xref: /linux/kernel/sched/fair.c (revision 9f69e8a71026839d4bd2e0c6d269600bfaa6f84d)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 static inline void __update_task_entity_utilization(struct sched_entity *se);
674 
675 /* Give new task start runnable values to heavy its load in infant time */
676 void init_task_runnable_average(struct task_struct *p)
677 {
678 	u32 slice;
679 
680 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 	p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 	p->se.avg.avg_period = slice;
683 	__update_task_entity_contrib(&p->se);
684 	__update_task_entity_utilization(&p->se);
685 }
686 #else
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 }
690 #endif
691 
692 /*
693  * Update the current task's runtime statistics.
694  */
695 static void update_curr(struct cfs_rq *cfs_rq)
696 {
697 	struct sched_entity *curr = cfs_rq->curr;
698 	u64 now = rq_clock_task(rq_of(cfs_rq));
699 	u64 delta_exec;
700 
701 	if (unlikely(!curr))
702 		return;
703 
704 	delta_exec = now - curr->exec_start;
705 	if (unlikely((s64)delta_exec <= 0))
706 		return;
707 
708 	curr->exec_start = now;
709 
710 	schedstat_set(curr->statistics.exec_max,
711 		      max(delta_exec, curr->statistics.exec_max));
712 
713 	curr->sum_exec_runtime += delta_exec;
714 	schedstat_add(cfs_rq, exec_clock, delta_exec);
715 
716 	curr->vruntime += calc_delta_fair(delta_exec, curr);
717 	update_min_vruntime(cfs_rq);
718 
719 	if (entity_is_task(curr)) {
720 		struct task_struct *curtask = task_of(curr);
721 
722 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
723 		cpuacct_charge(curtask, delta_exec);
724 		account_group_exec_runtime(curtask, delta_exec);
725 	}
726 
727 	account_cfs_rq_runtime(cfs_rq, delta_exec);
728 }
729 
730 static void update_curr_fair(struct rq *rq)
731 {
732 	update_curr(cfs_rq_of(&rq->curr->se));
733 }
734 
735 static inline void
736 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
739 }
740 
741 /*
742  * Task is being enqueued - update stats:
743  */
744 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 	/*
747 	 * Are we enqueueing a waiting task? (for current tasks
748 	 * a dequeue/enqueue event is a NOP)
749 	 */
750 	if (se != cfs_rq->curr)
751 		update_stats_wait_start(cfs_rq, se);
752 }
753 
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
758 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
759 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
761 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
762 #ifdef CONFIG_SCHEDSTATS
763 	if (entity_is_task(se)) {
764 		trace_sched_stat_wait(task_of(se),
765 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
766 	}
767 #endif
768 	schedstat_set(se->statistics.wait_start, 0);
769 }
770 
771 static inline void
772 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 	/*
775 	 * Mark the end of the wait period if dequeueing a
776 	 * waiting task:
777 	 */
778 	if (se != cfs_rq->curr)
779 		update_stats_wait_end(cfs_rq, se);
780 }
781 
782 /*
783  * We are picking a new current task - update its stats:
784  */
785 static inline void
786 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 	/*
789 	 * We are starting a new run period:
790 	 */
791 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
792 }
793 
794 /**************************************************
795  * Scheduling class queueing methods:
796  */
797 
798 #ifdef CONFIG_NUMA_BALANCING
799 /*
800  * Approximate time to scan a full NUMA task in ms. The task scan period is
801  * calculated based on the tasks virtual memory size and
802  * numa_balancing_scan_size.
803  */
804 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
806 
807 /* Portion of address space to scan in MB */
808 unsigned int sysctl_numa_balancing_scan_size = 256;
809 
810 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811 unsigned int sysctl_numa_balancing_scan_delay = 1000;
812 
813 static unsigned int task_nr_scan_windows(struct task_struct *p)
814 {
815 	unsigned long rss = 0;
816 	unsigned long nr_scan_pages;
817 
818 	/*
819 	 * Calculations based on RSS as non-present and empty pages are skipped
820 	 * by the PTE scanner and NUMA hinting faults should be trapped based
821 	 * on resident pages
822 	 */
823 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 	rss = get_mm_rss(p->mm);
825 	if (!rss)
826 		rss = nr_scan_pages;
827 
828 	rss = round_up(rss, nr_scan_pages);
829 	return rss / nr_scan_pages;
830 }
831 
832 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833 #define MAX_SCAN_WINDOW 2560
834 
835 static unsigned int task_scan_min(struct task_struct *p)
836 {
837 	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
838 	unsigned int scan, floor;
839 	unsigned int windows = 1;
840 
841 	if (scan_size < MAX_SCAN_WINDOW)
842 		windows = MAX_SCAN_WINDOW / scan_size;
843 	floor = 1000 / windows;
844 
845 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 	return max_t(unsigned int, floor, scan);
847 }
848 
849 static unsigned int task_scan_max(struct task_struct *p)
850 {
851 	unsigned int smin = task_scan_min(p);
852 	unsigned int smax;
853 
854 	/* Watch for min being lower than max due to floor calculations */
855 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 	return max(smin, smax);
857 }
858 
859 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860 {
861 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863 }
864 
865 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866 {
867 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869 }
870 
871 struct numa_group {
872 	atomic_t refcount;
873 
874 	spinlock_t lock; /* nr_tasks, tasks */
875 	int nr_tasks;
876 	pid_t gid;
877 
878 	struct rcu_head rcu;
879 	nodemask_t active_nodes;
880 	unsigned long total_faults;
881 	/*
882 	 * Faults_cpu is used to decide whether memory should move
883 	 * towards the CPU. As a consequence, these stats are weighted
884 	 * more by CPU use than by memory faults.
885 	 */
886 	unsigned long *faults_cpu;
887 	unsigned long faults[0];
888 };
889 
890 /* Shared or private faults. */
891 #define NR_NUMA_HINT_FAULT_TYPES 2
892 
893 /* Memory and CPU locality */
894 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895 
896 /* Averaged statistics, and temporary buffers. */
897 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898 
899 pid_t task_numa_group_id(struct task_struct *p)
900 {
901 	return p->numa_group ? p->numa_group->gid : 0;
902 }
903 
904 /*
905  * The averaged statistics, shared & private, memory & cpu,
906  * occupy the first half of the array. The second half of the
907  * array is for current counters, which are averaged into the
908  * first set by task_numa_placement.
909  */
910 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
911 {
912 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
913 }
914 
915 static inline unsigned long task_faults(struct task_struct *p, int nid)
916 {
917 	if (!p->numa_faults)
918 		return 0;
919 
920 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
922 }
923 
924 static inline unsigned long group_faults(struct task_struct *p, int nid)
925 {
926 	if (!p->numa_group)
927 		return 0;
928 
929 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
931 }
932 
933 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934 {
935 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
937 }
938 
939 /* Handle placement on systems where not all nodes are directly connected. */
940 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 					int maxdist, bool task)
942 {
943 	unsigned long score = 0;
944 	int node;
945 
946 	/*
947 	 * All nodes are directly connected, and the same distance
948 	 * from each other. No need for fancy placement algorithms.
949 	 */
950 	if (sched_numa_topology_type == NUMA_DIRECT)
951 		return 0;
952 
953 	/*
954 	 * This code is called for each node, introducing N^2 complexity,
955 	 * which should be ok given the number of nodes rarely exceeds 8.
956 	 */
957 	for_each_online_node(node) {
958 		unsigned long faults;
959 		int dist = node_distance(nid, node);
960 
961 		/*
962 		 * The furthest away nodes in the system are not interesting
963 		 * for placement; nid was already counted.
964 		 */
965 		if (dist == sched_max_numa_distance || node == nid)
966 			continue;
967 
968 		/*
969 		 * On systems with a backplane NUMA topology, compare groups
970 		 * of nodes, and move tasks towards the group with the most
971 		 * memory accesses. When comparing two nodes at distance
972 		 * "hoplimit", only nodes closer by than "hoplimit" are part
973 		 * of each group. Skip other nodes.
974 		 */
975 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 					dist > maxdist)
977 			continue;
978 
979 		/* Add up the faults from nearby nodes. */
980 		if (task)
981 			faults = task_faults(p, node);
982 		else
983 			faults = group_faults(p, node);
984 
985 		/*
986 		 * On systems with a glueless mesh NUMA topology, there are
987 		 * no fixed "groups of nodes". Instead, nodes that are not
988 		 * directly connected bounce traffic through intermediate
989 		 * nodes; a numa_group can occupy any set of nodes.
990 		 * The further away a node is, the less the faults count.
991 		 * This seems to result in good task placement.
992 		 */
993 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 			faults *= (sched_max_numa_distance - dist);
995 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 		}
997 
998 		score += faults;
999 	}
1000 
1001 	return score;
1002 }
1003 
1004 /*
1005  * These return the fraction of accesses done by a particular task, or
1006  * task group, on a particular numa node.  The group weight is given a
1007  * larger multiplier, in order to group tasks together that are almost
1008  * evenly spread out between numa nodes.
1009  */
1010 static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 					int dist)
1012 {
1013 	unsigned long faults, total_faults;
1014 
1015 	if (!p->numa_faults)
1016 		return 0;
1017 
1018 	total_faults = p->total_numa_faults;
1019 
1020 	if (!total_faults)
1021 		return 0;
1022 
1023 	faults = task_faults(p, nid);
1024 	faults += score_nearby_nodes(p, nid, dist, true);
1025 
1026 	return 1000 * faults / total_faults;
1027 }
1028 
1029 static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 					 int dist)
1031 {
1032 	unsigned long faults, total_faults;
1033 
1034 	if (!p->numa_group)
1035 		return 0;
1036 
1037 	total_faults = p->numa_group->total_faults;
1038 
1039 	if (!total_faults)
1040 		return 0;
1041 
1042 	faults = group_faults(p, nid);
1043 	faults += score_nearby_nodes(p, nid, dist, false);
1044 
1045 	return 1000 * faults / total_faults;
1046 }
1047 
1048 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 				int src_nid, int dst_cpu)
1050 {
1051 	struct numa_group *ng = p->numa_group;
1052 	int dst_nid = cpu_to_node(dst_cpu);
1053 	int last_cpupid, this_cpupid;
1054 
1055 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056 
1057 	/*
1058 	 * Multi-stage node selection is used in conjunction with a periodic
1059 	 * migration fault to build a temporal task<->page relation. By using
1060 	 * a two-stage filter we remove short/unlikely relations.
1061 	 *
1062 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 	 * a task's usage of a particular page (n_p) per total usage of this
1064 	 * page (n_t) (in a given time-span) to a probability.
1065 	 *
1066 	 * Our periodic faults will sample this probability and getting the
1067 	 * same result twice in a row, given these samples are fully
1068 	 * independent, is then given by P(n)^2, provided our sample period
1069 	 * is sufficiently short compared to the usage pattern.
1070 	 *
1071 	 * This quadric squishes small probabilities, making it less likely we
1072 	 * act on an unlikely task<->page relation.
1073 	 */
1074 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 	if (!cpupid_pid_unset(last_cpupid) &&
1076 				cpupid_to_nid(last_cpupid) != dst_nid)
1077 		return false;
1078 
1079 	/* Always allow migrate on private faults */
1080 	if (cpupid_match_pid(p, last_cpupid))
1081 		return true;
1082 
1083 	/* A shared fault, but p->numa_group has not been set up yet. */
1084 	if (!ng)
1085 		return true;
1086 
1087 	/*
1088 	 * Do not migrate if the destination is not a node that
1089 	 * is actively used by this numa group.
1090 	 */
1091 	if (!node_isset(dst_nid, ng->active_nodes))
1092 		return false;
1093 
1094 	/*
1095 	 * Source is a node that is not actively used by this
1096 	 * numa group, while the destination is. Migrate.
1097 	 */
1098 	if (!node_isset(src_nid, ng->active_nodes))
1099 		return true;
1100 
1101 	/*
1102 	 * Both source and destination are nodes in active
1103 	 * use by this numa group. Maximize memory bandwidth
1104 	 * by migrating from more heavily used groups, to less
1105 	 * heavily used ones, spreading the load around.
1106 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 	 */
1108 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109 }
1110 
1111 static unsigned long weighted_cpuload(const int cpu);
1112 static unsigned long source_load(int cpu, int type);
1113 static unsigned long target_load(int cpu, int type);
1114 static unsigned long capacity_of(int cpu);
1115 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116 
1117 /* Cached statistics for all CPUs within a node */
1118 struct numa_stats {
1119 	unsigned long nr_running;
1120 	unsigned long load;
1121 
1122 	/* Total compute capacity of CPUs on a node */
1123 	unsigned long compute_capacity;
1124 
1125 	/* Approximate capacity in terms of runnable tasks on a node */
1126 	unsigned long task_capacity;
1127 	int has_free_capacity;
1128 };
1129 
1130 /*
1131  * XXX borrowed from update_sg_lb_stats
1132  */
1133 static void update_numa_stats(struct numa_stats *ns, int nid)
1134 {
1135 	int smt, cpu, cpus = 0;
1136 	unsigned long capacity;
1137 
1138 	memset(ns, 0, sizeof(*ns));
1139 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 		struct rq *rq = cpu_rq(cpu);
1141 
1142 		ns->nr_running += rq->nr_running;
1143 		ns->load += weighted_cpuload(cpu);
1144 		ns->compute_capacity += capacity_of(cpu);
1145 
1146 		cpus++;
1147 	}
1148 
1149 	/*
1150 	 * If we raced with hotplug and there are no CPUs left in our mask
1151 	 * the @ns structure is NULL'ed and task_numa_compare() will
1152 	 * not find this node attractive.
1153 	 *
1154 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 	 * imbalance and bail there.
1156 	 */
1157 	if (!cpus)
1158 		return;
1159 
1160 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 	capacity = cpus / smt; /* cores */
1163 
1164 	ns->task_capacity = min_t(unsigned, capacity,
1165 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1166 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1167 }
1168 
1169 struct task_numa_env {
1170 	struct task_struct *p;
1171 
1172 	int src_cpu, src_nid;
1173 	int dst_cpu, dst_nid;
1174 
1175 	struct numa_stats src_stats, dst_stats;
1176 
1177 	int imbalance_pct;
1178 	int dist;
1179 
1180 	struct task_struct *best_task;
1181 	long best_imp;
1182 	int best_cpu;
1183 };
1184 
1185 static void task_numa_assign(struct task_numa_env *env,
1186 			     struct task_struct *p, long imp)
1187 {
1188 	if (env->best_task)
1189 		put_task_struct(env->best_task);
1190 	if (p)
1191 		get_task_struct(p);
1192 
1193 	env->best_task = p;
1194 	env->best_imp = imp;
1195 	env->best_cpu = env->dst_cpu;
1196 }
1197 
1198 static bool load_too_imbalanced(long src_load, long dst_load,
1199 				struct task_numa_env *env)
1200 {
1201 	long src_capacity, dst_capacity;
1202 	long orig_src_load;
1203 	long load_a, load_b;
1204 	long moved_load;
1205 	long imb;
1206 
1207 	/*
1208 	 * The load is corrected for the CPU capacity available on each node.
1209 	 *
1210 	 * src_load        dst_load
1211 	 * ------------ vs ---------
1212 	 * src_capacity    dst_capacity
1213 	 */
1214 	src_capacity = env->src_stats.compute_capacity;
1215 	dst_capacity = env->dst_stats.compute_capacity;
1216 
1217 	/* We care about the slope of the imbalance, not the direction. */
1218 	load_a = dst_load;
1219 	load_b = src_load;
1220 	if (load_a < load_b)
1221 		swap(load_a, load_b);
1222 
1223 	/* Is the difference below the threshold? */
1224 	imb = load_a * src_capacity * 100 -
1225 		load_b * dst_capacity * env->imbalance_pct;
1226 	if (imb <= 0)
1227 		return false;
1228 
1229 	/*
1230 	 * The imbalance is above the allowed threshold.
1231 	 * Allow a move that brings us closer to a balanced situation,
1232 	 * without moving things past the point of balance.
1233 	 */
1234 	orig_src_load = env->src_stats.load;
1235 
1236 	/*
1237 	 * In a task swap, there will be one load moving from src to dst,
1238 	 * and another moving back. This is the net sum of both moves.
1239 	 * A simple task move will always have a positive value.
1240 	 * Allow the move if it brings the system closer to a balanced
1241 	 * situation, without crossing over the balance point.
1242 	 */
1243 	moved_load = orig_src_load - src_load;
1244 
1245 	if (moved_load > 0)
1246 		/* Moving src -> dst. Did we overshoot balance? */
1247 		return src_load * dst_capacity < dst_load * src_capacity;
1248 	else
1249 		/* Moving dst -> src. Did we overshoot balance? */
1250 		return dst_load * src_capacity < src_load * dst_capacity;
1251 }
1252 
1253 /*
1254  * This checks if the overall compute and NUMA accesses of the system would
1255  * be improved if the source tasks was migrated to the target dst_cpu taking
1256  * into account that it might be best if task running on the dst_cpu should
1257  * be exchanged with the source task
1258  */
1259 static void task_numa_compare(struct task_numa_env *env,
1260 			      long taskimp, long groupimp)
1261 {
1262 	struct rq *src_rq = cpu_rq(env->src_cpu);
1263 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 	struct task_struct *cur;
1265 	long src_load, dst_load;
1266 	long load;
1267 	long imp = env->p->numa_group ? groupimp : taskimp;
1268 	long moveimp = imp;
1269 	int dist = env->dist;
1270 
1271 	rcu_read_lock();
1272 
1273 	raw_spin_lock_irq(&dst_rq->lock);
1274 	cur = dst_rq->curr;
1275 	/*
1276 	 * No need to move the exiting task, and this ensures that ->curr
1277 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 	 * is safe under RCU read lock.
1279 	 * Note that rcu_read_lock() itself can't protect from the final
1280 	 * put_task_struct() after the last schedule().
1281 	 */
1282 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1283 		cur = NULL;
1284 	raw_spin_unlock_irq(&dst_rq->lock);
1285 
1286 	/*
1287 	 * Because we have preemption enabled we can get migrated around and
1288 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 	 */
1290 	if (cur == env->p)
1291 		goto unlock;
1292 
1293 	/*
1294 	 * "imp" is the fault differential for the source task between the
1295 	 * source and destination node. Calculate the total differential for
1296 	 * the source task and potential destination task. The more negative
1297 	 * the value is, the more rmeote accesses that would be expected to
1298 	 * be incurred if the tasks were swapped.
1299 	 */
1300 	if (cur) {
1301 		/* Skip this swap candidate if cannot move to the source cpu */
1302 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 			goto unlock;
1304 
1305 		/*
1306 		 * If dst and source tasks are in the same NUMA group, or not
1307 		 * in any group then look only at task weights.
1308 		 */
1309 		if (cur->numa_group == env->p->numa_group) {
1310 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 			      task_weight(cur, env->dst_nid, dist);
1312 			/*
1313 			 * Add some hysteresis to prevent swapping the
1314 			 * tasks within a group over tiny differences.
1315 			 */
1316 			if (cur->numa_group)
1317 				imp -= imp/16;
1318 		} else {
1319 			/*
1320 			 * Compare the group weights. If a task is all by
1321 			 * itself (not part of a group), use the task weight
1322 			 * instead.
1323 			 */
1324 			if (cur->numa_group)
1325 				imp += group_weight(cur, env->src_nid, dist) -
1326 				       group_weight(cur, env->dst_nid, dist);
1327 			else
1328 				imp += task_weight(cur, env->src_nid, dist) -
1329 				       task_weight(cur, env->dst_nid, dist);
1330 		}
1331 	}
1332 
1333 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1334 		goto unlock;
1335 
1336 	if (!cur) {
1337 		/* Is there capacity at our destination? */
1338 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1339 		    !env->dst_stats.has_free_capacity)
1340 			goto unlock;
1341 
1342 		goto balance;
1343 	}
1344 
1345 	/* Balance doesn't matter much if we're running a task per cpu */
1346 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 			dst_rq->nr_running == 1)
1348 		goto assign;
1349 
1350 	/*
1351 	 * In the overloaded case, try and keep the load balanced.
1352 	 */
1353 balance:
1354 	load = task_h_load(env->p);
1355 	dst_load = env->dst_stats.load + load;
1356 	src_load = env->src_stats.load - load;
1357 
1358 	if (moveimp > imp && moveimp > env->best_imp) {
1359 		/*
1360 		 * If the improvement from just moving env->p direction is
1361 		 * better than swapping tasks around, check if a move is
1362 		 * possible. Store a slightly smaller score than moveimp,
1363 		 * so an actually idle CPU will win.
1364 		 */
1365 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 			imp = moveimp - 1;
1367 			cur = NULL;
1368 			goto assign;
1369 		}
1370 	}
1371 
1372 	if (imp <= env->best_imp)
1373 		goto unlock;
1374 
1375 	if (cur) {
1376 		load = task_h_load(cur);
1377 		dst_load -= load;
1378 		src_load += load;
1379 	}
1380 
1381 	if (load_too_imbalanced(src_load, dst_load, env))
1382 		goto unlock;
1383 
1384 	/*
1385 	 * One idle CPU per node is evaluated for a task numa move.
1386 	 * Call select_idle_sibling to maybe find a better one.
1387 	 */
1388 	if (!cur)
1389 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390 
1391 assign:
1392 	task_numa_assign(env, cur, imp);
1393 unlock:
1394 	rcu_read_unlock();
1395 }
1396 
1397 static void task_numa_find_cpu(struct task_numa_env *env,
1398 				long taskimp, long groupimp)
1399 {
1400 	int cpu;
1401 
1402 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 		/* Skip this CPU if the source task cannot migrate */
1404 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 			continue;
1406 
1407 		env->dst_cpu = cpu;
1408 		task_numa_compare(env, taskimp, groupimp);
1409 	}
1410 }
1411 
1412 static int task_numa_migrate(struct task_struct *p)
1413 {
1414 	struct task_numa_env env = {
1415 		.p = p,
1416 
1417 		.src_cpu = task_cpu(p),
1418 		.src_nid = task_node(p),
1419 
1420 		.imbalance_pct = 112,
1421 
1422 		.best_task = NULL,
1423 		.best_imp = 0,
1424 		.best_cpu = -1
1425 	};
1426 	struct sched_domain *sd;
1427 	unsigned long taskweight, groupweight;
1428 	int nid, ret, dist;
1429 	long taskimp, groupimp;
1430 
1431 	/*
1432 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 	 * imbalance and would be the first to start moving tasks about.
1434 	 *
1435 	 * And we want to avoid any moving of tasks about, as that would create
1436 	 * random movement of tasks -- counter the numa conditions we're trying
1437 	 * to satisfy here.
1438 	 */
1439 	rcu_read_lock();
1440 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1441 	if (sd)
1442 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1443 	rcu_read_unlock();
1444 
1445 	/*
1446 	 * Cpusets can break the scheduler domain tree into smaller
1447 	 * balance domains, some of which do not cross NUMA boundaries.
1448 	 * Tasks that are "trapped" in such domains cannot be migrated
1449 	 * elsewhere, so there is no point in (re)trying.
1450 	 */
1451 	if (unlikely(!sd)) {
1452 		p->numa_preferred_nid = task_node(p);
1453 		return -EINVAL;
1454 	}
1455 
1456 	env.dst_nid = p->numa_preferred_nid;
1457 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 	taskweight = task_weight(p, env.src_nid, dist);
1459 	groupweight = group_weight(p, env.src_nid, dist);
1460 	update_numa_stats(&env.src_stats, env.src_nid);
1461 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1463 	update_numa_stats(&env.dst_stats, env.dst_nid);
1464 
1465 	/* Try to find a spot on the preferred nid. */
1466 	task_numa_find_cpu(&env, taskimp, groupimp);
1467 
1468 	/*
1469 	 * Look at other nodes in these cases:
1470 	 * - there is no space available on the preferred_nid
1471 	 * - the task is part of a numa_group that is interleaved across
1472 	 *   multiple NUMA nodes; in order to better consolidate the group,
1473 	 *   we need to check other locations.
1474 	 */
1475 	if (env.best_cpu == -1 || (p->numa_group &&
1476 			nodes_weight(p->numa_group->active_nodes) > 1)) {
1477 		for_each_online_node(nid) {
1478 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 				continue;
1480 
1481 			dist = node_distance(env.src_nid, env.dst_nid);
1482 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 						dist != env.dist) {
1484 				taskweight = task_weight(p, env.src_nid, dist);
1485 				groupweight = group_weight(p, env.src_nid, dist);
1486 			}
1487 
1488 			/* Only consider nodes where both task and groups benefit */
1489 			taskimp = task_weight(p, nid, dist) - taskweight;
1490 			groupimp = group_weight(p, nid, dist) - groupweight;
1491 			if (taskimp < 0 && groupimp < 0)
1492 				continue;
1493 
1494 			env.dist = dist;
1495 			env.dst_nid = nid;
1496 			update_numa_stats(&env.dst_stats, env.dst_nid);
1497 			task_numa_find_cpu(&env, taskimp, groupimp);
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * If the task is part of a workload that spans multiple NUMA nodes,
1503 	 * and is migrating into one of the workload's active nodes, remember
1504 	 * this node as the task's preferred numa node, so the workload can
1505 	 * settle down.
1506 	 * A task that migrated to a second choice node will be better off
1507 	 * trying for a better one later. Do not set the preferred node here.
1508 	 */
1509 	if (p->numa_group) {
1510 		if (env.best_cpu == -1)
1511 			nid = env.src_nid;
1512 		else
1513 			nid = env.dst_nid;
1514 
1515 		if (node_isset(nid, p->numa_group->active_nodes))
1516 			sched_setnuma(p, env.dst_nid);
1517 	}
1518 
1519 	/* No better CPU than the current one was found. */
1520 	if (env.best_cpu == -1)
1521 		return -EAGAIN;
1522 
1523 	/*
1524 	 * Reset the scan period if the task is being rescheduled on an
1525 	 * alternative node to recheck if the tasks is now properly placed.
1526 	 */
1527 	p->numa_scan_period = task_scan_min(p);
1528 
1529 	if (env.best_task == NULL) {
1530 		ret = migrate_task_to(p, env.best_cpu);
1531 		if (ret != 0)
1532 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1533 		return ret;
1534 	}
1535 
1536 	ret = migrate_swap(p, env.best_task);
1537 	if (ret != 0)
1538 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1539 	put_task_struct(env.best_task);
1540 	return ret;
1541 }
1542 
1543 /* Attempt to migrate a task to a CPU on the preferred node. */
1544 static void numa_migrate_preferred(struct task_struct *p)
1545 {
1546 	unsigned long interval = HZ;
1547 
1548 	/* This task has no NUMA fault statistics yet */
1549 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1550 		return;
1551 
1552 	/* Periodically retry migrating the task to the preferred node */
1553 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 	p->numa_migrate_retry = jiffies + interval;
1555 
1556 	/* Success if task is already running on preferred CPU */
1557 	if (task_node(p) == p->numa_preferred_nid)
1558 		return;
1559 
1560 	/* Otherwise, try migrate to a CPU on the preferred node */
1561 	task_numa_migrate(p);
1562 }
1563 
1564 /*
1565  * Find the nodes on which the workload is actively running. We do this by
1566  * tracking the nodes from which NUMA hinting faults are triggered. This can
1567  * be different from the set of nodes where the workload's memory is currently
1568  * located.
1569  *
1570  * The bitmask is used to make smarter decisions on when to do NUMA page
1571  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572  * are added when they cause over 6/16 of the maximum number of faults, but
1573  * only removed when they drop below 3/16.
1574  */
1575 static void update_numa_active_node_mask(struct numa_group *numa_group)
1576 {
1577 	unsigned long faults, max_faults = 0;
1578 	int nid;
1579 
1580 	for_each_online_node(nid) {
1581 		faults = group_faults_cpu(numa_group, nid);
1582 		if (faults > max_faults)
1583 			max_faults = faults;
1584 	}
1585 
1586 	for_each_online_node(nid) {
1587 		faults = group_faults_cpu(numa_group, nid);
1588 		if (!node_isset(nid, numa_group->active_nodes)) {
1589 			if (faults > max_faults * 6 / 16)
1590 				node_set(nid, numa_group->active_nodes);
1591 		} else if (faults < max_faults * 3 / 16)
1592 			node_clear(nid, numa_group->active_nodes);
1593 	}
1594 }
1595 
1596 /*
1597  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598  * increments. The more local the fault statistics are, the higher the scan
1599  * period will be for the next scan window. If local/(local+remote) ratio is
1600  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601  * the scan period will decrease. Aim for 70% local accesses.
1602  */
1603 #define NUMA_PERIOD_SLOTS 10
1604 #define NUMA_PERIOD_THRESHOLD 7
1605 
1606 /*
1607  * Increase the scan period (slow down scanning) if the majority of
1608  * our memory is already on our local node, or if the majority of
1609  * the page accesses are shared with other processes.
1610  * Otherwise, decrease the scan period.
1611  */
1612 static void update_task_scan_period(struct task_struct *p,
1613 			unsigned long shared, unsigned long private)
1614 {
1615 	unsigned int period_slot;
1616 	int ratio;
1617 	int diff;
1618 
1619 	unsigned long remote = p->numa_faults_locality[0];
1620 	unsigned long local = p->numa_faults_locality[1];
1621 
1622 	/*
1623 	 * If there were no record hinting faults then either the task is
1624 	 * completely idle or all activity is areas that are not of interest
1625 	 * to automatic numa balancing. Related to that, if there were failed
1626 	 * migration then it implies we are migrating too quickly or the local
1627 	 * node is overloaded. In either case, scan slower
1628 	 */
1629 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1630 		p->numa_scan_period = min(p->numa_scan_period_max,
1631 			p->numa_scan_period << 1);
1632 
1633 		p->mm->numa_next_scan = jiffies +
1634 			msecs_to_jiffies(p->numa_scan_period);
1635 
1636 		return;
1637 	}
1638 
1639 	/*
1640 	 * Prepare to scale scan period relative to the current period.
1641 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644 	 */
1645 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 		if (!slot)
1650 			slot = 1;
1651 		diff = slot * period_slot;
1652 	} else {
1653 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654 
1655 		/*
1656 		 * Scale scan rate increases based on sharing. There is an
1657 		 * inverse relationship between the degree of sharing and
1658 		 * the adjustment made to the scanning period. Broadly
1659 		 * speaking the intent is that there is little point
1660 		 * scanning faster if shared accesses dominate as it may
1661 		 * simply bounce migrations uselessly
1662 		 */
1663 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1664 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665 	}
1666 
1667 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 			task_scan_min(p), task_scan_max(p));
1669 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670 }
1671 
1672 /*
1673  * Get the fraction of time the task has been running since the last
1674  * NUMA placement cycle. The scheduler keeps similar statistics, but
1675  * decays those on a 32ms period, which is orders of magnitude off
1676  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677  * stats only if the task is so new there are no NUMA statistics yet.
1678  */
1679 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680 {
1681 	u64 runtime, delta, now;
1682 	/* Use the start of this time slice to avoid calculations. */
1683 	now = p->se.exec_start;
1684 	runtime = p->se.sum_exec_runtime;
1685 
1686 	if (p->last_task_numa_placement) {
1687 		delta = runtime - p->last_sum_exec_runtime;
1688 		*period = now - p->last_task_numa_placement;
1689 	} else {
1690 		delta = p->se.avg.runnable_avg_sum;
1691 		*period = p->se.avg.avg_period;
1692 	}
1693 
1694 	p->last_sum_exec_runtime = runtime;
1695 	p->last_task_numa_placement = now;
1696 
1697 	return delta;
1698 }
1699 
1700 /*
1701  * Determine the preferred nid for a task in a numa_group. This needs to
1702  * be done in a way that produces consistent results with group_weight,
1703  * otherwise workloads might not converge.
1704  */
1705 static int preferred_group_nid(struct task_struct *p, int nid)
1706 {
1707 	nodemask_t nodes;
1708 	int dist;
1709 
1710 	/* Direct connections between all NUMA nodes. */
1711 	if (sched_numa_topology_type == NUMA_DIRECT)
1712 		return nid;
1713 
1714 	/*
1715 	 * On a system with glueless mesh NUMA topology, group_weight
1716 	 * scores nodes according to the number of NUMA hinting faults on
1717 	 * both the node itself, and on nearby nodes.
1718 	 */
1719 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 		unsigned long score, max_score = 0;
1721 		int node, max_node = nid;
1722 
1723 		dist = sched_max_numa_distance;
1724 
1725 		for_each_online_node(node) {
1726 			score = group_weight(p, node, dist);
1727 			if (score > max_score) {
1728 				max_score = score;
1729 				max_node = node;
1730 			}
1731 		}
1732 		return max_node;
1733 	}
1734 
1735 	/*
1736 	 * Finding the preferred nid in a system with NUMA backplane
1737 	 * interconnect topology is more involved. The goal is to locate
1738 	 * tasks from numa_groups near each other in the system, and
1739 	 * untangle workloads from different sides of the system. This requires
1740 	 * searching down the hierarchy of node groups, recursively searching
1741 	 * inside the highest scoring group of nodes. The nodemask tricks
1742 	 * keep the complexity of the search down.
1743 	 */
1744 	nodes = node_online_map;
1745 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 		unsigned long max_faults = 0;
1747 		nodemask_t max_group = NODE_MASK_NONE;
1748 		int a, b;
1749 
1750 		/* Are there nodes at this distance from each other? */
1751 		if (!find_numa_distance(dist))
1752 			continue;
1753 
1754 		for_each_node_mask(a, nodes) {
1755 			unsigned long faults = 0;
1756 			nodemask_t this_group;
1757 			nodes_clear(this_group);
1758 
1759 			/* Sum group's NUMA faults; includes a==b case. */
1760 			for_each_node_mask(b, nodes) {
1761 				if (node_distance(a, b) < dist) {
1762 					faults += group_faults(p, b);
1763 					node_set(b, this_group);
1764 					node_clear(b, nodes);
1765 				}
1766 			}
1767 
1768 			/* Remember the top group. */
1769 			if (faults > max_faults) {
1770 				max_faults = faults;
1771 				max_group = this_group;
1772 				/*
1773 				 * subtle: at the smallest distance there is
1774 				 * just one node left in each "group", the
1775 				 * winner is the preferred nid.
1776 				 */
1777 				nid = a;
1778 			}
1779 		}
1780 		/* Next round, evaluate the nodes within max_group. */
1781 		if (!max_faults)
1782 			break;
1783 		nodes = max_group;
1784 	}
1785 	return nid;
1786 }
1787 
1788 static void task_numa_placement(struct task_struct *p)
1789 {
1790 	int seq, nid, max_nid = -1, max_group_nid = -1;
1791 	unsigned long max_faults = 0, max_group_faults = 0;
1792 	unsigned long fault_types[2] = { 0, 0 };
1793 	unsigned long total_faults;
1794 	u64 runtime, period;
1795 	spinlock_t *group_lock = NULL;
1796 
1797 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1798 	if (p->numa_scan_seq == seq)
1799 		return;
1800 	p->numa_scan_seq = seq;
1801 	p->numa_scan_period_max = task_scan_max(p);
1802 
1803 	total_faults = p->numa_faults_locality[0] +
1804 		       p->numa_faults_locality[1];
1805 	runtime = numa_get_avg_runtime(p, &period);
1806 
1807 	/* If the task is part of a group prevent parallel updates to group stats */
1808 	if (p->numa_group) {
1809 		group_lock = &p->numa_group->lock;
1810 		spin_lock_irq(group_lock);
1811 	}
1812 
1813 	/* Find the node with the highest number of faults */
1814 	for_each_online_node(nid) {
1815 		/* Keep track of the offsets in numa_faults array */
1816 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1817 		unsigned long faults = 0, group_faults = 0;
1818 		int priv;
1819 
1820 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1821 			long diff, f_diff, f_weight;
1822 
1823 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1824 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1825 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1826 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1827 
1828 			/* Decay existing window, copy faults since last scan */
1829 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1830 			fault_types[priv] += p->numa_faults[membuf_idx];
1831 			p->numa_faults[membuf_idx] = 0;
1832 
1833 			/*
1834 			 * Normalize the faults_from, so all tasks in a group
1835 			 * count according to CPU use, instead of by the raw
1836 			 * number of faults. Tasks with little runtime have
1837 			 * little over-all impact on throughput, and thus their
1838 			 * faults are less important.
1839 			 */
1840 			f_weight = div64_u64(runtime << 16, period + 1);
1841 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1842 				   (total_faults + 1);
1843 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1844 			p->numa_faults[cpubuf_idx] = 0;
1845 
1846 			p->numa_faults[mem_idx] += diff;
1847 			p->numa_faults[cpu_idx] += f_diff;
1848 			faults += p->numa_faults[mem_idx];
1849 			p->total_numa_faults += diff;
1850 			if (p->numa_group) {
1851 				/*
1852 				 * safe because we can only change our own group
1853 				 *
1854 				 * mem_idx represents the offset for a given
1855 				 * nid and priv in a specific region because it
1856 				 * is at the beginning of the numa_faults array.
1857 				 */
1858 				p->numa_group->faults[mem_idx] += diff;
1859 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1860 				p->numa_group->total_faults += diff;
1861 				group_faults += p->numa_group->faults[mem_idx];
1862 			}
1863 		}
1864 
1865 		if (faults > max_faults) {
1866 			max_faults = faults;
1867 			max_nid = nid;
1868 		}
1869 
1870 		if (group_faults > max_group_faults) {
1871 			max_group_faults = group_faults;
1872 			max_group_nid = nid;
1873 		}
1874 	}
1875 
1876 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1877 
1878 	if (p->numa_group) {
1879 		update_numa_active_node_mask(p->numa_group);
1880 		spin_unlock_irq(group_lock);
1881 		max_nid = preferred_group_nid(p, max_group_nid);
1882 	}
1883 
1884 	if (max_faults) {
1885 		/* Set the new preferred node */
1886 		if (max_nid != p->numa_preferred_nid)
1887 			sched_setnuma(p, max_nid);
1888 
1889 		if (task_node(p) != p->numa_preferred_nid)
1890 			numa_migrate_preferred(p);
1891 	}
1892 }
1893 
1894 static inline int get_numa_group(struct numa_group *grp)
1895 {
1896 	return atomic_inc_not_zero(&grp->refcount);
1897 }
1898 
1899 static inline void put_numa_group(struct numa_group *grp)
1900 {
1901 	if (atomic_dec_and_test(&grp->refcount))
1902 		kfree_rcu(grp, rcu);
1903 }
1904 
1905 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1906 			int *priv)
1907 {
1908 	struct numa_group *grp, *my_grp;
1909 	struct task_struct *tsk;
1910 	bool join = false;
1911 	int cpu = cpupid_to_cpu(cpupid);
1912 	int i;
1913 
1914 	if (unlikely(!p->numa_group)) {
1915 		unsigned int size = sizeof(struct numa_group) +
1916 				    4*nr_node_ids*sizeof(unsigned long);
1917 
1918 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1919 		if (!grp)
1920 			return;
1921 
1922 		atomic_set(&grp->refcount, 1);
1923 		spin_lock_init(&grp->lock);
1924 		grp->gid = p->pid;
1925 		/* Second half of the array tracks nids where faults happen */
1926 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1927 						nr_node_ids;
1928 
1929 		node_set(task_node(current), grp->active_nodes);
1930 
1931 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1932 			grp->faults[i] = p->numa_faults[i];
1933 
1934 		grp->total_faults = p->total_numa_faults;
1935 
1936 		grp->nr_tasks++;
1937 		rcu_assign_pointer(p->numa_group, grp);
1938 	}
1939 
1940 	rcu_read_lock();
1941 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1942 
1943 	if (!cpupid_match_pid(tsk, cpupid))
1944 		goto no_join;
1945 
1946 	grp = rcu_dereference(tsk->numa_group);
1947 	if (!grp)
1948 		goto no_join;
1949 
1950 	my_grp = p->numa_group;
1951 	if (grp == my_grp)
1952 		goto no_join;
1953 
1954 	/*
1955 	 * Only join the other group if its bigger; if we're the bigger group,
1956 	 * the other task will join us.
1957 	 */
1958 	if (my_grp->nr_tasks > grp->nr_tasks)
1959 		goto no_join;
1960 
1961 	/*
1962 	 * Tie-break on the grp address.
1963 	 */
1964 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1965 		goto no_join;
1966 
1967 	/* Always join threads in the same process. */
1968 	if (tsk->mm == current->mm)
1969 		join = true;
1970 
1971 	/* Simple filter to avoid false positives due to PID collisions */
1972 	if (flags & TNF_SHARED)
1973 		join = true;
1974 
1975 	/* Update priv based on whether false sharing was detected */
1976 	*priv = !join;
1977 
1978 	if (join && !get_numa_group(grp))
1979 		goto no_join;
1980 
1981 	rcu_read_unlock();
1982 
1983 	if (!join)
1984 		return;
1985 
1986 	BUG_ON(irqs_disabled());
1987 	double_lock_irq(&my_grp->lock, &grp->lock);
1988 
1989 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1990 		my_grp->faults[i] -= p->numa_faults[i];
1991 		grp->faults[i] += p->numa_faults[i];
1992 	}
1993 	my_grp->total_faults -= p->total_numa_faults;
1994 	grp->total_faults += p->total_numa_faults;
1995 
1996 	my_grp->nr_tasks--;
1997 	grp->nr_tasks++;
1998 
1999 	spin_unlock(&my_grp->lock);
2000 	spin_unlock_irq(&grp->lock);
2001 
2002 	rcu_assign_pointer(p->numa_group, grp);
2003 
2004 	put_numa_group(my_grp);
2005 	return;
2006 
2007 no_join:
2008 	rcu_read_unlock();
2009 	return;
2010 }
2011 
2012 void task_numa_free(struct task_struct *p)
2013 {
2014 	struct numa_group *grp = p->numa_group;
2015 	void *numa_faults = p->numa_faults;
2016 	unsigned long flags;
2017 	int i;
2018 
2019 	if (grp) {
2020 		spin_lock_irqsave(&grp->lock, flags);
2021 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2022 			grp->faults[i] -= p->numa_faults[i];
2023 		grp->total_faults -= p->total_numa_faults;
2024 
2025 		grp->nr_tasks--;
2026 		spin_unlock_irqrestore(&grp->lock, flags);
2027 		RCU_INIT_POINTER(p->numa_group, NULL);
2028 		put_numa_group(grp);
2029 	}
2030 
2031 	p->numa_faults = NULL;
2032 	kfree(numa_faults);
2033 }
2034 
2035 /*
2036  * Got a PROT_NONE fault for a page on @node.
2037  */
2038 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2039 {
2040 	struct task_struct *p = current;
2041 	bool migrated = flags & TNF_MIGRATED;
2042 	int cpu_node = task_node(current);
2043 	int local = !!(flags & TNF_FAULT_LOCAL);
2044 	int priv;
2045 
2046 	if (!numabalancing_enabled)
2047 		return;
2048 
2049 	/* for example, ksmd faulting in a user's mm */
2050 	if (!p->mm)
2051 		return;
2052 
2053 	/* Allocate buffer to track faults on a per-node basis */
2054 	if (unlikely(!p->numa_faults)) {
2055 		int size = sizeof(*p->numa_faults) *
2056 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2057 
2058 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2059 		if (!p->numa_faults)
2060 			return;
2061 
2062 		p->total_numa_faults = 0;
2063 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2064 	}
2065 
2066 	/*
2067 	 * First accesses are treated as private, otherwise consider accesses
2068 	 * to be private if the accessing pid has not changed
2069 	 */
2070 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2071 		priv = 1;
2072 	} else {
2073 		priv = cpupid_match_pid(p, last_cpupid);
2074 		if (!priv && !(flags & TNF_NO_GROUP))
2075 			task_numa_group(p, last_cpupid, flags, &priv);
2076 	}
2077 
2078 	/*
2079 	 * If a workload spans multiple NUMA nodes, a shared fault that
2080 	 * occurs wholly within the set of nodes that the workload is
2081 	 * actively using should be counted as local. This allows the
2082 	 * scan rate to slow down when a workload has settled down.
2083 	 */
2084 	if (!priv && !local && p->numa_group &&
2085 			node_isset(cpu_node, p->numa_group->active_nodes) &&
2086 			node_isset(mem_node, p->numa_group->active_nodes))
2087 		local = 1;
2088 
2089 	task_numa_placement(p);
2090 
2091 	/*
2092 	 * Retry task to preferred node migration periodically, in case it
2093 	 * case it previously failed, or the scheduler moved us.
2094 	 */
2095 	if (time_after(jiffies, p->numa_migrate_retry))
2096 		numa_migrate_preferred(p);
2097 
2098 	if (migrated)
2099 		p->numa_pages_migrated += pages;
2100 	if (flags & TNF_MIGRATE_FAIL)
2101 		p->numa_faults_locality[2] += pages;
2102 
2103 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2104 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2105 	p->numa_faults_locality[local] += pages;
2106 }
2107 
2108 static void reset_ptenuma_scan(struct task_struct *p)
2109 {
2110 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
2111 	p->mm->numa_scan_offset = 0;
2112 }
2113 
2114 /*
2115  * The expensive part of numa migration is done from task_work context.
2116  * Triggered from task_tick_numa().
2117  */
2118 void task_numa_work(struct callback_head *work)
2119 {
2120 	unsigned long migrate, next_scan, now = jiffies;
2121 	struct task_struct *p = current;
2122 	struct mm_struct *mm = p->mm;
2123 	struct vm_area_struct *vma;
2124 	unsigned long start, end;
2125 	unsigned long nr_pte_updates = 0;
2126 	long pages;
2127 
2128 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2129 
2130 	work->next = work; /* protect against double add */
2131 	/*
2132 	 * Who cares about NUMA placement when they're dying.
2133 	 *
2134 	 * NOTE: make sure not to dereference p->mm before this check,
2135 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2136 	 * without p->mm even though we still had it when we enqueued this
2137 	 * work.
2138 	 */
2139 	if (p->flags & PF_EXITING)
2140 		return;
2141 
2142 	if (!mm->numa_next_scan) {
2143 		mm->numa_next_scan = now +
2144 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2145 	}
2146 
2147 	/*
2148 	 * Enforce maximal scan/migration frequency..
2149 	 */
2150 	migrate = mm->numa_next_scan;
2151 	if (time_before(now, migrate))
2152 		return;
2153 
2154 	if (p->numa_scan_period == 0) {
2155 		p->numa_scan_period_max = task_scan_max(p);
2156 		p->numa_scan_period = task_scan_min(p);
2157 	}
2158 
2159 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2160 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2161 		return;
2162 
2163 	/*
2164 	 * Delay this task enough that another task of this mm will likely win
2165 	 * the next time around.
2166 	 */
2167 	p->node_stamp += 2 * TICK_NSEC;
2168 
2169 	start = mm->numa_scan_offset;
2170 	pages = sysctl_numa_balancing_scan_size;
2171 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2172 	if (!pages)
2173 		return;
2174 
2175 	down_read(&mm->mmap_sem);
2176 	vma = find_vma(mm, start);
2177 	if (!vma) {
2178 		reset_ptenuma_scan(p);
2179 		start = 0;
2180 		vma = mm->mmap;
2181 	}
2182 	for (; vma; vma = vma->vm_next) {
2183 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2184 			is_vm_hugetlb_page(vma)) {
2185 			continue;
2186 		}
2187 
2188 		/*
2189 		 * Shared library pages mapped by multiple processes are not
2190 		 * migrated as it is expected they are cache replicated. Avoid
2191 		 * hinting faults in read-only file-backed mappings or the vdso
2192 		 * as migrating the pages will be of marginal benefit.
2193 		 */
2194 		if (!vma->vm_mm ||
2195 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2196 			continue;
2197 
2198 		/*
2199 		 * Skip inaccessible VMAs to avoid any confusion between
2200 		 * PROT_NONE and NUMA hinting ptes
2201 		 */
2202 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2203 			continue;
2204 
2205 		do {
2206 			start = max(start, vma->vm_start);
2207 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2208 			end = min(end, vma->vm_end);
2209 			nr_pte_updates += change_prot_numa(vma, start, end);
2210 
2211 			/*
2212 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2213 			 * at least one PTE is updated so that unused virtual
2214 			 * address space is quickly skipped.
2215 			 */
2216 			if (nr_pte_updates)
2217 				pages -= (end - start) >> PAGE_SHIFT;
2218 
2219 			start = end;
2220 			if (pages <= 0)
2221 				goto out;
2222 
2223 			cond_resched();
2224 		} while (end != vma->vm_end);
2225 	}
2226 
2227 out:
2228 	/*
2229 	 * It is possible to reach the end of the VMA list but the last few
2230 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2231 	 * would find the !migratable VMA on the next scan but not reset the
2232 	 * scanner to the start so check it now.
2233 	 */
2234 	if (vma)
2235 		mm->numa_scan_offset = start;
2236 	else
2237 		reset_ptenuma_scan(p);
2238 	up_read(&mm->mmap_sem);
2239 }
2240 
2241 /*
2242  * Drive the periodic memory faults..
2243  */
2244 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2245 {
2246 	struct callback_head *work = &curr->numa_work;
2247 	u64 period, now;
2248 
2249 	/*
2250 	 * We don't care about NUMA placement if we don't have memory.
2251 	 */
2252 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2253 		return;
2254 
2255 	/*
2256 	 * Using runtime rather than walltime has the dual advantage that
2257 	 * we (mostly) drive the selection from busy threads and that the
2258 	 * task needs to have done some actual work before we bother with
2259 	 * NUMA placement.
2260 	 */
2261 	now = curr->se.sum_exec_runtime;
2262 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2263 
2264 	if (now - curr->node_stamp > period) {
2265 		if (!curr->node_stamp)
2266 			curr->numa_scan_period = task_scan_min(curr);
2267 		curr->node_stamp += period;
2268 
2269 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2270 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2271 			task_work_add(curr, work, true);
2272 		}
2273 	}
2274 }
2275 #else
2276 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2277 {
2278 }
2279 
2280 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2281 {
2282 }
2283 
2284 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2285 {
2286 }
2287 #endif /* CONFIG_NUMA_BALANCING */
2288 
2289 static void
2290 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2291 {
2292 	update_load_add(&cfs_rq->load, se->load.weight);
2293 	if (!parent_entity(se))
2294 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2295 #ifdef CONFIG_SMP
2296 	if (entity_is_task(se)) {
2297 		struct rq *rq = rq_of(cfs_rq);
2298 
2299 		account_numa_enqueue(rq, task_of(se));
2300 		list_add(&se->group_node, &rq->cfs_tasks);
2301 	}
2302 #endif
2303 	cfs_rq->nr_running++;
2304 }
2305 
2306 static void
2307 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2308 {
2309 	update_load_sub(&cfs_rq->load, se->load.weight);
2310 	if (!parent_entity(se))
2311 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2312 	if (entity_is_task(se)) {
2313 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2314 		list_del_init(&se->group_node);
2315 	}
2316 	cfs_rq->nr_running--;
2317 }
2318 
2319 #ifdef CONFIG_FAIR_GROUP_SCHED
2320 # ifdef CONFIG_SMP
2321 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2322 {
2323 	long tg_weight;
2324 
2325 	/*
2326 	 * Use this CPU's actual weight instead of the last load_contribution
2327 	 * to gain a more accurate current total weight. See
2328 	 * update_cfs_rq_load_contribution().
2329 	 */
2330 	tg_weight = atomic_long_read(&tg->load_avg);
2331 	tg_weight -= cfs_rq->tg_load_contrib;
2332 	tg_weight += cfs_rq->load.weight;
2333 
2334 	return tg_weight;
2335 }
2336 
2337 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2338 {
2339 	long tg_weight, load, shares;
2340 
2341 	tg_weight = calc_tg_weight(tg, cfs_rq);
2342 	load = cfs_rq->load.weight;
2343 
2344 	shares = (tg->shares * load);
2345 	if (tg_weight)
2346 		shares /= tg_weight;
2347 
2348 	if (shares < MIN_SHARES)
2349 		shares = MIN_SHARES;
2350 	if (shares > tg->shares)
2351 		shares = tg->shares;
2352 
2353 	return shares;
2354 }
2355 # else /* CONFIG_SMP */
2356 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2357 {
2358 	return tg->shares;
2359 }
2360 # endif /* CONFIG_SMP */
2361 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2362 			    unsigned long weight)
2363 {
2364 	if (se->on_rq) {
2365 		/* commit outstanding execution time */
2366 		if (cfs_rq->curr == se)
2367 			update_curr(cfs_rq);
2368 		account_entity_dequeue(cfs_rq, se);
2369 	}
2370 
2371 	update_load_set(&se->load, weight);
2372 
2373 	if (se->on_rq)
2374 		account_entity_enqueue(cfs_rq, se);
2375 }
2376 
2377 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2378 
2379 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2380 {
2381 	struct task_group *tg;
2382 	struct sched_entity *se;
2383 	long shares;
2384 
2385 	tg = cfs_rq->tg;
2386 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2387 	if (!se || throttled_hierarchy(cfs_rq))
2388 		return;
2389 #ifndef CONFIG_SMP
2390 	if (likely(se->load.weight == tg->shares))
2391 		return;
2392 #endif
2393 	shares = calc_cfs_shares(cfs_rq, tg);
2394 
2395 	reweight_entity(cfs_rq_of(se), se, shares);
2396 }
2397 #else /* CONFIG_FAIR_GROUP_SCHED */
2398 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2399 {
2400 }
2401 #endif /* CONFIG_FAIR_GROUP_SCHED */
2402 
2403 #ifdef CONFIG_SMP
2404 /*
2405  * We choose a half-life close to 1 scheduling period.
2406  * Note: The tables below are dependent on this value.
2407  */
2408 #define LOAD_AVG_PERIOD 32
2409 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2410 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2411 
2412 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2413 static const u32 runnable_avg_yN_inv[] = {
2414 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2415 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2416 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2417 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2418 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2419 	0x85aac367, 0x82cd8698,
2420 };
2421 
2422 /*
2423  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2424  * over-estimates when re-combining.
2425  */
2426 static const u32 runnable_avg_yN_sum[] = {
2427 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2428 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2429 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2430 };
2431 
2432 /*
2433  * Approximate:
2434  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2435  */
2436 static __always_inline u64 decay_load(u64 val, u64 n)
2437 {
2438 	unsigned int local_n;
2439 
2440 	if (!n)
2441 		return val;
2442 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2443 		return 0;
2444 
2445 	/* after bounds checking we can collapse to 32-bit */
2446 	local_n = n;
2447 
2448 	/*
2449 	 * As y^PERIOD = 1/2, we can combine
2450 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2451 	 * With a look-up table which covers y^n (n<PERIOD)
2452 	 *
2453 	 * To achieve constant time decay_load.
2454 	 */
2455 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2456 		val >>= local_n / LOAD_AVG_PERIOD;
2457 		local_n %= LOAD_AVG_PERIOD;
2458 	}
2459 
2460 	val *= runnable_avg_yN_inv[local_n];
2461 	/* We don't use SRR here since we always want to round down. */
2462 	return val >> 32;
2463 }
2464 
2465 /*
2466  * For updates fully spanning n periods, the contribution to runnable
2467  * average will be: \Sum 1024*y^n
2468  *
2469  * We can compute this reasonably efficiently by combining:
2470  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2471  */
2472 static u32 __compute_runnable_contrib(u64 n)
2473 {
2474 	u32 contrib = 0;
2475 
2476 	if (likely(n <= LOAD_AVG_PERIOD))
2477 		return runnable_avg_yN_sum[n];
2478 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2479 		return LOAD_AVG_MAX;
2480 
2481 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2482 	do {
2483 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2484 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2485 
2486 		n -= LOAD_AVG_PERIOD;
2487 	} while (n > LOAD_AVG_PERIOD);
2488 
2489 	contrib = decay_load(contrib, n);
2490 	return contrib + runnable_avg_yN_sum[n];
2491 }
2492 
2493 /*
2494  * We can represent the historical contribution to runnable average as the
2495  * coefficients of a geometric series.  To do this we sub-divide our runnable
2496  * history into segments of approximately 1ms (1024us); label the segment that
2497  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2498  *
2499  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2500  *      p0            p1           p2
2501  *     (now)       (~1ms ago)  (~2ms ago)
2502  *
2503  * Let u_i denote the fraction of p_i that the entity was runnable.
2504  *
2505  * We then designate the fractions u_i as our co-efficients, yielding the
2506  * following representation of historical load:
2507  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2508  *
2509  * We choose y based on the with of a reasonably scheduling period, fixing:
2510  *   y^32 = 0.5
2511  *
2512  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2513  * approximately half as much as the contribution to load within the last ms
2514  * (u_0).
2515  *
2516  * When a period "rolls over" and we have new u_0`, multiplying the previous
2517  * sum again by y is sufficient to update:
2518  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2519  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2520  */
2521 static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
2522 							struct sched_avg *sa,
2523 							int runnable,
2524 							int running)
2525 {
2526 	u64 delta, periods;
2527 	u32 runnable_contrib;
2528 	int delta_w, decayed = 0;
2529 	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2530 
2531 	delta = now - sa->last_runnable_update;
2532 	/*
2533 	 * This should only happen when time goes backwards, which it
2534 	 * unfortunately does during sched clock init when we swap over to TSC.
2535 	 */
2536 	if ((s64)delta < 0) {
2537 		sa->last_runnable_update = now;
2538 		return 0;
2539 	}
2540 
2541 	/*
2542 	 * Use 1024ns as the unit of measurement since it's a reasonable
2543 	 * approximation of 1us and fast to compute.
2544 	 */
2545 	delta >>= 10;
2546 	if (!delta)
2547 		return 0;
2548 	sa->last_runnable_update = now;
2549 
2550 	/* delta_w is the amount already accumulated against our next period */
2551 	delta_w = sa->avg_period % 1024;
2552 	if (delta + delta_w >= 1024) {
2553 		/* period roll-over */
2554 		decayed = 1;
2555 
2556 		/*
2557 		 * Now that we know we're crossing a period boundary, figure
2558 		 * out how much from delta we need to complete the current
2559 		 * period and accrue it.
2560 		 */
2561 		delta_w = 1024 - delta_w;
2562 		if (runnable)
2563 			sa->runnable_avg_sum += delta_w;
2564 		if (running)
2565 			sa->running_avg_sum += delta_w * scale_freq
2566 				>> SCHED_CAPACITY_SHIFT;
2567 		sa->avg_period += delta_w;
2568 
2569 		delta -= delta_w;
2570 
2571 		/* Figure out how many additional periods this update spans */
2572 		periods = delta / 1024;
2573 		delta %= 1024;
2574 
2575 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2576 						  periods + 1);
2577 		sa->running_avg_sum = decay_load(sa->running_avg_sum,
2578 						  periods + 1);
2579 		sa->avg_period = decay_load(sa->avg_period,
2580 						     periods + 1);
2581 
2582 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2583 		runnable_contrib = __compute_runnable_contrib(periods);
2584 		if (runnable)
2585 			sa->runnable_avg_sum += runnable_contrib;
2586 		if (running)
2587 			sa->running_avg_sum += runnable_contrib * scale_freq
2588 				>> SCHED_CAPACITY_SHIFT;
2589 		sa->avg_period += runnable_contrib;
2590 	}
2591 
2592 	/* Remainder of delta accrued against u_0` */
2593 	if (runnable)
2594 		sa->runnable_avg_sum += delta;
2595 	if (running)
2596 		sa->running_avg_sum += delta * scale_freq
2597 			>> SCHED_CAPACITY_SHIFT;
2598 	sa->avg_period += delta;
2599 
2600 	return decayed;
2601 }
2602 
2603 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2604 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2605 {
2606 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2607 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2608 
2609 	decays -= se->avg.decay_count;
2610 	se->avg.decay_count = 0;
2611 	if (!decays)
2612 		return 0;
2613 
2614 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2615 	se->avg.utilization_avg_contrib =
2616 		decay_load(se->avg.utilization_avg_contrib, decays);
2617 
2618 	return decays;
2619 }
2620 
2621 #ifdef CONFIG_FAIR_GROUP_SCHED
2622 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2623 						 int force_update)
2624 {
2625 	struct task_group *tg = cfs_rq->tg;
2626 	long tg_contrib;
2627 
2628 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2629 	tg_contrib -= cfs_rq->tg_load_contrib;
2630 
2631 	if (!tg_contrib)
2632 		return;
2633 
2634 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2635 		atomic_long_add(tg_contrib, &tg->load_avg);
2636 		cfs_rq->tg_load_contrib += tg_contrib;
2637 	}
2638 }
2639 
2640 /*
2641  * Aggregate cfs_rq runnable averages into an equivalent task_group
2642  * representation for computing load contributions.
2643  */
2644 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2645 						  struct cfs_rq *cfs_rq)
2646 {
2647 	struct task_group *tg = cfs_rq->tg;
2648 	long contrib;
2649 
2650 	/* The fraction of a cpu used by this cfs_rq */
2651 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2652 			  sa->avg_period + 1);
2653 	contrib -= cfs_rq->tg_runnable_contrib;
2654 
2655 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2656 		atomic_add(contrib, &tg->runnable_avg);
2657 		cfs_rq->tg_runnable_contrib += contrib;
2658 	}
2659 }
2660 
2661 static inline void __update_group_entity_contrib(struct sched_entity *se)
2662 {
2663 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2664 	struct task_group *tg = cfs_rq->tg;
2665 	int runnable_avg;
2666 
2667 	u64 contrib;
2668 
2669 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2670 	se->avg.load_avg_contrib = div_u64(contrib,
2671 				     atomic_long_read(&tg->load_avg) + 1);
2672 
2673 	/*
2674 	 * For group entities we need to compute a correction term in the case
2675 	 * that they are consuming <1 cpu so that we would contribute the same
2676 	 * load as a task of equal weight.
2677 	 *
2678 	 * Explicitly co-ordinating this measurement would be expensive, but
2679 	 * fortunately the sum of each cpus contribution forms a usable
2680 	 * lower-bound on the true value.
2681 	 *
2682 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2683 	 * (and the sum represents true value) or they are disjoint and we are
2684 	 * understating by the aggregate of their overlap.
2685 	 *
2686 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2687 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2688 	 * cpus that overlap for this interval and w_i is the interval width.
2689 	 *
2690 	 * On a small machine; the first term is well-bounded which bounds the
2691 	 * total error since w_i is a subset of the period.  Whereas on a
2692 	 * larger machine, while this first term can be larger, if w_i is the
2693 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2694 	 * our upper bound of 1-cpu.
2695 	 */
2696 	runnable_avg = atomic_read(&tg->runnable_avg);
2697 	if (runnable_avg < NICE_0_LOAD) {
2698 		se->avg.load_avg_contrib *= runnable_avg;
2699 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2700 	}
2701 }
2702 
2703 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2704 {
2705 	__update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2706 			runnable, runnable);
2707 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2708 }
2709 #else /* CONFIG_FAIR_GROUP_SCHED */
2710 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2711 						 int force_update) {}
2712 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2713 						  struct cfs_rq *cfs_rq) {}
2714 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2715 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2716 #endif /* CONFIG_FAIR_GROUP_SCHED */
2717 
2718 static inline void __update_task_entity_contrib(struct sched_entity *se)
2719 {
2720 	u32 contrib;
2721 
2722 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2723 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2724 	contrib /= (se->avg.avg_period + 1);
2725 	se->avg.load_avg_contrib = scale_load(contrib);
2726 }
2727 
2728 /* Compute the current contribution to load_avg by se, return any delta */
2729 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2730 {
2731 	long old_contrib = se->avg.load_avg_contrib;
2732 
2733 	if (entity_is_task(se)) {
2734 		__update_task_entity_contrib(se);
2735 	} else {
2736 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2737 		__update_group_entity_contrib(se);
2738 	}
2739 
2740 	return se->avg.load_avg_contrib - old_contrib;
2741 }
2742 
2743 
2744 static inline void __update_task_entity_utilization(struct sched_entity *se)
2745 {
2746 	u32 contrib;
2747 
2748 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2749 	contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2750 	contrib /= (se->avg.avg_period + 1);
2751 	se->avg.utilization_avg_contrib = scale_load(contrib);
2752 }
2753 
2754 static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2755 {
2756 	long old_contrib = se->avg.utilization_avg_contrib;
2757 
2758 	if (entity_is_task(se))
2759 		__update_task_entity_utilization(se);
2760 	else
2761 		se->avg.utilization_avg_contrib =
2762 					group_cfs_rq(se)->utilization_load_avg;
2763 
2764 	return se->avg.utilization_avg_contrib - old_contrib;
2765 }
2766 
2767 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2768 						 long load_contrib)
2769 {
2770 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2771 		cfs_rq->blocked_load_avg -= load_contrib;
2772 	else
2773 		cfs_rq->blocked_load_avg = 0;
2774 }
2775 
2776 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2777 
2778 /* Update a sched_entity's runnable average */
2779 static inline void update_entity_load_avg(struct sched_entity *se,
2780 					  int update_cfs_rq)
2781 {
2782 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2783 	long contrib_delta, utilization_delta;
2784 	int cpu = cpu_of(rq_of(cfs_rq));
2785 	u64 now;
2786 
2787 	/*
2788 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2789 	 * case they are the parent of a throttled hierarchy.
2790 	 */
2791 	if (entity_is_task(se))
2792 		now = cfs_rq_clock_task(cfs_rq);
2793 	else
2794 		now = cfs_rq_clock_task(group_cfs_rq(se));
2795 
2796 	if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
2797 					cfs_rq->curr == se))
2798 		return;
2799 
2800 	contrib_delta = __update_entity_load_avg_contrib(se);
2801 	utilization_delta = __update_entity_utilization_avg_contrib(se);
2802 
2803 	if (!update_cfs_rq)
2804 		return;
2805 
2806 	if (se->on_rq) {
2807 		cfs_rq->runnable_load_avg += contrib_delta;
2808 		cfs_rq->utilization_load_avg += utilization_delta;
2809 	} else {
2810 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2811 	}
2812 }
2813 
2814 /*
2815  * Decay the load contributed by all blocked children and account this so that
2816  * their contribution may appropriately discounted when they wake up.
2817  */
2818 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2819 {
2820 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2821 	u64 decays;
2822 
2823 	decays = now - cfs_rq->last_decay;
2824 	if (!decays && !force_update)
2825 		return;
2826 
2827 	if (atomic_long_read(&cfs_rq->removed_load)) {
2828 		unsigned long removed_load;
2829 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2830 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2831 	}
2832 
2833 	if (decays) {
2834 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2835 						      decays);
2836 		atomic64_add(decays, &cfs_rq->decay_counter);
2837 		cfs_rq->last_decay = now;
2838 	}
2839 
2840 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2841 }
2842 
2843 /* Add the load generated by se into cfs_rq's child load-average */
2844 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2845 						  struct sched_entity *se,
2846 						  int wakeup)
2847 {
2848 	/*
2849 	 * We track migrations using entity decay_count <= 0, on a wake-up
2850 	 * migration we use a negative decay count to track the remote decays
2851 	 * accumulated while sleeping.
2852 	 *
2853 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2854 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2855 	 * constructed load_avg_contrib.
2856 	 */
2857 	if (unlikely(se->avg.decay_count <= 0)) {
2858 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2859 		if (se->avg.decay_count) {
2860 			/*
2861 			 * In a wake-up migration we have to approximate the
2862 			 * time sleeping.  This is because we can't synchronize
2863 			 * clock_task between the two cpus, and it is not
2864 			 * guaranteed to be read-safe.  Instead, we can
2865 			 * approximate this using our carried decays, which are
2866 			 * explicitly atomically readable.
2867 			 */
2868 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2869 							<< 20;
2870 			update_entity_load_avg(se, 0);
2871 			/* Indicate that we're now synchronized and on-rq */
2872 			se->avg.decay_count = 0;
2873 		}
2874 		wakeup = 0;
2875 	} else {
2876 		__synchronize_entity_decay(se);
2877 	}
2878 
2879 	/* migrated tasks did not contribute to our blocked load */
2880 	if (wakeup) {
2881 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2882 		update_entity_load_avg(se, 0);
2883 	}
2884 
2885 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2886 	cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
2887 	/* we force update consideration on load-balancer moves */
2888 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2889 }
2890 
2891 /*
2892  * Remove se's load from this cfs_rq child load-average, if the entity is
2893  * transitioning to a blocked state we track its projected decay using
2894  * blocked_load_avg.
2895  */
2896 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2897 						  struct sched_entity *se,
2898 						  int sleep)
2899 {
2900 	update_entity_load_avg(se, 1);
2901 	/* we force update consideration on load-balancer moves */
2902 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2903 
2904 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2905 	cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
2906 	if (sleep) {
2907 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2908 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2909 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2910 }
2911 
2912 /*
2913  * Update the rq's load with the elapsed running time before entering
2914  * idle. if the last scheduled task is not a CFS task, idle_enter will
2915  * be the only way to update the runnable statistic.
2916  */
2917 void idle_enter_fair(struct rq *this_rq)
2918 {
2919 	update_rq_runnable_avg(this_rq, 1);
2920 }
2921 
2922 /*
2923  * Update the rq's load with the elapsed idle time before a task is
2924  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2925  * be the only way to update the runnable statistic.
2926  */
2927 void idle_exit_fair(struct rq *this_rq)
2928 {
2929 	update_rq_runnable_avg(this_rq, 0);
2930 }
2931 
2932 static int idle_balance(struct rq *this_rq);
2933 
2934 #else /* CONFIG_SMP */
2935 
2936 static inline void update_entity_load_avg(struct sched_entity *se,
2937 					  int update_cfs_rq) {}
2938 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2939 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2940 					   struct sched_entity *se,
2941 					   int wakeup) {}
2942 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2943 					   struct sched_entity *se,
2944 					   int sleep) {}
2945 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2946 					      int force_update) {}
2947 
2948 static inline int idle_balance(struct rq *rq)
2949 {
2950 	return 0;
2951 }
2952 
2953 #endif /* CONFIG_SMP */
2954 
2955 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2956 {
2957 #ifdef CONFIG_SCHEDSTATS
2958 	struct task_struct *tsk = NULL;
2959 
2960 	if (entity_is_task(se))
2961 		tsk = task_of(se);
2962 
2963 	if (se->statistics.sleep_start) {
2964 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2965 
2966 		if ((s64)delta < 0)
2967 			delta = 0;
2968 
2969 		if (unlikely(delta > se->statistics.sleep_max))
2970 			se->statistics.sleep_max = delta;
2971 
2972 		se->statistics.sleep_start = 0;
2973 		se->statistics.sum_sleep_runtime += delta;
2974 
2975 		if (tsk) {
2976 			account_scheduler_latency(tsk, delta >> 10, 1);
2977 			trace_sched_stat_sleep(tsk, delta);
2978 		}
2979 	}
2980 	if (se->statistics.block_start) {
2981 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2982 
2983 		if ((s64)delta < 0)
2984 			delta = 0;
2985 
2986 		if (unlikely(delta > se->statistics.block_max))
2987 			se->statistics.block_max = delta;
2988 
2989 		se->statistics.block_start = 0;
2990 		se->statistics.sum_sleep_runtime += delta;
2991 
2992 		if (tsk) {
2993 			if (tsk->in_iowait) {
2994 				se->statistics.iowait_sum += delta;
2995 				se->statistics.iowait_count++;
2996 				trace_sched_stat_iowait(tsk, delta);
2997 			}
2998 
2999 			trace_sched_stat_blocked(tsk, delta);
3000 
3001 			/*
3002 			 * Blocking time is in units of nanosecs, so shift by
3003 			 * 20 to get a milliseconds-range estimation of the
3004 			 * amount of time that the task spent sleeping:
3005 			 */
3006 			if (unlikely(prof_on == SLEEP_PROFILING)) {
3007 				profile_hits(SLEEP_PROFILING,
3008 						(void *)get_wchan(tsk),
3009 						delta >> 20);
3010 			}
3011 			account_scheduler_latency(tsk, delta >> 10, 0);
3012 		}
3013 	}
3014 #endif
3015 }
3016 
3017 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3018 {
3019 #ifdef CONFIG_SCHED_DEBUG
3020 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3021 
3022 	if (d < 0)
3023 		d = -d;
3024 
3025 	if (d > 3*sysctl_sched_latency)
3026 		schedstat_inc(cfs_rq, nr_spread_over);
3027 #endif
3028 }
3029 
3030 static void
3031 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3032 {
3033 	u64 vruntime = cfs_rq->min_vruntime;
3034 
3035 	/*
3036 	 * The 'current' period is already promised to the current tasks,
3037 	 * however the extra weight of the new task will slow them down a
3038 	 * little, place the new task so that it fits in the slot that
3039 	 * stays open at the end.
3040 	 */
3041 	if (initial && sched_feat(START_DEBIT))
3042 		vruntime += sched_vslice(cfs_rq, se);
3043 
3044 	/* sleeps up to a single latency don't count. */
3045 	if (!initial) {
3046 		unsigned long thresh = sysctl_sched_latency;
3047 
3048 		/*
3049 		 * Halve their sleep time's effect, to allow
3050 		 * for a gentler effect of sleepers:
3051 		 */
3052 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3053 			thresh >>= 1;
3054 
3055 		vruntime -= thresh;
3056 	}
3057 
3058 	/* ensure we never gain time by being placed backwards. */
3059 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3060 }
3061 
3062 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3063 
3064 static void
3065 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3066 {
3067 	/*
3068 	 * Update the normalized vruntime before updating min_vruntime
3069 	 * through calling update_curr().
3070 	 */
3071 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3072 		se->vruntime += cfs_rq->min_vruntime;
3073 
3074 	/*
3075 	 * Update run-time statistics of the 'current'.
3076 	 */
3077 	update_curr(cfs_rq);
3078 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3079 	account_entity_enqueue(cfs_rq, se);
3080 	update_cfs_shares(cfs_rq);
3081 
3082 	if (flags & ENQUEUE_WAKEUP) {
3083 		place_entity(cfs_rq, se, 0);
3084 		enqueue_sleeper(cfs_rq, se);
3085 	}
3086 
3087 	update_stats_enqueue(cfs_rq, se);
3088 	check_spread(cfs_rq, se);
3089 	if (se != cfs_rq->curr)
3090 		__enqueue_entity(cfs_rq, se);
3091 	se->on_rq = 1;
3092 
3093 	if (cfs_rq->nr_running == 1) {
3094 		list_add_leaf_cfs_rq(cfs_rq);
3095 		check_enqueue_throttle(cfs_rq);
3096 	}
3097 }
3098 
3099 static void __clear_buddies_last(struct sched_entity *se)
3100 {
3101 	for_each_sched_entity(se) {
3102 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3103 		if (cfs_rq->last != se)
3104 			break;
3105 
3106 		cfs_rq->last = NULL;
3107 	}
3108 }
3109 
3110 static void __clear_buddies_next(struct sched_entity *se)
3111 {
3112 	for_each_sched_entity(se) {
3113 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 		if (cfs_rq->next != se)
3115 			break;
3116 
3117 		cfs_rq->next = NULL;
3118 	}
3119 }
3120 
3121 static void __clear_buddies_skip(struct sched_entity *se)
3122 {
3123 	for_each_sched_entity(se) {
3124 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3125 		if (cfs_rq->skip != se)
3126 			break;
3127 
3128 		cfs_rq->skip = NULL;
3129 	}
3130 }
3131 
3132 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3133 {
3134 	if (cfs_rq->last == se)
3135 		__clear_buddies_last(se);
3136 
3137 	if (cfs_rq->next == se)
3138 		__clear_buddies_next(se);
3139 
3140 	if (cfs_rq->skip == se)
3141 		__clear_buddies_skip(se);
3142 }
3143 
3144 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3145 
3146 static void
3147 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3148 {
3149 	/*
3150 	 * Update run-time statistics of the 'current'.
3151 	 */
3152 	update_curr(cfs_rq);
3153 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3154 
3155 	update_stats_dequeue(cfs_rq, se);
3156 	if (flags & DEQUEUE_SLEEP) {
3157 #ifdef CONFIG_SCHEDSTATS
3158 		if (entity_is_task(se)) {
3159 			struct task_struct *tsk = task_of(se);
3160 
3161 			if (tsk->state & TASK_INTERRUPTIBLE)
3162 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3163 			if (tsk->state & TASK_UNINTERRUPTIBLE)
3164 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3165 		}
3166 #endif
3167 	}
3168 
3169 	clear_buddies(cfs_rq, se);
3170 
3171 	if (se != cfs_rq->curr)
3172 		__dequeue_entity(cfs_rq, se);
3173 	se->on_rq = 0;
3174 	account_entity_dequeue(cfs_rq, se);
3175 
3176 	/*
3177 	 * Normalize the entity after updating the min_vruntime because the
3178 	 * update can refer to the ->curr item and we need to reflect this
3179 	 * movement in our normalized position.
3180 	 */
3181 	if (!(flags & DEQUEUE_SLEEP))
3182 		se->vruntime -= cfs_rq->min_vruntime;
3183 
3184 	/* return excess runtime on last dequeue */
3185 	return_cfs_rq_runtime(cfs_rq);
3186 
3187 	update_min_vruntime(cfs_rq);
3188 	update_cfs_shares(cfs_rq);
3189 }
3190 
3191 /*
3192  * Preempt the current task with a newly woken task if needed:
3193  */
3194 static void
3195 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3196 {
3197 	unsigned long ideal_runtime, delta_exec;
3198 	struct sched_entity *se;
3199 	s64 delta;
3200 
3201 	ideal_runtime = sched_slice(cfs_rq, curr);
3202 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3203 	if (delta_exec > ideal_runtime) {
3204 		resched_curr(rq_of(cfs_rq));
3205 		/*
3206 		 * The current task ran long enough, ensure it doesn't get
3207 		 * re-elected due to buddy favours.
3208 		 */
3209 		clear_buddies(cfs_rq, curr);
3210 		return;
3211 	}
3212 
3213 	/*
3214 	 * Ensure that a task that missed wakeup preemption by a
3215 	 * narrow margin doesn't have to wait for a full slice.
3216 	 * This also mitigates buddy induced latencies under load.
3217 	 */
3218 	if (delta_exec < sysctl_sched_min_granularity)
3219 		return;
3220 
3221 	se = __pick_first_entity(cfs_rq);
3222 	delta = curr->vruntime - se->vruntime;
3223 
3224 	if (delta < 0)
3225 		return;
3226 
3227 	if (delta > ideal_runtime)
3228 		resched_curr(rq_of(cfs_rq));
3229 }
3230 
3231 static void
3232 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3233 {
3234 	/* 'current' is not kept within the tree. */
3235 	if (se->on_rq) {
3236 		/*
3237 		 * Any task has to be enqueued before it get to execute on
3238 		 * a CPU. So account for the time it spent waiting on the
3239 		 * runqueue.
3240 		 */
3241 		update_stats_wait_end(cfs_rq, se);
3242 		__dequeue_entity(cfs_rq, se);
3243 		update_entity_load_avg(se, 1);
3244 	}
3245 
3246 	update_stats_curr_start(cfs_rq, se);
3247 	cfs_rq->curr = se;
3248 #ifdef CONFIG_SCHEDSTATS
3249 	/*
3250 	 * Track our maximum slice length, if the CPU's load is at
3251 	 * least twice that of our own weight (i.e. dont track it
3252 	 * when there are only lesser-weight tasks around):
3253 	 */
3254 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3255 		se->statistics.slice_max = max(se->statistics.slice_max,
3256 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3257 	}
3258 #endif
3259 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3260 }
3261 
3262 static int
3263 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3264 
3265 /*
3266  * Pick the next process, keeping these things in mind, in this order:
3267  * 1) keep things fair between processes/task groups
3268  * 2) pick the "next" process, since someone really wants that to run
3269  * 3) pick the "last" process, for cache locality
3270  * 4) do not run the "skip" process, if something else is available
3271  */
3272 static struct sched_entity *
3273 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3274 {
3275 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3276 	struct sched_entity *se;
3277 
3278 	/*
3279 	 * If curr is set we have to see if its left of the leftmost entity
3280 	 * still in the tree, provided there was anything in the tree at all.
3281 	 */
3282 	if (!left || (curr && entity_before(curr, left)))
3283 		left = curr;
3284 
3285 	se = left; /* ideally we run the leftmost entity */
3286 
3287 	/*
3288 	 * Avoid running the skip buddy, if running something else can
3289 	 * be done without getting too unfair.
3290 	 */
3291 	if (cfs_rq->skip == se) {
3292 		struct sched_entity *second;
3293 
3294 		if (se == curr) {
3295 			second = __pick_first_entity(cfs_rq);
3296 		} else {
3297 			second = __pick_next_entity(se);
3298 			if (!second || (curr && entity_before(curr, second)))
3299 				second = curr;
3300 		}
3301 
3302 		if (second && wakeup_preempt_entity(second, left) < 1)
3303 			se = second;
3304 	}
3305 
3306 	/*
3307 	 * Prefer last buddy, try to return the CPU to a preempted task.
3308 	 */
3309 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3310 		se = cfs_rq->last;
3311 
3312 	/*
3313 	 * Someone really wants this to run. If it's not unfair, run it.
3314 	 */
3315 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3316 		se = cfs_rq->next;
3317 
3318 	clear_buddies(cfs_rq, se);
3319 
3320 	return se;
3321 }
3322 
3323 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3324 
3325 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3326 {
3327 	/*
3328 	 * If still on the runqueue then deactivate_task()
3329 	 * was not called and update_curr() has to be done:
3330 	 */
3331 	if (prev->on_rq)
3332 		update_curr(cfs_rq);
3333 
3334 	/* throttle cfs_rqs exceeding runtime */
3335 	check_cfs_rq_runtime(cfs_rq);
3336 
3337 	check_spread(cfs_rq, prev);
3338 	if (prev->on_rq) {
3339 		update_stats_wait_start(cfs_rq, prev);
3340 		/* Put 'current' back into the tree. */
3341 		__enqueue_entity(cfs_rq, prev);
3342 		/* in !on_rq case, update occurred at dequeue */
3343 		update_entity_load_avg(prev, 1);
3344 	}
3345 	cfs_rq->curr = NULL;
3346 }
3347 
3348 static void
3349 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3350 {
3351 	/*
3352 	 * Update run-time statistics of the 'current'.
3353 	 */
3354 	update_curr(cfs_rq);
3355 
3356 	/*
3357 	 * Ensure that runnable average is periodically updated.
3358 	 */
3359 	update_entity_load_avg(curr, 1);
3360 	update_cfs_rq_blocked_load(cfs_rq, 1);
3361 	update_cfs_shares(cfs_rq);
3362 
3363 #ifdef CONFIG_SCHED_HRTICK
3364 	/*
3365 	 * queued ticks are scheduled to match the slice, so don't bother
3366 	 * validating it and just reschedule.
3367 	 */
3368 	if (queued) {
3369 		resched_curr(rq_of(cfs_rq));
3370 		return;
3371 	}
3372 	/*
3373 	 * don't let the period tick interfere with the hrtick preemption
3374 	 */
3375 	if (!sched_feat(DOUBLE_TICK) &&
3376 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3377 		return;
3378 #endif
3379 
3380 	if (cfs_rq->nr_running > 1)
3381 		check_preempt_tick(cfs_rq, curr);
3382 }
3383 
3384 
3385 /**************************************************
3386  * CFS bandwidth control machinery
3387  */
3388 
3389 #ifdef CONFIG_CFS_BANDWIDTH
3390 
3391 #ifdef HAVE_JUMP_LABEL
3392 static struct static_key __cfs_bandwidth_used;
3393 
3394 static inline bool cfs_bandwidth_used(void)
3395 {
3396 	return static_key_false(&__cfs_bandwidth_used);
3397 }
3398 
3399 void cfs_bandwidth_usage_inc(void)
3400 {
3401 	static_key_slow_inc(&__cfs_bandwidth_used);
3402 }
3403 
3404 void cfs_bandwidth_usage_dec(void)
3405 {
3406 	static_key_slow_dec(&__cfs_bandwidth_used);
3407 }
3408 #else /* HAVE_JUMP_LABEL */
3409 static bool cfs_bandwidth_used(void)
3410 {
3411 	return true;
3412 }
3413 
3414 void cfs_bandwidth_usage_inc(void) {}
3415 void cfs_bandwidth_usage_dec(void) {}
3416 #endif /* HAVE_JUMP_LABEL */
3417 
3418 /*
3419  * default period for cfs group bandwidth.
3420  * default: 0.1s, units: nanoseconds
3421  */
3422 static inline u64 default_cfs_period(void)
3423 {
3424 	return 100000000ULL;
3425 }
3426 
3427 static inline u64 sched_cfs_bandwidth_slice(void)
3428 {
3429 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3430 }
3431 
3432 /*
3433  * Replenish runtime according to assigned quota and update expiration time.
3434  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3435  * additional synchronization around rq->lock.
3436  *
3437  * requires cfs_b->lock
3438  */
3439 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3440 {
3441 	u64 now;
3442 
3443 	if (cfs_b->quota == RUNTIME_INF)
3444 		return;
3445 
3446 	now = sched_clock_cpu(smp_processor_id());
3447 	cfs_b->runtime = cfs_b->quota;
3448 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3449 }
3450 
3451 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3452 {
3453 	return &tg->cfs_bandwidth;
3454 }
3455 
3456 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3457 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3458 {
3459 	if (unlikely(cfs_rq->throttle_count))
3460 		return cfs_rq->throttled_clock_task;
3461 
3462 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3463 }
3464 
3465 /* returns 0 on failure to allocate runtime */
3466 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3467 {
3468 	struct task_group *tg = cfs_rq->tg;
3469 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3470 	u64 amount = 0, min_amount, expires;
3471 
3472 	/* note: this is a positive sum as runtime_remaining <= 0 */
3473 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3474 
3475 	raw_spin_lock(&cfs_b->lock);
3476 	if (cfs_b->quota == RUNTIME_INF)
3477 		amount = min_amount;
3478 	else {
3479 		/*
3480 		 * If the bandwidth pool has become inactive, then at least one
3481 		 * period must have elapsed since the last consumption.
3482 		 * Refresh the global state and ensure bandwidth timer becomes
3483 		 * active.
3484 		 */
3485 		if (!cfs_b->timer_active) {
3486 			__refill_cfs_bandwidth_runtime(cfs_b);
3487 			__start_cfs_bandwidth(cfs_b, false);
3488 		}
3489 
3490 		if (cfs_b->runtime > 0) {
3491 			amount = min(cfs_b->runtime, min_amount);
3492 			cfs_b->runtime -= amount;
3493 			cfs_b->idle = 0;
3494 		}
3495 	}
3496 	expires = cfs_b->runtime_expires;
3497 	raw_spin_unlock(&cfs_b->lock);
3498 
3499 	cfs_rq->runtime_remaining += amount;
3500 	/*
3501 	 * we may have advanced our local expiration to account for allowed
3502 	 * spread between our sched_clock and the one on which runtime was
3503 	 * issued.
3504 	 */
3505 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3506 		cfs_rq->runtime_expires = expires;
3507 
3508 	return cfs_rq->runtime_remaining > 0;
3509 }
3510 
3511 /*
3512  * Note: This depends on the synchronization provided by sched_clock and the
3513  * fact that rq->clock snapshots this value.
3514  */
3515 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3516 {
3517 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3518 
3519 	/* if the deadline is ahead of our clock, nothing to do */
3520 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3521 		return;
3522 
3523 	if (cfs_rq->runtime_remaining < 0)
3524 		return;
3525 
3526 	/*
3527 	 * If the local deadline has passed we have to consider the
3528 	 * possibility that our sched_clock is 'fast' and the global deadline
3529 	 * has not truly expired.
3530 	 *
3531 	 * Fortunately we can check determine whether this the case by checking
3532 	 * whether the global deadline has advanced. It is valid to compare
3533 	 * cfs_b->runtime_expires without any locks since we only care about
3534 	 * exact equality, so a partial write will still work.
3535 	 */
3536 
3537 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3538 		/* extend local deadline, drift is bounded above by 2 ticks */
3539 		cfs_rq->runtime_expires += TICK_NSEC;
3540 	} else {
3541 		/* global deadline is ahead, expiration has passed */
3542 		cfs_rq->runtime_remaining = 0;
3543 	}
3544 }
3545 
3546 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3547 {
3548 	/* dock delta_exec before expiring quota (as it could span periods) */
3549 	cfs_rq->runtime_remaining -= delta_exec;
3550 	expire_cfs_rq_runtime(cfs_rq);
3551 
3552 	if (likely(cfs_rq->runtime_remaining > 0))
3553 		return;
3554 
3555 	/*
3556 	 * if we're unable to extend our runtime we resched so that the active
3557 	 * hierarchy can be throttled
3558 	 */
3559 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3560 		resched_curr(rq_of(cfs_rq));
3561 }
3562 
3563 static __always_inline
3564 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3565 {
3566 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3567 		return;
3568 
3569 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3570 }
3571 
3572 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3573 {
3574 	return cfs_bandwidth_used() && cfs_rq->throttled;
3575 }
3576 
3577 /* check whether cfs_rq, or any parent, is throttled */
3578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3579 {
3580 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3581 }
3582 
3583 /*
3584  * Ensure that neither of the group entities corresponding to src_cpu or
3585  * dest_cpu are members of a throttled hierarchy when performing group
3586  * load-balance operations.
3587  */
3588 static inline int throttled_lb_pair(struct task_group *tg,
3589 				    int src_cpu, int dest_cpu)
3590 {
3591 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3592 
3593 	src_cfs_rq = tg->cfs_rq[src_cpu];
3594 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3595 
3596 	return throttled_hierarchy(src_cfs_rq) ||
3597 	       throttled_hierarchy(dest_cfs_rq);
3598 }
3599 
3600 /* updated child weight may affect parent so we have to do this bottom up */
3601 static int tg_unthrottle_up(struct task_group *tg, void *data)
3602 {
3603 	struct rq *rq = data;
3604 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3605 
3606 	cfs_rq->throttle_count--;
3607 #ifdef CONFIG_SMP
3608 	if (!cfs_rq->throttle_count) {
3609 		/* adjust cfs_rq_clock_task() */
3610 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3611 					     cfs_rq->throttled_clock_task;
3612 	}
3613 #endif
3614 
3615 	return 0;
3616 }
3617 
3618 static int tg_throttle_down(struct task_group *tg, void *data)
3619 {
3620 	struct rq *rq = data;
3621 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3622 
3623 	/* group is entering throttled state, stop time */
3624 	if (!cfs_rq->throttle_count)
3625 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3626 	cfs_rq->throttle_count++;
3627 
3628 	return 0;
3629 }
3630 
3631 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3632 {
3633 	struct rq *rq = rq_of(cfs_rq);
3634 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3635 	struct sched_entity *se;
3636 	long task_delta, dequeue = 1;
3637 
3638 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3639 
3640 	/* freeze hierarchy runnable averages while throttled */
3641 	rcu_read_lock();
3642 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3643 	rcu_read_unlock();
3644 
3645 	task_delta = cfs_rq->h_nr_running;
3646 	for_each_sched_entity(se) {
3647 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3648 		/* throttled entity or throttle-on-deactivate */
3649 		if (!se->on_rq)
3650 			break;
3651 
3652 		if (dequeue)
3653 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3654 		qcfs_rq->h_nr_running -= task_delta;
3655 
3656 		if (qcfs_rq->load.weight)
3657 			dequeue = 0;
3658 	}
3659 
3660 	if (!se)
3661 		sub_nr_running(rq, task_delta);
3662 
3663 	cfs_rq->throttled = 1;
3664 	cfs_rq->throttled_clock = rq_clock(rq);
3665 	raw_spin_lock(&cfs_b->lock);
3666 	/*
3667 	 * Add to the _head_ of the list, so that an already-started
3668 	 * distribute_cfs_runtime will not see us
3669 	 */
3670 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3671 	if (!cfs_b->timer_active)
3672 		__start_cfs_bandwidth(cfs_b, false);
3673 	raw_spin_unlock(&cfs_b->lock);
3674 }
3675 
3676 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3677 {
3678 	struct rq *rq = rq_of(cfs_rq);
3679 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3680 	struct sched_entity *se;
3681 	int enqueue = 1;
3682 	long task_delta;
3683 
3684 	se = cfs_rq->tg->se[cpu_of(rq)];
3685 
3686 	cfs_rq->throttled = 0;
3687 
3688 	update_rq_clock(rq);
3689 
3690 	raw_spin_lock(&cfs_b->lock);
3691 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3692 	list_del_rcu(&cfs_rq->throttled_list);
3693 	raw_spin_unlock(&cfs_b->lock);
3694 
3695 	/* update hierarchical throttle state */
3696 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3697 
3698 	if (!cfs_rq->load.weight)
3699 		return;
3700 
3701 	task_delta = cfs_rq->h_nr_running;
3702 	for_each_sched_entity(se) {
3703 		if (se->on_rq)
3704 			enqueue = 0;
3705 
3706 		cfs_rq = cfs_rq_of(se);
3707 		if (enqueue)
3708 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3709 		cfs_rq->h_nr_running += task_delta;
3710 
3711 		if (cfs_rq_throttled(cfs_rq))
3712 			break;
3713 	}
3714 
3715 	if (!se)
3716 		add_nr_running(rq, task_delta);
3717 
3718 	/* determine whether we need to wake up potentially idle cpu */
3719 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3720 		resched_curr(rq);
3721 }
3722 
3723 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3724 		u64 remaining, u64 expires)
3725 {
3726 	struct cfs_rq *cfs_rq;
3727 	u64 runtime;
3728 	u64 starting_runtime = remaining;
3729 
3730 	rcu_read_lock();
3731 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3732 				throttled_list) {
3733 		struct rq *rq = rq_of(cfs_rq);
3734 
3735 		raw_spin_lock(&rq->lock);
3736 		if (!cfs_rq_throttled(cfs_rq))
3737 			goto next;
3738 
3739 		runtime = -cfs_rq->runtime_remaining + 1;
3740 		if (runtime > remaining)
3741 			runtime = remaining;
3742 		remaining -= runtime;
3743 
3744 		cfs_rq->runtime_remaining += runtime;
3745 		cfs_rq->runtime_expires = expires;
3746 
3747 		/* we check whether we're throttled above */
3748 		if (cfs_rq->runtime_remaining > 0)
3749 			unthrottle_cfs_rq(cfs_rq);
3750 
3751 next:
3752 		raw_spin_unlock(&rq->lock);
3753 
3754 		if (!remaining)
3755 			break;
3756 	}
3757 	rcu_read_unlock();
3758 
3759 	return starting_runtime - remaining;
3760 }
3761 
3762 /*
3763  * Responsible for refilling a task_group's bandwidth and unthrottling its
3764  * cfs_rqs as appropriate. If there has been no activity within the last
3765  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3766  * used to track this state.
3767  */
3768 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3769 {
3770 	u64 runtime, runtime_expires;
3771 	int throttled;
3772 
3773 	/* no need to continue the timer with no bandwidth constraint */
3774 	if (cfs_b->quota == RUNTIME_INF)
3775 		goto out_deactivate;
3776 
3777 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3778 	cfs_b->nr_periods += overrun;
3779 
3780 	/*
3781 	 * idle depends on !throttled (for the case of a large deficit), and if
3782 	 * we're going inactive then everything else can be deferred
3783 	 */
3784 	if (cfs_b->idle && !throttled)
3785 		goto out_deactivate;
3786 
3787 	/*
3788 	 * if we have relooped after returning idle once, we need to update our
3789 	 * status as actually running, so that other cpus doing
3790 	 * __start_cfs_bandwidth will stop trying to cancel us.
3791 	 */
3792 	cfs_b->timer_active = 1;
3793 
3794 	__refill_cfs_bandwidth_runtime(cfs_b);
3795 
3796 	if (!throttled) {
3797 		/* mark as potentially idle for the upcoming period */
3798 		cfs_b->idle = 1;
3799 		return 0;
3800 	}
3801 
3802 	/* account preceding periods in which throttling occurred */
3803 	cfs_b->nr_throttled += overrun;
3804 
3805 	runtime_expires = cfs_b->runtime_expires;
3806 
3807 	/*
3808 	 * This check is repeated as we are holding onto the new bandwidth while
3809 	 * we unthrottle. This can potentially race with an unthrottled group
3810 	 * trying to acquire new bandwidth from the global pool. This can result
3811 	 * in us over-using our runtime if it is all used during this loop, but
3812 	 * only by limited amounts in that extreme case.
3813 	 */
3814 	while (throttled && cfs_b->runtime > 0) {
3815 		runtime = cfs_b->runtime;
3816 		raw_spin_unlock(&cfs_b->lock);
3817 		/* we can't nest cfs_b->lock while distributing bandwidth */
3818 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3819 						 runtime_expires);
3820 		raw_spin_lock(&cfs_b->lock);
3821 
3822 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3823 
3824 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3825 	}
3826 
3827 	/*
3828 	 * While we are ensured activity in the period following an
3829 	 * unthrottle, this also covers the case in which the new bandwidth is
3830 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3831 	 * timer to remain active while there are any throttled entities.)
3832 	 */
3833 	cfs_b->idle = 0;
3834 
3835 	return 0;
3836 
3837 out_deactivate:
3838 	cfs_b->timer_active = 0;
3839 	return 1;
3840 }
3841 
3842 /* a cfs_rq won't donate quota below this amount */
3843 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3844 /* minimum remaining period time to redistribute slack quota */
3845 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3846 /* how long we wait to gather additional slack before distributing */
3847 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3848 
3849 /*
3850  * Are we near the end of the current quota period?
3851  *
3852  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3853  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3854  * migrate_hrtimers, base is never cleared, so we are fine.
3855  */
3856 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3857 {
3858 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3859 	u64 remaining;
3860 
3861 	/* if the call-back is running a quota refresh is already occurring */
3862 	if (hrtimer_callback_running(refresh_timer))
3863 		return 1;
3864 
3865 	/* is a quota refresh about to occur? */
3866 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3867 	if (remaining < min_expire)
3868 		return 1;
3869 
3870 	return 0;
3871 }
3872 
3873 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3874 {
3875 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3876 
3877 	/* if there's a quota refresh soon don't bother with slack */
3878 	if (runtime_refresh_within(cfs_b, min_left))
3879 		return;
3880 
3881 	start_bandwidth_timer(&cfs_b->slack_timer,
3882 				ns_to_ktime(cfs_bandwidth_slack_period));
3883 }
3884 
3885 /* we know any runtime found here is valid as update_curr() precedes return */
3886 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3887 {
3888 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3889 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3890 
3891 	if (slack_runtime <= 0)
3892 		return;
3893 
3894 	raw_spin_lock(&cfs_b->lock);
3895 	if (cfs_b->quota != RUNTIME_INF &&
3896 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3897 		cfs_b->runtime += slack_runtime;
3898 
3899 		/* we are under rq->lock, defer unthrottling using a timer */
3900 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3901 		    !list_empty(&cfs_b->throttled_cfs_rq))
3902 			start_cfs_slack_bandwidth(cfs_b);
3903 	}
3904 	raw_spin_unlock(&cfs_b->lock);
3905 
3906 	/* even if it's not valid for return we don't want to try again */
3907 	cfs_rq->runtime_remaining -= slack_runtime;
3908 }
3909 
3910 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3911 {
3912 	if (!cfs_bandwidth_used())
3913 		return;
3914 
3915 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3916 		return;
3917 
3918 	__return_cfs_rq_runtime(cfs_rq);
3919 }
3920 
3921 /*
3922  * This is done with a timer (instead of inline with bandwidth return) since
3923  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3924  */
3925 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3926 {
3927 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3928 	u64 expires;
3929 
3930 	/* confirm we're still not at a refresh boundary */
3931 	raw_spin_lock(&cfs_b->lock);
3932 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3933 		raw_spin_unlock(&cfs_b->lock);
3934 		return;
3935 	}
3936 
3937 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3938 		runtime = cfs_b->runtime;
3939 
3940 	expires = cfs_b->runtime_expires;
3941 	raw_spin_unlock(&cfs_b->lock);
3942 
3943 	if (!runtime)
3944 		return;
3945 
3946 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3947 
3948 	raw_spin_lock(&cfs_b->lock);
3949 	if (expires == cfs_b->runtime_expires)
3950 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3951 	raw_spin_unlock(&cfs_b->lock);
3952 }
3953 
3954 /*
3955  * When a group wakes up we want to make sure that its quota is not already
3956  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3957  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3958  */
3959 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3960 {
3961 	if (!cfs_bandwidth_used())
3962 		return;
3963 
3964 	/* an active group must be handled by the update_curr()->put() path */
3965 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3966 		return;
3967 
3968 	/* ensure the group is not already throttled */
3969 	if (cfs_rq_throttled(cfs_rq))
3970 		return;
3971 
3972 	/* update runtime allocation */
3973 	account_cfs_rq_runtime(cfs_rq, 0);
3974 	if (cfs_rq->runtime_remaining <= 0)
3975 		throttle_cfs_rq(cfs_rq);
3976 }
3977 
3978 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3979 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3980 {
3981 	if (!cfs_bandwidth_used())
3982 		return false;
3983 
3984 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3985 		return false;
3986 
3987 	/*
3988 	 * it's possible for a throttled entity to be forced into a running
3989 	 * state (e.g. set_curr_task), in this case we're finished.
3990 	 */
3991 	if (cfs_rq_throttled(cfs_rq))
3992 		return true;
3993 
3994 	throttle_cfs_rq(cfs_rq);
3995 	return true;
3996 }
3997 
3998 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3999 {
4000 	struct cfs_bandwidth *cfs_b =
4001 		container_of(timer, struct cfs_bandwidth, slack_timer);
4002 	do_sched_cfs_slack_timer(cfs_b);
4003 
4004 	return HRTIMER_NORESTART;
4005 }
4006 
4007 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4008 {
4009 	struct cfs_bandwidth *cfs_b =
4010 		container_of(timer, struct cfs_bandwidth, period_timer);
4011 	ktime_t now;
4012 	int overrun;
4013 	int idle = 0;
4014 
4015 	raw_spin_lock(&cfs_b->lock);
4016 	for (;;) {
4017 		now = hrtimer_cb_get_time(timer);
4018 		overrun = hrtimer_forward(timer, now, cfs_b->period);
4019 
4020 		if (!overrun)
4021 			break;
4022 
4023 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4024 	}
4025 	raw_spin_unlock(&cfs_b->lock);
4026 
4027 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4028 }
4029 
4030 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4031 {
4032 	raw_spin_lock_init(&cfs_b->lock);
4033 	cfs_b->runtime = 0;
4034 	cfs_b->quota = RUNTIME_INF;
4035 	cfs_b->period = ns_to_ktime(default_cfs_period());
4036 
4037 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4038 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4039 	cfs_b->period_timer.function = sched_cfs_period_timer;
4040 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4042 }
4043 
4044 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4045 {
4046 	cfs_rq->runtime_enabled = 0;
4047 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4048 }
4049 
4050 /* requires cfs_b->lock, may release to reprogram timer */
4051 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
4052 {
4053 	/*
4054 	 * The timer may be active because we're trying to set a new bandwidth
4055 	 * period or because we're racing with the tear-down path
4056 	 * (timer_active==0 becomes visible before the hrtimer call-back
4057 	 * terminates).  In either case we ensure that it's re-programmed
4058 	 */
4059 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4060 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4061 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
4062 		raw_spin_unlock(&cfs_b->lock);
4063 		cpu_relax();
4064 		raw_spin_lock(&cfs_b->lock);
4065 		/* if someone else restarted the timer then we're done */
4066 		if (!force && cfs_b->timer_active)
4067 			return;
4068 	}
4069 
4070 	cfs_b->timer_active = 1;
4071 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4072 }
4073 
4074 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4075 {
4076 	/* init_cfs_bandwidth() was not called */
4077 	if (!cfs_b->throttled_cfs_rq.next)
4078 		return;
4079 
4080 	hrtimer_cancel(&cfs_b->period_timer);
4081 	hrtimer_cancel(&cfs_b->slack_timer);
4082 }
4083 
4084 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4085 {
4086 	struct cfs_rq *cfs_rq;
4087 
4088 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4089 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4090 
4091 		raw_spin_lock(&cfs_b->lock);
4092 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4093 		raw_spin_unlock(&cfs_b->lock);
4094 	}
4095 }
4096 
4097 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4098 {
4099 	struct cfs_rq *cfs_rq;
4100 
4101 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4102 		if (!cfs_rq->runtime_enabled)
4103 			continue;
4104 
4105 		/*
4106 		 * clock_task is not advancing so we just need to make sure
4107 		 * there's some valid quota amount
4108 		 */
4109 		cfs_rq->runtime_remaining = 1;
4110 		/*
4111 		 * Offline rq is schedulable till cpu is completely disabled
4112 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4113 		 */
4114 		cfs_rq->runtime_enabled = 0;
4115 
4116 		if (cfs_rq_throttled(cfs_rq))
4117 			unthrottle_cfs_rq(cfs_rq);
4118 	}
4119 }
4120 
4121 #else /* CONFIG_CFS_BANDWIDTH */
4122 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4123 {
4124 	return rq_clock_task(rq_of(cfs_rq));
4125 }
4126 
4127 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4128 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4129 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4130 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4131 
4132 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4133 {
4134 	return 0;
4135 }
4136 
4137 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4138 {
4139 	return 0;
4140 }
4141 
4142 static inline int throttled_lb_pair(struct task_group *tg,
4143 				    int src_cpu, int dest_cpu)
4144 {
4145 	return 0;
4146 }
4147 
4148 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4149 
4150 #ifdef CONFIG_FAIR_GROUP_SCHED
4151 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4152 #endif
4153 
4154 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4155 {
4156 	return NULL;
4157 }
4158 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4159 static inline void update_runtime_enabled(struct rq *rq) {}
4160 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4161 
4162 #endif /* CONFIG_CFS_BANDWIDTH */
4163 
4164 /**************************************************
4165  * CFS operations on tasks:
4166  */
4167 
4168 #ifdef CONFIG_SCHED_HRTICK
4169 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4170 {
4171 	struct sched_entity *se = &p->se;
4172 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4173 
4174 	WARN_ON(task_rq(p) != rq);
4175 
4176 	if (cfs_rq->nr_running > 1) {
4177 		u64 slice = sched_slice(cfs_rq, se);
4178 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4179 		s64 delta = slice - ran;
4180 
4181 		if (delta < 0) {
4182 			if (rq->curr == p)
4183 				resched_curr(rq);
4184 			return;
4185 		}
4186 		hrtick_start(rq, delta);
4187 	}
4188 }
4189 
4190 /*
4191  * called from enqueue/dequeue and updates the hrtick when the
4192  * current task is from our class and nr_running is low enough
4193  * to matter.
4194  */
4195 static void hrtick_update(struct rq *rq)
4196 {
4197 	struct task_struct *curr = rq->curr;
4198 
4199 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4200 		return;
4201 
4202 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4203 		hrtick_start_fair(rq, curr);
4204 }
4205 #else /* !CONFIG_SCHED_HRTICK */
4206 static inline void
4207 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4208 {
4209 }
4210 
4211 static inline void hrtick_update(struct rq *rq)
4212 {
4213 }
4214 #endif
4215 
4216 /*
4217  * The enqueue_task method is called before nr_running is
4218  * increased. Here we update the fair scheduling stats and
4219  * then put the task into the rbtree:
4220  */
4221 static void
4222 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4223 {
4224 	struct cfs_rq *cfs_rq;
4225 	struct sched_entity *se = &p->se;
4226 
4227 	for_each_sched_entity(se) {
4228 		if (se->on_rq)
4229 			break;
4230 		cfs_rq = cfs_rq_of(se);
4231 		enqueue_entity(cfs_rq, se, flags);
4232 
4233 		/*
4234 		 * end evaluation on encountering a throttled cfs_rq
4235 		 *
4236 		 * note: in the case of encountering a throttled cfs_rq we will
4237 		 * post the final h_nr_running increment below.
4238 		*/
4239 		if (cfs_rq_throttled(cfs_rq))
4240 			break;
4241 		cfs_rq->h_nr_running++;
4242 
4243 		flags = ENQUEUE_WAKEUP;
4244 	}
4245 
4246 	for_each_sched_entity(se) {
4247 		cfs_rq = cfs_rq_of(se);
4248 		cfs_rq->h_nr_running++;
4249 
4250 		if (cfs_rq_throttled(cfs_rq))
4251 			break;
4252 
4253 		update_cfs_shares(cfs_rq);
4254 		update_entity_load_avg(se, 1);
4255 	}
4256 
4257 	if (!se) {
4258 		update_rq_runnable_avg(rq, rq->nr_running);
4259 		add_nr_running(rq, 1);
4260 	}
4261 	hrtick_update(rq);
4262 }
4263 
4264 static void set_next_buddy(struct sched_entity *se);
4265 
4266 /*
4267  * The dequeue_task method is called before nr_running is
4268  * decreased. We remove the task from the rbtree and
4269  * update the fair scheduling stats:
4270  */
4271 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4272 {
4273 	struct cfs_rq *cfs_rq;
4274 	struct sched_entity *se = &p->se;
4275 	int task_sleep = flags & DEQUEUE_SLEEP;
4276 
4277 	for_each_sched_entity(se) {
4278 		cfs_rq = cfs_rq_of(se);
4279 		dequeue_entity(cfs_rq, se, flags);
4280 
4281 		/*
4282 		 * end evaluation on encountering a throttled cfs_rq
4283 		 *
4284 		 * note: in the case of encountering a throttled cfs_rq we will
4285 		 * post the final h_nr_running decrement below.
4286 		*/
4287 		if (cfs_rq_throttled(cfs_rq))
4288 			break;
4289 		cfs_rq->h_nr_running--;
4290 
4291 		/* Don't dequeue parent if it has other entities besides us */
4292 		if (cfs_rq->load.weight) {
4293 			/*
4294 			 * Bias pick_next to pick a task from this cfs_rq, as
4295 			 * p is sleeping when it is within its sched_slice.
4296 			 */
4297 			if (task_sleep && parent_entity(se))
4298 				set_next_buddy(parent_entity(se));
4299 
4300 			/* avoid re-evaluating load for this entity */
4301 			se = parent_entity(se);
4302 			break;
4303 		}
4304 		flags |= DEQUEUE_SLEEP;
4305 	}
4306 
4307 	for_each_sched_entity(se) {
4308 		cfs_rq = cfs_rq_of(se);
4309 		cfs_rq->h_nr_running--;
4310 
4311 		if (cfs_rq_throttled(cfs_rq))
4312 			break;
4313 
4314 		update_cfs_shares(cfs_rq);
4315 		update_entity_load_avg(se, 1);
4316 	}
4317 
4318 	if (!se) {
4319 		sub_nr_running(rq, 1);
4320 		update_rq_runnable_avg(rq, 1);
4321 	}
4322 	hrtick_update(rq);
4323 }
4324 
4325 #ifdef CONFIG_SMP
4326 /* Used instead of source_load when we know the type == 0 */
4327 static unsigned long weighted_cpuload(const int cpu)
4328 {
4329 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4330 }
4331 
4332 /*
4333  * Return a low guess at the load of a migration-source cpu weighted
4334  * according to the scheduling class and "nice" value.
4335  *
4336  * We want to under-estimate the load of migration sources, to
4337  * balance conservatively.
4338  */
4339 static unsigned long source_load(int cpu, int type)
4340 {
4341 	struct rq *rq = cpu_rq(cpu);
4342 	unsigned long total = weighted_cpuload(cpu);
4343 
4344 	if (type == 0 || !sched_feat(LB_BIAS))
4345 		return total;
4346 
4347 	return min(rq->cpu_load[type-1], total);
4348 }
4349 
4350 /*
4351  * Return a high guess at the load of a migration-target cpu weighted
4352  * according to the scheduling class and "nice" value.
4353  */
4354 static unsigned long target_load(int cpu, int type)
4355 {
4356 	struct rq *rq = cpu_rq(cpu);
4357 	unsigned long total = weighted_cpuload(cpu);
4358 
4359 	if (type == 0 || !sched_feat(LB_BIAS))
4360 		return total;
4361 
4362 	return max(rq->cpu_load[type-1], total);
4363 }
4364 
4365 static unsigned long capacity_of(int cpu)
4366 {
4367 	return cpu_rq(cpu)->cpu_capacity;
4368 }
4369 
4370 static unsigned long capacity_orig_of(int cpu)
4371 {
4372 	return cpu_rq(cpu)->cpu_capacity_orig;
4373 }
4374 
4375 static unsigned long cpu_avg_load_per_task(int cpu)
4376 {
4377 	struct rq *rq = cpu_rq(cpu);
4378 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4379 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4380 
4381 	if (nr_running)
4382 		return load_avg / nr_running;
4383 
4384 	return 0;
4385 }
4386 
4387 static void record_wakee(struct task_struct *p)
4388 {
4389 	/*
4390 	 * Rough decay (wiping) for cost saving, don't worry
4391 	 * about the boundary, really active task won't care
4392 	 * about the loss.
4393 	 */
4394 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4395 		current->wakee_flips >>= 1;
4396 		current->wakee_flip_decay_ts = jiffies;
4397 	}
4398 
4399 	if (current->last_wakee != p) {
4400 		current->last_wakee = p;
4401 		current->wakee_flips++;
4402 	}
4403 }
4404 
4405 static void task_waking_fair(struct task_struct *p)
4406 {
4407 	struct sched_entity *se = &p->se;
4408 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4409 	u64 min_vruntime;
4410 
4411 #ifndef CONFIG_64BIT
4412 	u64 min_vruntime_copy;
4413 
4414 	do {
4415 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4416 		smp_rmb();
4417 		min_vruntime = cfs_rq->min_vruntime;
4418 	} while (min_vruntime != min_vruntime_copy);
4419 #else
4420 	min_vruntime = cfs_rq->min_vruntime;
4421 #endif
4422 
4423 	se->vruntime -= min_vruntime;
4424 	record_wakee(p);
4425 }
4426 
4427 #ifdef CONFIG_FAIR_GROUP_SCHED
4428 /*
4429  * effective_load() calculates the load change as seen from the root_task_group
4430  *
4431  * Adding load to a group doesn't make a group heavier, but can cause movement
4432  * of group shares between cpus. Assuming the shares were perfectly aligned one
4433  * can calculate the shift in shares.
4434  *
4435  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4436  * on this @cpu and results in a total addition (subtraction) of @wg to the
4437  * total group weight.
4438  *
4439  * Given a runqueue weight distribution (rw_i) we can compute a shares
4440  * distribution (s_i) using:
4441  *
4442  *   s_i = rw_i / \Sum rw_j						(1)
4443  *
4444  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4445  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4446  * shares distribution (s_i):
4447  *
4448  *   rw_i = {   2,   4,   1,   0 }
4449  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4450  *
4451  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4452  * task used to run on and the CPU the waker is running on), we need to
4453  * compute the effect of waking a task on either CPU and, in case of a sync
4454  * wakeup, compute the effect of the current task going to sleep.
4455  *
4456  * So for a change of @wl to the local @cpu with an overall group weight change
4457  * of @wl we can compute the new shares distribution (s'_i) using:
4458  *
4459  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4460  *
4461  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4462  * differences in waking a task to CPU 0. The additional task changes the
4463  * weight and shares distributions like:
4464  *
4465  *   rw'_i = {   3,   4,   1,   0 }
4466  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4467  *
4468  * We can then compute the difference in effective weight by using:
4469  *
4470  *   dw_i = S * (s'_i - s_i)						(3)
4471  *
4472  * Where 'S' is the group weight as seen by its parent.
4473  *
4474  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4475  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4476  * 4/7) times the weight of the group.
4477  */
4478 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4479 {
4480 	struct sched_entity *se = tg->se[cpu];
4481 
4482 	if (!tg->parent)	/* the trivial, non-cgroup case */
4483 		return wl;
4484 
4485 	for_each_sched_entity(se) {
4486 		long w, W;
4487 
4488 		tg = se->my_q->tg;
4489 
4490 		/*
4491 		 * W = @wg + \Sum rw_j
4492 		 */
4493 		W = wg + calc_tg_weight(tg, se->my_q);
4494 
4495 		/*
4496 		 * w = rw_i + @wl
4497 		 */
4498 		w = se->my_q->load.weight + wl;
4499 
4500 		/*
4501 		 * wl = S * s'_i; see (2)
4502 		 */
4503 		if (W > 0 && w < W)
4504 			wl = (w * (long)tg->shares) / W;
4505 		else
4506 			wl = tg->shares;
4507 
4508 		/*
4509 		 * Per the above, wl is the new se->load.weight value; since
4510 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4511 		 * calc_cfs_shares().
4512 		 */
4513 		if (wl < MIN_SHARES)
4514 			wl = MIN_SHARES;
4515 
4516 		/*
4517 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4518 		 */
4519 		wl -= se->load.weight;
4520 
4521 		/*
4522 		 * Recursively apply this logic to all parent groups to compute
4523 		 * the final effective load change on the root group. Since
4524 		 * only the @tg group gets extra weight, all parent groups can
4525 		 * only redistribute existing shares. @wl is the shift in shares
4526 		 * resulting from this level per the above.
4527 		 */
4528 		wg = 0;
4529 	}
4530 
4531 	return wl;
4532 }
4533 #else
4534 
4535 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4536 {
4537 	return wl;
4538 }
4539 
4540 #endif
4541 
4542 static int wake_wide(struct task_struct *p)
4543 {
4544 	int factor = this_cpu_read(sd_llc_size);
4545 
4546 	/*
4547 	 * Yeah, it's the switching-frequency, could means many wakee or
4548 	 * rapidly switch, use factor here will just help to automatically
4549 	 * adjust the loose-degree, so bigger node will lead to more pull.
4550 	 */
4551 	if (p->wakee_flips > factor) {
4552 		/*
4553 		 * wakee is somewhat hot, it needs certain amount of cpu
4554 		 * resource, so if waker is far more hot, prefer to leave
4555 		 * it alone.
4556 		 */
4557 		if (current->wakee_flips > (factor * p->wakee_flips))
4558 			return 1;
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4565 {
4566 	s64 this_load, load;
4567 	s64 this_eff_load, prev_eff_load;
4568 	int idx, this_cpu, prev_cpu;
4569 	struct task_group *tg;
4570 	unsigned long weight;
4571 	int balanced;
4572 
4573 	/*
4574 	 * If we wake multiple tasks be careful to not bounce
4575 	 * ourselves around too much.
4576 	 */
4577 	if (wake_wide(p))
4578 		return 0;
4579 
4580 	idx	  = sd->wake_idx;
4581 	this_cpu  = smp_processor_id();
4582 	prev_cpu  = task_cpu(p);
4583 	load	  = source_load(prev_cpu, idx);
4584 	this_load = target_load(this_cpu, idx);
4585 
4586 	/*
4587 	 * If sync wakeup then subtract the (maximum possible)
4588 	 * effect of the currently running task from the load
4589 	 * of the current CPU:
4590 	 */
4591 	if (sync) {
4592 		tg = task_group(current);
4593 		weight = current->se.load.weight;
4594 
4595 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4596 		load += effective_load(tg, prev_cpu, 0, -weight);
4597 	}
4598 
4599 	tg = task_group(p);
4600 	weight = p->se.load.weight;
4601 
4602 	/*
4603 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4604 	 * due to the sync cause above having dropped this_load to 0, we'll
4605 	 * always have an imbalance, but there's really nothing you can do
4606 	 * about that, so that's good too.
4607 	 *
4608 	 * Otherwise check if either cpus are near enough in load to allow this
4609 	 * task to be woken on this_cpu.
4610 	 */
4611 	this_eff_load = 100;
4612 	this_eff_load *= capacity_of(prev_cpu);
4613 
4614 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4615 	prev_eff_load *= capacity_of(this_cpu);
4616 
4617 	if (this_load > 0) {
4618 		this_eff_load *= this_load +
4619 			effective_load(tg, this_cpu, weight, weight);
4620 
4621 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4622 	}
4623 
4624 	balanced = this_eff_load <= prev_eff_load;
4625 
4626 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4627 
4628 	if (!balanced)
4629 		return 0;
4630 
4631 	schedstat_inc(sd, ttwu_move_affine);
4632 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4633 
4634 	return 1;
4635 }
4636 
4637 /*
4638  * find_idlest_group finds and returns the least busy CPU group within the
4639  * domain.
4640  */
4641 static struct sched_group *
4642 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4643 		  int this_cpu, int sd_flag)
4644 {
4645 	struct sched_group *idlest = NULL, *group = sd->groups;
4646 	unsigned long min_load = ULONG_MAX, this_load = 0;
4647 	int load_idx = sd->forkexec_idx;
4648 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4649 
4650 	if (sd_flag & SD_BALANCE_WAKE)
4651 		load_idx = sd->wake_idx;
4652 
4653 	do {
4654 		unsigned long load, avg_load;
4655 		int local_group;
4656 		int i;
4657 
4658 		/* Skip over this group if it has no CPUs allowed */
4659 		if (!cpumask_intersects(sched_group_cpus(group),
4660 					tsk_cpus_allowed(p)))
4661 			continue;
4662 
4663 		local_group = cpumask_test_cpu(this_cpu,
4664 					       sched_group_cpus(group));
4665 
4666 		/* Tally up the load of all CPUs in the group */
4667 		avg_load = 0;
4668 
4669 		for_each_cpu(i, sched_group_cpus(group)) {
4670 			/* Bias balancing toward cpus of our domain */
4671 			if (local_group)
4672 				load = source_load(i, load_idx);
4673 			else
4674 				load = target_load(i, load_idx);
4675 
4676 			avg_load += load;
4677 		}
4678 
4679 		/* Adjust by relative CPU capacity of the group */
4680 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4681 
4682 		if (local_group) {
4683 			this_load = avg_load;
4684 		} else if (avg_load < min_load) {
4685 			min_load = avg_load;
4686 			idlest = group;
4687 		}
4688 	} while (group = group->next, group != sd->groups);
4689 
4690 	if (!idlest || 100*this_load < imbalance*min_load)
4691 		return NULL;
4692 	return idlest;
4693 }
4694 
4695 /*
4696  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4697  */
4698 static int
4699 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4700 {
4701 	unsigned long load, min_load = ULONG_MAX;
4702 	unsigned int min_exit_latency = UINT_MAX;
4703 	u64 latest_idle_timestamp = 0;
4704 	int least_loaded_cpu = this_cpu;
4705 	int shallowest_idle_cpu = -1;
4706 	int i;
4707 
4708 	/* Traverse only the allowed CPUs */
4709 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4710 		if (idle_cpu(i)) {
4711 			struct rq *rq = cpu_rq(i);
4712 			struct cpuidle_state *idle = idle_get_state(rq);
4713 			if (idle && idle->exit_latency < min_exit_latency) {
4714 				/*
4715 				 * We give priority to a CPU whose idle state
4716 				 * has the smallest exit latency irrespective
4717 				 * of any idle timestamp.
4718 				 */
4719 				min_exit_latency = idle->exit_latency;
4720 				latest_idle_timestamp = rq->idle_stamp;
4721 				shallowest_idle_cpu = i;
4722 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4723 				   rq->idle_stamp > latest_idle_timestamp) {
4724 				/*
4725 				 * If equal or no active idle state, then
4726 				 * the most recently idled CPU might have
4727 				 * a warmer cache.
4728 				 */
4729 				latest_idle_timestamp = rq->idle_stamp;
4730 				shallowest_idle_cpu = i;
4731 			}
4732 		} else if (shallowest_idle_cpu == -1) {
4733 			load = weighted_cpuload(i);
4734 			if (load < min_load || (load == min_load && i == this_cpu)) {
4735 				min_load = load;
4736 				least_loaded_cpu = i;
4737 			}
4738 		}
4739 	}
4740 
4741 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4742 }
4743 
4744 /*
4745  * Try and locate an idle CPU in the sched_domain.
4746  */
4747 static int select_idle_sibling(struct task_struct *p, int target)
4748 {
4749 	struct sched_domain *sd;
4750 	struct sched_group *sg;
4751 	int i = task_cpu(p);
4752 
4753 	if (idle_cpu(target))
4754 		return target;
4755 
4756 	/*
4757 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4758 	 */
4759 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4760 		return i;
4761 
4762 	/*
4763 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4764 	 */
4765 	sd = rcu_dereference(per_cpu(sd_llc, target));
4766 	for_each_lower_domain(sd) {
4767 		sg = sd->groups;
4768 		do {
4769 			if (!cpumask_intersects(sched_group_cpus(sg),
4770 						tsk_cpus_allowed(p)))
4771 				goto next;
4772 
4773 			for_each_cpu(i, sched_group_cpus(sg)) {
4774 				if (i == target || !idle_cpu(i))
4775 					goto next;
4776 			}
4777 
4778 			target = cpumask_first_and(sched_group_cpus(sg),
4779 					tsk_cpus_allowed(p));
4780 			goto done;
4781 next:
4782 			sg = sg->next;
4783 		} while (sg != sd->groups);
4784 	}
4785 done:
4786 	return target;
4787 }
4788 /*
4789  * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4790  * tasks. The unit of the return value must be the one of capacity so we can
4791  * compare the usage with the capacity of the CPU that is available for CFS
4792  * task (ie cpu_capacity).
4793  * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4794  * CPU. It represents the amount of utilization of a CPU in the range
4795  * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
4796  * capacity of the CPU because it's about the running time on this CPU.
4797  * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4798  * because of unfortunate rounding in avg_period and running_load_avg or just
4799  * after migrating tasks until the average stabilizes with the new running
4800  * time. So we need to check that the usage stays into the range
4801  * [0..cpu_capacity_orig] and cap if necessary.
4802  * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4803  * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4804  */
4805 static int get_cpu_usage(int cpu)
4806 {
4807 	unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4808 	unsigned long capacity = capacity_orig_of(cpu);
4809 
4810 	if (usage >= SCHED_LOAD_SCALE)
4811 		return capacity;
4812 
4813 	return (usage * capacity) >> SCHED_LOAD_SHIFT;
4814 }
4815 
4816 /*
4817  * select_task_rq_fair: Select target runqueue for the waking task in domains
4818  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4819  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4820  *
4821  * Balances load by selecting the idlest cpu in the idlest group, or under
4822  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4823  *
4824  * Returns the target cpu number.
4825  *
4826  * preempt must be disabled.
4827  */
4828 static int
4829 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4830 {
4831 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4832 	int cpu = smp_processor_id();
4833 	int new_cpu = cpu;
4834 	int want_affine = 0;
4835 	int sync = wake_flags & WF_SYNC;
4836 
4837 	if (sd_flag & SD_BALANCE_WAKE)
4838 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4839 
4840 	rcu_read_lock();
4841 	for_each_domain(cpu, tmp) {
4842 		if (!(tmp->flags & SD_LOAD_BALANCE))
4843 			continue;
4844 
4845 		/*
4846 		 * If both cpu and prev_cpu are part of this domain,
4847 		 * cpu is a valid SD_WAKE_AFFINE target.
4848 		 */
4849 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4850 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4851 			affine_sd = tmp;
4852 			break;
4853 		}
4854 
4855 		if (tmp->flags & sd_flag)
4856 			sd = tmp;
4857 	}
4858 
4859 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4860 		prev_cpu = cpu;
4861 
4862 	if (sd_flag & SD_BALANCE_WAKE) {
4863 		new_cpu = select_idle_sibling(p, prev_cpu);
4864 		goto unlock;
4865 	}
4866 
4867 	while (sd) {
4868 		struct sched_group *group;
4869 		int weight;
4870 
4871 		if (!(sd->flags & sd_flag)) {
4872 			sd = sd->child;
4873 			continue;
4874 		}
4875 
4876 		group = find_idlest_group(sd, p, cpu, sd_flag);
4877 		if (!group) {
4878 			sd = sd->child;
4879 			continue;
4880 		}
4881 
4882 		new_cpu = find_idlest_cpu(group, p, cpu);
4883 		if (new_cpu == -1 || new_cpu == cpu) {
4884 			/* Now try balancing at a lower domain level of cpu */
4885 			sd = sd->child;
4886 			continue;
4887 		}
4888 
4889 		/* Now try balancing at a lower domain level of new_cpu */
4890 		cpu = new_cpu;
4891 		weight = sd->span_weight;
4892 		sd = NULL;
4893 		for_each_domain(cpu, tmp) {
4894 			if (weight <= tmp->span_weight)
4895 				break;
4896 			if (tmp->flags & sd_flag)
4897 				sd = tmp;
4898 		}
4899 		/* while loop will break here if sd == NULL */
4900 	}
4901 unlock:
4902 	rcu_read_unlock();
4903 
4904 	return new_cpu;
4905 }
4906 
4907 /*
4908  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4909  * cfs_rq_of(p) references at time of call are still valid and identify the
4910  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4911  * other assumptions, including the state of rq->lock, should be made.
4912  */
4913 static void
4914 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4915 {
4916 	struct sched_entity *se = &p->se;
4917 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4918 
4919 	/*
4920 	 * Load tracking: accumulate removed load so that it can be processed
4921 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4922 	 * to blocked load iff they have a positive decay-count.  It can never
4923 	 * be negative here since on-rq tasks have decay-count == 0.
4924 	 */
4925 	if (se->avg.decay_count) {
4926 		se->avg.decay_count = -__synchronize_entity_decay(se);
4927 		atomic_long_add(se->avg.load_avg_contrib,
4928 						&cfs_rq->removed_load);
4929 	}
4930 
4931 	/* We have migrated, no longer consider this task hot */
4932 	se->exec_start = 0;
4933 }
4934 #endif /* CONFIG_SMP */
4935 
4936 static unsigned long
4937 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4938 {
4939 	unsigned long gran = sysctl_sched_wakeup_granularity;
4940 
4941 	/*
4942 	 * Since its curr running now, convert the gran from real-time
4943 	 * to virtual-time in his units.
4944 	 *
4945 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4946 	 * they get preempted easier. That is, if 'se' < 'curr' then
4947 	 * the resulting gran will be larger, therefore penalizing the
4948 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4949 	 * be smaller, again penalizing the lighter task.
4950 	 *
4951 	 * This is especially important for buddies when the leftmost
4952 	 * task is higher priority than the buddy.
4953 	 */
4954 	return calc_delta_fair(gran, se);
4955 }
4956 
4957 /*
4958  * Should 'se' preempt 'curr'.
4959  *
4960  *             |s1
4961  *        |s2
4962  *   |s3
4963  *         g
4964  *      |<--->|c
4965  *
4966  *  w(c, s1) = -1
4967  *  w(c, s2) =  0
4968  *  w(c, s3) =  1
4969  *
4970  */
4971 static int
4972 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4973 {
4974 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4975 
4976 	if (vdiff <= 0)
4977 		return -1;
4978 
4979 	gran = wakeup_gran(curr, se);
4980 	if (vdiff > gran)
4981 		return 1;
4982 
4983 	return 0;
4984 }
4985 
4986 static void set_last_buddy(struct sched_entity *se)
4987 {
4988 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4989 		return;
4990 
4991 	for_each_sched_entity(se)
4992 		cfs_rq_of(se)->last = se;
4993 }
4994 
4995 static void set_next_buddy(struct sched_entity *se)
4996 {
4997 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4998 		return;
4999 
5000 	for_each_sched_entity(se)
5001 		cfs_rq_of(se)->next = se;
5002 }
5003 
5004 static void set_skip_buddy(struct sched_entity *se)
5005 {
5006 	for_each_sched_entity(se)
5007 		cfs_rq_of(se)->skip = se;
5008 }
5009 
5010 /*
5011  * Preempt the current task with a newly woken task if needed:
5012  */
5013 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5014 {
5015 	struct task_struct *curr = rq->curr;
5016 	struct sched_entity *se = &curr->se, *pse = &p->se;
5017 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5018 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5019 	int next_buddy_marked = 0;
5020 
5021 	if (unlikely(se == pse))
5022 		return;
5023 
5024 	/*
5025 	 * This is possible from callers such as attach_tasks(), in which we
5026 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5027 	 * lead to a throttle).  This both saves work and prevents false
5028 	 * next-buddy nomination below.
5029 	 */
5030 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5031 		return;
5032 
5033 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5034 		set_next_buddy(pse);
5035 		next_buddy_marked = 1;
5036 	}
5037 
5038 	/*
5039 	 * We can come here with TIF_NEED_RESCHED already set from new task
5040 	 * wake up path.
5041 	 *
5042 	 * Note: this also catches the edge-case of curr being in a throttled
5043 	 * group (e.g. via set_curr_task), since update_curr() (in the
5044 	 * enqueue of curr) will have resulted in resched being set.  This
5045 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5046 	 * below.
5047 	 */
5048 	if (test_tsk_need_resched(curr))
5049 		return;
5050 
5051 	/* Idle tasks are by definition preempted by non-idle tasks. */
5052 	if (unlikely(curr->policy == SCHED_IDLE) &&
5053 	    likely(p->policy != SCHED_IDLE))
5054 		goto preempt;
5055 
5056 	/*
5057 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5058 	 * is driven by the tick):
5059 	 */
5060 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5061 		return;
5062 
5063 	find_matching_se(&se, &pse);
5064 	update_curr(cfs_rq_of(se));
5065 	BUG_ON(!pse);
5066 	if (wakeup_preempt_entity(se, pse) == 1) {
5067 		/*
5068 		 * Bias pick_next to pick the sched entity that is
5069 		 * triggering this preemption.
5070 		 */
5071 		if (!next_buddy_marked)
5072 			set_next_buddy(pse);
5073 		goto preempt;
5074 	}
5075 
5076 	return;
5077 
5078 preempt:
5079 	resched_curr(rq);
5080 	/*
5081 	 * Only set the backward buddy when the current task is still
5082 	 * on the rq. This can happen when a wakeup gets interleaved
5083 	 * with schedule on the ->pre_schedule() or idle_balance()
5084 	 * point, either of which can * drop the rq lock.
5085 	 *
5086 	 * Also, during early boot the idle thread is in the fair class,
5087 	 * for obvious reasons its a bad idea to schedule back to it.
5088 	 */
5089 	if (unlikely(!se->on_rq || curr == rq->idle))
5090 		return;
5091 
5092 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5093 		set_last_buddy(se);
5094 }
5095 
5096 static struct task_struct *
5097 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5098 {
5099 	struct cfs_rq *cfs_rq = &rq->cfs;
5100 	struct sched_entity *se;
5101 	struct task_struct *p;
5102 	int new_tasks;
5103 
5104 again:
5105 #ifdef CONFIG_FAIR_GROUP_SCHED
5106 	if (!cfs_rq->nr_running)
5107 		goto idle;
5108 
5109 	if (prev->sched_class != &fair_sched_class)
5110 		goto simple;
5111 
5112 	/*
5113 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5114 	 * likely that a next task is from the same cgroup as the current.
5115 	 *
5116 	 * Therefore attempt to avoid putting and setting the entire cgroup
5117 	 * hierarchy, only change the part that actually changes.
5118 	 */
5119 
5120 	do {
5121 		struct sched_entity *curr = cfs_rq->curr;
5122 
5123 		/*
5124 		 * Since we got here without doing put_prev_entity() we also
5125 		 * have to consider cfs_rq->curr. If it is still a runnable
5126 		 * entity, update_curr() will update its vruntime, otherwise
5127 		 * forget we've ever seen it.
5128 		 */
5129 		if (curr && curr->on_rq)
5130 			update_curr(cfs_rq);
5131 		else
5132 			curr = NULL;
5133 
5134 		/*
5135 		 * This call to check_cfs_rq_runtime() will do the throttle and
5136 		 * dequeue its entity in the parent(s). Therefore the 'simple'
5137 		 * nr_running test will indeed be correct.
5138 		 */
5139 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5140 			goto simple;
5141 
5142 		se = pick_next_entity(cfs_rq, curr);
5143 		cfs_rq = group_cfs_rq(se);
5144 	} while (cfs_rq);
5145 
5146 	p = task_of(se);
5147 
5148 	/*
5149 	 * Since we haven't yet done put_prev_entity and if the selected task
5150 	 * is a different task than we started out with, try and touch the
5151 	 * least amount of cfs_rqs.
5152 	 */
5153 	if (prev != p) {
5154 		struct sched_entity *pse = &prev->se;
5155 
5156 		while (!(cfs_rq = is_same_group(se, pse))) {
5157 			int se_depth = se->depth;
5158 			int pse_depth = pse->depth;
5159 
5160 			if (se_depth <= pse_depth) {
5161 				put_prev_entity(cfs_rq_of(pse), pse);
5162 				pse = parent_entity(pse);
5163 			}
5164 			if (se_depth >= pse_depth) {
5165 				set_next_entity(cfs_rq_of(se), se);
5166 				se = parent_entity(se);
5167 			}
5168 		}
5169 
5170 		put_prev_entity(cfs_rq, pse);
5171 		set_next_entity(cfs_rq, se);
5172 	}
5173 
5174 	if (hrtick_enabled(rq))
5175 		hrtick_start_fair(rq, p);
5176 
5177 	return p;
5178 simple:
5179 	cfs_rq = &rq->cfs;
5180 #endif
5181 
5182 	if (!cfs_rq->nr_running)
5183 		goto idle;
5184 
5185 	put_prev_task(rq, prev);
5186 
5187 	do {
5188 		se = pick_next_entity(cfs_rq, NULL);
5189 		set_next_entity(cfs_rq, se);
5190 		cfs_rq = group_cfs_rq(se);
5191 	} while (cfs_rq);
5192 
5193 	p = task_of(se);
5194 
5195 	if (hrtick_enabled(rq))
5196 		hrtick_start_fair(rq, p);
5197 
5198 	return p;
5199 
5200 idle:
5201 	new_tasks = idle_balance(rq);
5202 	/*
5203 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5204 	 * possible for any higher priority task to appear. In that case we
5205 	 * must re-start the pick_next_entity() loop.
5206 	 */
5207 	if (new_tasks < 0)
5208 		return RETRY_TASK;
5209 
5210 	if (new_tasks > 0)
5211 		goto again;
5212 
5213 	return NULL;
5214 }
5215 
5216 /*
5217  * Account for a descheduled task:
5218  */
5219 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5220 {
5221 	struct sched_entity *se = &prev->se;
5222 	struct cfs_rq *cfs_rq;
5223 
5224 	for_each_sched_entity(se) {
5225 		cfs_rq = cfs_rq_of(se);
5226 		put_prev_entity(cfs_rq, se);
5227 	}
5228 }
5229 
5230 /*
5231  * sched_yield() is very simple
5232  *
5233  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5234  */
5235 static void yield_task_fair(struct rq *rq)
5236 {
5237 	struct task_struct *curr = rq->curr;
5238 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5239 	struct sched_entity *se = &curr->se;
5240 
5241 	/*
5242 	 * Are we the only task in the tree?
5243 	 */
5244 	if (unlikely(rq->nr_running == 1))
5245 		return;
5246 
5247 	clear_buddies(cfs_rq, se);
5248 
5249 	if (curr->policy != SCHED_BATCH) {
5250 		update_rq_clock(rq);
5251 		/*
5252 		 * Update run-time statistics of the 'current'.
5253 		 */
5254 		update_curr(cfs_rq);
5255 		/*
5256 		 * Tell update_rq_clock() that we've just updated,
5257 		 * so we don't do microscopic update in schedule()
5258 		 * and double the fastpath cost.
5259 		 */
5260 		rq_clock_skip_update(rq, true);
5261 	}
5262 
5263 	set_skip_buddy(se);
5264 }
5265 
5266 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5267 {
5268 	struct sched_entity *se = &p->se;
5269 
5270 	/* throttled hierarchies are not runnable */
5271 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5272 		return false;
5273 
5274 	/* Tell the scheduler that we'd really like pse to run next. */
5275 	set_next_buddy(se);
5276 
5277 	yield_task_fair(rq);
5278 
5279 	return true;
5280 }
5281 
5282 #ifdef CONFIG_SMP
5283 /**************************************************
5284  * Fair scheduling class load-balancing methods.
5285  *
5286  * BASICS
5287  *
5288  * The purpose of load-balancing is to achieve the same basic fairness the
5289  * per-cpu scheduler provides, namely provide a proportional amount of compute
5290  * time to each task. This is expressed in the following equation:
5291  *
5292  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5293  *
5294  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5295  * W_i,0 is defined as:
5296  *
5297  *   W_i,0 = \Sum_j w_i,j                                             (2)
5298  *
5299  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5300  * is derived from the nice value as per prio_to_weight[].
5301  *
5302  * The weight average is an exponential decay average of the instantaneous
5303  * weight:
5304  *
5305  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5306  *
5307  * C_i is the compute capacity of cpu i, typically it is the
5308  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5309  * can also include other factors [XXX].
5310  *
5311  * To achieve this balance we define a measure of imbalance which follows
5312  * directly from (1):
5313  *
5314  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5315  *
5316  * We them move tasks around to minimize the imbalance. In the continuous
5317  * function space it is obvious this converges, in the discrete case we get
5318  * a few fun cases generally called infeasible weight scenarios.
5319  *
5320  * [XXX expand on:
5321  *     - infeasible weights;
5322  *     - local vs global optima in the discrete case. ]
5323  *
5324  *
5325  * SCHED DOMAINS
5326  *
5327  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5328  * for all i,j solution, we create a tree of cpus that follows the hardware
5329  * topology where each level pairs two lower groups (or better). This results
5330  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5331  * tree to only the first of the previous level and we decrease the frequency
5332  * of load-balance at each level inv. proportional to the number of cpus in
5333  * the groups.
5334  *
5335  * This yields:
5336  *
5337  *     log_2 n     1     n
5338  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5339  *     i = 0      2^i   2^i
5340  *                               `- size of each group
5341  *         |         |     `- number of cpus doing load-balance
5342  *         |         `- freq
5343  *         `- sum over all levels
5344  *
5345  * Coupled with a limit on how many tasks we can migrate every balance pass,
5346  * this makes (5) the runtime complexity of the balancer.
5347  *
5348  * An important property here is that each CPU is still (indirectly) connected
5349  * to every other cpu in at most O(log n) steps:
5350  *
5351  * The adjacency matrix of the resulting graph is given by:
5352  *
5353  *             log_2 n
5354  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5355  *             k = 0
5356  *
5357  * And you'll find that:
5358  *
5359  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5360  *
5361  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5362  * The task movement gives a factor of O(m), giving a convergence complexity
5363  * of:
5364  *
5365  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5366  *
5367  *
5368  * WORK CONSERVING
5369  *
5370  * In order to avoid CPUs going idle while there's still work to do, new idle
5371  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5372  * tree itself instead of relying on other CPUs to bring it work.
5373  *
5374  * This adds some complexity to both (5) and (8) but it reduces the total idle
5375  * time.
5376  *
5377  * [XXX more?]
5378  *
5379  *
5380  * CGROUPS
5381  *
5382  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5383  *
5384  *                                s_k,i
5385  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5386  *                                 S_k
5387  *
5388  * Where
5389  *
5390  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5391  *
5392  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5393  *
5394  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5395  * property.
5396  *
5397  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5398  *      rewrite all of this once again.]
5399  */
5400 
5401 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5402 
5403 enum fbq_type { regular, remote, all };
5404 
5405 #define LBF_ALL_PINNED	0x01
5406 #define LBF_NEED_BREAK	0x02
5407 #define LBF_DST_PINNED  0x04
5408 #define LBF_SOME_PINNED	0x08
5409 
5410 struct lb_env {
5411 	struct sched_domain	*sd;
5412 
5413 	struct rq		*src_rq;
5414 	int			src_cpu;
5415 
5416 	int			dst_cpu;
5417 	struct rq		*dst_rq;
5418 
5419 	struct cpumask		*dst_grpmask;
5420 	int			new_dst_cpu;
5421 	enum cpu_idle_type	idle;
5422 	long			imbalance;
5423 	/* The set of CPUs under consideration for load-balancing */
5424 	struct cpumask		*cpus;
5425 
5426 	unsigned int		flags;
5427 
5428 	unsigned int		loop;
5429 	unsigned int		loop_break;
5430 	unsigned int		loop_max;
5431 
5432 	enum fbq_type		fbq_type;
5433 	struct list_head	tasks;
5434 };
5435 
5436 /*
5437  * Is this task likely cache-hot:
5438  */
5439 static int task_hot(struct task_struct *p, struct lb_env *env)
5440 {
5441 	s64 delta;
5442 
5443 	lockdep_assert_held(&env->src_rq->lock);
5444 
5445 	if (p->sched_class != &fair_sched_class)
5446 		return 0;
5447 
5448 	if (unlikely(p->policy == SCHED_IDLE))
5449 		return 0;
5450 
5451 	/*
5452 	 * Buddy candidates are cache hot:
5453 	 */
5454 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5455 			(&p->se == cfs_rq_of(&p->se)->next ||
5456 			 &p->se == cfs_rq_of(&p->se)->last))
5457 		return 1;
5458 
5459 	if (sysctl_sched_migration_cost == -1)
5460 		return 1;
5461 	if (sysctl_sched_migration_cost == 0)
5462 		return 0;
5463 
5464 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5465 
5466 	return delta < (s64)sysctl_sched_migration_cost;
5467 }
5468 
5469 #ifdef CONFIG_NUMA_BALANCING
5470 /* Returns true if the destination node has incurred more faults */
5471 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5472 {
5473 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5474 	int src_nid, dst_nid;
5475 
5476 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5477 	    !(env->sd->flags & SD_NUMA)) {
5478 		return false;
5479 	}
5480 
5481 	src_nid = cpu_to_node(env->src_cpu);
5482 	dst_nid = cpu_to_node(env->dst_cpu);
5483 
5484 	if (src_nid == dst_nid)
5485 		return false;
5486 
5487 	if (numa_group) {
5488 		/* Task is already in the group's interleave set. */
5489 		if (node_isset(src_nid, numa_group->active_nodes))
5490 			return false;
5491 
5492 		/* Task is moving into the group's interleave set. */
5493 		if (node_isset(dst_nid, numa_group->active_nodes))
5494 			return true;
5495 
5496 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5497 	}
5498 
5499 	/* Encourage migration to the preferred node. */
5500 	if (dst_nid == p->numa_preferred_nid)
5501 		return true;
5502 
5503 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5504 }
5505 
5506 
5507 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5508 {
5509 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5510 	int src_nid, dst_nid;
5511 
5512 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5513 		return false;
5514 
5515 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5516 		return false;
5517 
5518 	src_nid = cpu_to_node(env->src_cpu);
5519 	dst_nid = cpu_to_node(env->dst_cpu);
5520 
5521 	if (src_nid == dst_nid)
5522 		return false;
5523 
5524 	if (numa_group) {
5525 		/* Task is moving within/into the group's interleave set. */
5526 		if (node_isset(dst_nid, numa_group->active_nodes))
5527 			return false;
5528 
5529 		/* Task is moving out of the group's interleave set. */
5530 		if (node_isset(src_nid, numa_group->active_nodes))
5531 			return true;
5532 
5533 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5534 	}
5535 
5536 	/* Migrating away from the preferred node is always bad. */
5537 	if (src_nid == p->numa_preferred_nid)
5538 		return true;
5539 
5540 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5541 }
5542 
5543 #else
5544 static inline bool migrate_improves_locality(struct task_struct *p,
5545 					     struct lb_env *env)
5546 {
5547 	return false;
5548 }
5549 
5550 static inline bool migrate_degrades_locality(struct task_struct *p,
5551 					     struct lb_env *env)
5552 {
5553 	return false;
5554 }
5555 #endif
5556 
5557 /*
5558  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5559  */
5560 static
5561 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5562 {
5563 	int tsk_cache_hot = 0;
5564 
5565 	lockdep_assert_held(&env->src_rq->lock);
5566 
5567 	/*
5568 	 * We do not migrate tasks that are:
5569 	 * 1) throttled_lb_pair, or
5570 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5571 	 * 3) running (obviously), or
5572 	 * 4) are cache-hot on their current CPU.
5573 	 */
5574 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5575 		return 0;
5576 
5577 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5578 		int cpu;
5579 
5580 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5581 
5582 		env->flags |= LBF_SOME_PINNED;
5583 
5584 		/*
5585 		 * Remember if this task can be migrated to any other cpu in
5586 		 * our sched_group. We may want to revisit it if we couldn't
5587 		 * meet load balance goals by pulling other tasks on src_cpu.
5588 		 *
5589 		 * Also avoid computing new_dst_cpu if we have already computed
5590 		 * one in current iteration.
5591 		 */
5592 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5593 			return 0;
5594 
5595 		/* Prevent to re-select dst_cpu via env's cpus */
5596 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5597 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5598 				env->flags |= LBF_DST_PINNED;
5599 				env->new_dst_cpu = cpu;
5600 				break;
5601 			}
5602 		}
5603 
5604 		return 0;
5605 	}
5606 
5607 	/* Record that we found atleast one task that could run on dst_cpu */
5608 	env->flags &= ~LBF_ALL_PINNED;
5609 
5610 	if (task_running(env->src_rq, p)) {
5611 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5612 		return 0;
5613 	}
5614 
5615 	/*
5616 	 * Aggressive migration if:
5617 	 * 1) destination numa is preferred
5618 	 * 2) task is cache cold, or
5619 	 * 3) too many balance attempts have failed.
5620 	 */
5621 	tsk_cache_hot = task_hot(p, env);
5622 	if (!tsk_cache_hot)
5623 		tsk_cache_hot = migrate_degrades_locality(p, env);
5624 
5625 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5626 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5627 		if (tsk_cache_hot) {
5628 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5629 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5630 		}
5631 		return 1;
5632 	}
5633 
5634 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5635 	return 0;
5636 }
5637 
5638 /*
5639  * detach_task() -- detach the task for the migration specified in env
5640  */
5641 static void detach_task(struct task_struct *p, struct lb_env *env)
5642 {
5643 	lockdep_assert_held(&env->src_rq->lock);
5644 
5645 	deactivate_task(env->src_rq, p, 0);
5646 	p->on_rq = TASK_ON_RQ_MIGRATING;
5647 	set_task_cpu(p, env->dst_cpu);
5648 }
5649 
5650 /*
5651  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5652  * part of active balancing operations within "domain".
5653  *
5654  * Returns a task if successful and NULL otherwise.
5655  */
5656 static struct task_struct *detach_one_task(struct lb_env *env)
5657 {
5658 	struct task_struct *p, *n;
5659 
5660 	lockdep_assert_held(&env->src_rq->lock);
5661 
5662 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5663 		if (!can_migrate_task(p, env))
5664 			continue;
5665 
5666 		detach_task(p, env);
5667 
5668 		/*
5669 		 * Right now, this is only the second place where
5670 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5671 		 * so we can safely collect stats here rather than
5672 		 * inside detach_tasks().
5673 		 */
5674 		schedstat_inc(env->sd, lb_gained[env->idle]);
5675 		return p;
5676 	}
5677 	return NULL;
5678 }
5679 
5680 static const unsigned int sched_nr_migrate_break = 32;
5681 
5682 /*
5683  * detach_tasks() -- tries to detach up to imbalance weighted load from
5684  * busiest_rq, as part of a balancing operation within domain "sd".
5685  *
5686  * Returns number of detached tasks if successful and 0 otherwise.
5687  */
5688 static int detach_tasks(struct lb_env *env)
5689 {
5690 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5691 	struct task_struct *p;
5692 	unsigned long load;
5693 	int detached = 0;
5694 
5695 	lockdep_assert_held(&env->src_rq->lock);
5696 
5697 	if (env->imbalance <= 0)
5698 		return 0;
5699 
5700 	while (!list_empty(tasks)) {
5701 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5702 
5703 		env->loop++;
5704 		/* We've more or less seen every task there is, call it quits */
5705 		if (env->loop > env->loop_max)
5706 			break;
5707 
5708 		/* take a breather every nr_migrate tasks */
5709 		if (env->loop > env->loop_break) {
5710 			env->loop_break += sched_nr_migrate_break;
5711 			env->flags |= LBF_NEED_BREAK;
5712 			break;
5713 		}
5714 
5715 		if (!can_migrate_task(p, env))
5716 			goto next;
5717 
5718 		load = task_h_load(p);
5719 
5720 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5721 			goto next;
5722 
5723 		if ((load / 2) > env->imbalance)
5724 			goto next;
5725 
5726 		detach_task(p, env);
5727 		list_add(&p->se.group_node, &env->tasks);
5728 
5729 		detached++;
5730 		env->imbalance -= load;
5731 
5732 #ifdef CONFIG_PREEMPT
5733 		/*
5734 		 * NEWIDLE balancing is a source of latency, so preemptible
5735 		 * kernels will stop after the first task is detached to minimize
5736 		 * the critical section.
5737 		 */
5738 		if (env->idle == CPU_NEWLY_IDLE)
5739 			break;
5740 #endif
5741 
5742 		/*
5743 		 * We only want to steal up to the prescribed amount of
5744 		 * weighted load.
5745 		 */
5746 		if (env->imbalance <= 0)
5747 			break;
5748 
5749 		continue;
5750 next:
5751 		list_move_tail(&p->se.group_node, tasks);
5752 	}
5753 
5754 	/*
5755 	 * Right now, this is one of only two places we collect this stat
5756 	 * so we can safely collect detach_one_task() stats here rather
5757 	 * than inside detach_one_task().
5758 	 */
5759 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5760 
5761 	return detached;
5762 }
5763 
5764 /*
5765  * attach_task() -- attach the task detached by detach_task() to its new rq.
5766  */
5767 static void attach_task(struct rq *rq, struct task_struct *p)
5768 {
5769 	lockdep_assert_held(&rq->lock);
5770 
5771 	BUG_ON(task_rq(p) != rq);
5772 	p->on_rq = TASK_ON_RQ_QUEUED;
5773 	activate_task(rq, p, 0);
5774 	check_preempt_curr(rq, p, 0);
5775 }
5776 
5777 /*
5778  * attach_one_task() -- attaches the task returned from detach_one_task() to
5779  * its new rq.
5780  */
5781 static void attach_one_task(struct rq *rq, struct task_struct *p)
5782 {
5783 	raw_spin_lock(&rq->lock);
5784 	attach_task(rq, p);
5785 	raw_spin_unlock(&rq->lock);
5786 }
5787 
5788 /*
5789  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5790  * new rq.
5791  */
5792 static void attach_tasks(struct lb_env *env)
5793 {
5794 	struct list_head *tasks = &env->tasks;
5795 	struct task_struct *p;
5796 
5797 	raw_spin_lock(&env->dst_rq->lock);
5798 
5799 	while (!list_empty(tasks)) {
5800 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5801 		list_del_init(&p->se.group_node);
5802 
5803 		attach_task(env->dst_rq, p);
5804 	}
5805 
5806 	raw_spin_unlock(&env->dst_rq->lock);
5807 }
5808 
5809 #ifdef CONFIG_FAIR_GROUP_SCHED
5810 /*
5811  * update tg->load_weight by folding this cpu's load_avg
5812  */
5813 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5814 {
5815 	struct sched_entity *se = tg->se[cpu];
5816 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5817 
5818 	/* throttled entities do not contribute to load */
5819 	if (throttled_hierarchy(cfs_rq))
5820 		return;
5821 
5822 	update_cfs_rq_blocked_load(cfs_rq, 1);
5823 
5824 	if (se) {
5825 		update_entity_load_avg(se, 1);
5826 		/*
5827 		 * We pivot on our runnable average having decayed to zero for
5828 		 * list removal.  This generally implies that all our children
5829 		 * have also been removed (modulo rounding error or bandwidth
5830 		 * control); however, such cases are rare and we can fix these
5831 		 * at enqueue.
5832 		 *
5833 		 * TODO: fix up out-of-order children on enqueue.
5834 		 */
5835 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5836 			list_del_leaf_cfs_rq(cfs_rq);
5837 	} else {
5838 		struct rq *rq = rq_of(cfs_rq);
5839 		update_rq_runnable_avg(rq, rq->nr_running);
5840 	}
5841 }
5842 
5843 static void update_blocked_averages(int cpu)
5844 {
5845 	struct rq *rq = cpu_rq(cpu);
5846 	struct cfs_rq *cfs_rq;
5847 	unsigned long flags;
5848 
5849 	raw_spin_lock_irqsave(&rq->lock, flags);
5850 	update_rq_clock(rq);
5851 	/*
5852 	 * Iterates the task_group tree in a bottom up fashion, see
5853 	 * list_add_leaf_cfs_rq() for details.
5854 	 */
5855 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5856 		/*
5857 		 * Note: We may want to consider periodically releasing
5858 		 * rq->lock about these updates so that creating many task
5859 		 * groups does not result in continually extending hold time.
5860 		 */
5861 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5862 	}
5863 
5864 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5865 }
5866 
5867 /*
5868  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5869  * This needs to be done in a top-down fashion because the load of a child
5870  * group is a fraction of its parents load.
5871  */
5872 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5873 {
5874 	struct rq *rq = rq_of(cfs_rq);
5875 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5876 	unsigned long now = jiffies;
5877 	unsigned long load;
5878 
5879 	if (cfs_rq->last_h_load_update == now)
5880 		return;
5881 
5882 	cfs_rq->h_load_next = NULL;
5883 	for_each_sched_entity(se) {
5884 		cfs_rq = cfs_rq_of(se);
5885 		cfs_rq->h_load_next = se;
5886 		if (cfs_rq->last_h_load_update == now)
5887 			break;
5888 	}
5889 
5890 	if (!se) {
5891 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5892 		cfs_rq->last_h_load_update = now;
5893 	}
5894 
5895 	while ((se = cfs_rq->h_load_next) != NULL) {
5896 		load = cfs_rq->h_load;
5897 		load = div64_ul(load * se->avg.load_avg_contrib,
5898 				cfs_rq->runnable_load_avg + 1);
5899 		cfs_rq = group_cfs_rq(se);
5900 		cfs_rq->h_load = load;
5901 		cfs_rq->last_h_load_update = now;
5902 	}
5903 }
5904 
5905 static unsigned long task_h_load(struct task_struct *p)
5906 {
5907 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5908 
5909 	update_cfs_rq_h_load(cfs_rq);
5910 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5911 			cfs_rq->runnable_load_avg + 1);
5912 }
5913 #else
5914 static inline void update_blocked_averages(int cpu)
5915 {
5916 }
5917 
5918 static unsigned long task_h_load(struct task_struct *p)
5919 {
5920 	return p->se.avg.load_avg_contrib;
5921 }
5922 #endif
5923 
5924 /********** Helpers for find_busiest_group ************************/
5925 
5926 enum group_type {
5927 	group_other = 0,
5928 	group_imbalanced,
5929 	group_overloaded,
5930 };
5931 
5932 /*
5933  * sg_lb_stats - stats of a sched_group required for load_balancing
5934  */
5935 struct sg_lb_stats {
5936 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5937 	unsigned long group_load; /* Total load over the CPUs of the group */
5938 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5939 	unsigned long load_per_task;
5940 	unsigned long group_capacity;
5941 	unsigned long group_usage; /* Total usage of the group */
5942 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5943 	unsigned int idle_cpus;
5944 	unsigned int group_weight;
5945 	enum group_type group_type;
5946 	int group_no_capacity;
5947 #ifdef CONFIG_NUMA_BALANCING
5948 	unsigned int nr_numa_running;
5949 	unsigned int nr_preferred_running;
5950 #endif
5951 };
5952 
5953 /*
5954  * sd_lb_stats - Structure to store the statistics of a sched_domain
5955  *		 during load balancing.
5956  */
5957 struct sd_lb_stats {
5958 	struct sched_group *busiest;	/* Busiest group in this sd */
5959 	struct sched_group *local;	/* Local group in this sd */
5960 	unsigned long total_load;	/* Total load of all groups in sd */
5961 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5962 	unsigned long avg_load;	/* Average load across all groups in sd */
5963 
5964 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5965 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5966 };
5967 
5968 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5969 {
5970 	/*
5971 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5972 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5973 	 * We must however clear busiest_stat::avg_load because
5974 	 * update_sd_pick_busiest() reads this before assignment.
5975 	 */
5976 	*sds = (struct sd_lb_stats){
5977 		.busiest = NULL,
5978 		.local = NULL,
5979 		.total_load = 0UL,
5980 		.total_capacity = 0UL,
5981 		.busiest_stat = {
5982 			.avg_load = 0UL,
5983 			.sum_nr_running = 0,
5984 			.group_type = group_other,
5985 		},
5986 	};
5987 }
5988 
5989 /**
5990  * get_sd_load_idx - Obtain the load index for a given sched domain.
5991  * @sd: The sched_domain whose load_idx is to be obtained.
5992  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5993  *
5994  * Return: The load index.
5995  */
5996 static inline int get_sd_load_idx(struct sched_domain *sd,
5997 					enum cpu_idle_type idle)
5998 {
5999 	int load_idx;
6000 
6001 	switch (idle) {
6002 	case CPU_NOT_IDLE:
6003 		load_idx = sd->busy_idx;
6004 		break;
6005 
6006 	case CPU_NEWLY_IDLE:
6007 		load_idx = sd->newidle_idx;
6008 		break;
6009 	default:
6010 		load_idx = sd->idle_idx;
6011 		break;
6012 	}
6013 
6014 	return load_idx;
6015 }
6016 
6017 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6018 {
6019 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6020 		return sd->smt_gain / sd->span_weight;
6021 
6022 	return SCHED_CAPACITY_SCALE;
6023 }
6024 
6025 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6026 {
6027 	return default_scale_cpu_capacity(sd, cpu);
6028 }
6029 
6030 static unsigned long scale_rt_capacity(int cpu)
6031 {
6032 	struct rq *rq = cpu_rq(cpu);
6033 	u64 total, used, age_stamp, avg;
6034 	s64 delta;
6035 
6036 	/*
6037 	 * Since we're reading these variables without serialization make sure
6038 	 * we read them once before doing sanity checks on them.
6039 	 */
6040 	age_stamp = ACCESS_ONCE(rq->age_stamp);
6041 	avg = ACCESS_ONCE(rq->rt_avg);
6042 	delta = __rq_clock_broken(rq) - age_stamp;
6043 
6044 	if (unlikely(delta < 0))
6045 		delta = 0;
6046 
6047 	total = sched_avg_period() + delta;
6048 
6049 	used = div_u64(avg, total);
6050 
6051 	if (likely(used < SCHED_CAPACITY_SCALE))
6052 		return SCHED_CAPACITY_SCALE - used;
6053 
6054 	return 1;
6055 }
6056 
6057 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6058 {
6059 	unsigned long capacity = SCHED_CAPACITY_SCALE;
6060 	struct sched_group *sdg = sd->groups;
6061 
6062 	if (sched_feat(ARCH_CAPACITY))
6063 		capacity *= arch_scale_cpu_capacity(sd, cpu);
6064 	else
6065 		capacity *= default_scale_cpu_capacity(sd, cpu);
6066 
6067 	capacity >>= SCHED_CAPACITY_SHIFT;
6068 
6069 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6070 
6071 	capacity *= scale_rt_capacity(cpu);
6072 	capacity >>= SCHED_CAPACITY_SHIFT;
6073 
6074 	if (!capacity)
6075 		capacity = 1;
6076 
6077 	cpu_rq(cpu)->cpu_capacity = capacity;
6078 	sdg->sgc->capacity = capacity;
6079 }
6080 
6081 void update_group_capacity(struct sched_domain *sd, int cpu)
6082 {
6083 	struct sched_domain *child = sd->child;
6084 	struct sched_group *group, *sdg = sd->groups;
6085 	unsigned long capacity;
6086 	unsigned long interval;
6087 
6088 	interval = msecs_to_jiffies(sd->balance_interval);
6089 	interval = clamp(interval, 1UL, max_load_balance_interval);
6090 	sdg->sgc->next_update = jiffies + interval;
6091 
6092 	if (!child) {
6093 		update_cpu_capacity(sd, cpu);
6094 		return;
6095 	}
6096 
6097 	capacity = 0;
6098 
6099 	if (child->flags & SD_OVERLAP) {
6100 		/*
6101 		 * SD_OVERLAP domains cannot assume that child groups
6102 		 * span the current group.
6103 		 */
6104 
6105 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6106 			struct sched_group_capacity *sgc;
6107 			struct rq *rq = cpu_rq(cpu);
6108 
6109 			/*
6110 			 * build_sched_domains() -> init_sched_groups_capacity()
6111 			 * gets here before we've attached the domains to the
6112 			 * runqueues.
6113 			 *
6114 			 * Use capacity_of(), which is set irrespective of domains
6115 			 * in update_cpu_capacity().
6116 			 *
6117 			 * This avoids capacity from being 0 and
6118 			 * causing divide-by-zero issues on boot.
6119 			 */
6120 			if (unlikely(!rq->sd)) {
6121 				capacity += capacity_of(cpu);
6122 				continue;
6123 			}
6124 
6125 			sgc = rq->sd->groups->sgc;
6126 			capacity += sgc->capacity;
6127 		}
6128 	} else  {
6129 		/*
6130 		 * !SD_OVERLAP domains can assume that child groups
6131 		 * span the current group.
6132 		 */
6133 
6134 		group = child->groups;
6135 		do {
6136 			capacity += group->sgc->capacity;
6137 			group = group->next;
6138 		} while (group != child->groups);
6139 	}
6140 
6141 	sdg->sgc->capacity = capacity;
6142 }
6143 
6144 /*
6145  * Check whether the capacity of the rq has been noticeably reduced by side
6146  * activity. The imbalance_pct is used for the threshold.
6147  * Return true is the capacity is reduced
6148  */
6149 static inline int
6150 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6151 {
6152 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6153 				(rq->cpu_capacity_orig * 100));
6154 }
6155 
6156 /*
6157  * Group imbalance indicates (and tries to solve) the problem where balancing
6158  * groups is inadequate due to tsk_cpus_allowed() constraints.
6159  *
6160  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6161  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6162  * Something like:
6163  *
6164  * 	{ 0 1 2 3 } { 4 5 6 7 }
6165  * 	        *     * * *
6166  *
6167  * If we were to balance group-wise we'd place two tasks in the first group and
6168  * two tasks in the second group. Clearly this is undesired as it will overload
6169  * cpu 3 and leave one of the cpus in the second group unused.
6170  *
6171  * The current solution to this issue is detecting the skew in the first group
6172  * by noticing the lower domain failed to reach balance and had difficulty
6173  * moving tasks due to affinity constraints.
6174  *
6175  * When this is so detected; this group becomes a candidate for busiest; see
6176  * update_sd_pick_busiest(). And calculate_imbalance() and
6177  * find_busiest_group() avoid some of the usual balance conditions to allow it
6178  * to create an effective group imbalance.
6179  *
6180  * This is a somewhat tricky proposition since the next run might not find the
6181  * group imbalance and decide the groups need to be balanced again. A most
6182  * subtle and fragile situation.
6183  */
6184 
6185 static inline int sg_imbalanced(struct sched_group *group)
6186 {
6187 	return group->sgc->imbalance;
6188 }
6189 
6190 /*
6191  * group_has_capacity returns true if the group has spare capacity that could
6192  * be used by some tasks.
6193  * We consider that a group has spare capacity if the  * number of task is
6194  * smaller than the number of CPUs or if the usage is lower than the available
6195  * capacity for CFS tasks.
6196  * For the latter, we use a threshold to stabilize the state, to take into
6197  * account the variance of the tasks' load and to return true if the available
6198  * capacity in meaningful for the load balancer.
6199  * As an example, an available capacity of 1% can appear but it doesn't make
6200  * any benefit for the load balance.
6201  */
6202 static inline bool
6203 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6204 {
6205 	if (sgs->sum_nr_running < sgs->group_weight)
6206 		return true;
6207 
6208 	if ((sgs->group_capacity * 100) >
6209 			(sgs->group_usage * env->sd->imbalance_pct))
6210 		return true;
6211 
6212 	return false;
6213 }
6214 
6215 /*
6216  *  group_is_overloaded returns true if the group has more tasks than it can
6217  *  handle.
6218  *  group_is_overloaded is not equals to !group_has_capacity because a group
6219  *  with the exact right number of tasks, has no more spare capacity but is not
6220  *  overloaded so both group_has_capacity and group_is_overloaded return
6221  *  false.
6222  */
6223 static inline bool
6224 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6225 {
6226 	if (sgs->sum_nr_running <= sgs->group_weight)
6227 		return false;
6228 
6229 	if ((sgs->group_capacity * 100) <
6230 			(sgs->group_usage * env->sd->imbalance_pct))
6231 		return true;
6232 
6233 	return false;
6234 }
6235 
6236 static enum group_type group_classify(struct lb_env *env,
6237 		struct sched_group *group,
6238 		struct sg_lb_stats *sgs)
6239 {
6240 	if (sgs->group_no_capacity)
6241 		return group_overloaded;
6242 
6243 	if (sg_imbalanced(group))
6244 		return group_imbalanced;
6245 
6246 	return group_other;
6247 }
6248 
6249 /**
6250  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6251  * @env: The load balancing environment.
6252  * @group: sched_group whose statistics are to be updated.
6253  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6254  * @local_group: Does group contain this_cpu.
6255  * @sgs: variable to hold the statistics for this group.
6256  * @overload: Indicate more than one runnable task for any CPU.
6257  */
6258 static inline void update_sg_lb_stats(struct lb_env *env,
6259 			struct sched_group *group, int load_idx,
6260 			int local_group, struct sg_lb_stats *sgs,
6261 			bool *overload)
6262 {
6263 	unsigned long load;
6264 	int i;
6265 
6266 	memset(sgs, 0, sizeof(*sgs));
6267 
6268 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6269 		struct rq *rq = cpu_rq(i);
6270 
6271 		/* Bias balancing toward cpus of our domain */
6272 		if (local_group)
6273 			load = target_load(i, load_idx);
6274 		else
6275 			load = source_load(i, load_idx);
6276 
6277 		sgs->group_load += load;
6278 		sgs->group_usage += get_cpu_usage(i);
6279 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6280 
6281 		if (rq->nr_running > 1)
6282 			*overload = true;
6283 
6284 #ifdef CONFIG_NUMA_BALANCING
6285 		sgs->nr_numa_running += rq->nr_numa_running;
6286 		sgs->nr_preferred_running += rq->nr_preferred_running;
6287 #endif
6288 		sgs->sum_weighted_load += weighted_cpuload(i);
6289 		if (idle_cpu(i))
6290 			sgs->idle_cpus++;
6291 	}
6292 
6293 	/* Adjust by relative CPU capacity of the group */
6294 	sgs->group_capacity = group->sgc->capacity;
6295 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6296 
6297 	if (sgs->sum_nr_running)
6298 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6299 
6300 	sgs->group_weight = group->group_weight;
6301 
6302 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6303 	sgs->group_type = group_classify(env, group, sgs);
6304 }
6305 
6306 /**
6307  * update_sd_pick_busiest - return 1 on busiest group
6308  * @env: The load balancing environment.
6309  * @sds: sched_domain statistics
6310  * @sg: sched_group candidate to be checked for being the busiest
6311  * @sgs: sched_group statistics
6312  *
6313  * Determine if @sg is a busier group than the previously selected
6314  * busiest group.
6315  *
6316  * Return: %true if @sg is a busier group than the previously selected
6317  * busiest group. %false otherwise.
6318  */
6319 static bool update_sd_pick_busiest(struct lb_env *env,
6320 				   struct sd_lb_stats *sds,
6321 				   struct sched_group *sg,
6322 				   struct sg_lb_stats *sgs)
6323 {
6324 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6325 
6326 	if (sgs->group_type > busiest->group_type)
6327 		return true;
6328 
6329 	if (sgs->group_type < busiest->group_type)
6330 		return false;
6331 
6332 	if (sgs->avg_load <= busiest->avg_load)
6333 		return false;
6334 
6335 	/* This is the busiest node in its class. */
6336 	if (!(env->sd->flags & SD_ASYM_PACKING))
6337 		return true;
6338 
6339 	/*
6340 	 * ASYM_PACKING needs to move all the work to the lowest
6341 	 * numbered CPUs in the group, therefore mark all groups
6342 	 * higher than ourself as busy.
6343 	 */
6344 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6345 		if (!sds->busiest)
6346 			return true;
6347 
6348 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6349 			return true;
6350 	}
6351 
6352 	return false;
6353 }
6354 
6355 #ifdef CONFIG_NUMA_BALANCING
6356 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6357 {
6358 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6359 		return regular;
6360 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6361 		return remote;
6362 	return all;
6363 }
6364 
6365 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6366 {
6367 	if (rq->nr_running > rq->nr_numa_running)
6368 		return regular;
6369 	if (rq->nr_running > rq->nr_preferred_running)
6370 		return remote;
6371 	return all;
6372 }
6373 #else
6374 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6375 {
6376 	return all;
6377 }
6378 
6379 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6380 {
6381 	return regular;
6382 }
6383 #endif /* CONFIG_NUMA_BALANCING */
6384 
6385 /**
6386  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6387  * @env: The load balancing environment.
6388  * @sds: variable to hold the statistics for this sched_domain.
6389  */
6390 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6391 {
6392 	struct sched_domain *child = env->sd->child;
6393 	struct sched_group *sg = env->sd->groups;
6394 	struct sg_lb_stats tmp_sgs;
6395 	int load_idx, prefer_sibling = 0;
6396 	bool overload = false;
6397 
6398 	if (child && child->flags & SD_PREFER_SIBLING)
6399 		prefer_sibling = 1;
6400 
6401 	load_idx = get_sd_load_idx(env->sd, env->idle);
6402 
6403 	do {
6404 		struct sg_lb_stats *sgs = &tmp_sgs;
6405 		int local_group;
6406 
6407 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6408 		if (local_group) {
6409 			sds->local = sg;
6410 			sgs = &sds->local_stat;
6411 
6412 			if (env->idle != CPU_NEWLY_IDLE ||
6413 			    time_after_eq(jiffies, sg->sgc->next_update))
6414 				update_group_capacity(env->sd, env->dst_cpu);
6415 		}
6416 
6417 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6418 						&overload);
6419 
6420 		if (local_group)
6421 			goto next_group;
6422 
6423 		/*
6424 		 * In case the child domain prefers tasks go to siblings
6425 		 * first, lower the sg capacity so that we'll try
6426 		 * and move all the excess tasks away. We lower the capacity
6427 		 * of a group only if the local group has the capacity to fit
6428 		 * these excess tasks. The extra check prevents the case where
6429 		 * you always pull from the heaviest group when it is already
6430 		 * under-utilized (possible with a large weight task outweighs
6431 		 * the tasks on the system).
6432 		 */
6433 		if (prefer_sibling && sds->local &&
6434 		    group_has_capacity(env, &sds->local_stat) &&
6435 		    (sgs->sum_nr_running > 1)) {
6436 			sgs->group_no_capacity = 1;
6437 			sgs->group_type = group_overloaded;
6438 		}
6439 
6440 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6441 			sds->busiest = sg;
6442 			sds->busiest_stat = *sgs;
6443 		}
6444 
6445 next_group:
6446 		/* Now, start updating sd_lb_stats */
6447 		sds->total_load += sgs->group_load;
6448 		sds->total_capacity += sgs->group_capacity;
6449 
6450 		sg = sg->next;
6451 	} while (sg != env->sd->groups);
6452 
6453 	if (env->sd->flags & SD_NUMA)
6454 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6455 
6456 	if (!env->sd->parent) {
6457 		/* update overload indicator if we are at root domain */
6458 		if (env->dst_rq->rd->overload != overload)
6459 			env->dst_rq->rd->overload = overload;
6460 	}
6461 
6462 }
6463 
6464 /**
6465  * check_asym_packing - Check to see if the group is packed into the
6466  *			sched doman.
6467  *
6468  * This is primarily intended to used at the sibling level.  Some
6469  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6470  * case of POWER7, it can move to lower SMT modes only when higher
6471  * threads are idle.  When in lower SMT modes, the threads will
6472  * perform better since they share less core resources.  Hence when we
6473  * have idle threads, we want them to be the higher ones.
6474  *
6475  * This packing function is run on idle threads.  It checks to see if
6476  * the busiest CPU in this domain (core in the P7 case) has a higher
6477  * CPU number than the packing function is being run on.  Here we are
6478  * assuming lower CPU number will be equivalent to lower a SMT thread
6479  * number.
6480  *
6481  * Return: 1 when packing is required and a task should be moved to
6482  * this CPU.  The amount of the imbalance is returned in *imbalance.
6483  *
6484  * @env: The load balancing environment.
6485  * @sds: Statistics of the sched_domain which is to be packed
6486  */
6487 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6488 {
6489 	int busiest_cpu;
6490 
6491 	if (!(env->sd->flags & SD_ASYM_PACKING))
6492 		return 0;
6493 
6494 	if (!sds->busiest)
6495 		return 0;
6496 
6497 	busiest_cpu = group_first_cpu(sds->busiest);
6498 	if (env->dst_cpu > busiest_cpu)
6499 		return 0;
6500 
6501 	env->imbalance = DIV_ROUND_CLOSEST(
6502 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6503 		SCHED_CAPACITY_SCALE);
6504 
6505 	return 1;
6506 }
6507 
6508 /**
6509  * fix_small_imbalance - Calculate the minor imbalance that exists
6510  *			amongst the groups of a sched_domain, during
6511  *			load balancing.
6512  * @env: The load balancing environment.
6513  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6514  */
6515 static inline
6516 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6517 {
6518 	unsigned long tmp, capa_now = 0, capa_move = 0;
6519 	unsigned int imbn = 2;
6520 	unsigned long scaled_busy_load_per_task;
6521 	struct sg_lb_stats *local, *busiest;
6522 
6523 	local = &sds->local_stat;
6524 	busiest = &sds->busiest_stat;
6525 
6526 	if (!local->sum_nr_running)
6527 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6528 	else if (busiest->load_per_task > local->load_per_task)
6529 		imbn = 1;
6530 
6531 	scaled_busy_load_per_task =
6532 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6533 		busiest->group_capacity;
6534 
6535 	if (busiest->avg_load + scaled_busy_load_per_task >=
6536 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6537 		env->imbalance = busiest->load_per_task;
6538 		return;
6539 	}
6540 
6541 	/*
6542 	 * OK, we don't have enough imbalance to justify moving tasks,
6543 	 * however we may be able to increase total CPU capacity used by
6544 	 * moving them.
6545 	 */
6546 
6547 	capa_now += busiest->group_capacity *
6548 			min(busiest->load_per_task, busiest->avg_load);
6549 	capa_now += local->group_capacity *
6550 			min(local->load_per_task, local->avg_load);
6551 	capa_now /= SCHED_CAPACITY_SCALE;
6552 
6553 	/* Amount of load we'd subtract */
6554 	if (busiest->avg_load > scaled_busy_load_per_task) {
6555 		capa_move += busiest->group_capacity *
6556 			    min(busiest->load_per_task,
6557 				busiest->avg_load - scaled_busy_load_per_task);
6558 	}
6559 
6560 	/* Amount of load we'd add */
6561 	if (busiest->avg_load * busiest->group_capacity <
6562 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6563 		tmp = (busiest->avg_load * busiest->group_capacity) /
6564 		      local->group_capacity;
6565 	} else {
6566 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6567 		      local->group_capacity;
6568 	}
6569 	capa_move += local->group_capacity *
6570 		    min(local->load_per_task, local->avg_load + tmp);
6571 	capa_move /= SCHED_CAPACITY_SCALE;
6572 
6573 	/* Move if we gain throughput */
6574 	if (capa_move > capa_now)
6575 		env->imbalance = busiest->load_per_task;
6576 }
6577 
6578 /**
6579  * calculate_imbalance - Calculate the amount of imbalance present within the
6580  *			 groups of a given sched_domain during load balance.
6581  * @env: load balance environment
6582  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6583  */
6584 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6585 {
6586 	unsigned long max_pull, load_above_capacity = ~0UL;
6587 	struct sg_lb_stats *local, *busiest;
6588 
6589 	local = &sds->local_stat;
6590 	busiest = &sds->busiest_stat;
6591 
6592 	if (busiest->group_type == group_imbalanced) {
6593 		/*
6594 		 * In the group_imb case we cannot rely on group-wide averages
6595 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6596 		 */
6597 		busiest->load_per_task =
6598 			min(busiest->load_per_task, sds->avg_load);
6599 	}
6600 
6601 	/*
6602 	 * In the presence of smp nice balancing, certain scenarios can have
6603 	 * max load less than avg load(as we skip the groups at or below
6604 	 * its cpu_capacity, while calculating max_load..)
6605 	 */
6606 	if (busiest->avg_load <= sds->avg_load ||
6607 	    local->avg_load >= sds->avg_load) {
6608 		env->imbalance = 0;
6609 		return fix_small_imbalance(env, sds);
6610 	}
6611 
6612 	/*
6613 	 * If there aren't any idle cpus, avoid creating some.
6614 	 */
6615 	if (busiest->group_type == group_overloaded &&
6616 	    local->group_type   == group_overloaded) {
6617 		load_above_capacity = busiest->sum_nr_running *
6618 					SCHED_LOAD_SCALE;
6619 		if (load_above_capacity > busiest->group_capacity)
6620 			load_above_capacity -= busiest->group_capacity;
6621 		else
6622 			load_above_capacity = ~0UL;
6623 	}
6624 
6625 	/*
6626 	 * We're trying to get all the cpus to the average_load, so we don't
6627 	 * want to push ourselves above the average load, nor do we wish to
6628 	 * reduce the max loaded cpu below the average load. At the same time,
6629 	 * we also don't want to reduce the group load below the group capacity
6630 	 * (so that we can implement power-savings policies etc). Thus we look
6631 	 * for the minimum possible imbalance.
6632 	 */
6633 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6634 
6635 	/* How much load to actually move to equalise the imbalance */
6636 	env->imbalance = min(
6637 		max_pull * busiest->group_capacity,
6638 		(sds->avg_load - local->avg_load) * local->group_capacity
6639 	) / SCHED_CAPACITY_SCALE;
6640 
6641 	/*
6642 	 * if *imbalance is less than the average load per runnable task
6643 	 * there is no guarantee that any tasks will be moved so we'll have
6644 	 * a think about bumping its value to force at least one task to be
6645 	 * moved
6646 	 */
6647 	if (env->imbalance < busiest->load_per_task)
6648 		return fix_small_imbalance(env, sds);
6649 }
6650 
6651 /******* find_busiest_group() helpers end here *********************/
6652 
6653 /**
6654  * find_busiest_group - Returns the busiest group within the sched_domain
6655  * if there is an imbalance. If there isn't an imbalance, and
6656  * the user has opted for power-savings, it returns a group whose
6657  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6658  * such a group exists.
6659  *
6660  * Also calculates the amount of weighted load which should be moved
6661  * to restore balance.
6662  *
6663  * @env: The load balancing environment.
6664  *
6665  * Return:	- The busiest group if imbalance exists.
6666  *		- If no imbalance and user has opted for power-savings balance,
6667  *		   return the least loaded group whose CPUs can be
6668  *		   put to idle by rebalancing its tasks onto our group.
6669  */
6670 static struct sched_group *find_busiest_group(struct lb_env *env)
6671 {
6672 	struct sg_lb_stats *local, *busiest;
6673 	struct sd_lb_stats sds;
6674 
6675 	init_sd_lb_stats(&sds);
6676 
6677 	/*
6678 	 * Compute the various statistics relavent for load balancing at
6679 	 * this level.
6680 	 */
6681 	update_sd_lb_stats(env, &sds);
6682 	local = &sds.local_stat;
6683 	busiest = &sds.busiest_stat;
6684 
6685 	/* ASYM feature bypasses nice load balance check */
6686 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6687 	    check_asym_packing(env, &sds))
6688 		return sds.busiest;
6689 
6690 	/* There is no busy sibling group to pull tasks from */
6691 	if (!sds.busiest || busiest->sum_nr_running == 0)
6692 		goto out_balanced;
6693 
6694 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6695 						/ sds.total_capacity;
6696 
6697 	/*
6698 	 * If the busiest group is imbalanced the below checks don't
6699 	 * work because they assume all things are equal, which typically
6700 	 * isn't true due to cpus_allowed constraints and the like.
6701 	 */
6702 	if (busiest->group_type == group_imbalanced)
6703 		goto force_balance;
6704 
6705 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6706 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6707 	    busiest->group_no_capacity)
6708 		goto force_balance;
6709 
6710 	/*
6711 	 * If the local group is busier than the selected busiest group
6712 	 * don't try and pull any tasks.
6713 	 */
6714 	if (local->avg_load >= busiest->avg_load)
6715 		goto out_balanced;
6716 
6717 	/*
6718 	 * Don't pull any tasks if this group is already above the domain
6719 	 * average load.
6720 	 */
6721 	if (local->avg_load >= sds.avg_load)
6722 		goto out_balanced;
6723 
6724 	if (env->idle == CPU_IDLE) {
6725 		/*
6726 		 * This cpu is idle. If the busiest group is not overloaded
6727 		 * and there is no imbalance between this and busiest group
6728 		 * wrt idle cpus, it is balanced. The imbalance becomes
6729 		 * significant if the diff is greater than 1 otherwise we
6730 		 * might end up to just move the imbalance on another group
6731 		 */
6732 		if ((busiest->group_type != group_overloaded) &&
6733 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6734 			goto out_balanced;
6735 	} else {
6736 		/*
6737 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6738 		 * imbalance_pct to be conservative.
6739 		 */
6740 		if (100 * busiest->avg_load <=
6741 				env->sd->imbalance_pct * local->avg_load)
6742 			goto out_balanced;
6743 	}
6744 
6745 force_balance:
6746 	/* Looks like there is an imbalance. Compute it */
6747 	calculate_imbalance(env, &sds);
6748 	return sds.busiest;
6749 
6750 out_balanced:
6751 	env->imbalance = 0;
6752 	return NULL;
6753 }
6754 
6755 /*
6756  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6757  */
6758 static struct rq *find_busiest_queue(struct lb_env *env,
6759 				     struct sched_group *group)
6760 {
6761 	struct rq *busiest = NULL, *rq;
6762 	unsigned long busiest_load = 0, busiest_capacity = 1;
6763 	int i;
6764 
6765 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6766 		unsigned long capacity, wl;
6767 		enum fbq_type rt;
6768 
6769 		rq = cpu_rq(i);
6770 		rt = fbq_classify_rq(rq);
6771 
6772 		/*
6773 		 * We classify groups/runqueues into three groups:
6774 		 *  - regular: there are !numa tasks
6775 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6776 		 *  - all:     there is no distinction
6777 		 *
6778 		 * In order to avoid migrating ideally placed numa tasks,
6779 		 * ignore those when there's better options.
6780 		 *
6781 		 * If we ignore the actual busiest queue to migrate another
6782 		 * task, the next balance pass can still reduce the busiest
6783 		 * queue by moving tasks around inside the node.
6784 		 *
6785 		 * If we cannot move enough load due to this classification
6786 		 * the next pass will adjust the group classification and
6787 		 * allow migration of more tasks.
6788 		 *
6789 		 * Both cases only affect the total convergence complexity.
6790 		 */
6791 		if (rt > env->fbq_type)
6792 			continue;
6793 
6794 		capacity = capacity_of(i);
6795 
6796 		wl = weighted_cpuload(i);
6797 
6798 		/*
6799 		 * When comparing with imbalance, use weighted_cpuload()
6800 		 * which is not scaled with the cpu capacity.
6801 		 */
6802 
6803 		if (rq->nr_running == 1 && wl > env->imbalance &&
6804 		    !check_cpu_capacity(rq, env->sd))
6805 			continue;
6806 
6807 		/*
6808 		 * For the load comparisons with the other cpu's, consider
6809 		 * the weighted_cpuload() scaled with the cpu capacity, so
6810 		 * that the load can be moved away from the cpu that is
6811 		 * potentially running at a lower capacity.
6812 		 *
6813 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6814 		 * multiplication to rid ourselves of the division works out
6815 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6816 		 * our previous maximum.
6817 		 */
6818 		if (wl * busiest_capacity > busiest_load * capacity) {
6819 			busiest_load = wl;
6820 			busiest_capacity = capacity;
6821 			busiest = rq;
6822 		}
6823 	}
6824 
6825 	return busiest;
6826 }
6827 
6828 /*
6829  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6830  * so long as it is large enough.
6831  */
6832 #define MAX_PINNED_INTERVAL	512
6833 
6834 /* Working cpumask for load_balance and load_balance_newidle. */
6835 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6836 
6837 static int need_active_balance(struct lb_env *env)
6838 {
6839 	struct sched_domain *sd = env->sd;
6840 
6841 	if (env->idle == CPU_NEWLY_IDLE) {
6842 
6843 		/*
6844 		 * ASYM_PACKING needs to force migrate tasks from busy but
6845 		 * higher numbered CPUs in order to pack all tasks in the
6846 		 * lowest numbered CPUs.
6847 		 */
6848 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6849 			return 1;
6850 	}
6851 
6852 	/*
6853 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6854 	 * It's worth migrating the task if the src_cpu's capacity is reduced
6855 	 * because of other sched_class or IRQs if more capacity stays
6856 	 * available on dst_cpu.
6857 	 */
6858 	if ((env->idle != CPU_NOT_IDLE) &&
6859 	    (env->src_rq->cfs.h_nr_running == 1)) {
6860 		if ((check_cpu_capacity(env->src_rq, sd)) &&
6861 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6862 			return 1;
6863 	}
6864 
6865 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6866 }
6867 
6868 static int active_load_balance_cpu_stop(void *data);
6869 
6870 static int should_we_balance(struct lb_env *env)
6871 {
6872 	struct sched_group *sg = env->sd->groups;
6873 	struct cpumask *sg_cpus, *sg_mask;
6874 	int cpu, balance_cpu = -1;
6875 
6876 	/*
6877 	 * In the newly idle case, we will allow all the cpu's
6878 	 * to do the newly idle load balance.
6879 	 */
6880 	if (env->idle == CPU_NEWLY_IDLE)
6881 		return 1;
6882 
6883 	sg_cpus = sched_group_cpus(sg);
6884 	sg_mask = sched_group_mask(sg);
6885 	/* Try to find first idle cpu */
6886 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6887 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6888 			continue;
6889 
6890 		balance_cpu = cpu;
6891 		break;
6892 	}
6893 
6894 	if (balance_cpu == -1)
6895 		balance_cpu = group_balance_cpu(sg);
6896 
6897 	/*
6898 	 * First idle cpu or the first cpu(busiest) in this sched group
6899 	 * is eligible for doing load balancing at this and above domains.
6900 	 */
6901 	return balance_cpu == env->dst_cpu;
6902 }
6903 
6904 /*
6905  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6906  * tasks if there is an imbalance.
6907  */
6908 static int load_balance(int this_cpu, struct rq *this_rq,
6909 			struct sched_domain *sd, enum cpu_idle_type idle,
6910 			int *continue_balancing)
6911 {
6912 	int ld_moved, cur_ld_moved, active_balance = 0;
6913 	struct sched_domain *sd_parent = sd->parent;
6914 	struct sched_group *group;
6915 	struct rq *busiest;
6916 	unsigned long flags;
6917 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6918 
6919 	struct lb_env env = {
6920 		.sd		= sd,
6921 		.dst_cpu	= this_cpu,
6922 		.dst_rq		= this_rq,
6923 		.dst_grpmask    = sched_group_cpus(sd->groups),
6924 		.idle		= idle,
6925 		.loop_break	= sched_nr_migrate_break,
6926 		.cpus		= cpus,
6927 		.fbq_type	= all,
6928 		.tasks		= LIST_HEAD_INIT(env.tasks),
6929 	};
6930 
6931 	/*
6932 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6933 	 * other cpus in our group
6934 	 */
6935 	if (idle == CPU_NEWLY_IDLE)
6936 		env.dst_grpmask = NULL;
6937 
6938 	cpumask_copy(cpus, cpu_active_mask);
6939 
6940 	schedstat_inc(sd, lb_count[idle]);
6941 
6942 redo:
6943 	if (!should_we_balance(&env)) {
6944 		*continue_balancing = 0;
6945 		goto out_balanced;
6946 	}
6947 
6948 	group = find_busiest_group(&env);
6949 	if (!group) {
6950 		schedstat_inc(sd, lb_nobusyg[idle]);
6951 		goto out_balanced;
6952 	}
6953 
6954 	busiest = find_busiest_queue(&env, group);
6955 	if (!busiest) {
6956 		schedstat_inc(sd, lb_nobusyq[idle]);
6957 		goto out_balanced;
6958 	}
6959 
6960 	BUG_ON(busiest == env.dst_rq);
6961 
6962 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6963 
6964 	env.src_cpu = busiest->cpu;
6965 	env.src_rq = busiest;
6966 
6967 	ld_moved = 0;
6968 	if (busiest->nr_running > 1) {
6969 		/*
6970 		 * Attempt to move tasks. If find_busiest_group has found
6971 		 * an imbalance but busiest->nr_running <= 1, the group is
6972 		 * still unbalanced. ld_moved simply stays zero, so it is
6973 		 * correctly treated as an imbalance.
6974 		 */
6975 		env.flags |= LBF_ALL_PINNED;
6976 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6977 
6978 more_balance:
6979 		raw_spin_lock_irqsave(&busiest->lock, flags);
6980 
6981 		/*
6982 		 * cur_ld_moved - load moved in current iteration
6983 		 * ld_moved     - cumulative load moved across iterations
6984 		 */
6985 		cur_ld_moved = detach_tasks(&env);
6986 
6987 		/*
6988 		 * We've detached some tasks from busiest_rq. Every
6989 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6990 		 * unlock busiest->lock, and we are able to be sure
6991 		 * that nobody can manipulate the tasks in parallel.
6992 		 * See task_rq_lock() family for the details.
6993 		 */
6994 
6995 		raw_spin_unlock(&busiest->lock);
6996 
6997 		if (cur_ld_moved) {
6998 			attach_tasks(&env);
6999 			ld_moved += cur_ld_moved;
7000 		}
7001 
7002 		local_irq_restore(flags);
7003 
7004 		if (env.flags & LBF_NEED_BREAK) {
7005 			env.flags &= ~LBF_NEED_BREAK;
7006 			goto more_balance;
7007 		}
7008 
7009 		/*
7010 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7011 		 * us and move them to an alternate dst_cpu in our sched_group
7012 		 * where they can run. The upper limit on how many times we
7013 		 * iterate on same src_cpu is dependent on number of cpus in our
7014 		 * sched_group.
7015 		 *
7016 		 * This changes load balance semantics a bit on who can move
7017 		 * load to a given_cpu. In addition to the given_cpu itself
7018 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7019 		 * nohz-idle), we now have balance_cpu in a position to move
7020 		 * load to given_cpu. In rare situations, this may cause
7021 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7022 		 * _independently_ and at _same_ time to move some load to
7023 		 * given_cpu) causing exceess load to be moved to given_cpu.
7024 		 * This however should not happen so much in practice and
7025 		 * moreover subsequent load balance cycles should correct the
7026 		 * excess load moved.
7027 		 */
7028 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7029 
7030 			/* Prevent to re-select dst_cpu via env's cpus */
7031 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7032 
7033 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7034 			env.dst_cpu	 = env.new_dst_cpu;
7035 			env.flags	&= ~LBF_DST_PINNED;
7036 			env.loop	 = 0;
7037 			env.loop_break	 = sched_nr_migrate_break;
7038 
7039 			/*
7040 			 * Go back to "more_balance" rather than "redo" since we
7041 			 * need to continue with same src_cpu.
7042 			 */
7043 			goto more_balance;
7044 		}
7045 
7046 		/*
7047 		 * We failed to reach balance because of affinity.
7048 		 */
7049 		if (sd_parent) {
7050 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7051 
7052 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7053 				*group_imbalance = 1;
7054 		}
7055 
7056 		/* All tasks on this runqueue were pinned by CPU affinity */
7057 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7058 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7059 			if (!cpumask_empty(cpus)) {
7060 				env.loop = 0;
7061 				env.loop_break = sched_nr_migrate_break;
7062 				goto redo;
7063 			}
7064 			goto out_all_pinned;
7065 		}
7066 	}
7067 
7068 	if (!ld_moved) {
7069 		schedstat_inc(sd, lb_failed[idle]);
7070 		/*
7071 		 * Increment the failure counter only on periodic balance.
7072 		 * We do not want newidle balance, which can be very
7073 		 * frequent, pollute the failure counter causing
7074 		 * excessive cache_hot migrations and active balances.
7075 		 */
7076 		if (idle != CPU_NEWLY_IDLE)
7077 			sd->nr_balance_failed++;
7078 
7079 		if (need_active_balance(&env)) {
7080 			raw_spin_lock_irqsave(&busiest->lock, flags);
7081 
7082 			/* don't kick the active_load_balance_cpu_stop,
7083 			 * if the curr task on busiest cpu can't be
7084 			 * moved to this_cpu
7085 			 */
7086 			if (!cpumask_test_cpu(this_cpu,
7087 					tsk_cpus_allowed(busiest->curr))) {
7088 				raw_spin_unlock_irqrestore(&busiest->lock,
7089 							    flags);
7090 				env.flags |= LBF_ALL_PINNED;
7091 				goto out_one_pinned;
7092 			}
7093 
7094 			/*
7095 			 * ->active_balance synchronizes accesses to
7096 			 * ->active_balance_work.  Once set, it's cleared
7097 			 * only after active load balance is finished.
7098 			 */
7099 			if (!busiest->active_balance) {
7100 				busiest->active_balance = 1;
7101 				busiest->push_cpu = this_cpu;
7102 				active_balance = 1;
7103 			}
7104 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7105 
7106 			if (active_balance) {
7107 				stop_one_cpu_nowait(cpu_of(busiest),
7108 					active_load_balance_cpu_stop, busiest,
7109 					&busiest->active_balance_work);
7110 			}
7111 
7112 			/*
7113 			 * We've kicked active balancing, reset the failure
7114 			 * counter.
7115 			 */
7116 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7117 		}
7118 	} else
7119 		sd->nr_balance_failed = 0;
7120 
7121 	if (likely(!active_balance)) {
7122 		/* We were unbalanced, so reset the balancing interval */
7123 		sd->balance_interval = sd->min_interval;
7124 	} else {
7125 		/*
7126 		 * If we've begun active balancing, start to back off. This
7127 		 * case may not be covered by the all_pinned logic if there
7128 		 * is only 1 task on the busy runqueue (because we don't call
7129 		 * detach_tasks).
7130 		 */
7131 		if (sd->balance_interval < sd->max_interval)
7132 			sd->balance_interval *= 2;
7133 	}
7134 
7135 	goto out;
7136 
7137 out_balanced:
7138 	/*
7139 	 * We reach balance although we may have faced some affinity
7140 	 * constraints. Clear the imbalance flag if it was set.
7141 	 */
7142 	if (sd_parent) {
7143 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7144 
7145 		if (*group_imbalance)
7146 			*group_imbalance = 0;
7147 	}
7148 
7149 out_all_pinned:
7150 	/*
7151 	 * We reach balance because all tasks are pinned at this level so
7152 	 * we can't migrate them. Let the imbalance flag set so parent level
7153 	 * can try to migrate them.
7154 	 */
7155 	schedstat_inc(sd, lb_balanced[idle]);
7156 
7157 	sd->nr_balance_failed = 0;
7158 
7159 out_one_pinned:
7160 	/* tune up the balancing interval */
7161 	if (((env.flags & LBF_ALL_PINNED) &&
7162 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7163 			(sd->balance_interval < sd->max_interval))
7164 		sd->balance_interval *= 2;
7165 
7166 	ld_moved = 0;
7167 out:
7168 	return ld_moved;
7169 }
7170 
7171 static inline unsigned long
7172 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7173 {
7174 	unsigned long interval = sd->balance_interval;
7175 
7176 	if (cpu_busy)
7177 		interval *= sd->busy_factor;
7178 
7179 	/* scale ms to jiffies */
7180 	interval = msecs_to_jiffies(interval);
7181 	interval = clamp(interval, 1UL, max_load_balance_interval);
7182 
7183 	return interval;
7184 }
7185 
7186 static inline void
7187 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7188 {
7189 	unsigned long interval, next;
7190 
7191 	interval = get_sd_balance_interval(sd, cpu_busy);
7192 	next = sd->last_balance + interval;
7193 
7194 	if (time_after(*next_balance, next))
7195 		*next_balance = next;
7196 }
7197 
7198 /*
7199  * idle_balance is called by schedule() if this_cpu is about to become
7200  * idle. Attempts to pull tasks from other CPUs.
7201  */
7202 static int idle_balance(struct rq *this_rq)
7203 {
7204 	unsigned long next_balance = jiffies + HZ;
7205 	int this_cpu = this_rq->cpu;
7206 	struct sched_domain *sd;
7207 	int pulled_task = 0;
7208 	u64 curr_cost = 0;
7209 
7210 	idle_enter_fair(this_rq);
7211 
7212 	/*
7213 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7214 	 * measure the duration of idle_balance() as idle time.
7215 	 */
7216 	this_rq->idle_stamp = rq_clock(this_rq);
7217 
7218 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7219 	    !this_rq->rd->overload) {
7220 		rcu_read_lock();
7221 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7222 		if (sd)
7223 			update_next_balance(sd, 0, &next_balance);
7224 		rcu_read_unlock();
7225 
7226 		goto out;
7227 	}
7228 
7229 	/*
7230 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
7231 	 */
7232 	raw_spin_unlock(&this_rq->lock);
7233 
7234 	update_blocked_averages(this_cpu);
7235 	rcu_read_lock();
7236 	for_each_domain(this_cpu, sd) {
7237 		int continue_balancing = 1;
7238 		u64 t0, domain_cost;
7239 
7240 		if (!(sd->flags & SD_LOAD_BALANCE))
7241 			continue;
7242 
7243 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7244 			update_next_balance(sd, 0, &next_balance);
7245 			break;
7246 		}
7247 
7248 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7249 			t0 = sched_clock_cpu(this_cpu);
7250 
7251 			pulled_task = load_balance(this_cpu, this_rq,
7252 						   sd, CPU_NEWLY_IDLE,
7253 						   &continue_balancing);
7254 
7255 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7256 			if (domain_cost > sd->max_newidle_lb_cost)
7257 				sd->max_newidle_lb_cost = domain_cost;
7258 
7259 			curr_cost += domain_cost;
7260 		}
7261 
7262 		update_next_balance(sd, 0, &next_balance);
7263 
7264 		/*
7265 		 * Stop searching for tasks to pull if there are
7266 		 * now runnable tasks on this rq.
7267 		 */
7268 		if (pulled_task || this_rq->nr_running > 0)
7269 			break;
7270 	}
7271 	rcu_read_unlock();
7272 
7273 	raw_spin_lock(&this_rq->lock);
7274 
7275 	if (curr_cost > this_rq->max_idle_balance_cost)
7276 		this_rq->max_idle_balance_cost = curr_cost;
7277 
7278 	/*
7279 	 * While browsing the domains, we released the rq lock, a task could
7280 	 * have been enqueued in the meantime. Since we're not going idle,
7281 	 * pretend we pulled a task.
7282 	 */
7283 	if (this_rq->cfs.h_nr_running && !pulled_task)
7284 		pulled_task = 1;
7285 
7286 out:
7287 	/* Move the next balance forward */
7288 	if (time_after(this_rq->next_balance, next_balance))
7289 		this_rq->next_balance = next_balance;
7290 
7291 	/* Is there a task of a high priority class? */
7292 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7293 		pulled_task = -1;
7294 
7295 	if (pulled_task) {
7296 		idle_exit_fair(this_rq);
7297 		this_rq->idle_stamp = 0;
7298 	}
7299 
7300 	return pulled_task;
7301 }
7302 
7303 /*
7304  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7305  * running tasks off the busiest CPU onto idle CPUs. It requires at
7306  * least 1 task to be running on each physical CPU where possible, and
7307  * avoids physical / logical imbalances.
7308  */
7309 static int active_load_balance_cpu_stop(void *data)
7310 {
7311 	struct rq *busiest_rq = data;
7312 	int busiest_cpu = cpu_of(busiest_rq);
7313 	int target_cpu = busiest_rq->push_cpu;
7314 	struct rq *target_rq = cpu_rq(target_cpu);
7315 	struct sched_domain *sd;
7316 	struct task_struct *p = NULL;
7317 
7318 	raw_spin_lock_irq(&busiest_rq->lock);
7319 
7320 	/* make sure the requested cpu hasn't gone down in the meantime */
7321 	if (unlikely(busiest_cpu != smp_processor_id() ||
7322 		     !busiest_rq->active_balance))
7323 		goto out_unlock;
7324 
7325 	/* Is there any task to move? */
7326 	if (busiest_rq->nr_running <= 1)
7327 		goto out_unlock;
7328 
7329 	/*
7330 	 * This condition is "impossible", if it occurs
7331 	 * we need to fix it. Originally reported by
7332 	 * Bjorn Helgaas on a 128-cpu setup.
7333 	 */
7334 	BUG_ON(busiest_rq == target_rq);
7335 
7336 	/* Search for an sd spanning us and the target CPU. */
7337 	rcu_read_lock();
7338 	for_each_domain(target_cpu, sd) {
7339 		if ((sd->flags & SD_LOAD_BALANCE) &&
7340 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7341 				break;
7342 	}
7343 
7344 	if (likely(sd)) {
7345 		struct lb_env env = {
7346 			.sd		= sd,
7347 			.dst_cpu	= target_cpu,
7348 			.dst_rq		= target_rq,
7349 			.src_cpu	= busiest_rq->cpu,
7350 			.src_rq		= busiest_rq,
7351 			.idle		= CPU_IDLE,
7352 		};
7353 
7354 		schedstat_inc(sd, alb_count);
7355 
7356 		p = detach_one_task(&env);
7357 		if (p)
7358 			schedstat_inc(sd, alb_pushed);
7359 		else
7360 			schedstat_inc(sd, alb_failed);
7361 	}
7362 	rcu_read_unlock();
7363 out_unlock:
7364 	busiest_rq->active_balance = 0;
7365 	raw_spin_unlock(&busiest_rq->lock);
7366 
7367 	if (p)
7368 		attach_one_task(target_rq, p);
7369 
7370 	local_irq_enable();
7371 
7372 	return 0;
7373 }
7374 
7375 static inline int on_null_domain(struct rq *rq)
7376 {
7377 	return unlikely(!rcu_dereference_sched(rq->sd));
7378 }
7379 
7380 #ifdef CONFIG_NO_HZ_COMMON
7381 /*
7382  * idle load balancing details
7383  * - When one of the busy CPUs notice that there may be an idle rebalancing
7384  *   needed, they will kick the idle load balancer, which then does idle
7385  *   load balancing for all the idle CPUs.
7386  */
7387 static struct {
7388 	cpumask_var_t idle_cpus_mask;
7389 	atomic_t nr_cpus;
7390 	unsigned long next_balance;     /* in jiffy units */
7391 } nohz ____cacheline_aligned;
7392 
7393 static inline int find_new_ilb(void)
7394 {
7395 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7396 
7397 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7398 		return ilb;
7399 
7400 	return nr_cpu_ids;
7401 }
7402 
7403 /*
7404  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7405  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7406  * CPU (if there is one).
7407  */
7408 static void nohz_balancer_kick(void)
7409 {
7410 	int ilb_cpu;
7411 
7412 	nohz.next_balance++;
7413 
7414 	ilb_cpu = find_new_ilb();
7415 
7416 	if (ilb_cpu >= nr_cpu_ids)
7417 		return;
7418 
7419 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7420 		return;
7421 	/*
7422 	 * Use smp_send_reschedule() instead of resched_cpu().
7423 	 * This way we generate a sched IPI on the target cpu which
7424 	 * is idle. And the softirq performing nohz idle load balance
7425 	 * will be run before returning from the IPI.
7426 	 */
7427 	smp_send_reschedule(ilb_cpu);
7428 	return;
7429 }
7430 
7431 static inline void nohz_balance_exit_idle(int cpu)
7432 {
7433 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7434 		/*
7435 		 * Completely isolated CPUs don't ever set, so we must test.
7436 		 */
7437 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7438 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7439 			atomic_dec(&nohz.nr_cpus);
7440 		}
7441 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7442 	}
7443 }
7444 
7445 static inline void set_cpu_sd_state_busy(void)
7446 {
7447 	struct sched_domain *sd;
7448 	int cpu = smp_processor_id();
7449 
7450 	rcu_read_lock();
7451 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7452 
7453 	if (!sd || !sd->nohz_idle)
7454 		goto unlock;
7455 	sd->nohz_idle = 0;
7456 
7457 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7458 unlock:
7459 	rcu_read_unlock();
7460 }
7461 
7462 void set_cpu_sd_state_idle(void)
7463 {
7464 	struct sched_domain *sd;
7465 	int cpu = smp_processor_id();
7466 
7467 	rcu_read_lock();
7468 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7469 
7470 	if (!sd || sd->nohz_idle)
7471 		goto unlock;
7472 	sd->nohz_idle = 1;
7473 
7474 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7475 unlock:
7476 	rcu_read_unlock();
7477 }
7478 
7479 /*
7480  * This routine will record that the cpu is going idle with tick stopped.
7481  * This info will be used in performing idle load balancing in the future.
7482  */
7483 void nohz_balance_enter_idle(int cpu)
7484 {
7485 	/*
7486 	 * If this cpu is going down, then nothing needs to be done.
7487 	 */
7488 	if (!cpu_active(cpu))
7489 		return;
7490 
7491 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7492 		return;
7493 
7494 	/*
7495 	 * If we're a completely isolated CPU, we don't play.
7496 	 */
7497 	if (on_null_domain(cpu_rq(cpu)))
7498 		return;
7499 
7500 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7501 	atomic_inc(&nohz.nr_cpus);
7502 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7503 }
7504 
7505 static int sched_ilb_notifier(struct notifier_block *nfb,
7506 					unsigned long action, void *hcpu)
7507 {
7508 	switch (action & ~CPU_TASKS_FROZEN) {
7509 	case CPU_DYING:
7510 		nohz_balance_exit_idle(smp_processor_id());
7511 		return NOTIFY_OK;
7512 	default:
7513 		return NOTIFY_DONE;
7514 	}
7515 }
7516 #endif
7517 
7518 static DEFINE_SPINLOCK(balancing);
7519 
7520 /*
7521  * Scale the max load_balance interval with the number of CPUs in the system.
7522  * This trades load-balance latency on larger machines for less cross talk.
7523  */
7524 void update_max_interval(void)
7525 {
7526 	max_load_balance_interval = HZ*num_online_cpus()/10;
7527 }
7528 
7529 /*
7530  * It checks each scheduling domain to see if it is due to be balanced,
7531  * and initiates a balancing operation if so.
7532  *
7533  * Balancing parameters are set up in init_sched_domains.
7534  */
7535 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7536 {
7537 	int continue_balancing = 1;
7538 	int cpu = rq->cpu;
7539 	unsigned long interval;
7540 	struct sched_domain *sd;
7541 	/* Earliest time when we have to do rebalance again */
7542 	unsigned long next_balance = jiffies + 60*HZ;
7543 	int update_next_balance = 0;
7544 	int need_serialize, need_decay = 0;
7545 	u64 max_cost = 0;
7546 
7547 	update_blocked_averages(cpu);
7548 
7549 	rcu_read_lock();
7550 	for_each_domain(cpu, sd) {
7551 		/*
7552 		 * Decay the newidle max times here because this is a regular
7553 		 * visit to all the domains. Decay ~1% per second.
7554 		 */
7555 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7556 			sd->max_newidle_lb_cost =
7557 				(sd->max_newidle_lb_cost * 253) / 256;
7558 			sd->next_decay_max_lb_cost = jiffies + HZ;
7559 			need_decay = 1;
7560 		}
7561 		max_cost += sd->max_newidle_lb_cost;
7562 
7563 		if (!(sd->flags & SD_LOAD_BALANCE))
7564 			continue;
7565 
7566 		/*
7567 		 * Stop the load balance at this level. There is another
7568 		 * CPU in our sched group which is doing load balancing more
7569 		 * actively.
7570 		 */
7571 		if (!continue_balancing) {
7572 			if (need_decay)
7573 				continue;
7574 			break;
7575 		}
7576 
7577 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7578 
7579 		need_serialize = sd->flags & SD_SERIALIZE;
7580 		if (need_serialize) {
7581 			if (!spin_trylock(&balancing))
7582 				goto out;
7583 		}
7584 
7585 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7586 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7587 				/*
7588 				 * The LBF_DST_PINNED logic could have changed
7589 				 * env->dst_cpu, so we can't know our idle
7590 				 * state even if we migrated tasks. Update it.
7591 				 */
7592 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7593 			}
7594 			sd->last_balance = jiffies;
7595 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7596 		}
7597 		if (need_serialize)
7598 			spin_unlock(&balancing);
7599 out:
7600 		if (time_after(next_balance, sd->last_balance + interval)) {
7601 			next_balance = sd->last_balance + interval;
7602 			update_next_balance = 1;
7603 		}
7604 	}
7605 	if (need_decay) {
7606 		/*
7607 		 * Ensure the rq-wide value also decays but keep it at a
7608 		 * reasonable floor to avoid funnies with rq->avg_idle.
7609 		 */
7610 		rq->max_idle_balance_cost =
7611 			max((u64)sysctl_sched_migration_cost, max_cost);
7612 	}
7613 	rcu_read_unlock();
7614 
7615 	/*
7616 	 * next_balance will be updated only when there is a need.
7617 	 * When the cpu is attached to null domain for ex, it will not be
7618 	 * updated.
7619 	 */
7620 	if (likely(update_next_balance))
7621 		rq->next_balance = next_balance;
7622 }
7623 
7624 #ifdef CONFIG_NO_HZ_COMMON
7625 /*
7626  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7627  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7628  */
7629 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7630 {
7631 	int this_cpu = this_rq->cpu;
7632 	struct rq *rq;
7633 	int balance_cpu;
7634 
7635 	if (idle != CPU_IDLE ||
7636 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7637 		goto end;
7638 
7639 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7640 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7641 			continue;
7642 
7643 		/*
7644 		 * If this cpu gets work to do, stop the load balancing
7645 		 * work being done for other cpus. Next load
7646 		 * balancing owner will pick it up.
7647 		 */
7648 		if (need_resched())
7649 			break;
7650 
7651 		rq = cpu_rq(balance_cpu);
7652 
7653 		/*
7654 		 * If time for next balance is due,
7655 		 * do the balance.
7656 		 */
7657 		if (time_after_eq(jiffies, rq->next_balance)) {
7658 			raw_spin_lock_irq(&rq->lock);
7659 			update_rq_clock(rq);
7660 			update_idle_cpu_load(rq);
7661 			raw_spin_unlock_irq(&rq->lock);
7662 			rebalance_domains(rq, CPU_IDLE);
7663 		}
7664 
7665 		if (time_after(this_rq->next_balance, rq->next_balance))
7666 			this_rq->next_balance = rq->next_balance;
7667 	}
7668 	nohz.next_balance = this_rq->next_balance;
7669 end:
7670 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7671 }
7672 
7673 /*
7674  * Current heuristic for kicking the idle load balancer in the presence
7675  * of an idle cpu in the system.
7676  *   - This rq has more than one task.
7677  *   - This rq has at least one CFS task and the capacity of the CPU is
7678  *     significantly reduced because of RT tasks or IRQs.
7679  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7680  *     multiple busy cpu.
7681  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7682  *     domain span are idle.
7683  */
7684 static inline bool nohz_kick_needed(struct rq *rq)
7685 {
7686 	unsigned long now = jiffies;
7687 	struct sched_domain *sd;
7688 	struct sched_group_capacity *sgc;
7689 	int nr_busy, cpu = rq->cpu;
7690 	bool kick = false;
7691 
7692 	if (unlikely(rq->idle_balance))
7693 		return false;
7694 
7695        /*
7696 	* We may be recently in ticked or tickless idle mode. At the first
7697 	* busy tick after returning from idle, we will update the busy stats.
7698 	*/
7699 	set_cpu_sd_state_busy();
7700 	nohz_balance_exit_idle(cpu);
7701 
7702 	/*
7703 	 * None are in tickless mode and hence no need for NOHZ idle load
7704 	 * balancing.
7705 	 */
7706 	if (likely(!atomic_read(&nohz.nr_cpus)))
7707 		return false;
7708 
7709 	if (time_before(now, nohz.next_balance))
7710 		return false;
7711 
7712 	if (rq->nr_running >= 2)
7713 		return true;
7714 
7715 	rcu_read_lock();
7716 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7717 	if (sd) {
7718 		sgc = sd->groups->sgc;
7719 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7720 
7721 		if (nr_busy > 1) {
7722 			kick = true;
7723 			goto unlock;
7724 		}
7725 
7726 	}
7727 
7728 	sd = rcu_dereference(rq->sd);
7729 	if (sd) {
7730 		if ((rq->cfs.h_nr_running >= 1) &&
7731 				check_cpu_capacity(rq, sd)) {
7732 			kick = true;
7733 			goto unlock;
7734 		}
7735 	}
7736 
7737 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7738 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7739 				  sched_domain_span(sd)) < cpu)) {
7740 		kick = true;
7741 		goto unlock;
7742 	}
7743 
7744 unlock:
7745 	rcu_read_unlock();
7746 	return kick;
7747 }
7748 #else
7749 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7750 #endif
7751 
7752 /*
7753  * run_rebalance_domains is triggered when needed from the scheduler tick.
7754  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7755  */
7756 static void run_rebalance_domains(struct softirq_action *h)
7757 {
7758 	struct rq *this_rq = this_rq();
7759 	enum cpu_idle_type idle = this_rq->idle_balance ?
7760 						CPU_IDLE : CPU_NOT_IDLE;
7761 
7762 	/*
7763 	 * If this cpu has a pending nohz_balance_kick, then do the
7764 	 * balancing on behalf of the other idle cpus whose ticks are
7765 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7766 	 * give the idle cpus a chance to load balance. Else we may
7767 	 * load balance only within the local sched_domain hierarchy
7768 	 * and abort nohz_idle_balance altogether if we pull some load.
7769 	 */
7770 	nohz_idle_balance(this_rq, idle);
7771 	rebalance_domains(this_rq, idle);
7772 }
7773 
7774 /*
7775  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7776  */
7777 void trigger_load_balance(struct rq *rq)
7778 {
7779 	/* Don't need to rebalance while attached to NULL domain */
7780 	if (unlikely(on_null_domain(rq)))
7781 		return;
7782 
7783 	if (time_after_eq(jiffies, rq->next_balance))
7784 		raise_softirq(SCHED_SOFTIRQ);
7785 #ifdef CONFIG_NO_HZ_COMMON
7786 	if (nohz_kick_needed(rq))
7787 		nohz_balancer_kick();
7788 #endif
7789 }
7790 
7791 static void rq_online_fair(struct rq *rq)
7792 {
7793 	update_sysctl();
7794 
7795 	update_runtime_enabled(rq);
7796 }
7797 
7798 static void rq_offline_fair(struct rq *rq)
7799 {
7800 	update_sysctl();
7801 
7802 	/* Ensure any throttled groups are reachable by pick_next_task */
7803 	unthrottle_offline_cfs_rqs(rq);
7804 }
7805 
7806 #endif /* CONFIG_SMP */
7807 
7808 /*
7809  * scheduler tick hitting a task of our scheduling class:
7810  */
7811 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7812 {
7813 	struct cfs_rq *cfs_rq;
7814 	struct sched_entity *se = &curr->se;
7815 
7816 	for_each_sched_entity(se) {
7817 		cfs_rq = cfs_rq_of(se);
7818 		entity_tick(cfs_rq, se, queued);
7819 	}
7820 
7821 	if (numabalancing_enabled)
7822 		task_tick_numa(rq, curr);
7823 
7824 	update_rq_runnable_avg(rq, 1);
7825 }
7826 
7827 /*
7828  * called on fork with the child task as argument from the parent's context
7829  *  - child not yet on the tasklist
7830  *  - preemption disabled
7831  */
7832 static void task_fork_fair(struct task_struct *p)
7833 {
7834 	struct cfs_rq *cfs_rq;
7835 	struct sched_entity *se = &p->se, *curr;
7836 	int this_cpu = smp_processor_id();
7837 	struct rq *rq = this_rq();
7838 	unsigned long flags;
7839 
7840 	raw_spin_lock_irqsave(&rq->lock, flags);
7841 
7842 	update_rq_clock(rq);
7843 
7844 	cfs_rq = task_cfs_rq(current);
7845 	curr = cfs_rq->curr;
7846 
7847 	/*
7848 	 * Not only the cpu but also the task_group of the parent might have
7849 	 * been changed after parent->se.parent,cfs_rq were copied to
7850 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7851 	 * of child point to valid ones.
7852 	 */
7853 	rcu_read_lock();
7854 	__set_task_cpu(p, this_cpu);
7855 	rcu_read_unlock();
7856 
7857 	update_curr(cfs_rq);
7858 
7859 	if (curr)
7860 		se->vruntime = curr->vruntime;
7861 	place_entity(cfs_rq, se, 1);
7862 
7863 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7864 		/*
7865 		 * Upon rescheduling, sched_class::put_prev_task() will place
7866 		 * 'current' within the tree based on its new key value.
7867 		 */
7868 		swap(curr->vruntime, se->vruntime);
7869 		resched_curr(rq);
7870 	}
7871 
7872 	se->vruntime -= cfs_rq->min_vruntime;
7873 
7874 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7875 }
7876 
7877 /*
7878  * Priority of the task has changed. Check to see if we preempt
7879  * the current task.
7880  */
7881 static void
7882 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7883 {
7884 	if (!task_on_rq_queued(p))
7885 		return;
7886 
7887 	/*
7888 	 * Reschedule if we are currently running on this runqueue and
7889 	 * our priority decreased, or if we are not currently running on
7890 	 * this runqueue and our priority is higher than the current's
7891 	 */
7892 	if (rq->curr == p) {
7893 		if (p->prio > oldprio)
7894 			resched_curr(rq);
7895 	} else
7896 		check_preempt_curr(rq, p, 0);
7897 }
7898 
7899 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7900 {
7901 	struct sched_entity *se = &p->se;
7902 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7903 
7904 	/*
7905 	 * Ensure the task's vruntime is normalized, so that when it's
7906 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7907 	 * do the right thing.
7908 	 *
7909 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7910 	 * have normalized the vruntime, if it's !queued, then only when
7911 	 * the task is sleeping will it still have non-normalized vruntime.
7912 	 */
7913 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7914 		/*
7915 		 * Fix up our vruntime so that the current sleep doesn't
7916 		 * cause 'unlimited' sleep bonus.
7917 		 */
7918 		place_entity(cfs_rq, se, 0);
7919 		se->vruntime -= cfs_rq->min_vruntime;
7920 	}
7921 
7922 #ifdef CONFIG_SMP
7923 	/*
7924 	* Remove our load from contribution when we leave sched_fair
7925 	* and ensure we don't carry in an old decay_count if we
7926 	* switch back.
7927 	*/
7928 	if (se->avg.decay_count) {
7929 		__synchronize_entity_decay(se);
7930 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7931 	}
7932 #endif
7933 }
7934 
7935 /*
7936  * We switched to the sched_fair class.
7937  */
7938 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7939 {
7940 #ifdef CONFIG_FAIR_GROUP_SCHED
7941 	struct sched_entity *se = &p->se;
7942 	/*
7943 	 * Since the real-depth could have been changed (only FAIR
7944 	 * class maintain depth value), reset depth properly.
7945 	 */
7946 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7947 #endif
7948 	if (!task_on_rq_queued(p))
7949 		return;
7950 
7951 	/*
7952 	 * We were most likely switched from sched_rt, so
7953 	 * kick off the schedule if running, otherwise just see
7954 	 * if we can still preempt the current task.
7955 	 */
7956 	if (rq->curr == p)
7957 		resched_curr(rq);
7958 	else
7959 		check_preempt_curr(rq, p, 0);
7960 }
7961 
7962 /* Account for a task changing its policy or group.
7963  *
7964  * This routine is mostly called to set cfs_rq->curr field when a task
7965  * migrates between groups/classes.
7966  */
7967 static void set_curr_task_fair(struct rq *rq)
7968 {
7969 	struct sched_entity *se = &rq->curr->se;
7970 
7971 	for_each_sched_entity(se) {
7972 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7973 
7974 		set_next_entity(cfs_rq, se);
7975 		/* ensure bandwidth has been allocated on our new cfs_rq */
7976 		account_cfs_rq_runtime(cfs_rq, 0);
7977 	}
7978 }
7979 
7980 void init_cfs_rq(struct cfs_rq *cfs_rq)
7981 {
7982 	cfs_rq->tasks_timeline = RB_ROOT;
7983 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7984 #ifndef CONFIG_64BIT
7985 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7986 #endif
7987 #ifdef CONFIG_SMP
7988 	atomic64_set(&cfs_rq->decay_counter, 1);
7989 	atomic_long_set(&cfs_rq->removed_load, 0);
7990 #endif
7991 }
7992 
7993 #ifdef CONFIG_FAIR_GROUP_SCHED
7994 static void task_move_group_fair(struct task_struct *p, int queued)
7995 {
7996 	struct sched_entity *se = &p->se;
7997 	struct cfs_rq *cfs_rq;
7998 
7999 	/*
8000 	 * If the task was not on the rq at the time of this cgroup movement
8001 	 * it must have been asleep, sleeping tasks keep their ->vruntime
8002 	 * absolute on their old rq until wakeup (needed for the fair sleeper
8003 	 * bonus in place_entity()).
8004 	 *
8005 	 * If it was on the rq, we've just 'preempted' it, which does convert
8006 	 * ->vruntime to a relative base.
8007 	 *
8008 	 * Make sure both cases convert their relative position when migrating
8009 	 * to another cgroup's rq. This does somewhat interfere with the
8010 	 * fair sleeper stuff for the first placement, but who cares.
8011 	 */
8012 	/*
8013 	 * When !queued, vruntime of the task has usually NOT been normalized.
8014 	 * But there are some cases where it has already been normalized:
8015 	 *
8016 	 * - Moving a forked child which is waiting for being woken up by
8017 	 *   wake_up_new_task().
8018 	 * - Moving a task which has been woken up by try_to_wake_up() and
8019 	 *   waiting for actually being woken up by sched_ttwu_pending().
8020 	 *
8021 	 * To prevent boost or penalty in the new cfs_rq caused by delta
8022 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8023 	 */
8024 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8025 		queued = 1;
8026 
8027 	if (!queued)
8028 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
8029 	set_task_rq(p, task_cpu(p));
8030 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8031 	if (!queued) {
8032 		cfs_rq = cfs_rq_of(se);
8033 		se->vruntime += cfs_rq->min_vruntime;
8034 #ifdef CONFIG_SMP
8035 		/*
8036 		 * migrate_task_rq_fair() will have removed our previous
8037 		 * contribution, but we must synchronize for ongoing future
8038 		 * decay.
8039 		 */
8040 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8041 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
8042 #endif
8043 	}
8044 }
8045 
8046 void free_fair_sched_group(struct task_group *tg)
8047 {
8048 	int i;
8049 
8050 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8051 
8052 	for_each_possible_cpu(i) {
8053 		if (tg->cfs_rq)
8054 			kfree(tg->cfs_rq[i]);
8055 		if (tg->se)
8056 			kfree(tg->se[i]);
8057 	}
8058 
8059 	kfree(tg->cfs_rq);
8060 	kfree(tg->se);
8061 }
8062 
8063 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8064 {
8065 	struct cfs_rq *cfs_rq;
8066 	struct sched_entity *se;
8067 	int i;
8068 
8069 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8070 	if (!tg->cfs_rq)
8071 		goto err;
8072 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8073 	if (!tg->se)
8074 		goto err;
8075 
8076 	tg->shares = NICE_0_LOAD;
8077 
8078 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8079 
8080 	for_each_possible_cpu(i) {
8081 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8082 				      GFP_KERNEL, cpu_to_node(i));
8083 		if (!cfs_rq)
8084 			goto err;
8085 
8086 		se = kzalloc_node(sizeof(struct sched_entity),
8087 				  GFP_KERNEL, cpu_to_node(i));
8088 		if (!se)
8089 			goto err_free_rq;
8090 
8091 		init_cfs_rq(cfs_rq);
8092 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8093 	}
8094 
8095 	return 1;
8096 
8097 err_free_rq:
8098 	kfree(cfs_rq);
8099 err:
8100 	return 0;
8101 }
8102 
8103 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8104 {
8105 	struct rq *rq = cpu_rq(cpu);
8106 	unsigned long flags;
8107 
8108 	/*
8109 	* Only empty task groups can be destroyed; so we can speculatively
8110 	* check on_list without danger of it being re-added.
8111 	*/
8112 	if (!tg->cfs_rq[cpu]->on_list)
8113 		return;
8114 
8115 	raw_spin_lock_irqsave(&rq->lock, flags);
8116 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8117 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8118 }
8119 
8120 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8121 			struct sched_entity *se, int cpu,
8122 			struct sched_entity *parent)
8123 {
8124 	struct rq *rq = cpu_rq(cpu);
8125 
8126 	cfs_rq->tg = tg;
8127 	cfs_rq->rq = rq;
8128 	init_cfs_rq_runtime(cfs_rq);
8129 
8130 	tg->cfs_rq[cpu] = cfs_rq;
8131 	tg->se[cpu] = se;
8132 
8133 	/* se could be NULL for root_task_group */
8134 	if (!se)
8135 		return;
8136 
8137 	if (!parent) {
8138 		se->cfs_rq = &rq->cfs;
8139 		se->depth = 0;
8140 	} else {
8141 		se->cfs_rq = parent->my_q;
8142 		se->depth = parent->depth + 1;
8143 	}
8144 
8145 	se->my_q = cfs_rq;
8146 	/* guarantee group entities always have weight */
8147 	update_load_set(&se->load, NICE_0_LOAD);
8148 	se->parent = parent;
8149 }
8150 
8151 static DEFINE_MUTEX(shares_mutex);
8152 
8153 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8154 {
8155 	int i;
8156 	unsigned long flags;
8157 
8158 	/*
8159 	 * We can't change the weight of the root cgroup.
8160 	 */
8161 	if (!tg->se[0])
8162 		return -EINVAL;
8163 
8164 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8165 
8166 	mutex_lock(&shares_mutex);
8167 	if (tg->shares == shares)
8168 		goto done;
8169 
8170 	tg->shares = shares;
8171 	for_each_possible_cpu(i) {
8172 		struct rq *rq = cpu_rq(i);
8173 		struct sched_entity *se;
8174 
8175 		se = tg->se[i];
8176 		/* Propagate contribution to hierarchy */
8177 		raw_spin_lock_irqsave(&rq->lock, flags);
8178 
8179 		/* Possible calls to update_curr() need rq clock */
8180 		update_rq_clock(rq);
8181 		for_each_sched_entity(se)
8182 			update_cfs_shares(group_cfs_rq(se));
8183 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8184 	}
8185 
8186 done:
8187 	mutex_unlock(&shares_mutex);
8188 	return 0;
8189 }
8190 #else /* CONFIG_FAIR_GROUP_SCHED */
8191 
8192 void free_fair_sched_group(struct task_group *tg) { }
8193 
8194 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8195 {
8196 	return 1;
8197 }
8198 
8199 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8200 
8201 #endif /* CONFIG_FAIR_GROUP_SCHED */
8202 
8203 
8204 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8205 {
8206 	struct sched_entity *se = &task->se;
8207 	unsigned int rr_interval = 0;
8208 
8209 	/*
8210 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8211 	 * idle runqueue:
8212 	 */
8213 	if (rq->cfs.load.weight)
8214 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8215 
8216 	return rr_interval;
8217 }
8218 
8219 /*
8220  * All the scheduling class methods:
8221  */
8222 const struct sched_class fair_sched_class = {
8223 	.next			= &idle_sched_class,
8224 	.enqueue_task		= enqueue_task_fair,
8225 	.dequeue_task		= dequeue_task_fair,
8226 	.yield_task		= yield_task_fair,
8227 	.yield_to_task		= yield_to_task_fair,
8228 
8229 	.check_preempt_curr	= check_preempt_wakeup,
8230 
8231 	.pick_next_task		= pick_next_task_fair,
8232 	.put_prev_task		= put_prev_task_fair,
8233 
8234 #ifdef CONFIG_SMP
8235 	.select_task_rq		= select_task_rq_fair,
8236 	.migrate_task_rq	= migrate_task_rq_fair,
8237 
8238 	.rq_online		= rq_online_fair,
8239 	.rq_offline		= rq_offline_fair,
8240 
8241 	.task_waking		= task_waking_fair,
8242 #endif
8243 
8244 	.set_curr_task          = set_curr_task_fair,
8245 	.task_tick		= task_tick_fair,
8246 	.task_fork		= task_fork_fair,
8247 
8248 	.prio_changed		= prio_changed_fair,
8249 	.switched_from		= switched_from_fair,
8250 	.switched_to		= switched_to_fair,
8251 
8252 	.get_rr_interval	= get_rr_interval_fair,
8253 
8254 	.update_curr		= update_curr_fair,
8255 
8256 #ifdef CONFIG_FAIR_GROUP_SCHED
8257 	.task_move_group	= task_move_group_fair,
8258 #endif
8259 };
8260 
8261 #ifdef CONFIG_SCHED_DEBUG
8262 void print_cfs_stats(struct seq_file *m, int cpu)
8263 {
8264 	struct cfs_rq *cfs_rq;
8265 
8266 	rcu_read_lock();
8267 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8268 		print_cfs_rq(m, cpu, cfs_rq);
8269 	rcu_read_unlock();
8270 }
8271 #endif
8272 
8273 __init void init_sched_fair_class(void)
8274 {
8275 #ifdef CONFIG_SMP
8276 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8277 
8278 #ifdef CONFIG_NO_HZ_COMMON
8279 	nohz.next_balance = jiffies;
8280 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8281 	cpu_notifier(sched_ilb_notifier, 0);
8282 #endif
8283 #endif /* SMP */
8284 
8285 }
8286