1817 	/* for example, ksmd faulting in a user's mm */
1818 	if (!p->mm)
1819 		return;
1820 
1821 	/* Allocate buffer to track faults on a per-node basis */
1822 	if (unlikely(!p->numa_faults_memory)) {
1823 		int size = sizeof(*p->numa_faults_memory) *
1824 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1825 
1826 		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1827 		if (!p->numa_faults_memory)
1828 			return;
1829 
1830 		BUG_ON(p->numa_faults_buffer_memory);
1831 		/*
1832 		 * The averaged statistics, shared & private, memory & cpu,
1833 		 * occupy the first half of the array. The second half of the
1834 		 * array is for current counters, which are averaged into the
1835 		 * first set by task_numa_placement.
1836 		 */
1837 		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1838 		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1839 		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1840 		p->total_numa_faults = 0;
1841 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1842 	}
1843 
1844 	/*
1845 	 * First accesses are treated as private, otherwise consider accesses
1846 	 * to be private if the accessing pid has not changed
1847 	 */
1848 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1849 		priv = 1;
1850 	} else {
1851 		priv = cpupid_match_pid(p, last_cpupid);
1852 		if (!priv && !(flags & TNF_NO_GROUP))
1853 			task_numa_group(p, last_cpupid, flags, &priv);
1854 	}
1855 
1856 	/*
1857 	 * If a workload spans multiple NUMA nodes, a shared fault that
1858 	 * occurs wholly within the set of nodes that the workload is
1859 	 * actively using should be counted as local. This allows the
1860 	 * scan rate to slow down when a workload has settled down.
1861 	 */
1862 	if (!priv && !local && p->numa_group &&
1863 			node_isset(cpu_node, p->numa_group->active_nodes) &&
1864 			node_isset(mem_node, p->numa_group->active_nodes))
1865 		local = 1;
1866 
1867 	task_numa_placement(p);
1868 
1869 	/*
1870 	 * Retry task to preferred node migration periodically, in case it
1871 	 * case it previously failed, or the scheduler moved us.
1872 	 */
1873 	if (time_after(jiffies, p->numa_migrate_retry))
1874 		numa_migrate_preferred(p);
1875 
1876 	if (migrated)
1877 		p->numa_pages_migrated += pages;
1878 
1879 	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1880 	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1881 	p->numa_faults_locality[local] += pages;
1882 }
1883 
1884 static void reset_ptenuma_scan(struct task_struct *p)
1885 {
1886 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1887 	p->mm->numa_scan_offset = 0;
1888 }
1889 
1890 /*
1891  * The expensive part of numa migration is done from task_work context.
1892  * Triggered from task_tick_numa().
1893  */
1894 void task_numa_work(struct callback_head *work)
1895 {
1896 	unsigned long migrate, next_scan, now = jiffies;
1897 	struct task_struct *p = current;
1898 	struct mm_struct *mm = p->mm;
1899 	struct vm_area_struct *vma;
1900 	unsigned long start, end;
1901 	unsigned long nr_pte_updates = 0;
1902 	long pages;
1903 
1904 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1905 
1906 	work->next = work; /* protect against double add */
1907 	/*
1908 	 * Who cares about NUMA placement when they're dying.
1909 	 *
1910 	 * NOTE: make sure not to dereference p->mm before this check,
1911 	 * exit_task_work() happens _after_ exit_mm() so we could be called
1912 	 * without p->mm even though we still had it when we enqueued this
1913 	 * work.
1914 	 */
1915 	if (p->flags & PF_EXITING)
1916 		return;
1917 
1918 	if (!mm->numa_next_scan) {
1919 		mm->numa_next_scan = now +
1920 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1921 	}
1922 
1923 	/*
1924 	 * Enforce maximal scan/migration frequency..
1925 	 */
1926 	migrate = mm->numa_next_scan;
1927 	if (time_before(now, migrate))
1928 		return;
1929 
1930 	if (p->numa_scan_period == 0) {
1931 		p->numa_scan_period_max = task_scan_max(p);
1932 		p->numa_scan_period = task_scan_min(p);
1933 	}
1934 
1935 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1936 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1937 		return;
1938 
1939 	/*
1940 	 * Delay this task enough that another task of this mm will likely win
1941 	 * the next time around.
1942 	 */
1943 	p->node_stamp += 2 * TICK_NSEC;
1944 
1945 	start = mm->numa_scan_offset;
1946 	pages = sysctl_numa_balancing_scan_size;
1947 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1948 	if (!pages)
1949 		return;
1950 
1951 	down_read(&mm->mmap_sem);
1952 	vma = find_vma(mm, start);
1953 	if (!vma) {
1954 		reset_ptenuma_scan(p);
1955 		start = 0;
1956 		vma = mm->mmap;
1957 	}
1958 	for (; vma; vma = vma->vm_next) {
1959 		if (!vma_migratable(vma) || !vma_policy_mof(vma))
1960 			continue;
1961 
1962 		/*
1963 		 * Shared library pages mapped by multiple processes are not
1964 		 * migrated as it is expected they are cache replicated. Avoid
1965 		 * hinting faults in read-only file-backed mappings or the vdso
1966 		 * as migrating the pages will be of marginal benefit.
1967 		 */
1968 		if (!vma->vm_mm ||
1969 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1970 			continue;
1971 
1972 		/*
1973 		 * Skip inaccessible VMAs to avoid any confusion between
1974 		 * PROT_NONE and NUMA hinting ptes
1975 		 */
1976 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1977 			continue;
1978 
1979 		do {
1980 			start = max(start, vma->vm_start);
1981 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1982 			end = min(end, vma->vm_end);
1983 			nr_pte_updates += change_prot_numa(vma, start, end);
1984 
1985 			/*
1986 			 * Scan sysctl_numa_balancing_scan_size but ensure that
1987 			 * at least one PTE is updated so that unused virtual
1988 			 * address space is quickly skipped.
1989 			 */
1990 			if (nr_pte_updates)
1991 				pages -= (end - start) >> PAGE_SHIFT;
1992 
1993 			start = end;
1994 			if (pages <= 0)
1995 				goto out;
1996 
1997 			cond_resched();
1998 		} while (end != vma->vm_end);
1999 	}
2000 
2001 out:
2002 	/*
2003 	 * It is possible to reach the end of the VMA list but the last few
2004 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2005 	 * would find the !migratable VMA on the next scan but not reset the
2006 	 * scanner to the start so check it now.
2007 	 */
2008 	if (vma)
2009 		mm->numa_scan_offset = start;
2010 	else
2011 		reset_ptenuma_scan(p);
2012 	up_read(&mm->mmap_sem);
2013 }
2014 
2015 /*
2016  * Drive the periodic memory faults..
2017  */
2018 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2019 {
2020 	struct callback_head *work = &curr->numa_work;
2021 	u64 period, now;
2022 
2023 	/*
2024 	 * We don't care about NUMA placement if we don't have memory.
2025 	 */
2026 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2027 		return;
2028 
2029 	/*
2030 	 * Using runtime rather than walltime has the dual advantage that
2031 	 * we (mostly) drive the selection from busy threads and that the
2032 	 * task needs to have done some actual work before we bother with
2033 	 * NUMA placement.
2034 	 */
2035 	now = curr->se.sum_exec_runtime;
2036 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2037 
2038 	if (now - curr->node_stamp > period) {
2039 		if (!curr->node_stamp)
2040 			curr->numa_scan_period = task_scan_min(curr);
2041 		curr->node_stamp += period;
2042 
2043 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2044 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2045 			task_work_add(curr, work, true);
2046 		}
2047 	}
2048 }
2049 #else
2050 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2051 {
2052 }
2053 
2054 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2055 {
2056 }
2057 
2058 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2059 {
2060 }
2061 #endif /* CONFIG_NUMA_BALANCING */
2062 
2063 static void
2064 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2065 {
2066 	update_load_add(&cfs_rq->load, se->load.weight);
2067 	if (!parent_entity(se))
2068 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2069 #ifdef CONFIG_SMP
2070 	if (entity_is_task(se)) {
2071 		struct rq *rq = rq_of(cfs_rq);
2072 
2073 		account_numa_enqueue(rq, task_of(se));
2074 		list_add(&se->group_node, &rq->cfs_tasks);
2075 	}
2076 #endif
2077 	cfs_rq->nr_running++;
2078 }
2079 
2080 static void
2081 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2082 {
2083 	update_load_sub(&cfs_rq->load, se->load.weight);
2084 	if (!parent_entity(se))
2085 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2086 	if (entity_is_task(se)) {
2087 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2088 		list_del_init(&se->group_node);
2089 	}
2090 	cfs_rq->nr_running--;
2091 }
2092 
2093 #ifdef CONFIG_FAIR_GROUP_SCHED
2094 # ifdef CONFIG_SMP
2095 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2096 {
2097 	long tg_weight;
2098 
2099 	/*
2100 	 * Use this CPU's actual weight instead of the last load_contribution
2101 	 * to gain a more accurate current total weight. See
2102 	 * update_cfs_rq_load_contribution().
2103 	 */
2104 	tg_weight = atomic_long_read(&tg->load_avg);
2105 	tg_weight -= cfs_rq->tg_load_contrib;
2106 	tg_weight += cfs_rq->load.weight;
2107 
2108 	return tg_weight;
2109 }
2110 
2111 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2112 {
2113 	long tg_weight, load, shares;
2114 
2115 	tg_weight = calc_tg_weight(tg, cfs_rq);
2116 	load = cfs_rq->load.weight;
2117 
2118 	shares = (tg->shares * load);
2119 	if (tg_weight)
2120 		shares /= tg_weight;
2121 
2122 	if (shares < MIN_SHARES)
2123 		shares = MIN_SHARES;
2124 	if (shares > tg->shares)
2125 		shares = tg->shares;
2126 
2127 	return shares;
2128 }
2129 # else /* CONFIG_SMP */
2130 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2131 {
2132 	return tg->shares;
2133 }
2134 # endif /* CONFIG_SMP */
2135 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2136 			    unsigned long weight)
2137 {
2138 	if (se->on_rq) {
2139 		/* commit outstanding execution time */
2140 		if (cfs_rq->curr == se)
2141 			update_curr(cfs_rq);
2142 		account_entity_dequeue(cfs_rq, se);
2143 	}
2144 
2145 	update_load_set(&se->load, weight);
2146 
2147 	if (se->on_rq)
2148 		account_entity_enqueue(cfs_rq, se);
2149 }
2150 
2151 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2152 
2153 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2154 {
2155 	struct task_group *tg;
2156 	struct sched_entity *se;
2157 	long shares;
2158 
2159 	tg = cfs_rq->tg;
2160 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2161 	if (!se || throttled_hierarchy(cfs_rq))
2162 		return;
2163 #ifndef CONFIG_SMP
2164 	if (likely(se->load.weight == tg->shares))
2165 		return;
2166 #endif
2167 	shares = calc_cfs_shares(cfs_rq, tg);
2168 
2169 	reweight_entity(cfs_rq_of(se), se, shares);
2170 }
2171 #else /* CONFIG_FAIR_GROUP_SCHED */
2172 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2173 {
2174 }
2175 #endif /* CONFIG_FAIR_GROUP_SCHED */
2176 
2177 #ifdef CONFIG_SMP
2178 /*
2179  * We choose a half-life close to 1 scheduling period.
2180  * Note: The tables below are dependent on this value.
2181  */
2182 #define LOAD_AVG_PERIOD 32
2183 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2184 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2185 
2186 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2187 static const u32 runnable_avg_yN_inv[] = {
2188 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2189 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2190 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2191 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2192 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2193 	0x85aac367, 0x82cd8698,
2194 };
2195 
2196 /*
2197  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2198  * over-estimates when re-combining.
2199  */
2200 static const u32 runnable_avg_yN_sum[] = {
2201 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2202 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2203 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2204 };
2205 
2206 /*
2207  * Approximate:
2208  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2209  */
2210 static __always_inline u64 decay_load(u64 val, u64 n)
2211 {
2212 	unsigned int local_n;
2213 
2214 	if (!n)
2215 		return val;
2216 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2217 		return 0;
2218 
2219 	/* after bounds checking we can collapse to 32-bit */
2220 	local_n = n;
2221 
2222 	/*
2223 	 * As y^PERIOD = 1/2, we can combine
2224 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2225 	 * With a look-up table which covers y^n (n<PERIOD)
2226 	 *
2227 	 * To achieve constant time decay_load.
2228 	 */
2229 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2230 		val >>= local_n / LOAD_AVG_PERIOD;
2231 		local_n %= LOAD_AVG_PERIOD;
2232 	}
2233 
2234 	val *= runnable_avg_yN_inv[local_n];
2235 	/* We don't use SRR here since we always want to round down. */
2236 	return val >> 32;
2237 }
2238 
2239 /*
2240  * For updates fully spanning n periods, the contribution to runnable
2241  * average will be: \Sum 1024*y^n
2242  *
2243  * We can compute this reasonably efficiently by combining:
2244  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2245  */
2246 static u32 __compute_runnable_contrib(u64 n)
2247 {
2248 	u32 contrib = 0;
2249 
2250 	if (likely(n <= LOAD_AVG_PERIOD))
2251 		return runnable_avg_yN_sum[n];
2252 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2253 		return LOAD_AVG_MAX;
2254 
2255 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2256 	do {
2257 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2258 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2259 
2260 		n -= LOAD_AVG_PERIOD;
2261 	} while (n > LOAD_AVG_PERIOD);
2262 
2263 	contrib = decay_load(contrib, n);
2264 	return contrib + runnable_avg_yN_sum[n];
2265 }
2266 
2267 /*
2268  * We can represent the historical contribution to runnable average as the
2269  * coefficients of a geometric series.  To do this we sub-divide our runnable
2270  * history into segments of approximately 1ms (1024us); label the segment that
2271  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2272  *
2273  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2274  *      p0            p1           p2
2275  *     (now)       (~1ms ago)  (~2ms ago)
2276  *
2277  * Let u_i denote the fraction of p_i that the entity was runnable.
2278  *
2279  * We then designate the fractions u_i as our co-efficients, yielding the
2280  * following representation of historical load:
2281  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2282  *
2283  * We choose y based on the with of a reasonably scheduling period, fixing:
2284  *   y^32 = 0.5
2285  *
2286  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2287  * approximately half as much as the contribution to load within the last ms
2288  * (u_0).
2289  *
2290  * When a period "rolls over" and we have new u_0`, multiplying the previous
2291  * sum again by y is sufficient to update:
2292  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2293  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2294  */
2295 static __always_inline int __update_entity_runnable_avg(u64 now,
2296 							struct sched_avg *sa,
2297 							int runnable)
2298 {
2299 	u64 delta, periods;
2300 	u32 runnable_contrib;
2301 	int delta_w, decayed = 0;
2302 
2303 	delta = now - sa->last_runnable_update;
2304 	/*
2305 	 * This should only happen when time goes backwards, which it
2306 	 * unfortunately does during sched clock init when we swap over to TSC.
2307 	 */
2308 	if ((s64)delta < 0) {
2309 		sa->last_runnable_update = now;
2310 		return 0;
2311 	}
2312 
2313 	/*
2314 	 * Use 1024ns as the unit of measurement since it's a reasonable
2315 	 * approximation of 1us and fast to compute.
2316 	 */
2317 	delta >>= 10;
2318 	if (!delta)
2319 		return 0;
2320 	sa->last_runnable_update = now;
2321 
2322 	/* delta_w is the amount already accumulated against our next period */
2323 	delta_w = sa->runnable_avg_period % 1024;
2324 	if (delta + delta_w >= 1024) {
2325 		/* period roll-over */
2326 		decayed = 1;
2327 
2328 		/*
2329 		 * Now that we know we're crossing a period boundary, figure
2330 		 * out how much from delta we need to complete the current
2331 		 * period and accrue it.
2332 		 */
2333 		delta_w = 1024 - delta_w;
2334 		if (runnable)
2335 			sa->runnable_avg_sum += delta_w;
2336 		sa->runnable_avg_period += delta_w;
2337 
2338 		delta -= delta_w;
2339 
2340 		/* Figure out how many additional periods this update spans */
2341 		periods = delta / 1024;
2342 		delta %= 1024;
2343 
2344 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2345 						  periods + 1);
2346 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2347 						     periods + 1);
2348 
2349 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2350 		runnable_contrib = __compute_runnable_contrib(periods);
2351 		if (runnable)
2352 			sa->runnable_avg_sum += runnable_contrib;
2353 		sa->runnable_avg_period += runnable_contrib;
2354 	}
2355 
2356 	/* Remainder of delta accrued against u_0` */
2357 	if (runnable)
2358 		sa->runnable_avg_sum += delta;
2359 	sa->runnable_avg_period += delta;
2360 
2361 	return decayed;
2362 }
2363 
2364 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2365 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2366 {
2367 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2368 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2369 
2370 	decays -= se->avg.decay_count;
2371 	if (!decays)
2372 		return 0;
2373 
2374 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2375 	se->avg.decay_count = 0;
2376 
2377 	return decays;
2378 }
2379 
2380 #ifdef CONFIG_FAIR_GROUP_SCHED
2381 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2382 						 int force_update)
2383 {
2384 	struct task_group *tg = cfs_rq->tg;
2385 	long tg_contrib;
2386 
2387 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2388 	tg_contrib -= cfs_rq->tg_load_contrib;
2389 
2390 	if (!tg_contrib)
2391 		return;
2392 
2393 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2394 		atomic_long_add(tg_contrib, &tg->load_avg);
2395 		cfs_rq->tg_load_contrib += tg_contrib;
2396 	}
2397 }
2398 
2399 /*
2400  * Aggregate cfs_rq runnable averages into an equivalent task_group
2401  * representation for computing load contributions.
2402  */
2403 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2404 						  struct cfs_rq *cfs_rq)
2405 {
2406 	struct task_group *tg = cfs_rq->tg;
2407 	long contrib;
2408 
2409 	/* The fraction of a cpu used by this cfs_rq */
2410 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2411 			  sa->runnable_avg_period + 1);
2412 	contrib -= cfs_rq->tg_runnable_contrib;
2413 
2414 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2415 		atomic_add(contrib, &tg->runnable_avg);
2416 		cfs_rq->tg_runnable_contrib += contrib;
2417 	}
2418 }
2419 
2420 static inline void __update_group_entity_contrib(struct sched_entity *se)
2421 {
2422 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2423 	struct task_group *tg = cfs_rq->tg;
2424 	int runnable_avg;
2425 
2426 	u64 contrib;
2427 
2428 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2429 	se->avg.load_avg_contrib = div_u64(contrib,
2430 				     atomic_long_read(&tg->load_avg) + 1);
2431 
2432 	/*
2433 	 * For group entities we need to compute a correction term in the case
2434 	 * that they are consuming <1 cpu so that we would contribute the same
2435 	 * load as a task of equal weight.
2436 	 *
2437 	 * Explicitly co-ordinating this measurement would be expensive, but
2438 	 * fortunately the sum of each cpus contribution forms a usable
2439 	 * lower-bound on the true value.
2440 	 *
2441 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2442 	 * (and the sum represents true value) or they are disjoint and we are
2443 	 * understating by the aggregate of their overlap.
2444 	 *
2445 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2446 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2447 	 * cpus that overlap for this interval and w_i is the interval width.
2448 	 *
2449 	 * On a small machine; the first term is well-bounded which bounds the
2450 	 * total error since w_i is a subset of the period.  Whereas on a
2451 	 * larger machine, while this first term can be larger, if w_i is the
2452 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2453 	 * our upper bound of 1-cpu.
2454 	 */
2455 	runnable_avg = atomic_read(&tg->runnable_avg);
2456 	if (runnable_avg < NICE_0_LOAD) {
2457 		se->avg.load_avg_contrib *= runnable_avg;
2458 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2459 	}
2460 }
2461 
2462 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2463 {
2464 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2465 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2466 }
2467 #else /* CONFIG_FAIR_GROUP_SCHED */
2468 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2469 						 int force_update) {}
2470 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2471 						  struct cfs_rq *cfs_rq) {}
2472 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2473 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2474 #endif /* CONFIG_FAIR_GROUP_SCHED */
2475 
2476 static inline void __update_task_entity_contrib(struct sched_entity *se)
2477 {
2478 	u32 contrib;
2479 
2480 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2481 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2482 	contrib /= (se->avg.runnable_avg_period + 1);
2483 	se->avg.load_avg_contrib = scale_load(contrib);
2484 }
2485 
2486 /* Compute the current contribution to load_avg by se, return any delta */
2487 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2488 {
2489 	long old_contrib = se->avg.load_avg_contrib;
2490 
2491 	if (entity_is_task(se)) {
2492 		__update_task_entity_contrib(se);
2493 	} else {
2494 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2495 		__update_group_entity_contrib(se);
2496 	}
2497 
2498 	return se->avg.load_avg_contrib - old_contrib;
2499 }
2500 
2501 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2502 						 long load_contrib)
2503 {
2504 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2505 		cfs_rq->blocked_load_avg -= load_contrib;
2506 	else
2507 		cfs_rq->blocked_load_avg = 0;
2508 }
2509 
2510 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2511 
2512 /* Update a sched_entity's runnable average */
2513 static inline void update_entity_load_avg(struct sched_entity *se,
2514 					  int update_cfs_rq)
2515 {
2516 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2517 	long contrib_delta;
2518 	u64 now;
2519 
2520 	/*
2521 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2522 	 * case they are the parent of a throttled hierarchy.
2523 	 */
2524 	if (entity_is_task(se))
2525 		now = cfs_rq_clock_task(cfs_rq);
2526 	else
2527 		now = cfs_rq_clock_task(group_cfs_rq(se));
2528 
2529 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2530 		return;
2531 
2532 	contrib_delta = __update_entity_load_avg_contrib(se);
2533 
2534 	if (!update_cfs_rq)
2535 		return;
2536 
2537 	if (se->on_rq)
2538 		cfs_rq->runnable_load_avg += contrib_delta;
2539 	else
2540 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2541 }
2542 
2543 /*
2544  * Decay the load contributed by all blocked children and account this so that
2545  * their contribution may appropriately discounted when they wake up.
2546  */
2547 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2548 {
2549 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2550 	u64 decays;
2551 
2552 	decays = now - cfs_rq->last_decay;
2553 	if (!decays && !force_update)
2554 		return;
2555 
2556 	if (atomic_long_read(&cfs_rq->removed_load)) {
2557 		unsigned long removed_load;
2558 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2559 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2560 	}
2561 
2562 	if (decays) {
2563 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2564 						      decays);
2565 		atomic64_add(decays, &cfs_rq->decay_counter);
2566 		cfs_rq->last_decay = now;
2567 	}
2568 
2569 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2570 }
2571 
2572 /* Add the load generated by se into cfs_rq's child load-average */
2573 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2574 						  struct sched_entity *se,
2575 						  int wakeup)
2576 {
2577 	/*
2578 	 * We track migrations using entity decay_count <= 0, on a wake-up
2579 	 * migration we use a negative decay count to track the remote decays
2580 	 * accumulated while sleeping.
2581 	 *
2582 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2583 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2584 	 * constructed load_avg_contrib.
2585 	 */
2586 	if (unlikely(se->avg.decay_count <= 0)) {
2587 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2588 		if (se->avg.decay_count) {
2589 			/*
2590 			 * In a wake-up migration we have to approximate the
2591 			 * time sleeping.  This is because we can't synchronize
2592 			 * clock_task between the two cpus, and it is not
2593 			 * guaranteed to be read-safe.  Instead, we can
2594 			 * approximate this using our carried decays, which are
2595 			 * explicitly atomically readable.
2596 			 */
2597 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2598 							<< 20;
2599 			update_entity_load_avg(se, 0);
2600 			/* Indicate that we're now synchronized and on-rq */
2601 			se->avg.decay_count = 0;
2602 		}
2603 		wakeup = 0;
2604 	} else {
2605 		__synchronize_entity_decay(se);
2606 	}
2607 
2608 	/* migrated tasks did not contribute to our blocked load */
2609 	if (wakeup) {
2610 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2611 		update_entity_load_avg(se, 0);
2612 	}
2613 
2614 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2615 	/* we force update consideration on load-balancer moves */
2616 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2617 }
2618 
2619 /*
2620  * Remove se's load from this cfs_rq child load-average, if the entity is
2621  * transitioning to a blocked state we track its projected decay using
2622  * blocked_load_avg.
2623  */
2624 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2625 						  struct sched_entity *se,
2626 						  int sleep)
2627 {
2628 	update_entity_load_avg(se, 1);
2629 	/* we force update consideration on load-balancer moves */
2630 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2631 
2632 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2633 	if (sleep) {
2634 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2635 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2636 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2637 }
2638 
2639 /*
2640  * Update the rq's load with the elapsed running time before entering
2641  * idle. if the last scheduled task is not a CFS task, idle_enter will
2642  * be the only way to update the runnable statistic.
2643  */
2644 void idle_enter_fair(struct rq *this_rq)
2645 {
2646 	update_rq_runnable_avg(this_rq, 1);
2647 }
2648 
2649 /*
2650  * Update the rq's load with the elapsed idle time before a task is
2651  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2652  * be the only way to update the runnable statistic.
2653  */
2654 void idle_exit_fair(struct rq *this_rq)
2655 {
2656 	update_rq_runnable_avg(this_rq, 0);
2657 }
2658 
2659 static int idle_balance(struct rq *this_rq);
2660 
2661 #else /* CONFIG_SMP */
2662 
2663 static inline void update_entity_load_avg(struct sched_entity *se,
2664 					  int update_cfs_rq) {}
2665 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2666 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2667 					   struct sched_entity *se,
2668 					   int wakeup) {}
2669 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2670 					   struct sched_entity *se,
2671 					   int sleep) {}
2672 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2673 					      int force_update) {}
2674 
2675 static inline int idle_balance(struct rq *rq)
2676 {
2677 	return 0;
2678 }
2679 
2680 #endif /* CONFIG_SMP */
2681 
2682 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2683 {
2684 #ifdef CONFIG_SCHEDSTATS
2685 	struct task_struct *tsk = NULL;
2686 
2687 	if (entity_is_task(se))
2688 		tsk = task_of(se);
2689 
2690 	if (se->statistics.sleep_start) {
2691 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2692 
2693 		if ((s64)delta < 0)
2694 			delta = 0;
2695 
2696 		if (unlikely(delta > se->statistics.sleep_max))
2697 			se->statistics.sleep_max = delta;
2698 
2699 		se->statistics.sleep_start = 0;
2700 		se->statistics.sum_sleep_runtime += delta;
2701 
2702 		if (tsk) {
2703 			account_scheduler_latency(tsk, delta >> 10, 1);
2704 			trace_sched_stat_sleep(tsk, delta);
2705 		}
2706 	}
2707 	if (se->statistics.block_start) {
2708 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2709 
2710 		if ((s64)delta < 0)
2711 			delta = 0;
2712 
2713 		if (unlikely(delta > se->statistics.block_max))
2714 			se->statistics.block_max = delta;
2715 
2716 		se->statistics.block_start = 0;
2717 		se->statistics.sum_sleep_runtime += delta;
2718 
2719 		if (tsk) {
2720 			if (tsk->in_iowait) {
2721 				se->statistics.iowait_sum += delta;
2722 				se->statistics.iowait_count++;
2723 				trace_sched_stat_iowait(tsk, delta);
2724 			}
2725 
2726 			trace_sched_stat_blocked(tsk, delta);
2727 
2728 			/*
2729 			 * Blocking time is in units of nanosecs, so shift by
2730 			 * 20 to get a milliseconds-range estimation of the
2731 			 * amount of time that the task spent sleeping:
2732 			 */
2733 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2734 				profile_hits(SLEEP_PROFILING,
2735 						(void *)get_wchan(tsk),
2736 						delta >> 20);
2737 			}
2738 			account_scheduler_latency(tsk, delta >> 10, 0);
2739 		}
2740 	}
2741 #endif
2742 }
2743 
2744 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2745 {
2746 #ifdef CONFIG_SCHED_DEBUG
2747 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2748 
2749 	if (d < 0)
2750 		d = -d;
2751 
2752 	if (d > 3*sysctl_sched_latency)
2753 		schedstat_inc(cfs_rq, nr_spread_over);
2754 #endif
2755 }
2756 
2757 static void
2758 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2759 {
2760 	u64 vruntime = cfs_rq->min_vruntime;
2761 
2762 	/*
2763 	 * The 'current' period is already promised to the current tasks,
2764 	 * however the extra weight of the new task will slow them down a
2765 	 * little, place the new task so that it fits in the slot that
2766 	 * stays open at the end.
2767 	 */
2768 	if (initial && sched_feat(START_DEBIT))
2769 		vruntime += sched_vslice(cfs_rq, se);
2770 
2771 	/* sleeps up to a single latency don't count. */
2772 	if (!initial) {
2773 		unsigned long thresh = sysctl_sched_latency;
2774 
2775 		/*
2776 		 * Halve their sleep time's effect, to allow
2777 		 * for a gentler effect of sleepers:
2778 		 */
2779 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2780 			thresh >>= 1;
2781 
2782 		vruntime -= thresh;
2783 	}
2784 
2785 	/* ensure we never gain time by being placed backwards. */
2786 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2787 }
2788 
2789 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2790 
2791 static void
2792 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2793 {
2794 	/*
2795 	 * Update the normalized vruntime before updating min_vruntime
2796 	 * through calling update_curr().
2797 	 */
2798 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2799 		se->vruntime += cfs_rq->min_vruntime;
2800 
2801 	/*
2802 	 * Update run-time statistics of the 'current'.
2803 	 */
2804 	update_curr(cfs_rq);
2805 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2806 	account_entity_enqueue(cfs_rq, se);
2807 	update_cfs_shares(cfs_rq);
2808 
2809 	if (flags & ENQUEUE_WAKEUP) {
2810 		place_entity(cfs_rq, se, 0);
2811 		enqueue_sleeper(cfs_rq, se);
2812 	}
2813 
2814 	update_stats_enqueue(cfs_rq, se);
2815 	check_spread(cfs_rq, se);
2816 	if (se != cfs_rq->curr)
2817 		__enqueue_entity(cfs_rq, se);
2818 	se->on_rq = 1;
2819 
2820 	if (cfs_rq->nr_running == 1) {
2821 		list_add_leaf_cfs_rq(cfs_rq);
2822 		check_enqueue_throttle(cfs_rq);
2823 	}
2824 }
2825 
2826 static void __clear_buddies_last(struct sched_entity *se)
2827 {
2828 	for_each_sched_entity(se) {
2829 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2830 		if (cfs_rq->last != se)
2831 			break;
2832 
2833 		cfs_rq->last = NULL;
2834 	}
2835 }
2836 
2837 static void __clear_buddies_next(struct sched_entity *se)
2838 {
2839 	for_each_sched_entity(se) {
2840 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2841 		if (cfs_rq->next != se)
2842 			break;
2843 
2844 		cfs_rq->next = NULL;
2845 	}
2846 }
2847 
2848 static void __clear_buddies_skip(struct sched_entity *se)
2849 {
2850 	for_each_sched_entity(se) {
2851 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2852 		if (cfs_rq->skip != se)
2853 			break;
2854 
2855 		cfs_rq->skip = NULL;
2856 	}
2857 }
2858 
2859 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2860 {
2861 	if (cfs_rq->last == se)
2862 		__clear_buddies_last(se);
2863 
2864 	if (cfs_rq->next == se)
2865 		__clear_buddies_next(se);
2866 
2867 	if (cfs_rq->skip == se)
2868 		__clear_buddies_skip(se);
2869 }
2870 
2871 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2872 
2873 static void
2874 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2875 {
2876 	/*
2877 	 * Update run-time statistics of the 'current'.
2878 	 */
2879 	update_curr(cfs_rq);
2880 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2881 
2882 	update_stats_dequeue(cfs_rq, se);
2883 	if (flags & DEQUEUE_SLEEP) {
2884 #ifdef CONFIG_SCHEDSTATS
2885 		if (entity_is_task(se)) {
2886 			struct task_struct *tsk = task_of(se);
2887 
2888 			if (tsk->state & TASK_INTERRUPTIBLE)
2889 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2890 			if (tsk->state & TASK_UNINTERRUPTIBLE)
2891 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2892 		}
2893 #endif
2894 	}
2895 
2896 	clear_buddies(cfs_rq, se);
2897 
2898 	if (se != cfs_rq->curr)
2899 		__dequeue_entity(cfs_rq, se);
2900 	se->on_rq = 0;
2901 	account_entity_dequeue(cfs_rq, se);
2902 
2903 	/*
2904 	 * Normalize the entity after updating the min_vruntime because the
2905 	 * update can refer to the ->curr item and we need to reflect this
2906 	 * movement in our normalized position.
2907 	 */
2908 	if (!(flags & DEQUEUE_SLEEP))
2909 		se->vruntime -= cfs_rq->min_vruntime;
2910 
2911 	/* return excess runtime on last dequeue */
2912 	return_cfs_rq_runtime(cfs_rq);
2913 
2914 	update_min_vruntime(cfs_rq);
2915 	update_cfs_shares(cfs_rq);
2916 }
2917 
2918 /*
2919  * Preempt the current task with a newly woken task if needed:
2920  */
2921 static void
2922 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2923 {
2924 	unsigned long ideal_runtime, delta_exec;
2925 	struct sched_entity *se;
2926 	s64 delta;
2927 
2928 	ideal_runtime = sched_slice(cfs_rq, curr);
2929 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2930 	if (delta_exec > ideal_runtime) {
2931 		resched_curr(rq_of(cfs_rq));
2932 		/*
2933 		 * The current task ran long enough, ensure it doesn't get
2934 		 * re-elected due to buddy favours.
2935 		 */
2936 		clear_buddies(cfs_rq, curr);
2937 		return;
2938 	}
2939 
2940 	/*
2941 	 * Ensure that a task that missed wakeup preemption by a
2942 	 * narrow margin doesn't have to wait for a full slice.
2943 	 * This also mitigates buddy induced latencies under load.
2944 	 */
2945 	if (delta_exec < sysctl_sched_min_granularity)
2946 		return;
2947 
2948 	se = __pick_first_entity(cfs_rq);
2949 	delta = curr->vruntime - se->vruntime;
2950 
2951 	if (delta < 0)
2952 		return;
2953 
2954 	if (delta > ideal_runtime)
2955 		resched_curr(rq_of(cfs_rq));
2956 }
2957 
2958 static void
2959 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2960 {
2961 	/* 'current' is not kept within the tree. */
2962 	if (se->on_rq) {
2963 		/*
2964 		 * Any task has to be enqueued before it get to execute on
2965 		 * a CPU. So account for the time it spent waiting on the
2966 		 * runqueue.
2967 		 */
2968 		update_stats_wait_end(cfs_rq, se);
2969 		__dequeue_entity(cfs_rq, se);
2970 	}
2971 
2972 	update_stats_curr_start(cfs_rq, se);
2973 	cfs_rq->curr = se;
2974 #ifdef CONFIG_SCHEDSTATS
2975 	/*
2976 	 * Track our maximum slice length, if the CPU's load is at
2977 	 * least twice that of our own weight (i.e. dont track it
2978 	 * when there are only lesser-weight tasks around):
2979 	 */
2980 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2981 		se->statistics.slice_max = max(se->statistics.slice_max,
2982 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
2983 	}
2984 #endif
2985 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2986 }
2987 
2988 static int
2989 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2990 
2991 /*
2992  * Pick the next process, keeping these things in mind, in this order:
2993  * 1) keep things fair between processes/task groups
2994  * 2) pick the "next" process, since someone really wants that to run
2995  * 3) pick the "last" process, for cache locality
2996  * 4) do not run the "skip" process, if something else is available
2997  */
2998 static struct sched_entity *
2999 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3000 {
3001 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3002 	struct sched_entity *se;
3003 
3004 	/*
3005 	 * If curr is set we have to see if its left of the leftmost entity
3006 	 * still in the tree, provided there was anything in the tree at all.
3007 	 */
3008 	if (!left || (curr && entity_before(curr, left)))
3009 		left = curr;
3010 
3011 	se = left; /* ideally we run the leftmost entity */
3012 
3013 	/*
3014 	 * Avoid running the skip buddy, if running something else can
3015 	 * be done without getting too unfair.
3016 	 */
3017 	if (cfs_rq->skip == se) {
3018 		struct sched_entity *second;
3019 
3020 		if (se == curr) {
3021 			second = __pick_first_entity(cfs_rq);
3022 		} else {
3023 			second = __pick_next_entity(se);
3024 			if (!second || (curr && entity_before(curr, second)))
3025 				second = curr;
3026 		}
3027 
3028 		if (second && wakeup_preempt_entity(second, left) < 1)
3029 			se = second;
3030 	}
3031 
3032 	/*
3033 	 * Prefer last buddy, try to return the CPU to a preempted task.
3034 	 */
3035 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3036 		se = cfs_rq->last;
3037 
3038 	/*
3039 	 * Someone really wants this to run. If it's not unfair, run it.
3040 	 */
3041 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3042 		se = cfs_rq->next;
3043 
3044 	clear_buddies(cfs_rq, se);
3045 
3046 	return se;
3047 }
3048 
3049 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3050 
3051 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3052 {
3053 	/*
3054 	 * If still on the runqueue then deactivate_task()
3055 	 * was not called and update_curr() has to be done:
3056 	 */
3057 	if (prev->on_rq)
3058 		update_curr(cfs_rq);
3059 
3060 	/* throttle cfs_rqs exceeding runtime */
3061 	check_cfs_rq_runtime(cfs_rq);
3062 
3063 	check_spread(cfs_rq, prev);
3064 	if (prev->on_rq) {
3065 		update_stats_wait_start(cfs_rq, prev);
3066 		/* Put 'current' back into the tree. */
3067 		__enqueue_entity(cfs_rq, prev);
3068 		/* in !on_rq case, update occurred at dequeue */
3069 		update_entity_load_avg(prev, 1);
3070 	}
3071 	cfs_rq->curr = NULL;
3072 }
3073 
3074 static void
3075 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3076 {
3077 	/*
3078 	 * Update run-time statistics of the 'current'.
3079 	 */
3080 	update_curr(cfs_rq);
3081 
3082 	/*
3083 	 * Ensure that runnable average is periodically updated.
3084 	 */
3085 	update_entity_load_avg(curr, 1);
3086 	update_cfs_rq_blocked_load(cfs_rq, 1);
3087 	update_cfs_shares(cfs_rq);
3088 
3089 #ifdef CONFIG_SCHED_HRTICK
3090 	/*
3091 	 * queued ticks are scheduled to match the slice, so don't bother
3092 	 * validating it and just reschedule.
3093 	 */
3094 	if (queued) {
3095 		resched_curr(rq_of(cfs_rq));
3096 		return;
3097 	}
3098 	/*
3099 	 * don't let the period tick interfere with the hrtick preemption
3100 	 */
3101 	if (!sched_feat(DOUBLE_TICK) &&
3102 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3103 		return;
3104 #endif
3105 
3106 	if (cfs_rq->nr_running > 1)
3107 		check_preempt_tick(cfs_rq, curr);
3108 }
3109 
3110 
3111 /**************************************************
3112  * CFS bandwidth control machinery
3113  */
3114 
3115 #ifdef CONFIG_CFS_BANDWIDTH
3116 
3117 #ifdef HAVE_JUMP_LABEL
3118 static struct static_key __cfs_bandwidth_used;
3119 
3120 static inline bool cfs_bandwidth_used(void)
3121 {
3122 	return static_key_false(&__cfs_bandwidth_used);
3123 }
3124 
3125 void cfs_bandwidth_usage_inc(void)
3126 {
3127 	static_key_slow_inc(&__cfs_bandwidth_used);
3128 }
3129 
3130 void cfs_bandwidth_usage_dec(void)
3131 {
3132 	static_key_slow_dec(&__cfs_bandwidth_used);
3133 }
3134 #else /* HAVE_JUMP_LABEL */
3135 static bool cfs_bandwidth_used(void)
3136 {
3137 	return true;
3138 }
3139 
3140 void cfs_bandwidth_usage_inc(void) {}
3141 void cfs_bandwidth_usage_dec(void) {}
3142 #endif /* HAVE_JUMP_LABEL */
3143 
3144 /*
3145  * default period for cfs group bandwidth.
3146  * default: 0.1s, units: nanoseconds
3147  */
3148 static inline u64 default_cfs_period(void)
3149 {
3150 	return 100000000ULL;
3151 }
3152 
3153 static inline u64 sched_cfs_bandwidth_slice(void)
3154 {
3155 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3156 }
3157 
3158 /*
3159  * Replenish runtime according to assigned quota and update expiration time.
3160  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3161  * additional synchronization around rq->lock.
3162  *
3163  * requires cfs_b->lock
3164  */
3165 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3166 {
3167 	u64 now;
3168 
3169 	if (cfs_b->quota == RUNTIME_INF)
3170 		return;
3171 
3172 	now = sched_clock_cpu(smp_processor_id());
3173 	cfs_b->runtime = cfs_b->quota;
3174 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3175 }
3176 
3177 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3178 {
3179 	return &tg->cfs_bandwidth;
3180 }
3181 
3182 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3183 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3184 {
3185 	if (unlikely(cfs_rq->throttle_count))
3186 		return cfs_rq->throttled_clock_task;
3187 
3188 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3189 }
3190 
3191 /* returns 0 on failure to allocate runtime */
3192 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3193 {
3194 	struct task_group *tg = cfs_rq->tg;
3195 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3196 	u64 amount = 0, min_amount, expires;
3197 
3198 	/* note: this is a positive sum as runtime_remaining <= 0 */
3199 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3200 
3201 	raw_spin_lock(&cfs_b->lock);
3202 	if (cfs_b->quota == RUNTIME_INF)
3203 		amount = min_amount;
3204 	else {
3205 		/*
3206 		 * If the bandwidth pool has become inactive, then at least one
3207 		 * period must have elapsed since the last consumption.
3208 		 * Refresh the global state and ensure bandwidth timer becomes
3209 		 * active.
3210 		 */
3211 		if (!cfs_b->timer_active) {
3212 			__refill_cfs_bandwidth_runtime(cfs_b);
3213 			__start_cfs_bandwidth(cfs_b, false);
3214 		}
3215 
3216 		if (cfs_b->runtime > 0) {
3217 			amount = min(cfs_b->runtime, min_amount);
3218 			cfs_b->runtime -= amount;
3219 			cfs_b->idle = 0;
3220 		}
3221 	}
3222 	expires = cfs_b->runtime_expires;
3223 	raw_spin_unlock(&cfs_b->lock);
3224 
3225 	cfs_rq->runtime_remaining += amount;
3226 	/*
3227 	 * we may have advanced our local expiration to account for allowed
3228 	 * spread between our sched_clock and the one on which runtime was
3229 	 * issued.
3230 	 */
3231 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3232 		cfs_rq->runtime_expires = expires;
3233 
3234 	return cfs_rq->runtime_remaining > 0;
3235 }
3236 
3237 /*
3238  * Note: This depends on the synchronization provided by sched_clock and the
3239  * fact that rq->clock snapshots this value.
3240  */
3241 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3242 {
3243 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3244 
3245 	/* if the deadline is ahead of our clock, nothing to do */
3246 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3247 		return;
3248 
3249 	if (cfs_rq->runtime_remaining < 0)
3250 		return;
3251 
3252 	/*
3253 	 * If the local deadline has passed we have to consider the
3254 	 * possibility that our sched_clock is 'fast' and the global deadline
3255 	 * has not truly expired.
3256 	 *
3257 	 * Fortunately we can check determine whether this the case by checking
3258 	 * whether the global deadline has advanced. It is valid to compare
3259 	 * cfs_b->runtime_expires without any locks since we only care about
3260 	 * exact equality, so a partial write will still work.
3261 	 */
3262 
3263 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3264 		/* extend local deadline, drift is bounded above by 2 ticks */
3265 		cfs_rq->runtime_expires += TICK_NSEC;
3266 	} else {
3267 		/* global deadline is ahead, expiration has passed */
3268 		cfs_rq->runtime_remaining = 0;
3269 	}
3270 }
3271 
3272 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3273 {
3274 	/* dock delta_exec before expiring quota (as it could span periods) */
3275 	cfs_rq->runtime_remaining -= delta_exec;
3276 	expire_cfs_rq_runtime(cfs_rq);
3277 
3278 	if (likely(cfs_rq->runtime_remaining > 0))
3279 		return;
3280 
3281 	/*
3282 	 * if we're unable to extend our runtime we resched so that the active
3283 	 * hierarchy can be throttled
3284 	 */
3285 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3286 		resched_curr(rq_of(cfs_rq));
3287 }
3288 
3289 static __always_inline
3290 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3291 {
3292 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3293 		return;
3294 
3295 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3296 }
3297 
3298 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3299 {
3300 	return cfs_bandwidth_used() && cfs_rq->throttled;
3301 }
3302 
3303 /* check whether cfs_rq, or any parent, is throttled */
3304 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3305 {
3306 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3307 }
3308 
3309 /*
3310  * Ensure that neither of the group entities corresponding to src_cpu or
3311  * dest_cpu are members of a throttled hierarchy when performing group
3312  * load-balance operations.
3313  */
3314 static inline int throttled_lb_pair(struct task_group *tg,
3315 				    int src_cpu, int dest_cpu)
3316 {
3317 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3318 
3319 	src_cfs_rq = tg->cfs_rq[src_cpu];
3320 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3321 
3322 	return throttled_hierarchy(src_cfs_rq) ||
3323 	       throttled_hierarchy(dest_cfs_rq);
3324 }
3325 
3326 /* updated child weight may affect parent so we have to do this bottom up */
3327 static int tg_unthrottle_up(struct task_group *tg, void *data)
3328 {
3329 	struct rq *rq = data;
3330 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3331 
3332 	cfs_rq->throttle_count--;
3333 #ifdef CONFIG_SMP
3334 	if (!cfs_rq->throttle_count) {
3335 		/* adjust cfs_rq_clock_task() */
3336 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3337 					     cfs_rq->throttled_clock_task;
3338 	}
3339 #endif
3340 
3341 	return 0;
3342 }
3343 
3344 static int tg_throttle_down(struct task_group *tg, void *data)
3345 {
3346 	struct rq *rq = data;
3347 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3348 
3349 	/* group is entering throttled state, stop time */
3350 	if (!cfs_rq->throttle_count)
3351 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3352 	cfs_rq->throttle_count++;
3353 
3354 	return 0;
3355 }
3356 
3357 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3358 {
3359 	struct rq *rq = rq_of(cfs_rq);
3360 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3361 	struct sched_entity *se;
3362 	long task_delta, dequeue = 1;
3363 
3364 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3365 
3366 	/* freeze hierarchy runnable averages while throttled */
3367 	rcu_read_lock();
3368 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3369 	rcu_read_unlock();
3370 
3371 	task_delta = cfs_rq->h_nr_running;
3372 	for_each_sched_entity(se) {
3373 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3374 		/* throttled entity or throttle-on-deactivate */
3375 		if (!se->on_rq)
3376 			break;
3377 
3378 		if (dequeue)
3379 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3380 		qcfs_rq->h_nr_running -= task_delta;
3381 
3382 		if (qcfs_rq->load.weight)
3383 			dequeue = 0;
3384 	}
3385 
3386 	if (!se)
3387 		sub_nr_running(rq, task_delta);
3388 
3389 	cfs_rq->throttled = 1;
3390 	cfs_rq->throttled_clock = rq_clock(rq);
3391 	raw_spin_lock(&cfs_b->lock);
3392 	/*
3393 	 * Add to the _head_ of the list, so that an already-started
3394 	 * distribute_cfs_runtime will not see us
3395 	 */
3396 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3397 	if (!cfs_b->timer_active)
3398 		__start_cfs_bandwidth(cfs_b, false);
3399 	raw_spin_unlock(&cfs_b->lock);
3400 }
3401 
3402 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3403 {
3404 	struct rq *rq = rq_of(cfs_rq);
3405 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3406 	struct sched_entity *se;
3407 	int enqueue = 1;
3408 	long task_delta;
3409 
3410 	se = cfs_rq->tg->se[cpu_of(rq)];
3411 
3412 	cfs_rq->throttled = 0;
3413 
3414 	update_rq_clock(rq);
3415 
3416 	raw_spin_lock(&cfs_b->lock);
3417 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3418 	list_del_rcu(&cfs_rq->throttled_list);
3419 	raw_spin_unlock(&cfs_b->lock);
3420 
3421 	/* update hierarchical throttle state */
3422 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3423 
3424 	if (!cfs_rq->load.weight)
3425 		return;
3426 
3427 	task_delta = cfs_rq->h_nr_running;
3428 	for_each_sched_entity(se) {
3429 		if (se->on_rq)
3430 			enqueue = 0;
3431 
3432 		cfs_rq = cfs_rq_of(se);
3433 		if (enqueue)
3434 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3435 		cfs_rq->h_nr_running += task_delta;
3436 
3437 		if (cfs_rq_throttled(cfs_rq))
3438 			break;
3439 	}
3440 
3441 	if (!se)
3442 		add_nr_running(rq, task_delta);
3443 
3444 	/* determine whether we need to wake up potentially idle cpu */
3445 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3446 		resched_curr(rq);
3447 }
3448 
3449 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3450 		u64 remaining, u64 expires)
3451 {
3452 	struct cfs_rq *cfs_rq;
3453 	u64 runtime;
3454 	u64 starting_runtime = remaining;
3455 
3456 	rcu_read_lock();
3457 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3458 				throttled_list) {
3459 		struct rq *rq = rq_of(cfs_rq);
3460 
3461 		raw_spin_lock(&rq->lock);
3462 		if (!cfs_rq_throttled(cfs_rq))
3463 			goto next;
3464 
3465 		runtime = -cfs_rq->runtime_remaining + 1;
3466 		if (runtime > remaining)
3467 			runtime = remaining;
3468 		remaining -= runtime;
3469 
3470 		cfs_rq->runtime_remaining += runtime;
3471 		cfs_rq->runtime_expires = expires;
3472 
3473 		/* we check whether we're throttled above */
3474 		if (cfs_rq->runtime_remaining > 0)
3475 			unthrottle_cfs_rq(cfs_rq);
3476 
3477 next:
3478 		raw_spin_unlock(&rq->lock);
3479 
3480 		if (!remaining)
3481 			break;
3482 	}
3483 	rcu_read_unlock();
3484 
3485 	return starting_runtime - remaining;
3486 }
3487 
3488 /*
3489  * Responsible for refilling a task_group's bandwidth and unthrottling its
3490  * cfs_rqs as appropriate. If there has been no activity within the last
3491  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3492  * used to track this state.
3493  */
3494 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3495 {
3496 	u64 runtime, runtime_expires;
3497 	int throttled;
3498 
3499 	/* no need to continue the timer with no bandwidth constraint */
3500 	if (cfs_b->quota == RUNTIME_INF)
3501 		goto out_deactivate;
3502 
3503 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3504 	cfs_b->nr_periods += overrun;
3505 
3506 	/*
3507 	 * idle depends on !throttled (for the case of a large deficit), and if
3508 	 * we're going inactive then everything else can be deferred
3509 	 */
3510 	if (cfs_b->idle && !throttled)
3511 		goto out_deactivate;
3512 
3513 	/*
3514 	 * if we have relooped after returning idle once, we need to update our
3515 	 * status as actually running, so that other cpus doing
3516 	 * __start_cfs_bandwidth will stop trying to cancel us.
3517 	 */
3518 	cfs_b->timer_active = 1;
3519 
3520 	__refill_cfs_bandwidth_runtime(cfs_b);
3521 
3522 	if (!throttled) {
3523 		/* mark as potentially idle for the upcoming period */
3524 		cfs_b->idle = 1;
3525 		return 0;
3526 	}
3527 
3528 	/* account preceding periods in which throttling occurred */
3529 	cfs_b->nr_throttled += overrun;
3530 
3531 	runtime_expires = cfs_b->runtime_expires;
3532 
3533 	/*
3534 	 * This check is repeated as we are holding onto the new bandwidth while
3535 	 * we unthrottle. This can potentially race with an unthrottled group
3536 	 * trying to acquire new bandwidth from the global pool. This can result
3537 	 * in us over-using our runtime if it is all used during this loop, but
3538 	 * only by limited amounts in that extreme case.
3539 	 */
3540 	while (throttled && cfs_b->runtime > 0) {
3541 		runtime = cfs_b->runtime;
3542 		raw_spin_unlock(&cfs_b->lock);
3543 		/* we can't nest cfs_b->lock while distributing bandwidth */
3544 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3545 						 runtime_expires);
3546 		raw_spin_lock(&cfs_b->lock);
3547 
3548 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3549 
3550 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3551 	}
3552 
3553 	/*
3554 	 * While we are ensured activity in the period following an
3555 	 * unthrottle, this also covers the case in which the new bandwidth is
3556 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3557 	 * timer to remain active while there are any throttled entities.)
3558 	 */
3559 	cfs_b->idle = 0;
3560 
3561 	return 0;
3562 
3563 out_deactivate:
3564 	cfs_b->timer_active = 0;
3565 	return 1;
3566 }
3567 
3568 /* a cfs_rq won't donate quota below this amount */
3569 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3570 /* minimum remaining period time to redistribute slack quota */
3571 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3572 /* how long we wait to gather additional slack before distributing */
3573 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3574 
3575 /*
3576  * Are we near the end of the current quota period?
3577  *
3578  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3579  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3580  * migrate_hrtimers, base is never cleared, so we are fine.
3581  */
3582 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3583 {
3584 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3585 	u64 remaining;
3586 
3587 	/* if the call-back is running a quota refresh is already occurring */
3588 	if (hrtimer_callback_running(refresh_timer))
3589 		return 1;
3590 
3591 	/* is a quota refresh about to occur? */
3592 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3593 	if (remaining < min_expire)
3594 		return 1;
3595 
3596 	return 0;
3597 }
3598 
3599 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3600 {
3601 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3602 
3603 	/* if there's a quota refresh soon don't bother with slack */
3604 	if (runtime_refresh_within(cfs_b, min_left))
3605 		return;
3606 
3607 	start_bandwidth_timer(&cfs_b->slack_timer,
3608 				ns_to_ktime(cfs_bandwidth_slack_period));
3609 }
3610 
3611 /* we know any runtime found here is valid as update_curr() precedes return */
3612 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3613 {
3614 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3615 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3616 
3617 	if (slack_runtime <= 0)
3618 		return;
3619 
3620 	raw_spin_lock(&cfs_b->lock);
3621 	if (cfs_b->quota != RUNTIME_INF &&
3622 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3623 		cfs_b->runtime += slack_runtime;
3624 
3625 		/* we are under rq->lock, defer unthrottling using a timer */
3626 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3627 		    !list_empty(&cfs_b->throttled_cfs_rq))
3628 			start_cfs_slack_bandwidth(cfs_b);
3629 	}
3630 	raw_spin_unlock(&cfs_b->lock);
3631 
3632 	/* even if it's not valid for return we don't want to try again */
3633 	cfs_rq->runtime_remaining -= slack_runtime;
3634 }
3635 
3636 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3637 {
3638 	if (!cfs_bandwidth_used())
3639 		return;
3640 
3641 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3642 		return;
3643 
3644 	__return_cfs_rq_runtime(cfs_rq);
3645 }
3646 
3647 /*
3648  * This is done with a timer (instead of inline with bandwidth return) since
3649  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3650  */
3651 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3652 {
3653 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3654 	u64 expires;
3655 
3656 	/* confirm we're still not at a refresh boundary */
3657 	raw_spin_lock(&cfs_b->lock);
3658 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3659 		raw_spin_unlock(&cfs_b->lock);
3660 		return;
3661 	}
3662 
3663 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3664 		runtime = cfs_b->runtime;
3665 
3666 	expires = cfs_b->runtime_expires;
3667 	raw_spin_unlock(&cfs_b->lock);
3668 
3669 	if (!runtime)
3670 		return;
3671 
3672 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3673 
3674 	raw_spin_lock(&cfs_b->lock);
3675 	if (expires == cfs_b->runtime_expires)
3676 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3677 	raw_spin_unlock(&cfs_b->lock);
3678 }
3679 
3680 /*
3681  * When a group wakes up we want to make sure that its quota is not already
3682  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3683  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3684  */
3685 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3686 {
3687 	if (!cfs_bandwidth_used())
3688 		return;
3689 
3690 	/* an active group must be handled by the update_curr()->put() path */
3691 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3692 		return;
3693 
3694 	/* ensure the group is not already throttled */
3695 	if (cfs_rq_throttled(cfs_rq))
3696 		return;
3697 
3698 	/* update runtime allocation */
3699 	account_cfs_rq_runtime(cfs_rq, 0);
3700 	if (cfs_rq->runtime_remaining <= 0)
3701 		throttle_cfs_rq(cfs_rq);
3702 }
3703 
3704 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3705 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3706 {
3707 	if (!cfs_bandwidth_used())
3708 		return false;
3709 
3710 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3711 		return false;
3712 
3713 	/*
3714 	 * it's possible for a throttled entity to be forced into a running
3715 	 * state (e.g. set_curr_task), in this case we're finished.
3716 	 */
3717 	if (cfs_rq_throttled(cfs_rq))
3718 		return true;
3719 
3720 	throttle_cfs_rq(cfs_rq);
3721 	return true;
3722 }
3723 
3724 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3725 {
3726 	struct cfs_bandwidth *cfs_b =
3727 		container_of(timer, struct cfs_bandwidth, slack_timer);
3728 	do_sched_cfs_slack_timer(cfs_b);
3729 
3730 	return HRTIMER_NORESTART;
3731 }
3732 
3733 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3734 {
3735 	struct cfs_bandwidth *cfs_b =
3736 		container_of(timer, struct cfs_bandwidth, period_timer);
3737 	ktime_t now;
3738 	int overrun;
3739 	int idle = 0;
3740 
3741 	raw_spin_lock(&cfs_b->lock);
3742 	for (;;) {
3743 		now = hrtimer_cb_get_time(timer);
3744 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3745 
3746 		if (!overrun)
3747 			break;
3748 
3749 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3750 	}
3751 	raw_spin_unlock(&cfs_b->lock);
3752 
3753 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3754 }
3755 
3756 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3757 {
3758 	raw_spin_lock_init(&cfs_b->lock);
3759 	cfs_b->runtime = 0;
3760 	cfs_b->quota = RUNTIME_INF;
3761 	cfs_b->period = ns_to_ktime(default_cfs_period());
3762 
3763 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3764 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3765 	cfs_b->period_timer.function = sched_cfs_period_timer;
3766 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3767 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3768 }
3769 
3770 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3771 {
3772 	cfs_rq->runtime_enabled = 0;
3773 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3774 }
3775 
3776 /* requires cfs_b->lock, may release to reprogram timer */
3777 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3778 {
3779 	/*
3780 	 * The timer may be active because we're trying to set a new bandwidth
3781 	 * period or because we're racing with the tear-down path
3782 	 * (timer_active==0 becomes visible before the hrtimer call-back
3783 	 * terminates).  In either case we ensure that it's re-programmed
3784 	 */
3785 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3786 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3787 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3788 		raw_spin_unlock(&cfs_b->lock);
3789 		cpu_relax();
3790 		raw_spin_lock(&cfs_b->lock);
3791 		/* if someone else restarted the timer then we're done */
3792 		if (!force && cfs_b->timer_active)
3793 			return;
3794 	}
3795 
3796 	cfs_b->timer_active = 1;
3797 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3798 }
3799 
3800 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3801 {
3802 	hrtimer_cancel(&cfs_b->period_timer);
3803 	hrtimer_cancel(&cfs_b->slack_timer);
3804 }
3805 
3806 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3807 {
3808 	struct cfs_rq *cfs_rq;
3809 
3810 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3811 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3812 
3813 		raw_spin_lock(&cfs_b->lock);
3814 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3815 		raw_spin_unlock(&cfs_b->lock);
3816 	}
3817 }
3818 
3819 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3820 {
3821 	struct cfs_rq *cfs_rq;
3822 
3823 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3824 		if (!cfs_rq->runtime_enabled)
3825 			continue;
3826 
3827 		/*
3828 		 * clock_task is not advancing so we just need to make sure
3829 		 * there's some valid quota amount
3830 		 */
3831 		cfs_rq->runtime_remaining = 1;
3832 		/*
3833 		 * Offline rq is schedulable till cpu is completely disabled
3834 		 * in take_cpu_down(), so we prevent new cfs throttling here.
3835 		 */
3836 		cfs_rq->runtime_enabled = 0;
3837 
3838 		if (cfs_rq_throttled(cfs_rq))
3839 			unthrottle_cfs_rq(cfs_rq);
3840 	}
3841 }
3842 
3843 #else /* CONFIG_CFS_BANDWIDTH */
3844 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3845 {
3846 	return rq_clock_task(rq_of(cfs_rq));
3847 }
3848 
3849 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3850 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3851 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3852 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3853 
3854 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3855 {
3856 	return 0;
3857 }
3858 
3859 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3860 {
3861 	return 0;
3862 }
3863 
3864 static inline int throttled_lb_pair(struct task_group *tg,
3865 				    int src_cpu, int dest_cpu)
3866 {
3867 	return 0;
3868 }
3869 
3870 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3871 
3872 #ifdef CONFIG_FAIR_GROUP_SCHED
3873 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3874 #endif
3875 
3876 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3877 {
3878 	return NULL;
3879 }
3880 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3881 static inline void update_runtime_enabled(struct rq *rq) {}
3882 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3883 
3884 #endif /* CONFIG_CFS_BANDWIDTH */
3885 
3886 /**************************************************
3887  * CFS operations on tasks:
3888  */
3889 
3890 #ifdef CONFIG_SCHED_HRTICK
3891 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3892 {
3893 	struct sched_entity *se = &p->se;
3894 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3895 
3896 	WARN_ON(task_rq(p) != rq);
3897 
3898 	if (cfs_rq->nr_running > 1) {
3899 		u64 slice = sched_slice(cfs_rq, se);
3900 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3901 		s64 delta = slice - ran;
3902 
3903 		if (delta < 0) {
3904 			if (rq->curr == p)
3905 				resched_curr(rq);
3906 			return;
3907 		}
3908 		hrtick_start(rq, delta);
3909 	}
3910 }
3911 
3912 /*
3913  * called from enqueue/dequeue and updates the hrtick when the
3914  * current task is from our class and nr_running is low enough
3915  * to matter.
3916  */
3917 static void hrtick_update(struct rq *rq)
3918 {
3919 	struct task_struct *curr = rq->curr;
3920 
3921 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3922 		return;
3923 
3924 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3925 		hrtick_start_fair(rq, curr);
3926 }
3927 #else /* !CONFIG_SCHED_HRTICK */
3928 static inline void
3929 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3930 {
3931 }
3932 
3933 static inline void hrtick_update(struct rq *rq)
3934 {
3935 }
3936 #endif
3937 
3938 /*
3939  * The enqueue_task method is called before nr_running is
3940  * increased. Here we update the fair scheduling stats and
3941  * then put the task into the rbtree:
3942  */
3943 static void
3944 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3945 {
3946 	struct cfs_rq *cfs_rq;
3947 	struct sched_entity *se = &p->se;
3948 
3949 	for_each_sched_entity(se) {
3950 		if (se->on_rq)
3951 			break;
3952 		cfs_rq = cfs_rq_of(se);
3953 		enqueue_entity(cfs_rq, se, flags);
3954 
3955 		/*
3956 		 * end evaluation on encountering a throttled cfs_rq
3957 		 *
3958 		 * note: in the case of encountering a throttled cfs_rq we will
3959 		 * post the final h_nr_running increment below.
3960 		*/
3961 		if (cfs_rq_throttled(cfs_rq))
3962 			break;
3963 		cfs_rq->h_nr_running++;
3964 
3965 		flags = ENQUEUE_WAKEUP;
3966 	}
3967 
3968 	for_each_sched_entity(se) {
3969 		cfs_rq = cfs_rq_of(se);
3970 		cfs_rq->h_nr_running++;
3971 
3972 		if (cfs_rq_throttled(cfs_rq))
3973 			break;
3974 
3975 		update_cfs_shares(cfs_rq);
3976 		update_entity_load_avg(se, 1);
3977 	}
3978 
3979 	if (!se) {
3980 		update_rq_runnable_avg(rq, rq->nr_running);
3981 		add_nr_running(rq, 1);
3982 	}
3983 	hrtick_update(rq);
3984 }
3985 
3986 static void set_next_buddy(struct sched_entity *se);
3987 
3988 /*
3989  * The dequeue_task method is called before nr_running is
3990  * decreased. We remove the task from the rbtree and
3991  * update the fair scheduling stats:
3992  */
3993 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3994 {
3995 	struct cfs_rq *cfs_rq;
3996 	struct sched_entity *se = &p->se;
3997 	int task_sleep = flags & DEQUEUE_SLEEP;
3998 
3999 	for_each_sched_entity(se) {
4000 		cfs_rq = cfs_rq_of(se);
4001 		dequeue_entity(cfs_rq, se, flags);
4002 
4003 		/*
4004 		 * end evaluation on encountering a throttled cfs_rq
4005 		 *
4006 		 * note: in the case of encountering a throttled cfs_rq we will
4007 		 * post the final h_nr_running decrement below.
4008 		*/
4009 		if (cfs_rq_throttled(cfs_rq))
4010 			break;
4011 		cfs_rq->h_nr_running--;
4012 
4013 		/* Don't dequeue parent if it has other entities besides us */
4014 		if (cfs_rq->load.weight) {
4015 			/*
4016 			 * Bias pick_next to pick a task from this cfs_rq, as
4017 			 * p is sleeping when it is within its sched_slice.
4018 			 */
4019 			if (task_sleep && parent_entity(se))
4020 				set_next_buddy(parent_entity(se));
4021 
4022 			/* avoid re-evaluating load for this entity */
4023 			se = parent_entity(se);
4024 			break;
4025 		}
4026 		flags |= DEQUEUE_SLEEP;
4027 	}
4028 
4029 	for_each_sched_entity(se) {
4030 		cfs_rq = cfs_rq_of(se);
4031 		cfs_rq->h_nr_running--;
4032 
4033 		if (cfs_rq_throttled(cfs_rq))
4034 			break;
4035 
4036 		update_cfs_shares(cfs_rq);
4037 		update_entity_load_avg(se, 1);
4038 	}
4039 
4040 	if (!se) {
4041 		sub_nr_running(rq, 1);
4042 		update_rq_runnable_avg(rq, 1);
4043 	}
4044 	hrtick_update(rq);
4045 }
4046 
4047 #ifdef CONFIG_SMP
4048 /* Used instead of source_load when we know the type == 0 */
4049 static unsigned long weighted_cpuload(const int cpu)
4050 {
4051 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4052 }
4053 
4054 /*
4055  * Return a low guess at the load of a migration-source cpu weighted
4056  * according to the scheduling class and "nice" value.
4057  *
4058  * We want to under-estimate the load of migration sources, to
4059  * balance conservatively.
4060  */
4061 static unsigned long source_load(int cpu, int type)
4062 {
4063 	struct rq *rq = cpu_rq(cpu);
4064 	unsigned long total = weighted_cpuload(cpu);
4065 
4066 	if (type == 0 || !sched_feat(LB_BIAS))
4067 		return total;
4068 
4069 	return min(rq->cpu_load[type-1], total);
4070 }
4071 
4072 /*
4073  * Return a high guess at the load of a migration-target cpu weighted
4074  * according to the scheduling class and "nice" value.
4075  */
4076 static unsigned long target_load(int cpu, int type)
4077 {
4078 	struct rq *rq = cpu_rq(cpu);
4079 	unsigned long total = weighted_cpuload(cpu);
4080 
4081 	if (type == 0 || !sched_feat(LB_BIAS))
4082 		return total;
4083 
4084 	return max(rq->cpu_load[type-1], total);
4085 }
4086 
4087 static unsigned long capacity_of(int cpu)
4088 {
4089 	return cpu_rq(cpu)->cpu_capacity;
4090 }
4091 
4092 static unsigned long cpu_avg_load_per_task(int cpu)
4093 {
4094 	struct rq *rq = cpu_rq(cpu);
4095 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4096 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4097 
4098 	if (nr_running)
4099 		return load_avg / nr_running;
4100 
4101 	return 0;
4102 }
4103 
4104 static void record_wakee(struct task_struct *p)
4105 {
4106 	/*
4107 	 * Rough decay (wiping) for cost saving, don't worry
4108 	 * about the boundary, really active task won't care
4109 	 * about the loss.
4110 	 */
4111 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4112 		current->wakee_flips >>= 1;
4113 		current->wakee_flip_decay_ts = jiffies;
4114 	}
4115 
4116 	if (current->last_wakee != p) {
4117 		current->last_wakee = p;
4118 		current->wakee_flips++;
4119 	}
4120 }
4121 
4122 static void task_waking_fair(struct task_struct *p)
4123 {
4124 	struct sched_entity *se = &p->se;
4125 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4126 	u64 min_vruntime;
4127 
4128 #ifndef CONFIG_64BIT
4129 	u64 min_vruntime_copy;
4130 
4131 	do {
4132 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4133 		smp_rmb();
4134 		min_vruntime = cfs_rq->min_vruntime;
4135 	} while (min_vruntime != min_vruntime_copy);
4136 #else
4137 	min_vruntime = cfs_rq->min_vruntime;
4138 #endif
4139 
4140 	se->vruntime -= min_vruntime;
4141 	record_wakee(p);
4142 }
4143 
4144 #ifdef CONFIG_FAIR_GROUP_SCHED
4145 /*
4146  * effective_load() calculates the load change as seen from the root_task_group
4147  *
4148  * Adding load to a group doesn't make a group heavier, but can cause movement
4149  * of group shares between cpus. Assuming the shares were perfectly aligned one
4150  * can calculate the shift in shares.
4151  *
4152  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4153  * on this @cpu and results in a total addition (subtraction) of @wg to the
4154  * total group weight.
4155  *
4156  * Given a runqueue weight distribution (rw_i) we can compute a shares
4157  * distribution (s_i) using:
4158  *
4159  *   s_i = rw_i / \Sum rw_j						(1)
4160  *
4161  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4162  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4163  * shares distribution (s_i):
4164  *
4165  *   rw_i = {   2,   4,   1,   0 }
4166  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4167  *
4168  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4169  * task used to run on and the CPU the waker is running on), we need to
4170  * compute the effect of waking a task on either CPU and, in case of a sync
4171  * wakeup, compute the effect of the current task going to sleep.
4172  *
4173  * So for a change of @wl to the local @cpu with an overall group weight change
4174  * of @wl we can compute the new shares distribution (s'_i) using:
4175  *
4176  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4177  *
4178  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4179  * differences in waking a task to CPU 0. The additional task changes the
4180  * weight and shares distributions like:
4181  *
4182  *   rw'_i = {   3,   4,   1,   0 }
4183  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4184  *
4185  * We can then compute the difference in effective weight by using:
4186  *
4187  *   dw_i = S * (s'_i - s_i)						(3)
4188  *
4189  * Where 'S' is the group weight as seen by its parent.
4190  *
4191  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4192  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4193  * 4/7) times the weight of the group.
4194  */
4195 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4196 {
4197 	struct sched_entity *se = tg->se[cpu];
4198 
4199 	if (!tg->parent)	/* the trivial, non-cgroup case */
4200 		return wl;
4201 
4202 	for_each_sched_entity(se) {
4203 		long w, W;
4204 
4205 		tg = se->my_q->tg;
4206 
4207 		/*
4208 		 * W = @wg + \Sum rw_j
4209 		 */
4210 		W = wg + calc_tg_weight(tg, se->my_q);
4211 
4212 		/*
4213 		 * w = rw_i + @wl
4214 		 */
4215 		w = se->my_q->load.weight + wl;
4216 
4217 		/*
4218 		 * wl = S * s'_i; see (2)
4219 		 */
4220 		if (W > 0 && w < W)
4221 			wl = (w * tg->shares) / W;
4222 		else
4223 			wl = tg->shares;
4224 
4225 		/*
4226 		 * Per the above, wl is the new se->load.weight value; since
4227 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4228 		 * calc_cfs_shares().
4229 		 */
4230 		if (wl < MIN_SHARES)
4231 			wl = MIN_SHARES;
4232 
4233 		/*
4234 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4235 		 */
4236 		wl -= se->load.weight;
4237 
4238 		/*
4239 		 * Recursively apply this logic to all parent groups to compute
4240 		 * the final effective load change on the root group. Since
4241 		 * only the @tg group gets extra weight, all parent groups can
4242 		 * only redistribute existing shares. @wl is the shift in shares
4243 		 * resulting from this level per the above.
4244 		 */
4245 		wg = 0;
4246 	}
4247 
4248 	return wl;
4249 }
4250 #else
4251 
4252 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4253 {
4254 	return wl;
4255 }
4256 
4257 #endif
4258 
4259 static int wake_wide(struct task_struct *p)
4260 {
4261 	int factor = this_cpu_read(sd_llc_size);
4262 
4263 	/*
4264 	 * Yeah, it's the switching-frequency, could means many wakee or
4265 	 * rapidly switch, use factor here will just help to automatically
4266 	 * adjust the loose-degree, so bigger node will lead to more pull.
4267 	 */
4268 	if (p->wakee_flips > factor) {
4269 		/*
4270 		 * wakee is somewhat hot, it needs certain amount of cpu
4271 		 * resource, so if waker is far more hot, prefer to leave
4272 		 * it alone.
4273 		 */
4274 		if (current->wakee_flips > (factor * p->wakee_flips))
4275 			return 1;
4276 	}
4277 
4278 	return 0;
4279 }
4280 
4281 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4282 {
4283 	s64 this_load, load;
4284 	s64 this_eff_load, prev_eff_load;
4285 	int idx, this_cpu, prev_cpu;
4286 	struct task_group *tg;
4287 	unsigned long weight;
4288 	int balanced;
4289 
4290 	/*
4291 	 * If we wake multiple tasks be careful to not bounce
4292 	 * ourselves around too much.
4293 	 */
4294 	if (wake_wide(p))
4295 		return 0;
4296 
4297 	idx	  = sd->wake_idx;
4298 	this_cpu  = smp_processor_id();
4299 	prev_cpu  = task_cpu(p);
4300 	load	  = source_load(prev_cpu, idx);
4301 	this_load = target_load(this_cpu, idx);
4302 
4303 	/*
4304 	 * If sync wakeup then subtract the (maximum possible)
4305 	 * effect of the currently running task from the load
4306 	 * of the current CPU:
4307 	 */
4308 	if (sync) {
4309 		tg = task_group(current);
4310 		weight = current->se.load.weight;
4311 
4312 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4313 		load += effective_load(tg, prev_cpu, 0, -weight);
4314 	}
4315 
4316 	tg = task_group(p);
4317 	weight = p->se.load.weight;
4318 
4319 	/*
4320 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4321 	 * due to the sync cause above having dropped this_load to 0, we'll
4322 	 * always have an imbalance, but there's really nothing you can do
4323 	 * about that, so that's good too.
4324 	 *
4325 	 * Otherwise check if either cpus are near enough in load to allow this
4326 	 * task to be woken on this_cpu.
4327 	 */
4328 	this_eff_load = 100;
4329 	this_eff_load *= capacity_of(prev_cpu);
4330 
4331 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4332 	prev_eff_load *= capacity_of(this_cpu);
4333 
4334 	if (this_load > 0) {
4335 		this_eff_load *= this_load +
4336 			effective_load(tg, this_cpu, weight, weight);
4337 
4338 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4339 	}
4340 
4341 	balanced = this_eff_load <= prev_eff_load;
4342 
4343 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4344 
4345 	if (!balanced)
4346 		return 0;
4347 
4348 	schedstat_inc(sd, ttwu_move_affine);
4349 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4350 
4351 	return 1;
4352 }
4353 
4354 /*
4355  * find_idlest_group finds and returns the least busy CPU group within the
4356  * domain.
4357  */
4358 static struct sched_group *
4359 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4360 		  int this_cpu, int sd_flag)
4361 {
4362 	struct sched_group *idlest = NULL, *group = sd->groups;
4363 	unsigned long min_load = ULONG_MAX, this_load = 0;
4364 	int load_idx = sd->forkexec_idx;
4365 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4366 
4367 	if (sd_flag & SD_BALANCE_WAKE)
4368 		load_idx = sd->wake_idx;
4369 
4370 	do {
4371 		unsigned long load, avg_load;
4372 		int local_group;
4373 		int i;
4374 
4375 		/* Skip over this group if it has no CPUs allowed */
4376 		if (!cpumask_intersects(sched_group_cpus(group),
4377 					tsk_cpus_allowed(p)))
4378 			continue;
4379 
4380 		local_group = cpumask_test_cpu(this_cpu,
4381 					       sched_group_cpus(group));
4382 
4383 		/* Tally up the load of all CPUs in the group */
4384 		avg_load = 0;
4385 
4386 		for_each_cpu(i, sched_group_cpus(group)) {
4387 			/* Bias balancing toward cpus of our domain */
4388 			if (local_group)
4389 				load = source_load(i, load_idx);
4390 			else
4391 				load = target_load(i, load_idx);
4392 
4393 			avg_load += load;
4394 		}
4395 
4396 		/* Adjust by relative CPU capacity of the group */
4397 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4398 
4399 		if (local_group) {
4400 			this_load = avg_load;
4401 		} else if (avg_load < min_load) {
4402 			min_load = avg_load;
4403 			idlest = group;
4404 		}
4405 	} while (group = group->next, group != sd->groups);
4406 
4407 	if (!idlest || 100*this_load < imbalance*min_load)
4408 		return NULL;
4409 	return idlest;
4410 }
4411 
4412 /*
4413  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4414  */
4415 static int
4416 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4417 {
4418 	unsigned long load, min_load = ULONG_MAX;
4419 	unsigned int min_exit_latency = UINT_MAX;
4420 	u64 latest_idle_timestamp = 0;
4421 	int least_loaded_cpu = this_cpu;
4422 	int shallowest_idle_cpu = -1;
4423 	int i;
4424 
4425 	/* Traverse only the allowed CPUs */
4426 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4427 		if (idle_cpu(i)) {
4428 			struct rq *rq = cpu_rq(i);
4429 			struct cpuidle_state *idle = idle_get_state(rq);
4430 			if (idle && idle->exit_latency < min_exit_latency) {
4431 				/*
4432 				 * We give priority to a CPU whose idle state
4433 				 * has the smallest exit latency irrespective
4434 				 * of any idle timestamp.
4435 				 */
4436 				min_exit_latency = idle->exit_latency;
4437 				latest_idle_timestamp = rq->idle_stamp;
4438 				shallowest_idle_cpu = i;
4439 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4440 				   rq->idle_stamp > latest_idle_timestamp) {
4441 				/*
4442 				 * If equal or no active idle state, then
4443 				 * the most recently idled CPU might have
4444 				 * a warmer cache.
4445 				 */
4446 				latest_idle_timestamp = rq->idle_stamp;
4447 				shallowest_idle_cpu = i;
4448 			}
4449 		} else {
4450 			load = weighted_cpuload(i);
4451 			if (load < min_load || (load == min_load && i == this_cpu)) {
4452 				min_load = load;
4453 				least_loaded_cpu = i;
4454 			}
4455 		}
4456 	}
4457 
4458 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4459 }
4460 
4461 /*
4462  * Try and locate an idle CPU in the sched_domain.
4463  */
4464 static int select_idle_sibling(struct task_struct *p, int target)
4465 {
4466 	struct sched_domain *sd;
4467 	struct sched_group *sg;
4468 	int i = task_cpu(p);
4469 
4470 	if (idle_cpu(target))
4471 		return target;
4472 
4473 	/*
4474 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4475 	 */
4476 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4477 		return i;
4478 
4479 	/*
4480 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4481 	 */
4482 	sd = rcu_dereference(per_cpu(sd_llc, target));
4483 	for_each_lower_domain(sd) {
4484 		sg = sd->groups;
4485 		do {
4486 			if (!cpumask_intersects(sched_group_cpus(sg),
4487 						tsk_cpus_allowed(p)))
4488 				goto next;
4489 
4490 			for_each_cpu(i, sched_group_cpus(sg)) {
4491 				if (i == target || !idle_cpu(i))
4492 					goto next;
4493 			}
4494 
4495 			target = cpumask_first_and(sched_group_cpus(sg),
4496 					tsk_cpus_allowed(p));
4497 			goto done;
4498 next:
4499 			sg = sg->next;
4500 		} while (sg != sd->groups);
4501 	}
4502 done:
4503 	return target;
4504 }
4505 
4506 /*
4507  * select_task_rq_fair: Select target runqueue for the waking task in domains
4508  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4509  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4510  *
4511  * Balances load by selecting the idlest cpu in the idlest group, or under
4512  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4513  *
4514  * Returns the target cpu number.
4515  *
4516  * preempt must be disabled.
4517  */
4518 static int
4519 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4520 {
4521 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4522 	int cpu = smp_processor_id();
4523 	int new_cpu = cpu;
4524 	int want_affine = 0;
4525 	int sync = wake_flags & WF_SYNC;
4526 
4527 	if (p->nr_cpus_allowed == 1)
4528 		return prev_cpu;
4529 
4530 	if (sd_flag & SD_BALANCE_WAKE)
4531 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4532 
4533 	rcu_read_lock();
4534 	for_each_domain(cpu, tmp) {
4535 		if (!(tmp->flags & SD_LOAD_BALANCE))
4536 			continue;
4537 
4538 		/*
4539 		 * If both cpu and prev_cpu are part of this domain,
4540 		 * cpu is a valid SD_WAKE_AFFINE target.
4541 		 */
4542 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4543 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4544 			affine_sd = tmp;
4545 			break;
4546 		}
4547 
4548 		if (tmp->flags & sd_flag)
4549 			sd = tmp;
4550 	}
4551 
4552 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4553 		prev_cpu = cpu;
4554 
4555 	if (sd_flag & SD_BALANCE_WAKE) {
4556 		new_cpu = select_idle_sibling(p, prev_cpu);
4557 		goto unlock;
4558 	}
4559 
4560 	while (sd) {
4561 		struct sched_group *group;
4562 		int weight;
4563 
4564 		if (!(sd->flags & sd_flag)) {
4565 			sd = sd->child;
4566 			continue;
4567 		}
4568 
4569 		group = find_idlest_group(sd, p, cpu, sd_flag);
4570 		if (!group) {
4571 			sd = sd->child;
4572 			continue;
4573 		}
4574 
4575 		new_cpu = find_idlest_cpu(group, p, cpu);
4576 		if (new_cpu == -1 || new_cpu == cpu) {
4577 			/* Now try balancing at a lower domain level of cpu */
4578 			sd = sd->child;
4579 			continue;
4580 		}
4581 
4582 		/* Now try balancing at a lower domain level of new_cpu */
4583 		cpu = new_cpu;
4584 		weight = sd->span_weight;
4585 		sd = NULL;
4586 		for_each_domain(cpu, tmp) {
4587 			if (weight <= tmp->span_weight)
4588 				break;
4589 			if (tmp->flags & sd_flag)
4590 				sd = tmp;
4591 		}
4592 		/* while loop will break here if sd == NULL */
4593 	}
4594 unlock:
4595 	rcu_read_unlock();
4596 
4597 	return new_cpu;
4598 }
4599 
4600 /*
4601  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4602  * cfs_rq_of(p) references at time of call are still valid and identify the
4603  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4604  * other assumptions, including the state of rq->lock, should be made.
4605  */
4606 static void
4607 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4608 {
4609 	struct sched_entity *se = &p->se;
4610 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4611 
4612 	/*
4613 	 * Load tracking: accumulate removed load so that it can be processed
4614 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4615 	 * to blocked load iff they have a positive decay-count.  It can never
4616 	 * be negative here since on-rq tasks have decay-count == 0.
4617 	 */
4618 	if (se->avg.decay_count) {
4619 		se->avg.decay_count = -__synchronize_entity_decay(se);
4620 		atomic_long_add(se->avg.load_avg_contrib,
4621 						&cfs_rq->removed_load);
4622 	}
4623 
4624 	/* We have migrated, no longer consider this task hot */
4625 	se->exec_start = 0;
4626 }
4627 #endif /* CONFIG_SMP */
4628 
4629 static unsigned long
4630 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4631 {
4632 	unsigned long gran = sysctl_sched_wakeup_granularity;
4633 
4634 	/*
4635 	 * Since its curr running now, convert the gran from real-time
4636 	 * to virtual-time in his units.
4637 	 *
4638 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4639 	 * they get preempted easier. That is, if 'se' < 'curr' then
4640 	 * the resulting gran will be larger, therefore penalizing the
4641 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4642 	 * be smaller, again penalizing the lighter task.
4643 	 *
4644 	 * This is especially important for buddies when the leftmost
4645 	 * task is higher priority than the buddy.
4646 	 */
4647 	return calc_delta_fair(gran, se);
4648 }
4649 
4650 /*
4651  * Should 'se' preempt 'curr'.
4652  *
4653  *             |s1
4654  *        |s2
4655  *   |s3
4656  *         g
4657  *      |<--->|c
4658  *
4659  *  w(c, s1) = -1
4660  *  w(c, s2) =  0
4661  *  w(c, s3) =  1
4662  *
4663  */
4664 static int
4665 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4666 {
4667 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4668 
4669 	if (vdiff <= 0)
4670 		return -1;
4671 
4672 	gran = wakeup_gran(curr, se);
4673 	if (vdiff > gran)
4674 		return 1;
4675 
4676 	return 0;
4677 }
4678 
4679 static void set_last_buddy(struct sched_entity *se)
4680 {
4681 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4682 		return;
4683 
4684 	for_each_sched_entity(se)
4685 		cfs_rq_of(se)->last = se;
4686 }
4687 
4688 static void set_next_buddy(struct sched_entity *se)
4689 {
4690 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4691 		return;
4692 
4693 	for_each_sched_entity(se)
4694 		cfs_rq_of(se)->next = se;
4695 }
4696 
4697 static void set_skip_buddy(struct sched_entity *se)
4698 {
4699 	for_each_sched_entity(se)
4700 		cfs_rq_of(se)->skip = se;
4701 }
4702 
4703 /*
4704  * Preempt the current task with a newly woken task if needed:
4705  */
4706 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4707 {
4708 	struct task_struct *curr = rq->curr;
4709 	struct sched_entity *se = &curr->se, *pse = &p->se;
4710 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4711 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4712 	int next_buddy_marked = 0;
4713 
4714 	if (unlikely(se == pse))
4715 		return;
4716 
4717 	/*
4718 	 * This is possible from callers such as attach_tasks(), in which we
4719 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4720 	 * lead to a throttle).  This both saves work and prevents false
4721 	 * next-buddy nomination below.
4722 	 */
4723 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4724 		return;
4725 
4726 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4727 		set_next_buddy(pse);
4728 		next_buddy_marked = 1;
4729 	}
4730 
4731 	/*
4732 	 * We can come here with TIF_NEED_RESCHED already set from new task
4733 	 * wake up path.
4734 	 *
4735 	 * Note: this also catches the edge-case of curr being in a throttled
4736 	 * group (e.g. via set_curr_task), since update_curr() (in the
4737 	 * enqueue of curr) will have resulted in resched being set.  This
4738 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4739 	 * below.
4740 	 */
4741 	if (test_tsk_need_resched(curr))
4742 		return;
4743 
4744 	/* Idle tasks are by definition preempted by non-idle tasks. */
4745 	if (unlikely(curr->policy == SCHED_IDLE) &&
4746 	    likely(p->policy != SCHED_IDLE))
4747 		goto preempt;
4748 
4749 	/*
4750 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4751 	 * is driven by the tick):
4752 	 */
4753 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4754 		return;
4755 
4756 	find_matching_se(&se, &pse);
4757 	update_curr(cfs_rq_of(se));
4758 	BUG_ON(!pse);
4759 	if (wakeup_preempt_entity(se, pse) == 1) {
4760 		/*
4761 		 * Bias pick_next to pick the sched entity that is
4762 		 * triggering this preemption.
4763 		 */
4764 		if (!next_buddy_marked)
4765 			set_next_buddy(pse);
4766 		goto preempt;
4767 	}
4768 
4769 	return;
4770 
4771 preempt:
4772 	resched_curr(rq);
4773 	/*
4774 	 * Only set the backward buddy when the current task is still
4775 	 * on the rq. This can happen when a wakeup gets interleaved
4776 	 * with schedule on the ->pre_schedule() or idle_balance()
4777 	 * point, either of which can * drop the rq lock.
4778 	 *
4779 	 * Also, during early boot the idle thread is in the fair class,
4780 	 * for obvious reasons its a bad idea to schedule back to it.
4781 	 */
4782 	if (unlikely(!se->on_rq || curr == rq->idle))
4783 		return;
4784 
4785 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4786 		set_last_buddy(se);
4787 }
4788 
4789 static struct task_struct *
4790 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4791 {
4792 	struct cfs_rq *cfs_rq = &rq->cfs;
4793 	struct sched_entity *se;
4794 	struct task_struct *p;
4795 	int new_tasks;
4796 
4797 again:
4798 #ifdef CONFIG_FAIR_GROUP_SCHED
4799 	if (!cfs_rq->nr_running)
4800 		goto idle;
4801 
4802 	if (prev->sched_class != &fair_sched_class)
4803 		goto simple;
4804 
4805 	/*
4806 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4807 	 * likely that a next task is from the same cgroup as the current.
4808 	 *
4809 	 * Therefore attempt to avoid putting and setting the entire cgroup
4810 	 * hierarchy, only change the part that actually changes.
4811 	 */
4812 
4813 	do {
4814 		struct sched_entity *curr = cfs_rq->curr;
4815 
4816 		/*
4817 		 * Since we got here without doing put_prev_entity() we also
4818 		 * have to consider cfs_rq->curr. If it is still a runnable
4819 		 * entity, update_curr() will update its vruntime, otherwise
4820 		 * forget we've ever seen it.
4821 		 */
4822 		if (curr && curr->on_rq)
4823 			update_curr(cfs_rq);
4824 		else
4825 			curr = NULL;
4826 
4827 		/*
4828 		 * This call to check_cfs_rq_runtime() will do the throttle and
4829 		 * dequeue its entity in the parent(s). Therefore the 'simple'
4830 		 * nr_running test will indeed be correct.
4831 		 */
4832 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4833 			goto simple;
4834 
4835 		se = pick_next_entity(cfs_rq, curr);
4836 		cfs_rq = group_cfs_rq(se);
4837 	} while (cfs_rq);
4838 
4839 	p = task_of(se);
4840 
4841 	/*
4842 	 * Since we haven't yet done put_prev_entity and if the selected task
4843 	 * is a different task than we started out with, try and touch the
4844 	 * least amount of cfs_rqs.
4845 	 */
4846 	if (prev != p) {
4847 		struct sched_entity *pse = &prev->se;
4848 
4849 		while (!(cfs_rq = is_same_group(se, pse))) {
4850 			int se_depth = se->depth;
4851 			int pse_depth = pse->depth;
4852 
4853 			if (se_depth <= pse_depth) {
4854 				put_prev_entity(cfs_rq_of(pse), pse);
4855 				pse = parent_entity(pse);
4856 			}
4857 			if (se_depth >= pse_depth) {
4858 				set_next_entity(cfs_rq_of(se), se);
4859 				se = parent_entity(se);
4860 			}
4861 		}
4862 
4863 		put_prev_entity(cfs_rq, pse);
4864 		set_next_entity(cfs_rq, se);
4865 	}
4866 
4867 	if (hrtick_enabled(rq))
4868 		hrtick_start_fair(rq, p);
4869 
4870 	return p;
4871 simple:
4872 	cfs_rq = &rq->cfs;
4873 #endif
4874 
4875 	if (!cfs_rq->nr_running)
4876 		goto idle;
4877 
4878 	put_prev_task(rq, prev);
4879 
4880 	do {
4881 		se = pick_next_entity(cfs_rq, NULL);
4882 		set_next_entity(cfs_rq, se);
4883 		cfs_rq = group_cfs_rq(se);
4884 	} while (cfs_rq);
4885 
4886 	p = task_of(se);
4887 
4888 	if (hrtick_enabled(rq))
4889 		hrtick_start_fair(rq, p);
4890 
4891 	return p;
4892 
4893 idle:
4894 	new_tasks = idle_balance(rq);
4895 	/*
4896 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4897 	 * possible for any higher priority task to appear. In that case we
4898 	 * must re-start the pick_next_entity() loop.
4899 	 */
4900 	if (new_tasks < 0)
4901 		return RETRY_TASK;
4902 
4903 	if (new_tasks > 0)
4904 		goto again;
4905 
4906 	return NULL;
4907 }
4908 
4909 /*
4910  * Account for a descheduled task:
4911  */
4912 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4913 {
4914 	struct sched_entity *se = &prev->se;
4915 	struct cfs_rq *cfs_rq;
4916 
4917 	for_each_sched_entity(se) {
4918 		cfs_rq = cfs_rq_of(se);
4919 		put_prev_entity(cfs_rq, se);
4920 	}
4921 }
4922 
4923 /*
4924  * sched_yield() is very simple
4925  *
4926  * The magic of dealing with the ->skip buddy is in pick_next_entity.
4927  */
4928 static void yield_task_fair(struct rq *rq)
4929 {
4930 	struct task_struct *curr = rq->curr;
4931 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4932 	struct sched_entity *se = &curr->se;
4933 
4934 	/*
4935 	 * Are we the only task in the tree?
4936 	 */
4937 	if (unlikely(rq->nr_running == 1))
4938 		return;
4939 
4940 	clear_buddies(cfs_rq, se);
4941 
4942 	if (curr->policy != SCHED_BATCH) {
4943 		update_rq_clock(rq);
4944 		/*
4945 		 * Update run-time statistics of the 'current'.
4946 		 */
4947 		update_curr(cfs_rq);
4948 		/*
4949 		 * Tell update_rq_clock() that we've just updated,
4950 		 * so we don't do microscopic update in schedule()
4951 		 * and double the fastpath cost.
4952 		 */
4953 		 rq->skip_clock_update = 1;
4954 	}
4955 
4956 	set_skip_buddy(se);
4957 }
4958 
4959 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4960 {
4961 	struct sched_entity *se = &p->se;
4962 
4963 	/* throttled hierarchies are not runnable */
4964 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4965 		return false;
4966 
4967 	/* Tell the scheduler that we'd really like pse to run next. */
4968 	set_next_buddy(se);
4969 
4970 	yield_task_fair(rq);
4971 
4972 	return true;
4973 }
4974 
4975 #ifdef CONFIG_SMP
4976 /**************************************************
4977  * Fair scheduling class load-balancing methods.
4978  *
4979  * BASICS
4980  *
4981  * The purpose of load-balancing is to achieve the same basic fairness the
4982  * per-cpu scheduler provides, namely provide a proportional amount of compute
4983  * time to each task. This is expressed in the following equation:
4984  *
4985  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4986  *
4987  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4988  * W_i,0 is defined as:
4989  *
4990  *   W_i,0 = \Sum_j w_i,j                                             (2)
4991  *
4992  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4993  * is derived from the nice value as per prio_to_weight[].
4994  *
4995  * The weight average is an exponential decay average of the instantaneous
4996  * weight:
4997  *
4998  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
4999  *
5000  * C_i is the compute capacity of cpu i, typically it is the
5001  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5002  * can also include other factors [XXX].
5003  *
5004  * To achieve this balance we define a measure of imbalance which follows
5005  * directly from (1):
5006  *
5007  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5008  *
5009  * We them move tasks around to minimize the imbalance. In the continuous
5010  * function space it is obvious this converges, in the discrete case we get
5011  * a few fun cases generally called infeasible weight scenarios.
5012  *
5013  * [XXX expand on:
5014  *     - infeasible weights;
5015  *     - local vs global optima in the discrete case. ]
5016  *
5017  *
5018  * SCHED DOMAINS
5019  *
5020  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5021  * for all i,j solution, we create a tree of cpus that follows the hardware
5022  * topology where each level pairs two lower groups (or better). This results
5023  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5024  * tree to only the first of the previous level and we decrease the frequency
5025  * of load-balance at each level inv. proportional to the number of cpus in
5026  * the groups.
5027  *
5028  * This yields:
5029  *
5030  *     log_2 n     1     n
5031  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5032  *     i = 0      2^i   2^i
5033  *                               `- size of each group
5034  *         |         |     `- number of cpus doing load-balance
5035  *         |         `- freq
5036  *         `- sum over all levels
5037  *
5038  * Coupled with a limit on how many tasks we can migrate every balance pass,
5039  * this makes (5) the runtime complexity of the balancer.
5040  *
5041  * An important property here is that each CPU is still (indirectly) connected
5042  * to every other cpu in at most O(log n) steps:
5043  *
5044  * The adjacency matrix of the resulting graph is given by:
5045  *
5046  *             log_2 n
5047  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5048  *             k = 0
5049  *
5050  * And you'll find that:
5051  *
5052  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5053  *
5054  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5055  * The task movement gives a factor of O(m), giving a convergence complexity
5056  * of:
5057  *
5058  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5059  *
5060  *
5061  * WORK CONSERVING
5062  *
5063  * In order to avoid CPUs going idle while there's still work to do, new idle
5064  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5065  * tree itself instead of relying on other CPUs to bring it work.
5066  *
5067  * This adds some complexity to both (5) and (8) but it reduces the total idle
5068  * time.
5069  *
5070  * [XXX more?]
5071  *
5072  *
5073  * CGROUPS
5074  *
5075  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5076  *
5077  *                                s_k,i
5078  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5079  *                                 S_k
5080  *
5081  * Where
5082  *
5083  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5084  *
5085  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5086  *
5087  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5088  * property.
5089  *
5090  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5091  *      rewrite all of this once again.]
5092  */
5093 
5094 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5095 
5096 enum fbq_type { regular, remote, all };
5097 
5098 #define LBF_ALL_PINNED	0x01
5099 #define LBF_NEED_BREAK	0x02
5100 #define LBF_DST_PINNED  0x04
5101 #define LBF_SOME_PINNED	0x08
5102 
5103 struct lb_env {
5104 	struct sched_domain	*sd;
5105 
5106 	struct rq		*src_rq;
5107 	int			src_cpu;
5108 
5109 	int			dst_cpu;
5110 	struct rq		*dst_rq;
5111 
5112 	struct cpumask		*dst_grpmask;
5113 	int			new_dst_cpu;
5114 	enum cpu_idle_type	idle;
5115 	long			imbalance;
5116 	/* The set of CPUs under consideration for load-balancing */
5117 	struct cpumask		*cpus;
5118 
5119 	unsigned int		flags;
5120 
5121 	unsigned int		loop;
5122 	unsigned int		loop_break;
5123 	unsigned int		loop_max;
5124 
5125 	enum fbq_type		fbq_type;
5126 	struct list_head	tasks;
5127 };
5128 
5129 /*
5130  * Is this task likely cache-hot:
5131  */
5132 static int task_hot(struct task_struct *p, struct lb_env *env)
5133 {
5134 	s64 delta;
5135 
5136 	lockdep_assert_held(&env->src_rq->lock);
5137 
5138 	if (p->sched_class != &fair_sched_class)
5139 		return 0;
5140 
5141 	if (unlikely(p->policy == SCHED_IDLE))
5142 		return 0;
5143 
5144 	/*
5145 	 * Buddy candidates are cache hot:
5146 	 */
5147 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5148 			(&p->se == cfs_rq_of(&p->se)->next ||
5149 			 &p->se == cfs_rq_of(&p->se)->last))
5150 		return 1;
5151 
5152 	if (sysctl_sched_migration_cost == -1)
5153 		return 1;
5154 	if (sysctl_sched_migration_cost == 0)
5155 		return 0;
5156 
5157 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5158 
5159 	return delta < (s64)sysctl_sched_migration_cost;
5160 }
5161 
5162 #ifdef CONFIG_NUMA_BALANCING
5163 /* Returns true if the destination node has incurred more faults */
5164 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5165 {
5166 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5167 	int src_nid, dst_nid;
5168 
5169 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5170 	    !(env->sd->flags & SD_NUMA)) {
5171 		return false;
5172 	}
5173 
5174 	src_nid = cpu_to_node(env->src_cpu);
5175 	dst_nid = cpu_to_node(env->dst_cpu);
5176 
5177 	if (src_nid == dst_nid)
5178 		return false;
5179 
5180 	if (numa_group) {
5181 		/* Task is already in the group's interleave set. */
5182 		if (node_isset(src_nid, numa_group->active_nodes))
5183 			return false;
5184 
5185 		/* Task is moving into the group's interleave set. */
5186 		if (node_isset(dst_nid, numa_group->active_nodes))
5187 			return true;
5188 
5189 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5190 	}
5191 
5192 	/* Encourage migration to the preferred node. */
5193 	if (dst_nid == p->numa_preferred_nid)
5194 		return true;
5195 
5196 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5197 }
5198 
5199 
5200 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5201 {
5202 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5203 	int src_nid, dst_nid;
5204 
5205 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5206 		return false;
5207 
5208 	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5209 		return false;
5210 
5211 	src_nid = cpu_to_node(env->src_cpu);
5212 	dst_nid = cpu_to_node(env->dst_cpu);
5213 
5214 	if (src_nid == dst_nid)
5215 		return false;
5216 
5217 	if (numa_group) {
5218 		/* Task is moving within/into the group's interleave set. */
5219 		if (node_isset(dst_nid, numa_group->active_nodes))
5220 			return false;
5221 
5222 		/* Task is moving out of the group's interleave set. */
5223 		if (node_isset(src_nid, numa_group->active_nodes))
5224 			return true;
5225 
5226 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5227 	}
5228 
5229 	/* Migrating away from the preferred node is always bad. */
5230 	if (src_nid == p->numa_preferred_nid)
5231 		return true;
5232 
5233 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5234 }
5235 
5236 #else
5237 static inline bool migrate_improves_locality(struct task_struct *p,
5238 					     struct lb_env *env)
5239 {
5240 	return false;
5241 }
5242 
5243 static inline bool migrate_degrades_locality(struct task_struct *p,
5244 					     struct lb_env *env)
5245 {
5246 	return false;
5247 }
5248 #endif
5249 
5250 /*
5251  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5252  */
5253 static
5254 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5255 {
5256 	int tsk_cache_hot = 0;
5257 
5258 	lockdep_assert_held(&env->src_rq->lock);
5259 
5260 	/*
5261 	 * We do not migrate tasks that are:
5262 	 * 1) throttled_lb_pair, or
5263 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5264 	 * 3) running (obviously), or
5265 	 * 4) are cache-hot on their current CPU.
5266 	 */
5267 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5268 		return 0;
5269 
5270 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5271 		int cpu;
5272 
5273 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5274 
5275 		env->flags |= LBF_SOME_PINNED;
5276 
5277 		/*
5278 		 * Remember if this task can be migrated to any other cpu in
5279 		 * our sched_group. We may want to revisit it if we couldn't
5280 		 * meet load balance goals by pulling other tasks on src_cpu.
5281 		 *
5282 		 * Also avoid computing new_dst_cpu if we have already computed
5283 		 * one in current iteration.
5284 		 */
5285 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5286 			return 0;
5287 
5288 		/* Prevent to re-select dst_cpu via env's cpus */
5289 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5290 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5291 				env->flags |= LBF_DST_PINNED;
5292 				env->new_dst_cpu = cpu;
5293 				break;
5294 			}
5295 		}
5296 
5297 		return 0;
5298 	}
5299 
5300 	/* Record that we found atleast one task that could run on dst_cpu */
5301 	env->flags &= ~LBF_ALL_PINNED;
5302 
5303 	if (task_running(env->src_rq, p)) {
5304 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5305 		return 0;
5306 	}
5307 
5308 	/*
5309 	 * Aggressive migration if:
5310 	 * 1) destination numa is preferred
5311 	 * 2) task is cache cold, or
5312 	 * 3) too many balance attempts have failed.
5313 	 */
5314 	tsk_cache_hot = task_hot(p, env);
5315 	if (!tsk_cache_hot)
5316 		tsk_cache_hot = migrate_degrades_locality(p, env);
5317 
5318 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5319 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5320 		if (tsk_cache_hot) {
5321 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5322 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5323 		}
5324 		return 1;
5325 	}
5326 
5327 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5328 	return 0;
5329 }
5330 
5331 /*
5332  * detach_task() -- detach the task for the migration specified in env
5333  */
5334 static void detach_task(struct task_struct *p, struct lb_env *env)
5335 {
5336 	lockdep_assert_held(&env->src_rq->lock);
5337 
5338 	deactivate_task(env->src_rq, p, 0);
5339 	p->on_rq = TASK_ON_RQ_MIGRATING;
5340 	set_task_cpu(p, env->dst_cpu);
5341 }
5342 
5343 /*
5344  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5345  * part of active balancing operations within "domain".
5346  *
5347  * Returns a task if successful and NULL otherwise.
5348  */
5349 static struct task_struct *detach_one_task(struct lb_env *env)
5350 {
5351 	struct task_struct *p, *n;
5352 
5353 	lockdep_assert_held(&env->src_rq->lock);
5354 
5355 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5356 		if (!can_migrate_task(p, env))
5357 			continue;
5358 
5359 		detach_task(p, env);
5360 
5361 		/*
5362 		 * Right now, this is only the second place where
5363 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5364 		 * so we can safely collect stats here rather than
5365 		 * inside detach_tasks().
5366 		 */
5367 		schedstat_inc(env->sd, lb_gained[env->idle]);
5368 		return p;
5369 	}
5370 	return NULL;
5371 }
5372 
5373 static const unsigned int sched_nr_migrate_break = 32;
5374 
5375 /*
5376  * detach_tasks() -- tries to detach up to imbalance weighted load from
5377  * busiest_rq, as part of a balancing operation within domain "sd".
5378  *
5379  * Returns number of detached tasks if successful and 0 otherwise.
5380  */
5381 static int detach_tasks(struct lb_env *env)
5382 {
5383 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5384 	struct task_struct *p;
5385 	unsigned long load;
5386 	int detached = 0;
5387 
5388 	lockdep_assert_held(&env->src_rq->lock);
5389 
5390 	if (env->imbalance <= 0)
5391 		return 0;
5392 
5393 	while (!list_empty(tasks)) {
5394 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5395 
5396 		env->loop++;
5397 		/* We've more or less seen every task there is, call it quits */
5398 		if (env->loop > env->loop_max)
5399 			break;
5400 
5401 		/* take a breather every nr_migrate tasks */
5402 		if (env->loop > env->loop_break) {
5403 			env->loop_break += sched_nr_migrate_break;
5404 			env->flags |= LBF_NEED_BREAK;
5405 			break;
5406 		}
5407 
5408 		if (!can_migrate_task(p, env))
5409 			goto next;
5410 
5411 		load = task_h_load(p);
5412 
5413 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5414 			goto next;
5415 
5416 		if ((load / 2) > env->imbalance)
5417 			goto next;
5418 
5419 		detach_task(p, env);
5420 		list_add(&p->se.group_node, &env->tasks);
5421 
5422 		detached++;
5423 		env->imbalance -= load;
5424 
5425 #ifdef CONFIG_PREEMPT
5426 		/*
5427 		 * NEWIDLE balancing is a source of latency, so preemptible
5428 		 * kernels will stop after the first task is detached to minimize
5429 		 * the critical section.
5430 		 */
5431 		if (env->idle == CPU_NEWLY_IDLE)
5432 			break;
5433 #endif
5434 
5435 		/*
5436 		 * We only want to steal up to the prescribed amount of
5437 		 * weighted load.
5438 		 */
5439 		if (env->imbalance <= 0)
5440 			break;
5441 
5442 		continue;
5443 next:
5444 		list_move_tail(&p->se.group_node, tasks);
5445 	}
5446 
5447 	/*
5448 	 * Right now, this is one of only two places we collect this stat
5449 	 * so we can safely collect detach_one_task() stats here rather
5450 	 * than inside detach_one_task().
5451 	 */
5452 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5453 
5454 	return detached;
5455 }
5456 
5457 /*
5458  * attach_task() -- attach the task detached by detach_task() to its new rq.
5459  */
5460 static void attach_task(struct rq *rq, struct task_struct *p)
5461 {
5462 	lockdep_assert_held(&rq->lock);
5463 
5464 	BUG_ON(task_rq(p) != rq);
5465 	p->on_rq = TASK_ON_RQ_QUEUED;
5466 	activate_task(rq, p, 0);
5467 	check_preempt_curr(rq, p, 0);
5468 }
5469 
5470 /*
5471  * attach_one_task() -- attaches the task returned from detach_one_task() to
5472  * its new rq.
5473  */
5474 static void attach_one_task(struct rq *rq, struct task_struct *p)
5475 {
5476 	raw_spin_lock(&rq->lock);
5477 	attach_task(rq, p);
5478 	raw_spin_unlock(&rq->lock);
5479 }
5480 
5481 /*
5482  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5483  * new rq.
5484  */
5485 static void attach_tasks(struct lb_env *env)
5486 {
5487 	struct list_head *tasks = &env->tasks;
5488 	struct task_struct *p;
5489 
5490 	raw_spin_lock(&env->dst_rq->lock);
5491 
5492 	while (!list_empty(tasks)) {
5493 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5494 		list_del_init(&p->se.group_node);
5495 
5496 		attach_task(env->dst_rq, p);
5497 	}
5498 
5499 	raw_spin_unlock(&env->dst_rq->lock);
5500 }
5501 
5502 #ifdef CONFIG_FAIR_GROUP_SCHED
5503 /*
5504  * update tg->load_weight by folding this cpu's load_avg
5505  */
5506 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5507 {
5508 	struct sched_entity *se = tg->se[cpu];
5509 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5510 
5511 	/* throttled entities do not contribute to load */
5512 	if (throttled_hierarchy(cfs_rq))
5513 		return;
5514 
5515 	update_cfs_rq_blocked_load(cfs_rq, 1);
5516 
5517 	if (se) {
5518 		update_entity_load_avg(se, 1);
5519 		/*
5520 		 * We pivot on our runnable average having decayed to zero for
5521 		 * list removal.  This generally implies that all our children
5522 		 * have also been removed (modulo rounding error or bandwidth
5523 		 * control); however, such cases are rare and we can fix these
5524 		 * at enqueue.
5525 		 *
5526 		 * TODO: fix up out-of-order children on enqueue.
5527 		 */
5528 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5529 			list_del_leaf_cfs_rq(cfs_rq);
5530 	} else {
5531 		struct rq *rq = rq_of(cfs_rq);
5532 		update_rq_runnable_avg(rq, rq->nr_running);
5533 	}
5534 }
5535 
5536 static void update_blocked_averages(int cpu)
5537 {
5538 	struct rq *rq = cpu_rq(cpu);
5539 	struct cfs_rq *cfs_rq;
5540 	unsigned long flags;
5541 
5542 	raw_spin_lock_irqsave(&rq->lock, flags);
5543 	update_rq_clock(rq);
5544 	/*
5545 	 * Iterates the task_group tree in a bottom up fashion, see
5546 	 * list_add_leaf_cfs_rq() for details.
5547 	 */
5548 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5549 		/*
5550 		 * Note: We may want to consider periodically releasing
5551 		 * rq->lock about these updates so that creating many task
5552 		 * groups does not result in continually extending hold time.
5553 		 */
5554 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5555 	}
5556 
5557 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5558 }
5559 
5560 /*
5561  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5562  * This needs to be done in a top-down fashion because the load of a child
5563  * group is a fraction of its parents load.
5564  */
5565 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5566 {
5567 	struct rq *rq = rq_of(cfs_rq);
5568 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5569 	unsigned long now = jiffies;
5570 	unsigned long load;
5571 
5572 	if (cfs_rq->last_h_load_update == now)
5573 		return;
5574 
5575 	cfs_rq->h_load_next = NULL;
5576 	for_each_sched_entity(se) {
5577 		cfs_rq = cfs_rq_of(se);
5578 		cfs_rq->h_load_next = se;
5579 		if (cfs_rq->last_h_load_update == now)
5580 			break;
5581 	}
5582 
5583 	if (!se) {
5584 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5585 		cfs_rq->last_h_load_update = now;
5586 	}
5587 
5588 	while ((se = cfs_rq->h_load_next) != NULL) {
5589 		load = cfs_rq->h_load;
5590 		load = div64_ul(load * se->avg.load_avg_contrib,
5591 				cfs_rq->runnable_load_avg + 1);
5592 		cfs_rq = group_cfs_rq(se);
5593 		cfs_rq->h_load = load;
5594 		cfs_rq->last_h_load_update = now;
5595 	}
5596 }
5597 
5598 static unsigned long task_h_load(struct task_struct *p)
5599 {
5600 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5601 
5602 	update_cfs_rq_h_load(cfs_rq);
5603 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5604 			cfs_rq->runnable_load_avg + 1);
5605 }
5606 #else
5607 static inline void update_blocked_averages(int cpu)
5608 {
5609 }
5610 
5611 static unsigned long task_h_load(struct task_struct *p)
5612 {
5613 	return p->se.avg.load_avg_contrib;
5614 }
5615 #endif
5616 
5617 /********** Helpers for find_busiest_group ************************/
5618 
5619 enum group_type {
5620 	group_other = 0,
5621 	group_imbalanced,
5622 	group_overloaded,
5623 };
5624 
5625 /*
5626  * sg_lb_stats - stats of a sched_group required for load_balancing
5627  */
5628 struct sg_lb_stats {
5629 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5630 	unsigned long group_load; /* Total load over the CPUs of the group */
5631 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5632 	unsigned long load_per_task;
5633 	unsigned long group_capacity;
5634 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5635 	unsigned int group_capacity_factor;
5636 	unsigned int idle_cpus;
5637 	unsigned int group_weight;
5638 	enum group_type group_type;
5639 	int group_has_free_capacity;
5640 #ifdef CONFIG_NUMA_BALANCING
5641 	unsigned int nr_numa_running;
5642 	unsigned int nr_preferred_running;
5643 #endif
5644 };
5645 
5646 /*
5647  * sd_lb_stats - Structure to store the statistics of a sched_domain
5648  *		 during load balancing.
5649  */
5650 struct sd_lb_stats {
5651 	struct sched_group *busiest;	/* Busiest group in this sd */
5652 	struct sched_group *local;	/* Local group in this sd */
5653 	unsigned long total_load;	/* Total load of all groups in sd */
5654 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5655 	unsigned long avg_load;	/* Average load across all groups in sd */
5656 
5657 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5658 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5659 };
5660 
5661 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5662 {
5663 	/*
5664 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5665 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5666 	 * We must however clear busiest_stat::avg_load because
5667 	 * update_sd_pick_busiest() reads this before assignment.
5668 	 */
5669 	*sds = (struct sd_lb_stats){
5670 		.busiest = NULL,
5671 		.local = NULL,
5672 		.total_load = 0UL,
5673 		.total_capacity = 0UL,
5674 		.busiest_stat = {
5675 			.avg_load = 0UL,
5676 			.sum_nr_running = 0,
5677 			.group_type = group_other,
5678 		},
5679 	};
5680 }
5681 
5682 /**
5683  * get_sd_load_idx - Obtain the load index for a given sched domain.
5684  * @sd: The sched_domain whose load_idx is to be obtained.
5685  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5686  *
5687  * Return: The load index.
5688  */
5689 static inline int get_sd_load_idx(struct sched_domain *sd,
5690 					enum cpu_idle_type idle)
5691 {
5692 	int load_idx;
5693 
5694 	switch (idle) {
5695 	case CPU_NOT_IDLE:
5696 		load_idx = sd->busy_idx;
5697 		break;
5698 
5699 	case CPU_NEWLY_IDLE:
5700 		load_idx = sd->newidle_idx;
5701 		break;
5702 	default:
5703 		load_idx = sd->idle_idx;
5704 		break;
5705 	}
5706 
5707 	return load_idx;
5708 }
5709 
5710 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5711 {
5712 	return SCHED_CAPACITY_SCALE;
5713 }
5714 
5715 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5716 {
5717 	return default_scale_capacity(sd, cpu);
5718 }
5719 
5720 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5721 {
5722 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5723 		return sd->smt_gain / sd->span_weight;
5724 
5725 	return SCHED_CAPACITY_SCALE;
5726 }
5727 
5728 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5729 {
5730 	return default_scale_cpu_capacity(sd, cpu);
5731 }
5732 
5733 static unsigned long scale_rt_capacity(int cpu)
5734 {
5735 	struct rq *rq = cpu_rq(cpu);
5736 	u64 total, available, age_stamp, avg;
5737 	s64 delta;
5738 
5739 	/*
5740 	 * Since we're reading these variables without serialization make sure
5741 	 * we read them once before doing sanity checks on them.
5742 	 */
5743 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5744 	avg = ACCESS_ONCE(rq->rt_avg);
5745 
5746 	delta = rq_clock(rq) - age_stamp;
5747 	if (unlikely(delta < 0))
5748 		delta = 0;
5749 
5750 	total = sched_avg_period() + delta;
5751 
5752 	if (unlikely(total < avg)) {
5753 		/* Ensures that capacity won't end up being negative */
5754 		available = 0;
5755 	} else {
5756 		available = total - avg;
5757 	}
5758 
5759 	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5760 		total = SCHED_CAPACITY_SCALE;
5761 
5762 	total >>= SCHED_CAPACITY_SHIFT;
5763 
5764 	return div_u64(available, total);
5765 }
5766 
5767 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5768 {
5769 	unsigned long capacity = SCHED_CAPACITY_SCALE;
5770 	struct sched_group *sdg = sd->groups;
5771 
5772 	if (sched_feat(ARCH_CAPACITY))
5773 		capacity *= arch_scale_cpu_capacity(sd, cpu);
5774 	else
5775 		capacity *= default_scale_cpu_capacity(sd, cpu);
5776 
5777 	capacity >>= SCHED_CAPACITY_SHIFT;
5778 
5779 	sdg->sgc->capacity_orig = capacity;
5780 
5781 	if (sched_feat(ARCH_CAPACITY))
5782 		capacity *= arch_scale_freq_capacity(sd, cpu);
5783 	else
5784 		capacity *= default_scale_capacity(sd, cpu);
5785 
5786 	capacity >>= SCHED_CAPACITY_SHIFT;
5787 
5788 	capacity *= scale_rt_capacity(cpu);
5789 	capacity >>= SCHED_CAPACITY_SHIFT;
5790 
5791 	if (!capacity)
5792 		capacity = 1;
5793 
5794 	cpu_rq(cpu)->cpu_capacity = capacity;
5795 	sdg->sgc->capacity = capacity;
5796 }
5797 
5798 void update_group_capacity(struct sched_domain *sd, int cpu)
5799 {
5800 	struct sched_domain *child = sd->child;
5801 	struct sched_group *group, *sdg = sd->groups;
5802 	unsigned long capacity, capacity_orig;
5803 	unsigned long interval;
5804 
5805 	interval = msecs_to_jiffies(sd->balance_interval);
5806 	interval = clamp(interval, 1UL, max_load_balance_interval);
5807 	sdg->sgc->next_update = jiffies + interval;
5808 
5809 	if (!child) {
5810 		update_cpu_capacity(sd, cpu);
5811 		return;
5812 	}
5813 
5814 	capacity_orig = capacity = 0;
5815 
5816 	if (child->flags & SD_OVERLAP) {
5817 		/*
5818 		 * SD_OVERLAP domains cannot assume that child groups
5819 		 * span the current group.
5820 		 */
5821 
5822 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5823 			struct sched_group_capacity *sgc;
5824 			struct rq *rq = cpu_rq(cpu);
5825 
5826 			/*
5827 			 * build_sched_domains() -> init_sched_groups_capacity()
5828 			 * gets here before we've attached the domains to the
5829 			 * runqueues.
5830 			 *
5831 			 * Use capacity_of(), which is set irrespective of domains
5832 			 * in update_cpu_capacity().
5833 			 *
5834 			 * This avoids capacity/capacity_orig from being 0 and
5835 			 * causing divide-by-zero issues on boot.
5836 			 *
5837 			 * Runtime updates will correct capacity_orig.
5838 			 */
5839 			if (unlikely(!rq->sd)) {
5840 				capacity_orig += capacity_of(cpu);
5841 				capacity += capacity_of(cpu);
5842 				continue;
5843 			}
5844 
5845 			sgc = rq->sd->groups->sgc;
5846 			capacity_orig += sgc->capacity_orig;
5847 			capacity += sgc->capacity;
5848 		}
5849 	} else  {
5850 		/*
5851 		 * !SD_OVERLAP domains can assume that child groups
5852 		 * span the current group.
5853 		 */
5854 
5855 		group = child->groups;
5856 		do {
5857 			capacity_orig += group->sgc->capacity_orig;
5858 			capacity += group->sgc->capacity;
5859 			group = group->next;
5860 		} while (group != child->groups);
5861 	}
5862 
5863 	sdg->sgc->capacity_orig = capacity_orig;
5864 	sdg->sgc->capacity = capacity;
5865 }
5866 
5867 /*
5868  * Try and fix up capacity for tiny siblings, this is needed when
5869  * things like SD_ASYM_PACKING need f_b_g to select another sibling
5870  * which on its own isn't powerful enough.
5871  *
5872  * See update_sd_pick_busiest() and check_asym_packing().
5873  */
5874 static inline int
5875 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5876 {
5877 	/*
5878 	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5879 	 */
5880 	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5881 		return 0;
5882 
5883 	/*
5884 	 * If ~90% of the cpu_capacity is still there, we're good.
5885 	 */
5886 	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5887 		return 1;
5888 
5889 	return 0;
5890 }
5891 
5892 /*
5893  * Group imbalance indicates (and tries to solve) the problem where balancing
5894  * groups is inadequate due to tsk_cpus_allowed() constraints.
5895  *
5896  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5897  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5898  * Something like:
5899  *
5900  * 	{ 0 1 2 3 } { 4 5 6 7 }
5901  * 	        *     * * *
5902  *
5903  * If we were to balance group-wise we'd place two tasks in the first group and
5904  * two tasks in the second group. Clearly this is undesired as it will overload
5905  * cpu 3 and leave one of the cpus in the second group unused.
5906  *
5907  * The current solution to this issue is detecting the skew in the first group
5908  * by noticing the lower domain failed to reach balance and had difficulty
5909  * moving tasks due to affinity constraints.
5910  *
5911  * When this is so detected; this group becomes a candidate for busiest; see
5912  * update_sd_pick_busiest(). And calculate_imbalance() and
5913  * find_busiest_group() avoid some of the usual balance conditions to allow it
5914  * to create an effective group imbalance.
5915  *
5916  * This is a somewhat tricky proposition since the next run might not find the
5917  * group imbalance and decide the groups need to be balanced again. A most
5918  * subtle and fragile situation.
5919  */
5920 
5921 static inline int sg_imbalanced(struct sched_group *group)
5922 {
5923 	return group->sgc->imbalance;
5924 }
5925 
5926 /*
5927  * Compute the group capacity factor.
5928  *
5929  * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5930  * first dividing out the smt factor and computing the actual number of cores
5931  * and limit unit capacity with that.
5932  */
5933 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5934 {
5935 	unsigned int capacity_factor, smt, cpus;
5936 	unsigned int capacity, capacity_orig;
5937 
5938 	capacity = group->sgc->capacity;
5939 	capacity_orig = group->sgc->capacity_orig;
5940 	cpus = group->group_weight;
5941 
5942 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5943 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5944 	capacity_factor = cpus / smt; /* cores */
5945 
5946 	capacity_factor = min_t(unsigned,
5947 		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5948 	if (!capacity_factor)
5949 		capacity_factor = fix_small_capacity(env->sd, group);
5950 
5951 	return capacity_factor;
5952 }
5953 
5954 static enum group_type
5955 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5956 {
5957 	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5958 		return group_overloaded;
5959 
5960 	if (sg_imbalanced(group))
5961 		return group_imbalanced;
5962 
5963 	return group_other;
5964 }
5965 
5966 /**
5967  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5968  * @env: The load balancing environment.
5969  * @group: sched_group whose statistics are to be updated.
5970  * @load_idx: Load index of sched_domain of this_cpu for load calc.
5971  * @local_group: Does group contain this_cpu.
5972  * @sgs: variable to hold the statistics for this group.
5973  * @overload: Indicate more than one runnable task for any CPU.
5974  */
5975 static inline void update_sg_lb_stats(struct lb_env *env,
5976 			struct sched_group *group, int load_idx,
5977 			int local_group, struct sg_lb_stats *sgs,
5978 			bool *overload)
5979 {
5980 	unsigned long load;
5981 	int i;
5982 
5983 	memset(sgs, 0, sizeof(*sgs));
5984 
5985 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5986 		struct rq *rq = cpu_rq(i);
5987 
5988 		/* Bias balancing toward cpus of our domain */
5989 		if (local_group)
5990 			load = target_load(i, load_idx);
5991 		else
5992 			load = source_load(i, load_idx);
5993 
5994 		sgs->group_load += load;
5995 		sgs->sum_nr_running += rq->cfs.h_nr_running;
5996 
5997 		if (rq->nr_running > 1)
5998 			*overload = true;
5999 
6000 #ifdef CONFIG_NUMA_BALANCING
6001 		sgs->nr_numa_running += rq->nr_numa_running;
6002 		sgs->nr_preferred_running += rq->nr_preferred_running;
6003 #endif
6004 		sgs->sum_weighted_load += weighted_cpuload(i);
6005 		if (idle_cpu(i))
6006 			sgs->idle_cpus++;
6007 	}
6008 
6009 	/* Adjust by relative CPU capacity of the group */
6010 	sgs->group_capacity = group->sgc->capacity;
6011 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6012 
6013 	if (sgs->sum_nr_running)
6014 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6015 
6016 	sgs->group_weight = group->group_weight;
6017 	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6018 	sgs->group_type = group_classify(group, sgs);
6019 
6020 	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6021 		sgs->group_has_free_capacity = 1;
6022 }
6023 
6024 /**
6025  * update_sd_pick_busiest - return 1 on busiest group
6026  * @env: The load balancing environment.
6027  * @sds: sched_domain statistics
6028  * @sg: sched_group candidate to be checked for being the busiest
6029  * @sgs: sched_group statistics
6030  *
6031  * Determine if @sg is a busier group than the previously selected
6032  * busiest group.
6033  *
6034  * Return: %true if @sg is a busier group than the previously selected
6035  * busiest group. %false otherwise.
6036  */
6037 static bool update_sd_pick_busiest(struct lb_env *env,
6038 				   struct sd_lb_stats *sds,
6039 				   struct sched_group *sg,
6040 				   struct sg_lb_stats *sgs)
6041 {
6042 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6043 
6044 	if (sgs->group_type > busiest->group_type)
6045 		return true;
6046 
6047 	if (sgs->group_type < busiest->group_type)
6048 		return false;
6049 
6050 	if (sgs->avg_load <= busiest->avg_load)
6051 		return false;
6052 
6053 	/* This is the busiest node in its class. */
6054 	if (!(env->sd->flags & SD_ASYM_PACKING))
6055 		return true;
6056 
6057 	/*
6058 	 * ASYM_PACKING needs to move all the work to the lowest
6059 	 * numbered CPUs in the group, therefore mark all groups
6060 	 * higher than ourself as busy.
6061 	 */
6062 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6063 		if (!sds->busiest)
6064 			return true;
6065 
6066 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6067 			return true;
6068 	}
6069 
6070 	return false;
6071 }
6072 
6073 #ifdef CONFIG_NUMA_BALANCING
6074 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6075 {
6076 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6077 		return regular;
6078 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6079 		return remote;
6080 	return all;
6081 }
6082 
6083 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6084 {
6085 	if (rq->nr_running > rq->nr_numa_running)
6086 		return regular;
6087 	if (rq->nr_running > rq->nr_preferred_running)
6088 		return remote;
6089 	return all;
6090 }
6091 #else
6092 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6093 {
6094 	return all;
6095 }
6096 
6097 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6098 {
6099 	return regular;
6100 }
6101 #endif /* CONFIG_NUMA_BALANCING */
6102 
6103 /**
6104  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6105  * @env: The load balancing environment.
6106  * @sds: variable to hold the statistics for this sched_domain.
6107  */
6108 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6109 {
6110 	struct sched_domain *child = env->sd->child;
6111 	struct sched_group *sg = env->sd->groups;
6112 	struct sg_lb_stats tmp_sgs;
6113 	int load_idx, prefer_sibling = 0;
6114 	bool overload = false;
6115 
6116 	if (child && child->flags & SD_PREFER_SIBLING)
6117 		prefer_sibling = 1;
6118 
6119 	load_idx = get_sd_load_idx(env->sd, env->idle);
6120 
6121 	do {
6122 		struct sg_lb_stats *sgs = &tmp_sgs;
6123 		int local_group;
6124 
6125 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6126 		if (local_group) {
6127 			sds->local = sg;
6128 			sgs = &sds->local_stat;
6129 
6130 			if (env->idle != CPU_NEWLY_IDLE ||
6131 			    time_after_eq(jiffies, sg->sgc->next_update))
6132 				update_group_capacity(env->sd, env->dst_cpu);
6133 		}
6134 
6135 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6136 						&overload);
6137 
6138 		if (local_group)
6139 			goto next_group;
6140 
6141 		/*
6142 		 * In case the child domain prefers tasks go to siblings
6143 		 * first, lower the sg capacity factor to one so that we'll try
6144 		 * and move all the excess tasks away. We lower the capacity
6145 		 * of a group only if the local group has the capacity to fit
6146 		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6147 		 * extra check prevents the case where you always pull from the
6148 		 * heaviest group when it is already under-utilized (possible
6149 		 * with a large weight task outweighs the tasks on the system).
6150 		 */
6151 		if (prefer_sibling && sds->local &&
6152 		    sds->local_stat.group_has_free_capacity)
6153 			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6154 
6155 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6156 			sds->busiest = sg;
6157 			sds->busiest_stat = *sgs;
6158 		}
6159 
6160 next_group:
6161 		/* Now, start updating sd_lb_stats */
6162 		sds->total_load += sgs->group_load;
6163 		sds->total_capacity += sgs->group_capacity;
6164 
6165 		sg = sg->next;
6166 	} while (sg != env->sd->groups);
6167 
6168 	if (env->sd->flags & SD_NUMA)
6169 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6170 
6171 	if (!env->sd->parent) {
6172 		/* update overload indicator if we are at root domain */
6173 		if (env->dst_rq->rd->overload != overload)
6174 			env->dst_rq->rd->overload = overload;
6175 	}
6176 
6177 }
6178 
6179 /**
6180  * check_asym_packing - Check to see if the group is packed into the
6181  *			sched doman.
6182  *
6183  * This is primarily intended to used at the sibling level.  Some
6184  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6185  * case of POWER7, it can move to lower SMT modes only when higher
6186  * threads are idle.  When in lower SMT modes, the threads will
6187  * perform better since they share less core resources.  Hence when we
6188  * have idle threads, we want them to be the higher ones.
6189  *
6190  * This packing function is run on idle threads.  It checks to see if
6191  * the busiest CPU in this domain (core in the P7 case) has a higher
6192  * CPU number than the packing function is being run on.  Here we are
6193  * assuming lower CPU number will be equivalent to lower a SMT thread
6194  * number.
6195  *
6196  * Return: 1 when packing is required and a task should be moved to
6197  * this CPU.  The amount of the imbalance is returned in *imbalance.
6198  *
6199  * @env: The load balancing environment.
6200  * @sds: Statistics of the sched_domain which is to be packed
6201  */
6202 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6203 {
6204 	int busiest_cpu;
6205 
6206 	if (!(env->sd->flags & SD_ASYM_PACKING))
6207 		return 0;
6208 
6209 	if (!sds->busiest)
6210 		return 0;
6211 
6212 	busiest_cpu = group_first_cpu(sds->busiest);
6213 	if (env->dst_cpu > busiest_cpu)
6214 		return 0;
6215 
6216 	env->imbalance = DIV_ROUND_CLOSEST(
6217 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6218 		SCHED_CAPACITY_SCALE);
6219 
6220 	return 1;
6221 }
6222 
6223 /**
6224  * fix_small_imbalance - Calculate the minor imbalance that exists
6225  *			amongst the groups of a sched_domain, during
6226  *			load balancing.
6227  * @env: The load balancing environment.
6228  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6229  */
6230 static inline
6231 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6232 {
6233 	unsigned long tmp, capa_now = 0, capa_move = 0;
6234 	unsigned int imbn = 2;
6235 	unsigned long scaled_busy_load_per_task;
6236 	struct sg_lb_stats *local, *busiest;
6237 
6238 	local = &sds->local_stat;
6239 	busiest = &sds->busiest_stat;
6240 
6241 	if (!local->sum_nr_running)
6242 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6243 	else if (busiest->load_per_task > local->load_per_task)
6244 		imbn = 1;
6245 
6246 	scaled_busy_load_per_task =
6247 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6248 		busiest->group_capacity;
6249 
6250 	if (busiest->avg_load + scaled_busy_load_per_task >=
6251 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6252 		env->imbalance = busiest->load_per_task;
6253 		return;
6254 	}
6255 
6256 	/*
6257 	 * OK, we don't have enough imbalance to justify moving tasks,
6258 	 * however we may be able to increase total CPU capacity used by
6259 	 * moving them.
6260 	 */
6261 
6262 	capa_now += busiest->group_capacity *
6263 			min(busiest->load_per_task, busiest->avg_load);
6264 	capa_now += local->group_capacity *
6265 			min(local->load_per_task, local->avg_load);
6266 	capa_now /= SCHED_CAPACITY_SCALE;
6267 
6268 	/* Amount of load we'd subtract */
6269 	if (busiest->avg_load > scaled_busy_load_per_task) {
6270 		capa_move += busiest->group_capacity *
6271 			    min(busiest->load_per_task,
6272 				busiest->avg_load - scaled_busy_load_per_task);
6273 	}
6274 
6275 	/* Amount of load we'd add */
6276 	if (busiest->avg_load * busiest->group_capacity <
6277 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6278 		tmp = (busiest->avg_load * busiest->group_capacity) /
6279 		      local->group_capacity;
6280 	} else {
6281 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6282 		      local->group_capacity;
6283 	}
6284 	capa_move += local->group_capacity *
6285 		    min(local->load_per_task, local->avg_load + tmp);
6286 	capa_move /= SCHED_CAPACITY_SCALE;
6287 
6288 	/* Move if we gain throughput */
6289 	if (capa_move > capa_now)
6290 		env->imbalance = busiest->load_per_task;
6291 }
6292 
6293 /**
6294  * calculate_imbalance - Calculate the amount of imbalance present within the
6295  *			 groups of a given sched_domain during load balance.
6296  * @env: load balance environment
6297  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6298  */
6299 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6300 {
6301 	unsigned long max_pull, load_above_capacity = ~0UL;
6302 	struct sg_lb_stats *local, *busiest;
6303 
6304 	local = &sds->local_stat;
6305 	busiest = &sds->busiest_stat;
6306 
6307 	if (busiest->group_type == group_imbalanced) {
6308 		/*
6309 		 * In the group_imb case we cannot rely on group-wide averages
6310 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6311 		 */
6312 		busiest->load_per_task =
6313 			min(busiest->load_per_task, sds->avg_load);
6314 	}
6315 
6316 	/*
6317 	 * In the presence of smp nice balancing, certain scenarios can have
6318 	 * max load less than avg load(as we skip the groups at or below
6319 	 * its cpu_capacity, while calculating max_load..)
6320 	 */
6321 	if (busiest->avg_load <= sds->avg_load ||
6322 	    local->avg_load >= sds->avg_load) {
6323 		env->imbalance = 0;
6324 		return fix_small_imbalance(env, sds);
6325 	}
6326 
6327 	/*
6328 	 * If there aren't any idle cpus, avoid creating some.
6329 	 */
6330 	if (busiest->group_type == group_overloaded &&
6331 	    local->group_type   == group_overloaded) {
6332 		load_above_capacity =
6333 			(busiest->sum_nr_running - busiest->group_capacity_factor);
6334 
6335 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6336 		load_above_capacity /= busiest->group_capacity;
6337 	}
6338 
6339 	/*
6340 	 * We're trying to get all the cpus to the average_load, so we don't
6341 	 * want to push ourselves above the average load, nor do we wish to
6342 	 * reduce the max loaded cpu below the average load. At the same time,
6343 	 * we also don't want to reduce the group load below the group capacity
6344 	 * (so that we can implement power-savings policies etc). Thus we look
6345 	 * for the minimum possible imbalance.
6346 	 */
6347 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6348 
6349 	/* How much load to actually move to equalise the imbalance */
6350 	env->imbalance = min(
6351 		max_pull * busiest->group_capacity,
6352 		(sds->avg_load - local->avg_load) * local->group_capacity
6353 	) / SCHED_CAPACITY_SCALE;
6354 
6355 	/*
6356 	 * if *imbalance is less than the average load per runnable task
6357 	 * there is no guarantee that any tasks will be moved so we'll have
6358 	 * a think about bumping its value to force at least one task to be
6359 	 * moved
6360 	 */
6361 	if (env->imbalance < busiest->load_per_task)
6362 		return fix_small_imbalance(env, sds);
6363 }
6364 
6365 /******* find_busiest_group() helpers end here *********************/
6366 
6367 /**
6368  * find_busiest_group - Returns the busiest group within the sched_domain
6369  * if there is an imbalance. If there isn't an imbalance, and
6370  * the user has opted for power-savings, it returns a group whose
6371  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6372  * such a group exists.
6373  *
6374  * Also calculates the amount of weighted load which should be moved
6375  * to restore balance.
6376  *
6377  * @env: The load balancing environment.
6378  *
6379  * Return:	- The busiest group if imbalance exists.
6380  *		- If no imbalance and user has opted for power-savings balance,
6381  *		   return the least loaded group whose CPUs can be
6382  *		   put to idle by rebalancing its tasks onto our group.
6383  */
6384 static struct sched_group *find_busiest_group(struct lb_env *env)
6385 {
6386 	struct sg_lb_stats *local, *busiest;
6387 	struct sd_lb_stats sds;
6388 
6389 	init_sd_lb_stats(&sds);
6390 
6391 	/*
6392 	 * Compute the various statistics relavent for load balancing at
6393 	 * this level.
6394 	 */
6395 	update_sd_lb_stats(env, &sds);
6396 	local = &sds.local_stat;
6397 	busiest = &sds.busiest_stat;
6398 
6399 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6400 	    check_asym_packing(env, &sds))
6401 		return sds.busiest;
6402 
6403 	/* There is no busy sibling group to pull tasks from */
6404 	if (!sds.busiest || busiest->sum_nr_running == 0)
6405 		goto out_balanced;
6406 
6407 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6408 						/ sds.total_capacity;
6409 
6410 	/*
6411 	 * If the busiest group is imbalanced the below checks don't
6412 	 * work because they assume all things are equal, which typically
6413 	 * isn't true due to cpus_allowed constraints and the like.
6414 	 */
6415 	if (busiest->group_type == group_imbalanced)
6416 		goto force_balance;
6417 
6418 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6419 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6420 	    !busiest->group_has_free_capacity)
6421 		goto force_balance;
6422 
6423 	/*
6424 	 * If the local group is busier than the selected busiest group
6425 	 * don't try and pull any tasks.
6426 	 */
6427 	if (local->avg_load >= busiest->avg_load)
6428 		goto out_balanced;
6429 
6430 	/*
6431 	 * Don't pull any tasks if this group is already above the domain
6432 	 * average load.
6433 	 */
6434 	if (local->avg_load >= sds.avg_load)
6435 		goto out_balanced;
6436 
6437 	if (env->idle == CPU_IDLE) {
6438 		/*
6439 		 * This cpu is idle. If the busiest group is not overloaded
6440 		 * and there is no imbalance between this and busiest group
6441 		 * wrt idle cpus, it is balanced. The imbalance becomes
6442 		 * significant if the diff is greater than 1 otherwise we
6443 		 * might end up to just move the imbalance on another group
6444 		 */
6445 		if ((busiest->group_type != group_overloaded) &&
6446 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6447 			goto out_balanced;
6448 	} else {
6449 		/*
6450 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6451 		 * imbalance_pct to be conservative.
6452 		 */
6453 		if (100 * busiest->avg_load <=
6454 				env->sd->imbalance_pct * local->avg_load)
6455 			goto out_balanced;
6456 	}
6457 
6458 force_balance:
6459 	/* Looks like there is an imbalance. Compute it */
6460 	calculate_imbalance(env, &sds);
6461 	return sds.busiest;
6462 
6463 out_balanced:
6464 	env->imbalance = 0;
6465 	return NULL;
6466 }
6467 
6468 /*
6469  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6470  */
6471 static struct rq *find_busiest_queue(struct lb_env *env,
6472 				     struct sched_group *group)
6473 {
6474 	struct rq *busiest = NULL, *rq;
6475 	unsigned long busiest_load = 0, busiest_capacity = 1;
6476 	int i;
6477 
6478 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6479 		unsigned long capacity, capacity_factor, wl;
6480 		enum fbq_type rt;
6481 
6482 		rq = cpu_rq(i);
6483 		rt = fbq_classify_rq(rq);
6484 
6485 		/*
6486 		 * We classify groups/runqueues into three groups:
6487 		 *  - regular: there are !numa tasks
6488 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6489 		 *  - all:     there is no distinction
6490 		 *
6491 		 * In order to avoid migrating ideally placed numa tasks,
6492 		 * ignore those when there's better options.
6493 		 *
6494 		 * If we ignore the actual busiest queue to migrate another
6495 		 * task, the next balance pass can still reduce the busiest
6496 		 * queue by moving tasks around inside the node.
6497 		 *
6498 		 * If we cannot move enough load due to this classification
6499 		 * the next pass will adjust the group classification and
6500 		 * allow migration of more tasks.
6501 		 *
6502 		 * Both cases only affect the total convergence complexity.
6503 		 */
6504 		if (rt > env->fbq_type)
6505 			continue;
6506 
6507 		capacity = capacity_of(i);
6508 		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6509 		if (!capacity_factor)
6510 			capacity_factor = fix_small_capacity(env->sd, group);
6511 
6512 		wl = weighted_cpuload(i);
6513 
6514 		/*
6515 		 * When comparing with imbalance, use weighted_cpuload()
6516 		 * which is not scaled with the cpu capacity.
6517 		 */
6518 		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6519 			continue;
6520 
6521 		/*
6522 		 * For the load comparisons with the other cpu's, consider
6523 		 * the weighted_cpuload() scaled with the cpu capacity, so
6524 		 * that the load can be moved away from the cpu that is
6525 		 * potentially running at a lower capacity.
6526 		 *
6527 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6528 		 * multiplication to rid ourselves of the division works out
6529 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6530 		 * our previous maximum.
6531 		 */
6532 		if (wl * busiest_capacity > busiest_load * capacity) {
6533 			busiest_load = wl;
6534 			busiest_capacity = capacity;
6535 			busiest = rq;
6536 		}
6537 	}
6538 
6539 	return busiest;
6540 }
6541 
6542 /*
6543  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6544  * so long as it is large enough.
6545  */
6546 #define MAX_PINNED_INTERVAL	512
6547 
6548 /* Working cpumask for load_balance and load_balance_newidle. */
6549 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6550 
6551 static int need_active_balance(struct lb_env *env)
6552 {
6553 	struct sched_domain *sd = env->sd;
6554 
6555 	if (env->idle == CPU_NEWLY_IDLE) {
6556 
6557 		/*
6558 		 * ASYM_PACKING needs to force migrate tasks from busy but
6559 		 * higher numbered CPUs in order to pack all tasks in the
6560 		 * lowest numbered CPUs.
6561 		 */
6562 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6563 			return 1;
6564 	}
6565 
6566 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6567 }
6568 
6569 static int active_load_balance_cpu_stop(void *data);
6570 
6571 static int should_we_balance(struct lb_env *env)
6572 {
6573 	struct sched_group *sg = env->sd->groups;
6574 	struct cpumask *sg_cpus, *sg_mask;
6575 	int cpu, balance_cpu = -1;
6576 
6577 	/*
6578 	 * In the newly idle case, we will allow all the cpu's
6579 	 * to do the newly idle load balance.
6580 	 */
6581 	if (env->idle == CPU_NEWLY_IDLE)
6582 		return 1;
6583 
6584 	sg_cpus = sched_group_cpus(sg);
6585 	sg_mask = sched_group_mask(sg);
6586 	/* Try to find first idle cpu */
6587 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6588 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6589 			continue;
6590 
6591 		balance_cpu = cpu;
6592 		break;
6593 	}
6594 
6595 	if (balance_cpu == -1)
6596 		balance_cpu = group_balance_cpu(sg);
6597 
6598 	/*
6599 	 * First idle cpu or the first cpu(busiest) in this sched group
6600 	 * is eligible for doing load balancing at this and above domains.
6601 	 */
6602 	return balance_cpu == env->dst_cpu;
6603 }
6604 
6605 /*
6606  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6607  * tasks if there is an imbalance.
6608  */
6609 static int load_balance(int this_cpu, struct rq *this_rq,
6610 			struct sched_domain *sd, enum cpu_idle_type idle,
6611 			int *continue_balancing)
6612 {
6613 	int ld_moved, cur_ld_moved, active_balance = 0;
6614 	struct sched_domain *sd_parent = sd->parent;
6615 	struct sched_group *group;
6616 	struct rq *busiest;
6617 	unsigned long flags;
6618 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6619 
6620 	struct lb_env env = {
6621 		.sd		= sd,
6622 		.dst_cpu	= this_cpu,
6623 		.dst_rq		= this_rq,
6624 		.dst_grpmask    = sched_group_cpus(sd->groups),
6625 		.idle		= idle,
6626 		.loop_break	= sched_nr_migrate_break,
6627 		.cpus		= cpus,
6628 		.fbq_type	= all,
6629 		.tasks		= LIST_HEAD_INIT(env.tasks),
6630 	};
6631 
6632 	/*
6633 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6634 	 * other cpus in our group
6635 	 */
6636 	if (idle == CPU_NEWLY_IDLE)
6637 		env.dst_grpmask = NULL;
6638 
6639 	cpumask_copy(cpus, cpu_active_mask);
6640 
6641 	schedstat_inc(sd, lb_count[idle]);
6642 
6643 redo:
6644 	if (!should_we_balance(&env)) {
6645 		*continue_balancing = 0;
6646 		goto out_balanced;
6647 	}
6648 
6649 	group = find_busiest_group(&env);
6650 	if (!group) {
6651 		schedstat_inc(sd, lb_nobusyg[idle]);
6652 		goto out_balanced;
6653 	}
6654 
6655 	busiest = find_busiest_queue(&env, group);
6656 	if (!busiest) {
6657 		schedstat_inc(sd, lb_nobusyq[idle]);
6658 		goto out_balanced;
6659 	}
6660 
6661 	BUG_ON(busiest == env.dst_rq);
6662 
6663 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6664 
6665 	ld_moved = 0;
6666 	if (busiest->nr_running > 1) {
6667 		/*
6668 		 * Attempt to move tasks. If find_busiest_group has found
6669 		 * an imbalance but busiest->nr_running <= 1, the group is
6670 		 * still unbalanced. ld_moved simply stays zero, so it is
6671 		 * correctly treated as an imbalance.
6672 		 */
6673 		env.flags |= LBF_ALL_PINNED;
6674 		env.src_cpu   = busiest->cpu;
6675 		env.src_rq    = busiest;
6676 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6677 
6678 more_balance:
6679 		raw_spin_lock_irqsave(&busiest->lock, flags);
6680 
6681 		/*
6682 		 * cur_ld_moved - load moved in current iteration
6683 		 * ld_moved     - cumulative load moved across iterations
6684 		 */
6685 		cur_ld_moved = detach_tasks(&env);
6686 
6687 		/*
6688 		 * We've detached some tasks from busiest_rq. Every
6689 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6690 		 * unlock busiest->lock, and we are able to be sure
6691 		 * that nobody can manipulate the tasks in parallel.
6692 		 * See task_rq_lock() family for the details.
6693 		 */
6694 
6695 		raw_spin_unlock(&busiest->lock);
6696 
6697 		if (cur_ld_moved) {
6698 			attach_tasks(&env);
6699 			ld_moved += cur_ld_moved;
6700 		}
6701 
6702 		local_irq_restore(flags);
6703 
6704 		if (env.flags & LBF_NEED_BREAK) {
6705 			env.flags &= ~LBF_NEED_BREAK;
6706 			goto more_balance;
6707 		}
6708 
6709 		/*
6710 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6711 		 * us and move them to an alternate dst_cpu in our sched_group
6712 		 * where they can run. The upper limit on how many times we
6713 		 * iterate on same src_cpu is dependent on number of cpus in our
6714 		 * sched_group.
6715 		 *
6716 		 * This changes load balance semantics a bit on who can move
6717 		 * load to a given_cpu. In addition to the given_cpu itself
6718 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6719 		 * nohz-idle), we now have balance_cpu in a position to move
6720 		 * load to given_cpu. In rare situations, this may cause
6721 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6722 		 * _independently_ and at _same_ time to move some load to
6723 		 * given_cpu) causing exceess load to be moved to given_cpu.
6724 		 * This however should not happen so much in practice and
6725 		 * moreover subsequent load balance cycles should correct the
6726 		 * excess load moved.
6727 		 */
6728 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6729 
6730 			/* Prevent to re-select dst_cpu via env's cpus */
6731 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6732 
6733 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6734 			env.dst_cpu	 = env.new_dst_cpu;
6735 			env.flags	&= ~LBF_DST_PINNED;
6736 			env.loop	 = 0;
6737 			env.loop_break	 = sched_nr_migrate_break;
6738 
6739 			/*
6740 			 * Go back to "more_balance" rather than "redo" since we
6741 			 * need to continue with same src_cpu.
6742 			 */
6743 			goto more_balance;
6744 		}
6745 
6746 		/*
6747 		 * We failed to reach balance because of affinity.
6748 		 */
6749 		if (sd_parent) {
6750 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6751 
6752 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6753 				*group_imbalance = 1;
6754 		}
6755 
6756 		/* All tasks on this runqueue were pinned by CPU affinity */
6757 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6758 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6759 			if (!cpumask_empty(cpus)) {
6760 				env.loop = 0;
6761 				env.loop_break = sched_nr_migrate_break;
6762 				goto redo;
6763 			}
6764 			goto out_all_pinned;
6765 		}
6766 	}
6767 
6768 	if (!ld_moved) {
6769 		schedstat_inc(sd, lb_failed[idle]);
6770 		/*
6771 		 * Increment the failure counter only on periodic balance.
6772 		 * We do not want newidle balance, which can be very
6773 		 * frequent, pollute the failure counter causing
6774 		 * excessive cache_hot migrations and active balances.
6775 		 */
6776 		if (idle != CPU_NEWLY_IDLE)
6777 			sd->nr_balance_failed++;
6778 
6779 		if (need_active_balance(&env)) {
6780 			raw_spin_lock_irqsave(&busiest->lock, flags);
6781 
6782 			/* don't kick the active_load_balance_cpu_stop,
6783 			 * if the curr task on busiest cpu can't be
6784 			 * moved to this_cpu
6785 			 */
6786 			if (!cpumask_test_cpu(this_cpu,
6787 					tsk_cpus_allowed(busiest->curr))) {
6788 				raw_spin_unlock_irqrestore(&busiest->lock,
6789 							    flags);
6790 				env.flags |= LBF_ALL_PINNED;
6791 				goto out_one_pinned;
6792 			}
6793 
6794 			/*
6795 			 * ->active_balance synchronizes accesses to
6796 			 * ->active_balance_work.  Once set, it's cleared
6797 			 * only after active load balance is finished.
6798 			 */
6799 			if (!busiest->active_balance) {
6800 				busiest->active_balance = 1;
6801 				busiest->push_cpu = this_cpu;
6802 				active_balance = 1;
6803 			}
6804 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6805 
6806 			if (active_balance) {
6807 				stop_one_cpu_nowait(cpu_of(busiest),
6808 					active_load_balance_cpu_stop, busiest,
6809 					&busiest->active_balance_work);
6810 			}
6811 
6812 			/*
6813 			 * We've kicked active balancing, reset the failure
6814 			 * counter.
6815 			 */
6816 			sd->nr_balance_failed = sd->cache_nice_tries+1;
6817 		}
6818 	} else
6819 		sd->nr_balance_failed = 0;
6820 
6821 	if (likely(!active_balance)) {
6822 		/* We were unbalanced, so reset the balancing interval */
6823 		sd->balance_interval = sd->min_interval;
6824 	} else {
6825 		/*
6826 		 * If we've begun active balancing, start to back off. This
6827 		 * case may not be covered by the all_pinned logic if there
6828 		 * is only 1 task on the busy runqueue (because we don't call
6829 		 * detach_tasks).
6830 		 */
6831 		if (sd->balance_interval < sd->max_interval)
6832 			sd->balance_interval *= 2;
6833 	}
6834 
6835 	goto out;
6836 
6837 out_balanced:
6838 	/*
6839 	 * We reach balance although we may have faced some affinity
6840 	 * constraints. Clear the imbalance flag if it was set.
6841 	 */
6842 	if (sd_parent) {
6843 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6844 
6845 		if (*group_imbalance)
6846 			*group_imbalance = 0;
6847 	}
6848 
6849 out_all_pinned:
6850 	/*
6851 	 * We reach balance because all tasks are pinned at this level so
6852 	 * we can't migrate them. Let the imbalance flag set so parent level
6853 	 * can try to migrate them.
6854 	 */
6855 	schedstat_inc(sd, lb_balanced[idle]);
6856 
6857 	sd->nr_balance_failed = 0;
6858 
6859 out_one_pinned:
6860 	/* tune up the balancing interval */
6861 	if (((env.flags & LBF_ALL_PINNED) &&
6862 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6863 			(sd->balance_interval < sd->max_interval))
6864 		sd->balance_interval *= 2;
6865 
6866 	ld_moved = 0;
6867 out:
6868 	return ld_moved;
6869 }
6870 
6871 static inline unsigned long
6872 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6873 {
6874 	unsigned long interval = sd->balance_interval;
6875 
6876 	if (cpu_busy)
6877 		interval *= sd->busy_factor;
6878 
6879 	/* scale ms to jiffies */
6880 	interval = msecs_to_jiffies(interval);
6881 	interval = clamp(interval, 1UL, max_load_balance_interval);
6882 
6883 	return interval;
6884 }
6885 
6886 static inline void
6887 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6888 {
6889 	unsigned long interval, next;
6890 
6891 	interval = get_sd_balance_interval(sd, cpu_busy);
6892 	next = sd->last_balance + interval;
6893 
6894 	if (time_after(*next_balance, next))
6895 		*next_balance = next;
6896 }
6897 
6898 /*
6899  * idle_balance is called by schedule() if this_cpu is about to become
6900  * idle. Attempts to pull tasks from other CPUs.
6901  */
6902 static int idle_balance(struct rq *this_rq)
6903 {
6904 	unsigned long next_balance = jiffies + HZ;
6905 	int this_cpu = this_rq->cpu;
6906 	struct sched_domain *sd;
6907 	int pulled_task = 0;
6908 	u64 curr_cost = 0;
6909 
6910 	idle_enter_fair(this_rq);
6911 
6912 	/*
6913 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6914 	 * measure the duration of idle_balance() as idle time.
6915 	 */
6916 	this_rq->idle_stamp = rq_clock(this_rq);
6917 
6918 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6919 	    !this_rq->rd->overload) {
6920 		rcu_read_lock();
6921 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
6922 		if (sd)
6923 			update_next_balance(sd, 0, &next_balance);
6924 		rcu_read_unlock();
6925 
6926 		goto out;
6927 	}
6928 
6929 	/*
6930 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6931 	 */
6932 	raw_spin_unlock(&this_rq->lock);
6933 
6934 	update_blocked_averages(this_cpu);
6935 	rcu_read_lock();
6936 	for_each_domain(this_cpu, sd) {
6937 		int continue_balancing = 1;
6938 		u64 t0, domain_cost;
6939 
6940 		if (!(sd->flags & SD_LOAD_BALANCE))
6941 			continue;
6942 
6943 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6944 			update_next_balance(sd, 0, &next_balance);
6945 			break;
6946 		}
6947 
6948 		if (sd->flags & SD_BALANCE_NEWIDLE) {
6949 			t0 = sched_clock_cpu(this_cpu);
6950 
6951 			pulled_task = load_balance(this_cpu, this_rq,
6952 						   sd, CPU_NEWLY_IDLE,
6953 						   &continue_balancing);
6954 
6955 			domain_cost = sched_clock_cpu(this_cpu) - t0;
6956 			if (domain_cost > sd->max_newidle_lb_cost)
6957 				sd->max_newidle_lb_cost = domain_cost;
6958 
6959 			curr_cost += domain_cost;
6960 		}
6961 
6962 		update_next_balance(sd, 0, &next_balance);
6963 
6964 		/*
6965 		 * Stop searching for tasks to pull if there are
6966 		 * now runnable tasks on this rq.
6967 		 */
6968 		if (pulled_task || this_rq->nr_running > 0)
6969 			break;
6970 	}
6971 	rcu_read_unlock();
6972 
6973 	raw_spin_lock(&this_rq->lock);
6974 
6975 	if (curr_cost > this_rq->max_idle_balance_cost)
6976 		this_rq->max_idle_balance_cost = curr_cost;
6977 
6978 	/*
6979 	 * While browsing the domains, we released the rq lock, a task could
6980 	 * have been enqueued in the meantime. Since we're not going idle,
6981 	 * pretend we pulled a task.
6982 	 */
6983 	if (this_rq->cfs.h_nr_running && !pulled_task)
6984 		pulled_task = 1;
6985 
6986 out:
6987 	/* Move the next balance forward */
6988 	if (time_after(this_rq->next_balance, next_balance))
6989 		this_rq->next_balance = next_balance;
6990 
6991 	/* Is there a task of a high priority class? */
6992 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6993 		pulled_task = -1;
6994 
6995 	if (pulled_task) {
6996 		idle_exit_fair(this_rq);
6997 		this_rq->idle_stamp = 0;
6998 	}
6999 
7000 	return pulled_task;
7001 }
7002 
7003 /*
7004  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7005  * running tasks off the busiest CPU onto idle CPUs. It requires at
7006  * least 1 task to be running on each physical CPU where possible, and
7007  * avoids physical / logical imbalances.
7008  */
7009 static int active_load_balance_cpu_stop(void *data)
7010 {
7011 	struct rq *busiest_rq = data;
7012 	int busiest_cpu = cpu_of(busiest_rq);
7013 	int target_cpu = busiest_rq->push_cpu;
7014 	struct rq *target_rq = cpu_rq(target_cpu);
7015 	struct sched_domain *sd;
7016 	struct task_struct *p = NULL;
7017 
7018 	raw_spin_lock_irq(&busiest_rq->lock);
7019 
7020 	/* make sure the requested cpu hasn't gone down in the meantime */
7021 	if (unlikely(busiest_cpu != smp_processor_id() ||
7022 		     !busiest_rq->active_balance))
7023 		goto out_unlock;
7024 
7025 	/* Is there any task to move? */
7026 	if (busiest_rq->nr_running <= 1)
7027 		goto out_unlock;
7028 
7029 	/*
7030 	 * This condition is "impossible", if it occurs
7031 	 * we need to fix it. Originally reported by
7032 	 * Bjorn Helgaas on a 128-cpu setup.
7033 	 */
7034 	BUG_ON(busiest_rq == target_rq);
7035 
7036 	/* Search for an sd spanning us and the target CPU. */
7037 	rcu_read_lock();
7038 	for_each_domain(target_cpu, sd) {
7039 		if ((sd->flags & SD_LOAD_BALANCE) &&
7040 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7041 				break;
7042 	}
7043 
7044 	if (likely(sd)) {
7045 		struct lb_env env = {
7046 			.sd		= sd,
7047 			.dst_cpu	= target_cpu,
7048 			.dst_rq		= target_rq,
7049 			.src_cpu	= busiest_rq->cpu,
7050 			.src_rq		= busiest_rq,
7051 			.idle		= CPU_IDLE,
7052 		};
7053 
7054 		schedstat_inc(sd, alb_count);
7055 
7056 		p = detach_one_task(&env);
7057 		if (p)
7058 			schedstat_inc(sd, alb_pushed);
7059 		else
7060 			schedstat_inc(sd, alb_failed);
7061 	}
7062 	rcu_read_unlock();
7063 out_unlock:
7064 	busiest_rq->active_balance = 0;
7065 	raw_spin_unlock(&busiest_rq->lock);
7066 
7067 	if (p)
7068 		attach_one_task(target_rq, p);
7069 
7070 	local_irq_enable();
7071 
7072 	return 0;
7073 }
7074 
7075 static inline int on_null_domain(struct rq *rq)
7076 {
7077 	return unlikely(!rcu_dereference_sched(rq->sd));
7078 }
7079 
7080 #ifdef CONFIG_NO_HZ_COMMON
7081 /*
7082  * idle load balancing details
7083  * - When one of the busy CPUs notice that there may be an idle rebalancing
7084  *   needed, they will kick the idle load balancer, which then does idle
7085  *   load balancing for all the idle CPUs.
7086  */
7087 static struct {
7088 	cpumask_var_t idle_cpus_mask;
7089 	atomic_t nr_cpus;
7090 	unsigned long next_balance;     /* in jiffy units */
7091 } nohz ____cacheline_aligned;
7092 
7093 static inline int find_new_ilb(void)
7094 {
7095 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7096 
7097 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7098 		return ilb;
7099 
7100 	return nr_cpu_ids;
7101 }
7102 
7103 /*
7104  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7105  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7106  * CPU (if there is one).
7107  */
7108 static void nohz_balancer_kick(void)
7109 {
7110 	int ilb_cpu;
7111 
7112 	nohz.next_balance++;
7113 
7114 	ilb_cpu = find_new_ilb();
7115 
7116 	if (ilb_cpu >= nr_cpu_ids)
7117 		return;
7118 
7119 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7120 		return;
7121 	/*
7122 	 * Use smp_send_reschedule() instead of resched_cpu().
7123 	 * This way we generate a sched IPI on the target cpu which
7124 	 * is idle. And the softirq performing nohz idle load balance
7125 	 * will be run before returning from the IPI.
7126 	 */
7127 	smp_send_reschedule(ilb_cpu);
7128 	return;
7129 }
7130 
7131 static inline void nohz_balance_exit_idle(int cpu)
7132 {
7133 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7134 		/*
7135 		 * Completely isolated CPUs don't ever set, so we must test.
7136 		 */
7137 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7138 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7139 			atomic_dec(&nohz.nr_cpus);
7140 		}
7141 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7142 	}
7143 }
7144 
7145 static inline void set_cpu_sd_state_busy(void)
7146 {
7147 	struct sched_domain *sd;
7148 	int cpu = smp_processor_id();
7149 
7150 	rcu_read_lock();
7151 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7152 
7153 	if (!sd || !sd->nohz_idle)
7154 		goto unlock;
7155 	sd->nohz_idle = 0;
7156 
7157 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7158 unlock:
7159 	rcu_read_unlock();
7160 }
7161 
7162 void set_cpu_sd_state_idle(void)
7163 {
7164 	struct sched_domain *sd;
7165 	int cpu = smp_processor_id();
7166 
7167 	rcu_read_lock();
7168 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7169 
7170 	if (!sd || sd->nohz_idle)
7171 		goto unlock;
7172 	sd->nohz_idle = 1;
7173 
7174 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7175 unlock:
7176 	rcu_read_unlock();
7177 }
7178 
7179 /*
7180  * This routine will record that the cpu is going idle with tick stopped.
7181  * This info will be used in performing idle load balancing in the future.
7182  */
7183 void nohz_balance_enter_idle(int cpu)
7184 {
7185 	/*
7186 	 * If this cpu is going down, then nothing needs to be done.
7187 	 */
7188 	if (!cpu_active(cpu))
7189 		return;
7190 
7191 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7192 		return;
7193 
7194 	/*
7195 	 * If we're a completely isolated CPU, we don't play.
7196 	 */
7197 	if (on_null_domain(cpu_rq(cpu)))
7198 		return;
7199 
7200 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7201 	atomic_inc(&nohz.nr_cpus);
7202 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7203 }
7204 
7205 static int sched_ilb_notifier(struct notifier_block *nfb,
7206 					unsigned long action, void *hcpu)
7207 {
7208 	switch (action & ~CPU_TASKS_FROZEN) {
7209 	case CPU_DYING:
7210 		nohz_balance_exit_idle(smp_processor_id());
7211 		return NOTIFY_OK;
7212 	default:
7213 		return NOTIFY_DONE;
7214 	}
7215 }
7216 #endif
7217 
7218 static DEFINE_SPINLOCK(balancing);
7219 
7220 /*
7221  * Scale the max load_balance interval with the number of CPUs in the system.
7222  * This trades load-balance latency on larger machines for less cross talk.
7223  */
7224 void update_max_interval(void)
7225 {
7226 	max_load_balance_interval = HZ*num_online_cpus()/10;
7227 }
7228 
7229 /*
7230  * It checks each scheduling domain to see if it is due to be balanced,
7231  * and initiates a balancing operation if so.
7232  *
7233  * Balancing parameters are set up in init_sched_domains.
7234  */
7235 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7236 {
7237 	int continue_balancing = 1;
7238 	int cpu = rq->cpu;
7239 	unsigned long interval;
7240 	struct sched_domain *sd;
7241 	/* Earliest time when we have to do rebalance again */
7242 	unsigned long next_balance = jiffies + 60*HZ;
7243 	int update_next_balance = 0;
7244 	int need_serialize, need_decay = 0;
7245 	u64 max_cost = 0;
7246 
7247 	update_blocked_averages(cpu);
7248 
7249 	rcu_read_lock();
7250 	for_each_domain(cpu, sd) {
7251 		/*
7252 		 * Decay the newidle max times here because this is a regular
7253 		 * visit to all the domains. Decay ~1% per second.
7254 		 */
7255 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7256 			sd->max_newidle_lb_cost =
7257 				(sd->max_newidle_lb_cost * 253) / 256;
7258 			sd->next_decay_max_lb_cost = jiffies + HZ;
7259 			need_decay = 1;
7260 		}
7261 		max_cost += sd->max_newidle_lb_cost;
7262 
7263 		if (!(sd->flags & SD_LOAD_BALANCE))
7264 			continue;
7265 
7266 		/*
7267 		 * Stop the load balance at this level. There is another
7268 		 * CPU in our sched group which is doing load balancing more
7269 		 * actively.
7270 		 */
7271 		if (!continue_balancing) {
7272 			if (need_decay)
7273 				continue;
7274 			break;
7275 		}
7276 
7277 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7278 
7279 		need_serialize = sd->flags & SD_SERIALIZE;
7280 		if (need_serialize) {
7281 			if (!spin_trylock(&balancing))
7282 				goto out;
7283 		}
7284 
7285 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7286 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7287 				/*
7288 				 * The LBF_DST_PINNED logic could have changed
7289 				 * env->dst_cpu, so we can't know our idle
7290 				 * state even if we migrated tasks. Update it.
7291 				 */
7292 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7293 			}
7294 			sd->last_balance = jiffies;
7295 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7296 		}
7297 		if (need_serialize)
7298 			spin_unlock(&balancing);
7299 out:
7300 		if (time_after(next_balance, sd->last_balance + interval)) {
7301 			next_balance = sd->last_balance + interval;
7302 			update_next_balance = 1;
7303 		}
7304 	}
7305 	if (need_decay) {
7306 		/*
7307 		 * Ensure the rq-wide value also decays but keep it at a
7308 		 * reasonable floor to avoid funnies with rq->avg_idle.
7309 		 */
7310 		rq->max_idle_balance_cost =
7311 			max((u64)sysctl_sched_migration_cost, max_cost);
7312 	}
7313 	rcu_read_unlock();
7314 
7315 	/*
7316 	 * next_balance will be updated only when there is a need.
7317 	 * When the cpu is attached to null domain for ex, it will not be
7318 	 * updated.
7319 	 */
7320 	if (likely(update_next_balance))
7321 		rq->next_balance = next_balance;
7322 }
7323 
7324 #ifdef CONFIG_NO_HZ_COMMON
7325 /*
7326  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7327  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7328  */
7329 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7330 {
7331 	int this_cpu = this_rq->cpu;
7332 	struct rq *rq;
7333 	int balance_cpu;
7334 
7335 	if (idle != CPU_IDLE ||
7336 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7337 		goto end;
7338 
7339 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7340 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7341 			continue;
7342 
7343 		/*
7344 		 * If this cpu gets work to do, stop the load balancing
7345 		 * work being done for other cpus. Next load
7346 		 * balancing owner will pick it up.
7347 		 */
7348 		if (need_resched())
7349 			break;
7350 
7351 		rq = cpu_rq(balance_cpu);
7352 
7353 		/*
7354 		 * If time for next balance is due,
7355 		 * do the balance.
7356 		 */
7357 		if (time_after_eq(jiffies, rq->next_balance)) {
7358 			raw_spin_lock_irq(&rq->lock);
7359 			update_rq_clock(rq);
7360 			update_idle_cpu_load(rq);
7361 			raw_spin_unlock_irq(&rq->lock);
7362 			rebalance_domains(rq, CPU_IDLE);
7363 		}
7364 
7365 		if (time_after(this_rq->next_balance, rq->next_balance))
7366 			this_rq->next_balance = rq->next_balance;
7367 	}
7368 	nohz.next_balance = this_rq->next_balance;
7369 end:
7370 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7371 }
7372 
7373 /*
7374  * Current heuristic for kicking the idle load balancer in the presence
7375  * of an idle cpu is the system.
7376  *   - This rq has more than one task.
7377  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7378  *     busy cpu's exceeding the group's capacity.
7379  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7380  *     domain span are idle.
7381  */
7382 static inline int nohz_kick_needed(struct rq *rq)
7383 {
7384 	unsigned long now = jiffies;
7385 	struct sched_domain *sd;
7386 	struct sched_group_capacity *sgc;
7387 	int nr_busy, cpu = rq->cpu;
7388 
7389 	if (unlikely(rq->idle_balance))
7390 		return 0;
7391 
7392        /*
7393 	* We may be recently in ticked or tickless idle mode. At the first
7394 	* busy tick after returning from idle, we will update the busy stats.
7395 	*/
7396 	set_cpu_sd_state_busy();
7397 	nohz_balance_exit_idle(cpu);
7398 
7399 	/*
7400 	 * None are in tickless mode and hence no need for NOHZ idle load
7401 	 * balancing.
7402 	 */
7403 	if (likely(!atomic_read(&nohz.nr_cpus)))
7404 		return 0;
7405 
7406 	if (time_before(now, nohz.next_balance))
7407 		return 0;
7408 
7409 	if (rq->nr_running >= 2)
7410 		goto need_kick;
7411 
7412 	rcu_read_lock();
7413 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7414 
7415 	if (sd) {
7416 		sgc = sd->groups->sgc;
7417 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7418 
7419 		if (nr_busy > 1)
7420 			goto need_kick_unlock;
7421 	}
7422 
7423 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7424 
7425 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7426 				  sched_domain_span(sd)) < cpu))
7427 		goto need_kick_unlock;
7428 
7429 	rcu_read_unlock();
7430 	return 0;
7431 
7432 need_kick_unlock:
7433 	rcu_read_unlock();
7434 need_kick:
7435 	return 1;
7436 }
7437 #else
7438 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7439 #endif
7440 
7441 /*
7442  * run_rebalance_domains is triggered when needed from the scheduler tick.
7443  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7444  */
7445 static void run_rebalance_domains(struct softirq_action *h)
7446 {
7447 	struct rq *this_rq = this_rq();
7448 	enum cpu_idle_type idle = this_rq->idle_balance ?
7449 						CPU_IDLE : CPU_NOT_IDLE;
7450 
7451 	rebalance_domains(this_rq, idle);
7452 
7453 	/*
7454 	 * If this cpu has a pending nohz_balance_kick, then do the
7455 	 * balancing on behalf of the other idle cpus whose ticks are
7456 	 * stopped.
7457 	 */
7458 	nohz_idle_balance(this_rq, idle);
7459 }
7460 
7461 /*
7462  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7463  */
7464 void trigger_load_balance(struct rq *rq)
7465 {
7466 	/* Don't need to rebalance while attached to NULL domain */
7467 	if (unlikely(on_null_domain(rq)))
7468 		return;
7469 
7470 	if (time_after_eq(jiffies, rq->next_balance))
7471 		raise_softirq(SCHED_SOFTIRQ);
7472 #ifdef CONFIG_NO_HZ_COMMON
7473 	if (nohz_kick_needed(rq))
7474 		nohz_balancer_kick();
7475 #endif
7476 }
7477 
7478 static void rq_online_fair(struct rq *rq)
7479 {
7480 	update_sysctl();
7481 
7482 	update_runtime_enabled(rq);
7483 }
7484 
7485 static void rq_offline_fair(struct rq *rq)
7486 {
7487 	update_sysctl();
7488 
7489 	/* Ensure any throttled groups are reachable by pick_next_task */
7490 	unthrottle_offline_cfs_rqs(rq);
7491 }
7492 
7493 #endif /* CONFIG_SMP */
7494 
7495 /*
7496  * scheduler tick hitting a task of our scheduling class:
7497  */
7498 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7499 {
7500 	struct cfs_rq *cfs_rq;
7501 	struct sched_entity *se = &curr->se;
7502 
7503 	for_each_sched_entity(se) {
7504 		cfs_rq = cfs_rq_of(se);
7505 		entity_tick(cfs_rq, se, queued);
7506 	}
7507 
7508 	if (numabalancing_enabled)
7509 		task_tick_numa(rq, curr);
7510 
7511 	update_rq_runnable_avg(rq, 1);
7512 }
7513 
7514 /*
7515  * called on fork with the child task as argument from the parent's context
7516  *  - child not yet on the tasklist
7517  *  - preemption disabled
7518  */
7519 static void task_fork_fair(struct task_struct *p)
7520 {
7521 	struct cfs_rq *cfs_rq;
7522 	struct sched_entity *se = &p->se, *curr;
7523 	int this_cpu = smp_processor_id();
7524 	struct rq *rq = this_rq();
7525 	unsigned long flags;
7526 
7527 	raw_spin_lock_irqsave(&rq->lock, flags);
7528 
7529 	update_rq_clock(rq);
7530 
7531 	cfs_rq = task_cfs_rq(current);
7532 	curr = cfs_rq->curr;
7533 
7534 	/*
7535 	 * Not only the cpu but also the task_group of the parent might have
7536 	 * been changed after parent->se.parent,cfs_rq were copied to
7537 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7538 	 * of child point to valid ones.
7539 	 */
7540 	rcu_read_lock();
7541 	__set_task_cpu(p, this_cpu);
7542 	rcu_read_unlock();
7543 
7544 	update_curr(cfs_rq);
7545 
7546 	if (curr)
7547 		se->vruntime = curr->vruntime;
7548 	place_entity(cfs_rq, se, 1);
7549 
7550 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7551 		/*
7552 		 * Upon rescheduling, sched_class::put_prev_task() will place
7553 		 * 'current' within the tree based on its new key value.
7554 		 */
7555 		swap(curr->vruntime, se->vruntime);
7556 		resched_curr(rq);
7557 	}
7558 
7559 	se->vruntime -= cfs_rq->min_vruntime;
7560 
7561 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7562 }
7563 
7564 /*
7565  * Priority of the task has changed. Check to see if we preempt
7566  * the current task.
7567  */
7568 static void
7569 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7570 {
7571 	if (!task_on_rq_queued(p))
7572 		return;
7573 
7574 	/*
7575 	 * Reschedule if we are currently running on this runqueue and
7576 	 * our priority decreased, or if we are not currently running on
7577 	 * this runqueue and our priority is higher than the current's
7578 	 */
7579 	if (rq->curr == p) {
7580 		if (p->prio > oldprio)
7581 			resched_curr(rq);
7582 	} else
7583 		check_preempt_curr(rq, p, 0);
7584 }
7585 
7586 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7587 {
7588 	struct sched_entity *se = &p->se;
7589 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7590 
7591 	/*
7592 	 * Ensure the task's vruntime is normalized, so that when it's
7593 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7594 	 * do the right thing.
7595 	 *
7596 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7597 	 * have normalized the vruntime, if it's !queued, then only when
7598 	 * the task is sleeping will it still have non-normalized vruntime.
7599 	 */
7600 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7601 		/*
7602 		 * Fix up our vruntime so that the current sleep doesn't
7603 		 * cause 'unlimited' sleep bonus.
7604 		 */
7605 		place_entity(cfs_rq, se, 0);
7606 		se->vruntime -= cfs_rq->min_vruntime;
7607 	}
7608 
7609 #ifdef CONFIG_SMP
7610 	/*
7611 	* Remove our load from contribution when we leave sched_fair
7612 	* and ensure we don't carry in an old decay_count if we
7613 	* switch back.
7614 	*/
7615 	if (se->avg.decay_count) {
7616 		__synchronize_entity_decay(se);
7617 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7618 	}
7619 #endif
7620 }
7621 
7622 /*
7623  * We switched to the sched_fair class.
7624  */
7625 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7626 {
7627 #ifdef CONFIG_FAIR_GROUP_SCHED
7628 	struct sched_entity *se = &p->se;
7629 	/*
7630 	 * Since the real-depth could have been changed (only FAIR
7631 	 * class maintain depth value), reset depth properly.
7632 	 */
7633 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7634 #endif
7635 	if (!task_on_rq_queued(p))
7636 		return;
7637 
7638 	/*
7639 	 * We were most likely switched from sched_rt, so
7640 	 * kick off the schedule if running, otherwise just see
7641 	 * if we can still preempt the current task.
7642 	 */
7643 	if (rq->curr == p)
7644 		resched_curr(rq);
7645 	else
7646 		check_preempt_curr(rq, p, 0);
7647 }
7648 
7649 /* Account for a task changing its policy or group.
7650  *
7651  * This routine is mostly called to set cfs_rq->curr field when a task
7652  * migrates between groups/classes.
7653  */
7654 static void set_curr_task_fair(struct rq *rq)
7655 {
7656 	struct sched_entity *se = &rq->curr->se;
7657 
7658 	for_each_sched_entity(se) {
7659 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7660 
7661 		set_next_entity(cfs_rq, se);
7662 		/* ensure bandwidth has been allocated on our new cfs_rq */
7663 		account_cfs_rq_runtime(cfs_rq, 0);
7664 	}
7665 }
7666 
7667 void init_cfs_rq(struct cfs_rq *cfs_rq)
7668 {
7669 	cfs_rq->tasks_timeline = RB_ROOT;
7670 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7671 #ifndef CONFIG_64BIT
7672 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7673 #endif
7674 #ifdef CONFIG_SMP
7675 	atomic64_set(&cfs_rq->decay_counter, 1);
7676 	atomic_long_set(&cfs_rq->removed_load, 0);
7677 #endif
7678 }
7679 
7680 #ifdef CONFIG_FAIR_GROUP_SCHED
7681 static void task_move_group_fair(struct task_struct *p, int queued)
7682 {
7683 	struct sched_entity *se = &p->se;
7684 	struct cfs_rq *cfs_rq;
7685 
7686 	/*
7687 	 * If the task was not on the rq at the time of this cgroup movement
7688 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7689 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7690 	 * bonus in place_entity()).
7691 	 *
7692 	 * If it was on the rq, we've just 'preempted' it, which does convert
7693 	 * ->vruntime to a relative base.
7694 	 *
7695 	 * Make sure both cases convert their relative position when migrating
7696 	 * to another cgroup's rq. This does somewhat interfere with the
7697 	 * fair sleeper stuff for the first placement, but who cares.
7698 	 */
7699 	/*
7700 	 * When !queued, vruntime of the task has usually NOT been normalized.
7701 	 * But there are some cases where it has already been normalized:
7702 	 *
7703 	 * - Moving a forked child which is waiting for being woken up by
7704 	 *   wake_up_new_task().
7705 	 * - Moving a task which has been woken up by try_to_wake_up() and
7706 	 *   waiting for actually being woken up by sched_ttwu_pending().
7707 	 *
7708 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7709 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7710 	 */
7711 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7712 		queued = 1;
7713 
7714 	if (!queued)
7715 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7716 	set_task_rq(p, task_cpu(p));
7717 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7718 	if (!queued) {
7719 		cfs_rq = cfs_rq_of(se);
7720 		se->vruntime += cfs_rq->min_vruntime;
7721 #ifdef CONFIG_SMP
7722 		/*
7723 		 * migrate_task_rq_fair() will have removed our previous
7724 		 * contribution, but we must synchronize for ongoing future
7725 		 * decay.
7726 		 */
7727 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7728 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7729 #endif
7730 	}
7731 }
7732 
7733 void free_fair_sched_group(struct task_group *tg)
7734 {
7735 	int i;
7736 
7737 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7738 
7739 	for_each_possible_cpu(i) {
7740 		if (tg->cfs_rq)
7741 			kfree(tg->cfs_rq[i]);
7742 		if (tg->se)
7743 			kfree(tg->se[i]);
7744 	}
7745 
7746 	kfree(tg->cfs_rq);
7747 	kfree(tg->se);
7748 }
7749 
7750 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7751 {
7752 	struct cfs_rq *cfs_rq;
7753 	struct sched_entity *se;
7754 	int i;
7755 
7756 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7757 	if (!tg->cfs_rq)
7758 		goto err;
7759 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7760 	if (!tg->se)
7761 		goto err;
7762 
7763 	tg->shares = NICE_0_LOAD;
7764 
7765 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7766 
7767 	for_each_possible_cpu(i) {
7768 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7769 				      GFP_KERNEL, cpu_to_node(i));
7770 		if (!cfs_rq)
7771 			goto err;
7772 
7773 		se = kzalloc_node(sizeof(struct sched_entity),
7774 				  GFP_KERNEL, cpu_to_node(i));
7775 		if (!se)
7776 			goto err_free_rq;
7777 
7778 		init_cfs_rq(cfs_rq);
7779 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7780 	}
7781 
7782 	return 1;
7783 
7784 err_free_rq:
7785 	kfree(cfs_rq);
7786 err:
7787 	return 0;
7788 }
7789 
7790 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7791 {
7792 	struct rq *rq = cpu_rq(cpu);
7793 	unsigned long flags;
7794 
7795 	/*
7796 	* Only empty task groups can be destroyed; so we can speculatively
7797 	* check on_list without danger of it being re-added.
7798 	*/
7799 	if (!tg->cfs_rq[cpu]->on_list)
7800 		return;
7801 
7802 	raw_spin_lock_irqsave(&rq->lock, flags);
7803 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7804 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7805 }
7806 
7807 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7808 			struct sched_entity *se, int cpu,
7809 			struct sched_entity *parent)
7810 {
7811 	struct rq *rq = cpu_rq(cpu);
7812 
7813 	cfs_rq->tg = tg;
7814 	cfs_rq->rq = rq;
7815 	init_cfs_rq_runtime(cfs_rq);
7816 
7817 	tg->cfs_rq[cpu] = cfs_rq;
7818 	tg->se[cpu] = se;
7819 
7820 	/* se could be NULL for root_task_group */
7821 	if (!se)
7822 		return;
7823 
7824 	if (!parent) {
7825 		se->cfs_rq = &rq->cfs;
7826 		se->depth = 0;
7827 	} else {
7828 		se->cfs_rq = parent->my_q;
7829 		se->depth = parent->depth + 1;
7830 	}
7831 
7832 	se->my_q = cfs_rq;
7833 	/* guarantee group entities always have weight */
7834 	update_load_set(&se->load, NICE_0_LOAD);
7835 	se->parent = parent;
7836 }
7837 
7838 static DEFINE_MUTEX(shares_mutex);
7839 
7840 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7841 {
7842 	int i;
7843 	unsigned long flags;
7844 
7845 	/*
7846 	 * We can't change the weight of the root cgroup.
7847 	 */
7848 	if (!tg->se[0])
7849 		return -EINVAL;
7850 
7851 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7852 
7853 	mutex_lock(&shares_mutex);
7854 	if (tg->shares == shares)
7855 		goto done;
7856 
7857 	tg->shares = shares;
7858 	for_each_possible_cpu(i) {
7859 		struct rq *rq = cpu_rq(i);
7860 		struct sched_entity *se;
7861 
7862 		se = tg->se[i];
7863 		/* Propagate contribution to hierarchy */
7864 		raw_spin_lock_irqsave(&rq->lock, flags);
7865 
7866 		/* Possible calls to update_curr() need rq clock */
7867 		update_rq_clock(rq);
7868 		for_each_sched_entity(se)
7869 			update_cfs_shares(group_cfs_rq(se));
7870 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7871 	}
7872 
7873 done:
7874 	mutex_unlock(&shares_mutex);
7875 	return 0;
7876 }
7877 #else /* CONFIG_FAIR_GROUP_SCHED */
7878 
7879 void free_fair_sched_group(struct task_group *tg) { }
7880 
7881 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7882 {
7883 	return 1;
7884 }
7885 
7886 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7887 
7888 #endif /* CONFIG_FAIR_GROUP_SCHED */
7889 
7890 
7891 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7892 {
7893 	struct sched_entity *se = &task->se;
7894 	unsigned int rr_interval = 0;
7895 
7896 	/*
7897 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7898 	 * idle runqueue:
7899 	 */
7900 	if (rq->cfs.load.weight)
7901 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7902 
7903 	return rr_interval;
7904 }
7905 
7906 /*
7907  * All the scheduling class methods:
7908  */
7909 const struct sched_class fair_sched_class = {
7910 	.next			= &idle_sched_class,
7911 	.enqueue_task		= enqueue_task_fair,
7912 	.dequeue_task		= dequeue_task_fair,
7913 	.yield_task		= yield_task_fair,
7914 	.yield_to_task		= yield_to_task_fair,
7915 
7916 	.check_preempt_curr	= check_preempt_wakeup,
7917 
7918 	.pick_next_task		= pick_next_task_fair,
7919 	.put_prev_task		= put_prev_task_fair,
7920 
7921 #ifdef CONFIG_SMP
7922 	.select_task_rq		= select_task_rq_fair,
7923 	.migrate_task_rq	= migrate_task_rq_fair,
7924 
7925 	.rq_online		= rq_online_fair,
7926 	.rq_offline		= rq_offline_fair,
7927 
7928 	.task_waking		= task_waking_fair,
7929 #endif
7930 
7931 	.set_curr_task          = set_curr_task_fair,
7932 	.task_tick		= task_tick_fair,
7933 	.task_fork		= task_fork_fair,
7934 
7935 	.prio_changed		= prio_changed_fair,
7936 	.switched_from		= switched_from_fair,
7937 	.switched_to		= switched_to_fair,
7938 
7939 	.get_rr_interval	= get_rr_interval_fair,
7940 
7941 #ifdef CONFIG_FAIR_GROUP_SCHED
7942 	.task_move_group	= task_move_group_fair,
7943 #endif
7944 };
7945 
7946 #ifdef CONFIG_SCHED_DEBUG
7947 void print_cfs_stats(struct seq_file *m, int cpu)
7948 {
7949 	struct cfs_rq *cfs_rq;
7950 
7951 	rcu_read_lock();
7952 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7953 		print_cfs_rq(m, cpu, cfs_rq);
7954 	rcu_read_unlock();
7955 }
7956 #endif
7957 
7958 __init void init_sched_fair_class(void)
7959 {
7960 #ifdef CONFIG_SMP
7961 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7962 
7963 #ifdef CONFIG_NO_HZ_COMMON
7964 	nohz.next_balance = jiffies;
7965 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7966 	cpu_notifier(sched_ilb_notifier, 0);
7967 #endif
7968 #endif /* SMP */
7969 
7970 }
7971