xref: /linux/kernel/sched/fair.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 	if (!cfs_rq->on_list) {
289 		/*
290 		 * Ensure we either appear before our parent (if already
291 		 * enqueued) or force our parent to appear after us when it is
292 		 * enqueued.  The fact that we always enqueue bottom-up
293 		 * reduces this to two cases.
294 		 */
295 		if (cfs_rq->tg->parent &&
296 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
299 		} else {
300 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		}
303 
304 		cfs_rq->on_list = 1;
305 	}
306 }
307 
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 	if (cfs_rq->on_list) {
311 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 		cfs_rq->on_list = 0;
313 	}
314 }
315 
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319 
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 	if (se->cfs_rq == pse->cfs_rq)
325 		return se->cfs_rq;
326 
327 	return NULL;
328 }
329 
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 	return se->parent;
333 }
334 
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 	int se_depth, pse_depth;
339 
340 	/*
341 	 * preemption test can be made between sibling entities who are in the
342 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 	 * both tasks until we find their ancestors who are siblings of common
344 	 * parent.
345 	 */
346 
347 	/* First walk up until both entities are at same depth */
348 	se_depth = (*se)->depth;
349 	pse_depth = (*pse)->depth;
350 
351 	while (se_depth > pse_depth) {
352 		se_depth--;
353 		*se = parent_entity(*se);
354 	}
355 
356 	while (pse_depth > se_depth) {
357 		pse_depth--;
358 		*pse = parent_entity(*pse);
359 	}
360 
361 	while (!is_same_group(*se, *pse)) {
362 		*se = parent_entity(*se);
363 		*pse = parent_entity(*pse);
364 	}
365 }
366 
367 #else	/* !CONFIG_FAIR_GROUP_SCHED */
368 
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 	return container_of(se, struct task_struct, se);
372 }
373 
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 	return container_of(cfs_rq, struct rq, cfs);
377 }
378 
379 #define entity_is_task(se)	1
380 
381 #define for_each_sched_entity(se) \
382 		for (; se; se = NULL)
383 
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 	return &task_rq(p)->cfs;
387 }
388 
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 	struct task_struct *p = task_of(se);
392 	struct rq *rq = task_rq(p);
393 
394 	return &rq->cfs;
395 }
396 
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 	return NULL;
401 }
402 
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406 
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413 
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 	return NULL;
417 }
418 
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423 
424 #endif	/* CONFIG_FAIR_GROUP_SCHED */
425 
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 
429 /**************************************************************
430  * Scheduling class tree data structure manipulation methods:
431  */
432 
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 	s64 delta = (s64)(vruntime - max_vruntime);
436 	if (delta > 0)
437 		max_vruntime = vruntime;
438 
439 	return max_vruntime;
440 }
441 
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 	s64 delta = (s64)(vruntime - min_vruntime);
445 	if (delta < 0)
446 		min_vruntime = vruntime;
447 
448 	return min_vruntime;
449 }
450 
451 static inline int entity_before(struct sched_entity *a,
452 				struct sched_entity *b)
453 {
454 	return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456 
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 	u64 vruntime = cfs_rq->min_vruntime;
460 
461 	if (cfs_rq->curr)
462 		vruntime = cfs_rq->curr->vruntime;
463 
464 	if (cfs_rq->rb_leftmost) {
465 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 						   struct sched_entity,
467 						   run_node);
468 
469 		if (!cfs_rq->curr)
470 			vruntime = se->vruntime;
471 		else
472 			vruntime = min_vruntime(vruntime, se->vruntime);
473 	}
474 
475 	/* ensure we never gain time by being placed backwards. */
476 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 	smp_wmb();
479 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482 
483 /*
484  * Enqueue an entity into the rb-tree:
485  */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct sched_entity *entry;
491 	int leftmost = 1;
492 
493 	/*
494 	 * Find the right place in the rbtree:
495 	 */
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct sched_entity, run_node);
499 		/*
500 		 * We dont care about collisions. Nodes with
501 		 * the same key stay together.
502 		 */
503 		if (entity_before(se, entry)) {
504 			link = &parent->rb_left;
505 		} else {
506 			link = &parent->rb_right;
507 			leftmost = 0;
508 		}
509 	}
510 
511 	/*
512 	 * Maintain a cache of leftmost tree entries (it is frequently
513 	 * used):
514 	 */
515 	if (leftmost)
516 		cfs_rq->rb_leftmost = &se->run_node;
517 
518 	rb_link_node(&se->run_node, parent, link);
519 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521 
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 	if (cfs_rq->rb_leftmost == &se->run_node) {
525 		struct rb_node *next_node;
526 
527 		next_node = rb_next(&se->run_node);
528 		cfs_rq->rb_leftmost = next_node;
529 	}
530 
531 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533 
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 	struct rb_node *left = cfs_rq->rb_leftmost;
537 
538 	if (!left)
539 		return NULL;
540 
541 	return rb_entry(left, struct sched_entity, run_node);
542 }
543 
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 	struct rb_node *next = rb_next(&se->run_node);
547 
548 	if (!next)
549 		return NULL;
550 
551 	return rb_entry(next, struct sched_entity, run_node);
552 }
553 
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558 
559 	if (!last)
560 		return NULL;
561 
562 	return rb_entry(last, struct sched_entity, run_node);
563 }
564 
565 /**************************************************************
566  * Scheduling class statistics methods:
567  */
568 
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 		void __user *buffer, size_t *lenp,
571 		loff_t *ppos)
572 {
573 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 	unsigned int factor = get_update_sysctl_factor();
575 
576 	if (ret || !write)
577 		return ret;
578 
579 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 					sysctl_sched_min_granularity);
581 
582 #define WRT_SYSCTL(name) \
583 	(normalized_sysctl_##name = sysctl_##name / (factor))
584 	WRT_SYSCTL(sched_min_granularity);
585 	WRT_SYSCTL(sched_latency);
586 	WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588 
589 	return 0;
590 }
591 #endif
592 
593 /*
594  * delta /= w
595  */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 	if (unlikely(se->load.weight != NICE_0_LOAD))
599 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 
601 	return delta;
602 }
603 
604 /*
605  * The idea is to set a period in which each task runs once.
606  *
607  * When there are too many tasks (sched_nr_latency) we have to stretch
608  * this period because otherwise the slices get too small.
609  *
610  * p = (nr <= nl) ? l : l*nr/nl
611  */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 	if (unlikely(nr_running > sched_nr_latency))
615 		return nr_running * sysctl_sched_min_granularity;
616 	else
617 		return sysctl_sched_latency;
618 }
619 
620 /*
621  * We calculate the wall-time slice from the period by taking a part
622  * proportional to the weight.
623  *
624  * s = p*P[w/rw]
625  */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629 
630 	for_each_sched_entity(se) {
631 		struct load_weight *load;
632 		struct load_weight lw;
633 
634 		cfs_rq = cfs_rq_of(se);
635 		load = &cfs_rq->load;
636 
637 		if (unlikely(!se->on_rq)) {
638 			lw = cfs_rq->load;
639 
640 			update_load_add(&lw, se->load.weight);
641 			load = &lw;
642 		}
643 		slice = __calc_delta(slice, se->load.weight, load);
644 	}
645 	return slice;
646 }
647 
648 /*
649  * We calculate the vruntime slice of a to-be-inserted task.
650  *
651  * vs = s/w
652  */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657 
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661 
662 /*
663  * We choose a half-life close to 1 scheduling period.
664  * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665  * dependent on this value.
666  */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670 
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 	struct sched_avg *sa = &se->avg;
675 
676 	sa->last_update_time = 0;
677 	/*
678 	 * sched_avg's period_contrib should be strictly less then 1024, so
679 	 * we give it 1023 to make sure it is almost a period (1024us), and
680 	 * will definitely be update (after enqueue).
681 	 */
682 	sa->period_contrib = 1023;
683 	sa->load_avg = scale_load_down(se->load.weight);
684 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688 }
689 
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
694 {
695 }
696 #endif
697 
698 /*
699  * Update the current task's runtime statistics.
700  */
701 static void update_curr(struct cfs_rq *cfs_rq)
702 {
703 	struct sched_entity *curr = cfs_rq->curr;
704 	u64 now = rq_clock_task(rq_of(cfs_rq));
705 	u64 delta_exec;
706 
707 	if (unlikely(!curr))
708 		return;
709 
710 	delta_exec = now - curr->exec_start;
711 	if (unlikely((s64)delta_exec <= 0))
712 		return;
713 
714 	curr->exec_start = now;
715 
716 	schedstat_set(curr->statistics.exec_max,
717 		      max(delta_exec, curr->statistics.exec_max));
718 
719 	curr->sum_exec_runtime += delta_exec;
720 	schedstat_add(cfs_rq, exec_clock, delta_exec);
721 
722 	curr->vruntime += calc_delta_fair(delta_exec, curr);
723 	update_min_vruntime(cfs_rq);
724 
725 	if (entity_is_task(curr)) {
726 		struct task_struct *curtask = task_of(curr);
727 
728 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 		cpuacct_charge(curtask, delta_exec);
730 		account_group_exec_runtime(curtask, delta_exec);
731 	}
732 
733 	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 }
735 
736 static void update_curr_fair(struct rq *rq)
737 {
738 	update_curr(cfs_rq_of(&rq->curr->se));
739 }
740 
741 #ifdef CONFIG_SCHEDSTATS
742 static inline void
743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 	u64 wait_start = rq_clock(rq_of(cfs_rq));
746 
747 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 	    likely(wait_start > se->statistics.wait_start))
749 		wait_start -= se->statistics.wait_start;
750 
751 	se->statistics.wait_start = wait_start;
752 }
753 
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 	struct task_struct *p;
758 	u64 delta;
759 
760 	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761 
762 	if (entity_is_task(se)) {
763 		p = task_of(se);
764 		if (task_on_rq_migrating(p)) {
765 			/*
766 			 * Preserve migrating task's wait time so wait_start
767 			 * time stamp can be adjusted to accumulate wait time
768 			 * prior to migration.
769 			 */
770 			se->statistics.wait_start = delta;
771 			return;
772 		}
773 		trace_sched_stat_wait(p, delta);
774 	}
775 
776 	se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 	se->statistics.wait_count++;
778 	se->statistics.wait_sum += delta;
779 	se->statistics.wait_start = 0;
780 }
781 
782 /*
783  * Task is being enqueued - update stats:
784  */
785 static inline void
786 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 	/*
789 	 * Are we enqueueing a waiting task? (for current tasks
790 	 * a dequeue/enqueue event is a NOP)
791 	 */
792 	if (se != cfs_rq->curr)
793 		update_stats_wait_start(cfs_rq, se);
794 }
795 
796 static inline void
797 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798 {
799 	/*
800 	 * Mark the end of the wait period if dequeueing a
801 	 * waiting task:
802 	 */
803 	if (se != cfs_rq->curr)
804 		update_stats_wait_end(cfs_rq, se);
805 
806 	if (flags & DEQUEUE_SLEEP) {
807 		if (entity_is_task(se)) {
808 			struct task_struct *tsk = task_of(se);
809 
810 			if (tsk->state & TASK_INTERRUPTIBLE)
811 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 			if (tsk->state & TASK_UNINTERRUPTIBLE)
813 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 		}
815 	}
816 
817 }
818 #else
819 static inline void
820 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821 {
822 }
823 
824 static inline void
825 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 }
828 
829 static inline void
830 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 }
833 
834 static inline void
835 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836 {
837 }
838 #endif
839 
840 /*
841  * We are picking a new current task - update its stats:
842  */
843 static inline void
844 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 	/*
847 	 * We are starting a new run period:
848 	 */
849 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
850 }
851 
852 /**************************************************
853  * Scheduling class queueing methods:
854  */
855 
856 #ifdef CONFIG_NUMA_BALANCING
857 /*
858  * Approximate time to scan a full NUMA task in ms. The task scan period is
859  * calculated based on the tasks virtual memory size and
860  * numa_balancing_scan_size.
861  */
862 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864 
865 /* Portion of address space to scan in MB */
866 unsigned int sysctl_numa_balancing_scan_size = 256;
867 
868 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869 unsigned int sysctl_numa_balancing_scan_delay = 1000;
870 
871 static unsigned int task_nr_scan_windows(struct task_struct *p)
872 {
873 	unsigned long rss = 0;
874 	unsigned long nr_scan_pages;
875 
876 	/*
877 	 * Calculations based on RSS as non-present and empty pages are skipped
878 	 * by the PTE scanner and NUMA hinting faults should be trapped based
879 	 * on resident pages
880 	 */
881 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 	rss = get_mm_rss(p->mm);
883 	if (!rss)
884 		rss = nr_scan_pages;
885 
886 	rss = round_up(rss, nr_scan_pages);
887 	return rss / nr_scan_pages;
888 }
889 
890 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891 #define MAX_SCAN_WINDOW 2560
892 
893 static unsigned int task_scan_min(struct task_struct *p)
894 {
895 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 	unsigned int scan, floor;
897 	unsigned int windows = 1;
898 
899 	if (scan_size < MAX_SCAN_WINDOW)
900 		windows = MAX_SCAN_WINDOW / scan_size;
901 	floor = 1000 / windows;
902 
903 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 	return max_t(unsigned int, floor, scan);
905 }
906 
907 static unsigned int task_scan_max(struct task_struct *p)
908 {
909 	unsigned int smin = task_scan_min(p);
910 	unsigned int smax;
911 
912 	/* Watch for min being lower than max due to floor calculations */
913 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 	return max(smin, smax);
915 }
916 
917 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918 {
919 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921 }
922 
923 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924 {
925 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927 }
928 
929 struct numa_group {
930 	atomic_t refcount;
931 
932 	spinlock_t lock; /* nr_tasks, tasks */
933 	int nr_tasks;
934 	pid_t gid;
935 	int active_nodes;
936 
937 	struct rcu_head rcu;
938 	unsigned long total_faults;
939 	unsigned long max_faults_cpu;
940 	/*
941 	 * Faults_cpu is used to decide whether memory should move
942 	 * towards the CPU. As a consequence, these stats are weighted
943 	 * more by CPU use than by memory faults.
944 	 */
945 	unsigned long *faults_cpu;
946 	unsigned long faults[0];
947 };
948 
949 /* Shared or private faults. */
950 #define NR_NUMA_HINT_FAULT_TYPES 2
951 
952 /* Memory and CPU locality */
953 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954 
955 /* Averaged statistics, and temporary buffers. */
956 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957 
958 pid_t task_numa_group_id(struct task_struct *p)
959 {
960 	return p->numa_group ? p->numa_group->gid : 0;
961 }
962 
963 /*
964  * The averaged statistics, shared & private, memory & cpu,
965  * occupy the first half of the array. The second half of the
966  * array is for current counters, which are averaged into the
967  * first set by task_numa_placement.
968  */
969 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
970 {
971 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
972 }
973 
974 static inline unsigned long task_faults(struct task_struct *p, int nid)
975 {
976 	if (!p->numa_faults)
977 		return 0;
978 
979 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
981 }
982 
983 static inline unsigned long group_faults(struct task_struct *p, int nid)
984 {
985 	if (!p->numa_group)
986 		return 0;
987 
988 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
990 }
991 
992 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993 {
994 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
996 }
997 
998 /*
999  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000  * considered part of a numa group's pseudo-interleaving set. Migrations
1001  * between these nodes are slowed down, to allow things to settle down.
1002  */
1003 #define ACTIVE_NODE_FRACTION 3
1004 
1005 static bool numa_is_active_node(int nid, struct numa_group *ng)
1006 {
1007 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008 }
1009 
1010 /* Handle placement on systems where not all nodes are directly connected. */
1011 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 					int maxdist, bool task)
1013 {
1014 	unsigned long score = 0;
1015 	int node;
1016 
1017 	/*
1018 	 * All nodes are directly connected, and the same distance
1019 	 * from each other. No need for fancy placement algorithms.
1020 	 */
1021 	if (sched_numa_topology_type == NUMA_DIRECT)
1022 		return 0;
1023 
1024 	/*
1025 	 * This code is called for each node, introducing N^2 complexity,
1026 	 * which should be ok given the number of nodes rarely exceeds 8.
1027 	 */
1028 	for_each_online_node(node) {
1029 		unsigned long faults;
1030 		int dist = node_distance(nid, node);
1031 
1032 		/*
1033 		 * The furthest away nodes in the system are not interesting
1034 		 * for placement; nid was already counted.
1035 		 */
1036 		if (dist == sched_max_numa_distance || node == nid)
1037 			continue;
1038 
1039 		/*
1040 		 * On systems with a backplane NUMA topology, compare groups
1041 		 * of nodes, and move tasks towards the group with the most
1042 		 * memory accesses. When comparing two nodes at distance
1043 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 		 * of each group. Skip other nodes.
1045 		 */
1046 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 					dist > maxdist)
1048 			continue;
1049 
1050 		/* Add up the faults from nearby nodes. */
1051 		if (task)
1052 			faults = task_faults(p, node);
1053 		else
1054 			faults = group_faults(p, node);
1055 
1056 		/*
1057 		 * On systems with a glueless mesh NUMA topology, there are
1058 		 * no fixed "groups of nodes". Instead, nodes that are not
1059 		 * directly connected bounce traffic through intermediate
1060 		 * nodes; a numa_group can occupy any set of nodes.
1061 		 * The further away a node is, the less the faults count.
1062 		 * This seems to result in good task placement.
1063 		 */
1064 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 			faults *= (sched_max_numa_distance - dist);
1066 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 		}
1068 
1069 		score += faults;
1070 	}
1071 
1072 	return score;
1073 }
1074 
1075 /*
1076  * These return the fraction of accesses done by a particular task, or
1077  * task group, on a particular numa node.  The group weight is given a
1078  * larger multiplier, in order to group tasks together that are almost
1079  * evenly spread out between numa nodes.
1080  */
1081 static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 					int dist)
1083 {
1084 	unsigned long faults, total_faults;
1085 
1086 	if (!p->numa_faults)
1087 		return 0;
1088 
1089 	total_faults = p->total_numa_faults;
1090 
1091 	if (!total_faults)
1092 		return 0;
1093 
1094 	faults = task_faults(p, nid);
1095 	faults += score_nearby_nodes(p, nid, dist, true);
1096 
1097 	return 1000 * faults / total_faults;
1098 }
1099 
1100 static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 					 int dist)
1102 {
1103 	unsigned long faults, total_faults;
1104 
1105 	if (!p->numa_group)
1106 		return 0;
1107 
1108 	total_faults = p->numa_group->total_faults;
1109 
1110 	if (!total_faults)
1111 		return 0;
1112 
1113 	faults = group_faults(p, nid);
1114 	faults += score_nearby_nodes(p, nid, dist, false);
1115 
1116 	return 1000 * faults / total_faults;
1117 }
1118 
1119 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 				int src_nid, int dst_cpu)
1121 {
1122 	struct numa_group *ng = p->numa_group;
1123 	int dst_nid = cpu_to_node(dst_cpu);
1124 	int last_cpupid, this_cpupid;
1125 
1126 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127 
1128 	/*
1129 	 * Multi-stage node selection is used in conjunction with a periodic
1130 	 * migration fault to build a temporal task<->page relation. By using
1131 	 * a two-stage filter we remove short/unlikely relations.
1132 	 *
1133 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 	 * a task's usage of a particular page (n_p) per total usage of this
1135 	 * page (n_t) (in a given time-span) to a probability.
1136 	 *
1137 	 * Our periodic faults will sample this probability and getting the
1138 	 * same result twice in a row, given these samples are fully
1139 	 * independent, is then given by P(n)^2, provided our sample period
1140 	 * is sufficiently short compared to the usage pattern.
1141 	 *
1142 	 * This quadric squishes small probabilities, making it less likely we
1143 	 * act on an unlikely task<->page relation.
1144 	 */
1145 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 	if (!cpupid_pid_unset(last_cpupid) &&
1147 				cpupid_to_nid(last_cpupid) != dst_nid)
1148 		return false;
1149 
1150 	/* Always allow migrate on private faults */
1151 	if (cpupid_match_pid(p, last_cpupid))
1152 		return true;
1153 
1154 	/* A shared fault, but p->numa_group has not been set up yet. */
1155 	if (!ng)
1156 		return true;
1157 
1158 	/*
1159 	 * Destination node is much more heavily used than the source
1160 	 * node? Allow migration.
1161 	 */
1162 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 					ACTIVE_NODE_FRACTION)
1164 		return true;
1165 
1166 	/*
1167 	 * Distribute memory according to CPU & memory use on each node,
1168 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 	 *
1170 	 * faults_cpu(dst)   3   faults_cpu(src)
1171 	 * --------------- * - > ---------------
1172 	 * faults_mem(dst)   4   faults_mem(src)
1173 	 */
1174 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176 }
1177 
1178 static unsigned long weighted_cpuload(const int cpu);
1179 static unsigned long source_load(int cpu, int type);
1180 static unsigned long target_load(int cpu, int type);
1181 static unsigned long capacity_of(int cpu);
1182 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183 
1184 /* Cached statistics for all CPUs within a node */
1185 struct numa_stats {
1186 	unsigned long nr_running;
1187 	unsigned long load;
1188 
1189 	/* Total compute capacity of CPUs on a node */
1190 	unsigned long compute_capacity;
1191 
1192 	/* Approximate capacity in terms of runnable tasks on a node */
1193 	unsigned long task_capacity;
1194 	int has_free_capacity;
1195 };
1196 
1197 /*
1198  * XXX borrowed from update_sg_lb_stats
1199  */
1200 static void update_numa_stats(struct numa_stats *ns, int nid)
1201 {
1202 	int smt, cpu, cpus = 0;
1203 	unsigned long capacity;
1204 
1205 	memset(ns, 0, sizeof(*ns));
1206 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 		struct rq *rq = cpu_rq(cpu);
1208 
1209 		ns->nr_running += rq->nr_running;
1210 		ns->load += weighted_cpuload(cpu);
1211 		ns->compute_capacity += capacity_of(cpu);
1212 
1213 		cpus++;
1214 	}
1215 
1216 	/*
1217 	 * If we raced with hotplug and there are no CPUs left in our mask
1218 	 * the @ns structure is NULL'ed and task_numa_compare() will
1219 	 * not find this node attractive.
1220 	 *
1221 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 	 * imbalance and bail there.
1223 	 */
1224 	if (!cpus)
1225 		return;
1226 
1227 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 	capacity = cpus / smt; /* cores */
1230 
1231 	ns->task_capacity = min_t(unsigned, capacity,
1232 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234 }
1235 
1236 struct task_numa_env {
1237 	struct task_struct *p;
1238 
1239 	int src_cpu, src_nid;
1240 	int dst_cpu, dst_nid;
1241 
1242 	struct numa_stats src_stats, dst_stats;
1243 
1244 	int imbalance_pct;
1245 	int dist;
1246 
1247 	struct task_struct *best_task;
1248 	long best_imp;
1249 	int best_cpu;
1250 };
1251 
1252 static void task_numa_assign(struct task_numa_env *env,
1253 			     struct task_struct *p, long imp)
1254 {
1255 	if (env->best_task)
1256 		put_task_struct(env->best_task);
1257 
1258 	env->best_task = p;
1259 	env->best_imp = imp;
1260 	env->best_cpu = env->dst_cpu;
1261 }
1262 
1263 static bool load_too_imbalanced(long src_load, long dst_load,
1264 				struct task_numa_env *env)
1265 {
1266 	long imb, old_imb;
1267 	long orig_src_load, orig_dst_load;
1268 	long src_capacity, dst_capacity;
1269 
1270 	/*
1271 	 * The load is corrected for the CPU capacity available on each node.
1272 	 *
1273 	 * src_load        dst_load
1274 	 * ------------ vs ---------
1275 	 * src_capacity    dst_capacity
1276 	 */
1277 	src_capacity = env->src_stats.compute_capacity;
1278 	dst_capacity = env->dst_stats.compute_capacity;
1279 
1280 	/* We care about the slope of the imbalance, not the direction. */
1281 	if (dst_load < src_load)
1282 		swap(dst_load, src_load);
1283 
1284 	/* Is the difference below the threshold? */
1285 	imb = dst_load * src_capacity * 100 -
1286 	      src_load * dst_capacity * env->imbalance_pct;
1287 	if (imb <= 0)
1288 		return false;
1289 
1290 	/*
1291 	 * The imbalance is above the allowed threshold.
1292 	 * Compare it with the old imbalance.
1293 	 */
1294 	orig_src_load = env->src_stats.load;
1295 	orig_dst_load = env->dst_stats.load;
1296 
1297 	if (orig_dst_load < orig_src_load)
1298 		swap(orig_dst_load, orig_src_load);
1299 
1300 	old_imb = orig_dst_load * src_capacity * 100 -
1301 		  orig_src_load * dst_capacity * env->imbalance_pct;
1302 
1303 	/* Would this change make things worse? */
1304 	return (imb > old_imb);
1305 }
1306 
1307 /*
1308  * This checks if the overall compute and NUMA accesses of the system would
1309  * be improved if the source tasks was migrated to the target dst_cpu taking
1310  * into account that it might be best if task running on the dst_cpu should
1311  * be exchanged with the source task
1312  */
1313 static void task_numa_compare(struct task_numa_env *env,
1314 			      long taskimp, long groupimp)
1315 {
1316 	struct rq *src_rq = cpu_rq(env->src_cpu);
1317 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 	struct task_struct *cur;
1319 	long src_load, dst_load;
1320 	long load;
1321 	long imp = env->p->numa_group ? groupimp : taskimp;
1322 	long moveimp = imp;
1323 	int dist = env->dist;
1324 	bool assigned = false;
1325 
1326 	rcu_read_lock();
1327 
1328 	raw_spin_lock_irq(&dst_rq->lock);
1329 	cur = dst_rq->curr;
1330 	/*
1331 	 * No need to move the exiting task or idle task.
1332 	 */
1333 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334 		cur = NULL;
1335 	else {
1336 		/*
1337 		 * The task_struct must be protected here to protect the
1338 		 * p->numa_faults access in the task_weight since the
1339 		 * numa_faults could already be freed in the following path:
1340 		 * finish_task_switch()
1341 		 *     --> put_task_struct()
1342 		 *         --> __put_task_struct()
1343 		 *             --> task_numa_free()
1344 		 */
1345 		get_task_struct(cur);
1346 	}
1347 
1348 	raw_spin_unlock_irq(&dst_rq->lock);
1349 
1350 	/*
1351 	 * Because we have preemption enabled we can get migrated around and
1352 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 	 */
1354 	if (cur == env->p)
1355 		goto unlock;
1356 
1357 	/*
1358 	 * "imp" is the fault differential for the source task between the
1359 	 * source and destination node. Calculate the total differential for
1360 	 * the source task and potential destination task. The more negative
1361 	 * the value is, the more rmeote accesses that would be expected to
1362 	 * be incurred if the tasks were swapped.
1363 	 */
1364 	if (cur) {
1365 		/* Skip this swap candidate if cannot move to the source cpu */
1366 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 			goto unlock;
1368 
1369 		/*
1370 		 * If dst and source tasks are in the same NUMA group, or not
1371 		 * in any group then look only at task weights.
1372 		 */
1373 		if (cur->numa_group == env->p->numa_group) {
1374 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 			      task_weight(cur, env->dst_nid, dist);
1376 			/*
1377 			 * Add some hysteresis to prevent swapping the
1378 			 * tasks within a group over tiny differences.
1379 			 */
1380 			if (cur->numa_group)
1381 				imp -= imp/16;
1382 		} else {
1383 			/*
1384 			 * Compare the group weights. If a task is all by
1385 			 * itself (not part of a group), use the task weight
1386 			 * instead.
1387 			 */
1388 			if (cur->numa_group)
1389 				imp += group_weight(cur, env->src_nid, dist) -
1390 				       group_weight(cur, env->dst_nid, dist);
1391 			else
1392 				imp += task_weight(cur, env->src_nid, dist) -
1393 				       task_weight(cur, env->dst_nid, dist);
1394 		}
1395 	}
1396 
1397 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1398 		goto unlock;
1399 
1400 	if (!cur) {
1401 		/* Is there capacity at our destination? */
1402 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403 		    !env->dst_stats.has_free_capacity)
1404 			goto unlock;
1405 
1406 		goto balance;
1407 	}
1408 
1409 	/* Balance doesn't matter much if we're running a task per cpu */
1410 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 			dst_rq->nr_running == 1)
1412 		goto assign;
1413 
1414 	/*
1415 	 * In the overloaded case, try and keep the load balanced.
1416 	 */
1417 balance:
1418 	load = task_h_load(env->p);
1419 	dst_load = env->dst_stats.load + load;
1420 	src_load = env->src_stats.load - load;
1421 
1422 	if (moveimp > imp && moveimp > env->best_imp) {
1423 		/*
1424 		 * If the improvement from just moving env->p direction is
1425 		 * better than swapping tasks around, check if a move is
1426 		 * possible. Store a slightly smaller score than moveimp,
1427 		 * so an actually idle CPU will win.
1428 		 */
1429 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 			imp = moveimp - 1;
1431 			put_task_struct(cur);
1432 			cur = NULL;
1433 			goto assign;
1434 		}
1435 	}
1436 
1437 	if (imp <= env->best_imp)
1438 		goto unlock;
1439 
1440 	if (cur) {
1441 		load = task_h_load(cur);
1442 		dst_load -= load;
1443 		src_load += load;
1444 	}
1445 
1446 	if (load_too_imbalanced(src_load, dst_load, env))
1447 		goto unlock;
1448 
1449 	/*
1450 	 * One idle CPU per node is evaluated for a task numa move.
1451 	 * Call select_idle_sibling to maybe find a better one.
1452 	 */
1453 	if (!cur)
1454 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455 
1456 assign:
1457 	assigned = true;
1458 	task_numa_assign(env, cur, imp);
1459 unlock:
1460 	rcu_read_unlock();
1461 	/*
1462 	 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 	 * finished.
1464 	 */
1465 	if (cur && !assigned)
1466 		put_task_struct(cur);
1467 }
1468 
1469 static void task_numa_find_cpu(struct task_numa_env *env,
1470 				long taskimp, long groupimp)
1471 {
1472 	int cpu;
1473 
1474 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 		/* Skip this CPU if the source task cannot migrate */
1476 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 			continue;
1478 
1479 		env->dst_cpu = cpu;
1480 		task_numa_compare(env, taskimp, groupimp);
1481 	}
1482 }
1483 
1484 /* Only move tasks to a NUMA node less busy than the current node. */
1485 static bool numa_has_capacity(struct task_numa_env *env)
1486 {
1487 	struct numa_stats *src = &env->src_stats;
1488 	struct numa_stats *dst = &env->dst_stats;
1489 
1490 	if (src->has_free_capacity && !dst->has_free_capacity)
1491 		return false;
1492 
1493 	/*
1494 	 * Only consider a task move if the source has a higher load
1495 	 * than the destination, corrected for CPU capacity on each node.
1496 	 *
1497 	 *      src->load                dst->load
1498 	 * --------------------- vs ---------------------
1499 	 * src->compute_capacity    dst->compute_capacity
1500 	 */
1501 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1502 
1503 	    dst->load * src->compute_capacity * 100)
1504 		return true;
1505 
1506 	return false;
1507 }
1508 
1509 static int task_numa_migrate(struct task_struct *p)
1510 {
1511 	struct task_numa_env env = {
1512 		.p = p,
1513 
1514 		.src_cpu = task_cpu(p),
1515 		.src_nid = task_node(p),
1516 
1517 		.imbalance_pct = 112,
1518 
1519 		.best_task = NULL,
1520 		.best_imp = 0,
1521 		.best_cpu = -1,
1522 	};
1523 	struct sched_domain *sd;
1524 	unsigned long taskweight, groupweight;
1525 	int nid, ret, dist;
1526 	long taskimp, groupimp;
1527 
1528 	/*
1529 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 	 * imbalance and would be the first to start moving tasks about.
1531 	 *
1532 	 * And we want to avoid any moving of tasks about, as that would create
1533 	 * random movement of tasks -- counter the numa conditions we're trying
1534 	 * to satisfy here.
1535 	 */
1536 	rcu_read_lock();
1537 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538 	if (sd)
1539 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540 	rcu_read_unlock();
1541 
1542 	/*
1543 	 * Cpusets can break the scheduler domain tree into smaller
1544 	 * balance domains, some of which do not cross NUMA boundaries.
1545 	 * Tasks that are "trapped" in such domains cannot be migrated
1546 	 * elsewhere, so there is no point in (re)trying.
1547 	 */
1548 	if (unlikely(!sd)) {
1549 		p->numa_preferred_nid = task_node(p);
1550 		return -EINVAL;
1551 	}
1552 
1553 	env.dst_nid = p->numa_preferred_nid;
1554 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 	taskweight = task_weight(p, env.src_nid, dist);
1556 	groupweight = group_weight(p, env.src_nid, dist);
1557 	update_numa_stats(&env.src_stats, env.src_nid);
1558 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560 	update_numa_stats(&env.dst_stats, env.dst_nid);
1561 
1562 	/* Try to find a spot on the preferred nid. */
1563 	if (numa_has_capacity(&env))
1564 		task_numa_find_cpu(&env, taskimp, groupimp);
1565 
1566 	/*
1567 	 * Look at other nodes in these cases:
1568 	 * - there is no space available on the preferred_nid
1569 	 * - the task is part of a numa_group that is interleaved across
1570 	 *   multiple NUMA nodes; in order to better consolidate the group,
1571 	 *   we need to check other locations.
1572 	 */
1573 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574 		for_each_online_node(nid) {
1575 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 				continue;
1577 
1578 			dist = node_distance(env.src_nid, env.dst_nid);
1579 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 						dist != env.dist) {
1581 				taskweight = task_weight(p, env.src_nid, dist);
1582 				groupweight = group_weight(p, env.src_nid, dist);
1583 			}
1584 
1585 			/* Only consider nodes where both task and groups benefit */
1586 			taskimp = task_weight(p, nid, dist) - taskweight;
1587 			groupimp = group_weight(p, nid, dist) - groupweight;
1588 			if (taskimp < 0 && groupimp < 0)
1589 				continue;
1590 
1591 			env.dist = dist;
1592 			env.dst_nid = nid;
1593 			update_numa_stats(&env.dst_stats, env.dst_nid);
1594 			if (numa_has_capacity(&env))
1595 				task_numa_find_cpu(&env, taskimp, groupimp);
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * If the task is part of a workload that spans multiple NUMA nodes,
1601 	 * and is migrating into one of the workload's active nodes, remember
1602 	 * this node as the task's preferred numa node, so the workload can
1603 	 * settle down.
1604 	 * A task that migrated to a second choice node will be better off
1605 	 * trying for a better one later. Do not set the preferred node here.
1606 	 */
1607 	if (p->numa_group) {
1608 		struct numa_group *ng = p->numa_group;
1609 
1610 		if (env.best_cpu == -1)
1611 			nid = env.src_nid;
1612 		else
1613 			nid = env.dst_nid;
1614 
1615 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616 			sched_setnuma(p, env.dst_nid);
1617 	}
1618 
1619 	/* No better CPU than the current one was found. */
1620 	if (env.best_cpu == -1)
1621 		return -EAGAIN;
1622 
1623 	/*
1624 	 * Reset the scan period if the task is being rescheduled on an
1625 	 * alternative node to recheck if the tasks is now properly placed.
1626 	 */
1627 	p->numa_scan_period = task_scan_min(p);
1628 
1629 	if (env.best_task == NULL) {
1630 		ret = migrate_task_to(p, env.best_cpu);
1631 		if (ret != 0)
1632 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633 		return ret;
1634 	}
1635 
1636 	ret = migrate_swap(p, env.best_task);
1637 	if (ret != 0)
1638 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639 	put_task_struct(env.best_task);
1640 	return ret;
1641 }
1642 
1643 /* Attempt to migrate a task to a CPU on the preferred node. */
1644 static void numa_migrate_preferred(struct task_struct *p)
1645 {
1646 	unsigned long interval = HZ;
1647 
1648 	/* This task has no NUMA fault statistics yet */
1649 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650 		return;
1651 
1652 	/* Periodically retry migrating the task to the preferred node */
1653 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 	p->numa_migrate_retry = jiffies + interval;
1655 
1656 	/* Success if task is already running on preferred CPU */
1657 	if (task_node(p) == p->numa_preferred_nid)
1658 		return;
1659 
1660 	/* Otherwise, try migrate to a CPU on the preferred node */
1661 	task_numa_migrate(p);
1662 }
1663 
1664 /*
1665  * Find out how many nodes on the workload is actively running on. Do this by
1666  * tracking the nodes from which NUMA hinting faults are triggered. This can
1667  * be different from the set of nodes where the workload's memory is currently
1668  * located.
1669  */
1670 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671 {
1672 	unsigned long faults, max_faults = 0;
1673 	int nid, active_nodes = 0;
1674 
1675 	for_each_online_node(nid) {
1676 		faults = group_faults_cpu(numa_group, nid);
1677 		if (faults > max_faults)
1678 			max_faults = faults;
1679 	}
1680 
1681 	for_each_online_node(nid) {
1682 		faults = group_faults_cpu(numa_group, nid);
1683 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 			active_nodes++;
1685 	}
1686 
1687 	numa_group->max_faults_cpu = max_faults;
1688 	numa_group->active_nodes = active_nodes;
1689 }
1690 
1691 /*
1692  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693  * increments. The more local the fault statistics are, the higher the scan
1694  * period will be for the next scan window. If local/(local+remote) ratio is
1695  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696  * the scan period will decrease. Aim for 70% local accesses.
1697  */
1698 #define NUMA_PERIOD_SLOTS 10
1699 #define NUMA_PERIOD_THRESHOLD 7
1700 
1701 /*
1702  * Increase the scan period (slow down scanning) if the majority of
1703  * our memory is already on our local node, or if the majority of
1704  * the page accesses are shared with other processes.
1705  * Otherwise, decrease the scan period.
1706  */
1707 static void update_task_scan_period(struct task_struct *p,
1708 			unsigned long shared, unsigned long private)
1709 {
1710 	unsigned int period_slot;
1711 	int ratio;
1712 	int diff;
1713 
1714 	unsigned long remote = p->numa_faults_locality[0];
1715 	unsigned long local = p->numa_faults_locality[1];
1716 
1717 	/*
1718 	 * If there were no record hinting faults then either the task is
1719 	 * completely idle or all activity is areas that are not of interest
1720 	 * to automatic numa balancing. Related to that, if there were failed
1721 	 * migration then it implies we are migrating too quickly or the local
1722 	 * node is overloaded. In either case, scan slower
1723 	 */
1724 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1725 		p->numa_scan_period = min(p->numa_scan_period_max,
1726 			p->numa_scan_period << 1);
1727 
1728 		p->mm->numa_next_scan = jiffies +
1729 			msecs_to_jiffies(p->numa_scan_period);
1730 
1731 		return;
1732 	}
1733 
1734 	/*
1735 	 * Prepare to scale scan period relative to the current period.
1736 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 	 */
1740 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 		if (!slot)
1745 			slot = 1;
1746 		diff = slot * period_slot;
1747 	} else {
1748 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749 
1750 		/*
1751 		 * Scale scan rate increases based on sharing. There is an
1752 		 * inverse relationship between the degree of sharing and
1753 		 * the adjustment made to the scanning period. Broadly
1754 		 * speaking the intent is that there is little point
1755 		 * scanning faster if shared accesses dominate as it may
1756 		 * simply bounce migrations uselessly
1757 		 */
1758 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 	}
1761 
1762 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 			task_scan_min(p), task_scan_max(p));
1764 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765 }
1766 
1767 /*
1768  * Get the fraction of time the task has been running since the last
1769  * NUMA placement cycle. The scheduler keeps similar statistics, but
1770  * decays those on a 32ms period, which is orders of magnitude off
1771  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772  * stats only if the task is so new there are no NUMA statistics yet.
1773  */
1774 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775 {
1776 	u64 runtime, delta, now;
1777 	/* Use the start of this time slice to avoid calculations. */
1778 	now = p->se.exec_start;
1779 	runtime = p->se.sum_exec_runtime;
1780 
1781 	if (p->last_task_numa_placement) {
1782 		delta = runtime - p->last_sum_exec_runtime;
1783 		*period = now - p->last_task_numa_placement;
1784 	} else {
1785 		delta = p->se.avg.load_sum / p->se.load.weight;
1786 		*period = LOAD_AVG_MAX;
1787 	}
1788 
1789 	p->last_sum_exec_runtime = runtime;
1790 	p->last_task_numa_placement = now;
1791 
1792 	return delta;
1793 }
1794 
1795 /*
1796  * Determine the preferred nid for a task in a numa_group. This needs to
1797  * be done in a way that produces consistent results with group_weight,
1798  * otherwise workloads might not converge.
1799  */
1800 static int preferred_group_nid(struct task_struct *p, int nid)
1801 {
1802 	nodemask_t nodes;
1803 	int dist;
1804 
1805 	/* Direct connections between all NUMA nodes. */
1806 	if (sched_numa_topology_type == NUMA_DIRECT)
1807 		return nid;
1808 
1809 	/*
1810 	 * On a system with glueless mesh NUMA topology, group_weight
1811 	 * scores nodes according to the number of NUMA hinting faults on
1812 	 * both the node itself, and on nearby nodes.
1813 	 */
1814 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 		unsigned long score, max_score = 0;
1816 		int node, max_node = nid;
1817 
1818 		dist = sched_max_numa_distance;
1819 
1820 		for_each_online_node(node) {
1821 			score = group_weight(p, node, dist);
1822 			if (score > max_score) {
1823 				max_score = score;
1824 				max_node = node;
1825 			}
1826 		}
1827 		return max_node;
1828 	}
1829 
1830 	/*
1831 	 * Finding the preferred nid in a system with NUMA backplane
1832 	 * interconnect topology is more involved. The goal is to locate
1833 	 * tasks from numa_groups near each other in the system, and
1834 	 * untangle workloads from different sides of the system. This requires
1835 	 * searching down the hierarchy of node groups, recursively searching
1836 	 * inside the highest scoring group of nodes. The nodemask tricks
1837 	 * keep the complexity of the search down.
1838 	 */
1839 	nodes = node_online_map;
1840 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 		unsigned long max_faults = 0;
1842 		nodemask_t max_group = NODE_MASK_NONE;
1843 		int a, b;
1844 
1845 		/* Are there nodes at this distance from each other? */
1846 		if (!find_numa_distance(dist))
1847 			continue;
1848 
1849 		for_each_node_mask(a, nodes) {
1850 			unsigned long faults = 0;
1851 			nodemask_t this_group;
1852 			nodes_clear(this_group);
1853 
1854 			/* Sum group's NUMA faults; includes a==b case. */
1855 			for_each_node_mask(b, nodes) {
1856 				if (node_distance(a, b) < dist) {
1857 					faults += group_faults(p, b);
1858 					node_set(b, this_group);
1859 					node_clear(b, nodes);
1860 				}
1861 			}
1862 
1863 			/* Remember the top group. */
1864 			if (faults > max_faults) {
1865 				max_faults = faults;
1866 				max_group = this_group;
1867 				/*
1868 				 * subtle: at the smallest distance there is
1869 				 * just one node left in each "group", the
1870 				 * winner is the preferred nid.
1871 				 */
1872 				nid = a;
1873 			}
1874 		}
1875 		/* Next round, evaluate the nodes within max_group. */
1876 		if (!max_faults)
1877 			break;
1878 		nodes = max_group;
1879 	}
1880 	return nid;
1881 }
1882 
1883 static void task_numa_placement(struct task_struct *p)
1884 {
1885 	int seq, nid, max_nid = -1, max_group_nid = -1;
1886 	unsigned long max_faults = 0, max_group_faults = 0;
1887 	unsigned long fault_types[2] = { 0, 0 };
1888 	unsigned long total_faults;
1889 	u64 runtime, period;
1890 	spinlock_t *group_lock = NULL;
1891 
1892 	/*
1893 	 * The p->mm->numa_scan_seq field gets updated without
1894 	 * exclusive access. Use READ_ONCE() here to ensure
1895 	 * that the field is read in a single access:
1896 	 */
1897 	seq = READ_ONCE(p->mm->numa_scan_seq);
1898 	if (p->numa_scan_seq == seq)
1899 		return;
1900 	p->numa_scan_seq = seq;
1901 	p->numa_scan_period_max = task_scan_max(p);
1902 
1903 	total_faults = p->numa_faults_locality[0] +
1904 		       p->numa_faults_locality[1];
1905 	runtime = numa_get_avg_runtime(p, &period);
1906 
1907 	/* If the task is part of a group prevent parallel updates to group stats */
1908 	if (p->numa_group) {
1909 		group_lock = &p->numa_group->lock;
1910 		spin_lock_irq(group_lock);
1911 	}
1912 
1913 	/* Find the node with the highest number of faults */
1914 	for_each_online_node(nid) {
1915 		/* Keep track of the offsets in numa_faults array */
1916 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917 		unsigned long faults = 0, group_faults = 0;
1918 		int priv;
1919 
1920 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921 			long diff, f_diff, f_weight;
1922 
1923 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927 
1928 			/* Decay existing window, copy faults since last scan */
1929 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 			fault_types[priv] += p->numa_faults[membuf_idx];
1931 			p->numa_faults[membuf_idx] = 0;
1932 
1933 			/*
1934 			 * Normalize the faults_from, so all tasks in a group
1935 			 * count according to CPU use, instead of by the raw
1936 			 * number of faults. Tasks with little runtime have
1937 			 * little over-all impact on throughput, and thus their
1938 			 * faults are less important.
1939 			 */
1940 			f_weight = div64_u64(runtime << 16, period + 1);
1941 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942 				   (total_faults + 1);
1943 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 			p->numa_faults[cpubuf_idx] = 0;
1945 
1946 			p->numa_faults[mem_idx] += diff;
1947 			p->numa_faults[cpu_idx] += f_diff;
1948 			faults += p->numa_faults[mem_idx];
1949 			p->total_numa_faults += diff;
1950 			if (p->numa_group) {
1951 				/*
1952 				 * safe because we can only change our own group
1953 				 *
1954 				 * mem_idx represents the offset for a given
1955 				 * nid and priv in a specific region because it
1956 				 * is at the beginning of the numa_faults array.
1957 				 */
1958 				p->numa_group->faults[mem_idx] += diff;
1959 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1960 				p->numa_group->total_faults += diff;
1961 				group_faults += p->numa_group->faults[mem_idx];
1962 			}
1963 		}
1964 
1965 		if (faults > max_faults) {
1966 			max_faults = faults;
1967 			max_nid = nid;
1968 		}
1969 
1970 		if (group_faults > max_group_faults) {
1971 			max_group_faults = group_faults;
1972 			max_group_nid = nid;
1973 		}
1974 	}
1975 
1976 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1977 
1978 	if (p->numa_group) {
1979 		numa_group_count_active_nodes(p->numa_group);
1980 		spin_unlock_irq(group_lock);
1981 		max_nid = preferred_group_nid(p, max_group_nid);
1982 	}
1983 
1984 	if (max_faults) {
1985 		/* Set the new preferred node */
1986 		if (max_nid != p->numa_preferred_nid)
1987 			sched_setnuma(p, max_nid);
1988 
1989 		if (task_node(p) != p->numa_preferred_nid)
1990 			numa_migrate_preferred(p);
1991 	}
1992 }
1993 
1994 static inline int get_numa_group(struct numa_group *grp)
1995 {
1996 	return atomic_inc_not_zero(&grp->refcount);
1997 }
1998 
1999 static inline void put_numa_group(struct numa_group *grp)
2000 {
2001 	if (atomic_dec_and_test(&grp->refcount))
2002 		kfree_rcu(grp, rcu);
2003 }
2004 
2005 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 			int *priv)
2007 {
2008 	struct numa_group *grp, *my_grp;
2009 	struct task_struct *tsk;
2010 	bool join = false;
2011 	int cpu = cpupid_to_cpu(cpupid);
2012 	int i;
2013 
2014 	if (unlikely(!p->numa_group)) {
2015 		unsigned int size = sizeof(struct numa_group) +
2016 				    4*nr_node_ids*sizeof(unsigned long);
2017 
2018 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 		if (!grp)
2020 			return;
2021 
2022 		atomic_set(&grp->refcount, 1);
2023 		grp->active_nodes = 1;
2024 		grp->max_faults_cpu = 0;
2025 		spin_lock_init(&grp->lock);
2026 		grp->gid = p->pid;
2027 		/* Second half of the array tracks nids where faults happen */
2028 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 						nr_node_ids;
2030 
2031 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032 			grp->faults[i] = p->numa_faults[i];
2033 
2034 		grp->total_faults = p->total_numa_faults;
2035 
2036 		grp->nr_tasks++;
2037 		rcu_assign_pointer(p->numa_group, grp);
2038 	}
2039 
2040 	rcu_read_lock();
2041 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042 
2043 	if (!cpupid_match_pid(tsk, cpupid))
2044 		goto no_join;
2045 
2046 	grp = rcu_dereference(tsk->numa_group);
2047 	if (!grp)
2048 		goto no_join;
2049 
2050 	my_grp = p->numa_group;
2051 	if (grp == my_grp)
2052 		goto no_join;
2053 
2054 	/*
2055 	 * Only join the other group if its bigger; if we're the bigger group,
2056 	 * the other task will join us.
2057 	 */
2058 	if (my_grp->nr_tasks > grp->nr_tasks)
2059 		goto no_join;
2060 
2061 	/*
2062 	 * Tie-break on the grp address.
2063 	 */
2064 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065 		goto no_join;
2066 
2067 	/* Always join threads in the same process. */
2068 	if (tsk->mm == current->mm)
2069 		join = true;
2070 
2071 	/* Simple filter to avoid false positives due to PID collisions */
2072 	if (flags & TNF_SHARED)
2073 		join = true;
2074 
2075 	/* Update priv based on whether false sharing was detected */
2076 	*priv = !join;
2077 
2078 	if (join && !get_numa_group(grp))
2079 		goto no_join;
2080 
2081 	rcu_read_unlock();
2082 
2083 	if (!join)
2084 		return;
2085 
2086 	BUG_ON(irqs_disabled());
2087 	double_lock_irq(&my_grp->lock, &grp->lock);
2088 
2089 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090 		my_grp->faults[i] -= p->numa_faults[i];
2091 		grp->faults[i] += p->numa_faults[i];
2092 	}
2093 	my_grp->total_faults -= p->total_numa_faults;
2094 	grp->total_faults += p->total_numa_faults;
2095 
2096 	my_grp->nr_tasks--;
2097 	grp->nr_tasks++;
2098 
2099 	spin_unlock(&my_grp->lock);
2100 	spin_unlock_irq(&grp->lock);
2101 
2102 	rcu_assign_pointer(p->numa_group, grp);
2103 
2104 	put_numa_group(my_grp);
2105 	return;
2106 
2107 no_join:
2108 	rcu_read_unlock();
2109 	return;
2110 }
2111 
2112 void task_numa_free(struct task_struct *p)
2113 {
2114 	struct numa_group *grp = p->numa_group;
2115 	void *numa_faults = p->numa_faults;
2116 	unsigned long flags;
2117 	int i;
2118 
2119 	if (grp) {
2120 		spin_lock_irqsave(&grp->lock, flags);
2121 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122 			grp->faults[i] -= p->numa_faults[i];
2123 		grp->total_faults -= p->total_numa_faults;
2124 
2125 		grp->nr_tasks--;
2126 		spin_unlock_irqrestore(&grp->lock, flags);
2127 		RCU_INIT_POINTER(p->numa_group, NULL);
2128 		put_numa_group(grp);
2129 	}
2130 
2131 	p->numa_faults = NULL;
2132 	kfree(numa_faults);
2133 }
2134 
2135 /*
2136  * Got a PROT_NONE fault for a page on @node.
2137  */
2138 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139 {
2140 	struct task_struct *p = current;
2141 	bool migrated = flags & TNF_MIGRATED;
2142 	int cpu_node = task_node(current);
2143 	int local = !!(flags & TNF_FAULT_LOCAL);
2144 	struct numa_group *ng;
2145 	int priv;
2146 
2147 	if (!static_branch_likely(&sched_numa_balancing))
2148 		return;
2149 
2150 	/* for example, ksmd faulting in a user's mm */
2151 	if (!p->mm)
2152 		return;
2153 
2154 	/* Allocate buffer to track faults on a per-node basis */
2155 	if (unlikely(!p->numa_faults)) {
2156 		int size = sizeof(*p->numa_faults) *
2157 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158 
2159 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 		if (!p->numa_faults)
2161 			return;
2162 
2163 		p->total_numa_faults = 0;
2164 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165 	}
2166 
2167 	/*
2168 	 * First accesses are treated as private, otherwise consider accesses
2169 	 * to be private if the accessing pid has not changed
2170 	 */
2171 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 		priv = 1;
2173 	} else {
2174 		priv = cpupid_match_pid(p, last_cpupid);
2175 		if (!priv && !(flags & TNF_NO_GROUP))
2176 			task_numa_group(p, last_cpupid, flags, &priv);
2177 	}
2178 
2179 	/*
2180 	 * If a workload spans multiple NUMA nodes, a shared fault that
2181 	 * occurs wholly within the set of nodes that the workload is
2182 	 * actively using should be counted as local. This allows the
2183 	 * scan rate to slow down when a workload has settled down.
2184 	 */
2185 	ng = p->numa_group;
2186 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 				numa_is_active_node(cpu_node, ng) &&
2188 				numa_is_active_node(mem_node, ng))
2189 		local = 1;
2190 
2191 	task_numa_placement(p);
2192 
2193 	/*
2194 	 * Retry task to preferred node migration periodically, in case it
2195 	 * case it previously failed, or the scheduler moved us.
2196 	 */
2197 	if (time_after(jiffies, p->numa_migrate_retry))
2198 		numa_migrate_preferred(p);
2199 
2200 	if (migrated)
2201 		p->numa_pages_migrated += pages;
2202 	if (flags & TNF_MIGRATE_FAIL)
2203 		p->numa_faults_locality[2] += pages;
2204 
2205 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207 	p->numa_faults_locality[local] += pages;
2208 }
2209 
2210 static void reset_ptenuma_scan(struct task_struct *p)
2211 {
2212 	/*
2213 	 * We only did a read acquisition of the mmap sem, so
2214 	 * p->mm->numa_scan_seq is written to without exclusive access
2215 	 * and the update is not guaranteed to be atomic. That's not
2216 	 * much of an issue though, since this is just used for
2217 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 	 * expensive, to avoid any form of compiler optimizations:
2219 	 */
2220 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221 	p->mm->numa_scan_offset = 0;
2222 }
2223 
2224 /*
2225  * The expensive part of numa migration is done from task_work context.
2226  * Triggered from task_tick_numa().
2227  */
2228 void task_numa_work(struct callback_head *work)
2229 {
2230 	unsigned long migrate, next_scan, now = jiffies;
2231 	struct task_struct *p = current;
2232 	struct mm_struct *mm = p->mm;
2233 	u64 runtime = p->se.sum_exec_runtime;
2234 	struct vm_area_struct *vma;
2235 	unsigned long start, end;
2236 	unsigned long nr_pte_updates = 0;
2237 	long pages, virtpages;
2238 
2239 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240 
2241 	work->next = work; /* protect against double add */
2242 	/*
2243 	 * Who cares about NUMA placement when they're dying.
2244 	 *
2245 	 * NOTE: make sure not to dereference p->mm before this check,
2246 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 	 * without p->mm even though we still had it when we enqueued this
2248 	 * work.
2249 	 */
2250 	if (p->flags & PF_EXITING)
2251 		return;
2252 
2253 	if (!mm->numa_next_scan) {
2254 		mm->numa_next_scan = now +
2255 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256 	}
2257 
2258 	/*
2259 	 * Enforce maximal scan/migration frequency..
2260 	 */
2261 	migrate = mm->numa_next_scan;
2262 	if (time_before(now, migrate))
2263 		return;
2264 
2265 	if (p->numa_scan_period == 0) {
2266 		p->numa_scan_period_max = task_scan_max(p);
2267 		p->numa_scan_period = task_scan_min(p);
2268 	}
2269 
2270 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 		return;
2273 
2274 	/*
2275 	 * Delay this task enough that another task of this mm will likely win
2276 	 * the next time around.
2277 	 */
2278 	p->node_stamp += 2 * TICK_NSEC;
2279 
2280 	start = mm->numa_scan_offset;
2281 	pages = sysctl_numa_balancing_scan_size;
2282 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2284 	if (!pages)
2285 		return;
2286 
2287 
2288 	down_read(&mm->mmap_sem);
2289 	vma = find_vma(mm, start);
2290 	if (!vma) {
2291 		reset_ptenuma_scan(p);
2292 		start = 0;
2293 		vma = mm->mmap;
2294 	}
2295 	for (; vma; vma = vma->vm_next) {
2296 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298 			continue;
2299 		}
2300 
2301 		/*
2302 		 * Shared library pages mapped by multiple processes are not
2303 		 * migrated as it is expected they are cache replicated. Avoid
2304 		 * hinting faults in read-only file-backed mappings or the vdso
2305 		 * as migrating the pages will be of marginal benefit.
2306 		 */
2307 		if (!vma->vm_mm ||
2308 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 			continue;
2310 
2311 		/*
2312 		 * Skip inaccessible VMAs to avoid any confusion between
2313 		 * PROT_NONE and NUMA hinting ptes
2314 		 */
2315 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 			continue;
2317 
2318 		do {
2319 			start = max(start, vma->vm_start);
2320 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 			end = min(end, vma->vm_end);
2322 			nr_pte_updates = change_prot_numa(vma, start, end);
2323 
2324 			/*
2325 			 * Try to scan sysctl_numa_balancing_size worth of
2326 			 * hpages that have at least one present PTE that
2327 			 * is not already pte-numa. If the VMA contains
2328 			 * areas that are unused or already full of prot_numa
2329 			 * PTEs, scan up to virtpages, to skip through those
2330 			 * areas faster.
2331 			 */
2332 			if (nr_pte_updates)
2333 				pages -= (end - start) >> PAGE_SHIFT;
2334 			virtpages -= (end - start) >> PAGE_SHIFT;
2335 
2336 			start = end;
2337 			if (pages <= 0 || virtpages <= 0)
2338 				goto out;
2339 
2340 			cond_resched();
2341 		} while (end != vma->vm_end);
2342 	}
2343 
2344 out:
2345 	/*
2346 	 * It is possible to reach the end of the VMA list but the last few
2347 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 	 * would find the !migratable VMA on the next scan but not reset the
2349 	 * scanner to the start so check it now.
2350 	 */
2351 	if (vma)
2352 		mm->numa_scan_offset = start;
2353 	else
2354 		reset_ptenuma_scan(p);
2355 	up_read(&mm->mmap_sem);
2356 
2357 	/*
2358 	 * Make sure tasks use at least 32x as much time to run other code
2359 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 	 * Usually update_task_scan_period slows down scanning enough; on an
2361 	 * overloaded system we need to limit overhead on a per task basis.
2362 	 */
2363 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 		u64 diff = p->se.sum_exec_runtime - runtime;
2365 		p->node_stamp += 32 * diff;
2366 	}
2367 }
2368 
2369 /*
2370  * Drive the periodic memory faults..
2371  */
2372 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373 {
2374 	struct callback_head *work = &curr->numa_work;
2375 	u64 period, now;
2376 
2377 	/*
2378 	 * We don't care about NUMA placement if we don't have memory.
2379 	 */
2380 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 		return;
2382 
2383 	/*
2384 	 * Using runtime rather than walltime has the dual advantage that
2385 	 * we (mostly) drive the selection from busy threads and that the
2386 	 * task needs to have done some actual work before we bother with
2387 	 * NUMA placement.
2388 	 */
2389 	now = curr->se.sum_exec_runtime;
2390 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391 
2392 	if (now > curr->node_stamp + period) {
2393 		if (!curr->node_stamp)
2394 			curr->numa_scan_period = task_scan_min(curr);
2395 		curr->node_stamp += period;
2396 
2397 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 			task_work_add(curr, work, true);
2400 		}
2401 	}
2402 }
2403 #else
2404 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405 {
2406 }
2407 
2408 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409 {
2410 }
2411 
2412 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413 {
2414 }
2415 #endif /* CONFIG_NUMA_BALANCING */
2416 
2417 static void
2418 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419 {
2420 	update_load_add(&cfs_rq->load, se->load.weight);
2421 	if (!parent_entity(se))
2422 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423 #ifdef CONFIG_SMP
2424 	if (entity_is_task(se)) {
2425 		struct rq *rq = rq_of(cfs_rq);
2426 
2427 		account_numa_enqueue(rq, task_of(se));
2428 		list_add(&se->group_node, &rq->cfs_tasks);
2429 	}
2430 #endif
2431 	cfs_rq->nr_running++;
2432 }
2433 
2434 static void
2435 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436 {
2437 	update_load_sub(&cfs_rq->load, se->load.weight);
2438 	if (!parent_entity(se))
2439 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440 	if (entity_is_task(se)) {
2441 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442 		list_del_init(&se->group_node);
2443 	}
2444 	cfs_rq->nr_running--;
2445 }
2446 
2447 #ifdef CONFIG_FAIR_GROUP_SCHED
2448 # ifdef CONFIG_SMP
2449 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450 {
2451 	long tg_weight;
2452 
2453 	/*
2454 	 * Use this CPU's real-time load instead of the last load contribution
2455 	 * as the updating of the contribution is delayed, and we will use the
2456 	 * the real-time load to calc the share. See update_tg_load_avg().
2457 	 */
2458 	tg_weight = atomic_long_read(&tg->load_avg);
2459 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2460 	tg_weight += cfs_rq->load.weight;
2461 
2462 	return tg_weight;
2463 }
2464 
2465 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466 {
2467 	long tg_weight, load, shares;
2468 
2469 	tg_weight = calc_tg_weight(tg, cfs_rq);
2470 	load = cfs_rq->load.weight;
2471 
2472 	shares = (tg->shares * load);
2473 	if (tg_weight)
2474 		shares /= tg_weight;
2475 
2476 	if (shares < MIN_SHARES)
2477 		shares = MIN_SHARES;
2478 	if (shares > tg->shares)
2479 		shares = tg->shares;
2480 
2481 	return shares;
2482 }
2483 # else /* CONFIG_SMP */
2484 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485 {
2486 	return tg->shares;
2487 }
2488 # endif /* CONFIG_SMP */
2489 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 			    unsigned long weight)
2491 {
2492 	if (se->on_rq) {
2493 		/* commit outstanding execution time */
2494 		if (cfs_rq->curr == se)
2495 			update_curr(cfs_rq);
2496 		account_entity_dequeue(cfs_rq, se);
2497 	}
2498 
2499 	update_load_set(&se->load, weight);
2500 
2501 	if (se->on_rq)
2502 		account_entity_enqueue(cfs_rq, se);
2503 }
2504 
2505 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506 
2507 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508 {
2509 	struct task_group *tg;
2510 	struct sched_entity *se;
2511 	long shares;
2512 
2513 	tg = cfs_rq->tg;
2514 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2515 	if (!se || throttled_hierarchy(cfs_rq))
2516 		return;
2517 #ifndef CONFIG_SMP
2518 	if (likely(se->load.weight == tg->shares))
2519 		return;
2520 #endif
2521 	shares = calc_cfs_shares(cfs_rq, tg);
2522 
2523 	reweight_entity(cfs_rq_of(se), se, shares);
2524 }
2525 #else /* CONFIG_FAIR_GROUP_SCHED */
2526 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527 {
2528 }
2529 #endif /* CONFIG_FAIR_GROUP_SCHED */
2530 
2531 #ifdef CONFIG_SMP
2532 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2533 static const u32 runnable_avg_yN_inv[] = {
2534 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 	0x85aac367, 0x82cd8698,
2540 };
2541 
2542 /*
2543  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2544  * over-estimates when re-combining.
2545  */
2546 static const u32 runnable_avg_yN_sum[] = {
2547 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550 };
2551 
2552 /*
2553  * Approximate:
2554  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2555  */
2556 static __always_inline u64 decay_load(u64 val, u64 n)
2557 {
2558 	unsigned int local_n;
2559 
2560 	if (!n)
2561 		return val;
2562 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 		return 0;
2564 
2565 	/* after bounds checking we can collapse to 32-bit */
2566 	local_n = n;
2567 
2568 	/*
2569 	 * As y^PERIOD = 1/2, we can combine
2570 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 	 * With a look-up table which covers y^n (n<PERIOD)
2572 	 *
2573 	 * To achieve constant time decay_load.
2574 	 */
2575 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 		val >>= local_n / LOAD_AVG_PERIOD;
2577 		local_n %= LOAD_AVG_PERIOD;
2578 	}
2579 
2580 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 	return val;
2582 }
2583 
2584 /*
2585  * For updates fully spanning n periods, the contribution to runnable
2586  * average will be: \Sum 1024*y^n
2587  *
2588  * We can compute this reasonably efficiently by combining:
2589  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2590  */
2591 static u32 __compute_runnable_contrib(u64 n)
2592 {
2593 	u32 contrib = 0;
2594 
2595 	if (likely(n <= LOAD_AVG_PERIOD))
2596 		return runnable_avg_yN_sum[n];
2597 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 		return LOAD_AVG_MAX;
2599 
2600 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 	do {
2602 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604 
2605 		n -= LOAD_AVG_PERIOD;
2606 	} while (n > LOAD_AVG_PERIOD);
2607 
2608 	contrib = decay_load(contrib, n);
2609 	return contrib + runnable_avg_yN_sum[n];
2610 }
2611 
2612 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613 #error "load tracking assumes 2^10 as unit"
2614 #endif
2615 
2616 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617 
2618 /*
2619  * We can represent the historical contribution to runnable average as the
2620  * coefficients of a geometric series.  To do this we sub-divide our runnable
2621  * history into segments of approximately 1ms (1024us); label the segment that
2622  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623  *
2624  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625  *      p0            p1           p2
2626  *     (now)       (~1ms ago)  (~2ms ago)
2627  *
2628  * Let u_i denote the fraction of p_i that the entity was runnable.
2629  *
2630  * We then designate the fractions u_i as our co-efficients, yielding the
2631  * following representation of historical load:
2632  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633  *
2634  * We choose y based on the with of a reasonably scheduling period, fixing:
2635  *   y^32 = 0.5
2636  *
2637  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638  * approximately half as much as the contribution to load within the last ms
2639  * (u_0).
2640  *
2641  * When a period "rolls over" and we have new u_0`, multiplying the previous
2642  * sum again by y is sufficient to update:
2643  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645  */
2646 static __always_inline int
2647 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649 {
2650 	u64 delta, scaled_delta, periods;
2651 	u32 contrib;
2652 	unsigned int delta_w, scaled_delta_w, decayed = 0;
2653 	unsigned long scale_freq, scale_cpu;
2654 
2655 	delta = now - sa->last_update_time;
2656 	/*
2657 	 * This should only happen when time goes backwards, which it
2658 	 * unfortunately does during sched clock init when we swap over to TSC.
2659 	 */
2660 	if ((s64)delta < 0) {
2661 		sa->last_update_time = now;
2662 		return 0;
2663 	}
2664 
2665 	/*
2666 	 * Use 1024ns as the unit of measurement since it's a reasonable
2667 	 * approximation of 1us and fast to compute.
2668 	 */
2669 	delta >>= 10;
2670 	if (!delta)
2671 		return 0;
2672 	sa->last_update_time = now;
2673 
2674 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676 
2677 	/* delta_w is the amount already accumulated against our next period */
2678 	delta_w = sa->period_contrib;
2679 	if (delta + delta_w >= 1024) {
2680 		decayed = 1;
2681 
2682 		/* how much left for next period will start over, we don't know yet */
2683 		sa->period_contrib = 0;
2684 
2685 		/*
2686 		 * Now that we know we're crossing a period boundary, figure
2687 		 * out how much from delta we need to complete the current
2688 		 * period and accrue it.
2689 		 */
2690 		delta_w = 1024 - delta_w;
2691 		scaled_delta_w = cap_scale(delta_w, scale_freq);
2692 		if (weight) {
2693 			sa->load_sum += weight * scaled_delta_w;
2694 			if (cfs_rq) {
2695 				cfs_rq->runnable_load_sum +=
2696 						weight * scaled_delta_w;
2697 			}
2698 		}
2699 		if (running)
2700 			sa->util_sum += scaled_delta_w * scale_cpu;
2701 
2702 		delta -= delta_w;
2703 
2704 		/* Figure out how many additional periods this update spans */
2705 		periods = delta / 1024;
2706 		delta %= 1024;
2707 
2708 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709 		if (cfs_rq) {
2710 			cfs_rq->runnable_load_sum =
2711 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 		}
2713 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714 
2715 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716 		contrib = __compute_runnable_contrib(periods);
2717 		contrib = cap_scale(contrib, scale_freq);
2718 		if (weight) {
2719 			sa->load_sum += weight * contrib;
2720 			if (cfs_rq)
2721 				cfs_rq->runnable_load_sum += weight * contrib;
2722 		}
2723 		if (running)
2724 			sa->util_sum += contrib * scale_cpu;
2725 	}
2726 
2727 	/* Remainder of delta accrued against u_0` */
2728 	scaled_delta = cap_scale(delta, scale_freq);
2729 	if (weight) {
2730 		sa->load_sum += weight * scaled_delta;
2731 		if (cfs_rq)
2732 			cfs_rq->runnable_load_sum += weight * scaled_delta;
2733 	}
2734 	if (running)
2735 		sa->util_sum += scaled_delta * scale_cpu;
2736 
2737 	sa->period_contrib += delta;
2738 
2739 	if (decayed) {
2740 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741 		if (cfs_rq) {
2742 			cfs_rq->runnable_load_avg =
2743 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 		}
2745 		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746 	}
2747 
2748 	return decayed;
2749 }
2750 
2751 #ifdef CONFIG_FAIR_GROUP_SCHED
2752 /*
2753  * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754  * and effective_load (which is not done because it is too costly).
2755  */
2756 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757 {
2758 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759 
2760 	/*
2761 	 * No need to update load_avg for root_task_group as it is not used.
2762 	 */
2763 	if (cfs_rq->tg == &root_task_group)
2764 		return;
2765 
2766 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769 	}
2770 }
2771 
2772 /*
2773  * Called within set_task_rq() right before setting a task's cpu. The
2774  * caller only guarantees p->pi_lock is held; no other assumptions,
2775  * including the state of rq->lock, should be made.
2776  */
2777 void set_task_rq_fair(struct sched_entity *se,
2778 		      struct cfs_rq *prev, struct cfs_rq *next)
2779 {
2780 	if (!sched_feat(ATTACH_AGE_LOAD))
2781 		return;
2782 
2783 	/*
2784 	 * We are supposed to update the task to "current" time, then its up to
2785 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 	 * getting what current time is, so simply throw away the out-of-date
2787 	 * time. This will result in the wakee task is less decayed, but giving
2788 	 * the wakee more load sounds not bad.
2789 	 */
2790 	if (se->avg.last_update_time && prev) {
2791 		u64 p_last_update_time;
2792 		u64 n_last_update_time;
2793 
2794 #ifndef CONFIG_64BIT
2795 		u64 p_last_update_time_copy;
2796 		u64 n_last_update_time_copy;
2797 
2798 		do {
2799 			p_last_update_time_copy = prev->load_last_update_time_copy;
2800 			n_last_update_time_copy = next->load_last_update_time_copy;
2801 
2802 			smp_rmb();
2803 
2804 			p_last_update_time = prev->avg.last_update_time;
2805 			n_last_update_time = next->avg.last_update_time;
2806 
2807 		} while (p_last_update_time != p_last_update_time_copy ||
2808 			 n_last_update_time != n_last_update_time_copy);
2809 #else
2810 		p_last_update_time = prev->avg.last_update_time;
2811 		n_last_update_time = next->avg.last_update_time;
2812 #endif
2813 		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 				  &se->avg, 0, 0, NULL);
2815 		se->avg.last_update_time = n_last_update_time;
2816 	}
2817 }
2818 #else /* CONFIG_FAIR_GROUP_SCHED */
2819 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820 #endif /* CONFIG_FAIR_GROUP_SCHED */
2821 
2822 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823 
2824 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826 {
2827 	struct sched_avg *sa = &cfs_rq->avg;
2828 	int decayed, removed = 0;
2829 
2830 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832 		sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834 		removed = 1;
2835 	}
2836 
2837 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840 		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841 	}
2842 
2843 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845 
2846 #ifndef CONFIG_64BIT
2847 	smp_wmb();
2848 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849 #endif
2850 
2851 	return decayed || removed;
2852 }
2853 
2854 /* Update task and its cfs_rq load average */
2855 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856 {
2857 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858 	u64 now = cfs_rq_clock_task(cfs_rq);
2859 	struct rq *rq = rq_of(cfs_rq);
2860 	int cpu = cpu_of(rq);
2861 
2862 	/*
2863 	 * Track task load average for carrying it to new CPU after migrated, and
2864 	 * track group sched_entity load average for task_h_load calc in migration
2865 	 */
2866 	__update_load_avg(now, cpu, &se->avg,
2867 			  se->on_rq * scale_load_down(se->load.weight),
2868 			  cfs_rq->curr == se, NULL);
2869 
2870 	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871 		update_tg_load_avg(cfs_rq, 0);
2872 
2873 	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874 		unsigned long max = rq->cpu_capacity_orig;
2875 
2876 		/*
2877 		 * There are a few boundary cases this might miss but it should
2878 		 * get called often enough that that should (hopefully) not be
2879 		 * a real problem -- added to that it only calls on the local
2880 		 * CPU, so if we enqueue remotely we'll miss an update, but
2881 		 * the next tick/schedule should update.
2882 		 *
2883 		 * It will not get called when we go idle, because the idle
2884 		 * thread is a different class (!fair), nor will the utilization
2885 		 * number include things like RT tasks.
2886 		 *
2887 		 * As is, the util number is not freq-invariant (we'd have to
2888 		 * implement arch_scale_freq_capacity() for that).
2889 		 *
2890 		 * See cpu_util().
2891 		 */
2892 		cpufreq_update_util(rq_clock(rq),
2893 				    min(cfs_rq->avg.util_avg, max), max);
2894 	}
2895 }
2896 
2897 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2898 {
2899 	if (!sched_feat(ATTACH_AGE_LOAD))
2900 		goto skip_aging;
2901 
2902 	/*
2903 	 * If we got migrated (either between CPUs or between cgroups) we'll
2904 	 * have aged the average right before clearing @last_update_time.
2905 	 */
2906 	if (se->avg.last_update_time) {
2907 		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908 				  &se->avg, 0, 0, NULL);
2909 
2910 		/*
2911 		 * XXX: we could have just aged the entire load away if we've been
2912 		 * absent from the fair class for too long.
2913 		 */
2914 	}
2915 
2916 skip_aging:
2917 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918 	cfs_rq->avg.load_avg += se->avg.load_avg;
2919 	cfs_rq->avg.load_sum += se->avg.load_sum;
2920 	cfs_rq->avg.util_avg += se->avg.util_avg;
2921 	cfs_rq->avg.util_sum += se->avg.util_sum;
2922 }
2923 
2924 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925 {
2926 	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927 			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928 			  cfs_rq->curr == se, NULL);
2929 
2930 	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931 	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932 	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933 	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934 }
2935 
2936 /* Add the load generated by se into cfs_rq's load average */
2937 static inline void
2938 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2939 {
2940 	struct sched_avg *sa = &se->avg;
2941 	u64 now = cfs_rq_clock_task(cfs_rq);
2942 	int migrated, decayed;
2943 
2944 	migrated = !sa->last_update_time;
2945 	if (!migrated) {
2946 		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2947 			se->on_rq * scale_load_down(se->load.weight),
2948 			cfs_rq->curr == se, NULL);
2949 	}
2950 
2951 	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2952 
2953 	cfs_rq->runnable_load_avg += sa->load_avg;
2954 	cfs_rq->runnable_load_sum += sa->load_sum;
2955 
2956 	if (migrated)
2957 		attach_entity_load_avg(cfs_rq, se);
2958 
2959 	if (decayed || migrated)
2960 		update_tg_load_avg(cfs_rq, 0);
2961 }
2962 
2963 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964 static inline void
2965 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2966 {
2967 	update_load_avg(se, 1);
2968 
2969 	cfs_rq->runnable_load_avg =
2970 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971 	cfs_rq->runnable_load_sum =
2972 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2973 }
2974 
2975 #ifndef CONFIG_64BIT
2976 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977 {
2978 	u64 last_update_time_copy;
2979 	u64 last_update_time;
2980 
2981 	do {
2982 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983 		smp_rmb();
2984 		last_update_time = cfs_rq->avg.last_update_time;
2985 	} while (last_update_time != last_update_time_copy);
2986 
2987 	return last_update_time;
2988 }
2989 #else
2990 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991 {
2992 	return cfs_rq->avg.last_update_time;
2993 }
2994 #endif
2995 
2996 /*
2997  * Task first catches up with cfs_rq, and then subtract
2998  * itself from the cfs_rq (task must be off the queue now).
2999  */
3000 void remove_entity_load_avg(struct sched_entity *se)
3001 {
3002 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003 	u64 last_update_time;
3004 
3005 	/*
3006 	 * Newly created task or never used group entity should not be removed
3007 	 * from its (source) cfs_rq
3008 	 */
3009 	if (se->avg.last_update_time == 0)
3010 		return;
3011 
3012 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3013 
3014 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3015 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3017 }
3018 
3019 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020 {
3021 	return cfs_rq->runnable_load_avg;
3022 }
3023 
3024 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025 {
3026 	return cfs_rq->avg.load_avg;
3027 }
3028 
3029 static int idle_balance(struct rq *this_rq);
3030 
3031 #else /* CONFIG_SMP */
3032 
3033 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3034 static inline void
3035 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3036 static inline void
3037 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3038 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3039 
3040 static inline void
3041 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3042 static inline void
3043 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3044 
3045 static inline int idle_balance(struct rq *rq)
3046 {
3047 	return 0;
3048 }
3049 
3050 #endif /* CONFIG_SMP */
3051 
3052 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3053 {
3054 #ifdef CONFIG_SCHEDSTATS
3055 	struct task_struct *tsk = NULL;
3056 
3057 	if (entity_is_task(se))
3058 		tsk = task_of(se);
3059 
3060 	if (se->statistics.sleep_start) {
3061 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3062 
3063 		if ((s64)delta < 0)
3064 			delta = 0;
3065 
3066 		if (unlikely(delta > se->statistics.sleep_max))
3067 			se->statistics.sleep_max = delta;
3068 
3069 		se->statistics.sleep_start = 0;
3070 		se->statistics.sum_sleep_runtime += delta;
3071 
3072 		if (tsk) {
3073 			account_scheduler_latency(tsk, delta >> 10, 1);
3074 			trace_sched_stat_sleep(tsk, delta);
3075 		}
3076 	}
3077 	if (se->statistics.block_start) {
3078 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3079 
3080 		if ((s64)delta < 0)
3081 			delta = 0;
3082 
3083 		if (unlikely(delta > se->statistics.block_max))
3084 			se->statistics.block_max = delta;
3085 
3086 		se->statistics.block_start = 0;
3087 		se->statistics.sum_sleep_runtime += delta;
3088 
3089 		if (tsk) {
3090 			if (tsk->in_iowait) {
3091 				se->statistics.iowait_sum += delta;
3092 				se->statistics.iowait_count++;
3093 				trace_sched_stat_iowait(tsk, delta);
3094 			}
3095 
3096 			trace_sched_stat_blocked(tsk, delta);
3097 
3098 			/*
3099 			 * Blocking time is in units of nanosecs, so shift by
3100 			 * 20 to get a milliseconds-range estimation of the
3101 			 * amount of time that the task spent sleeping:
3102 			 */
3103 			if (unlikely(prof_on == SLEEP_PROFILING)) {
3104 				profile_hits(SLEEP_PROFILING,
3105 						(void *)get_wchan(tsk),
3106 						delta >> 20);
3107 			}
3108 			account_scheduler_latency(tsk, delta >> 10, 0);
3109 		}
3110 	}
3111 #endif
3112 }
3113 
3114 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3115 {
3116 #ifdef CONFIG_SCHED_DEBUG
3117 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3118 
3119 	if (d < 0)
3120 		d = -d;
3121 
3122 	if (d > 3*sysctl_sched_latency)
3123 		schedstat_inc(cfs_rq, nr_spread_over);
3124 #endif
3125 }
3126 
3127 static void
3128 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3129 {
3130 	u64 vruntime = cfs_rq->min_vruntime;
3131 
3132 	/*
3133 	 * The 'current' period is already promised to the current tasks,
3134 	 * however the extra weight of the new task will slow them down a
3135 	 * little, place the new task so that it fits in the slot that
3136 	 * stays open at the end.
3137 	 */
3138 	if (initial && sched_feat(START_DEBIT))
3139 		vruntime += sched_vslice(cfs_rq, se);
3140 
3141 	/* sleeps up to a single latency don't count. */
3142 	if (!initial) {
3143 		unsigned long thresh = sysctl_sched_latency;
3144 
3145 		/*
3146 		 * Halve their sleep time's effect, to allow
3147 		 * for a gentler effect of sleepers:
3148 		 */
3149 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3150 			thresh >>= 1;
3151 
3152 		vruntime -= thresh;
3153 	}
3154 
3155 	/* ensure we never gain time by being placed backwards. */
3156 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3157 }
3158 
3159 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3160 
3161 static inline void check_schedstat_required(void)
3162 {
3163 #ifdef CONFIG_SCHEDSTATS
3164 	if (schedstat_enabled())
3165 		return;
3166 
3167 	/* Force schedstat enabled if a dependent tracepoint is active */
3168 	if (trace_sched_stat_wait_enabled()    ||
3169 			trace_sched_stat_sleep_enabled()   ||
3170 			trace_sched_stat_iowait_enabled()  ||
3171 			trace_sched_stat_blocked_enabled() ||
3172 			trace_sched_stat_runtime_enabled())  {
3173 		pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3174 			     "stat_blocked and stat_runtime require the "
3175 			     "kernel parameter schedstats=enabled or "
3176 			     "kernel.sched_schedstats=1\n");
3177 	}
3178 #endif
3179 }
3180 
3181 static void
3182 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3183 {
3184 	/*
3185 	 * Update the normalized vruntime before updating min_vruntime
3186 	 * through calling update_curr().
3187 	 */
3188 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3189 		se->vruntime += cfs_rq->min_vruntime;
3190 
3191 	/*
3192 	 * Update run-time statistics of the 'current'.
3193 	 */
3194 	update_curr(cfs_rq);
3195 	enqueue_entity_load_avg(cfs_rq, se);
3196 	account_entity_enqueue(cfs_rq, se);
3197 	update_cfs_shares(cfs_rq);
3198 
3199 	if (flags & ENQUEUE_WAKEUP) {
3200 		place_entity(cfs_rq, se, 0);
3201 		if (schedstat_enabled())
3202 			enqueue_sleeper(cfs_rq, se);
3203 	}
3204 
3205 	check_schedstat_required();
3206 	if (schedstat_enabled()) {
3207 		update_stats_enqueue(cfs_rq, se);
3208 		check_spread(cfs_rq, se);
3209 	}
3210 	if (se != cfs_rq->curr)
3211 		__enqueue_entity(cfs_rq, se);
3212 	se->on_rq = 1;
3213 
3214 	if (cfs_rq->nr_running == 1) {
3215 		list_add_leaf_cfs_rq(cfs_rq);
3216 		check_enqueue_throttle(cfs_rq);
3217 	}
3218 }
3219 
3220 static void __clear_buddies_last(struct sched_entity *se)
3221 {
3222 	for_each_sched_entity(se) {
3223 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3224 		if (cfs_rq->last != se)
3225 			break;
3226 
3227 		cfs_rq->last = NULL;
3228 	}
3229 }
3230 
3231 static void __clear_buddies_next(struct sched_entity *se)
3232 {
3233 	for_each_sched_entity(se) {
3234 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3235 		if (cfs_rq->next != se)
3236 			break;
3237 
3238 		cfs_rq->next = NULL;
3239 	}
3240 }
3241 
3242 static void __clear_buddies_skip(struct sched_entity *se)
3243 {
3244 	for_each_sched_entity(se) {
3245 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3246 		if (cfs_rq->skip != se)
3247 			break;
3248 
3249 		cfs_rq->skip = NULL;
3250 	}
3251 }
3252 
3253 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3254 {
3255 	if (cfs_rq->last == se)
3256 		__clear_buddies_last(se);
3257 
3258 	if (cfs_rq->next == se)
3259 		__clear_buddies_next(se);
3260 
3261 	if (cfs_rq->skip == se)
3262 		__clear_buddies_skip(se);
3263 }
3264 
3265 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3266 
3267 static void
3268 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3269 {
3270 	/*
3271 	 * Update run-time statistics of the 'current'.
3272 	 */
3273 	update_curr(cfs_rq);
3274 	dequeue_entity_load_avg(cfs_rq, se);
3275 
3276 	if (schedstat_enabled())
3277 		update_stats_dequeue(cfs_rq, se, flags);
3278 
3279 	clear_buddies(cfs_rq, se);
3280 
3281 	if (se != cfs_rq->curr)
3282 		__dequeue_entity(cfs_rq, se);
3283 	se->on_rq = 0;
3284 	account_entity_dequeue(cfs_rq, se);
3285 
3286 	/*
3287 	 * Normalize the entity after updating the min_vruntime because the
3288 	 * update can refer to the ->curr item and we need to reflect this
3289 	 * movement in our normalized position.
3290 	 */
3291 	if (!(flags & DEQUEUE_SLEEP))
3292 		se->vruntime -= cfs_rq->min_vruntime;
3293 
3294 	/* return excess runtime on last dequeue */
3295 	return_cfs_rq_runtime(cfs_rq);
3296 
3297 	update_min_vruntime(cfs_rq);
3298 	update_cfs_shares(cfs_rq);
3299 }
3300 
3301 /*
3302  * Preempt the current task with a newly woken task if needed:
3303  */
3304 static void
3305 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3306 {
3307 	unsigned long ideal_runtime, delta_exec;
3308 	struct sched_entity *se;
3309 	s64 delta;
3310 
3311 	ideal_runtime = sched_slice(cfs_rq, curr);
3312 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3313 	if (delta_exec > ideal_runtime) {
3314 		resched_curr(rq_of(cfs_rq));
3315 		/*
3316 		 * The current task ran long enough, ensure it doesn't get
3317 		 * re-elected due to buddy favours.
3318 		 */
3319 		clear_buddies(cfs_rq, curr);
3320 		return;
3321 	}
3322 
3323 	/*
3324 	 * Ensure that a task that missed wakeup preemption by a
3325 	 * narrow margin doesn't have to wait for a full slice.
3326 	 * This also mitigates buddy induced latencies under load.
3327 	 */
3328 	if (delta_exec < sysctl_sched_min_granularity)
3329 		return;
3330 
3331 	se = __pick_first_entity(cfs_rq);
3332 	delta = curr->vruntime - se->vruntime;
3333 
3334 	if (delta < 0)
3335 		return;
3336 
3337 	if (delta > ideal_runtime)
3338 		resched_curr(rq_of(cfs_rq));
3339 }
3340 
3341 static void
3342 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3343 {
3344 	/* 'current' is not kept within the tree. */
3345 	if (se->on_rq) {
3346 		/*
3347 		 * Any task has to be enqueued before it get to execute on
3348 		 * a CPU. So account for the time it spent waiting on the
3349 		 * runqueue.
3350 		 */
3351 		if (schedstat_enabled())
3352 			update_stats_wait_end(cfs_rq, se);
3353 		__dequeue_entity(cfs_rq, se);
3354 		update_load_avg(se, 1);
3355 	}
3356 
3357 	update_stats_curr_start(cfs_rq, se);
3358 	cfs_rq->curr = se;
3359 #ifdef CONFIG_SCHEDSTATS
3360 	/*
3361 	 * Track our maximum slice length, if the CPU's load is at
3362 	 * least twice that of our own weight (i.e. dont track it
3363 	 * when there are only lesser-weight tasks around):
3364 	 */
3365 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3366 		se->statistics.slice_max = max(se->statistics.slice_max,
3367 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3368 	}
3369 #endif
3370 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3371 }
3372 
3373 static int
3374 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3375 
3376 /*
3377  * Pick the next process, keeping these things in mind, in this order:
3378  * 1) keep things fair between processes/task groups
3379  * 2) pick the "next" process, since someone really wants that to run
3380  * 3) pick the "last" process, for cache locality
3381  * 4) do not run the "skip" process, if something else is available
3382  */
3383 static struct sched_entity *
3384 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3385 {
3386 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3387 	struct sched_entity *se;
3388 
3389 	/*
3390 	 * If curr is set we have to see if its left of the leftmost entity
3391 	 * still in the tree, provided there was anything in the tree at all.
3392 	 */
3393 	if (!left || (curr && entity_before(curr, left)))
3394 		left = curr;
3395 
3396 	se = left; /* ideally we run the leftmost entity */
3397 
3398 	/*
3399 	 * Avoid running the skip buddy, if running something else can
3400 	 * be done without getting too unfair.
3401 	 */
3402 	if (cfs_rq->skip == se) {
3403 		struct sched_entity *second;
3404 
3405 		if (se == curr) {
3406 			second = __pick_first_entity(cfs_rq);
3407 		} else {
3408 			second = __pick_next_entity(se);
3409 			if (!second || (curr && entity_before(curr, second)))
3410 				second = curr;
3411 		}
3412 
3413 		if (second && wakeup_preempt_entity(second, left) < 1)
3414 			se = second;
3415 	}
3416 
3417 	/*
3418 	 * Prefer last buddy, try to return the CPU to a preempted task.
3419 	 */
3420 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3421 		se = cfs_rq->last;
3422 
3423 	/*
3424 	 * Someone really wants this to run. If it's not unfair, run it.
3425 	 */
3426 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3427 		se = cfs_rq->next;
3428 
3429 	clear_buddies(cfs_rq, se);
3430 
3431 	return se;
3432 }
3433 
3434 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3435 
3436 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3437 {
3438 	/*
3439 	 * If still on the runqueue then deactivate_task()
3440 	 * was not called and update_curr() has to be done:
3441 	 */
3442 	if (prev->on_rq)
3443 		update_curr(cfs_rq);
3444 
3445 	/* throttle cfs_rqs exceeding runtime */
3446 	check_cfs_rq_runtime(cfs_rq);
3447 
3448 	if (schedstat_enabled()) {
3449 		check_spread(cfs_rq, prev);
3450 		if (prev->on_rq)
3451 			update_stats_wait_start(cfs_rq, prev);
3452 	}
3453 
3454 	if (prev->on_rq) {
3455 		/* Put 'current' back into the tree. */
3456 		__enqueue_entity(cfs_rq, prev);
3457 		/* in !on_rq case, update occurred at dequeue */
3458 		update_load_avg(prev, 0);
3459 	}
3460 	cfs_rq->curr = NULL;
3461 }
3462 
3463 static void
3464 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3465 {
3466 	/*
3467 	 * Update run-time statistics of the 'current'.
3468 	 */
3469 	update_curr(cfs_rq);
3470 
3471 	/*
3472 	 * Ensure that runnable average is periodically updated.
3473 	 */
3474 	update_load_avg(curr, 1);
3475 	update_cfs_shares(cfs_rq);
3476 
3477 #ifdef CONFIG_SCHED_HRTICK
3478 	/*
3479 	 * queued ticks are scheduled to match the slice, so don't bother
3480 	 * validating it and just reschedule.
3481 	 */
3482 	if (queued) {
3483 		resched_curr(rq_of(cfs_rq));
3484 		return;
3485 	}
3486 	/*
3487 	 * don't let the period tick interfere with the hrtick preemption
3488 	 */
3489 	if (!sched_feat(DOUBLE_TICK) &&
3490 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3491 		return;
3492 #endif
3493 
3494 	if (cfs_rq->nr_running > 1)
3495 		check_preempt_tick(cfs_rq, curr);
3496 }
3497 
3498 
3499 /**************************************************
3500  * CFS bandwidth control machinery
3501  */
3502 
3503 #ifdef CONFIG_CFS_BANDWIDTH
3504 
3505 #ifdef HAVE_JUMP_LABEL
3506 static struct static_key __cfs_bandwidth_used;
3507 
3508 static inline bool cfs_bandwidth_used(void)
3509 {
3510 	return static_key_false(&__cfs_bandwidth_used);
3511 }
3512 
3513 void cfs_bandwidth_usage_inc(void)
3514 {
3515 	static_key_slow_inc(&__cfs_bandwidth_used);
3516 }
3517 
3518 void cfs_bandwidth_usage_dec(void)
3519 {
3520 	static_key_slow_dec(&__cfs_bandwidth_used);
3521 }
3522 #else /* HAVE_JUMP_LABEL */
3523 static bool cfs_bandwidth_used(void)
3524 {
3525 	return true;
3526 }
3527 
3528 void cfs_bandwidth_usage_inc(void) {}
3529 void cfs_bandwidth_usage_dec(void) {}
3530 #endif /* HAVE_JUMP_LABEL */
3531 
3532 /*
3533  * default period for cfs group bandwidth.
3534  * default: 0.1s, units: nanoseconds
3535  */
3536 static inline u64 default_cfs_period(void)
3537 {
3538 	return 100000000ULL;
3539 }
3540 
3541 static inline u64 sched_cfs_bandwidth_slice(void)
3542 {
3543 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3544 }
3545 
3546 /*
3547  * Replenish runtime according to assigned quota and update expiration time.
3548  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3549  * additional synchronization around rq->lock.
3550  *
3551  * requires cfs_b->lock
3552  */
3553 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3554 {
3555 	u64 now;
3556 
3557 	if (cfs_b->quota == RUNTIME_INF)
3558 		return;
3559 
3560 	now = sched_clock_cpu(smp_processor_id());
3561 	cfs_b->runtime = cfs_b->quota;
3562 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3563 }
3564 
3565 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3566 {
3567 	return &tg->cfs_bandwidth;
3568 }
3569 
3570 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3571 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3572 {
3573 	if (unlikely(cfs_rq->throttle_count))
3574 		return cfs_rq->throttled_clock_task;
3575 
3576 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3577 }
3578 
3579 /* returns 0 on failure to allocate runtime */
3580 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3581 {
3582 	struct task_group *tg = cfs_rq->tg;
3583 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3584 	u64 amount = 0, min_amount, expires;
3585 
3586 	/* note: this is a positive sum as runtime_remaining <= 0 */
3587 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3588 
3589 	raw_spin_lock(&cfs_b->lock);
3590 	if (cfs_b->quota == RUNTIME_INF)
3591 		amount = min_amount;
3592 	else {
3593 		start_cfs_bandwidth(cfs_b);
3594 
3595 		if (cfs_b->runtime > 0) {
3596 			amount = min(cfs_b->runtime, min_amount);
3597 			cfs_b->runtime -= amount;
3598 			cfs_b->idle = 0;
3599 		}
3600 	}
3601 	expires = cfs_b->runtime_expires;
3602 	raw_spin_unlock(&cfs_b->lock);
3603 
3604 	cfs_rq->runtime_remaining += amount;
3605 	/*
3606 	 * we may have advanced our local expiration to account for allowed
3607 	 * spread between our sched_clock and the one on which runtime was
3608 	 * issued.
3609 	 */
3610 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3611 		cfs_rq->runtime_expires = expires;
3612 
3613 	return cfs_rq->runtime_remaining > 0;
3614 }
3615 
3616 /*
3617  * Note: This depends on the synchronization provided by sched_clock and the
3618  * fact that rq->clock snapshots this value.
3619  */
3620 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3621 {
3622 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3623 
3624 	/* if the deadline is ahead of our clock, nothing to do */
3625 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3626 		return;
3627 
3628 	if (cfs_rq->runtime_remaining < 0)
3629 		return;
3630 
3631 	/*
3632 	 * If the local deadline has passed we have to consider the
3633 	 * possibility that our sched_clock is 'fast' and the global deadline
3634 	 * has not truly expired.
3635 	 *
3636 	 * Fortunately we can check determine whether this the case by checking
3637 	 * whether the global deadline has advanced. It is valid to compare
3638 	 * cfs_b->runtime_expires without any locks since we only care about
3639 	 * exact equality, so a partial write will still work.
3640 	 */
3641 
3642 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3643 		/* extend local deadline, drift is bounded above by 2 ticks */
3644 		cfs_rq->runtime_expires += TICK_NSEC;
3645 	} else {
3646 		/* global deadline is ahead, expiration has passed */
3647 		cfs_rq->runtime_remaining = 0;
3648 	}
3649 }
3650 
3651 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3652 {
3653 	/* dock delta_exec before expiring quota (as it could span periods) */
3654 	cfs_rq->runtime_remaining -= delta_exec;
3655 	expire_cfs_rq_runtime(cfs_rq);
3656 
3657 	if (likely(cfs_rq->runtime_remaining > 0))
3658 		return;
3659 
3660 	/*
3661 	 * if we're unable to extend our runtime we resched so that the active
3662 	 * hierarchy can be throttled
3663 	 */
3664 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3665 		resched_curr(rq_of(cfs_rq));
3666 }
3667 
3668 static __always_inline
3669 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3670 {
3671 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3672 		return;
3673 
3674 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3675 }
3676 
3677 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3678 {
3679 	return cfs_bandwidth_used() && cfs_rq->throttled;
3680 }
3681 
3682 /* check whether cfs_rq, or any parent, is throttled */
3683 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3684 {
3685 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3686 }
3687 
3688 /*
3689  * Ensure that neither of the group entities corresponding to src_cpu or
3690  * dest_cpu are members of a throttled hierarchy when performing group
3691  * load-balance operations.
3692  */
3693 static inline int throttled_lb_pair(struct task_group *tg,
3694 				    int src_cpu, int dest_cpu)
3695 {
3696 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3697 
3698 	src_cfs_rq = tg->cfs_rq[src_cpu];
3699 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3700 
3701 	return throttled_hierarchy(src_cfs_rq) ||
3702 	       throttled_hierarchy(dest_cfs_rq);
3703 }
3704 
3705 /* updated child weight may affect parent so we have to do this bottom up */
3706 static int tg_unthrottle_up(struct task_group *tg, void *data)
3707 {
3708 	struct rq *rq = data;
3709 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3710 
3711 	cfs_rq->throttle_count--;
3712 #ifdef CONFIG_SMP
3713 	if (!cfs_rq->throttle_count) {
3714 		/* adjust cfs_rq_clock_task() */
3715 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3716 					     cfs_rq->throttled_clock_task;
3717 	}
3718 #endif
3719 
3720 	return 0;
3721 }
3722 
3723 static int tg_throttle_down(struct task_group *tg, void *data)
3724 {
3725 	struct rq *rq = data;
3726 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3727 
3728 	/* group is entering throttled state, stop time */
3729 	if (!cfs_rq->throttle_count)
3730 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3731 	cfs_rq->throttle_count++;
3732 
3733 	return 0;
3734 }
3735 
3736 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3737 {
3738 	struct rq *rq = rq_of(cfs_rq);
3739 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3740 	struct sched_entity *se;
3741 	long task_delta, dequeue = 1;
3742 	bool empty;
3743 
3744 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3745 
3746 	/* freeze hierarchy runnable averages while throttled */
3747 	rcu_read_lock();
3748 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3749 	rcu_read_unlock();
3750 
3751 	task_delta = cfs_rq->h_nr_running;
3752 	for_each_sched_entity(se) {
3753 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3754 		/* throttled entity or throttle-on-deactivate */
3755 		if (!se->on_rq)
3756 			break;
3757 
3758 		if (dequeue)
3759 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3760 		qcfs_rq->h_nr_running -= task_delta;
3761 
3762 		if (qcfs_rq->load.weight)
3763 			dequeue = 0;
3764 	}
3765 
3766 	if (!se)
3767 		sub_nr_running(rq, task_delta);
3768 
3769 	cfs_rq->throttled = 1;
3770 	cfs_rq->throttled_clock = rq_clock(rq);
3771 	raw_spin_lock(&cfs_b->lock);
3772 	empty = list_empty(&cfs_b->throttled_cfs_rq);
3773 
3774 	/*
3775 	 * Add to the _head_ of the list, so that an already-started
3776 	 * distribute_cfs_runtime will not see us
3777 	 */
3778 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3779 
3780 	/*
3781 	 * If we're the first throttled task, make sure the bandwidth
3782 	 * timer is running.
3783 	 */
3784 	if (empty)
3785 		start_cfs_bandwidth(cfs_b);
3786 
3787 	raw_spin_unlock(&cfs_b->lock);
3788 }
3789 
3790 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3791 {
3792 	struct rq *rq = rq_of(cfs_rq);
3793 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3794 	struct sched_entity *se;
3795 	int enqueue = 1;
3796 	long task_delta;
3797 
3798 	se = cfs_rq->tg->se[cpu_of(rq)];
3799 
3800 	cfs_rq->throttled = 0;
3801 
3802 	update_rq_clock(rq);
3803 
3804 	raw_spin_lock(&cfs_b->lock);
3805 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3806 	list_del_rcu(&cfs_rq->throttled_list);
3807 	raw_spin_unlock(&cfs_b->lock);
3808 
3809 	/* update hierarchical throttle state */
3810 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3811 
3812 	if (!cfs_rq->load.weight)
3813 		return;
3814 
3815 	task_delta = cfs_rq->h_nr_running;
3816 	for_each_sched_entity(se) {
3817 		if (se->on_rq)
3818 			enqueue = 0;
3819 
3820 		cfs_rq = cfs_rq_of(se);
3821 		if (enqueue)
3822 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3823 		cfs_rq->h_nr_running += task_delta;
3824 
3825 		if (cfs_rq_throttled(cfs_rq))
3826 			break;
3827 	}
3828 
3829 	if (!se)
3830 		add_nr_running(rq, task_delta);
3831 
3832 	/* determine whether we need to wake up potentially idle cpu */
3833 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3834 		resched_curr(rq);
3835 }
3836 
3837 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3838 		u64 remaining, u64 expires)
3839 {
3840 	struct cfs_rq *cfs_rq;
3841 	u64 runtime;
3842 	u64 starting_runtime = remaining;
3843 
3844 	rcu_read_lock();
3845 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3846 				throttled_list) {
3847 		struct rq *rq = rq_of(cfs_rq);
3848 
3849 		raw_spin_lock(&rq->lock);
3850 		if (!cfs_rq_throttled(cfs_rq))
3851 			goto next;
3852 
3853 		runtime = -cfs_rq->runtime_remaining + 1;
3854 		if (runtime > remaining)
3855 			runtime = remaining;
3856 		remaining -= runtime;
3857 
3858 		cfs_rq->runtime_remaining += runtime;
3859 		cfs_rq->runtime_expires = expires;
3860 
3861 		/* we check whether we're throttled above */
3862 		if (cfs_rq->runtime_remaining > 0)
3863 			unthrottle_cfs_rq(cfs_rq);
3864 
3865 next:
3866 		raw_spin_unlock(&rq->lock);
3867 
3868 		if (!remaining)
3869 			break;
3870 	}
3871 	rcu_read_unlock();
3872 
3873 	return starting_runtime - remaining;
3874 }
3875 
3876 /*
3877  * Responsible for refilling a task_group's bandwidth and unthrottling its
3878  * cfs_rqs as appropriate. If there has been no activity within the last
3879  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3880  * used to track this state.
3881  */
3882 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3883 {
3884 	u64 runtime, runtime_expires;
3885 	int throttled;
3886 
3887 	/* no need to continue the timer with no bandwidth constraint */
3888 	if (cfs_b->quota == RUNTIME_INF)
3889 		goto out_deactivate;
3890 
3891 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3892 	cfs_b->nr_periods += overrun;
3893 
3894 	/*
3895 	 * idle depends on !throttled (for the case of a large deficit), and if
3896 	 * we're going inactive then everything else can be deferred
3897 	 */
3898 	if (cfs_b->idle && !throttled)
3899 		goto out_deactivate;
3900 
3901 	__refill_cfs_bandwidth_runtime(cfs_b);
3902 
3903 	if (!throttled) {
3904 		/* mark as potentially idle for the upcoming period */
3905 		cfs_b->idle = 1;
3906 		return 0;
3907 	}
3908 
3909 	/* account preceding periods in which throttling occurred */
3910 	cfs_b->nr_throttled += overrun;
3911 
3912 	runtime_expires = cfs_b->runtime_expires;
3913 
3914 	/*
3915 	 * This check is repeated as we are holding onto the new bandwidth while
3916 	 * we unthrottle. This can potentially race with an unthrottled group
3917 	 * trying to acquire new bandwidth from the global pool. This can result
3918 	 * in us over-using our runtime if it is all used during this loop, but
3919 	 * only by limited amounts in that extreme case.
3920 	 */
3921 	while (throttled && cfs_b->runtime > 0) {
3922 		runtime = cfs_b->runtime;
3923 		raw_spin_unlock(&cfs_b->lock);
3924 		/* we can't nest cfs_b->lock while distributing bandwidth */
3925 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3926 						 runtime_expires);
3927 		raw_spin_lock(&cfs_b->lock);
3928 
3929 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3930 
3931 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3932 	}
3933 
3934 	/*
3935 	 * While we are ensured activity in the period following an
3936 	 * unthrottle, this also covers the case in which the new bandwidth is
3937 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3938 	 * timer to remain active while there are any throttled entities.)
3939 	 */
3940 	cfs_b->idle = 0;
3941 
3942 	return 0;
3943 
3944 out_deactivate:
3945 	return 1;
3946 }
3947 
3948 /* a cfs_rq won't donate quota below this amount */
3949 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3950 /* minimum remaining period time to redistribute slack quota */
3951 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3952 /* how long we wait to gather additional slack before distributing */
3953 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3954 
3955 /*
3956  * Are we near the end of the current quota period?
3957  *
3958  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3959  * hrtimer base being cleared by hrtimer_start. In the case of
3960  * migrate_hrtimers, base is never cleared, so we are fine.
3961  */
3962 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3963 {
3964 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3965 	u64 remaining;
3966 
3967 	/* if the call-back is running a quota refresh is already occurring */
3968 	if (hrtimer_callback_running(refresh_timer))
3969 		return 1;
3970 
3971 	/* is a quota refresh about to occur? */
3972 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3973 	if (remaining < min_expire)
3974 		return 1;
3975 
3976 	return 0;
3977 }
3978 
3979 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3980 {
3981 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3982 
3983 	/* if there's a quota refresh soon don't bother with slack */
3984 	if (runtime_refresh_within(cfs_b, min_left))
3985 		return;
3986 
3987 	hrtimer_start(&cfs_b->slack_timer,
3988 			ns_to_ktime(cfs_bandwidth_slack_period),
3989 			HRTIMER_MODE_REL);
3990 }
3991 
3992 /* we know any runtime found here is valid as update_curr() precedes return */
3993 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3994 {
3995 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3996 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3997 
3998 	if (slack_runtime <= 0)
3999 		return;
4000 
4001 	raw_spin_lock(&cfs_b->lock);
4002 	if (cfs_b->quota != RUNTIME_INF &&
4003 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4004 		cfs_b->runtime += slack_runtime;
4005 
4006 		/* we are under rq->lock, defer unthrottling using a timer */
4007 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4008 		    !list_empty(&cfs_b->throttled_cfs_rq))
4009 			start_cfs_slack_bandwidth(cfs_b);
4010 	}
4011 	raw_spin_unlock(&cfs_b->lock);
4012 
4013 	/* even if it's not valid for return we don't want to try again */
4014 	cfs_rq->runtime_remaining -= slack_runtime;
4015 }
4016 
4017 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4018 {
4019 	if (!cfs_bandwidth_used())
4020 		return;
4021 
4022 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4023 		return;
4024 
4025 	__return_cfs_rq_runtime(cfs_rq);
4026 }
4027 
4028 /*
4029  * This is done with a timer (instead of inline with bandwidth return) since
4030  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4031  */
4032 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4033 {
4034 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4035 	u64 expires;
4036 
4037 	/* confirm we're still not at a refresh boundary */
4038 	raw_spin_lock(&cfs_b->lock);
4039 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4040 		raw_spin_unlock(&cfs_b->lock);
4041 		return;
4042 	}
4043 
4044 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4045 		runtime = cfs_b->runtime;
4046 
4047 	expires = cfs_b->runtime_expires;
4048 	raw_spin_unlock(&cfs_b->lock);
4049 
4050 	if (!runtime)
4051 		return;
4052 
4053 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4054 
4055 	raw_spin_lock(&cfs_b->lock);
4056 	if (expires == cfs_b->runtime_expires)
4057 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4058 	raw_spin_unlock(&cfs_b->lock);
4059 }
4060 
4061 /*
4062  * When a group wakes up we want to make sure that its quota is not already
4063  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4064  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4065  */
4066 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4067 {
4068 	if (!cfs_bandwidth_used())
4069 		return;
4070 
4071 	/* an active group must be handled by the update_curr()->put() path */
4072 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4073 		return;
4074 
4075 	/* ensure the group is not already throttled */
4076 	if (cfs_rq_throttled(cfs_rq))
4077 		return;
4078 
4079 	/* update runtime allocation */
4080 	account_cfs_rq_runtime(cfs_rq, 0);
4081 	if (cfs_rq->runtime_remaining <= 0)
4082 		throttle_cfs_rq(cfs_rq);
4083 }
4084 
4085 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4086 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4087 {
4088 	if (!cfs_bandwidth_used())
4089 		return false;
4090 
4091 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4092 		return false;
4093 
4094 	/*
4095 	 * it's possible for a throttled entity to be forced into a running
4096 	 * state (e.g. set_curr_task), in this case we're finished.
4097 	 */
4098 	if (cfs_rq_throttled(cfs_rq))
4099 		return true;
4100 
4101 	throttle_cfs_rq(cfs_rq);
4102 	return true;
4103 }
4104 
4105 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4106 {
4107 	struct cfs_bandwidth *cfs_b =
4108 		container_of(timer, struct cfs_bandwidth, slack_timer);
4109 
4110 	do_sched_cfs_slack_timer(cfs_b);
4111 
4112 	return HRTIMER_NORESTART;
4113 }
4114 
4115 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4116 {
4117 	struct cfs_bandwidth *cfs_b =
4118 		container_of(timer, struct cfs_bandwidth, period_timer);
4119 	int overrun;
4120 	int idle = 0;
4121 
4122 	raw_spin_lock(&cfs_b->lock);
4123 	for (;;) {
4124 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4125 		if (!overrun)
4126 			break;
4127 
4128 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4129 	}
4130 	if (idle)
4131 		cfs_b->period_active = 0;
4132 	raw_spin_unlock(&cfs_b->lock);
4133 
4134 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4135 }
4136 
4137 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4138 {
4139 	raw_spin_lock_init(&cfs_b->lock);
4140 	cfs_b->runtime = 0;
4141 	cfs_b->quota = RUNTIME_INF;
4142 	cfs_b->period = ns_to_ktime(default_cfs_period());
4143 
4144 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4145 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4146 	cfs_b->period_timer.function = sched_cfs_period_timer;
4147 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4148 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4149 }
4150 
4151 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4152 {
4153 	cfs_rq->runtime_enabled = 0;
4154 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4155 }
4156 
4157 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4158 {
4159 	lockdep_assert_held(&cfs_b->lock);
4160 
4161 	if (!cfs_b->period_active) {
4162 		cfs_b->period_active = 1;
4163 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4164 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4165 	}
4166 }
4167 
4168 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4169 {
4170 	/* init_cfs_bandwidth() was not called */
4171 	if (!cfs_b->throttled_cfs_rq.next)
4172 		return;
4173 
4174 	hrtimer_cancel(&cfs_b->period_timer);
4175 	hrtimer_cancel(&cfs_b->slack_timer);
4176 }
4177 
4178 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4179 {
4180 	struct cfs_rq *cfs_rq;
4181 
4182 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4183 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4184 
4185 		raw_spin_lock(&cfs_b->lock);
4186 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4187 		raw_spin_unlock(&cfs_b->lock);
4188 	}
4189 }
4190 
4191 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4192 {
4193 	struct cfs_rq *cfs_rq;
4194 
4195 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4196 		if (!cfs_rq->runtime_enabled)
4197 			continue;
4198 
4199 		/*
4200 		 * clock_task is not advancing so we just need to make sure
4201 		 * there's some valid quota amount
4202 		 */
4203 		cfs_rq->runtime_remaining = 1;
4204 		/*
4205 		 * Offline rq is schedulable till cpu is completely disabled
4206 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4207 		 */
4208 		cfs_rq->runtime_enabled = 0;
4209 
4210 		if (cfs_rq_throttled(cfs_rq))
4211 			unthrottle_cfs_rq(cfs_rq);
4212 	}
4213 }
4214 
4215 #else /* CONFIG_CFS_BANDWIDTH */
4216 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4217 {
4218 	return rq_clock_task(rq_of(cfs_rq));
4219 }
4220 
4221 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4222 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4223 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4224 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4225 
4226 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4227 {
4228 	return 0;
4229 }
4230 
4231 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4232 {
4233 	return 0;
4234 }
4235 
4236 static inline int throttled_lb_pair(struct task_group *tg,
4237 				    int src_cpu, int dest_cpu)
4238 {
4239 	return 0;
4240 }
4241 
4242 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4243 
4244 #ifdef CONFIG_FAIR_GROUP_SCHED
4245 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4246 #endif
4247 
4248 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4249 {
4250 	return NULL;
4251 }
4252 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4253 static inline void update_runtime_enabled(struct rq *rq) {}
4254 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4255 
4256 #endif /* CONFIG_CFS_BANDWIDTH */
4257 
4258 /**************************************************
4259  * CFS operations on tasks:
4260  */
4261 
4262 #ifdef CONFIG_SCHED_HRTICK
4263 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4264 {
4265 	struct sched_entity *se = &p->se;
4266 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4267 
4268 	WARN_ON(task_rq(p) != rq);
4269 
4270 	if (cfs_rq->nr_running > 1) {
4271 		u64 slice = sched_slice(cfs_rq, se);
4272 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4273 		s64 delta = slice - ran;
4274 
4275 		if (delta < 0) {
4276 			if (rq->curr == p)
4277 				resched_curr(rq);
4278 			return;
4279 		}
4280 		hrtick_start(rq, delta);
4281 	}
4282 }
4283 
4284 /*
4285  * called from enqueue/dequeue and updates the hrtick when the
4286  * current task is from our class and nr_running is low enough
4287  * to matter.
4288  */
4289 static void hrtick_update(struct rq *rq)
4290 {
4291 	struct task_struct *curr = rq->curr;
4292 
4293 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4294 		return;
4295 
4296 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4297 		hrtick_start_fair(rq, curr);
4298 }
4299 #else /* !CONFIG_SCHED_HRTICK */
4300 static inline void
4301 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4302 {
4303 }
4304 
4305 static inline void hrtick_update(struct rq *rq)
4306 {
4307 }
4308 #endif
4309 
4310 /*
4311  * The enqueue_task method is called before nr_running is
4312  * increased. Here we update the fair scheduling stats and
4313  * then put the task into the rbtree:
4314  */
4315 static void
4316 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4317 {
4318 	struct cfs_rq *cfs_rq;
4319 	struct sched_entity *se = &p->se;
4320 
4321 	for_each_sched_entity(se) {
4322 		if (se->on_rq)
4323 			break;
4324 		cfs_rq = cfs_rq_of(se);
4325 		enqueue_entity(cfs_rq, se, flags);
4326 
4327 		/*
4328 		 * end evaluation on encountering a throttled cfs_rq
4329 		 *
4330 		 * note: in the case of encountering a throttled cfs_rq we will
4331 		 * post the final h_nr_running increment below.
4332 		*/
4333 		if (cfs_rq_throttled(cfs_rq))
4334 			break;
4335 		cfs_rq->h_nr_running++;
4336 
4337 		flags = ENQUEUE_WAKEUP;
4338 	}
4339 
4340 	for_each_sched_entity(se) {
4341 		cfs_rq = cfs_rq_of(se);
4342 		cfs_rq->h_nr_running++;
4343 
4344 		if (cfs_rq_throttled(cfs_rq))
4345 			break;
4346 
4347 		update_load_avg(se, 1);
4348 		update_cfs_shares(cfs_rq);
4349 	}
4350 
4351 	if (!se)
4352 		add_nr_running(rq, 1);
4353 
4354 	hrtick_update(rq);
4355 }
4356 
4357 static void set_next_buddy(struct sched_entity *se);
4358 
4359 /*
4360  * The dequeue_task method is called before nr_running is
4361  * decreased. We remove the task from the rbtree and
4362  * update the fair scheduling stats:
4363  */
4364 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4365 {
4366 	struct cfs_rq *cfs_rq;
4367 	struct sched_entity *se = &p->se;
4368 	int task_sleep = flags & DEQUEUE_SLEEP;
4369 
4370 	for_each_sched_entity(se) {
4371 		cfs_rq = cfs_rq_of(se);
4372 		dequeue_entity(cfs_rq, se, flags);
4373 
4374 		/*
4375 		 * end evaluation on encountering a throttled cfs_rq
4376 		 *
4377 		 * note: in the case of encountering a throttled cfs_rq we will
4378 		 * post the final h_nr_running decrement below.
4379 		*/
4380 		if (cfs_rq_throttled(cfs_rq))
4381 			break;
4382 		cfs_rq->h_nr_running--;
4383 
4384 		/* Don't dequeue parent if it has other entities besides us */
4385 		if (cfs_rq->load.weight) {
4386 			/*
4387 			 * Bias pick_next to pick a task from this cfs_rq, as
4388 			 * p is sleeping when it is within its sched_slice.
4389 			 */
4390 			if (task_sleep && parent_entity(se))
4391 				set_next_buddy(parent_entity(se));
4392 
4393 			/* avoid re-evaluating load for this entity */
4394 			se = parent_entity(se);
4395 			break;
4396 		}
4397 		flags |= DEQUEUE_SLEEP;
4398 	}
4399 
4400 	for_each_sched_entity(se) {
4401 		cfs_rq = cfs_rq_of(se);
4402 		cfs_rq->h_nr_running--;
4403 
4404 		if (cfs_rq_throttled(cfs_rq))
4405 			break;
4406 
4407 		update_load_avg(se, 1);
4408 		update_cfs_shares(cfs_rq);
4409 	}
4410 
4411 	if (!se)
4412 		sub_nr_running(rq, 1);
4413 
4414 	hrtick_update(rq);
4415 }
4416 
4417 #ifdef CONFIG_SMP
4418 
4419 /*
4420  * per rq 'load' arrray crap; XXX kill this.
4421  */
4422 
4423 /*
4424  * The exact cpuload calculated at every tick would be:
4425  *
4426  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4427  *
4428  * If a cpu misses updates for n ticks (as it was idle) and update gets
4429  * called on the n+1-th tick when cpu may be busy, then we have:
4430  *
4431  *   load_n   = (1 - 1/2^i)^n * load_0
4432  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4433  *
4434  * decay_load_missed() below does efficient calculation of
4435  *
4436  *   load' = (1 - 1/2^i)^n * load
4437  *
4438  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4439  * This allows us to precompute the above in said factors, thereby allowing the
4440  * reduction of an arbitrary n in O(log_2 n) steps. (See also
4441  * fixed_power_int())
4442  *
4443  * The calculation is approximated on a 128 point scale.
4444  */
4445 #define DEGRADE_SHIFT		7
4446 
4447 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4448 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4449 	{   0,   0,  0,  0,  0,  0, 0, 0 },
4450 	{  64,  32,  8,  0,  0,  0, 0, 0 },
4451 	{  96,  72, 40, 12,  1,  0, 0, 0 },
4452 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4453 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4454 };
4455 
4456 /*
4457  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4458  * would be when CPU is idle and so we just decay the old load without
4459  * adding any new load.
4460  */
4461 static unsigned long
4462 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4463 {
4464 	int j = 0;
4465 
4466 	if (!missed_updates)
4467 		return load;
4468 
4469 	if (missed_updates >= degrade_zero_ticks[idx])
4470 		return 0;
4471 
4472 	if (idx == 1)
4473 		return load >> missed_updates;
4474 
4475 	while (missed_updates) {
4476 		if (missed_updates % 2)
4477 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4478 
4479 		missed_updates >>= 1;
4480 		j++;
4481 	}
4482 	return load;
4483 }
4484 
4485 /**
4486  * __update_cpu_load - update the rq->cpu_load[] statistics
4487  * @this_rq: The rq to update statistics for
4488  * @this_load: The current load
4489  * @pending_updates: The number of missed updates
4490  * @active: !0 for NOHZ_FULL
4491  *
4492  * Update rq->cpu_load[] statistics. This function is usually called every
4493  * scheduler tick (TICK_NSEC).
4494  *
4495  * This function computes a decaying average:
4496  *
4497  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4498  *
4499  * Because of NOHZ it might not get called on every tick which gives need for
4500  * the @pending_updates argument.
4501  *
4502  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4503  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4504  *             = A * (A * load[i]_n-2 + B) + B
4505  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4506  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4507  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4508  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4509  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4510  *
4511  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4512  * any change in load would have resulted in the tick being turned back on.
4513  *
4514  * For regular NOHZ, this reduces to:
4515  *
4516  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4517  *
4518  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4519  * term. See the @active paramter.
4520  */
4521 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4522 			      unsigned long pending_updates, int active)
4523 {
4524 	unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4525 	int i, scale;
4526 
4527 	this_rq->nr_load_updates++;
4528 
4529 	/* Update our load: */
4530 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4531 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4532 		unsigned long old_load, new_load;
4533 
4534 		/* scale is effectively 1 << i now, and >> i divides by scale */
4535 
4536 		old_load = this_rq->cpu_load[i];
4537 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4538 		if (tickless_load) {
4539 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4540 			/*
4541 			 * old_load can never be a negative value because a
4542 			 * decayed tickless_load cannot be greater than the
4543 			 * original tickless_load.
4544 			 */
4545 			old_load += tickless_load;
4546 		}
4547 		new_load = this_load;
4548 		/*
4549 		 * Round up the averaging division if load is increasing. This
4550 		 * prevents us from getting stuck on 9 if the load is 10, for
4551 		 * example.
4552 		 */
4553 		if (new_load > old_load)
4554 			new_load += scale - 1;
4555 
4556 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4557 	}
4558 
4559 	sched_avg_update(this_rq);
4560 }
4561 
4562 /* Used instead of source_load when we know the type == 0 */
4563 static unsigned long weighted_cpuload(const int cpu)
4564 {
4565 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4566 }
4567 
4568 #ifdef CONFIG_NO_HZ_COMMON
4569 static void __update_cpu_load_nohz(struct rq *this_rq,
4570 				   unsigned long curr_jiffies,
4571 				   unsigned long load,
4572 				   int active)
4573 {
4574 	unsigned long pending_updates;
4575 
4576 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4577 	if (pending_updates) {
4578 		this_rq->last_load_update_tick = curr_jiffies;
4579 		/*
4580 		 * In the regular NOHZ case, we were idle, this means load 0.
4581 		 * In the NOHZ_FULL case, we were non-idle, we should consider
4582 		 * its weighted load.
4583 		 */
4584 		__update_cpu_load(this_rq, load, pending_updates, active);
4585 	}
4586 }
4587 
4588 /*
4589  * There is no sane way to deal with nohz on smp when using jiffies because the
4590  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4591  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4592  *
4593  * Therefore we cannot use the delta approach from the regular tick since that
4594  * would seriously skew the load calculation. However we'll make do for those
4595  * updates happening while idle (nohz_idle_balance) or coming out of idle
4596  * (tick_nohz_idle_exit).
4597  *
4598  * This means we might still be one tick off for nohz periods.
4599  */
4600 
4601 /*
4602  * Called from nohz_idle_balance() to update the load ratings before doing the
4603  * idle balance.
4604  */
4605 static void update_cpu_load_idle(struct rq *this_rq)
4606 {
4607 	/*
4608 	 * bail if there's load or we're actually up-to-date.
4609 	 */
4610 	if (weighted_cpuload(cpu_of(this_rq)))
4611 		return;
4612 
4613 	__update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4614 }
4615 
4616 /*
4617  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4618  */
4619 void update_cpu_load_nohz(int active)
4620 {
4621 	struct rq *this_rq = this_rq();
4622 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4623 	unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4624 
4625 	if (curr_jiffies == this_rq->last_load_update_tick)
4626 		return;
4627 
4628 	raw_spin_lock(&this_rq->lock);
4629 	__update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4630 	raw_spin_unlock(&this_rq->lock);
4631 }
4632 #endif /* CONFIG_NO_HZ */
4633 
4634 /*
4635  * Called from scheduler_tick()
4636  */
4637 void update_cpu_load_active(struct rq *this_rq)
4638 {
4639 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4640 	/*
4641 	 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4642 	 */
4643 	this_rq->last_load_update_tick = jiffies;
4644 	__update_cpu_load(this_rq, load, 1, 1);
4645 }
4646 
4647 /*
4648  * Return a low guess at the load of a migration-source cpu weighted
4649  * according to the scheduling class and "nice" value.
4650  *
4651  * We want to under-estimate the load of migration sources, to
4652  * balance conservatively.
4653  */
4654 static unsigned long source_load(int cpu, int type)
4655 {
4656 	struct rq *rq = cpu_rq(cpu);
4657 	unsigned long total = weighted_cpuload(cpu);
4658 
4659 	if (type == 0 || !sched_feat(LB_BIAS))
4660 		return total;
4661 
4662 	return min(rq->cpu_load[type-1], total);
4663 }
4664 
4665 /*
4666  * Return a high guess at the load of a migration-target cpu weighted
4667  * according to the scheduling class and "nice" value.
4668  */
4669 static unsigned long target_load(int cpu, int type)
4670 {
4671 	struct rq *rq = cpu_rq(cpu);
4672 	unsigned long total = weighted_cpuload(cpu);
4673 
4674 	if (type == 0 || !sched_feat(LB_BIAS))
4675 		return total;
4676 
4677 	return max(rq->cpu_load[type-1], total);
4678 }
4679 
4680 static unsigned long capacity_of(int cpu)
4681 {
4682 	return cpu_rq(cpu)->cpu_capacity;
4683 }
4684 
4685 static unsigned long capacity_orig_of(int cpu)
4686 {
4687 	return cpu_rq(cpu)->cpu_capacity_orig;
4688 }
4689 
4690 static unsigned long cpu_avg_load_per_task(int cpu)
4691 {
4692 	struct rq *rq = cpu_rq(cpu);
4693 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4694 	unsigned long load_avg = weighted_cpuload(cpu);
4695 
4696 	if (nr_running)
4697 		return load_avg / nr_running;
4698 
4699 	return 0;
4700 }
4701 
4702 static void record_wakee(struct task_struct *p)
4703 {
4704 	/*
4705 	 * Rough decay (wiping) for cost saving, don't worry
4706 	 * about the boundary, really active task won't care
4707 	 * about the loss.
4708 	 */
4709 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4710 		current->wakee_flips >>= 1;
4711 		current->wakee_flip_decay_ts = jiffies;
4712 	}
4713 
4714 	if (current->last_wakee != p) {
4715 		current->last_wakee = p;
4716 		current->wakee_flips++;
4717 	}
4718 }
4719 
4720 static void task_waking_fair(struct task_struct *p)
4721 {
4722 	struct sched_entity *se = &p->se;
4723 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4724 	u64 min_vruntime;
4725 
4726 #ifndef CONFIG_64BIT
4727 	u64 min_vruntime_copy;
4728 
4729 	do {
4730 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4731 		smp_rmb();
4732 		min_vruntime = cfs_rq->min_vruntime;
4733 	} while (min_vruntime != min_vruntime_copy);
4734 #else
4735 	min_vruntime = cfs_rq->min_vruntime;
4736 #endif
4737 
4738 	se->vruntime -= min_vruntime;
4739 	record_wakee(p);
4740 }
4741 
4742 #ifdef CONFIG_FAIR_GROUP_SCHED
4743 /*
4744  * effective_load() calculates the load change as seen from the root_task_group
4745  *
4746  * Adding load to a group doesn't make a group heavier, but can cause movement
4747  * of group shares between cpus. Assuming the shares were perfectly aligned one
4748  * can calculate the shift in shares.
4749  *
4750  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4751  * on this @cpu and results in a total addition (subtraction) of @wg to the
4752  * total group weight.
4753  *
4754  * Given a runqueue weight distribution (rw_i) we can compute a shares
4755  * distribution (s_i) using:
4756  *
4757  *   s_i = rw_i / \Sum rw_j						(1)
4758  *
4759  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4760  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4761  * shares distribution (s_i):
4762  *
4763  *   rw_i = {   2,   4,   1,   0 }
4764  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4765  *
4766  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4767  * task used to run on and the CPU the waker is running on), we need to
4768  * compute the effect of waking a task on either CPU and, in case of a sync
4769  * wakeup, compute the effect of the current task going to sleep.
4770  *
4771  * So for a change of @wl to the local @cpu with an overall group weight change
4772  * of @wl we can compute the new shares distribution (s'_i) using:
4773  *
4774  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4775  *
4776  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4777  * differences in waking a task to CPU 0. The additional task changes the
4778  * weight and shares distributions like:
4779  *
4780  *   rw'_i = {   3,   4,   1,   0 }
4781  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4782  *
4783  * We can then compute the difference in effective weight by using:
4784  *
4785  *   dw_i = S * (s'_i - s_i)						(3)
4786  *
4787  * Where 'S' is the group weight as seen by its parent.
4788  *
4789  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4790  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4791  * 4/7) times the weight of the group.
4792  */
4793 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4794 {
4795 	struct sched_entity *se = tg->se[cpu];
4796 
4797 	if (!tg->parent)	/* the trivial, non-cgroup case */
4798 		return wl;
4799 
4800 	for_each_sched_entity(se) {
4801 		long w, W;
4802 
4803 		tg = se->my_q->tg;
4804 
4805 		/*
4806 		 * W = @wg + \Sum rw_j
4807 		 */
4808 		W = wg + calc_tg_weight(tg, se->my_q);
4809 
4810 		/*
4811 		 * w = rw_i + @wl
4812 		 */
4813 		w = cfs_rq_load_avg(se->my_q) + wl;
4814 
4815 		/*
4816 		 * wl = S * s'_i; see (2)
4817 		 */
4818 		if (W > 0 && w < W)
4819 			wl = (w * (long)tg->shares) / W;
4820 		else
4821 			wl = tg->shares;
4822 
4823 		/*
4824 		 * Per the above, wl is the new se->load.weight value; since
4825 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4826 		 * calc_cfs_shares().
4827 		 */
4828 		if (wl < MIN_SHARES)
4829 			wl = MIN_SHARES;
4830 
4831 		/*
4832 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4833 		 */
4834 		wl -= se->avg.load_avg;
4835 
4836 		/*
4837 		 * Recursively apply this logic to all parent groups to compute
4838 		 * the final effective load change on the root group. Since
4839 		 * only the @tg group gets extra weight, all parent groups can
4840 		 * only redistribute existing shares. @wl is the shift in shares
4841 		 * resulting from this level per the above.
4842 		 */
4843 		wg = 0;
4844 	}
4845 
4846 	return wl;
4847 }
4848 #else
4849 
4850 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4851 {
4852 	return wl;
4853 }
4854 
4855 #endif
4856 
4857 /*
4858  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4859  * A waker of many should wake a different task than the one last awakened
4860  * at a frequency roughly N times higher than one of its wakees.  In order
4861  * to determine whether we should let the load spread vs consolodating to
4862  * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4863  * partner, and a factor of lls_size higher frequency in the other.  With
4864  * both conditions met, we can be relatively sure that the relationship is
4865  * non-monogamous, with partner count exceeding socket size.  Waker/wakee
4866  * being client/server, worker/dispatcher, interrupt source or whatever is
4867  * irrelevant, spread criteria is apparent partner count exceeds socket size.
4868  */
4869 static int wake_wide(struct task_struct *p)
4870 {
4871 	unsigned int master = current->wakee_flips;
4872 	unsigned int slave = p->wakee_flips;
4873 	int factor = this_cpu_read(sd_llc_size);
4874 
4875 	if (master < slave)
4876 		swap(master, slave);
4877 	if (slave < factor || master < slave * factor)
4878 		return 0;
4879 	return 1;
4880 }
4881 
4882 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4883 {
4884 	s64 this_load, load;
4885 	s64 this_eff_load, prev_eff_load;
4886 	int idx, this_cpu, prev_cpu;
4887 	struct task_group *tg;
4888 	unsigned long weight;
4889 	int balanced;
4890 
4891 	idx	  = sd->wake_idx;
4892 	this_cpu  = smp_processor_id();
4893 	prev_cpu  = task_cpu(p);
4894 	load	  = source_load(prev_cpu, idx);
4895 	this_load = target_load(this_cpu, idx);
4896 
4897 	/*
4898 	 * If sync wakeup then subtract the (maximum possible)
4899 	 * effect of the currently running task from the load
4900 	 * of the current CPU:
4901 	 */
4902 	if (sync) {
4903 		tg = task_group(current);
4904 		weight = current->se.avg.load_avg;
4905 
4906 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4907 		load += effective_load(tg, prev_cpu, 0, -weight);
4908 	}
4909 
4910 	tg = task_group(p);
4911 	weight = p->se.avg.load_avg;
4912 
4913 	/*
4914 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4915 	 * due to the sync cause above having dropped this_load to 0, we'll
4916 	 * always have an imbalance, but there's really nothing you can do
4917 	 * about that, so that's good too.
4918 	 *
4919 	 * Otherwise check if either cpus are near enough in load to allow this
4920 	 * task to be woken on this_cpu.
4921 	 */
4922 	this_eff_load = 100;
4923 	this_eff_load *= capacity_of(prev_cpu);
4924 
4925 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4926 	prev_eff_load *= capacity_of(this_cpu);
4927 
4928 	if (this_load > 0) {
4929 		this_eff_load *= this_load +
4930 			effective_load(tg, this_cpu, weight, weight);
4931 
4932 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4933 	}
4934 
4935 	balanced = this_eff_load <= prev_eff_load;
4936 
4937 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4938 
4939 	if (!balanced)
4940 		return 0;
4941 
4942 	schedstat_inc(sd, ttwu_move_affine);
4943 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4944 
4945 	return 1;
4946 }
4947 
4948 /*
4949  * find_idlest_group finds and returns the least busy CPU group within the
4950  * domain.
4951  */
4952 static struct sched_group *
4953 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4954 		  int this_cpu, int sd_flag)
4955 {
4956 	struct sched_group *idlest = NULL, *group = sd->groups;
4957 	unsigned long min_load = ULONG_MAX, this_load = 0;
4958 	int load_idx = sd->forkexec_idx;
4959 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4960 
4961 	if (sd_flag & SD_BALANCE_WAKE)
4962 		load_idx = sd->wake_idx;
4963 
4964 	do {
4965 		unsigned long load, avg_load;
4966 		int local_group;
4967 		int i;
4968 
4969 		/* Skip over this group if it has no CPUs allowed */
4970 		if (!cpumask_intersects(sched_group_cpus(group),
4971 					tsk_cpus_allowed(p)))
4972 			continue;
4973 
4974 		local_group = cpumask_test_cpu(this_cpu,
4975 					       sched_group_cpus(group));
4976 
4977 		/* Tally up the load of all CPUs in the group */
4978 		avg_load = 0;
4979 
4980 		for_each_cpu(i, sched_group_cpus(group)) {
4981 			/* Bias balancing toward cpus of our domain */
4982 			if (local_group)
4983 				load = source_load(i, load_idx);
4984 			else
4985 				load = target_load(i, load_idx);
4986 
4987 			avg_load += load;
4988 		}
4989 
4990 		/* Adjust by relative CPU capacity of the group */
4991 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4992 
4993 		if (local_group) {
4994 			this_load = avg_load;
4995 		} else if (avg_load < min_load) {
4996 			min_load = avg_load;
4997 			idlest = group;
4998 		}
4999 	} while (group = group->next, group != sd->groups);
5000 
5001 	if (!idlest || 100*this_load < imbalance*min_load)
5002 		return NULL;
5003 	return idlest;
5004 }
5005 
5006 /*
5007  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5008  */
5009 static int
5010 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5011 {
5012 	unsigned long load, min_load = ULONG_MAX;
5013 	unsigned int min_exit_latency = UINT_MAX;
5014 	u64 latest_idle_timestamp = 0;
5015 	int least_loaded_cpu = this_cpu;
5016 	int shallowest_idle_cpu = -1;
5017 	int i;
5018 
5019 	/* Traverse only the allowed CPUs */
5020 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5021 		if (idle_cpu(i)) {
5022 			struct rq *rq = cpu_rq(i);
5023 			struct cpuidle_state *idle = idle_get_state(rq);
5024 			if (idle && idle->exit_latency < min_exit_latency) {
5025 				/*
5026 				 * We give priority to a CPU whose idle state
5027 				 * has the smallest exit latency irrespective
5028 				 * of any idle timestamp.
5029 				 */
5030 				min_exit_latency = idle->exit_latency;
5031 				latest_idle_timestamp = rq->idle_stamp;
5032 				shallowest_idle_cpu = i;
5033 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5034 				   rq->idle_stamp > latest_idle_timestamp) {
5035 				/*
5036 				 * If equal or no active idle state, then
5037 				 * the most recently idled CPU might have
5038 				 * a warmer cache.
5039 				 */
5040 				latest_idle_timestamp = rq->idle_stamp;
5041 				shallowest_idle_cpu = i;
5042 			}
5043 		} else if (shallowest_idle_cpu == -1) {
5044 			load = weighted_cpuload(i);
5045 			if (load < min_load || (load == min_load && i == this_cpu)) {
5046 				min_load = load;
5047 				least_loaded_cpu = i;
5048 			}
5049 		}
5050 	}
5051 
5052 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5053 }
5054 
5055 /*
5056  * Try and locate an idle CPU in the sched_domain.
5057  */
5058 static int select_idle_sibling(struct task_struct *p, int target)
5059 {
5060 	struct sched_domain *sd;
5061 	struct sched_group *sg;
5062 	int i = task_cpu(p);
5063 
5064 	if (idle_cpu(target))
5065 		return target;
5066 
5067 	/*
5068 	 * If the prevous cpu is cache affine and idle, don't be stupid.
5069 	 */
5070 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5071 		return i;
5072 
5073 	/*
5074 	 * Otherwise, iterate the domains and find an elegible idle cpu.
5075 	 */
5076 	sd = rcu_dereference(per_cpu(sd_llc, target));
5077 	for_each_lower_domain(sd) {
5078 		sg = sd->groups;
5079 		do {
5080 			if (!cpumask_intersects(sched_group_cpus(sg),
5081 						tsk_cpus_allowed(p)))
5082 				goto next;
5083 
5084 			for_each_cpu(i, sched_group_cpus(sg)) {
5085 				if (i == target || !idle_cpu(i))
5086 					goto next;
5087 			}
5088 
5089 			target = cpumask_first_and(sched_group_cpus(sg),
5090 					tsk_cpus_allowed(p));
5091 			goto done;
5092 next:
5093 			sg = sg->next;
5094 		} while (sg != sd->groups);
5095 	}
5096 done:
5097 	return target;
5098 }
5099 
5100 /*
5101  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5102  * tasks. The unit of the return value must be the one of capacity so we can
5103  * compare the utilization with the capacity of the CPU that is available for
5104  * CFS task (ie cpu_capacity).
5105  *
5106  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5107  * recent utilization of currently non-runnable tasks on a CPU. It represents
5108  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5109  * capacity_orig is the cpu_capacity available at the highest frequency
5110  * (arch_scale_freq_capacity()).
5111  * The utilization of a CPU converges towards a sum equal to or less than the
5112  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5113  * the running time on this CPU scaled by capacity_curr.
5114  *
5115  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5116  * higher than capacity_orig because of unfortunate rounding in
5117  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5118  * the average stabilizes with the new running time. We need to check that the
5119  * utilization stays within the range of [0..capacity_orig] and cap it if
5120  * necessary. Without utilization capping, a group could be seen as overloaded
5121  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5122  * available capacity. We allow utilization to overshoot capacity_curr (but not
5123  * capacity_orig) as it useful for predicting the capacity required after task
5124  * migrations (scheduler-driven DVFS).
5125  */
5126 static int cpu_util(int cpu)
5127 {
5128 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5129 	unsigned long capacity = capacity_orig_of(cpu);
5130 
5131 	return (util >= capacity) ? capacity : util;
5132 }
5133 
5134 /*
5135  * select_task_rq_fair: Select target runqueue for the waking task in domains
5136  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5137  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5138  *
5139  * Balances load by selecting the idlest cpu in the idlest group, or under
5140  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5141  *
5142  * Returns the target cpu number.
5143  *
5144  * preempt must be disabled.
5145  */
5146 static int
5147 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5148 {
5149 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5150 	int cpu = smp_processor_id();
5151 	int new_cpu = prev_cpu;
5152 	int want_affine = 0;
5153 	int sync = wake_flags & WF_SYNC;
5154 
5155 	if (sd_flag & SD_BALANCE_WAKE)
5156 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5157 
5158 	rcu_read_lock();
5159 	for_each_domain(cpu, tmp) {
5160 		if (!(tmp->flags & SD_LOAD_BALANCE))
5161 			break;
5162 
5163 		/*
5164 		 * If both cpu and prev_cpu are part of this domain,
5165 		 * cpu is a valid SD_WAKE_AFFINE target.
5166 		 */
5167 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5168 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5169 			affine_sd = tmp;
5170 			break;
5171 		}
5172 
5173 		if (tmp->flags & sd_flag)
5174 			sd = tmp;
5175 		else if (!want_affine)
5176 			break;
5177 	}
5178 
5179 	if (affine_sd) {
5180 		sd = NULL; /* Prefer wake_affine over balance flags */
5181 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5182 			new_cpu = cpu;
5183 	}
5184 
5185 	if (!sd) {
5186 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5187 			new_cpu = select_idle_sibling(p, new_cpu);
5188 
5189 	} else while (sd) {
5190 		struct sched_group *group;
5191 		int weight;
5192 
5193 		if (!(sd->flags & sd_flag)) {
5194 			sd = sd->child;
5195 			continue;
5196 		}
5197 
5198 		group = find_idlest_group(sd, p, cpu, sd_flag);
5199 		if (!group) {
5200 			sd = sd->child;
5201 			continue;
5202 		}
5203 
5204 		new_cpu = find_idlest_cpu(group, p, cpu);
5205 		if (new_cpu == -1 || new_cpu == cpu) {
5206 			/* Now try balancing at a lower domain level of cpu */
5207 			sd = sd->child;
5208 			continue;
5209 		}
5210 
5211 		/* Now try balancing at a lower domain level of new_cpu */
5212 		cpu = new_cpu;
5213 		weight = sd->span_weight;
5214 		sd = NULL;
5215 		for_each_domain(cpu, tmp) {
5216 			if (weight <= tmp->span_weight)
5217 				break;
5218 			if (tmp->flags & sd_flag)
5219 				sd = tmp;
5220 		}
5221 		/* while loop will break here if sd == NULL */
5222 	}
5223 	rcu_read_unlock();
5224 
5225 	return new_cpu;
5226 }
5227 
5228 /*
5229  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5230  * cfs_rq_of(p) references at time of call are still valid and identify the
5231  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5232  */
5233 static void migrate_task_rq_fair(struct task_struct *p)
5234 {
5235 	/*
5236 	 * We are supposed to update the task to "current" time, then its up to date
5237 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5238 	 * what current time is, so simply throw away the out-of-date time. This
5239 	 * will result in the wakee task is less decayed, but giving the wakee more
5240 	 * load sounds not bad.
5241 	 */
5242 	remove_entity_load_avg(&p->se);
5243 
5244 	/* Tell new CPU we are migrated */
5245 	p->se.avg.last_update_time = 0;
5246 
5247 	/* We have migrated, no longer consider this task hot */
5248 	p->se.exec_start = 0;
5249 }
5250 
5251 static void task_dead_fair(struct task_struct *p)
5252 {
5253 	remove_entity_load_avg(&p->se);
5254 }
5255 #endif /* CONFIG_SMP */
5256 
5257 static unsigned long
5258 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5259 {
5260 	unsigned long gran = sysctl_sched_wakeup_granularity;
5261 
5262 	/*
5263 	 * Since its curr running now, convert the gran from real-time
5264 	 * to virtual-time in his units.
5265 	 *
5266 	 * By using 'se' instead of 'curr' we penalize light tasks, so
5267 	 * they get preempted easier. That is, if 'se' < 'curr' then
5268 	 * the resulting gran will be larger, therefore penalizing the
5269 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5270 	 * be smaller, again penalizing the lighter task.
5271 	 *
5272 	 * This is especially important for buddies when the leftmost
5273 	 * task is higher priority than the buddy.
5274 	 */
5275 	return calc_delta_fair(gran, se);
5276 }
5277 
5278 /*
5279  * Should 'se' preempt 'curr'.
5280  *
5281  *             |s1
5282  *        |s2
5283  *   |s3
5284  *         g
5285  *      |<--->|c
5286  *
5287  *  w(c, s1) = -1
5288  *  w(c, s2) =  0
5289  *  w(c, s3) =  1
5290  *
5291  */
5292 static int
5293 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5294 {
5295 	s64 gran, vdiff = curr->vruntime - se->vruntime;
5296 
5297 	if (vdiff <= 0)
5298 		return -1;
5299 
5300 	gran = wakeup_gran(curr, se);
5301 	if (vdiff > gran)
5302 		return 1;
5303 
5304 	return 0;
5305 }
5306 
5307 static void set_last_buddy(struct sched_entity *se)
5308 {
5309 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5310 		return;
5311 
5312 	for_each_sched_entity(se)
5313 		cfs_rq_of(se)->last = se;
5314 }
5315 
5316 static void set_next_buddy(struct sched_entity *se)
5317 {
5318 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5319 		return;
5320 
5321 	for_each_sched_entity(se)
5322 		cfs_rq_of(se)->next = se;
5323 }
5324 
5325 static void set_skip_buddy(struct sched_entity *se)
5326 {
5327 	for_each_sched_entity(se)
5328 		cfs_rq_of(se)->skip = se;
5329 }
5330 
5331 /*
5332  * Preempt the current task with a newly woken task if needed:
5333  */
5334 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5335 {
5336 	struct task_struct *curr = rq->curr;
5337 	struct sched_entity *se = &curr->se, *pse = &p->se;
5338 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5339 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5340 	int next_buddy_marked = 0;
5341 
5342 	if (unlikely(se == pse))
5343 		return;
5344 
5345 	/*
5346 	 * This is possible from callers such as attach_tasks(), in which we
5347 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5348 	 * lead to a throttle).  This both saves work and prevents false
5349 	 * next-buddy nomination below.
5350 	 */
5351 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5352 		return;
5353 
5354 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5355 		set_next_buddy(pse);
5356 		next_buddy_marked = 1;
5357 	}
5358 
5359 	/*
5360 	 * We can come here with TIF_NEED_RESCHED already set from new task
5361 	 * wake up path.
5362 	 *
5363 	 * Note: this also catches the edge-case of curr being in a throttled
5364 	 * group (e.g. via set_curr_task), since update_curr() (in the
5365 	 * enqueue of curr) will have resulted in resched being set.  This
5366 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5367 	 * below.
5368 	 */
5369 	if (test_tsk_need_resched(curr))
5370 		return;
5371 
5372 	/* Idle tasks are by definition preempted by non-idle tasks. */
5373 	if (unlikely(curr->policy == SCHED_IDLE) &&
5374 	    likely(p->policy != SCHED_IDLE))
5375 		goto preempt;
5376 
5377 	/*
5378 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5379 	 * is driven by the tick):
5380 	 */
5381 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5382 		return;
5383 
5384 	find_matching_se(&se, &pse);
5385 	update_curr(cfs_rq_of(se));
5386 	BUG_ON(!pse);
5387 	if (wakeup_preempt_entity(se, pse) == 1) {
5388 		/*
5389 		 * Bias pick_next to pick the sched entity that is
5390 		 * triggering this preemption.
5391 		 */
5392 		if (!next_buddy_marked)
5393 			set_next_buddy(pse);
5394 		goto preempt;
5395 	}
5396 
5397 	return;
5398 
5399 preempt:
5400 	resched_curr(rq);
5401 	/*
5402 	 * Only set the backward buddy when the current task is still
5403 	 * on the rq. This can happen when a wakeup gets interleaved
5404 	 * with schedule on the ->pre_schedule() or idle_balance()
5405 	 * point, either of which can * drop the rq lock.
5406 	 *
5407 	 * Also, during early boot the idle thread is in the fair class,
5408 	 * for obvious reasons its a bad idea to schedule back to it.
5409 	 */
5410 	if (unlikely(!se->on_rq || curr == rq->idle))
5411 		return;
5412 
5413 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5414 		set_last_buddy(se);
5415 }
5416 
5417 static struct task_struct *
5418 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5419 {
5420 	struct cfs_rq *cfs_rq = &rq->cfs;
5421 	struct sched_entity *se;
5422 	struct task_struct *p;
5423 	int new_tasks;
5424 
5425 again:
5426 #ifdef CONFIG_FAIR_GROUP_SCHED
5427 	if (!cfs_rq->nr_running)
5428 		goto idle;
5429 
5430 	if (prev->sched_class != &fair_sched_class)
5431 		goto simple;
5432 
5433 	/*
5434 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5435 	 * likely that a next task is from the same cgroup as the current.
5436 	 *
5437 	 * Therefore attempt to avoid putting and setting the entire cgroup
5438 	 * hierarchy, only change the part that actually changes.
5439 	 */
5440 
5441 	do {
5442 		struct sched_entity *curr = cfs_rq->curr;
5443 
5444 		/*
5445 		 * Since we got here without doing put_prev_entity() we also
5446 		 * have to consider cfs_rq->curr. If it is still a runnable
5447 		 * entity, update_curr() will update its vruntime, otherwise
5448 		 * forget we've ever seen it.
5449 		 */
5450 		if (curr) {
5451 			if (curr->on_rq)
5452 				update_curr(cfs_rq);
5453 			else
5454 				curr = NULL;
5455 
5456 			/*
5457 			 * This call to check_cfs_rq_runtime() will do the
5458 			 * throttle and dequeue its entity in the parent(s).
5459 			 * Therefore the 'simple' nr_running test will indeed
5460 			 * be correct.
5461 			 */
5462 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5463 				goto simple;
5464 		}
5465 
5466 		se = pick_next_entity(cfs_rq, curr);
5467 		cfs_rq = group_cfs_rq(se);
5468 	} while (cfs_rq);
5469 
5470 	p = task_of(se);
5471 
5472 	/*
5473 	 * Since we haven't yet done put_prev_entity and if the selected task
5474 	 * is a different task than we started out with, try and touch the
5475 	 * least amount of cfs_rqs.
5476 	 */
5477 	if (prev != p) {
5478 		struct sched_entity *pse = &prev->se;
5479 
5480 		while (!(cfs_rq = is_same_group(se, pse))) {
5481 			int se_depth = se->depth;
5482 			int pse_depth = pse->depth;
5483 
5484 			if (se_depth <= pse_depth) {
5485 				put_prev_entity(cfs_rq_of(pse), pse);
5486 				pse = parent_entity(pse);
5487 			}
5488 			if (se_depth >= pse_depth) {
5489 				set_next_entity(cfs_rq_of(se), se);
5490 				se = parent_entity(se);
5491 			}
5492 		}
5493 
5494 		put_prev_entity(cfs_rq, pse);
5495 		set_next_entity(cfs_rq, se);
5496 	}
5497 
5498 	if (hrtick_enabled(rq))
5499 		hrtick_start_fair(rq, p);
5500 
5501 	return p;
5502 simple:
5503 	cfs_rq = &rq->cfs;
5504 #endif
5505 
5506 	if (!cfs_rq->nr_running)
5507 		goto idle;
5508 
5509 	put_prev_task(rq, prev);
5510 
5511 	do {
5512 		se = pick_next_entity(cfs_rq, NULL);
5513 		set_next_entity(cfs_rq, se);
5514 		cfs_rq = group_cfs_rq(se);
5515 	} while (cfs_rq);
5516 
5517 	p = task_of(se);
5518 
5519 	if (hrtick_enabled(rq))
5520 		hrtick_start_fair(rq, p);
5521 
5522 	return p;
5523 
5524 idle:
5525 	/*
5526 	 * This is OK, because current is on_cpu, which avoids it being picked
5527 	 * for load-balance and preemption/IRQs are still disabled avoiding
5528 	 * further scheduler activity on it and we're being very careful to
5529 	 * re-start the picking loop.
5530 	 */
5531 	lockdep_unpin_lock(&rq->lock);
5532 	new_tasks = idle_balance(rq);
5533 	lockdep_pin_lock(&rq->lock);
5534 	/*
5535 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5536 	 * possible for any higher priority task to appear. In that case we
5537 	 * must re-start the pick_next_entity() loop.
5538 	 */
5539 	if (new_tasks < 0)
5540 		return RETRY_TASK;
5541 
5542 	if (new_tasks > 0)
5543 		goto again;
5544 
5545 	return NULL;
5546 }
5547 
5548 /*
5549  * Account for a descheduled task:
5550  */
5551 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5552 {
5553 	struct sched_entity *se = &prev->se;
5554 	struct cfs_rq *cfs_rq;
5555 
5556 	for_each_sched_entity(se) {
5557 		cfs_rq = cfs_rq_of(se);
5558 		put_prev_entity(cfs_rq, se);
5559 	}
5560 }
5561 
5562 /*
5563  * sched_yield() is very simple
5564  *
5565  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5566  */
5567 static void yield_task_fair(struct rq *rq)
5568 {
5569 	struct task_struct *curr = rq->curr;
5570 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5571 	struct sched_entity *se = &curr->se;
5572 
5573 	/*
5574 	 * Are we the only task in the tree?
5575 	 */
5576 	if (unlikely(rq->nr_running == 1))
5577 		return;
5578 
5579 	clear_buddies(cfs_rq, se);
5580 
5581 	if (curr->policy != SCHED_BATCH) {
5582 		update_rq_clock(rq);
5583 		/*
5584 		 * Update run-time statistics of the 'current'.
5585 		 */
5586 		update_curr(cfs_rq);
5587 		/*
5588 		 * Tell update_rq_clock() that we've just updated,
5589 		 * so we don't do microscopic update in schedule()
5590 		 * and double the fastpath cost.
5591 		 */
5592 		rq_clock_skip_update(rq, true);
5593 	}
5594 
5595 	set_skip_buddy(se);
5596 }
5597 
5598 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5599 {
5600 	struct sched_entity *se = &p->se;
5601 
5602 	/* throttled hierarchies are not runnable */
5603 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5604 		return false;
5605 
5606 	/* Tell the scheduler that we'd really like pse to run next. */
5607 	set_next_buddy(se);
5608 
5609 	yield_task_fair(rq);
5610 
5611 	return true;
5612 }
5613 
5614 #ifdef CONFIG_SMP
5615 /**************************************************
5616  * Fair scheduling class load-balancing methods.
5617  *
5618  * BASICS
5619  *
5620  * The purpose of load-balancing is to achieve the same basic fairness the
5621  * per-cpu scheduler provides, namely provide a proportional amount of compute
5622  * time to each task. This is expressed in the following equation:
5623  *
5624  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5625  *
5626  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5627  * W_i,0 is defined as:
5628  *
5629  *   W_i,0 = \Sum_j w_i,j                                             (2)
5630  *
5631  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5632  * is derived from the nice value as per prio_to_weight[].
5633  *
5634  * The weight average is an exponential decay average of the instantaneous
5635  * weight:
5636  *
5637  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5638  *
5639  * C_i is the compute capacity of cpu i, typically it is the
5640  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5641  * can also include other factors [XXX].
5642  *
5643  * To achieve this balance we define a measure of imbalance which follows
5644  * directly from (1):
5645  *
5646  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5647  *
5648  * We them move tasks around to minimize the imbalance. In the continuous
5649  * function space it is obvious this converges, in the discrete case we get
5650  * a few fun cases generally called infeasible weight scenarios.
5651  *
5652  * [XXX expand on:
5653  *     - infeasible weights;
5654  *     - local vs global optima in the discrete case. ]
5655  *
5656  *
5657  * SCHED DOMAINS
5658  *
5659  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5660  * for all i,j solution, we create a tree of cpus that follows the hardware
5661  * topology where each level pairs two lower groups (or better). This results
5662  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5663  * tree to only the first of the previous level and we decrease the frequency
5664  * of load-balance at each level inv. proportional to the number of cpus in
5665  * the groups.
5666  *
5667  * This yields:
5668  *
5669  *     log_2 n     1     n
5670  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5671  *     i = 0      2^i   2^i
5672  *                               `- size of each group
5673  *         |         |     `- number of cpus doing load-balance
5674  *         |         `- freq
5675  *         `- sum over all levels
5676  *
5677  * Coupled with a limit on how many tasks we can migrate every balance pass,
5678  * this makes (5) the runtime complexity of the balancer.
5679  *
5680  * An important property here is that each CPU is still (indirectly) connected
5681  * to every other cpu in at most O(log n) steps:
5682  *
5683  * The adjacency matrix of the resulting graph is given by:
5684  *
5685  *             log_2 n
5686  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5687  *             k = 0
5688  *
5689  * And you'll find that:
5690  *
5691  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5692  *
5693  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5694  * The task movement gives a factor of O(m), giving a convergence complexity
5695  * of:
5696  *
5697  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5698  *
5699  *
5700  * WORK CONSERVING
5701  *
5702  * In order to avoid CPUs going idle while there's still work to do, new idle
5703  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5704  * tree itself instead of relying on other CPUs to bring it work.
5705  *
5706  * This adds some complexity to both (5) and (8) but it reduces the total idle
5707  * time.
5708  *
5709  * [XXX more?]
5710  *
5711  *
5712  * CGROUPS
5713  *
5714  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5715  *
5716  *                                s_k,i
5717  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5718  *                                 S_k
5719  *
5720  * Where
5721  *
5722  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5723  *
5724  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5725  *
5726  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5727  * property.
5728  *
5729  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5730  *      rewrite all of this once again.]
5731  */
5732 
5733 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5734 
5735 enum fbq_type { regular, remote, all };
5736 
5737 #define LBF_ALL_PINNED	0x01
5738 #define LBF_NEED_BREAK	0x02
5739 #define LBF_DST_PINNED  0x04
5740 #define LBF_SOME_PINNED	0x08
5741 
5742 struct lb_env {
5743 	struct sched_domain	*sd;
5744 
5745 	struct rq		*src_rq;
5746 	int			src_cpu;
5747 
5748 	int			dst_cpu;
5749 	struct rq		*dst_rq;
5750 
5751 	struct cpumask		*dst_grpmask;
5752 	int			new_dst_cpu;
5753 	enum cpu_idle_type	idle;
5754 	long			imbalance;
5755 	/* The set of CPUs under consideration for load-balancing */
5756 	struct cpumask		*cpus;
5757 
5758 	unsigned int		flags;
5759 
5760 	unsigned int		loop;
5761 	unsigned int		loop_break;
5762 	unsigned int		loop_max;
5763 
5764 	enum fbq_type		fbq_type;
5765 	struct list_head	tasks;
5766 };
5767 
5768 /*
5769  * Is this task likely cache-hot:
5770  */
5771 static int task_hot(struct task_struct *p, struct lb_env *env)
5772 {
5773 	s64 delta;
5774 
5775 	lockdep_assert_held(&env->src_rq->lock);
5776 
5777 	if (p->sched_class != &fair_sched_class)
5778 		return 0;
5779 
5780 	if (unlikely(p->policy == SCHED_IDLE))
5781 		return 0;
5782 
5783 	/*
5784 	 * Buddy candidates are cache hot:
5785 	 */
5786 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5787 			(&p->se == cfs_rq_of(&p->se)->next ||
5788 			 &p->se == cfs_rq_of(&p->se)->last))
5789 		return 1;
5790 
5791 	if (sysctl_sched_migration_cost == -1)
5792 		return 1;
5793 	if (sysctl_sched_migration_cost == 0)
5794 		return 0;
5795 
5796 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5797 
5798 	return delta < (s64)sysctl_sched_migration_cost;
5799 }
5800 
5801 #ifdef CONFIG_NUMA_BALANCING
5802 /*
5803  * Returns 1, if task migration degrades locality
5804  * Returns 0, if task migration improves locality i.e migration preferred.
5805  * Returns -1, if task migration is not affected by locality.
5806  */
5807 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5808 {
5809 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5810 	unsigned long src_faults, dst_faults;
5811 	int src_nid, dst_nid;
5812 
5813 	if (!static_branch_likely(&sched_numa_balancing))
5814 		return -1;
5815 
5816 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5817 		return -1;
5818 
5819 	src_nid = cpu_to_node(env->src_cpu);
5820 	dst_nid = cpu_to_node(env->dst_cpu);
5821 
5822 	if (src_nid == dst_nid)
5823 		return -1;
5824 
5825 	/* Migrating away from the preferred node is always bad. */
5826 	if (src_nid == p->numa_preferred_nid) {
5827 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5828 			return 1;
5829 		else
5830 			return -1;
5831 	}
5832 
5833 	/* Encourage migration to the preferred node. */
5834 	if (dst_nid == p->numa_preferred_nid)
5835 		return 0;
5836 
5837 	if (numa_group) {
5838 		src_faults = group_faults(p, src_nid);
5839 		dst_faults = group_faults(p, dst_nid);
5840 	} else {
5841 		src_faults = task_faults(p, src_nid);
5842 		dst_faults = task_faults(p, dst_nid);
5843 	}
5844 
5845 	return dst_faults < src_faults;
5846 }
5847 
5848 #else
5849 static inline int migrate_degrades_locality(struct task_struct *p,
5850 					     struct lb_env *env)
5851 {
5852 	return -1;
5853 }
5854 #endif
5855 
5856 /*
5857  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5858  */
5859 static
5860 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5861 {
5862 	int tsk_cache_hot;
5863 
5864 	lockdep_assert_held(&env->src_rq->lock);
5865 
5866 	/*
5867 	 * We do not migrate tasks that are:
5868 	 * 1) throttled_lb_pair, or
5869 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5870 	 * 3) running (obviously), or
5871 	 * 4) are cache-hot on their current CPU.
5872 	 */
5873 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5874 		return 0;
5875 
5876 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5877 		int cpu;
5878 
5879 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5880 
5881 		env->flags |= LBF_SOME_PINNED;
5882 
5883 		/*
5884 		 * Remember if this task can be migrated to any other cpu in
5885 		 * our sched_group. We may want to revisit it if we couldn't
5886 		 * meet load balance goals by pulling other tasks on src_cpu.
5887 		 *
5888 		 * Also avoid computing new_dst_cpu if we have already computed
5889 		 * one in current iteration.
5890 		 */
5891 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5892 			return 0;
5893 
5894 		/* Prevent to re-select dst_cpu via env's cpus */
5895 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5896 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5897 				env->flags |= LBF_DST_PINNED;
5898 				env->new_dst_cpu = cpu;
5899 				break;
5900 			}
5901 		}
5902 
5903 		return 0;
5904 	}
5905 
5906 	/* Record that we found atleast one task that could run on dst_cpu */
5907 	env->flags &= ~LBF_ALL_PINNED;
5908 
5909 	if (task_running(env->src_rq, p)) {
5910 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5911 		return 0;
5912 	}
5913 
5914 	/*
5915 	 * Aggressive migration if:
5916 	 * 1) destination numa is preferred
5917 	 * 2) task is cache cold, or
5918 	 * 3) too many balance attempts have failed.
5919 	 */
5920 	tsk_cache_hot = migrate_degrades_locality(p, env);
5921 	if (tsk_cache_hot == -1)
5922 		tsk_cache_hot = task_hot(p, env);
5923 
5924 	if (tsk_cache_hot <= 0 ||
5925 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5926 		if (tsk_cache_hot == 1) {
5927 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5928 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5929 		}
5930 		return 1;
5931 	}
5932 
5933 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5934 	return 0;
5935 }
5936 
5937 /*
5938  * detach_task() -- detach the task for the migration specified in env
5939  */
5940 static void detach_task(struct task_struct *p, struct lb_env *env)
5941 {
5942 	lockdep_assert_held(&env->src_rq->lock);
5943 
5944 	p->on_rq = TASK_ON_RQ_MIGRATING;
5945 	deactivate_task(env->src_rq, p, 0);
5946 	set_task_cpu(p, env->dst_cpu);
5947 }
5948 
5949 /*
5950  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5951  * part of active balancing operations within "domain".
5952  *
5953  * Returns a task if successful and NULL otherwise.
5954  */
5955 static struct task_struct *detach_one_task(struct lb_env *env)
5956 {
5957 	struct task_struct *p, *n;
5958 
5959 	lockdep_assert_held(&env->src_rq->lock);
5960 
5961 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5962 		if (!can_migrate_task(p, env))
5963 			continue;
5964 
5965 		detach_task(p, env);
5966 
5967 		/*
5968 		 * Right now, this is only the second place where
5969 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5970 		 * so we can safely collect stats here rather than
5971 		 * inside detach_tasks().
5972 		 */
5973 		schedstat_inc(env->sd, lb_gained[env->idle]);
5974 		return p;
5975 	}
5976 	return NULL;
5977 }
5978 
5979 static const unsigned int sched_nr_migrate_break = 32;
5980 
5981 /*
5982  * detach_tasks() -- tries to detach up to imbalance weighted load from
5983  * busiest_rq, as part of a balancing operation within domain "sd".
5984  *
5985  * Returns number of detached tasks if successful and 0 otherwise.
5986  */
5987 static int detach_tasks(struct lb_env *env)
5988 {
5989 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5990 	struct task_struct *p;
5991 	unsigned long load;
5992 	int detached = 0;
5993 
5994 	lockdep_assert_held(&env->src_rq->lock);
5995 
5996 	if (env->imbalance <= 0)
5997 		return 0;
5998 
5999 	while (!list_empty(tasks)) {
6000 		/*
6001 		 * We don't want to steal all, otherwise we may be treated likewise,
6002 		 * which could at worst lead to a livelock crash.
6003 		 */
6004 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6005 			break;
6006 
6007 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6008 
6009 		env->loop++;
6010 		/* We've more or less seen every task there is, call it quits */
6011 		if (env->loop > env->loop_max)
6012 			break;
6013 
6014 		/* take a breather every nr_migrate tasks */
6015 		if (env->loop > env->loop_break) {
6016 			env->loop_break += sched_nr_migrate_break;
6017 			env->flags |= LBF_NEED_BREAK;
6018 			break;
6019 		}
6020 
6021 		if (!can_migrate_task(p, env))
6022 			goto next;
6023 
6024 		load = task_h_load(p);
6025 
6026 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6027 			goto next;
6028 
6029 		if ((load / 2) > env->imbalance)
6030 			goto next;
6031 
6032 		detach_task(p, env);
6033 		list_add(&p->se.group_node, &env->tasks);
6034 
6035 		detached++;
6036 		env->imbalance -= load;
6037 
6038 #ifdef CONFIG_PREEMPT
6039 		/*
6040 		 * NEWIDLE balancing is a source of latency, so preemptible
6041 		 * kernels will stop after the first task is detached to minimize
6042 		 * the critical section.
6043 		 */
6044 		if (env->idle == CPU_NEWLY_IDLE)
6045 			break;
6046 #endif
6047 
6048 		/*
6049 		 * We only want to steal up to the prescribed amount of
6050 		 * weighted load.
6051 		 */
6052 		if (env->imbalance <= 0)
6053 			break;
6054 
6055 		continue;
6056 next:
6057 		list_move_tail(&p->se.group_node, tasks);
6058 	}
6059 
6060 	/*
6061 	 * Right now, this is one of only two places we collect this stat
6062 	 * so we can safely collect detach_one_task() stats here rather
6063 	 * than inside detach_one_task().
6064 	 */
6065 	schedstat_add(env->sd, lb_gained[env->idle], detached);
6066 
6067 	return detached;
6068 }
6069 
6070 /*
6071  * attach_task() -- attach the task detached by detach_task() to its new rq.
6072  */
6073 static void attach_task(struct rq *rq, struct task_struct *p)
6074 {
6075 	lockdep_assert_held(&rq->lock);
6076 
6077 	BUG_ON(task_rq(p) != rq);
6078 	activate_task(rq, p, 0);
6079 	p->on_rq = TASK_ON_RQ_QUEUED;
6080 	check_preempt_curr(rq, p, 0);
6081 }
6082 
6083 /*
6084  * attach_one_task() -- attaches the task returned from detach_one_task() to
6085  * its new rq.
6086  */
6087 static void attach_one_task(struct rq *rq, struct task_struct *p)
6088 {
6089 	raw_spin_lock(&rq->lock);
6090 	attach_task(rq, p);
6091 	raw_spin_unlock(&rq->lock);
6092 }
6093 
6094 /*
6095  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6096  * new rq.
6097  */
6098 static void attach_tasks(struct lb_env *env)
6099 {
6100 	struct list_head *tasks = &env->tasks;
6101 	struct task_struct *p;
6102 
6103 	raw_spin_lock(&env->dst_rq->lock);
6104 
6105 	while (!list_empty(tasks)) {
6106 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6107 		list_del_init(&p->se.group_node);
6108 
6109 		attach_task(env->dst_rq, p);
6110 	}
6111 
6112 	raw_spin_unlock(&env->dst_rq->lock);
6113 }
6114 
6115 #ifdef CONFIG_FAIR_GROUP_SCHED
6116 static void update_blocked_averages(int cpu)
6117 {
6118 	struct rq *rq = cpu_rq(cpu);
6119 	struct cfs_rq *cfs_rq;
6120 	unsigned long flags;
6121 
6122 	raw_spin_lock_irqsave(&rq->lock, flags);
6123 	update_rq_clock(rq);
6124 
6125 	/*
6126 	 * Iterates the task_group tree in a bottom up fashion, see
6127 	 * list_add_leaf_cfs_rq() for details.
6128 	 */
6129 	for_each_leaf_cfs_rq(rq, cfs_rq) {
6130 		/* throttled entities do not contribute to load */
6131 		if (throttled_hierarchy(cfs_rq))
6132 			continue;
6133 
6134 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6135 			update_tg_load_avg(cfs_rq, 0);
6136 	}
6137 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6138 }
6139 
6140 /*
6141  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6142  * This needs to be done in a top-down fashion because the load of a child
6143  * group is a fraction of its parents load.
6144  */
6145 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6146 {
6147 	struct rq *rq = rq_of(cfs_rq);
6148 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6149 	unsigned long now = jiffies;
6150 	unsigned long load;
6151 
6152 	if (cfs_rq->last_h_load_update == now)
6153 		return;
6154 
6155 	cfs_rq->h_load_next = NULL;
6156 	for_each_sched_entity(se) {
6157 		cfs_rq = cfs_rq_of(se);
6158 		cfs_rq->h_load_next = se;
6159 		if (cfs_rq->last_h_load_update == now)
6160 			break;
6161 	}
6162 
6163 	if (!se) {
6164 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6165 		cfs_rq->last_h_load_update = now;
6166 	}
6167 
6168 	while ((se = cfs_rq->h_load_next) != NULL) {
6169 		load = cfs_rq->h_load;
6170 		load = div64_ul(load * se->avg.load_avg,
6171 			cfs_rq_load_avg(cfs_rq) + 1);
6172 		cfs_rq = group_cfs_rq(se);
6173 		cfs_rq->h_load = load;
6174 		cfs_rq->last_h_load_update = now;
6175 	}
6176 }
6177 
6178 static unsigned long task_h_load(struct task_struct *p)
6179 {
6180 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6181 
6182 	update_cfs_rq_h_load(cfs_rq);
6183 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6184 			cfs_rq_load_avg(cfs_rq) + 1);
6185 }
6186 #else
6187 static inline void update_blocked_averages(int cpu)
6188 {
6189 	struct rq *rq = cpu_rq(cpu);
6190 	struct cfs_rq *cfs_rq = &rq->cfs;
6191 	unsigned long flags;
6192 
6193 	raw_spin_lock_irqsave(&rq->lock, flags);
6194 	update_rq_clock(rq);
6195 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6196 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6197 }
6198 
6199 static unsigned long task_h_load(struct task_struct *p)
6200 {
6201 	return p->se.avg.load_avg;
6202 }
6203 #endif
6204 
6205 /********** Helpers for find_busiest_group ************************/
6206 
6207 enum group_type {
6208 	group_other = 0,
6209 	group_imbalanced,
6210 	group_overloaded,
6211 };
6212 
6213 /*
6214  * sg_lb_stats - stats of a sched_group required for load_balancing
6215  */
6216 struct sg_lb_stats {
6217 	unsigned long avg_load; /*Avg load across the CPUs of the group */
6218 	unsigned long group_load; /* Total load over the CPUs of the group */
6219 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6220 	unsigned long load_per_task;
6221 	unsigned long group_capacity;
6222 	unsigned long group_util; /* Total utilization of the group */
6223 	unsigned int sum_nr_running; /* Nr tasks running in the group */
6224 	unsigned int idle_cpus;
6225 	unsigned int group_weight;
6226 	enum group_type group_type;
6227 	int group_no_capacity;
6228 #ifdef CONFIG_NUMA_BALANCING
6229 	unsigned int nr_numa_running;
6230 	unsigned int nr_preferred_running;
6231 #endif
6232 };
6233 
6234 /*
6235  * sd_lb_stats - Structure to store the statistics of a sched_domain
6236  *		 during load balancing.
6237  */
6238 struct sd_lb_stats {
6239 	struct sched_group *busiest;	/* Busiest group in this sd */
6240 	struct sched_group *local;	/* Local group in this sd */
6241 	unsigned long total_load;	/* Total load of all groups in sd */
6242 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
6243 	unsigned long avg_load;	/* Average load across all groups in sd */
6244 
6245 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6246 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
6247 };
6248 
6249 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6250 {
6251 	/*
6252 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6253 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6254 	 * We must however clear busiest_stat::avg_load because
6255 	 * update_sd_pick_busiest() reads this before assignment.
6256 	 */
6257 	*sds = (struct sd_lb_stats){
6258 		.busiest = NULL,
6259 		.local = NULL,
6260 		.total_load = 0UL,
6261 		.total_capacity = 0UL,
6262 		.busiest_stat = {
6263 			.avg_load = 0UL,
6264 			.sum_nr_running = 0,
6265 			.group_type = group_other,
6266 		},
6267 	};
6268 }
6269 
6270 /**
6271  * get_sd_load_idx - Obtain the load index for a given sched domain.
6272  * @sd: The sched_domain whose load_idx is to be obtained.
6273  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6274  *
6275  * Return: The load index.
6276  */
6277 static inline int get_sd_load_idx(struct sched_domain *sd,
6278 					enum cpu_idle_type idle)
6279 {
6280 	int load_idx;
6281 
6282 	switch (idle) {
6283 	case CPU_NOT_IDLE:
6284 		load_idx = sd->busy_idx;
6285 		break;
6286 
6287 	case CPU_NEWLY_IDLE:
6288 		load_idx = sd->newidle_idx;
6289 		break;
6290 	default:
6291 		load_idx = sd->idle_idx;
6292 		break;
6293 	}
6294 
6295 	return load_idx;
6296 }
6297 
6298 static unsigned long scale_rt_capacity(int cpu)
6299 {
6300 	struct rq *rq = cpu_rq(cpu);
6301 	u64 total, used, age_stamp, avg;
6302 	s64 delta;
6303 
6304 	/*
6305 	 * Since we're reading these variables without serialization make sure
6306 	 * we read them once before doing sanity checks on them.
6307 	 */
6308 	age_stamp = READ_ONCE(rq->age_stamp);
6309 	avg = READ_ONCE(rq->rt_avg);
6310 	delta = __rq_clock_broken(rq) - age_stamp;
6311 
6312 	if (unlikely(delta < 0))
6313 		delta = 0;
6314 
6315 	total = sched_avg_period() + delta;
6316 
6317 	used = div_u64(avg, total);
6318 
6319 	if (likely(used < SCHED_CAPACITY_SCALE))
6320 		return SCHED_CAPACITY_SCALE - used;
6321 
6322 	return 1;
6323 }
6324 
6325 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6326 {
6327 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6328 	struct sched_group *sdg = sd->groups;
6329 
6330 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6331 
6332 	capacity *= scale_rt_capacity(cpu);
6333 	capacity >>= SCHED_CAPACITY_SHIFT;
6334 
6335 	if (!capacity)
6336 		capacity = 1;
6337 
6338 	cpu_rq(cpu)->cpu_capacity = capacity;
6339 	sdg->sgc->capacity = capacity;
6340 }
6341 
6342 void update_group_capacity(struct sched_domain *sd, int cpu)
6343 {
6344 	struct sched_domain *child = sd->child;
6345 	struct sched_group *group, *sdg = sd->groups;
6346 	unsigned long capacity;
6347 	unsigned long interval;
6348 
6349 	interval = msecs_to_jiffies(sd->balance_interval);
6350 	interval = clamp(interval, 1UL, max_load_balance_interval);
6351 	sdg->sgc->next_update = jiffies + interval;
6352 
6353 	if (!child) {
6354 		update_cpu_capacity(sd, cpu);
6355 		return;
6356 	}
6357 
6358 	capacity = 0;
6359 
6360 	if (child->flags & SD_OVERLAP) {
6361 		/*
6362 		 * SD_OVERLAP domains cannot assume that child groups
6363 		 * span the current group.
6364 		 */
6365 
6366 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6367 			struct sched_group_capacity *sgc;
6368 			struct rq *rq = cpu_rq(cpu);
6369 
6370 			/*
6371 			 * build_sched_domains() -> init_sched_groups_capacity()
6372 			 * gets here before we've attached the domains to the
6373 			 * runqueues.
6374 			 *
6375 			 * Use capacity_of(), which is set irrespective of domains
6376 			 * in update_cpu_capacity().
6377 			 *
6378 			 * This avoids capacity from being 0 and
6379 			 * causing divide-by-zero issues on boot.
6380 			 */
6381 			if (unlikely(!rq->sd)) {
6382 				capacity += capacity_of(cpu);
6383 				continue;
6384 			}
6385 
6386 			sgc = rq->sd->groups->sgc;
6387 			capacity += sgc->capacity;
6388 		}
6389 	} else  {
6390 		/*
6391 		 * !SD_OVERLAP domains can assume that child groups
6392 		 * span the current group.
6393 		 */
6394 
6395 		group = child->groups;
6396 		do {
6397 			capacity += group->sgc->capacity;
6398 			group = group->next;
6399 		} while (group != child->groups);
6400 	}
6401 
6402 	sdg->sgc->capacity = capacity;
6403 }
6404 
6405 /*
6406  * Check whether the capacity of the rq has been noticeably reduced by side
6407  * activity. The imbalance_pct is used for the threshold.
6408  * Return true is the capacity is reduced
6409  */
6410 static inline int
6411 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6412 {
6413 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6414 				(rq->cpu_capacity_orig * 100));
6415 }
6416 
6417 /*
6418  * Group imbalance indicates (and tries to solve) the problem where balancing
6419  * groups is inadequate due to tsk_cpus_allowed() constraints.
6420  *
6421  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6422  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6423  * Something like:
6424  *
6425  * 	{ 0 1 2 3 } { 4 5 6 7 }
6426  * 	        *     * * *
6427  *
6428  * If we were to balance group-wise we'd place two tasks in the first group and
6429  * two tasks in the second group. Clearly this is undesired as it will overload
6430  * cpu 3 and leave one of the cpus in the second group unused.
6431  *
6432  * The current solution to this issue is detecting the skew in the first group
6433  * by noticing the lower domain failed to reach balance and had difficulty
6434  * moving tasks due to affinity constraints.
6435  *
6436  * When this is so detected; this group becomes a candidate for busiest; see
6437  * update_sd_pick_busiest(). And calculate_imbalance() and
6438  * find_busiest_group() avoid some of the usual balance conditions to allow it
6439  * to create an effective group imbalance.
6440  *
6441  * This is a somewhat tricky proposition since the next run might not find the
6442  * group imbalance and decide the groups need to be balanced again. A most
6443  * subtle and fragile situation.
6444  */
6445 
6446 static inline int sg_imbalanced(struct sched_group *group)
6447 {
6448 	return group->sgc->imbalance;
6449 }
6450 
6451 /*
6452  * group_has_capacity returns true if the group has spare capacity that could
6453  * be used by some tasks.
6454  * We consider that a group has spare capacity if the  * number of task is
6455  * smaller than the number of CPUs or if the utilization is lower than the
6456  * available capacity for CFS tasks.
6457  * For the latter, we use a threshold to stabilize the state, to take into
6458  * account the variance of the tasks' load and to return true if the available
6459  * capacity in meaningful for the load balancer.
6460  * As an example, an available capacity of 1% can appear but it doesn't make
6461  * any benefit for the load balance.
6462  */
6463 static inline bool
6464 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6465 {
6466 	if (sgs->sum_nr_running < sgs->group_weight)
6467 		return true;
6468 
6469 	if ((sgs->group_capacity * 100) >
6470 			(sgs->group_util * env->sd->imbalance_pct))
6471 		return true;
6472 
6473 	return false;
6474 }
6475 
6476 /*
6477  *  group_is_overloaded returns true if the group has more tasks than it can
6478  *  handle.
6479  *  group_is_overloaded is not equals to !group_has_capacity because a group
6480  *  with the exact right number of tasks, has no more spare capacity but is not
6481  *  overloaded so both group_has_capacity and group_is_overloaded return
6482  *  false.
6483  */
6484 static inline bool
6485 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6486 {
6487 	if (sgs->sum_nr_running <= sgs->group_weight)
6488 		return false;
6489 
6490 	if ((sgs->group_capacity * 100) <
6491 			(sgs->group_util * env->sd->imbalance_pct))
6492 		return true;
6493 
6494 	return false;
6495 }
6496 
6497 static inline enum
6498 group_type group_classify(struct sched_group *group,
6499 			  struct sg_lb_stats *sgs)
6500 {
6501 	if (sgs->group_no_capacity)
6502 		return group_overloaded;
6503 
6504 	if (sg_imbalanced(group))
6505 		return group_imbalanced;
6506 
6507 	return group_other;
6508 }
6509 
6510 /**
6511  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6512  * @env: The load balancing environment.
6513  * @group: sched_group whose statistics are to be updated.
6514  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6515  * @local_group: Does group contain this_cpu.
6516  * @sgs: variable to hold the statistics for this group.
6517  * @overload: Indicate more than one runnable task for any CPU.
6518  */
6519 static inline void update_sg_lb_stats(struct lb_env *env,
6520 			struct sched_group *group, int load_idx,
6521 			int local_group, struct sg_lb_stats *sgs,
6522 			bool *overload)
6523 {
6524 	unsigned long load;
6525 	int i, nr_running;
6526 
6527 	memset(sgs, 0, sizeof(*sgs));
6528 
6529 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6530 		struct rq *rq = cpu_rq(i);
6531 
6532 		/* Bias balancing toward cpus of our domain */
6533 		if (local_group)
6534 			load = target_load(i, load_idx);
6535 		else
6536 			load = source_load(i, load_idx);
6537 
6538 		sgs->group_load += load;
6539 		sgs->group_util += cpu_util(i);
6540 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6541 
6542 		nr_running = rq->nr_running;
6543 		if (nr_running > 1)
6544 			*overload = true;
6545 
6546 #ifdef CONFIG_NUMA_BALANCING
6547 		sgs->nr_numa_running += rq->nr_numa_running;
6548 		sgs->nr_preferred_running += rq->nr_preferred_running;
6549 #endif
6550 		sgs->sum_weighted_load += weighted_cpuload(i);
6551 		/*
6552 		 * No need to call idle_cpu() if nr_running is not 0
6553 		 */
6554 		if (!nr_running && idle_cpu(i))
6555 			sgs->idle_cpus++;
6556 	}
6557 
6558 	/* Adjust by relative CPU capacity of the group */
6559 	sgs->group_capacity = group->sgc->capacity;
6560 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6561 
6562 	if (sgs->sum_nr_running)
6563 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6564 
6565 	sgs->group_weight = group->group_weight;
6566 
6567 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6568 	sgs->group_type = group_classify(group, sgs);
6569 }
6570 
6571 /**
6572  * update_sd_pick_busiest - return 1 on busiest group
6573  * @env: The load balancing environment.
6574  * @sds: sched_domain statistics
6575  * @sg: sched_group candidate to be checked for being the busiest
6576  * @sgs: sched_group statistics
6577  *
6578  * Determine if @sg is a busier group than the previously selected
6579  * busiest group.
6580  *
6581  * Return: %true if @sg is a busier group than the previously selected
6582  * busiest group. %false otherwise.
6583  */
6584 static bool update_sd_pick_busiest(struct lb_env *env,
6585 				   struct sd_lb_stats *sds,
6586 				   struct sched_group *sg,
6587 				   struct sg_lb_stats *sgs)
6588 {
6589 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6590 
6591 	if (sgs->group_type > busiest->group_type)
6592 		return true;
6593 
6594 	if (sgs->group_type < busiest->group_type)
6595 		return false;
6596 
6597 	if (sgs->avg_load <= busiest->avg_load)
6598 		return false;
6599 
6600 	/* This is the busiest node in its class. */
6601 	if (!(env->sd->flags & SD_ASYM_PACKING))
6602 		return true;
6603 
6604 	/*
6605 	 * ASYM_PACKING needs to move all the work to the lowest
6606 	 * numbered CPUs in the group, therefore mark all groups
6607 	 * higher than ourself as busy.
6608 	 */
6609 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6610 		if (!sds->busiest)
6611 			return true;
6612 
6613 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6614 			return true;
6615 	}
6616 
6617 	return false;
6618 }
6619 
6620 #ifdef CONFIG_NUMA_BALANCING
6621 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6622 {
6623 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6624 		return regular;
6625 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6626 		return remote;
6627 	return all;
6628 }
6629 
6630 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6631 {
6632 	if (rq->nr_running > rq->nr_numa_running)
6633 		return regular;
6634 	if (rq->nr_running > rq->nr_preferred_running)
6635 		return remote;
6636 	return all;
6637 }
6638 #else
6639 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6640 {
6641 	return all;
6642 }
6643 
6644 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6645 {
6646 	return regular;
6647 }
6648 #endif /* CONFIG_NUMA_BALANCING */
6649 
6650 /**
6651  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6652  * @env: The load balancing environment.
6653  * @sds: variable to hold the statistics for this sched_domain.
6654  */
6655 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6656 {
6657 	struct sched_domain *child = env->sd->child;
6658 	struct sched_group *sg = env->sd->groups;
6659 	struct sg_lb_stats tmp_sgs;
6660 	int load_idx, prefer_sibling = 0;
6661 	bool overload = false;
6662 
6663 	if (child && child->flags & SD_PREFER_SIBLING)
6664 		prefer_sibling = 1;
6665 
6666 	load_idx = get_sd_load_idx(env->sd, env->idle);
6667 
6668 	do {
6669 		struct sg_lb_stats *sgs = &tmp_sgs;
6670 		int local_group;
6671 
6672 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6673 		if (local_group) {
6674 			sds->local = sg;
6675 			sgs = &sds->local_stat;
6676 
6677 			if (env->idle != CPU_NEWLY_IDLE ||
6678 			    time_after_eq(jiffies, sg->sgc->next_update))
6679 				update_group_capacity(env->sd, env->dst_cpu);
6680 		}
6681 
6682 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6683 						&overload);
6684 
6685 		if (local_group)
6686 			goto next_group;
6687 
6688 		/*
6689 		 * In case the child domain prefers tasks go to siblings
6690 		 * first, lower the sg capacity so that we'll try
6691 		 * and move all the excess tasks away. We lower the capacity
6692 		 * of a group only if the local group has the capacity to fit
6693 		 * these excess tasks. The extra check prevents the case where
6694 		 * you always pull from the heaviest group when it is already
6695 		 * under-utilized (possible with a large weight task outweighs
6696 		 * the tasks on the system).
6697 		 */
6698 		if (prefer_sibling && sds->local &&
6699 		    group_has_capacity(env, &sds->local_stat) &&
6700 		    (sgs->sum_nr_running > 1)) {
6701 			sgs->group_no_capacity = 1;
6702 			sgs->group_type = group_classify(sg, sgs);
6703 		}
6704 
6705 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6706 			sds->busiest = sg;
6707 			sds->busiest_stat = *sgs;
6708 		}
6709 
6710 next_group:
6711 		/* Now, start updating sd_lb_stats */
6712 		sds->total_load += sgs->group_load;
6713 		sds->total_capacity += sgs->group_capacity;
6714 
6715 		sg = sg->next;
6716 	} while (sg != env->sd->groups);
6717 
6718 	if (env->sd->flags & SD_NUMA)
6719 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6720 
6721 	if (!env->sd->parent) {
6722 		/* update overload indicator if we are at root domain */
6723 		if (env->dst_rq->rd->overload != overload)
6724 			env->dst_rq->rd->overload = overload;
6725 	}
6726 
6727 }
6728 
6729 /**
6730  * check_asym_packing - Check to see if the group is packed into the
6731  *			sched doman.
6732  *
6733  * This is primarily intended to used at the sibling level.  Some
6734  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6735  * case of POWER7, it can move to lower SMT modes only when higher
6736  * threads are idle.  When in lower SMT modes, the threads will
6737  * perform better since they share less core resources.  Hence when we
6738  * have idle threads, we want them to be the higher ones.
6739  *
6740  * This packing function is run on idle threads.  It checks to see if
6741  * the busiest CPU in this domain (core in the P7 case) has a higher
6742  * CPU number than the packing function is being run on.  Here we are
6743  * assuming lower CPU number will be equivalent to lower a SMT thread
6744  * number.
6745  *
6746  * Return: 1 when packing is required and a task should be moved to
6747  * this CPU.  The amount of the imbalance is returned in *imbalance.
6748  *
6749  * @env: The load balancing environment.
6750  * @sds: Statistics of the sched_domain which is to be packed
6751  */
6752 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6753 {
6754 	int busiest_cpu;
6755 
6756 	if (!(env->sd->flags & SD_ASYM_PACKING))
6757 		return 0;
6758 
6759 	if (!sds->busiest)
6760 		return 0;
6761 
6762 	busiest_cpu = group_first_cpu(sds->busiest);
6763 	if (env->dst_cpu > busiest_cpu)
6764 		return 0;
6765 
6766 	env->imbalance = DIV_ROUND_CLOSEST(
6767 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6768 		SCHED_CAPACITY_SCALE);
6769 
6770 	return 1;
6771 }
6772 
6773 /**
6774  * fix_small_imbalance - Calculate the minor imbalance that exists
6775  *			amongst the groups of a sched_domain, during
6776  *			load balancing.
6777  * @env: The load balancing environment.
6778  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6779  */
6780 static inline
6781 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6782 {
6783 	unsigned long tmp, capa_now = 0, capa_move = 0;
6784 	unsigned int imbn = 2;
6785 	unsigned long scaled_busy_load_per_task;
6786 	struct sg_lb_stats *local, *busiest;
6787 
6788 	local = &sds->local_stat;
6789 	busiest = &sds->busiest_stat;
6790 
6791 	if (!local->sum_nr_running)
6792 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6793 	else if (busiest->load_per_task > local->load_per_task)
6794 		imbn = 1;
6795 
6796 	scaled_busy_load_per_task =
6797 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6798 		busiest->group_capacity;
6799 
6800 	if (busiest->avg_load + scaled_busy_load_per_task >=
6801 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6802 		env->imbalance = busiest->load_per_task;
6803 		return;
6804 	}
6805 
6806 	/*
6807 	 * OK, we don't have enough imbalance to justify moving tasks,
6808 	 * however we may be able to increase total CPU capacity used by
6809 	 * moving them.
6810 	 */
6811 
6812 	capa_now += busiest->group_capacity *
6813 			min(busiest->load_per_task, busiest->avg_load);
6814 	capa_now += local->group_capacity *
6815 			min(local->load_per_task, local->avg_load);
6816 	capa_now /= SCHED_CAPACITY_SCALE;
6817 
6818 	/* Amount of load we'd subtract */
6819 	if (busiest->avg_load > scaled_busy_load_per_task) {
6820 		capa_move += busiest->group_capacity *
6821 			    min(busiest->load_per_task,
6822 				busiest->avg_load - scaled_busy_load_per_task);
6823 	}
6824 
6825 	/* Amount of load we'd add */
6826 	if (busiest->avg_load * busiest->group_capacity <
6827 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6828 		tmp = (busiest->avg_load * busiest->group_capacity) /
6829 		      local->group_capacity;
6830 	} else {
6831 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6832 		      local->group_capacity;
6833 	}
6834 	capa_move += local->group_capacity *
6835 		    min(local->load_per_task, local->avg_load + tmp);
6836 	capa_move /= SCHED_CAPACITY_SCALE;
6837 
6838 	/* Move if we gain throughput */
6839 	if (capa_move > capa_now)
6840 		env->imbalance = busiest->load_per_task;
6841 }
6842 
6843 /**
6844  * calculate_imbalance - Calculate the amount of imbalance present within the
6845  *			 groups of a given sched_domain during load balance.
6846  * @env: load balance environment
6847  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6848  */
6849 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6850 {
6851 	unsigned long max_pull, load_above_capacity = ~0UL;
6852 	struct sg_lb_stats *local, *busiest;
6853 
6854 	local = &sds->local_stat;
6855 	busiest = &sds->busiest_stat;
6856 
6857 	if (busiest->group_type == group_imbalanced) {
6858 		/*
6859 		 * In the group_imb case we cannot rely on group-wide averages
6860 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6861 		 */
6862 		busiest->load_per_task =
6863 			min(busiest->load_per_task, sds->avg_load);
6864 	}
6865 
6866 	/*
6867 	 * In the presence of smp nice balancing, certain scenarios can have
6868 	 * max load less than avg load(as we skip the groups at or below
6869 	 * its cpu_capacity, while calculating max_load..)
6870 	 */
6871 	if (busiest->avg_load <= sds->avg_load ||
6872 	    local->avg_load >= sds->avg_load) {
6873 		env->imbalance = 0;
6874 		return fix_small_imbalance(env, sds);
6875 	}
6876 
6877 	/*
6878 	 * If there aren't any idle cpus, avoid creating some.
6879 	 */
6880 	if (busiest->group_type == group_overloaded &&
6881 	    local->group_type   == group_overloaded) {
6882 		load_above_capacity = busiest->sum_nr_running *
6883 					SCHED_LOAD_SCALE;
6884 		if (load_above_capacity > busiest->group_capacity)
6885 			load_above_capacity -= busiest->group_capacity;
6886 		else
6887 			load_above_capacity = ~0UL;
6888 	}
6889 
6890 	/*
6891 	 * We're trying to get all the cpus to the average_load, so we don't
6892 	 * want to push ourselves above the average load, nor do we wish to
6893 	 * reduce the max loaded cpu below the average load. At the same time,
6894 	 * we also don't want to reduce the group load below the group capacity
6895 	 * (so that we can implement power-savings policies etc). Thus we look
6896 	 * for the minimum possible imbalance.
6897 	 */
6898 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6899 
6900 	/* How much load to actually move to equalise the imbalance */
6901 	env->imbalance = min(
6902 		max_pull * busiest->group_capacity,
6903 		(sds->avg_load - local->avg_load) * local->group_capacity
6904 	) / SCHED_CAPACITY_SCALE;
6905 
6906 	/*
6907 	 * if *imbalance is less than the average load per runnable task
6908 	 * there is no guarantee that any tasks will be moved so we'll have
6909 	 * a think about bumping its value to force at least one task to be
6910 	 * moved
6911 	 */
6912 	if (env->imbalance < busiest->load_per_task)
6913 		return fix_small_imbalance(env, sds);
6914 }
6915 
6916 /******* find_busiest_group() helpers end here *********************/
6917 
6918 /**
6919  * find_busiest_group - Returns the busiest group within the sched_domain
6920  * if there is an imbalance. If there isn't an imbalance, and
6921  * the user has opted for power-savings, it returns a group whose
6922  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6923  * such a group exists.
6924  *
6925  * Also calculates the amount of weighted load which should be moved
6926  * to restore balance.
6927  *
6928  * @env: The load balancing environment.
6929  *
6930  * Return:	- The busiest group if imbalance exists.
6931  *		- If no imbalance and user has opted for power-savings balance,
6932  *		   return the least loaded group whose CPUs can be
6933  *		   put to idle by rebalancing its tasks onto our group.
6934  */
6935 static struct sched_group *find_busiest_group(struct lb_env *env)
6936 {
6937 	struct sg_lb_stats *local, *busiest;
6938 	struct sd_lb_stats sds;
6939 
6940 	init_sd_lb_stats(&sds);
6941 
6942 	/*
6943 	 * Compute the various statistics relavent for load balancing at
6944 	 * this level.
6945 	 */
6946 	update_sd_lb_stats(env, &sds);
6947 	local = &sds.local_stat;
6948 	busiest = &sds.busiest_stat;
6949 
6950 	/* ASYM feature bypasses nice load balance check */
6951 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6952 	    check_asym_packing(env, &sds))
6953 		return sds.busiest;
6954 
6955 	/* There is no busy sibling group to pull tasks from */
6956 	if (!sds.busiest || busiest->sum_nr_running == 0)
6957 		goto out_balanced;
6958 
6959 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6960 						/ sds.total_capacity;
6961 
6962 	/*
6963 	 * If the busiest group is imbalanced the below checks don't
6964 	 * work because they assume all things are equal, which typically
6965 	 * isn't true due to cpus_allowed constraints and the like.
6966 	 */
6967 	if (busiest->group_type == group_imbalanced)
6968 		goto force_balance;
6969 
6970 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6971 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6972 	    busiest->group_no_capacity)
6973 		goto force_balance;
6974 
6975 	/*
6976 	 * If the local group is busier than the selected busiest group
6977 	 * don't try and pull any tasks.
6978 	 */
6979 	if (local->avg_load >= busiest->avg_load)
6980 		goto out_balanced;
6981 
6982 	/*
6983 	 * Don't pull any tasks if this group is already above the domain
6984 	 * average load.
6985 	 */
6986 	if (local->avg_load >= sds.avg_load)
6987 		goto out_balanced;
6988 
6989 	if (env->idle == CPU_IDLE) {
6990 		/*
6991 		 * This cpu is idle. If the busiest group is not overloaded
6992 		 * and there is no imbalance between this and busiest group
6993 		 * wrt idle cpus, it is balanced. The imbalance becomes
6994 		 * significant if the diff is greater than 1 otherwise we
6995 		 * might end up to just move the imbalance on another group
6996 		 */
6997 		if ((busiest->group_type != group_overloaded) &&
6998 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6999 			goto out_balanced;
7000 	} else {
7001 		/*
7002 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7003 		 * imbalance_pct to be conservative.
7004 		 */
7005 		if (100 * busiest->avg_load <=
7006 				env->sd->imbalance_pct * local->avg_load)
7007 			goto out_balanced;
7008 	}
7009 
7010 force_balance:
7011 	/* Looks like there is an imbalance. Compute it */
7012 	calculate_imbalance(env, &sds);
7013 	return sds.busiest;
7014 
7015 out_balanced:
7016 	env->imbalance = 0;
7017 	return NULL;
7018 }
7019 
7020 /*
7021  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7022  */
7023 static struct rq *find_busiest_queue(struct lb_env *env,
7024 				     struct sched_group *group)
7025 {
7026 	struct rq *busiest = NULL, *rq;
7027 	unsigned long busiest_load = 0, busiest_capacity = 1;
7028 	int i;
7029 
7030 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7031 		unsigned long capacity, wl;
7032 		enum fbq_type rt;
7033 
7034 		rq = cpu_rq(i);
7035 		rt = fbq_classify_rq(rq);
7036 
7037 		/*
7038 		 * We classify groups/runqueues into three groups:
7039 		 *  - regular: there are !numa tasks
7040 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7041 		 *  - all:     there is no distinction
7042 		 *
7043 		 * In order to avoid migrating ideally placed numa tasks,
7044 		 * ignore those when there's better options.
7045 		 *
7046 		 * If we ignore the actual busiest queue to migrate another
7047 		 * task, the next balance pass can still reduce the busiest
7048 		 * queue by moving tasks around inside the node.
7049 		 *
7050 		 * If we cannot move enough load due to this classification
7051 		 * the next pass will adjust the group classification and
7052 		 * allow migration of more tasks.
7053 		 *
7054 		 * Both cases only affect the total convergence complexity.
7055 		 */
7056 		if (rt > env->fbq_type)
7057 			continue;
7058 
7059 		capacity = capacity_of(i);
7060 
7061 		wl = weighted_cpuload(i);
7062 
7063 		/*
7064 		 * When comparing with imbalance, use weighted_cpuload()
7065 		 * which is not scaled with the cpu capacity.
7066 		 */
7067 
7068 		if (rq->nr_running == 1 && wl > env->imbalance &&
7069 		    !check_cpu_capacity(rq, env->sd))
7070 			continue;
7071 
7072 		/*
7073 		 * For the load comparisons with the other cpu's, consider
7074 		 * the weighted_cpuload() scaled with the cpu capacity, so
7075 		 * that the load can be moved away from the cpu that is
7076 		 * potentially running at a lower capacity.
7077 		 *
7078 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7079 		 * multiplication to rid ourselves of the division works out
7080 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7081 		 * our previous maximum.
7082 		 */
7083 		if (wl * busiest_capacity > busiest_load * capacity) {
7084 			busiest_load = wl;
7085 			busiest_capacity = capacity;
7086 			busiest = rq;
7087 		}
7088 	}
7089 
7090 	return busiest;
7091 }
7092 
7093 /*
7094  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7095  * so long as it is large enough.
7096  */
7097 #define MAX_PINNED_INTERVAL	512
7098 
7099 /* Working cpumask for load_balance and load_balance_newidle. */
7100 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7101 
7102 static int need_active_balance(struct lb_env *env)
7103 {
7104 	struct sched_domain *sd = env->sd;
7105 
7106 	if (env->idle == CPU_NEWLY_IDLE) {
7107 
7108 		/*
7109 		 * ASYM_PACKING needs to force migrate tasks from busy but
7110 		 * higher numbered CPUs in order to pack all tasks in the
7111 		 * lowest numbered CPUs.
7112 		 */
7113 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7114 			return 1;
7115 	}
7116 
7117 	/*
7118 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7119 	 * It's worth migrating the task if the src_cpu's capacity is reduced
7120 	 * because of other sched_class or IRQs if more capacity stays
7121 	 * available on dst_cpu.
7122 	 */
7123 	if ((env->idle != CPU_NOT_IDLE) &&
7124 	    (env->src_rq->cfs.h_nr_running == 1)) {
7125 		if ((check_cpu_capacity(env->src_rq, sd)) &&
7126 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7127 			return 1;
7128 	}
7129 
7130 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7131 }
7132 
7133 static int active_load_balance_cpu_stop(void *data);
7134 
7135 static int should_we_balance(struct lb_env *env)
7136 {
7137 	struct sched_group *sg = env->sd->groups;
7138 	struct cpumask *sg_cpus, *sg_mask;
7139 	int cpu, balance_cpu = -1;
7140 
7141 	/*
7142 	 * In the newly idle case, we will allow all the cpu's
7143 	 * to do the newly idle load balance.
7144 	 */
7145 	if (env->idle == CPU_NEWLY_IDLE)
7146 		return 1;
7147 
7148 	sg_cpus = sched_group_cpus(sg);
7149 	sg_mask = sched_group_mask(sg);
7150 	/* Try to find first idle cpu */
7151 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7152 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7153 			continue;
7154 
7155 		balance_cpu = cpu;
7156 		break;
7157 	}
7158 
7159 	if (balance_cpu == -1)
7160 		balance_cpu = group_balance_cpu(sg);
7161 
7162 	/*
7163 	 * First idle cpu or the first cpu(busiest) in this sched group
7164 	 * is eligible for doing load balancing at this and above domains.
7165 	 */
7166 	return balance_cpu == env->dst_cpu;
7167 }
7168 
7169 /*
7170  * Check this_cpu to ensure it is balanced within domain. Attempt to move
7171  * tasks if there is an imbalance.
7172  */
7173 static int load_balance(int this_cpu, struct rq *this_rq,
7174 			struct sched_domain *sd, enum cpu_idle_type idle,
7175 			int *continue_balancing)
7176 {
7177 	int ld_moved, cur_ld_moved, active_balance = 0;
7178 	struct sched_domain *sd_parent = sd->parent;
7179 	struct sched_group *group;
7180 	struct rq *busiest;
7181 	unsigned long flags;
7182 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7183 
7184 	struct lb_env env = {
7185 		.sd		= sd,
7186 		.dst_cpu	= this_cpu,
7187 		.dst_rq		= this_rq,
7188 		.dst_grpmask    = sched_group_cpus(sd->groups),
7189 		.idle		= idle,
7190 		.loop_break	= sched_nr_migrate_break,
7191 		.cpus		= cpus,
7192 		.fbq_type	= all,
7193 		.tasks		= LIST_HEAD_INIT(env.tasks),
7194 	};
7195 
7196 	/*
7197 	 * For NEWLY_IDLE load_balancing, we don't need to consider
7198 	 * other cpus in our group
7199 	 */
7200 	if (idle == CPU_NEWLY_IDLE)
7201 		env.dst_grpmask = NULL;
7202 
7203 	cpumask_copy(cpus, cpu_active_mask);
7204 
7205 	schedstat_inc(sd, lb_count[idle]);
7206 
7207 redo:
7208 	if (!should_we_balance(&env)) {
7209 		*continue_balancing = 0;
7210 		goto out_balanced;
7211 	}
7212 
7213 	group = find_busiest_group(&env);
7214 	if (!group) {
7215 		schedstat_inc(sd, lb_nobusyg[idle]);
7216 		goto out_balanced;
7217 	}
7218 
7219 	busiest = find_busiest_queue(&env, group);
7220 	if (!busiest) {
7221 		schedstat_inc(sd, lb_nobusyq[idle]);
7222 		goto out_balanced;
7223 	}
7224 
7225 	BUG_ON(busiest == env.dst_rq);
7226 
7227 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7228 
7229 	env.src_cpu = busiest->cpu;
7230 	env.src_rq = busiest;
7231 
7232 	ld_moved = 0;
7233 	if (busiest->nr_running > 1) {
7234 		/*
7235 		 * Attempt to move tasks. If find_busiest_group has found
7236 		 * an imbalance but busiest->nr_running <= 1, the group is
7237 		 * still unbalanced. ld_moved simply stays zero, so it is
7238 		 * correctly treated as an imbalance.
7239 		 */
7240 		env.flags |= LBF_ALL_PINNED;
7241 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7242 
7243 more_balance:
7244 		raw_spin_lock_irqsave(&busiest->lock, flags);
7245 
7246 		/*
7247 		 * cur_ld_moved - load moved in current iteration
7248 		 * ld_moved     - cumulative load moved across iterations
7249 		 */
7250 		cur_ld_moved = detach_tasks(&env);
7251 
7252 		/*
7253 		 * We've detached some tasks from busiest_rq. Every
7254 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7255 		 * unlock busiest->lock, and we are able to be sure
7256 		 * that nobody can manipulate the tasks in parallel.
7257 		 * See task_rq_lock() family for the details.
7258 		 */
7259 
7260 		raw_spin_unlock(&busiest->lock);
7261 
7262 		if (cur_ld_moved) {
7263 			attach_tasks(&env);
7264 			ld_moved += cur_ld_moved;
7265 		}
7266 
7267 		local_irq_restore(flags);
7268 
7269 		if (env.flags & LBF_NEED_BREAK) {
7270 			env.flags &= ~LBF_NEED_BREAK;
7271 			goto more_balance;
7272 		}
7273 
7274 		/*
7275 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7276 		 * us and move them to an alternate dst_cpu in our sched_group
7277 		 * where they can run. The upper limit on how many times we
7278 		 * iterate on same src_cpu is dependent on number of cpus in our
7279 		 * sched_group.
7280 		 *
7281 		 * This changes load balance semantics a bit on who can move
7282 		 * load to a given_cpu. In addition to the given_cpu itself
7283 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7284 		 * nohz-idle), we now have balance_cpu in a position to move
7285 		 * load to given_cpu. In rare situations, this may cause
7286 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7287 		 * _independently_ and at _same_ time to move some load to
7288 		 * given_cpu) causing exceess load to be moved to given_cpu.
7289 		 * This however should not happen so much in practice and
7290 		 * moreover subsequent load balance cycles should correct the
7291 		 * excess load moved.
7292 		 */
7293 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7294 
7295 			/* Prevent to re-select dst_cpu via env's cpus */
7296 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7297 
7298 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7299 			env.dst_cpu	 = env.new_dst_cpu;
7300 			env.flags	&= ~LBF_DST_PINNED;
7301 			env.loop	 = 0;
7302 			env.loop_break	 = sched_nr_migrate_break;
7303 
7304 			/*
7305 			 * Go back to "more_balance" rather than "redo" since we
7306 			 * need to continue with same src_cpu.
7307 			 */
7308 			goto more_balance;
7309 		}
7310 
7311 		/*
7312 		 * We failed to reach balance because of affinity.
7313 		 */
7314 		if (sd_parent) {
7315 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7316 
7317 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7318 				*group_imbalance = 1;
7319 		}
7320 
7321 		/* All tasks on this runqueue were pinned by CPU affinity */
7322 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7323 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7324 			if (!cpumask_empty(cpus)) {
7325 				env.loop = 0;
7326 				env.loop_break = sched_nr_migrate_break;
7327 				goto redo;
7328 			}
7329 			goto out_all_pinned;
7330 		}
7331 	}
7332 
7333 	if (!ld_moved) {
7334 		schedstat_inc(sd, lb_failed[idle]);
7335 		/*
7336 		 * Increment the failure counter only on periodic balance.
7337 		 * We do not want newidle balance, which can be very
7338 		 * frequent, pollute the failure counter causing
7339 		 * excessive cache_hot migrations and active balances.
7340 		 */
7341 		if (idle != CPU_NEWLY_IDLE)
7342 			sd->nr_balance_failed++;
7343 
7344 		if (need_active_balance(&env)) {
7345 			raw_spin_lock_irqsave(&busiest->lock, flags);
7346 
7347 			/* don't kick the active_load_balance_cpu_stop,
7348 			 * if the curr task on busiest cpu can't be
7349 			 * moved to this_cpu
7350 			 */
7351 			if (!cpumask_test_cpu(this_cpu,
7352 					tsk_cpus_allowed(busiest->curr))) {
7353 				raw_spin_unlock_irqrestore(&busiest->lock,
7354 							    flags);
7355 				env.flags |= LBF_ALL_PINNED;
7356 				goto out_one_pinned;
7357 			}
7358 
7359 			/*
7360 			 * ->active_balance synchronizes accesses to
7361 			 * ->active_balance_work.  Once set, it's cleared
7362 			 * only after active load balance is finished.
7363 			 */
7364 			if (!busiest->active_balance) {
7365 				busiest->active_balance = 1;
7366 				busiest->push_cpu = this_cpu;
7367 				active_balance = 1;
7368 			}
7369 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7370 
7371 			if (active_balance) {
7372 				stop_one_cpu_nowait(cpu_of(busiest),
7373 					active_load_balance_cpu_stop, busiest,
7374 					&busiest->active_balance_work);
7375 			}
7376 
7377 			/*
7378 			 * We've kicked active balancing, reset the failure
7379 			 * counter.
7380 			 */
7381 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7382 		}
7383 	} else
7384 		sd->nr_balance_failed = 0;
7385 
7386 	if (likely(!active_balance)) {
7387 		/* We were unbalanced, so reset the balancing interval */
7388 		sd->balance_interval = sd->min_interval;
7389 	} else {
7390 		/*
7391 		 * If we've begun active balancing, start to back off. This
7392 		 * case may not be covered by the all_pinned logic if there
7393 		 * is only 1 task on the busy runqueue (because we don't call
7394 		 * detach_tasks).
7395 		 */
7396 		if (sd->balance_interval < sd->max_interval)
7397 			sd->balance_interval *= 2;
7398 	}
7399 
7400 	goto out;
7401 
7402 out_balanced:
7403 	/*
7404 	 * We reach balance although we may have faced some affinity
7405 	 * constraints. Clear the imbalance flag if it was set.
7406 	 */
7407 	if (sd_parent) {
7408 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7409 
7410 		if (*group_imbalance)
7411 			*group_imbalance = 0;
7412 	}
7413 
7414 out_all_pinned:
7415 	/*
7416 	 * We reach balance because all tasks are pinned at this level so
7417 	 * we can't migrate them. Let the imbalance flag set so parent level
7418 	 * can try to migrate them.
7419 	 */
7420 	schedstat_inc(sd, lb_balanced[idle]);
7421 
7422 	sd->nr_balance_failed = 0;
7423 
7424 out_one_pinned:
7425 	/* tune up the balancing interval */
7426 	if (((env.flags & LBF_ALL_PINNED) &&
7427 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7428 			(sd->balance_interval < sd->max_interval))
7429 		sd->balance_interval *= 2;
7430 
7431 	ld_moved = 0;
7432 out:
7433 	return ld_moved;
7434 }
7435 
7436 static inline unsigned long
7437 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7438 {
7439 	unsigned long interval = sd->balance_interval;
7440 
7441 	if (cpu_busy)
7442 		interval *= sd->busy_factor;
7443 
7444 	/* scale ms to jiffies */
7445 	interval = msecs_to_jiffies(interval);
7446 	interval = clamp(interval, 1UL, max_load_balance_interval);
7447 
7448 	return interval;
7449 }
7450 
7451 static inline void
7452 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7453 {
7454 	unsigned long interval, next;
7455 
7456 	interval = get_sd_balance_interval(sd, cpu_busy);
7457 	next = sd->last_balance + interval;
7458 
7459 	if (time_after(*next_balance, next))
7460 		*next_balance = next;
7461 }
7462 
7463 /*
7464  * idle_balance is called by schedule() if this_cpu is about to become
7465  * idle. Attempts to pull tasks from other CPUs.
7466  */
7467 static int idle_balance(struct rq *this_rq)
7468 {
7469 	unsigned long next_balance = jiffies + HZ;
7470 	int this_cpu = this_rq->cpu;
7471 	struct sched_domain *sd;
7472 	int pulled_task = 0;
7473 	u64 curr_cost = 0;
7474 
7475 	/*
7476 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7477 	 * measure the duration of idle_balance() as idle time.
7478 	 */
7479 	this_rq->idle_stamp = rq_clock(this_rq);
7480 
7481 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7482 	    !this_rq->rd->overload) {
7483 		rcu_read_lock();
7484 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7485 		if (sd)
7486 			update_next_balance(sd, 0, &next_balance);
7487 		rcu_read_unlock();
7488 
7489 		goto out;
7490 	}
7491 
7492 	raw_spin_unlock(&this_rq->lock);
7493 
7494 	update_blocked_averages(this_cpu);
7495 	rcu_read_lock();
7496 	for_each_domain(this_cpu, sd) {
7497 		int continue_balancing = 1;
7498 		u64 t0, domain_cost;
7499 
7500 		if (!(sd->flags & SD_LOAD_BALANCE))
7501 			continue;
7502 
7503 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7504 			update_next_balance(sd, 0, &next_balance);
7505 			break;
7506 		}
7507 
7508 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7509 			t0 = sched_clock_cpu(this_cpu);
7510 
7511 			pulled_task = load_balance(this_cpu, this_rq,
7512 						   sd, CPU_NEWLY_IDLE,
7513 						   &continue_balancing);
7514 
7515 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7516 			if (domain_cost > sd->max_newidle_lb_cost)
7517 				sd->max_newidle_lb_cost = domain_cost;
7518 
7519 			curr_cost += domain_cost;
7520 		}
7521 
7522 		update_next_balance(sd, 0, &next_balance);
7523 
7524 		/*
7525 		 * Stop searching for tasks to pull if there are
7526 		 * now runnable tasks on this rq.
7527 		 */
7528 		if (pulled_task || this_rq->nr_running > 0)
7529 			break;
7530 	}
7531 	rcu_read_unlock();
7532 
7533 	raw_spin_lock(&this_rq->lock);
7534 
7535 	if (curr_cost > this_rq->max_idle_balance_cost)
7536 		this_rq->max_idle_balance_cost = curr_cost;
7537 
7538 	/*
7539 	 * While browsing the domains, we released the rq lock, a task could
7540 	 * have been enqueued in the meantime. Since we're not going idle,
7541 	 * pretend we pulled a task.
7542 	 */
7543 	if (this_rq->cfs.h_nr_running && !pulled_task)
7544 		pulled_task = 1;
7545 
7546 out:
7547 	/* Move the next balance forward */
7548 	if (time_after(this_rq->next_balance, next_balance))
7549 		this_rq->next_balance = next_balance;
7550 
7551 	/* Is there a task of a high priority class? */
7552 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7553 		pulled_task = -1;
7554 
7555 	if (pulled_task)
7556 		this_rq->idle_stamp = 0;
7557 
7558 	return pulled_task;
7559 }
7560 
7561 /*
7562  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7563  * running tasks off the busiest CPU onto idle CPUs. It requires at
7564  * least 1 task to be running on each physical CPU where possible, and
7565  * avoids physical / logical imbalances.
7566  */
7567 static int active_load_balance_cpu_stop(void *data)
7568 {
7569 	struct rq *busiest_rq = data;
7570 	int busiest_cpu = cpu_of(busiest_rq);
7571 	int target_cpu = busiest_rq->push_cpu;
7572 	struct rq *target_rq = cpu_rq(target_cpu);
7573 	struct sched_domain *sd;
7574 	struct task_struct *p = NULL;
7575 
7576 	raw_spin_lock_irq(&busiest_rq->lock);
7577 
7578 	/* make sure the requested cpu hasn't gone down in the meantime */
7579 	if (unlikely(busiest_cpu != smp_processor_id() ||
7580 		     !busiest_rq->active_balance))
7581 		goto out_unlock;
7582 
7583 	/* Is there any task to move? */
7584 	if (busiest_rq->nr_running <= 1)
7585 		goto out_unlock;
7586 
7587 	/*
7588 	 * This condition is "impossible", if it occurs
7589 	 * we need to fix it. Originally reported by
7590 	 * Bjorn Helgaas on a 128-cpu setup.
7591 	 */
7592 	BUG_ON(busiest_rq == target_rq);
7593 
7594 	/* Search for an sd spanning us and the target CPU. */
7595 	rcu_read_lock();
7596 	for_each_domain(target_cpu, sd) {
7597 		if ((sd->flags & SD_LOAD_BALANCE) &&
7598 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7599 				break;
7600 	}
7601 
7602 	if (likely(sd)) {
7603 		struct lb_env env = {
7604 			.sd		= sd,
7605 			.dst_cpu	= target_cpu,
7606 			.dst_rq		= target_rq,
7607 			.src_cpu	= busiest_rq->cpu,
7608 			.src_rq		= busiest_rq,
7609 			.idle		= CPU_IDLE,
7610 		};
7611 
7612 		schedstat_inc(sd, alb_count);
7613 
7614 		p = detach_one_task(&env);
7615 		if (p)
7616 			schedstat_inc(sd, alb_pushed);
7617 		else
7618 			schedstat_inc(sd, alb_failed);
7619 	}
7620 	rcu_read_unlock();
7621 out_unlock:
7622 	busiest_rq->active_balance = 0;
7623 	raw_spin_unlock(&busiest_rq->lock);
7624 
7625 	if (p)
7626 		attach_one_task(target_rq, p);
7627 
7628 	local_irq_enable();
7629 
7630 	return 0;
7631 }
7632 
7633 static inline int on_null_domain(struct rq *rq)
7634 {
7635 	return unlikely(!rcu_dereference_sched(rq->sd));
7636 }
7637 
7638 #ifdef CONFIG_NO_HZ_COMMON
7639 /*
7640  * idle load balancing details
7641  * - When one of the busy CPUs notice that there may be an idle rebalancing
7642  *   needed, they will kick the idle load balancer, which then does idle
7643  *   load balancing for all the idle CPUs.
7644  */
7645 static struct {
7646 	cpumask_var_t idle_cpus_mask;
7647 	atomic_t nr_cpus;
7648 	unsigned long next_balance;     /* in jiffy units */
7649 } nohz ____cacheline_aligned;
7650 
7651 static inline int find_new_ilb(void)
7652 {
7653 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7654 
7655 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7656 		return ilb;
7657 
7658 	return nr_cpu_ids;
7659 }
7660 
7661 /*
7662  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7663  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7664  * CPU (if there is one).
7665  */
7666 static void nohz_balancer_kick(void)
7667 {
7668 	int ilb_cpu;
7669 
7670 	nohz.next_balance++;
7671 
7672 	ilb_cpu = find_new_ilb();
7673 
7674 	if (ilb_cpu >= nr_cpu_ids)
7675 		return;
7676 
7677 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7678 		return;
7679 	/*
7680 	 * Use smp_send_reschedule() instead of resched_cpu().
7681 	 * This way we generate a sched IPI on the target cpu which
7682 	 * is idle. And the softirq performing nohz idle load balance
7683 	 * will be run before returning from the IPI.
7684 	 */
7685 	smp_send_reschedule(ilb_cpu);
7686 	return;
7687 }
7688 
7689 static inline void nohz_balance_exit_idle(int cpu)
7690 {
7691 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7692 		/*
7693 		 * Completely isolated CPUs don't ever set, so we must test.
7694 		 */
7695 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7696 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7697 			atomic_dec(&nohz.nr_cpus);
7698 		}
7699 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7700 	}
7701 }
7702 
7703 static inline void set_cpu_sd_state_busy(void)
7704 {
7705 	struct sched_domain *sd;
7706 	int cpu = smp_processor_id();
7707 
7708 	rcu_read_lock();
7709 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7710 
7711 	if (!sd || !sd->nohz_idle)
7712 		goto unlock;
7713 	sd->nohz_idle = 0;
7714 
7715 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7716 unlock:
7717 	rcu_read_unlock();
7718 }
7719 
7720 void set_cpu_sd_state_idle(void)
7721 {
7722 	struct sched_domain *sd;
7723 	int cpu = smp_processor_id();
7724 
7725 	rcu_read_lock();
7726 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7727 
7728 	if (!sd || sd->nohz_idle)
7729 		goto unlock;
7730 	sd->nohz_idle = 1;
7731 
7732 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7733 unlock:
7734 	rcu_read_unlock();
7735 }
7736 
7737 /*
7738  * This routine will record that the cpu is going idle with tick stopped.
7739  * This info will be used in performing idle load balancing in the future.
7740  */
7741 void nohz_balance_enter_idle(int cpu)
7742 {
7743 	/*
7744 	 * If this cpu is going down, then nothing needs to be done.
7745 	 */
7746 	if (!cpu_active(cpu))
7747 		return;
7748 
7749 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7750 		return;
7751 
7752 	/*
7753 	 * If we're a completely isolated CPU, we don't play.
7754 	 */
7755 	if (on_null_domain(cpu_rq(cpu)))
7756 		return;
7757 
7758 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7759 	atomic_inc(&nohz.nr_cpus);
7760 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7761 }
7762 
7763 static int sched_ilb_notifier(struct notifier_block *nfb,
7764 					unsigned long action, void *hcpu)
7765 {
7766 	switch (action & ~CPU_TASKS_FROZEN) {
7767 	case CPU_DYING:
7768 		nohz_balance_exit_idle(smp_processor_id());
7769 		return NOTIFY_OK;
7770 	default:
7771 		return NOTIFY_DONE;
7772 	}
7773 }
7774 #endif
7775 
7776 static DEFINE_SPINLOCK(balancing);
7777 
7778 /*
7779  * Scale the max load_balance interval with the number of CPUs in the system.
7780  * This trades load-balance latency on larger machines for less cross talk.
7781  */
7782 void update_max_interval(void)
7783 {
7784 	max_load_balance_interval = HZ*num_online_cpus()/10;
7785 }
7786 
7787 /*
7788  * It checks each scheduling domain to see if it is due to be balanced,
7789  * and initiates a balancing operation if so.
7790  *
7791  * Balancing parameters are set up in init_sched_domains.
7792  */
7793 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7794 {
7795 	int continue_balancing = 1;
7796 	int cpu = rq->cpu;
7797 	unsigned long interval;
7798 	struct sched_domain *sd;
7799 	/* Earliest time when we have to do rebalance again */
7800 	unsigned long next_balance = jiffies + 60*HZ;
7801 	int update_next_balance = 0;
7802 	int need_serialize, need_decay = 0;
7803 	u64 max_cost = 0;
7804 
7805 	update_blocked_averages(cpu);
7806 
7807 	rcu_read_lock();
7808 	for_each_domain(cpu, sd) {
7809 		/*
7810 		 * Decay the newidle max times here because this is a regular
7811 		 * visit to all the domains. Decay ~1% per second.
7812 		 */
7813 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7814 			sd->max_newidle_lb_cost =
7815 				(sd->max_newidle_lb_cost * 253) / 256;
7816 			sd->next_decay_max_lb_cost = jiffies + HZ;
7817 			need_decay = 1;
7818 		}
7819 		max_cost += sd->max_newidle_lb_cost;
7820 
7821 		if (!(sd->flags & SD_LOAD_BALANCE))
7822 			continue;
7823 
7824 		/*
7825 		 * Stop the load balance at this level. There is another
7826 		 * CPU in our sched group which is doing load balancing more
7827 		 * actively.
7828 		 */
7829 		if (!continue_balancing) {
7830 			if (need_decay)
7831 				continue;
7832 			break;
7833 		}
7834 
7835 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7836 
7837 		need_serialize = sd->flags & SD_SERIALIZE;
7838 		if (need_serialize) {
7839 			if (!spin_trylock(&balancing))
7840 				goto out;
7841 		}
7842 
7843 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7844 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7845 				/*
7846 				 * The LBF_DST_PINNED logic could have changed
7847 				 * env->dst_cpu, so we can't know our idle
7848 				 * state even if we migrated tasks. Update it.
7849 				 */
7850 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7851 			}
7852 			sd->last_balance = jiffies;
7853 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7854 		}
7855 		if (need_serialize)
7856 			spin_unlock(&balancing);
7857 out:
7858 		if (time_after(next_balance, sd->last_balance + interval)) {
7859 			next_balance = sd->last_balance + interval;
7860 			update_next_balance = 1;
7861 		}
7862 	}
7863 	if (need_decay) {
7864 		/*
7865 		 * Ensure the rq-wide value also decays but keep it at a
7866 		 * reasonable floor to avoid funnies with rq->avg_idle.
7867 		 */
7868 		rq->max_idle_balance_cost =
7869 			max((u64)sysctl_sched_migration_cost, max_cost);
7870 	}
7871 	rcu_read_unlock();
7872 
7873 	/*
7874 	 * next_balance will be updated only when there is a need.
7875 	 * When the cpu is attached to null domain for ex, it will not be
7876 	 * updated.
7877 	 */
7878 	if (likely(update_next_balance)) {
7879 		rq->next_balance = next_balance;
7880 
7881 #ifdef CONFIG_NO_HZ_COMMON
7882 		/*
7883 		 * If this CPU has been elected to perform the nohz idle
7884 		 * balance. Other idle CPUs have already rebalanced with
7885 		 * nohz_idle_balance() and nohz.next_balance has been
7886 		 * updated accordingly. This CPU is now running the idle load
7887 		 * balance for itself and we need to update the
7888 		 * nohz.next_balance accordingly.
7889 		 */
7890 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7891 			nohz.next_balance = rq->next_balance;
7892 #endif
7893 	}
7894 }
7895 
7896 #ifdef CONFIG_NO_HZ_COMMON
7897 /*
7898  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7899  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7900  */
7901 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7902 {
7903 	int this_cpu = this_rq->cpu;
7904 	struct rq *rq;
7905 	int balance_cpu;
7906 	/* Earliest time when we have to do rebalance again */
7907 	unsigned long next_balance = jiffies + 60*HZ;
7908 	int update_next_balance = 0;
7909 
7910 	if (idle != CPU_IDLE ||
7911 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7912 		goto end;
7913 
7914 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7915 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7916 			continue;
7917 
7918 		/*
7919 		 * If this cpu gets work to do, stop the load balancing
7920 		 * work being done for other cpus. Next load
7921 		 * balancing owner will pick it up.
7922 		 */
7923 		if (need_resched())
7924 			break;
7925 
7926 		rq = cpu_rq(balance_cpu);
7927 
7928 		/*
7929 		 * If time for next balance is due,
7930 		 * do the balance.
7931 		 */
7932 		if (time_after_eq(jiffies, rq->next_balance)) {
7933 			raw_spin_lock_irq(&rq->lock);
7934 			update_rq_clock(rq);
7935 			update_cpu_load_idle(rq);
7936 			raw_spin_unlock_irq(&rq->lock);
7937 			rebalance_domains(rq, CPU_IDLE);
7938 		}
7939 
7940 		if (time_after(next_balance, rq->next_balance)) {
7941 			next_balance = rq->next_balance;
7942 			update_next_balance = 1;
7943 		}
7944 	}
7945 
7946 	/*
7947 	 * next_balance will be updated only when there is a need.
7948 	 * When the CPU is attached to null domain for ex, it will not be
7949 	 * updated.
7950 	 */
7951 	if (likely(update_next_balance))
7952 		nohz.next_balance = next_balance;
7953 end:
7954 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7955 }
7956 
7957 /*
7958  * Current heuristic for kicking the idle load balancer in the presence
7959  * of an idle cpu in the system.
7960  *   - This rq has more than one task.
7961  *   - This rq has at least one CFS task and the capacity of the CPU is
7962  *     significantly reduced because of RT tasks or IRQs.
7963  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7964  *     multiple busy cpu.
7965  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7966  *     domain span are idle.
7967  */
7968 static inline bool nohz_kick_needed(struct rq *rq)
7969 {
7970 	unsigned long now = jiffies;
7971 	struct sched_domain *sd;
7972 	struct sched_group_capacity *sgc;
7973 	int nr_busy, cpu = rq->cpu;
7974 	bool kick = false;
7975 
7976 	if (unlikely(rq->idle_balance))
7977 		return false;
7978 
7979        /*
7980 	* We may be recently in ticked or tickless idle mode. At the first
7981 	* busy tick after returning from idle, we will update the busy stats.
7982 	*/
7983 	set_cpu_sd_state_busy();
7984 	nohz_balance_exit_idle(cpu);
7985 
7986 	/*
7987 	 * None are in tickless mode and hence no need for NOHZ idle load
7988 	 * balancing.
7989 	 */
7990 	if (likely(!atomic_read(&nohz.nr_cpus)))
7991 		return false;
7992 
7993 	if (time_before(now, nohz.next_balance))
7994 		return false;
7995 
7996 	if (rq->nr_running >= 2)
7997 		return true;
7998 
7999 	rcu_read_lock();
8000 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
8001 	if (sd) {
8002 		sgc = sd->groups->sgc;
8003 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8004 
8005 		if (nr_busy > 1) {
8006 			kick = true;
8007 			goto unlock;
8008 		}
8009 
8010 	}
8011 
8012 	sd = rcu_dereference(rq->sd);
8013 	if (sd) {
8014 		if ((rq->cfs.h_nr_running >= 1) &&
8015 				check_cpu_capacity(rq, sd)) {
8016 			kick = true;
8017 			goto unlock;
8018 		}
8019 	}
8020 
8021 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8022 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8023 				  sched_domain_span(sd)) < cpu)) {
8024 		kick = true;
8025 		goto unlock;
8026 	}
8027 
8028 unlock:
8029 	rcu_read_unlock();
8030 	return kick;
8031 }
8032 #else
8033 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8034 #endif
8035 
8036 /*
8037  * run_rebalance_domains is triggered when needed from the scheduler tick.
8038  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8039  */
8040 static void run_rebalance_domains(struct softirq_action *h)
8041 {
8042 	struct rq *this_rq = this_rq();
8043 	enum cpu_idle_type idle = this_rq->idle_balance ?
8044 						CPU_IDLE : CPU_NOT_IDLE;
8045 
8046 	/*
8047 	 * If this cpu has a pending nohz_balance_kick, then do the
8048 	 * balancing on behalf of the other idle cpus whose ticks are
8049 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8050 	 * give the idle cpus a chance to load balance. Else we may
8051 	 * load balance only within the local sched_domain hierarchy
8052 	 * and abort nohz_idle_balance altogether if we pull some load.
8053 	 */
8054 	nohz_idle_balance(this_rq, idle);
8055 	rebalance_domains(this_rq, idle);
8056 }
8057 
8058 /*
8059  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8060  */
8061 void trigger_load_balance(struct rq *rq)
8062 {
8063 	/* Don't need to rebalance while attached to NULL domain */
8064 	if (unlikely(on_null_domain(rq)))
8065 		return;
8066 
8067 	if (time_after_eq(jiffies, rq->next_balance))
8068 		raise_softirq(SCHED_SOFTIRQ);
8069 #ifdef CONFIG_NO_HZ_COMMON
8070 	if (nohz_kick_needed(rq))
8071 		nohz_balancer_kick();
8072 #endif
8073 }
8074 
8075 static void rq_online_fair(struct rq *rq)
8076 {
8077 	update_sysctl();
8078 
8079 	update_runtime_enabled(rq);
8080 }
8081 
8082 static void rq_offline_fair(struct rq *rq)
8083 {
8084 	update_sysctl();
8085 
8086 	/* Ensure any throttled groups are reachable by pick_next_task */
8087 	unthrottle_offline_cfs_rqs(rq);
8088 }
8089 
8090 #endif /* CONFIG_SMP */
8091 
8092 /*
8093  * scheduler tick hitting a task of our scheduling class:
8094  */
8095 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8096 {
8097 	struct cfs_rq *cfs_rq;
8098 	struct sched_entity *se = &curr->se;
8099 
8100 	for_each_sched_entity(se) {
8101 		cfs_rq = cfs_rq_of(se);
8102 		entity_tick(cfs_rq, se, queued);
8103 	}
8104 
8105 	if (static_branch_unlikely(&sched_numa_balancing))
8106 		task_tick_numa(rq, curr);
8107 }
8108 
8109 /*
8110  * called on fork with the child task as argument from the parent's context
8111  *  - child not yet on the tasklist
8112  *  - preemption disabled
8113  */
8114 static void task_fork_fair(struct task_struct *p)
8115 {
8116 	struct cfs_rq *cfs_rq;
8117 	struct sched_entity *se = &p->se, *curr;
8118 	int this_cpu = smp_processor_id();
8119 	struct rq *rq = this_rq();
8120 	unsigned long flags;
8121 
8122 	raw_spin_lock_irqsave(&rq->lock, flags);
8123 
8124 	update_rq_clock(rq);
8125 
8126 	cfs_rq = task_cfs_rq(current);
8127 	curr = cfs_rq->curr;
8128 
8129 	/*
8130 	 * Not only the cpu but also the task_group of the parent might have
8131 	 * been changed after parent->se.parent,cfs_rq were copied to
8132 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8133 	 * of child point to valid ones.
8134 	 */
8135 	rcu_read_lock();
8136 	__set_task_cpu(p, this_cpu);
8137 	rcu_read_unlock();
8138 
8139 	update_curr(cfs_rq);
8140 
8141 	if (curr)
8142 		se->vruntime = curr->vruntime;
8143 	place_entity(cfs_rq, se, 1);
8144 
8145 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8146 		/*
8147 		 * Upon rescheduling, sched_class::put_prev_task() will place
8148 		 * 'current' within the tree based on its new key value.
8149 		 */
8150 		swap(curr->vruntime, se->vruntime);
8151 		resched_curr(rq);
8152 	}
8153 
8154 	se->vruntime -= cfs_rq->min_vruntime;
8155 
8156 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8157 }
8158 
8159 /*
8160  * Priority of the task has changed. Check to see if we preempt
8161  * the current task.
8162  */
8163 static void
8164 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8165 {
8166 	if (!task_on_rq_queued(p))
8167 		return;
8168 
8169 	/*
8170 	 * Reschedule if we are currently running on this runqueue and
8171 	 * our priority decreased, or if we are not currently running on
8172 	 * this runqueue and our priority is higher than the current's
8173 	 */
8174 	if (rq->curr == p) {
8175 		if (p->prio > oldprio)
8176 			resched_curr(rq);
8177 	} else
8178 		check_preempt_curr(rq, p, 0);
8179 }
8180 
8181 static inline bool vruntime_normalized(struct task_struct *p)
8182 {
8183 	struct sched_entity *se = &p->se;
8184 
8185 	/*
8186 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8187 	 * the dequeue_entity(.flags=0) will already have normalized the
8188 	 * vruntime.
8189 	 */
8190 	if (p->on_rq)
8191 		return true;
8192 
8193 	/*
8194 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
8195 	 * But there are some cases where it has already been normalized:
8196 	 *
8197 	 * - A forked child which is waiting for being woken up by
8198 	 *   wake_up_new_task().
8199 	 * - A task which has been woken up by try_to_wake_up() and
8200 	 *   waiting for actually being woken up by sched_ttwu_pending().
8201 	 */
8202 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8203 		return true;
8204 
8205 	return false;
8206 }
8207 
8208 static void detach_task_cfs_rq(struct task_struct *p)
8209 {
8210 	struct sched_entity *se = &p->se;
8211 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8212 
8213 	if (!vruntime_normalized(p)) {
8214 		/*
8215 		 * Fix up our vruntime so that the current sleep doesn't
8216 		 * cause 'unlimited' sleep bonus.
8217 		 */
8218 		place_entity(cfs_rq, se, 0);
8219 		se->vruntime -= cfs_rq->min_vruntime;
8220 	}
8221 
8222 	/* Catch up with the cfs_rq and remove our load when we leave */
8223 	detach_entity_load_avg(cfs_rq, se);
8224 }
8225 
8226 static void attach_task_cfs_rq(struct task_struct *p)
8227 {
8228 	struct sched_entity *se = &p->se;
8229 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8230 
8231 #ifdef CONFIG_FAIR_GROUP_SCHED
8232 	/*
8233 	 * Since the real-depth could have been changed (only FAIR
8234 	 * class maintain depth value), reset depth properly.
8235 	 */
8236 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8237 #endif
8238 
8239 	/* Synchronize task with its cfs_rq */
8240 	attach_entity_load_avg(cfs_rq, se);
8241 
8242 	if (!vruntime_normalized(p))
8243 		se->vruntime += cfs_rq->min_vruntime;
8244 }
8245 
8246 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8247 {
8248 	detach_task_cfs_rq(p);
8249 }
8250 
8251 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8252 {
8253 	attach_task_cfs_rq(p);
8254 
8255 	if (task_on_rq_queued(p)) {
8256 		/*
8257 		 * We were most likely switched from sched_rt, so
8258 		 * kick off the schedule if running, otherwise just see
8259 		 * if we can still preempt the current task.
8260 		 */
8261 		if (rq->curr == p)
8262 			resched_curr(rq);
8263 		else
8264 			check_preempt_curr(rq, p, 0);
8265 	}
8266 }
8267 
8268 /* Account for a task changing its policy or group.
8269  *
8270  * This routine is mostly called to set cfs_rq->curr field when a task
8271  * migrates between groups/classes.
8272  */
8273 static void set_curr_task_fair(struct rq *rq)
8274 {
8275 	struct sched_entity *se = &rq->curr->se;
8276 
8277 	for_each_sched_entity(se) {
8278 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
8279 
8280 		set_next_entity(cfs_rq, se);
8281 		/* ensure bandwidth has been allocated on our new cfs_rq */
8282 		account_cfs_rq_runtime(cfs_rq, 0);
8283 	}
8284 }
8285 
8286 void init_cfs_rq(struct cfs_rq *cfs_rq)
8287 {
8288 	cfs_rq->tasks_timeline = RB_ROOT;
8289 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8290 #ifndef CONFIG_64BIT
8291 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8292 #endif
8293 #ifdef CONFIG_SMP
8294 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
8295 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8296 #endif
8297 }
8298 
8299 #ifdef CONFIG_FAIR_GROUP_SCHED
8300 static void task_move_group_fair(struct task_struct *p)
8301 {
8302 	detach_task_cfs_rq(p);
8303 	set_task_rq(p, task_cpu(p));
8304 
8305 #ifdef CONFIG_SMP
8306 	/* Tell se's cfs_rq has been changed -- migrated */
8307 	p->se.avg.last_update_time = 0;
8308 #endif
8309 	attach_task_cfs_rq(p);
8310 }
8311 
8312 void free_fair_sched_group(struct task_group *tg)
8313 {
8314 	int i;
8315 
8316 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8317 
8318 	for_each_possible_cpu(i) {
8319 		if (tg->cfs_rq)
8320 			kfree(tg->cfs_rq[i]);
8321 		if (tg->se)
8322 			kfree(tg->se[i]);
8323 	}
8324 
8325 	kfree(tg->cfs_rq);
8326 	kfree(tg->se);
8327 }
8328 
8329 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8330 {
8331 	struct cfs_rq *cfs_rq;
8332 	struct sched_entity *se;
8333 	int i;
8334 
8335 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8336 	if (!tg->cfs_rq)
8337 		goto err;
8338 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8339 	if (!tg->se)
8340 		goto err;
8341 
8342 	tg->shares = NICE_0_LOAD;
8343 
8344 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8345 
8346 	for_each_possible_cpu(i) {
8347 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8348 				      GFP_KERNEL, cpu_to_node(i));
8349 		if (!cfs_rq)
8350 			goto err;
8351 
8352 		se = kzalloc_node(sizeof(struct sched_entity),
8353 				  GFP_KERNEL, cpu_to_node(i));
8354 		if (!se)
8355 			goto err_free_rq;
8356 
8357 		init_cfs_rq(cfs_rq);
8358 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8359 		init_entity_runnable_average(se);
8360 	}
8361 
8362 	return 1;
8363 
8364 err_free_rq:
8365 	kfree(cfs_rq);
8366 err:
8367 	return 0;
8368 }
8369 
8370 void unregister_fair_sched_group(struct task_group *tg)
8371 {
8372 	unsigned long flags;
8373 	struct rq *rq;
8374 	int cpu;
8375 
8376 	for_each_possible_cpu(cpu) {
8377 		if (tg->se[cpu])
8378 			remove_entity_load_avg(tg->se[cpu]);
8379 
8380 		/*
8381 		 * Only empty task groups can be destroyed; so we can speculatively
8382 		 * check on_list without danger of it being re-added.
8383 		 */
8384 		if (!tg->cfs_rq[cpu]->on_list)
8385 			continue;
8386 
8387 		rq = cpu_rq(cpu);
8388 
8389 		raw_spin_lock_irqsave(&rq->lock, flags);
8390 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8391 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8392 	}
8393 }
8394 
8395 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8396 			struct sched_entity *se, int cpu,
8397 			struct sched_entity *parent)
8398 {
8399 	struct rq *rq = cpu_rq(cpu);
8400 
8401 	cfs_rq->tg = tg;
8402 	cfs_rq->rq = rq;
8403 	init_cfs_rq_runtime(cfs_rq);
8404 
8405 	tg->cfs_rq[cpu] = cfs_rq;
8406 	tg->se[cpu] = se;
8407 
8408 	/* se could be NULL for root_task_group */
8409 	if (!se)
8410 		return;
8411 
8412 	if (!parent) {
8413 		se->cfs_rq = &rq->cfs;
8414 		se->depth = 0;
8415 	} else {
8416 		se->cfs_rq = parent->my_q;
8417 		se->depth = parent->depth + 1;
8418 	}
8419 
8420 	se->my_q = cfs_rq;
8421 	/* guarantee group entities always have weight */
8422 	update_load_set(&se->load, NICE_0_LOAD);
8423 	se->parent = parent;
8424 }
8425 
8426 static DEFINE_MUTEX(shares_mutex);
8427 
8428 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8429 {
8430 	int i;
8431 	unsigned long flags;
8432 
8433 	/*
8434 	 * We can't change the weight of the root cgroup.
8435 	 */
8436 	if (!tg->se[0])
8437 		return -EINVAL;
8438 
8439 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8440 
8441 	mutex_lock(&shares_mutex);
8442 	if (tg->shares == shares)
8443 		goto done;
8444 
8445 	tg->shares = shares;
8446 	for_each_possible_cpu(i) {
8447 		struct rq *rq = cpu_rq(i);
8448 		struct sched_entity *se;
8449 
8450 		se = tg->se[i];
8451 		/* Propagate contribution to hierarchy */
8452 		raw_spin_lock_irqsave(&rq->lock, flags);
8453 
8454 		/* Possible calls to update_curr() need rq clock */
8455 		update_rq_clock(rq);
8456 		for_each_sched_entity(se)
8457 			update_cfs_shares(group_cfs_rq(se));
8458 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8459 	}
8460 
8461 done:
8462 	mutex_unlock(&shares_mutex);
8463 	return 0;
8464 }
8465 #else /* CONFIG_FAIR_GROUP_SCHED */
8466 
8467 void free_fair_sched_group(struct task_group *tg) { }
8468 
8469 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8470 {
8471 	return 1;
8472 }
8473 
8474 void unregister_fair_sched_group(struct task_group *tg) { }
8475 
8476 #endif /* CONFIG_FAIR_GROUP_SCHED */
8477 
8478 
8479 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8480 {
8481 	struct sched_entity *se = &task->se;
8482 	unsigned int rr_interval = 0;
8483 
8484 	/*
8485 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8486 	 * idle runqueue:
8487 	 */
8488 	if (rq->cfs.load.weight)
8489 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8490 
8491 	return rr_interval;
8492 }
8493 
8494 /*
8495  * All the scheduling class methods:
8496  */
8497 const struct sched_class fair_sched_class = {
8498 	.next			= &idle_sched_class,
8499 	.enqueue_task		= enqueue_task_fair,
8500 	.dequeue_task		= dequeue_task_fair,
8501 	.yield_task		= yield_task_fair,
8502 	.yield_to_task		= yield_to_task_fair,
8503 
8504 	.check_preempt_curr	= check_preempt_wakeup,
8505 
8506 	.pick_next_task		= pick_next_task_fair,
8507 	.put_prev_task		= put_prev_task_fair,
8508 
8509 #ifdef CONFIG_SMP
8510 	.select_task_rq		= select_task_rq_fair,
8511 	.migrate_task_rq	= migrate_task_rq_fair,
8512 
8513 	.rq_online		= rq_online_fair,
8514 	.rq_offline		= rq_offline_fair,
8515 
8516 	.task_waking		= task_waking_fair,
8517 	.task_dead		= task_dead_fair,
8518 	.set_cpus_allowed	= set_cpus_allowed_common,
8519 #endif
8520 
8521 	.set_curr_task          = set_curr_task_fair,
8522 	.task_tick		= task_tick_fair,
8523 	.task_fork		= task_fork_fair,
8524 
8525 	.prio_changed		= prio_changed_fair,
8526 	.switched_from		= switched_from_fair,
8527 	.switched_to		= switched_to_fair,
8528 
8529 	.get_rr_interval	= get_rr_interval_fair,
8530 
8531 	.update_curr		= update_curr_fair,
8532 
8533 #ifdef CONFIG_FAIR_GROUP_SCHED
8534 	.task_move_group	= task_move_group_fair,
8535 #endif
8536 };
8537 
8538 #ifdef CONFIG_SCHED_DEBUG
8539 void print_cfs_stats(struct seq_file *m, int cpu)
8540 {
8541 	struct cfs_rq *cfs_rq;
8542 
8543 	rcu_read_lock();
8544 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8545 		print_cfs_rq(m, cpu, cfs_rq);
8546 	rcu_read_unlock();
8547 }
8548 
8549 #ifdef CONFIG_NUMA_BALANCING
8550 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8551 {
8552 	int node;
8553 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8554 
8555 	for_each_online_node(node) {
8556 		if (p->numa_faults) {
8557 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8558 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8559 		}
8560 		if (p->numa_group) {
8561 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8562 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8563 		}
8564 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8565 	}
8566 }
8567 #endif /* CONFIG_NUMA_BALANCING */
8568 #endif /* CONFIG_SCHED_DEBUG */
8569 
8570 __init void init_sched_fair_class(void)
8571 {
8572 #ifdef CONFIG_SMP
8573 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8574 
8575 #ifdef CONFIG_NO_HZ_COMMON
8576 	nohz.next_balance = jiffies;
8577 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8578 	cpu_notifier(sched_ilb_notifier, 0);
8579 #endif
8580 #endif /* SMP */
8581 
8582 }
8583