1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched.h> 24 #include <linux/latencytop.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static unsigned int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 } 306 } 307 308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 309 { 310 if (cfs_rq->on_list) { 311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 312 cfs_rq->on_list = 0; 313 } 314 } 315 316 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 319 320 /* Do the two (enqueued) entities belong to the same group ? */ 321 static inline struct cfs_rq * 322 is_same_group(struct sched_entity *se, struct sched_entity *pse) 323 { 324 if (se->cfs_rq == pse->cfs_rq) 325 return se->cfs_rq; 326 327 return NULL; 328 } 329 330 static inline struct sched_entity *parent_entity(struct sched_entity *se) 331 { 332 return se->parent; 333 } 334 335 static void 336 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 337 { 338 int se_depth, pse_depth; 339 340 /* 341 * preemption test can be made between sibling entities who are in the 342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 343 * both tasks until we find their ancestors who are siblings of common 344 * parent. 345 */ 346 347 /* First walk up until both entities are at same depth */ 348 se_depth = (*se)->depth; 349 pse_depth = (*pse)->depth; 350 351 while (se_depth > pse_depth) { 352 se_depth--; 353 *se = parent_entity(*se); 354 } 355 356 while (pse_depth > se_depth) { 357 pse_depth--; 358 *pse = parent_entity(*pse); 359 } 360 361 while (!is_same_group(*se, *pse)) { 362 *se = parent_entity(*se); 363 *pse = parent_entity(*pse); 364 } 365 } 366 367 #else /* !CONFIG_FAIR_GROUP_SCHED */ 368 369 static inline struct task_struct *task_of(struct sched_entity *se) 370 { 371 return container_of(se, struct task_struct, se); 372 } 373 374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 375 { 376 return container_of(cfs_rq, struct rq, cfs); 377 } 378 379 #define entity_is_task(se) 1 380 381 #define for_each_sched_entity(se) \ 382 for (; se; se = NULL) 383 384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 385 { 386 return &task_rq(p)->cfs; 387 } 388 389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 390 { 391 struct task_struct *p = task_of(se); 392 struct rq *rq = task_rq(p); 393 394 return &rq->cfs; 395 } 396 397 /* runqueue "owned" by this group */ 398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 399 { 400 return NULL; 401 } 402 403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 404 { 405 } 406 407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 413 414 static inline struct sched_entity *parent_entity(struct sched_entity *se) 415 { 416 return NULL; 417 } 418 419 static inline void 420 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 421 { 422 } 423 424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 425 426 static __always_inline 427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 428 429 /************************************************************** 430 * Scheduling class tree data structure manipulation methods: 431 */ 432 433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 434 { 435 s64 delta = (s64)(vruntime - max_vruntime); 436 if (delta > 0) 437 max_vruntime = vruntime; 438 439 return max_vruntime; 440 } 441 442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 443 { 444 s64 delta = (s64)(vruntime - min_vruntime); 445 if (delta < 0) 446 min_vruntime = vruntime; 447 448 return min_vruntime; 449 } 450 451 static inline int entity_before(struct sched_entity *a, 452 struct sched_entity *b) 453 { 454 return (s64)(a->vruntime - b->vruntime) < 0; 455 } 456 457 static void update_min_vruntime(struct cfs_rq *cfs_rq) 458 { 459 u64 vruntime = cfs_rq->min_vruntime; 460 461 if (cfs_rq->curr) 462 vruntime = cfs_rq->curr->vruntime; 463 464 if (cfs_rq->rb_leftmost) { 465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 466 struct sched_entity, 467 run_node); 468 469 if (!cfs_rq->curr) 470 vruntime = se->vruntime; 471 else 472 vruntime = min_vruntime(vruntime, se->vruntime); 473 } 474 475 /* ensure we never gain time by being placed backwards. */ 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 unsigned int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 597 { 598 if (unlikely(se->load.weight != NICE_0_LOAD)) 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 600 601 return delta; 602 } 603 604 /* 605 * The idea is to set a period in which each task runs once. 606 * 607 * When there are too many tasks (sched_nr_latency) we have to stretch 608 * this period because otherwise the slices get too small. 609 * 610 * p = (nr <= nl) ? l : l*nr/nl 611 */ 612 static u64 __sched_period(unsigned long nr_running) 613 { 614 if (unlikely(nr_running > sched_nr_latency)) 615 return nr_running * sysctl_sched_min_granularity; 616 else 617 return sysctl_sched_latency; 618 } 619 620 /* 621 * We calculate the wall-time slice from the period by taking a part 622 * proportional to the weight. 623 * 624 * s = p*P[w/rw] 625 */ 626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 627 { 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 629 630 for_each_sched_entity(se) { 631 struct load_weight *load; 632 struct load_weight lw; 633 634 cfs_rq = cfs_rq_of(se); 635 load = &cfs_rq->load; 636 637 if (unlikely(!se->on_rq)) { 638 lw = cfs_rq->load; 639 640 update_load_add(&lw, se->load.weight); 641 load = &lw; 642 } 643 slice = __calc_delta(slice, se->load.weight, load); 644 } 645 return slice; 646 } 647 648 /* 649 * We calculate the vruntime slice of a to-be-inserted task. 650 * 651 * vs = s/w 652 */ 653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 654 { 655 return calc_delta_fair(sched_slice(cfs_rq, se), se); 656 } 657 658 #ifdef CONFIG_SMP 659 static int select_idle_sibling(struct task_struct *p, int cpu); 660 static unsigned long task_h_load(struct task_struct *p); 661 662 /* 663 * We choose a half-life close to 1 scheduling period. 664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 665 * dependent on this value. 666 */ 667 #define LOAD_AVG_PERIOD 32 668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 670 671 /* Give new sched_entity start runnable values to heavy its load in infant time */ 672 void init_entity_runnable_average(struct sched_entity *se) 673 { 674 struct sched_avg *sa = &se->avg; 675 676 sa->last_update_time = 0; 677 /* 678 * sched_avg's period_contrib should be strictly less then 1024, so 679 * we give it 1023 to make sure it is almost a period (1024us), and 680 * will definitely be update (after enqueue). 681 */ 682 sa->period_contrib = 1023; 683 sa->load_avg = scale_load_down(se->load.weight); 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE); 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 688 } 689 690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); 691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq); 692 #else 693 void init_entity_runnable_average(struct sched_entity *se) 694 { 695 } 696 #endif 697 698 /* 699 * Update the current task's runtime statistics. 700 */ 701 static void update_curr(struct cfs_rq *cfs_rq) 702 { 703 struct sched_entity *curr = cfs_rq->curr; 704 u64 now = rq_clock_task(rq_of(cfs_rq)); 705 u64 delta_exec; 706 707 if (unlikely(!curr)) 708 return; 709 710 delta_exec = now - curr->exec_start; 711 if (unlikely((s64)delta_exec <= 0)) 712 return; 713 714 curr->exec_start = now; 715 716 schedstat_set(curr->statistics.exec_max, 717 max(delta_exec, curr->statistics.exec_max)); 718 719 curr->sum_exec_runtime += delta_exec; 720 schedstat_add(cfs_rq, exec_clock, delta_exec); 721 722 curr->vruntime += calc_delta_fair(delta_exec, curr); 723 update_min_vruntime(cfs_rq); 724 725 if (entity_is_task(curr)) { 726 struct task_struct *curtask = task_of(curr); 727 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 729 cpuacct_charge(curtask, delta_exec); 730 account_group_exec_runtime(curtask, delta_exec); 731 } 732 733 account_cfs_rq_runtime(cfs_rq, delta_exec); 734 } 735 736 static void update_curr_fair(struct rq *rq) 737 { 738 update_curr(cfs_rq_of(&rq->curr->se)); 739 } 740 741 #ifdef CONFIG_SCHEDSTATS 742 static inline void 743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 744 { 745 u64 wait_start = rq_clock(rq_of(cfs_rq)); 746 747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 748 likely(wait_start > se->statistics.wait_start)) 749 wait_start -= se->statistics.wait_start; 750 751 se->statistics.wait_start = wait_start; 752 } 753 754 static void 755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 756 { 757 struct task_struct *p; 758 u64 delta; 759 760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start; 761 762 if (entity_is_task(se)) { 763 p = task_of(se); 764 if (task_on_rq_migrating(p)) { 765 /* 766 * Preserve migrating task's wait time so wait_start 767 * time stamp can be adjusted to accumulate wait time 768 * prior to migration. 769 */ 770 se->statistics.wait_start = delta; 771 return; 772 } 773 trace_sched_stat_wait(p, delta); 774 } 775 776 se->statistics.wait_max = max(se->statistics.wait_max, delta); 777 se->statistics.wait_count++; 778 se->statistics.wait_sum += delta; 779 se->statistics.wait_start = 0; 780 } 781 782 /* 783 * Task is being enqueued - update stats: 784 */ 785 static inline void 786 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 787 { 788 /* 789 * Are we enqueueing a waiting task? (for current tasks 790 * a dequeue/enqueue event is a NOP) 791 */ 792 if (se != cfs_rq->curr) 793 update_stats_wait_start(cfs_rq, se); 794 } 795 796 static inline void 797 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 798 { 799 /* 800 * Mark the end of the wait period if dequeueing a 801 * waiting task: 802 */ 803 if (se != cfs_rq->curr) 804 update_stats_wait_end(cfs_rq, se); 805 806 if (flags & DEQUEUE_SLEEP) { 807 if (entity_is_task(se)) { 808 struct task_struct *tsk = task_of(se); 809 810 if (tsk->state & TASK_INTERRUPTIBLE) 811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 812 if (tsk->state & TASK_UNINTERRUPTIBLE) 813 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 814 } 815 } 816 817 } 818 #else 819 static inline void 820 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 821 { 822 } 823 824 static inline void 825 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 826 { 827 } 828 829 static inline void 830 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 831 { 832 } 833 834 static inline void 835 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 836 { 837 } 838 #endif 839 840 /* 841 * We are picking a new current task - update its stats: 842 */ 843 static inline void 844 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 845 { 846 /* 847 * We are starting a new run period: 848 */ 849 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 850 } 851 852 /************************************************** 853 * Scheduling class queueing methods: 854 */ 855 856 #ifdef CONFIG_NUMA_BALANCING 857 /* 858 * Approximate time to scan a full NUMA task in ms. The task scan period is 859 * calculated based on the tasks virtual memory size and 860 * numa_balancing_scan_size. 861 */ 862 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 863 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 864 865 /* Portion of address space to scan in MB */ 866 unsigned int sysctl_numa_balancing_scan_size = 256; 867 868 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 869 unsigned int sysctl_numa_balancing_scan_delay = 1000; 870 871 static unsigned int task_nr_scan_windows(struct task_struct *p) 872 { 873 unsigned long rss = 0; 874 unsigned long nr_scan_pages; 875 876 /* 877 * Calculations based on RSS as non-present and empty pages are skipped 878 * by the PTE scanner and NUMA hinting faults should be trapped based 879 * on resident pages 880 */ 881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 882 rss = get_mm_rss(p->mm); 883 if (!rss) 884 rss = nr_scan_pages; 885 886 rss = round_up(rss, nr_scan_pages); 887 return rss / nr_scan_pages; 888 } 889 890 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 891 #define MAX_SCAN_WINDOW 2560 892 893 static unsigned int task_scan_min(struct task_struct *p) 894 { 895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 896 unsigned int scan, floor; 897 unsigned int windows = 1; 898 899 if (scan_size < MAX_SCAN_WINDOW) 900 windows = MAX_SCAN_WINDOW / scan_size; 901 floor = 1000 / windows; 902 903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 904 return max_t(unsigned int, floor, scan); 905 } 906 907 static unsigned int task_scan_max(struct task_struct *p) 908 { 909 unsigned int smin = task_scan_min(p); 910 unsigned int smax; 911 912 /* Watch for min being lower than max due to floor calculations */ 913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 914 return max(smin, smax); 915 } 916 917 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 918 { 919 rq->nr_numa_running += (p->numa_preferred_nid != -1); 920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 921 } 922 923 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 924 { 925 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 927 } 928 929 struct numa_group { 930 atomic_t refcount; 931 932 spinlock_t lock; /* nr_tasks, tasks */ 933 int nr_tasks; 934 pid_t gid; 935 int active_nodes; 936 937 struct rcu_head rcu; 938 unsigned long total_faults; 939 unsigned long max_faults_cpu; 940 /* 941 * Faults_cpu is used to decide whether memory should move 942 * towards the CPU. As a consequence, these stats are weighted 943 * more by CPU use than by memory faults. 944 */ 945 unsigned long *faults_cpu; 946 unsigned long faults[0]; 947 }; 948 949 /* Shared or private faults. */ 950 #define NR_NUMA_HINT_FAULT_TYPES 2 951 952 /* Memory and CPU locality */ 953 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 954 955 /* Averaged statistics, and temporary buffers. */ 956 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 957 958 pid_t task_numa_group_id(struct task_struct *p) 959 { 960 return p->numa_group ? p->numa_group->gid : 0; 961 } 962 963 /* 964 * The averaged statistics, shared & private, memory & cpu, 965 * occupy the first half of the array. The second half of the 966 * array is for current counters, which are averaged into the 967 * first set by task_numa_placement. 968 */ 969 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 970 { 971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 972 } 973 974 static inline unsigned long task_faults(struct task_struct *p, int nid) 975 { 976 if (!p->numa_faults) 977 return 0; 978 979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 981 } 982 983 static inline unsigned long group_faults(struct task_struct *p, int nid) 984 { 985 if (!p->numa_group) 986 return 0; 987 988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 990 } 991 992 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 993 { 994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 996 } 997 998 /* 999 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1000 * considered part of a numa group's pseudo-interleaving set. Migrations 1001 * between these nodes are slowed down, to allow things to settle down. 1002 */ 1003 #define ACTIVE_NODE_FRACTION 3 1004 1005 static bool numa_is_active_node(int nid, struct numa_group *ng) 1006 { 1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1008 } 1009 1010 /* Handle placement on systems where not all nodes are directly connected. */ 1011 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1012 int maxdist, bool task) 1013 { 1014 unsigned long score = 0; 1015 int node; 1016 1017 /* 1018 * All nodes are directly connected, and the same distance 1019 * from each other. No need for fancy placement algorithms. 1020 */ 1021 if (sched_numa_topology_type == NUMA_DIRECT) 1022 return 0; 1023 1024 /* 1025 * This code is called for each node, introducing N^2 complexity, 1026 * which should be ok given the number of nodes rarely exceeds 8. 1027 */ 1028 for_each_online_node(node) { 1029 unsigned long faults; 1030 int dist = node_distance(nid, node); 1031 1032 /* 1033 * The furthest away nodes in the system are not interesting 1034 * for placement; nid was already counted. 1035 */ 1036 if (dist == sched_max_numa_distance || node == nid) 1037 continue; 1038 1039 /* 1040 * On systems with a backplane NUMA topology, compare groups 1041 * of nodes, and move tasks towards the group with the most 1042 * memory accesses. When comparing two nodes at distance 1043 * "hoplimit", only nodes closer by than "hoplimit" are part 1044 * of each group. Skip other nodes. 1045 */ 1046 if (sched_numa_topology_type == NUMA_BACKPLANE && 1047 dist > maxdist) 1048 continue; 1049 1050 /* Add up the faults from nearby nodes. */ 1051 if (task) 1052 faults = task_faults(p, node); 1053 else 1054 faults = group_faults(p, node); 1055 1056 /* 1057 * On systems with a glueless mesh NUMA topology, there are 1058 * no fixed "groups of nodes". Instead, nodes that are not 1059 * directly connected bounce traffic through intermediate 1060 * nodes; a numa_group can occupy any set of nodes. 1061 * The further away a node is, the less the faults count. 1062 * This seems to result in good task placement. 1063 */ 1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1065 faults *= (sched_max_numa_distance - dist); 1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1067 } 1068 1069 score += faults; 1070 } 1071 1072 return score; 1073 } 1074 1075 /* 1076 * These return the fraction of accesses done by a particular task, or 1077 * task group, on a particular numa node. The group weight is given a 1078 * larger multiplier, in order to group tasks together that are almost 1079 * evenly spread out between numa nodes. 1080 */ 1081 static inline unsigned long task_weight(struct task_struct *p, int nid, 1082 int dist) 1083 { 1084 unsigned long faults, total_faults; 1085 1086 if (!p->numa_faults) 1087 return 0; 1088 1089 total_faults = p->total_numa_faults; 1090 1091 if (!total_faults) 1092 return 0; 1093 1094 faults = task_faults(p, nid); 1095 faults += score_nearby_nodes(p, nid, dist, true); 1096 1097 return 1000 * faults / total_faults; 1098 } 1099 1100 static inline unsigned long group_weight(struct task_struct *p, int nid, 1101 int dist) 1102 { 1103 unsigned long faults, total_faults; 1104 1105 if (!p->numa_group) 1106 return 0; 1107 1108 total_faults = p->numa_group->total_faults; 1109 1110 if (!total_faults) 1111 return 0; 1112 1113 faults = group_faults(p, nid); 1114 faults += score_nearby_nodes(p, nid, dist, false); 1115 1116 return 1000 * faults / total_faults; 1117 } 1118 1119 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1120 int src_nid, int dst_cpu) 1121 { 1122 struct numa_group *ng = p->numa_group; 1123 int dst_nid = cpu_to_node(dst_cpu); 1124 int last_cpupid, this_cpupid; 1125 1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1127 1128 /* 1129 * Multi-stage node selection is used in conjunction with a periodic 1130 * migration fault to build a temporal task<->page relation. By using 1131 * a two-stage filter we remove short/unlikely relations. 1132 * 1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1134 * a task's usage of a particular page (n_p) per total usage of this 1135 * page (n_t) (in a given time-span) to a probability. 1136 * 1137 * Our periodic faults will sample this probability and getting the 1138 * same result twice in a row, given these samples are fully 1139 * independent, is then given by P(n)^2, provided our sample period 1140 * is sufficiently short compared to the usage pattern. 1141 * 1142 * This quadric squishes small probabilities, making it less likely we 1143 * act on an unlikely task<->page relation. 1144 */ 1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1146 if (!cpupid_pid_unset(last_cpupid) && 1147 cpupid_to_nid(last_cpupid) != dst_nid) 1148 return false; 1149 1150 /* Always allow migrate on private faults */ 1151 if (cpupid_match_pid(p, last_cpupid)) 1152 return true; 1153 1154 /* A shared fault, but p->numa_group has not been set up yet. */ 1155 if (!ng) 1156 return true; 1157 1158 /* 1159 * Destination node is much more heavily used than the source 1160 * node? Allow migration. 1161 */ 1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1163 ACTIVE_NODE_FRACTION) 1164 return true; 1165 1166 /* 1167 * Distribute memory according to CPU & memory use on each node, 1168 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1169 * 1170 * faults_cpu(dst) 3 faults_cpu(src) 1171 * --------------- * - > --------------- 1172 * faults_mem(dst) 4 faults_mem(src) 1173 */ 1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1176 } 1177 1178 static unsigned long weighted_cpuload(const int cpu); 1179 static unsigned long source_load(int cpu, int type); 1180 static unsigned long target_load(int cpu, int type); 1181 static unsigned long capacity_of(int cpu); 1182 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1183 1184 /* Cached statistics for all CPUs within a node */ 1185 struct numa_stats { 1186 unsigned long nr_running; 1187 unsigned long load; 1188 1189 /* Total compute capacity of CPUs on a node */ 1190 unsigned long compute_capacity; 1191 1192 /* Approximate capacity in terms of runnable tasks on a node */ 1193 unsigned long task_capacity; 1194 int has_free_capacity; 1195 }; 1196 1197 /* 1198 * XXX borrowed from update_sg_lb_stats 1199 */ 1200 static void update_numa_stats(struct numa_stats *ns, int nid) 1201 { 1202 int smt, cpu, cpus = 0; 1203 unsigned long capacity; 1204 1205 memset(ns, 0, sizeof(*ns)); 1206 for_each_cpu(cpu, cpumask_of_node(nid)) { 1207 struct rq *rq = cpu_rq(cpu); 1208 1209 ns->nr_running += rq->nr_running; 1210 ns->load += weighted_cpuload(cpu); 1211 ns->compute_capacity += capacity_of(cpu); 1212 1213 cpus++; 1214 } 1215 1216 /* 1217 * If we raced with hotplug and there are no CPUs left in our mask 1218 * the @ns structure is NULL'ed and task_numa_compare() will 1219 * not find this node attractive. 1220 * 1221 * We'll either bail at !has_free_capacity, or we'll detect a huge 1222 * imbalance and bail there. 1223 */ 1224 if (!cpus) 1225 return; 1226 1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1229 capacity = cpus / smt; /* cores */ 1230 1231 ns->task_capacity = min_t(unsigned, capacity, 1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1234 } 1235 1236 struct task_numa_env { 1237 struct task_struct *p; 1238 1239 int src_cpu, src_nid; 1240 int dst_cpu, dst_nid; 1241 1242 struct numa_stats src_stats, dst_stats; 1243 1244 int imbalance_pct; 1245 int dist; 1246 1247 struct task_struct *best_task; 1248 long best_imp; 1249 int best_cpu; 1250 }; 1251 1252 static void task_numa_assign(struct task_numa_env *env, 1253 struct task_struct *p, long imp) 1254 { 1255 if (env->best_task) 1256 put_task_struct(env->best_task); 1257 1258 env->best_task = p; 1259 env->best_imp = imp; 1260 env->best_cpu = env->dst_cpu; 1261 } 1262 1263 static bool load_too_imbalanced(long src_load, long dst_load, 1264 struct task_numa_env *env) 1265 { 1266 long imb, old_imb; 1267 long orig_src_load, orig_dst_load; 1268 long src_capacity, dst_capacity; 1269 1270 /* 1271 * The load is corrected for the CPU capacity available on each node. 1272 * 1273 * src_load dst_load 1274 * ------------ vs --------- 1275 * src_capacity dst_capacity 1276 */ 1277 src_capacity = env->src_stats.compute_capacity; 1278 dst_capacity = env->dst_stats.compute_capacity; 1279 1280 /* We care about the slope of the imbalance, not the direction. */ 1281 if (dst_load < src_load) 1282 swap(dst_load, src_load); 1283 1284 /* Is the difference below the threshold? */ 1285 imb = dst_load * src_capacity * 100 - 1286 src_load * dst_capacity * env->imbalance_pct; 1287 if (imb <= 0) 1288 return false; 1289 1290 /* 1291 * The imbalance is above the allowed threshold. 1292 * Compare it with the old imbalance. 1293 */ 1294 orig_src_load = env->src_stats.load; 1295 orig_dst_load = env->dst_stats.load; 1296 1297 if (orig_dst_load < orig_src_load) 1298 swap(orig_dst_load, orig_src_load); 1299 1300 old_imb = orig_dst_load * src_capacity * 100 - 1301 orig_src_load * dst_capacity * env->imbalance_pct; 1302 1303 /* Would this change make things worse? */ 1304 return (imb > old_imb); 1305 } 1306 1307 /* 1308 * This checks if the overall compute and NUMA accesses of the system would 1309 * be improved if the source tasks was migrated to the target dst_cpu taking 1310 * into account that it might be best if task running on the dst_cpu should 1311 * be exchanged with the source task 1312 */ 1313 static void task_numa_compare(struct task_numa_env *env, 1314 long taskimp, long groupimp) 1315 { 1316 struct rq *src_rq = cpu_rq(env->src_cpu); 1317 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1318 struct task_struct *cur; 1319 long src_load, dst_load; 1320 long load; 1321 long imp = env->p->numa_group ? groupimp : taskimp; 1322 long moveimp = imp; 1323 int dist = env->dist; 1324 bool assigned = false; 1325 1326 rcu_read_lock(); 1327 1328 raw_spin_lock_irq(&dst_rq->lock); 1329 cur = dst_rq->curr; 1330 /* 1331 * No need to move the exiting task or idle task. 1332 */ 1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1334 cur = NULL; 1335 else { 1336 /* 1337 * The task_struct must be protected here to protect the 1338 * p->numa_faults access in the task_weight since the 1339 * numa_faults could already be freed in the following path: 1340 * finish_task_switch() 1341 * --> put_task_struct() 1342 * --> __put_task_struct() 1343 * --> task_numa_free() 1344 */ 1345 get_task_struct(cur); 1346 } 1347 1348 raw_spin_unlock_irq(&dst_rq->lock); 1349 1350 /* 1351 * Because we have preemption enabled we can get migrated around and 1352 * end try selecting ourselves (current == env->p) as a swap candidate. 1353 */ 1354 if (cur == env->p) 1355 goto unlock; 1356 1357 /* 1358 * "imp" is the fault differential for the source task between the 1359 * source and destination node. Calculate the total differential for 1360 * the source task and potential destination task. The more negative 1361 * the value is, the more rmeote accesses that would be expected to 1362 * be incurred if the tasks were swapped. 1363 */ 1364 if (cur) { 1365 /* Skip this swap candidate if cannot move to the source cpu */ 1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1367 goto unlock; 1368 1369 /* 1370 * If dst and source tasks are in the same NUMA group, or not 1371 * in any group then look only at task weights. 1372 */ 1373 if (cur->numa_group == env->p->numa_group) { 1374 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1375 task_weight(cur, env->dst_nid, dist); 1376 /* 1377 * Add some hysteresis to prevent swapping the 1378 * tasks within a group over tiny differences. 1379 */ 1380 if (cur->numa_group) 1381 imp -= imp/16; 1382 } else { 1383 /* 1384 * Compare the group weights. If a task is all by 1385 * itself (not part of a group), use the task weight 1386 * instead. 1387 */ 1388 if (cur->numa_group) 1389 imp += group_weight(cur, env->src_nid, dist) - 1390 group_weight(cur, env->dst_nid, dist); 1391 else 1392 imp += task_weight(cur, env->src_nid, dist) - 1393 task_weight(cur, env->dst_nid, dist); 1394 } 1395 } 1396 1397 if (imp <= env->best_imp && moveimp <= env->best_imp) 1398 goto unlock; 1399 1400 if (!cur) { 1401 /* Is there capacity at our destination? */ 1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1403 !env->dst_stats.has_free_capacity) 1404 goto unlock; 1405 1406 goto balance; 1407 } 1408 1409 /* Balance doesn't matter much if we're running a task per cpu */ 1410 if (imp > env->best_imp && src_rq->nr_running == 1 && 1411 dst_rq->nr_running == 1) 1412 goto assign; 1413 1414 /* 1415 * In the overloaded case, try and keep the load balanced. 1416 */ 1417 balance: 1418 load = task_h_load(env->p); 1419 dst_load = env->dst_stats.load + load; 1420 src_load = env->src_stats.load - load; 1421 1422 if (moveimp > imp && moveimp > env->best_imp) { 1423 /* 1424 * If the improvement from just moving env->p direction is 1425 * better than swapping tasks around, check if a move is 1426 * possible. Store a slightly smaller score than moveimp, 1427 * so an actually idle CPU will win. 1428 */ 1429 if (!load_too_imbalanced(src_load, dst_load, env)) { 1430 imp = moveimp - 1; 1431 put_task_struct(cur); 1432 cur = NULL; 1433 goto assign; 1434 } 1435 } 1436 1437 if (imp <= env->best_imp) 1438 goto unlock; 1439 1440 if (cur) { 1441 load = task_h_load(cur); 1442 dst_load -= load; 1443 src_load += load; 1444 } 1445 1446 if (load_too_imbalanced(src_load, dst_load, env)) 1447 goto unlock; 1448 1449 /* 1450 * One idle CPU per node is evaluated for a task numa move. 1451 * Call select_idle_sibling to maybe find a better one. 1452 */ 1453 if (!cur) 1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1455 1456 assign: 1457 assigned = true; 1458 task_numa_assign(env, cur, imp); 1459 unlock: 1460 rcu_read_unlock(); 1461 /* 1462 * The dst_rq->curr isn't assigned. The protection for task_struct is 1463 * finished. 1464 */ 1465 if (cur && !assigned) 1466 put_task_struct(cur); 1467 } 1468 1469 static void task_numa_find_cpu(struct task_numa_env *env, 1470 long taskimp, long groupimp) 1471 { 1472 int cpu; 1473 1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1475 /* Skip this CPU if the source task cannot migrate */ 1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1477 continue; 1478 1479 env->dst_cpu = cpu; 1480 task_numa_compare(env, taskimp, groupimp); 1481 } 1482 } 1483 1484 /* Only move tasks to a NUMA node less busy than the current node. */ 1485 static bool numa_has_capacity(struct task_numa_env *env) 1486 { 1487 struct numa_stats *src = &env->src_stats; 1488 struct numa_stats *dst = &env->dst_stats; 1489 1490 if (src->has_free_capacity && !dst->has_free_capacity) 1491 return false; 1492 1493 /* 1494 * Only consider a task move if the source has a higher load 1495 * than the destination, corrected for CPU capacity on each node. 1496 * 1497 * src->load dst->load 1498 * --------------------- vs --------------------- 1499 * src->compute_capacity dst->compute_capacity 1500 */ 1501 if (src->load * dst->compute_capacity * env->imbalance_pct > 1502 1503 dst->load * src->compute_capacity * 100) 1504 return true; 1505 1506 return false; 1507 } 1508 1509 static int task_numa_migrate(struct task_struct *p) 1510 { 1511 struct task_numa_env env = { 1512 .p = p, 1513 1514 .src_cpu = task_cpu(p), 1515 .src_nid = task_node(p), 1516 1517 .imbalance_pct = 112, 1518 1519 .best_task = NULL, 1520 .best_imp = 0, 1521 .best_cpu = -1, 1522 }; 1523 struct sched_domain *sd; 1524 unsigned long taskweight, groupweight; 1525 int nid, ret, dist; 1526 long taskimp, groupimp; 1527 1528 /* 1529 * Pick the lowest SD_NUMA domain, as that would have the smallest 1530 * imbalance and would be the first to start moving tasks about. 1531 * 1532 * And we want to avoid any moving of tasks about, as that would create 1533 * random movement of tasks -- counter the numa conditions we're trying 1534 * to satisfy here. 1535 */ 1536 rcu_read_lock(); 1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1538 if (sd) 1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1540 rcu_read_unlock(); 1541 1542 /* 1543 * Cpusets can break the scheduler domain tree into smaller 1544 * balance domains, some of which do not cross NUMA boundaries. 1545 * Tasks that are "trapped" in such domains cannot be migrated 1546 * elsewhere, so there is no point in (re)trying. 1547 */ 1548 if (unlikely(!sd)) { 1549 p->numa_preferred_nid = task_node(p); 1550 return -EINVAL; 1551 } 1552 1553 env.dst_nid = p->numa_preferred_nid; 1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1555 taskweight = task_weight(p, env.src_nid, dist); 1556 groupweight = group_weight(p, env.src_nid, dist); 1557 update_numa_stats(&env.src_stats, env.src_nid); 1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1560 update_numa_stats(&env.dst_stats, env.dst_nid); 1561 1562 /* Try to find a spot on the preferred nid. */ 1563 if (numa_has_capacity(&env)) 1564 task_numa_find_cpu(&env, taskimp, groupimp); 1565 1566 /* 1567 * Look at other nodes in these cases: 1568 * - there is no space available on the preferred_nid 1569 * - the task is part of a numa_group that is interleaved across 1570 * multiple NUMA nodes; in order to better consolidate the group, 1571 * we need to check other locations. 1572 */ 1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1574 for_each_online_node(nid) { 1575 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1576 continue; 1577 1578 dist = node_distance(env.src_nid, env.dst_nid); 1579 if (sched_numa_topology_type == NUMA_BACKPLANE && 1580 dist != env.dist) { 1581 taskweight = task_weight(p, env.src_nid, dist); 1582 groupweight = group_weight(p, env.src_nid, dist); 1583 } 1584 1585 /* Only consider nodes where both task and groups benefit */ 1586 taskimp = task_weight(p, nid, dist) - taskweight; 1587 groupimp = group_weight(p, nid, dist) - groupweight; 1588 if (taskimp < 0 && groupimp < 0) 1589 continue; 1590 1591 env.dist = dist; 1592 env.dst_nid = nid; 1593 update_numa_stats(&env.dst_stats, env.dst_nid); 1594 if (numa_has_capacity(&env)) 1595 task_numa_find_cpu(&env, taskimp, groupimp); 1596 } 1597 } 1598 1599 /* 1600 * If the task is part of a workload that spans multiple NUMA nodes, 1601 * and is migrating into one of the workload's active nodes, remember 1602 * this node as the task's preferred numa node, so the workload can 1603 * settle down. 1604 * A task that migrated to a second choice node will be better off 1605 * trying for a better one later. Do not set the preferred node here. 1606 */ 1607 if (p->numa_group) { 1608 struct numa_group *ng = p->numa_group; 1609 1610 if (env.best_cpu == -1) 1611 nid = env.src_nid; 1612 else 1613 nid = env.dst_nid; 1614 1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1616 sched_setnuma(p, env.dst_nid); 1617 } 1618 1619 /* No better CPU than the current one was found. */ 1620 if (env.best_cpu == -1) 1621 return -EAGAIN; 1622 1623 /* 1624 * Reset the scan period if the task is being rescheduled on an 1625 * alternative node to recheck if the tasks is now properly placed. 1626 */ 1627 p->numa_scan_period = task_scan_min(p); 1628 1629 if (env.best_task == NULL) { 1630 ret = migrate_task_to(p, env.best_cpu); 1631 if (ret != 0) 1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1633 return ret; 1634 } 1635 1636 ret = migrate_swap(p, env.best_task); 1637 if (ret != 0) 1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1639 put_task_struct(env.best_task); 1640 return ret; 1641 } 1642 1643 /* Attempt to migrate a task to a CPU on the preferred node. */ 1644 static void numa_migrate_preferred(struct task_struct *p) 1645 { 1646 unsigned long interval = HZ; 1647 1648 /* This task has no NUMA fault statistics yet */ 1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1650 return; 1651 1652 /* Periodically retry migrating the task to the preferred node */ 1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1654 p->numa_migrate_retry = jiffies + interval; 1655 1656 /* Success if task is already running on preferred CPU */ 1657 if (task_node(p) == p->numa_preferred_nid) 1658 return; 1659 1660 /* Otherwise, try migrate to a CPU on the preferred node */ 1661 task_numa_migrate(p); 1662 } 1663 1664 /* 1665 * Find out how many nodes on the workload is actively running on. Do this by 1666 * tracking the nodes from which NUMA hinting faults are triggered. This can 1667 * be different from the set of nodes where the workload's memory is currently 1668 * located. 1669 */ 1670 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1671 { 1672 unsigned long faults, max_faults = 0; 1673 int nid, active_nodes = 0; 1674 1675 for_each_online_node(nid) { 1676 faults = group_faults_cpu(numa_group, nid); 1677 if (faults > max_faults) 1678 max_faults = faults; 1679 } 1680 1681 for_each_online_node(nid) { 1682 faults = group_faults_cpu(numa_group, nid); 1683 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1684 active_nodes++; 1685 } 1686 1687 numa_group->max_faults_cpu = max_faults; 1688 numa_group->active_nodes = active_nodes; 1689 } 1690 1691 /* 1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1693 * increments. The more local the fault statistics are, the higher the scan 1694 * period will be for the next scan window. If local/(local+remote) ratio is 1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1696 * the scan period will decrease. Aim for 70% local accesses. 1697 */ 1698 #define NUMA_PERIOD_SLOTS 10 1699 #define NUMA_PERIOD_THRESHOLD 7 1700 1701 /* 1702 * Increase the scan period (slow down scanning) if the majority of 1703 * our memory is already on our local node, or if the majority of 1704 * the page accesses are shared with other processes. 1705 * Otherwise, decrease the scan period. 1706 */ 1707 static void update_task_scan_period(struct task_struct *p, 1708 unsigned long shared, unsigned long private) 1709 { 1710 unsigned int period_slot; 1711 int ratio; 1712 int diff; 1713 1714 unsigned long remote = p->numa_faults_locality[0]; 1715 unsigned long local = p->numa_faults_locality[1]; 1716 1717 /* 1718 * If there were no record hinting faults then either the task is 1719 * completely idle or all activity is areas that are not of interest 1720 * to automatic numa balancing. Related to that, if there were failed 1721 * migration then it implies we are migrating too quickly or the local 1722 * node is overloaded. In either case, scan slower 1723 */ 1724 if (local + shared == 0 || p->numa_faults_locality[2]) { 1725 p->numa_scan_period = min(p->numa_scan_period_max, 1726 p->numa_scan_period << 1); 1727 1728 p->mm->numa_next_scan = jiffies + 1729 msecs_to_jiffies(p->numa_scan_period); 1730 1731 return; 1732 } 1733 1734 /* 1735 * Prepare to scale scan period relative to the current period. 1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1739 */ 1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1742 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1743 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1744 if (!slot) 1745 slot = 1; 1746 diff = slot * period_slot; 1747 } else { 1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1749 1750 /* 1751 * Scale scan rate increases based on sharing. There is an 1752 * inverse relationship between the degree of sharing and 1753 * the adjustment made to the scanning period. Broadly 1754 * speaking the intent is that there is little point 1755 * scanning faster if shared accesses dominate as it may 1756 * simply bounce migrations uselessly 1757 */ 1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1760 } 1761 1762 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1763 task_scan_min(p), task_scan_max(p)); 1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1765 } 1766 1767 /* 1768 * Get the fraction of time the task has been running since the last 1769 * NUMA placement cycle. The scheduler keeps similar statistics, but 1770 * decays those on a 32ms period, which is orders of magnitude off 1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1772 * stats only if the task is so new there are no NUMA statistics yet. 1773 */ 1774 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1775 { 1776 u64 runtime, delta, now; 1777 /* Use the start of this time slice to avoid calculations. */ 1778 now = p->se.exec_start; 1779 runtime = p->se.sum_exec_runtime; 1780 1781 if (p->last_task_numa_placement) { 1782 delta = runtime - p->last_sum_exec_runtime; 1783 *period = now - p->last_task_numa_placement; 1784 } else { 1785 delta = p->se.avg.load_sum / p->se.load.weight; 1786 *period = LOAD_AVG_MAX; 1787 } 1788 1789 p->last_sum_exec_runtime = runtime; 1790 p->last_task_numa_placement = now; 1791 1792 return delta; 1793 } 1794 1795 /* 1796 * Determine the preferred nid for a task in a numa_group. This needs to 1797 * be done in a way that produces consistent results with group_weight, 1798 * otherwise workloads might not converge. 1799 */ 1800 static int preferred_group_nid(struct task_struct *p, int nid) 1801 { 1802 nodemask_t nodes; 1803 int dist; 1804 1805 /* Direct connections between all NUMA nodes. */ 1806 if (sched_numa_topology_type == NUMA_DIRECT) 1807 return nid; 1808 1809 /* 1810 * On a system with glueless mesh NUMA topology, group_weight 1811 * scores nodes according to the number of NUMA hinting faults on 1812 * both the node itself, and on nearby nodes. 1813 */ 1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1815 unsigned long score, max_score = 0; 1816 int node, max_node = nid; 1817 1818 dist = sched_max_numa_distance; 1819 1820 for_each_online_node(node) { 1821 score = group_weight(p, node, dist); 1822 if (score > max_score) { 1823 max_score = score; 1824 max_node = node; 1825 } 1826 } 1827 return max_node; 1828 } 1829 1830 /* 1831 * Finding the preferred nid in a system with NUMA backplane 1832 * interconnect topology is more involved. The goal is to locate 1833 * tasks from numa_groups near each other in the system, and 1834 * untangle workloads from different sides of the system. This requires 1835 * searching down the hierarchy of node groups, recursively searching 1836 * inside the highest scoring group of nodes. The nodemask tricks 1837 * keep the complexity of the search down. 1838 */ 1839 nodes = node_online_map; 1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1841 unsigned long max_faults = 0; 1842 nodemask_t max_group = NODE_MASK_NONE; 1843 int a, b; 1844 1845 /* Are there nodes at this distance from each other? */ 1846 if (!find_numa_distance(dist)) 1847 continue; 1848 1849 for_each_node_mask(a, nodes) { 1850 unsigned long faults = 0; 1851 nodemask_t this_group; 1852 nodes_clear(this_group); 1853 1854 /* Sum group's NUMA faults; includes a==b case. */ 1855 for_each_node_mask(b, nodes) { 1856 if (node_distance(a, b) < dist) { 1857 faults += group_faults(p, b); 1858 node_set(b, this_group); 1859 node_clear(b, nodes); 1860 } 1861 } 1862 1863 /* Remember the top group. */ 1864 if (faults > max_faults) { 1865 max_faults = faults; 1866 max_group = this_group; 1867 /* 1868 * subtle: at the smallest distance there is 1869 * just one node left in each "group", the 1870 * winner is the preferred nid. 1871 */ 1872 nid = a; 1873 } 1874 } 1875 /* Next round, evaluate the nodes within max_group. */ 1876 if (!max_faults) 1877 break; 1878 nodes = max_group; 1879 } 1880 return nid; 1881 } 1882 1883 static void task_numa_placement(struct task_struct *p) 1884 { 1885 int seq, nid, max_nid = -1, max_group_nid = -1; 1886 unsigned long max_faults = 0, max_group_faults = 0; 1887 unsigned long fault_types[2] = { 0, 0 }; 1888 unsigned long total_faults; 1889 u64 runtime, period; 1890 spinlock_t *group_lock = NULL; 1891 1892 /* 1893 * The p->mm->numa_scan_seq field gets updated without 1894 * exclusive access. Use READ_ONCE() here to ensure 1895 * that the field is read in a single access: 1896 */ 1897 seq = READ_ONCE(p->mm->numa_scan_seq); 1898 if (p->numa_scan_seq == seq) 1899 return; 1900 p->numa_scan_seq = seq; 1901 p->numa_scan_period_max = task_scan_max(p); 1902 1903 total_faults = p->numa_faults_locality[0] + 1904 p->numa_faults_locality[1]; 1905 runtime = numa_get_avg_runtime(p, &period); 1906 1907 /* If the task is part of a group prevent parallel updates to group stats */ 1908 if (p->numa_group) { 1909 group_lock = &p->numa_group->lock; 1910 spin_lock_irq(group_lock); 1911 } 1912 1913 /* Find the node with the highest number of faults */ 1914 for_each_online_node(nid) { 1915 /* Keep track of the offsets in numa_faults array */ 1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1917 unsigned long faults = 0, group_faults = 0; 1918 int priv; 1919 1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1921 long diff, f_diff, f_weight; 1922 1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1927 1928 /* Decay existing window, copy faults since last scan */ 1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1930 fault_types[priv] += p->numa_faults[membuf_idx]; 1931 p->numa_faults[membuf_idx] = 0; 1932 1933 /* 1934 * Normalize the faults_from, so all tasks in a group 1935 * count according to CPU use, instead of by the raw 1936 * number of faults. Tasks with little runtime have 1937 * little over-all impact on throughput, and thus their 1938 * faults are less important. 1939 */ 1940 f_weight = div64_u64(runtime << 16, period + 1); 1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1942 (total_faults + 1); 1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1944 p->numa_faults[cpubuf_idx] = 0; 1945 1946 p->numa_faults[mem_idx] += diff; 1947 p->numa_faults[cpu_idx] += f_diff; 1948 faults += p->numa_faults[mem_idx]; 1949 p->total_numa_faults += diff; 1950 if (p->numa_group) { 1951 /* 1952 * safe because we can only change our own group 1953 * 1954 * mem_idx represents the offset for a given 1955 * nid and priv in a specific region because it 1956 * is at the beginning of the numa_faults array. 1957 */ 1958 p->numa_group->faults[mem_idx] += diff; 1959 p->numa_group->faults_cpu[mem_idx] += f_diff; 1960 p->numa_group->total_faults += diff; 1961 group_faults += p->numa_group->faults[mem_idx]; 1962 } 1963 } 1964 1965 if (faults > max_faults) { 1966 max_faults = faults; 1967 max_nid = nid; 1968 } 1969 1970 if (group_faults > max_group_faults) { 1971 max_group_faults = group_faults; 1972 max_group_nid = nid; 1973 } 1974 } 1975 1976 update_task_scan_period(p, fault_types[0], fault_types[1]); 1977 1978 if (p->numa_group) { 1979 numa_group_count_active_nodes(p->numa_group); 1980 spin_unlock_irq(group_lock); 1981 max_nid = preferred_group_nid(p, max_group_nid); 1982 } 1983 1984 if (max_faults) { 1985 /* Set the new preferred node */ 1986 if (max_nid != p->numa_preferred_nid) 1987 sched_setnuma(p, max_nid); 1988 1989 if (task_node(p) != p->numa_preferred_nid) 1990 numa_migrate_preferred(p); 1991 } 1992 } 1993 1994 static inline int get_numa_group(struct numa_group *grp) 1995 { 1996 return atomic_inc_not_zero(&grp->refcount); 1997 } 1998 1999 static inline void put_numa_group(struct numa_group *grp) 2000 { 2001 if (atomic_dec_and_test(&grp->refcount)) 2002 kfree_rcu(grp, rcu); 2003 } 2004 2005 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2006 int *priv) 2007 { 2008 struct numa_group *grp, *my_grp; 2009 struct task_struct *tsk; 2010 bool join = false; 2011 int cpu = cpupid_to_cpu(cpupid); 2012 int i; 2013 2014 if (unlikely(!p->numa_group)) { 2015 unsigned int size = sizeof(struct numa_group) + 2016 4*nr_node_ids*sizeof(unsigned long); 2017 2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2019 if (!grp) 2020 return; 2021 2022 atomic_set(&grp->refcount, 1); 2023 grp->active_nodes = 1; 2024 grp->max_faults_cpu = 0; 2025 spin_lock_init(&grp->lock); 2026 grp->gid = p->pid; 2027 /* Second half of the array tracks nids where faults happen */ 2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2029 nr_node_ids; 2030 2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2032 grp->faults[i] = p->numa_faults[i]; 2033 2034 grp->total_faults = p->total_numa_faults; 2035 2036 grp->nr_tasks++; 2037 rcu_assign_pointer(p->numa_group, grp); 2038 } 2039 2040 rcu_read_lock(); 2041 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2042 2043 if (!cpupid_match_pid(tsk, cpupid)) 2044 goto no_join; 2045 2046 grp = rcu_dereference(tsk->numa_group); 2047 if (!grp) 2048 goto no_join; 2049 2050 my_grp = p->numa_group; 2051 if (grp == my_grp) 2052 goto no_join; 2053 2054 /* 2055 * Only join the other group if its bigger; if we're the bigger group, 2056 * the other task will join us. 2057 */ 2058 if (my_grp->nr_tasks > grp->nr_tasks) 2059 goto no_join; 2060 2061 /* 2062 * Tie-break on the grp address. 2063 */ 2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2065 goto no_join; 2066 2067 /* Always join threads in the same process. */ 2068 if (tsk->mm == current->mm) 2069 join = true; 2070 2071 /* Simple filter to avoid false positives due to PID collisions */ 2072 if (flags & TNF_SHARED) 2073 join = true; 2074 2075 /* Update priv based on whether false sharing was detected */ 2076 *priv = !join; 2077 2078 if (join && !get_numa_group(grp)) 2079 goto no_join; 2080 2081 rcu_read_unlock(); 2082 2083 if (!join) 2084 return; 2085 2086 BUG_ON(irqs_disabled()); 2087 double_lock_irq(&my_grp->lock, &grp->lock); 2088 2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2090 my_grp->faults[i] -= p->numa_faults[i]; 2091 grp->faults[i] += p->numa_faults[i]; 2092 } 2093 my_grp->total_faults -= p->total_numa_faults; 2094 grp->total_faults += p->total_numa_faults; 2095 2096 my_grp->nr_tasks--; 2097 grp->nr_tasks++; 2098 2099 spin_unlock(&my_grp->lock); 2100 spin_unlock_irq(&grp->lock); 2101 2102 rcu_assign_pointer(p->numa_group, grp); 2103 2104 put_numa_group(my_grp); 2105 return; 2106 2107 no_join: 2108 rcu_read_unlock(); 2109 return; 2110 } 2111 2112 void task_numa_free(struct task_struct *p) 2113 { 2114 struct numa_group *grp = p->numa_group; 2115 void *numa_faults = p->numa_faults; 2116 unsigned long flags; 2117 int i; 2118 2119 if (grp) { 2120 spin_lock_irqsave(&grp->lock, flags); 2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2122 grp->faults[i] -= p->numa_faults[i]; 2123 grp->total_faults -= p->total_numa_faults; 2124 2125 grp->nr_tasks--; 2126 spin_unlock_irqrestore(&grp->lock, flags); 2127 RCU_INIT_POINTER(p->numa_group, NULL); 2128 put_numa_group(grp); 2129 } 2130 2131 p->numa_faults = NULL; 2132 kfree(numa_faults); 2133 } 2134 2135 /* 2136 * Got a PROT_NONE fault for a page on @node. 2137 */ 2138 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2139 { 2140 struct task_struct *p = current; 2141 bool migrated = flags & TNF_MIGRATED; 2142 int cpu_node = task_node(current); 2143 int local = !!(flags & TNF_FAULT_LOCAL); 2144 struct numa_group *ng; 2145 int priv; 2146 2147 if (!static_branch_likely(&sched_numa_balancing)) 2148 return; 2149 2150 /* for example, ksmd faulting in a user's mm */ 2151 if (!p->mm) 2152 return; 2153 2154 /* Allocate buffer to track faults on a per-node basis */ 2155 if (unlikely(!p->numa_faults)) { 2156 int size = sizeof(*p->numa_faults) * 2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2158 2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2160 if (!p->numa_faults) 2161 return; 2162 2163 p->total_numa_faults = 0; 2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2165 } 2166 2167 /* 2168 * First accesses are treated as private, otherwise consider accesses 2169 * to be private if the accessing pid has not changed 2170 */ 2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2172 priv = 1; 2173 } else { 2174 priv = cpupid_match_pid(p, last_cpupid); 2175 if (!priv && !(flags & TNF_NO_GROUP)) 2176 task_numa_group(p, last_cpupid, flags, &priv); 2177 } 2178 2179 /* 2180 * If a workload spans multiple NUMA nodes, a shared fault that 2181 * occurs wholly within the set of nodes that the workload is 2182 * actively using should be counted as local. This allows the 2183 * scan rate to slow down when a workload has settled down. 2184 */ 2185 ng = p->numa_group; 2186 if (!priv && !local && ng && ng->active_nodes > 1 && 2187 numa_is_active_node(cpu_node, ng) && 2188 numa_is_active_node(mem_node, ng)) 2189 local = 1; 2190 2191 task_numa_placement(p); 2192 2193 /* 2194 * Retry task to preferred node migration periodically, in case it 2195 * case it previously failed, or the scheduler moved us. 2196 */ 2197 if (time_after(jiffies, p->numa_migrate_retry)) 2198 numa_migrate_preferred(p); 2199 2200 if (migrated) 2201 p->numa_pages_migrated += pages; 2202 if (flags & TNF_MIGRATE_FAIL) 2203 p->numa_faults_locality[2] += pages; 2204 2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2207 p->numa_faults_locality[local] += pages; 2208 } 2209 2210 static void reset_ptenuma_scan(struct task_struct *p) 2211 { 2212 /* 2213 * We only did a read acquisition of the mmap sem, so 2214 * p->mm->numa_scan_seq is written to without exclusive access 2215 * and the update is not guaranteed to be atomic. That's not 2216 * much of an issue though, since this is just used for 2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2218 * expensive, to avoid any form of compiler optimizations: 2219 */ 2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2221 p->mm->numa_scan_offset = 0; 2222 } 2223 2224 /* 2225 * The expensive part of numa migration is done from task_work context. 2226 * Triggered from task_tick_numa(). 2227 */ 2228 void task_numa_work(struct callback_head *work) 2229 { 2230 unsigned long migrate, next_scan, now = jiffies; 2231 struct task_struct *p = current; 2232 struct mm_struct *mm = p->mm; 2233 u64 runtime = p->se.sum_exec_runtime; 2234 struct vm_area_struct *vma; 2235 unsigned long start, end; 2236 unsigned long nr_pte_updates = 0; 2237 long pages, virtpages; 2238 2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2240 2241 work->next = work; /* protect against double add */ 2242 /* 2243 * Who cares about NUMA placement when they're dying. 2244 * 2245 * NOTE: make sure not to dereference p->mm before this check, 2246 * exit_task_work() happens _after_ exit_mm() so we could be called 2247 * without p->mm even though we still had it when we enqueued this 2248 * work. 2249 */ 2250 if (p->flags & PF_EXITING) 2251 return; 2252 2253 if (!mm->numa_next_scan) { 2254 mm->numa_next_scan = now + 2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2256 } 2257 2258 /* 2259 * Enforce maximal scan/migration frequency.. 2260 */ 2261 migrate = mm->numa_next_scan; 2262 if (time_before(now, migrate)) 2263 return; 2264 2265 if (p->numa_scan_period == 0) { 2266 p->numa_scan_period_max = task_scan_max(p); 2267 p->numa_scan_period = task_scan_min(p); 2268 } 2269 2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2272 return; 2273 2274 /* 2275 * Delay this task enough that another task of this mm will likely win 2276 * the next time around. 2277 */ 2278 p->node_stamp += 2 * TICK_NSEC; 2279 2280 start = mm->numa_scan_offset; 2281 pages = sysctl_numa_balancing_scan_size; 2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2283 virtpages = pages * 8; /* Scan up to this much virtual space */ 2284 if (!pages) 2285 return; 2286 2287 2288 down_read(&mm->mmap_sem); 2289 vma = find_vma(mm, start); 2290 if (!vma) { 2291 reset_ptenuma_scan(p); 2292 start = 0; 2293 vma = mm->mmap; 2294 } 2295 for (; vma; vma = vma->vm_next) { 2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2298 continue; 2299 } 2300 2301 /* 2302 * Shared library pages mapped by multiple processes are not 2303 * migrated as it is expected they are cache replicated. Avoid 2304 * hinting faults in read-only file-backed mappings or the vdso 2305 * as migrating the pages will be of marginal benefit. 2306 */ 2307 if (!vma->vm_mm || 2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2309 continue; 2310 2311 /* 2312 * Skip inaccessible VMAs to avoid any confusion between 2313 * PROT_NONE and NUMA hinting ptes 2314 */ 2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2316 continue; 2317 2318 do { 2319 start = max(start, vma->vm_start); 2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2321 end = min(end, vma->vm_end); 2322 nr_pte_updates = change_prot_numa(vma, start, end); 2323 2324 /* 2325 * Try to scan sysctl_numa_balancing_size worth of 2326 * hpages that have at least one present PTE that 2327 * is not already pte-numa. If the VMA contains 2328 * areas that are unused or already full of prot_numa 2329 * PTEs, scan up to virtpages, to skip through those 2330 * areas faster. 2331 */ 2332 if (nr_pte_updates) 2333 pages -= (end - start) >> PAGE_SHIFT; 2334 virtpages -= (end - start) >> PAGE_SHIFT; 2335 2336 start = end; 2337 if (pages <= 0 || virtpages <= 0) 2338 goto out; 2339 2340 cond_resched(); 2341 } while (end != vma->vm_end); 2342 } 2343 2344 out: 2345 /* 2346 * It is possible to reach the end of the VMA list but the last few 2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2348 * would find the !migratable VMA on the next scan but not reset the 2349 * scanner to the start so check it now. 2350 */ 2351 if (vma) 2352 mm->numa_scan_offset = start; 2353 else 2354 reset_ptenuma_scan(p); 2355 up_read(&mm->mmap_sem); 2356 2357 /* 2358 * Make sure tasks use at least 32x as much time to run other code 2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2360 * Usually update_task_scan_period slows down scanning enough; on an 2361 * overloaded system we need to limit overhead on a per task basis. 2362 */ 2363 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2364 u64 diff = p->se.sum_exec_runtime - runtime; 2365 p->node_stamp += 32 * diff; 2366 } 2367 } 2368 2369 /* 2370 * Drive the periodic memory faults.. 2371 */ 2372 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2373 { 2374 struct callback_head *work = &curr->numa_work; 2375 u64 period, now; 2376 2377 /* 2378 * We don't care about NUMA placement if we don't have memory. 2379 */ 2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2381 return; 2382 2383 /* 2384 * Using runtime rather than walltime has the dual advantage that 2385 * we (mostly) drive the selection from busy threads and that the 2386 * task needs to have done some actual work before we bother with 2387 * NUMA placement. 2388 */ 2389 now = curr->se.sum_exec_runtime; 2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2391 2392 if (now > curr->node_stamp + period) { 2393 if (!curr->node_stamp) 2394 curr->numa_scan_period = task_scan_min(curr); 2395 curr->node_stamp += period; 2396 2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2399 task_work_add(curr, work, true); 2400 } 2401 } 2402 } 2403 #else 2404 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2405 { 2406 } 2407 2408 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2409 { 2410 } 2411 2412 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2413 { 2414 } 2415 #endif /* CONFIG_NUMA_BALANCING */ 2416 2417 static void 2418 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2419 { 2420 update_load_add(&cfs_rq->load, se->load.weight); 2421 if (!parent_entity(se)) 2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2423 #ifdef CONFIG_SMP 2424 if (entity_is_task(se)) { 2425 struct rq *rq = rq_of(cfs_rq); 2426 2427 account_numa_enqueue(rq, task_of(se)); 2428 list_add(&se->group_node, &rq->cfs_tasks); 2429 } 2430 #endif 2431 cfs_rq->nr_running++; 2432 } 2433 2434 static void 2435 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2436 { 2437 update_load_sub(&cfs_rq->load, se->load.weight); 2438 if (!parent_entity(se)) 2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2440 if (entity_is_task(se)) { 2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2442 list_del_init(&se->group_node); 2443 } 2444 cfs_rq->nr_running--; 2445 } 2446 2447 #ifdef CONFIG_FAIR_GROUP_SCHED 2448 # ifdef CONFIG_SMP 2449 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2450 { 2451 long tg_weight; 2452 2453 /* 2454 * Use this CPU's real-time load instead of the last load contribution 2455 * as the updating of the contribution is delayed, and we will use the 2456 * the real-time load to calc the share. See update_tg_load_avg(). 2457 */ 2458 tg_weight = atomic_long_read(&tg->load_avg); 2459 tg_weight -= cfs_rq->tg_load_avg_contrib; 2460 tg_weight += cfs_rq->load.weight; 2461 2462 return tg_weight; 2463 } 2464 2465 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2466 { 2467 long tg_weight, load, shares; 2468 2469 tg_weight = calc_tg_weight(tg, cfs_rq); 2470 load = cfs_rq->load.weight; 2471 2472 shares = (tg->shares * load); 2473 if (tg_weight) 2474 shares /= tg_weight; 2475 2476 if (shares < MIN_SHARES) 2477 shares = MIN_SHARES; 2478 if (shares > tg->shares) 2479 shares = tg->shares; 2480 2481 return shares; 2482 } 2483 # else /* CONFIG_SMP */ 2484 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2485 { 2486 return tg->shares; 2487 } 2488 # endif /* CONFIG_SMP */ 2489 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2490 unsigned long weight) 2491 { 2492 if (se->on_rq) { 2493 /* commit outstanding execution time */ 2494 if (cfs_rq->curr == se) 2495 update_curr(cfs_rq); 2496 account_entity_dequeue(cfs_rq, se); 2497 } 2498 2499 update_load_set(&se->load, weight); 2500 2501 if (se->on_rq) 2502 account_entity_enqueue(cfs_rq, se); 2503 } 2504 2505 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2506 2507 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2508 { 2509 struct task_group *tg; 2510 struct sched_entity *se; 2511 long shares; 2512 2513 tg = cfs_rq->tg; 2514 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2515 if (!se || throttled_hierarchy(cfs_rq)) 2516 return; 2517 #ifndef CONFIG_SMP 2518 if (likely(se->load.weight == tg->shares)) 2519 return; 2520 #endif 2521 shares = calc_cfs_shares(cfs_rq, tg); 2522 2523 reweight_entity(cfs_rq_of(se), se, shares); 2524 } 2525 #else /* CONFIG_FAIR_GROUP_SCHED */ 2526 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2527 { 2528 } 2529 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2530 2531 #ifdef CONFIG_SMP 2532 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2533 static const u32 runnable_avg_yN_inv[] = { 2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2539 0x85aac367, 0x82cd8698, 2540 }; 2541 2542 /* 2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2544 * over-estimates when re-combining. 2545 */ 2546 static const u32 runnable_avg_yN_sum[] = { 2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2550 }; 2551 2552 /* 2553 * Approximate: 2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2555 */ 2556 static __always_inline u64 decay_load(u64 val, u64 n) 2557 { 2558 unsigned int local_n; 2559 2560 if (!n) 2561 return val; 2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2563 return 0; 2564 2565 /* after bounds checking we can collapse to 32-bit */ 2566 local_n = n; 2567 2568 /* 2569 * As y^PERIOD = 1/2, we can combine 2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2571 * With a look-up table which covers y^n (n<PERIOD) 2572 * 2573 * To achieve constant time decay_load. 2574 */ 2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2576 val >>= local_n / LOAD_AVG_PERIOD; 2577 local_n %= LOAD_AVG_PERIOD; 2578 } 2579 2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2581 return val; 2582 } 2583 2584 /* 2585 * For updates fully spanning n periods, the contribution to runnable 2586 * average will be: \Sum 1024*y^n 2587 * 2588 * We can compute this reasonably efficiently by combining: 2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2590 */ 2591 static u32 __compute_runnable_contrib(u64 n) 2592 { 2593 u32 contrib = 0; 2594 2595 if (likely(n <= LOAD_AVG_PERIOD)) 2596 return runnable_avg_yN_sum[n]; 2597 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2598 return LOAD_AVG_MAX; 2599 2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2601 do { 2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2604 2605 n -= LOAD_AVG_PERIOD; 2606 } while (n > LOAD_AVG_PERIOD); 2607 2608 contrib = decay_load(contrib, n); 2609 return contrib + runnable_avg_yN_sum[n]; 2610 } 2611 2612 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10 2613 #error "load tracking assumes 2^10 as unit" 2614 #endif 2615 2616 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2617 2618 /* 2619 * We can represent the historical contribution to runnable average as the 2620 * coefficients of a geometric series. To do this we sub-divide our runnable 2621 * history into segments of approximately 1ms (1024us); label the segment that 2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2623 * 2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2625 * p0 p1 p2 2626 * (now) (~1ms ago) (~2ms ago) 2627 * 2628 * Let u_i denote the fraction of p_i that the entity was runnable. 2629 * 2630 * We then designate the fractions u_i as our co-efficients, yielding the 2631 * following representation of historical load: 2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2633 * 2634 * We choose y based on the with of a reasonably scheduling period, fixing: 2635 * y^32 = 0.5 2636 * 2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2638 * approximately half as much as the contribution to load within the last ms 2639 * (u_0). 2640 * 2641 * When a period "rolls over" and we have new u_0`, multiplying the previous 2642 * sum again by y is sufficient to update: 2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2645 */ 2646 static __always_inline int 2647 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2648 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2649 { 2650 u64 delta, scaled_delta, periods; 2651 u32 contrib; 2652 unsigned int delta_w, scaled_delta_w, decayed = 0; 2653 unsigned long scale_freq, scale_cpu; 2654 2655 delta = now - sa->last_update_time; 2656 /* 2657 * This should only happen when time goes backwards, which it 2658 * unfortunately does during sched clock init when we swap over to TSC. 2659 */ 2660 if ((s64)delta < 0) { 2661 sa->last_update_time = now; 2662 return 0; 2663 } 2664 2665 /* 2666 * Use 1024ns as the unit of measurement since it's a reasonable 2667 * approximation of 1us and fast to compute. 2668 */ 2669 delta >>= 10; 2670 if (!delta) 2671 return 0; 2672 sa->last_update_time = now; 2673 2674 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2676 2677 /* delta_w is the amount already accumulated against our next period */ 2678 delta_w = sa->period_contrib; 2679 if (delta + delta_w >= 1024) { 2680 decayed = 1; 2681 2682 /* how much left for next period will start over, we don't know yet */ 2683 sa->period_contrib = 0; 2684 2685 /* 2686 * Now that we know we're crossing a period boundary, figure 2687 * out how much from delta we need to complete the current 2688 * period and accrue it. 2689 */ 2690 delta_w = 1024 - delta_w; 2691 scaled_delta_w = cap_scale(delta_w, scale_freq); 2692 if (weight) { 2693 sa->load_sum += weight * scaled_delta_w; 2694 if (cfs_rq) { 2695 cfs_rq->runnable_load_sum += 2696 weight * scaled_delta_w; 2697 } 2698 } 2699 if (running) 2700 sa->util_sum += scaled_delta_w * scale_cpu; 2701 2702 delta -= delta_w; 2703 2704 /* Figure out how many additional periods this update spans */ 2705 periods = delta / 1024; 2706 delta %= 1024; 2707 2708 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2709 if (cfs_rq) { 2710 cfs_rq->runnable_load_sum = 2711 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2712 } 2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2714 2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2716 contrib = __compute_runnable_contrib(periods); 2717 contrib = cap_scale(contrib, scale_freq); 2718 if (weight) { 2719 sa->load_sum += weight * contrib; 2720 if (cfs_rq) 2721 cfs_rq->runnable_load_sum += weight * contrib; 2722 } 2723 if (running) 2724 sa->util_sum += contrib * scale_cpu; 2725 } 2726 2727 /* Remainder of delta accrued against u_0` */ 2728 scaled_delta = cap_scale(delta, scale_freq); 2729 if (weight) { 2730 sa->load_sum += weight * scaled_delta; 2731 if (cfs_rq) 2732 cfs_rq->runnable_load_sum += weight * scaled_delta; 2733 } 2734 if (running) 2735 sa->util_sum += scaled_delta * scale_cpu; 2736 2737 sa->period_contrib += delta; 2738 2739 if (decayed) { 2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2741 if (cfs_rq) { 2742 cfs_rq->runnable_load_avg = 2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2744 } 2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2746 } 2747 2748 return decayed; 2749 } 2750 2751 #ifdef CONFIG_FAIR_GROUP_SCHED 2752 /* 2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done) 2754 * and effective_load (which is not done because it is too costly). 2755 */ 2756 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2757 { 2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2759 2760 /* 2761 * No need to update load_avg for root_task_group as it is not used. 2762 */ 2763 if (cfs_rq->tg == &root_task_group) 2764 return; 2765 2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2767 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2769 } 2770 } 2771 2772 /* 2773 * Called within set_task_rq() right before setting a task's cpu. The 2774 * caller only guarantees p->pi_lock is held; no other assumptions, 2775 * including the state of rq->lock, should be made. 2776 */ 2777 void set_task_rq_fair(struct sched_entity *se, 2778 struct cfs_rq *prev, struct cfs_rq *next) 2779 { 2780 if (!sched_feat(ATTACH_AGE_LOAD)) 2781 return; 2782 2783 /* 2784 * We are supposed to update the task to "current" time, then its up to 2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 2786 * getting what current time is, so simply throw away the out-of-date 2787 * time. This will result in the wakee task is less decayed, but giving 2788 * the wakee more load sounds not bad. 2789 */ 2790 if (se->avg.last_update_time && prev) { 2791 u64 p_last_update_time; 2792 u64 n_last_update_time; 2793 2794 #ifndef CONFIG_64BIT 2795 u64 p_last_update_time_copy; 2796 u64 n_last_update_time_copy; 2797 2798 do { 2799 p_last_update_time_copy = prev->load_last_update_time_copy; 2800 n_last_update_time_copy = next->load_last_update_time_copy; 2801 2802 smp_rmb(); 2803 2804 p_last_update_time = prev->avg.last_update_time; 2805 n_last_update_time = next->avg.last_update_time; 2806 2807 } while (p_last_update_time != p_last_update_time_copy || 2808 n_last_update_time != n_last_update_time_copy); 2809 #else 2810 p_last_update_time = prev->avg.last_update_time; 2811 n_last_update_time = next->avg.last_update_time; 2812 #endif 2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 2814 &se->avg, 0, 0, NULL); 2815 se->avg.last_update_time = n_last_update_time; 2816 } 2817 } 2818 #else /* CONFIG_FAIR_GROUP_SCHED */ 2819 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2820 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2821 2822 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2823 2824 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ 2825 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 2826 { 2827 struct sched_avg *sa = &cfs_rq->avg; 2828 int decayed, removed = 0; 2829 2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 2832 sa->load_avg = max_t(long, sa->load_avg - r, 0); 2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0); 2834 removed = 1; 2835 } 2836 2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 2839 sa->util_avg = max_t(long, sa->util_avg - r, 0); 2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0); 2841 } 2842 2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 2845 2846 #ifndef CONFIG_64BIT 2847 smp_wmb(); 2848 cfs_rq->load_last_update_time_copy = sa->last_update_time; 2849 #endif 2850 2851 return decayed || removed; 2852 } 2853 2854 /* Update task and its cfs_rq load average */ 2855 static inline void update_load_avg(struct sched_entity *se, int update_tg) 2856 { 2857 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2858 u64 now = cfs_rq_clock_task(cfs_rq); 2859 struct rq *rq = rq_of(cfs_rq); 2860 int cpu = cpu_of(rq); 2861 2862 /* 2863 * Track task load average for carrying it to new CPU after migrated, and 2864 * track group sched_entity load average for task_h_load calc in migration 2865 */ 2866 __update_load_avg(now, cpu, &se->avg, 2867 se->on_rq * scale_load_down(se->load.weight), 2868 cfs_rq->curr == se, NULL); 2869 2870 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg) 2871 update_tg_load_avg(cfs_rq, 0); 2872 2873 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) { 2874 unsigned long max = rq->cpu_capacity_orig; 2875 2876 /* 2877 * There are a few boundary cases this might miss but it should 2878 * get called often enough that that should (hopefully) not be 2879 * a real problem -- added to that it only calls on the local 2880 * CPU, so if we enqueue remotely we'll miss an update, but 2881 * the next tick/schedule should update. 2882 * 2883 * It will not get called when we go idle, because the idle 2884 * thread is a different class (!fair), nor will the utilization 2885 * number include things like RT tasks. 2886 * 2887 * As is, the util number is not freq-invariant (we'd have to 2888 * implement arch_scale_freq_capacity() for that). 2889 * 2890 * See cpu_util(). 2891 */ 2892 cpufreq_update_util(rq_clock(rq), 2893 min(cfs_rq->avg.util_avg, max), max); 2894 } 2895 } 2896 2897 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2898 { 2899 if (!sched_feat(ATTACH_AGE_LOAD)) 2900 goto skip_aging; 2901 2902 /* 2903 * If we got migrated (either between CPUs or between cgroups) we'll 2904 * have aged the average right before clearing @last_update_time. 2905 */ 2906 if (se->avg.last_update_time) { 2907 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 2908 &se->avg, 0, 0, NULL); 2909 2910 /* 2911 * XXX: we could have just aged the entire load away if we've been 2912 * absent from the fair class for too long. 2913 */ 2914 } 2915 2916 skip_aging: 2917 se->avg.last_update_time = cfs_rq->avg.last_update_time; 2918 cfs_rq->avg.load_avg += se->avg.load_avg; 2919 cfs_rq->avg.load_sum += se->avg.load_sum; 2920 cfs_rq->avg.util_avg += se->avg.util_avg; 2921 cfs_rq->avg.util_sum += se->avg.util_sum; 2922 } 2923 2924 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2925 { 2926 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 2927 &se->avg, se->on_rq * scale_load_down(se->load.weight), 2928 cfs_rq->curr == se, NULL); 2929 2930 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0); 2931 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0); 2932 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0); 2933 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0); 2934 } 2935 2936 /* Add the load generated by se into cfs_rq's load average */ 2937 static inline void 2938 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2939 { 2940 struct sched_avg *sa = &se->avg; 2941 u64 now = cfs_rq_clock_task(cfs_rq); 2942 int migrated, decayed; 2943 2944 migrated = !sa->last_update_time; 2945 if (!migrated) { 2946 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2947 se->on_rq * scale_load_down(se->load.weight), 2948 cfs_rq->curr == se, NULL); 2949 } 2950 2951 decayed = update_cfs_rq_load_avg(now, cfs_rq); 2952 2953 cfs_rq->runnable_load_avg += sa->load_avg; 2954 cfs_rq->runnable_load_sum += sa->load_sum; 2955 2956 if (migrated) 2957 attach_entity_load_avg(cfs_rq, se); 2958 2959 if (decayed || migrated) 2960 update_tg_load_avg(cfs_rq, 0); 2961 } 2962 2963 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 2964 static inline void 2965 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2966 { 2967 update_load_avg(se, 1); 2968 2969 cfs_rq->runnable_load_avg = 2970 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 2971 cfs_rq->runnable_load_sum = 2972 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 2973 } 2974 2975 #ifndef CONFIG_64BIT 2976 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 2977 { 2978 u64 last_update_time_copy; 2979 u64 last_update_time; 2980 2981 do { 2982 last_update_time_copy = cfs_rq->load_last_update_time_copy; 2983 smp_rmb(); 2984 last_update_time = cfs_rq->avg.last_update_time; 2985 } while (last_update_time != last_update_time_copy); 2986 2987 return last_update_time; 2988 } 2989 #else 2990 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 2991 { 2992 return cfs_rq->avg.last_update_time; 2993 } 2994 #endif 2995 2996 /* 2997 * Task first catches up with cfs_rq, and then subtract 2998 * itself from the cfs_rq (task must be off the queue now). 2999 */ 3000 void remove_entity_load_avg(struct sched_entity *se) 3001 { 3002 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3003 u64 last_update_time; 3004 3005 /* 3006 * Newly created task or never used group entity should not be removed 3007 * from its (source) cfs_rq 3008 */ 3009 if (se->avg.last_update_time == 0) 3010 return; 3011 3012 last_update_time = cfs_rq_last_update_time(cfs_rq); 3013 3014 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3015 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3016 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3017 } 3018 3019 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3020 { 3021 return cfs_rq->runnable_load_avg; 3022 } 3023 3024 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3025 { 3026 return cfs_rq->avg.load_avg; 3027 } 3028 3029 static int idle_balance(struct rq *this_rq); 3030 3031 #else /* CONFIG_SMP */ 3032 3033 static inline void update_load_avg(struct sched_entity *se, int update_tg) {} 3034 static inline void 3035 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3036 static inline void 3037 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3038 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3039 3040 static inline void 3041 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3042 static inline void 3043 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3044 3045 static inline int idle_balance(struct rq *rq) 3046 { 3047 return 0; 3048 } 3049 3050 #endif /* CONFIG_SMP */ 3051 3052 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 3053 { 3054 #ifdef CONFIG_SCHEDSTATS 3055 struct task_struct *tsk = NULL; 3056 3057 if (entity_is_task(se)) 3058 tsk = task_of(se); 3059 3060 if (se->statistics.sleep_start) { 3061 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 3062 3063 if ((s64)delta < 0) 3064 delta = 0; 3065 3066 if (unlikely(delta > se->statistics.sleep_max)) 3067 se->statistics.sleep_max = delta; 3068 3069 se->statistics.sleep_start = 0; 3070 se->statistics.sum_sleep_runtime += delta; 3071 3072 if (tsk) { 3073 account_scheduler_latency(tsk, delta >> 10, 1); 3074 trace_sched_stat_sleep(tsk, delta); 3075 } 3076 } 3077 if (se->statistics.block_start) { 3078 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 3079 3080 if ((s64)delta < 0) 3081 delta = 0; 3082 3083 if (unlikely(delta > se->statistics.block_max)) 3084 se->statistics.block_max = delta; 3085 3086 se->statistics.block_start = 0; 3087 se->statistics.sum_sleep_runtime += delta; 3088 3089 if (tsk) { 3090 if (tsk->in_iowait) { 3091 se->statistics.iowait_sum += delta; 3092 se->statistics.iowait_count++; 3093 trace_sched_stat_iowait(tsk, delta); 3094 } 3095 3096 trace_sched_stat_blocked(tsk, delta); 3097 3098 /* 3099 * Blocking time is in units of nanosecs, so shift by 3100 * 20 to get a milliseconds-range estimation of the 3101 * amount of time that the task spent sleeping: 3102 */ 3103 if (unlikely(prof_on == SLEEP_PROFILING)) { 3104 profile_hits(SLEEP_PROFILING, 3105 (void *)get_wchan(tsk), 3106 delta >> 20); 3107 } 3108 account_scheduler_latency(tsk, delta >> 10, 0); 3109 } 3110 } 3111 #endif 3112 } 3113 3114 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3115 { 3116 #ifdef CONFIG_SCHED_DEBUG 3117 s64 d = se->vruntime - cfs_rq->min_vruntime; 3118 3119 if (d < 0) 3120 d = -d; 3121 3122 if (d > 3*sysctl_sched_latency) 3123 schedstat_inc(cfs_rq, nr_spread_over); 3124 #endif 3125 } 3126 3127 static void 3128 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3129 { 3130 u64 vruntime = cfs_rq->min_vruntime; 3131 3132 /* 3133 * The 'current' period is already promised to the current tasks, 3134 * however the extra weight of the new task will slow them down a 3135 * little, place the new task so that it fits in the slot that 3136 * stays open at the end. 3137 */ 3138 if (initial && sched_feat(START_DEBIT)) 3139 vruntime += sched_vslice(cfs_rq, se); 3140 3141 /* sleeps up to a single latency don't count. */ 3142 if (!initial) { 3143 unsigned long thresh = sysctl_sched_latency; 3144 3145 /* 3146 * Halve their sleep time's effect, to allow 3147 * for a gentler effect of sleepers: 3148 */ 3149 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3150 thresh >>= 1; 3151 3152 vruntime -= thresh; 3153 } 3154 3155 /* ensure we never gain time by being placed backwards. */ 3156 se->vruntime = max_vruntime(se->vruntime, vruntime); 3157 } 3158 3159 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3160 3161 static inline void check_schedstat_required(void) 3162 { 3163 #ifdef CONFIG_SCHEDSTATS 3164 if (schedstat_enabled()) 3165 return; 3166 3167 /* Force schedstat enabled if a dependent tracepoint is active */ 3168 if (trace_sched_stat_wait_enabled() || 3169 trace_sched_stat_sleep_enabled() || 3170 trace_sched_stat_iowait_enabled() || 3171 trace_sched_stat_blocked_enabled() || 3172 trace_sched_stat_runtime_enabled()) { 3173 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3174 "stat_blocked and stat_runtime require the " 3175 "kernel parameter schedstats=enabled or " 3176 "kernel.sched_schedstats=1\n"); 3177 } 3178 #endif 3179 } 3180 3181 static void 3182 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3183 { 3184 /* 3185 * Update the normalized vruntime before updating min_vruntime 3186 * through calling update_curr(). 3187 */ 3188 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 3189 se->vruntime += cfs_rq->min_vruntime; 3190 3191 /* 3192 * Update run-time statistics of the 'current'. 3193 */ 3194 update_curr(cfs_rq); 3195 enqueue_entity_load_avg(cfs_rq, se); 3196 account_entity_enqueue(cfs_rq, se); 3197 update_cfs_shares(cfs_rq); 3198 3199 if (flags & ENQUEUE_WAKEUP) { 3200 place_entity(cfs_rq, se, 0); 3201 if (schedstat_enabled()) 3202 enqueue_sleeper(cfs_rq, se); 3203 } 3204 3205 check_schedstat_required(); 3206 if (schedstat_enabled()) { 3207 update_stats_enqueue(cfs_rq, se); 3208 check_spread(cfs_rq, se); 3209 } 3210 if (se != cfs_rq->curr) 3211 __enqueue_entity(cfs_rq, se); 3212 se->on_rq = 1; 3213 3214 if (cfs_rq->nr_running == 1) { 3215 list_add_leaf_cfs_rq(cfs_rq); 3216 check_enqueue_throttle(cfs_rq); 3217 } 3218 } 3219 3220 static void __clear_buddies_last(struct sched_entity *se) 3221 { 3222 for_each_sched_entity(se) { 3223 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3224 if (cfs_rq->last != se) 3225 break; 3226 3227 cfs_rq->last = NULL; 3228 } 3229 } 3230 3231 static void __clear_buddies_next(struct sched_entity *se) 3232 { 3233 for_each_sched_entity(se) { 3234 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3235 if (cfs_rq->next != se) 3236 break; 3237 3238 cfs_rq->next = NULL; 3239 } 3240 } 3241 3242 static void __clear_buddies_skip(struct sched_entity *se) 3243 { 3244 for_each_sched_entity(se) { 3245 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3246 if (cfs_rq->skip != se) 3247 break; 3248 3249 cfs_rq->skip = NULL; 3250 } 3251 } 3252 3253 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3254 { 3255 if (cfs_rq->last == se) 3256 __clear_buddies_last(se); 3257 3258 if (cfs_rq->next == se) 3259 __clear_buddies_next(se); 3260 3261 if (cfs_rq->skip == se) 3262 __clear_buddies_skip(se); 3263 } 3264 3265 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3266 3267 static void 3268 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3269 { 3270 /* 3271 * Update run-time statistics of the 'current'. 3272 */ 3273 update_curr(cfs_rq); 3274 dequeue_entity_load_avg(cfs_rq, se); 3275 3276 if (schedstat_enabled()) 3277 update_stats_dequeue(cfs_rq, se, flags); 3278 3279 clear_buddies(cfs_rq, se); 3280 3281 if (se != cfs_rq->curr) 3282 __dequeue_entity(cfs_rq, se); 3283 se->on_rq = 0; 3284 account_entity_dequeue(cfs_rq, se); 3285 3286 /* 3287 * Normalize the entity after updating the min_vruntime because the 3288 * update can refer to the ->curr item and we need to reflect this 3289 * movement in our normalized position. 3290 */ 3291 if (!(flags & DEQUEUE_SLEEP)) 3292 se->vruntime -= cfs_rq->min_vruntime; 3293 3294 /* return excess runtime on last dequeue */ 3295 return_cfs_rq_runtime(cfs_rq); 3296 3297 update_min_vruntime(cfs_rq); 3298 update_cfs_shares(cfs_rq); 3299 } 3300 3301 /* 3302 * Preempt the current task with a newly woken task if needed: 3303 */ 3304 static void 3305 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3306 { 3307 unsigned long ideal_runtime, delta_exec; 3308 struct sched_entity *se; 3309 s64 delta; 3310 3311 ideal_runtime = sched_slice(cfs_rq, curr); 3312 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3313 if (delta_exec > ideal_runtime) { 3314 resched_curr(rq_of(cfs_rq)); 3315 /* 3316 * The current task ran long enough, ensure it doesn't get 3317 * re-elected due to buddy favours. 3318 */ 3319 clear_buddies(cfs_rq, curr); 3320 return; 3321 } 3322 3323 /* 3324 * Ensure that a task that missed wakeup preemption by a 3325 * narrow margin doesn't have to wait for a full slice. 3326 * This also mitigates buddy induced latencies under load. 3327 */ 3328 if (delta_exec < sysctl_sched_min_granularity) 3329 return; 3330 3331 se = __pick_first_entity(cfs_rq); 3332 delta = curr->vruntime - se->vruntime; 3333 3334 if (delta < 0) 3335 return; 3336 3337 if (delta > ideal_runtime) 3338 resched_curr(rq_of(cfs_rq)); 3339 } 3340 3341 static void 3342 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3343 { 3344 /* 'current' is not kept within the tree. */ 3345 if (se->on_rq) { 3346 /* 3347 * Any task has to be enqueued before it get to execute on 3348 * a CPU. So account for the time it spent waiting on the 3349 * runqueue. 3350 */ 3351 if (schedstat_enabled()) 3352 update_stats_wait_end(cfs_rq, se); 3353 __dequeue_entity(cfs_rq, se); 3354 update_load_avg(se, 1); 3355 } 3356 3357 update_stats_curr_start(cfs_rq, se); 3358 cfs_rq->curr = se; 3359 #ifdef CONFIG_SCHEDSTATS 3360 /* 3361 * Track our maximum slice length, if the CPU's load is at 3362 * least twice that of our own weight (i.e. dont track it 3363 * when there are only lesser-weight tasks around): 3364 */ 3365 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3366 se->statistics.slice_max = max(se->statistics.slice_max, 3367 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3368 } 3369 #endif 3370 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3371 } 3372 3373 static int 3374 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3375 3376 /* 3377 * Pick the next process, keeping these things in mind, in this order: 3378 * 1) keep things fair between processes/task groups 3379 * 2) pick the "next" process, since someone really wants that to run 3380 * 3) pick the "last" process, for cache locality 3381 * 4) do not run the "skip" process, if something else is available 3382 */ 3383 static struct sched_entity * 3384 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3385 { 3386 struct sched_entity *left = __pick_first_entity(cfs_rq); 3387 struct sched_entity *se; 3388 3389 /* 3390 * If curr is set we have to see if its left of the leftmost entity 3391 * still in the tree, provided there was anything in the tree at all. 3392 */ 3393 if (!left || (curr && entity_before(curr, left))) 3394 left = curr; 3395 3396 se = left; /* ideally we run the leftmost entity */ 3397 3398 /* 3399 * Avoid running the skip buddy, if running something else can 3400 * be done without getting too unfair. 3401 */ 3402 if (cfs_rq->skip == se) { 3403 struct sched_entity *second; 3404 3405 if (se == curr) { 3406 second = __pick_first_entity(cfs_rq); 3407 } else { 3408 second = __pick_next_entity(se); 3409 if (!second || (curr && entity_before(curr, second))) 3410 second = curr; 3411 } 3412 3413 if (second && wakeup_preempt_entity(second, left) < 1) 3414 se = second; 3415 } 3416 3417 /* 3418 * Prefer last buddy, try to return the CPU to a preempted task. 3419 */ 3420 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3421 se = cfs_rq->last; 3422 3423 /* 3424 * Someone really wants this to run. If it's not unfair, run it. 3425 */ 3426 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3427 se = cfs_rq->next; 3428 3429 clear_buddies(cfs_rq, se); 3430 3431 return se; 3432 } 3433 3434 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3435 3436 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3437 { 3438 /* 3439 * If still on the runqueue then deactivate_task() 3440 * was not called and update_curr() has to be done: 3441 */ 3442 if (prev->on_rq) 3443 update_curr(cfs_rq); 3444 3445 /* throttle cfs_rqs exceeding runtime */ 3446 check_cfs_rq_runtime(cfs_rq); 3447 3448 if (schedstat_enabled()) { 3449 check_spread(cfs_rq, prev); 3450 if (prev->on_rq) 3451 update_stats_wait_start(cfs_rq, prev); 3452 } 3453 3454 if (prev->on_rq) { 3455 /* Put 'current' back into the tree. */ 3456 __enqueue_entity(cfs_rq, prev); 3457 /* in !on_rq case, update occurred at dequeue */ 3458 update_load_avg(prev, 0); 3459 } 3460 cfs_rq->curr = NULL; 3461 } 3462 3463 static void 3464 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3465 { 3466 /* 3467 * Update run-time statistics of the 'current'. 3468 */ 3469 update_curr(cfs_rq); 3470 3471 /* 3472 * Ensure that runnable average is periodically updated. 3473 */ 3474 update_load_avg(curr, 1); 3475 update_cfs_shares(cfs_rq); 3476 3477 #ifdef CONFIG_SCHED_HRTICK 3478 /* 3479 * queued ticks are scheduled to match the slice, so don't bother 3480 * validating it and just reschedule. 3481 */ 3482 if (queued) { 3483 resched_curr(rq_of(cfs_rq)); 3484 return; 3485 } 3486 /* 3487 * don't let the period tick interfere with the hrtick preemption 3488 */ 3489 if (!sched_feat(DOUBLE_TICK) && 3490 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3491 return; 3492 #endif 3493 3494 if (cfs_rq->nr_running > 1) 3495 check_preempt_tick(cfs_rq, curr); 3496 } 3497 3498 3499 /************************************************** 3500 * CFS bandwidth control machinery 3501 */ 3502 3503 #ifdef CONFIG_CFS_BANDWIDTH 3504 3505 #ifdef HAVE_JUMP_LABEL 3506 static struct static_key __cfs_bandwidth_used; 3507 3508 static inline bool cfs_bandwidth_used(void) 3509 { 3510 return static_key_false(&__cfs_bandwidth_used); 3511 } 3512 3513 void cfs_bandwidth_usage_inc(void) 3514 { 3515 static_key_slow_inc(&__cfs_bandwidth_used); 3516 } 3517 3518 void cfs_bandwidth_usage_dec(void) 3519 { 3520 static_key_slow_dec(&__cfs_bandwidth_used); 3521 } 3522 #else /* HAVE_JUMP_LABEL */ 3523 static bool cfs_bandwidth_used(void) 3524 { 3525 return true; 3526 } 3527 3528 void cfs_bandwidth_usage_inc(void) {} 3529 void cfs_bandwidth_usage_dec(void) {} 3530 #endif /* HAVE_JUMP_LABEL */ 3531 3532 /* 3533 * default period for cfs group bandwidth. 3534 * default: 0.1s, units: nanoseconds 3535 */ 3536 static inline u64 default_cfs_period(void) 3537 { 3538 return 100000000ULL; 3539 } 3540 3541 static inline u64 sched_cfs_bandwidth_slice(void) 3542 { 3543 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3544 } 3545 3546 /* 3547 * Replenish runtime according to assigned quota and update expiration time. 3548 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3549 * additional synchronization around rq->lock. 3550 * 3551 * requires cfs_b->lock 3552 */ 3553 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3554 { 3555 u64 now; 3556 3557 if (cfs_b->quota == RUNTIME_INF) 3558 return; 3559 3560 now = sched_clock_cpu(smp_processor_id()); 3561 cfs_b->runtime = cfs_b->quota; 3562 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3563 } 3564 3565 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3566 { 3567 return &tg->cfs_bandwidth; 3568 } 3569 3570 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3571 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3572 { 3573 if (unlikely(cfs_rq->throttle_count)) 3574 return cfs_rq->throttled_clock_task; 3575 3576 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3577 } 3578 3579 /* returns 0 on failure to allocate runtime */ 3580 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3581 { 3582 struct task_group *tg = cfs_rq->tg; 3583 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3584 u64 amount = 0, min_amount, expires; 3585 3586 /* note: this is a positive sum as runtime_remaining <= 0 */ 3587 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3588 3589 raw_spin_lock(&cfs_b->lock); 3590 if (cfs_b->quota == RUNTIME_INF) 3591 amount = min_amount; 3592 else { 3593 start_cfs_bandwidth(cfs_b); 3594 3595 if (cfs_b->runtime > 0) { 3596 amount = min(cfs_b->runtime, min_amount); 3597 cfs_b->runtime -= amount; 3598 cfs_b->idle = 0; 3599 } 3600 } 3601 expires = cfs_b->runtime_expires; 3602 raw_spin_unlock(&cfs_b->lock); 3603 3604 cfs_rq->runtime_remaining += amount; 3605 /* 3606 * we may have advanced our local expiration to account for allowed 3607 * spread between our sched_clock and the one on which runtime was 3608 * issued. 3609 */ 3610 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3611 cfs_rq->runtime_expires = expires; 3612 3613 return cfs_rq->runtime_remaining > 0; 3614 } 3615 3616 /* 3617 * Note: This depends on the synchronization provided by sched_clock and the 3618 * fact that rq->clock snapshots this value. 3619 */ 3620 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3621 { 3622 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3623 3624 /* if the deadline is ahead of our clock, nothing to do */ 3625 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3626 return; 3627 3628 if (cfs_rq->runtime_remaining < 0) 3629 return; 3630 3631 /* 3632 * If the local deadline has passed we have to consider the 3633 * possibility that our sched_clock is 'fast' and the global deadline 3634 * has not truly expired. 3635 * 3636 * Fortunately we can check determine whether this the case by checking 3637 * whether the global deadline has advanced. It is valid to compare 3638 * cfs_b->runtime_expires without any locks since we only care about 3639 * exact equality, so a partial write will still work. 3640 */ 3641 3642 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3643 /* extend local deadline, drift is bounded above by 2 ticks */ 3644 cfs_rq->runtime_expires += TICK_NSEC; 3645 } else { 3646 /* global deadline is ahead, expiration has passed */ 3647 cfs_rq->runtime_remaining = 0; 3648 } 3649 } 3650 3651 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3652 { 3653 /* dock delta_exec before expiring quota (as it could span periods) */ 3654 cfs_rq->runtime_remaining -= delta_exec; 3655 expire_cfs_rq_runtime(cfs_rq); 3656 3657 if (likely(cfs_rq->runtime_remaining > 0)) 3658 return; 3659 3660 /* 3661 * if we're unable to extend our runtime we resched so that the active 3662 * hierarchy can be throttled 3663 */ 3664 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3665 resched_curr(rq_of(cfs_rq)); 3666 } 3667 3668 static __always_inline 3669 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3670 { 3671 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3672 return; 3673 3674 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3675 } 3676 3677 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3678 { 3679 return cfs_bandwidth_used() && cfs_rq->throttled; 3680 } 3681 3682 /* check whether cfs_rq, or any parent, is throttled */ 3683 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3684 { 3685 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3686 } 3687 3688 /* 3689 * Ensure that neither of the group entities corresponding to src_cpu or 3690 * dest_cpu are members of a throttled hierarchy when performing group 3691 * load-balance operations. 3692 */ 3693 static inline int throttled_lb_pair(struct task_group *tg, 3694 int src_cpu, int dest_cpu) 3695 { 3696 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3697 3698 src_cfs_rq = tg->cfs_rq[src_cpu]; 3699 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3700 3701 return throttled_hierarchy(src_cfs_rq) || 3702 throttled_hierarchy(dest_cfs_rq); 3703 } 3704 3705 /* updated child weight may affect parent so we have to do this bottom up */ 3706 static int tg_unthrottle_up(struct task_group *tg, void *data) 3707 { 3708 struct rq *rq = data; 3709 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3710 3711 cfs_rq->throttle_count--; 3712 #ifdef CONFIG_SMP 3713 if (!cfs_rq->throttle_count) { 3714 /* adjust cfs_rq_clock_task() */ 3715 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3716 cfs_rq->throttled_clock_task; 3717 } 3718 #endif 3719 3720 return 0; 3721 } 3722 3723 static int tg_throttle_down(struct task_group *tg, void *data) 3724 { 3725 struct rq *rq = data; 3726 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3727 3728 /* group is entering throttled state, stop time */ 3729 if (!cfs_rq->throttle_count) 3730 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3731 cfs_rq->throttle_count++; 3732 3733 return 0; 3734 } 3735 3736 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3737 { 3738 struct rq *rq = rq_of(cfs_rq); 3739 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3740 struct sched_entity *se; 3741 long task_delta, dequeue = 1; 3742 bool empty; 3743 3744 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3745 3746 /* freeze hierarchy runnable averages while throttled */ 3747 rcu_read_lock(); 3748 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3749 rcu_read_unlock(); 3750 3751 task_delta = cfs_rq->h_nr_running; 3752 for_each_sched_entity(se) { 3753 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3754 /* throttled entity or throttle-on-deactivate */ 3755 if (!se->on_rq) 3756 break; 3757 3758 if (dequeue) 3759 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3760 qcfs_rq->h_nr_running -= task_delta; 3761 3762 if (qcfs_rq->load.weight) 3763 dequeue = 0; 3764 } 3765 3766 if (!se) 3767 sub_nr_running(rq, task_delta); 3768 3769 cfs_rq->throttled = 1; 3770 cfs_rq->throttled_clock = rq_clock(rq); 3771 raw_spin_lock(&cfs_b->lock); 3772 empty = list_empty(&cfs_b->throttled_cfs_rq); 3773 3774 /* 3775 * Add to the _head_ of the list, so that an already-started 3776 * distribute_cfs_runtime will not see us 3777 */ 3778 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3779 3780 /* 3781 * If we're the first throttled task, make sure the bandwidth 3782 * timer is running. 3783 */ 3784 if (empty) 3785 start_cfs_bandwidth(cfs_b); 3786 3787 raw_spin_unlock(&cfs_b->lock); 3788 } 3789 3790 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3791 { 3792 struct rq *rq = rq_of(cfs_rq); 3793 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3794 struct sched_entity *se; 3795 int enqueue = 1; 3796 long task_delta; 3797 3798 se = cfs_rq->tg->se[cpu_of(rq)]; 3799 3800 cfs_rq->throttled = 0; 3801 3802 update_rq_clock(rq); 3803 3804 raw_spin_lock(&cfs_b->lock); 3805 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3806 list_del_rcu(&cfs_rq->throttled_list); 3807 raw_spin_unlock(&cfs_b->lock); 3808 3809 /* update hierarchical throttle state */ 3810 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3811 3812 if (!cfs_rq->load.weight) 3813 return; 3814 3815 task_delta = cfs_rq->h_nr_running; 3816 for_each_sched_entity(se) { 3817 if (se->on_rq) 3818 enqueue = 0; 3819 3820 cfs_rq = cfs_rq_of(se); 3821 if (enqueue) 3822 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3823 cfs_rq->h_nr_running += task_delta; 3824 3825 if (cfs_rq_throttled(cfs_rq)) 3826 break; 3827 } 3828 3829 if (!se) 3830 add_nr_running(rq, task_delta); 3831 3832 /* determine whether we need to wake up potentially idle cpu */ 3833 if (rq->curr == rq->idle && rq->cfs.nr_running) 3834 resched_curr(rq); 3835 } 3836 3837 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3838 u64 remaining, u64 expires) 3839 { 3840 struct cfs_rq *cfs_rq; 3841 u64 runtime; 3842 u64 starting_runtime = remaining; 3843 3844 rcu_read_lock(); 3845 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3846 throttled_list) { 3847 struct rq *rq = rq_of(cfs_rq); 3848 3849 raw_spin_lock(&rq->lock); 3850 if (!cfs_rq_throttled(cfs_rq)) 3851 goto next; 3852 3853 runtime = -cfs_rq->runtime_remaining + 1; 3854 if (runtime > remaining) 3855 runtime = remaining; 3856 remaining -= runtime; 3857 3858 cfs_rq->runtime_remaining += runtime; 3859 cfs_rq->runtime_expires = expires; 3860 3861 /* we check whether we're throttled above */ 3862 if (cfs_rq->runtime_remaining > 0) 3863 unthrottle_cfs_rq(cfs_rq); 3864 3865 next: 3866 raw_spin_unlock(&rq->lock); 3867 3868 if (!remaining) 3869 break; 3870 } 3871 rcu_read_unlock(); 3872 3873 return starting_runtime - remaining; 3874 } 3875 3876 /* 3877 * Responsible for refilling a task_group's bandwidth and unthrottling its 3878 * cfs_rqs as appropriate. If there has been no activity within the last 3879 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3880 * used to track this state. 3881 */ 3882 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3883 { 3884 u64 runtime, runtime_expires; 3885 int throttled; 3886 3887 /* no need to continue the timer with no bandwidth constraint */ 3888 if (cfs_b->quota == RUNTIME_INF) 3889 goto out_deactivate; 3890 3891 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3892 cfs_b->nr_periods += overrun; 3893 3894 /* 3895 * idle depends on !throttled (for the case of a large deficit), and if 3896 * we're going inactive then everything else can be deferred 3897 */ 3898 if (cfs_b->idle && !throttled) 3899 goto out_deactivate; 3900 3901 __refill_cfs_bandwidth_runtime(cfs_b); 3902 3903 if (!throttled) { 3904 /* mark as potentially idle for the upcoming period */ 3905 cfs_b->idle = 1; 3906 return 0; 3907 } 3908 3909 /* account preceding periods in which throttling occurred */ 3910 cfs_b->nr_throttled += overrun; 3911 3912 runtime_expires = cfs_b->runtime_expires; 3913 3914 /* 3915 * This check is repeated as we are holding onto the new bandwidth while 3916 * we unthrottle. This can potentially race with an unthrottled group 3917 * trying to acquire new bandwidth from the global pool. This can result 3918 * in us over-using our runtime if it is all used during this loop, but 3919 * only by limited amounts in that extreme case. 3920 */ 3921 while (throttled && cfs_b->runtime > 0) { 3922 runtime = cfs_b->runtime; 3923 raw_spin_unlock(&cfs_b->lock); 3924 /* we can't nest cfs_b->lock while distributing bandwidth */ 3925 runtime = distribute_cfs_runtime(cfs_b, runtime, 3926 runtime_expires); 3927 raw_spin_lock(&cfs_b->lock); 3928 3929 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3930 3931 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3932 } 3933 3934 /* 3935 * While we are ensured activity in the period following an 3936 * unthrottle, this also covers the case in which the new bandwidth is 3937 * insufficient to cover the existing bandwidth deficit. (Forcing the 3938 * timer to remain active while there are any throttled entities.) 3939 */ 3940 cfs_b->idle = 0; 3941 3942 return 0; 3943 3944 out_deactivate: 3945 return 1; 3946 } 3947 3948 /* a cfs_rq won't donate quota below this amount */ 3949 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3950 /* minimum remaining period time to redistribute slack quota */ 3951 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3952 /* how long we wait to gather additional slack before distributing */ 3953 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3954 3955 /* 3956 * Are we near the end of the current quota period? 3957 * 3958 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3959 * hrtimer base being cleared by hrtimer_start. In the case of 3960 * migrate_hrtimers, base is never cleared, so we are fine. 3961 */ 3962 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3963 { 3964 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3965 u64 remaining; 3966 3967 /* if the call-back is running a quota refresh is already occurring */ 3968 if (hrtimer_callback_running(refresh_timer)) 3969 return 1; 3970 3971 /* is a quota refresh about to occur? */ 3972 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3973 if (remaining < min_expire) 3974 return 1; 3975 3976 return 0; 3977 } 3978 3979 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3980 { 3981 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3982 3983 /* if there's a quota refresh soon don't bother with slack */ 3984 if (runtime_refresh_within(cfs_b, min_left)) 3985 return; 3986 3987 hrtimer_start(&cfs_b->slack_timer, 3988 ns_to_ktime(cfs_bandwidth_slack_period), 3989 HRTIMER_MODE_REL); 3990 } 3991 3992 /* we know any runtime found here is valid as update_curr() precedes return */ 3993 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3994 { 3995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3996 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3997 3998 if (slack_runtime <= 0) 3999 return; 4000 4001 raw_spin_lock(&cfs_b->lock); 4002 if (cfs_b->quota != RUNTIME_INF && 4003 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4004 cfs_b->runtime += slack_runtime; 4005 4006 /* we are under rq->lock, defer unthrottling using a timer */ 4007 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4008 !list_empty(&cfs_b->throttled_cfs_rq)) 4009 start_cfs_slack_bandwidth(cfs_b); 4010 } 4011 raw_spin_unlock(&cfs_b->lock); 4012 4013 /* even if it's not valid for return we don't want to try again */ 4014 cfs_rq->runtime_remaining -= slack_runtime; 4015 } 4016 4017 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4018 { 4019 if (!cfs_bandwidth_used()) 4020 return; 4021 4022 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4023 return; 4024 4025 __return_cfs_rq_runtime(cfs_rq); 4026 } 4027 4028 /* 4029 * This is done with a timer (instead of inline with bandwidth return) since 4030 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4031 */ 4032 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4033 { 4034 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4035 u64 expires; 4036 4037 /* confirm we're still not at a refresh boundary */ 4038 raw_spin_lock(&cfs_b->lock); 4039 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4040 raw_spin_unlock(&cfs_b->lock); 4041 return; 4042 } 4043 4044 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4045 runtime = cfs_b->runtime; 4046 4047 expires = cfs_b->runtime_expires; 4048 raw_spin_unlock(&cfs_b->lock); 4049 4050 if (!runtime) 4051 return; 4052 4053 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4054 4055 raw_spin_lock(&cfs_b->lock); 4056 if (expires == cfs_b->runtime_expires) 4057 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4058 raw_spin_unlock(&cfs_b->lock); 4059 } 4060 4061 /* 4062 * When a group wakes up we want to make sure that its quota is not already 4063 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4064 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4065 */ 4066 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4067 { 4068 if (!cfs_bandwidth_used()) 4069 return; 4070 4071 /* an active group must be handled by the update_curr()->put() path */ 4072 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4073 return; 4074 4075 /* ensure the group is not already throttled */ 4076 if (cfs_rq_throttled(cfs_rq)) 4077 return; 4078 4079 /* update runtime allocation */ 4080 account_cfs_rq_runtime(cfs_rq, 0); 4081 if (cfs_rq->runtime_remaining <= 0) 4082 throttle_cfs_rq(cfs_rq); 4083 } 4084 4085 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4086 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4087 { 4088 if (!cfs_bandwidth_used()) 4089 return false; 4090 4091 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4092 return false; 4093 4094 /* 4095 * it's possible for a throttled entity to be forced into a running 4096 * state (e.g. set_curr_task), in this case we're finished. 4097 */ 4098 if (cfs_rq_throttled(cfs_rq)) 4099 return true; 4100 4101 throttle_cfs_rq(cfs_rq); 4102 return true; 4103 } 4104 4105 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4106 { 4107 struct cfs_bandwidth *cfs_b = 4108 container_of(timer, struct cfs_bandwidth, slack_timer); 4109 4110 do_sched_cfs_slack_timer(cfs_b); 4111 4112 return HRTIMER_NORESTART; 4113 } 4114 4115 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4116 { 4117 struct cfs_bandwidth *cfs_b = 4118 container_of(timer, struct cfs_bandwidth, period_timer); 4119 int overrun; 4120 int idle = 0; 4121 4122 raw_spin_lock(&cfs_b->lock); 4123 for (;;) { 4124 overrun = hrtimer_forward_now(timer, cfs_b->period); 4125 if (!overrun) 4126 break; 4127 4128 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4129 } 4130 if (idle) 4131 cfs_b->period_active = 0; 4132 raw_spin_unlock(&cfs_b->lock); 4133 4134 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4135 } 4136 4137 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4138 { 4139 raw_spin_lock_init(&cfs_b->lock); 4140 cfs_b->runtime = 0; 4141 cfs_b->quota = RUNTIME_INF; 4142 cfs_b->period = ns_to_ktime(default_cfs_period()); 4143 4144 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4145 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4146 cfs_b->period_timer.function = sched_cfs_period_timer; 4147 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4148 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4149 } 4150 4151 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4152 { 4153 cfs_rq->runtime_enabled = 0; 4154 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4155 } 4156 4157 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4158 { 4159 lockdep_assert_held(&cfs_b->lock); 4160 4161 if (!cfs_b->period_active) { 4162 cfs_b->period_active = 1; 4163 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4164 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4165 } 4166 } 4167 4168 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4169 { 4170 /* init_cfs_bandwidth() was not called */ 4171 if (!cfs_b->throttled_cfs_rq.next) 4172 return; 4173 4174 hrtimer_cancel(&cfs_b->period_timer); 4175 hrtimer_cancel(&cfs_b->slack_timer); 4176 } 4177 4178 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4179 { 4180 struct cfs_rq *cfs_rq; 4181 4182 for_each_leaf_cfs_rq(rq, cfs_rq) { 4183 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4184 4185 raw_spin_lock(&cfs_b->lock); 4186 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4187 raw_spin_unlock(&cfs_b->lock); 4188 } 4189 } 4190 4191 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4192 { 4193 struct cfs_rq *cfs_rq; 4194 4195 for_each_leaf_cfs_rq(rq, cfs_rq) { 4196 if (!cfs_rq->runtime_enabled) 4197 continue; 4198 4199 /* 4200 * clock_task is not advancing so we just need to make sure 4201 * there's some valid quota amount 4202 */ 4203 cfs_rq->runtime_remaining = 1; 4204 /* 4205 * Offline rq is schedulable till cpu is completely disabled 4206 * in take_cpu_down(), so we prevent new cfs throttling here. 4207 */ 4208 cfs_rq->runtime_enabled = 0; 4209 4210 if (cfs_rq_throttled(cfs_rq)) 4211 unthrottle_cfs_rq(cfs_rq); 4212 } 4213 } 4214 4215 #else /* CONFIG_CFS_BANDWIDTH */ 4216 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4217 { 4218 return rq_clock_task(rq_of(cfs_rq)); 4219 } 4220 4221 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4222 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4223 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4224 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4225 4226 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4227 { 4228 return 0; 4229 } 4230 4231 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4232 { 4233 return 0; 4234 } 4235 4236 static inline int throttled_lb_pair(struct task_group *tg, 4237 int src_cpu, int dest_cpu) 4238 { 4239 return 0; 4240 } 4241 4242 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4243 4244 #ifdef CONFIG_FAIR_GROUP_SCHED 4245 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4246 #endif 4247 4248 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4249 { 4250 return NULL; 4251 } 4252 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4253 static inline void update_runtime_enabled(struct rq *rq) {} 4254 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4255 4256 #endif /* CONFIG_CFS_BANDWIDTH */ 4257 4258 /************************************************** 4259 * CFS operations on tasks: 4260 */ 4261 4262 #ifdef CONFIG_SCHED_HRTICK 4263 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4264 { 4265 struct sched_entity *se = &p->se; 4266 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4267 4268 WARN_ON(task_rq(p) != rq); 4269 4270 if (cfs_rq->nr_running > 1) { 4271 u64 slice = sched_slice(cfs_rq, se); 4272 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4273 s64 delta = slice - ran; 4274 4275 if (delta < 0) { 4276 if (rq->curr == p) 4277 resched_curr(rq); 4278 return; 4279 } 4280 hrtick_start(rq, delta); 4281 } 4282 } 4283 4284 /* 4285 * called from enqueue/dequeue and updates the hrtick when the 4286 * current task is from our class and nr_running is low enough 4287 * to matter. 4288 */ 4289 static void hrtick_update(struct rq *rq) 4290 { 4291 struct task_struct *curr = rq->curr; 4292 4293 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4294 return; 4295 4296 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4297 hrtick_start_fair(rq, curr); 4298 } 4299 #else /* !CONFIG_SCHED_HRTICK */ 4300 static inline void 4301 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4302 { 4303 } 4304 4305 static inline void hrtick_update(struct rq *rq) 4306 { 4307 } 4308 #endif 4309 4310 /* 4311 * The enqueue_task method is called before nr_running is 4312 * increased. Here we update the fair scheduling stats and 4313 * then put the task into the rbtree: 4314 */ 4315 static void 4316 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4317 { 4318 struct cfs_rq *cfs_rq; 4319 struct sched_entity *se = &p->se; 4320 4321 for_each_sched_entity(se) { 4322 if (se->on_rq) 4323 break; 4324 cfs_rq = cfs_rq_of(se); 4325 enqueue_entity(cfs_rq, se, flags); 4326 4327 /* 4328 * end evaluation on encountering a throttled cfs_rq 4329 * 4330 * note: in the case of encountering a throttled cfs_rq we will 4331 * post the final h_nr_running increment below. 4332 */ 4333 if (cfs_rq_throttled(cfs_rq)) 4334 break; 4335 cfs_rq->h_nr_running++; 4336 4337 flags = ENQUEUE_WAKEUP; 4338 } 4339 4340 for_each_sched_entity(se) { 4341 cfs_rq = cfs_rq_of(se); 4342 cfs_rq->h_nr_running++; 4343 4344 if (cfs_rq_throttled(cfs_rq)) 4345 break; 4346 4347 update_load_avg(se, 1); 4348 update_cfs_shares(cfs_rq); 4349 } 4350 4351 if (!se) 4352 add_nr_running(rq, 1); 4353 4354 hrtick_update(rq); 4355 } 4356 4357 static void set_next_buddy(struct sched_entity *se); 4358 4359 /* 4360 * The dequeue_task method is called before nr_running is 4361 * decreased. We remove the task from the rbtree and 4362 * update the fair scheduling stats: 4363 */ 4364 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4365 { 4366 struct cfs_rq *cfs_rq; 4367 struct sched_entity *se = &p->se; 4368 int task_sleep = flags & DEQUEUE_SLEEP; 4369 4370 for_each_sched_entity(se) { 4371 cfs_rq = cfs_rq_of(se); 4372 dequeue_entity(cfs_rq, se, flags); 4373 4374 /* 4375 * end evaluation on encountering a throttled cfs_rq 4376 * 4377 * note: in the case of encountering a throttled cfs_rq we will 4378 * post the final h_nr_running decrement below. 4379 */ 4380 if (cfs_rq_throttled(cfs_rq)) 4381 break; 4382 cfs_rq->h_nr_running--; 4383 4384 /* Don't dequeue parent if it has other entities besides us */ 4385 if (cfs_rq->load.weight) { 4386 /* 4387 * Bias pick_next to pick a task from this cfs_rq, as 4388 * p is sleeping when it is within its sched_slice. 4389 */ 4390 if (task_sleep && parent_entity(se)) 4391 set_next_buddy(parent_entity(se)); 4392 4393 /* avoid re-evaluating load for this entity */ 4394 se = parent_entity(se); 4395 break; 4396 } 4397 flags |= DEQUEUE_SLEEP; 4398 } 4399 4400 for_each_sched_entity(se) { 4401 cfs_rq = cfs_rq_of(se); 4402 cfs_rq->h_nr_running--; 4403 4404 if (cfs_rq_throttled(cfs_rq)) 4405 break; 4406 4407 update_load_avg(se, 1); 4408 update_cfs_shares(cfs_rq); 4409 } 4410 4411 if (!se) 4412 sub_nr_running(rq, 1); 4413 4414 hrtick_update(rq); 4415 } 4416 4417 #ifdef CONFIG_SMP 4418 4419 /* 4420 * per rq 'load' arrray crap; XXX kill this. 4421 */ 4422 4423 /* 4424 * The exact cpuload calculated at every tick would be: 4425 * 4426 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4427 * 4428 * If a cpu misses updates for n ticks (as it was idle) and update gets 4429 * called on the n+1-th tick when cpu may be busy, then we have: 4430 * 4431 * load_n = (1 - 1/2^i)^n * load_0 4432 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4433 * 4434 * decay_load_missed() below does efficient calculation of 4435 * 4436 * load' = (1 - 1/2^i)^n * load 4437 * 4438 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4439 * This allows us to precompute the above in said factors, thereby allowing the 4440 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4441 * fixed_power_int()) 4442 * 4443 * The calculation is approximated on a 128 point scale. 4444 */ 4445 #define DEGRADE_SHIFT 7 4446 4447 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4448 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4449 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4450 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4451 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4452 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4453 { 120, 112, 98, 76, 45, 16, 2, 0 } 4454 }; 4455 4456 /* 4457 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4458 * would be when CPU is idle and so we just decay the old load without 4459 * adding any new load. 4460 */ 4461 static unsigned long 4462 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4463 { 4464 int j = 0; 4465 4466 if (!missed_updates) 4467 return load; 4468 4469 if (missed_updates >= degrade_zero_ticks[idx]) 4470 return 0; 4471 4472 if (idx == 1) 4473 return load >> missed_updates; 4474 4475 while (missed_updates) { 4476 if (missed_updates % 2) 4477 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4478 4479 missed_updates >>= 1; 4480 j++; 4481 } 4482 return load; 4483 } 4484 4485 /** 4486 * __update_cpu_load - update the rq->cpu_load[] statistics 4487 * @this_rq: The rq to update statistics for 4488 * @this_load: The current load 4489 * @pending_updates: The number of missed updates 4490 * @active: !0 for NOHZ_FULL 4491 * 4492 * Update rq->cpu_load[] statistics. This function is usually called every 4493 * scheduler tick (TICK_NSEC). 4494 * 4495 * This function computes a decaying average: 4496 * 4497 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4498 * 4499 * Because of NOHZ it might not get called on every tick which gives need for 4500 * the @pending_updates argument. 4501 * 4502 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4503 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4504 * = A * (A * load[i]_n-2 + B) + B 4505 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4506 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4507 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4508 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4509 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4510 * 4511 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4512 * any change in load would have resulted in the tick being turned back on. 4513 * 4514 * For regular NOHZ, this reduces to: 4515 * 4516 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4517 * 4518 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4519 * term. See the @active paramter. 4520 */ 4521 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 4522 unsigned long pending_updates, int active) 4523 { 4524 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0; 4525 int i, scale; 4526 4527 this_rq->nr_load_updates++; 4528 4529 /* Update our load: */ 4530 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4531 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4532 unsigned long old_load, new_load; 4533 4534 /* scale is effectively 1 << i now, and >> i divides by scale */ 4535 4536 old_load = this_rq->cpu_load[i]; 4537 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4538 if (tickless_load) { 4539 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4540 /* 4541 * old_load can never be a negative value because a 4542 * decayed tickless_load cannot be greater than the 4543 * original tickless_load. 4544 */ 4545 old_load += tickless_load; 4546 } 4547 new_load = this_load; 4548 /* 4549 * Round up the averaging division if load is increasing. This 4550 * prevents us from getting stuck on 9 if the load is 10, for 4551 * example. 4552 */ 4553 if (new_load > old_load) 4554 new_load += scale - 1; 4555 4556 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4557 } 4558 4559 sched_avg_update(this_rq); 4560 } 4561 4562 /* Used instead of source_load when we know the type == 0 */ 4563 static unsigned long weighted_cpuload(const int cpu) 4564 { 4565 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4566 } 4567 4568 #ifdef CONFIG_NO_HZ_COMMON 4569 static void __update_cpu_load_nohz(struct rq *this_rq, 4570 unsigned long curr_jiffies, 4571 unsigned long load, 4572 int active) 4573 { 4574 unsigned long pending_updates; 4575 4576 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4577 if (pending_updates) { 4578 this_rq->last_load_update_tick = curr_jiffies; 4579 /* 4580 * In the regular NOHZ case, we were idle, this means load 0. 4581 * In the NOHZ_FULL case, we were non-idle, we should consider 4582 * its weighted load. 4583 */ 4584 __update_cpu_load(this_rq, load, pending_updates, active); 4585 } 4586 } 4587 4588 /* 4589 * There is no sane way to deal with nohz on smp when using jiffies because the 4590 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4591 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4592 * 4593 * Therefore we cannot use the delta approach from the regular tick since that 4594 * would seriously skew the load calculation. However we'll make do for those 4595 * updates happening while idle (nohz_idle_balance) or coming out of idle 4596 * (tick_nohz_idle_exit). 4597 * 4598 * This means we might still be one tick off for nohz periods. 4599 */ 4600 4601 /* 4602 * Called from nohz_idle_balance() to update the load ratings before doing the 4603 * idle balance. 4604 */ 4605 static void update_cpu_load_idle(struct rq *this_rq) 4606 { 4607 /* 4608 * bail if there's load or we're actually up-to-date. 4609 */ 4610 if (weighted_cpuload(cpu_of(this_rq))) 4611 return; 4612 4613 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0); 4614 } 4615 4616 /* 4617 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 4618 */ 4619 void update_cpu_load_nohz(int active) 4620 { 4621 struct rq *this_rq = this_rq(); 4622 unsigned long curr_jiffies = READ_ONCE(jiffies); 4623 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0; 4624 4625 if (curr_jiffies == this_rq->last_load_update_tick) 4626 return; 4627 4628 raw_spin_lock(&this_rq->lock); 4629 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active); 4630 raw_spin_unlock(&this_rq->lock); 4631 } 4632 #endif /* CONFIG_NO_HZ */ 4633 4634 /* 4635 * Called from scheduler_tick() 4636 */ 4637 void update_cpu_load_active(struct rq *this_rq) 4638 { 4639 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4640 /* 4641 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz(). 4642 */ 4643 this_rq->last_load_update_tick = jiffies; 4644 __update_cpu_load(this_rq, load, 1, 1); 4645 } 4646 4647 /* 4648 * Return a low guess at the load of a migration-source cpu weighted 4649 * according to the scheduling class and "nice" value. 4650 * 4651 * We want to under-estimate the load of migration sources, to 4652 * balance conservatively. 4653 */ 4654 static unsigned long source_load(int cpu, int type) 4655 { 4656 struct rq *rq = cpu_rq(cpu); 4657 unsigned long total = weighted_cpuload(cpu); 4658 4659 if (type == 0 || !sched_feat(LB_BIAS)) 4660 return total; 4661 4662 return min(rq->cpu_load[type-1], total); 4663 } 4664 4665 /* 4666 * Return a high guess at the load of a migration-target cpu weighted 4667 * according to the scheduling class and "nice" value. 4668 */ 4669 static unsigned long target_load(int cpu, int type) 4670 { 4671 struct rq *rq = cpu_rq(cpu); 4672 unsigned long total = weighted_cpuload(cpu); 4673 4674 if (type == 0 || !sched_feat(LB_BIAS)) 4675 return total; 4676 4677 return max(rq->cpu_load[type-1], total); 4678 } 4679 4680 static unsigned long capacity_of(int cpu) 4681 { 4682 return cpu_rq(cpu)->cpu_capacity; 4683 } 4684 4685 static unsigned long capacity_orig_of(int cpu) 4686 { 4687 return cpu_rq(cpu)->cpu_capacity_orig; 4688 } 4689 4690 static unsigned long cpu_avg_load_per_task(int cpu) 4691 { 4692 struct rq *rq = cpu_rq(cpu); 4693 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4694 unsigned long load_avg = weighted_cpuload(cpu); 4695 4696 if (nr_running) 4697 return load_avg / nr_running; 4698 4699 return 0; 4700 } 4701 4702 static void record_wakee(struct task_struct *p) 4703 { 4704 /* 4705 * Rough decay (wiping) for cost saving, don't worry 4706 * about the boundary, really active task won't care 4707 * about the loss. 4708 */ 4709 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4710 current->wakee_flips >>= 1; 4711 current->wakee_flip_decay_ts = jiffies; 4712 } 4713 4714 if (current->last_wakee != p) { 4715 current->last_wakee = p; 4716 current->wakee_flips++; 4717 } 4718 } 4719 4720 static void task_waking_fair(struct task_struct *p) 4721 { 4722 struct sched_entity *se = &p->se; 4723 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4724 u64 min_vruntime; 4725 4726 #ifndef CONFIG_64BIT 4727 u64 min_vruntime_copy; 4728 4729 do { 4730 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4731 smp_rmb(); 4732 min_vruntime = cfs_rq->min_vruntime; 4733 } while (min_vruntime != min_vruntime_copy); 4734 #else 4735 min_vruntime = cfs_rq->min_vruntime; 4736 #endif 4737 4738 se->vruntime -= min_vruntime; 4739 record_wakee(p); 4740 } 4741 4742 #ifdef CONFIG_FAIR_GROUP_SCHED 4743 /* 4744 * effective_load() calculates the load change as seen from the root_task_group 4745 * 4746 * Adding load to a group doesn't make a group heavier, but can cause movement 4747 * of group shares between cpus. Assuming the shares were perfectly aligned one 4748 * can calculate the shift in shares. 4749 * 4750 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4751 * on this @cpu and results in a total addition (subtraction) of @wg to the 4752 * total group weight. 4753 * 4754 * Given a runqueue weight distribution (rw_i) we can compute a shares 4755 * distribution (s_i) using: 4756 * 4757 * s_i = rw_i / \Sum rw_j (1) 4758 * 4759 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4760 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4761 * shares distribution (s_i): 4762 * 4763 * rw_i = { 2, 4, 1, 0 } 4764 * s_i = { 2/7, 4/7, 1/7, 0 } 4765 * 4766 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4767 * task used to run on and the CPU the waker is running on), we need to 4768 * compute the effect of waking a task on either CPU and, in case of a sync 4769 * wakeup, compute the effect of the current task going to sleep. 4770 * 4771 * So for a change of @wl to the local @cpu with an overall group weight change 4772 * of @wl we can compute the new shares distribution (s'_i) using: 4773 * 4774 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4775 * 4776 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4777 * differences in waking a task to CPU 0. The additional task changes the 4778 * weight and shares distributions like: 4779 * 4780 * rw'_i = { 3, 4, 1, 0 } 4781 * s'_i = { 3/8, 4/8, 1/8, 0 } 4782 * 4783 * We can then compute the difference in effective weight by using: 4784 * 4785 * dw_i = S * (s'_i - s_i) (3) 4786 * 4787 * Where 'S' is the group weight as seen by its parent. 4788 * 4789 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4790 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4791 * 4/7) times the weight of the group. 4792 */ 4793 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4794 { 4795 struct sched_entity *se = tg->se[cpu]; 4796 4797 if (!tg->parent) /* the trivial, non-cgroup case */ 4798 return wl; 4799 4800 for_each_sched_entity(se) { 4801 long w, W; 4802 4803 tg = se->my_q->tg; 4804 4805 /* 4806 * W = @wg + \Sum rw_j 4807 */ 4808 W = wg + calc_tg_weight(tg, se->my_q); 4809 4810 /* 4811 * w = rw_i + @wl 4812 */ 4813 w = cfs_rq_load_avg(se->my_q) + wl; 4814 4815 /* 4816 * wl = S * s'_i; see (2) 4817 */ 4818 if (W > 0 && w < W) 4819 wl = (w * (long)tg->shares) / W; 4820 else 4821 wl = tg->shares; 4822 4823 /* 4824 * Per the above, wl is the new se->load.weight value; since 4825 * those are clipped to [MIN_SHARES, ...) do so now. See 4826 * calc_cfs_shares(). 4827 */ 4828 if (wl < MIN_SHARES) 4829 wl = MIN_SHARES; 4830 4831 /* 4832 * wl = dw_i = S * (s'_i - s_i); see (3) 4833 */ 4834 wl -= se->avg.load_avg; 4835 4836 /* 4837 * Recursively apply this logic to all parent groups to compute 4838 * the final effective load change on the root group. Since 4839 * only the @tg group gets extra weight, all parent groups can 4840 * only redistribute existing shares. @wl is the shift in shares 4841 * resulting from this level per the above. 4842 */ 4843 wg = 0; 4844 } 4845 4846 return wl; 4847 } 4848 #else 4849 4850 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4851 { 4852 return wl; 4853 } 4854 4855 #endif 4856 4857 /* 4858 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 4859 * A waker of many should wake a different task than the one last awakened 4860 * at a frequency roughly N times higher than one of its wakees. In order 4861 * to determine whether we should let the load spread vs consolodating to 4862 * shared cache, we look for a minimum 'flip' frequency of llc_size in one 4863 * partner, and a factor of lls_size higher frequency in the other. With 4864 * both conditions met, we can be relatively sure that the relationship is 4865 * non-monogamous, with partner count exceeding socket size. Waker/wakee 4866 * being client/server, worker/dispatcher, interrupt source or whatever is 4867 * irrelevant, spread criteria is apparent partner count exceeds socket size. 4868 */ 4869 static int wake_wide(struct task_struct *p) 4870 { 4871 unsigned int master = current->wakee_flips; 4872 unsigned int slave = p->wakee_flips; 4873 int factor = this_cpu_read(sd_llc_size); 4874 4875 if (master < slave) 4876 swap(master, slave); 4877 if (slave < factor || master < slave * factor) 4878 return 0; 4879 return 1; 4880 } 4881 4882 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4883 { 4884 s64 this_load, load; 4885 s64 this_eff_load, prev_eff_load; 4886 int idx, this_cpu, prev_cpu; 4887 struct task_group *tg; 4888 unsigned long weight; 4889 int balanced; 4890 4891 idx = sd->wake_idx; 4892 this_cpu = smp_processor_id(); 4893 prev_cpu = task_cpu(p); 4894 load = source_load(prev_cpu, idx); 4895 this_load = target_load(this_cpu, idx); 4896 4897 /* 4898 * If sync wakeup then subtract the (maximum possible) 4899 * effect of the currently running task from the load 4900 * of the current CPU: 4901 */ 4902 if (sync) { 4903 tg = task_group(current); 4904 weight = current->se.avg.load_avg; 4905 4906 this_load += effective_load(tg, this_cpu, -weight, -weight); 4907 load += effective_load(tg, prev_cpu, 0, -weight); 4908 } 4909 4910 tg = task_group(p); 4911 weight = p->se.avg.load_avg; 4912 4913 /* 4914 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4915 * due to the sync cause above having dropped this_load to 0, we'll 4916 * always have an imbalance, but there's really nothing you can do 4917 * about that, so that's good too. 4918 * 4919 * Otherwise check if either cpus are near enough in load to allow this 4920 * task to be woken on this_cpu. 4921 */ 4922 this_eff_load = 100; 4923 this_eff_load *= capacity_of(prev_cpu); 4924 4925 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4926 prev_eff_load *= capacity_of(this_cpu); 4927 4928 if (this_load > 0) { 4929 this_eff_load *= this_load + 4930 effective_load(tg, this_cpu, weight, weight); 4931 4932 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4933 } 4934 4935 balanced = this_eff_load <= prev_eff_load; 4936 4937 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4938 4939 if (!balanced) 4940 return 0; 4941 4942 schedstat_inc(sd, ttwu_move_affine); 4943 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4944 4945 return 1; 4946 } 4947 4948 /* 4949 * find_idlest_group finds and returns the least busy CPU group within the 4950 * domain. 4951 */ 4952 static struct sched_group * 4953 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4954 int this_cpu, int sd_flag) 4955 { 4956 struct sched_group *idlest = NULL, *group = sd->groups; 4957 unsigned long min_load = ULONG_MAX, this_load = 0; 4958 int load_idx = sd->forkexec_idx; 4959 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4960 4961 if (sd_flag & SD_BALANCE_WAKE) 4962 load_idx = sd->wake_idx; 4963 4964 do { 4965 unsigned long load, avg_load; 4966 int local_group; 4967 int i; 4968 4969 /* Skip over this group if it has no CPUs allowed */ 4970 if (!cpumask_intersects(sched_group_cpus(group), 4971 tsk_cpus_allowed(p))) 4972 continue; 4973 4974 local_group = cpumask_test_cpu(this_cpu, 4975 sched_group_cpus(group)); 4976 4977 /* Tally up the load of all CPUs in the group */ 4978 avg_load = 0; 4979 4980 for_each_cpu(i, sched_group_cpus(group)) { 4981 /* Bias balancing toward cpus of our domain */ 4982 if (local_group) 4983 load = source_load(i, load_idx); 4984 else 4985 load = target_load(i, load_idx); 4986 4987 avg_load += load; 4988 } 4989 4990 /* Adjust by relative CPU capacity of the group */ 4991 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4992 4993 if (local_group) { 4994 this_load = avg_load; 4995 } else if (avg_load < min_load) { 4996 min_load = avg_load; 4997 idlest = group; 4998 } 4999 } while (group = group->next, group != sd->groups); 5000 5001 if (!idlest || 100*this_load < imbalance*min_load) 5002 return NULL; 5003 return idlest; 5004 } 5005 5006 /* 5007 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5008 */ 5009 static int 5010 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5011 { 5012 unsigned long load, min_load = ULONG_MAX; 5013 unsigned int min_exit_latency = UINT_MAX; 5014 u64 latest_idle_timestamp = 0; 5015 int least_loaded_cpu = this_cpu; 5016 int shallowest_idle_cpu = -1; 5017 int i; 5018 5019 /* Traverse only the allowed CPUs */ 5020 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 5021 if (idle_cpu(i)) { 5022 struct rq *rq = cpu_rq(i); 5023 struct cpuidle_state *idle = idle_get_state(rq); 5024 if (idle && idle->exit_latency < min_exit_latency) { 5025 /* 5026 * We give priority to a CPU whose idle state 5027 * has the smallest exit latency irrespective 5028 * of any idle timestamp. 5029 */ 5030 min_exit_latency = idle->exit_latency; 5031 latest_idle_timestamp = rq->idle_stamp; 5032 shallowest_idle_cpu = i; 5033 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5034 rq->idle_stamp > latest_idle_timestamp) { 5035 /* 5036 * If equal or no active idle state, then 5037 * the most recently idled CPU might have 5038 * a warmer cache. 5039 */ 5040 latest_idle_timestamp = rq->idle_stamp; 5041 shallowest_idle_cpu = i; 5042 } 5043 } else if (shallowest_idle_cpu == -1) { 5044 load = weighted_cpuload(i); 5045 if (load < min_load || (load == min_load && i == this_cpu)) { 5046 min_load = load; 5047 least_loaded_cpu = i; 5048 } 5049 } 5050 } 5051 5052 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5053 } 5054 5055 /* 5056 * Try and locate an idle CPU in the sched_domain. 5057 */ 5058 static int select_idle_sibling(struct task_struct *p, int target) 5059 { 5060 struct sched_domain *sd; 5061 struct sched_group *sg; 5062 int i = task_cpu(p); 5063 5064 if (idle_cpu(target)) 5065 return target; 5066 5067 /* 5068 * If the prevous cpu is cache affine and idle, don't be stupid. 5069 */ 5070 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 5071 return i; 5072 5073 /* 5074 * Otherwise, iterate the domains and find an elegible idle cpu. 5075 */ 5076 sd = rcu_dereference(per_cpu(sd_llc, target)); 5077 for_each_lower_domain(sd) { 5078 sg = sd->groups; 5079 do { 5080 if (!cpumask_intersects(sched_group_cpus(sg), 5081 tsk_cpus_allowed(p))) 5082 goto next; 5083 5084 for_each_cpu(i, sched_group_cpus(sg)) { 5085 if (i == target || !idle_cpu(i)) 5086 goto next; 5087 } 5088 5089 target = cpumask_first_and(sched_group_cpus(sg), 5090 tsk_cpus_allowed(p)); 5091 goto done; 5092 next: 5093 sg = sg->next; 5094 } while (sg != sd->groups); 5095 } 5096 done: 5097 return target; 5098 } 5099 5100 /* 5101 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5102 * tasks. The unit of the return value must be the one of capacity so we can 5103 * compare the utilization with the capacity of the CPU that is available for 5104 * CFS task (ie cpu_capacity). 5105 * 5106 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5107 * recent utilization of currently non-runnable tasks on a CPU. It represents 5108 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5109 * capacity_orig is the cpu_capacity available at the highest frequency 5110 * (arch_scale_freq_capacity()). 5111 * The utilization of a CPU converges towards a sum equal to or less than the 5112 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5113 * the running time on this CPU scaled by capacity_curr. 5114 * 5115 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5116 * higher than capacity_orig because of unfortunate rounding in 5117 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5118 * the average stabilizes with the new running time. We need to check that the 5119 * utilization stays within the range of [0..capacity_orig] and cap it if 5120 * necessary. Without utilization capping, a group could be seen as overloaded 5121 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5122 * available capacity. We allow utilization to overshoot capacity_curr (but not 5123 * capacity_orig) as it useful for predicting the capacity required after task 5124 * migrations (scheduler-driven DVFS). 5125 */ 5126 static int cpu_util(int cpu) 5127 { 5128 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5129 unsigned long capacity = capacity_orig_of(cpu); 5130 5131 return (util >= capacity) ? capacity : util; 5132 } 5133 5134 /* 5135 * select_task_rq_fair: Select target runqueue for the waking task in domains 5136 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5137 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5138 * 5139 * Balances load by selecting the idlest cpu in the idlest group, or under 5140 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5141 * 5142 * Returns the target cpu number. 5143 * 5144 * preempt must be disabled. 5145 */ 5146 static int 5147 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5148 { 5149 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5150 int cpu = smp_processor_id(); 5151 int new_cpu = prev_cpu; 5152 int want_affine = 0; 5153 int sync = wake_flags & WF_SYNC; 5154 5155 if (sd_flag & SD_BALANCE_WAKE) 5156 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 5157 5158 rcu_read_lock(); 5159 for_each_domain(cpu, tmp) { 5160 if (!(tmp->flags & SD_LOAD_BALANCE)) 5161 break; 5162 5163 /* 5164 * If both cpu and prev_cpu are part of this domain, 5165 * cpu is a valid SD_WAKE_AFFINE target. 5166 */ 5167 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5168 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5169 affine_sd = tmp; 5170 break; 5171 } 5172 5173 if (tmp->flags & sd_flag) 5174 sd = tmp; 5175 else if (!want_affine) 5176 break; 5177 } 5178 5179 if (affine_sd) { 5180 sd = NULL; /* Prefer wake_affine over balance flags */ 5181 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 5182 new_cpu = cpu; 5183 } 5184 5185 if (!sd) { 5186 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5187 new_cpu = select_idle_sibling(p, new_cpu); 5188 5189 } else while (sd) { 5190 struct sched_group *group; 5191 int weight; 5192 5193 if (!(sd->flags & sd_flag)) { 5194 sd = sd->child; 5195 continue; 5196 } 5197 5198 group = find_idlest_group(sd, p, cpu, sd_flag); 5199 if (!group) { 5200 sd = sd->child; 5201 continue; 5202 } 5203 5204 new_cpu = find_idlest_cpu(group, p, cpu); 5205 if (new_cpu == -1 || new_cpu == cpu) { 5206 /* Now try balancing at a lower domain level of cpu */ 5207 sd = sd->child; 5208 continue; 5209 } 5210 5211 /* Now try balancing at a lower domain level of new_cpu */ 5212 cpu = new_cpu; 5213 weight = sd->span_weight; 5214 sd = NULL; 5215 for_each_domain(cpu, tmp) { 5216 if (weight <= tmp->span_weight) 5217 break; 5218 if (tmp->flags & sd_flag) 5219 sd = tmp; 5220 } 5221 /* while loop will break here if sd == NULL */ 5222 } 5223 rcu_read_unlock(); 5224 5225 return new_cpu; 5226 } 5227 5228 /* 5229 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 5230 * cfs_rq_of(p) references at time of call are still valid and identify the 5231 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 5232 */ 5233 static void migrate_task_rq_fair(struct task_struct *p) 5234 { 5235 /* 5236 * We are supposed to update the task to "current" time, then its up to date 5237 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 5238 * what current time is, so simply throw away the out-of-date time. This 5239 * will result in the wakee task is less decayed, but giving the wakee more 5240 * load sounds not bad. 5241 */ 5242 remove_entity_load_avg(&p->se); 5243 5244 /* Tell new CPU we are migrated */ 5245 p->se.avg.last_update_time = 0; 5246 5247 /* We have migrated, no longer consider this task hot */ 5248 p->se.exec_start = 0; 5249 } 5250 5251 static void task_dead_fair(struct task_struct *p) 5252 { 5253 remove_entity_load_avg(&p->se); 5254 } 5255 #endif /* CONFIG_SMP */ 5256 5257 static unsigned long 5258 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 5259 { 5260 unsigned long gran = sysctl_sched_wakeup_granularity; 5261 5262 /* 5263 * Since its curr running now, convert the gran from real-time 5264 * to virtual-time in his units. 5265 * 5266 * By using 'se' instead of 'curr' we penalize light tasks, so 5267 * they get preempted easier. That is, if 'se' < 'curr' then 5268 * the resulting gran will be larger, therefore penalizing the 5269 * lighter, if otoh 'se' > 'curr' then the resulting gran will 5270 * be smaller, again penalizing the lighter task. 5271 * 5272 * This is especially important for buddies when the leftmost 5273 * task is higher priority than the buddy. 5274 */ 5275 return calc_delta_fair(gran, se); 5276 } 5277 5278 /* 5279 * Should 'se' preempt 'curr'. 5280 * 5281 * |s1 5282 * |s2 5283 * |s3 5284 * g 5285 * |<--->|c 5286 * 5287 * w(c, s1) = -1 5288 * w(c, s2) = 0 5289 * w(c, s3) = 1 5290 * 5291 */ 5292 static int 5293 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5294 { 5295 s64 gran, vdiff = curr->vruntime - se->vruntime; 5296 5297 if (vdiff <= 0) 5298 return -1; 5299 5300 gran = wakeup_gran(curr, se); 5301 if (vdiff > gran) 5302 return 1; 5303 5304 return 0; 5305 } 5306 5307 static void set_last_buddy(struct sched_entity *se) 5308 { 5309 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5310 return; 5311 5312 for_each_sched_entity(se) 5313 cfs_rq_of(se)->last = se; 5314 } 5315 5316 static void set_next_buddy(struct sched_entity *se) 5317 { 5318 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5319 return; 5320 5321 for_each_sched_entity(se) 5322 cfs_rq_of(se)->next = se; 5323 } 5324 5325 static void set_skip_buddy(struct sched_entity *se) 5326 { 5327 for_each_sched_entity(se) 5328 cfs_rq_of(se)->skip = se; 5329 } 5330 5331 /* 5332 * Preempt the current task with a newly woken task if needed: 5333 */ 5334 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5335 { 5336 struct task_struct *curr = rq->curr; 5337 struct sched_entity *se = &curr->se, *pse = &p->se; 5338 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5339 int scale = cfs_rq->nr_running >= sched_nr_latency; 5340 int next_buddy_marked = 0; 5341 5342 if (unlikely(se == pse)) 5343 return; 5344 5345 /* 5346 * This is possible from callers such as attach_tasks(), in which we 5347 * unconditionally check_prempt_curr() after an enqueue (which may have 5348 * lead to a throttle). This both saves work and prevents false 5349 * next-buddy nomination below. 5350 */ 5351 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5352 return; 5353 5354 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5355 set_next_buddy(pse); 5356 next_buddy_marked = 1; 5357 } 5358 5359 /* 5360 * We can come here with TIF_NEED_RESCHED already set from new task 5361 * wake up path. 5362 * 5363 * Note: this also catches the edge-case of curr being in a throttled 5364 * group (e.g. via set_curr_task), since update_curr() (in the 5365 * enqueue of curr) will have resulted in resched being set. This 5366 * prevents us from potentially nominating it as a false LAST_BUDDY 5367 * below. 5368 */ 5369 if (test_tsk_need_resched(curr)) 5370 return; 5371 5372 /* Idle tasks are by definition preempted by non-idle tasks. */ 5373 if (unlikely(curr->policy == SCHED_IDLE) && 5374 likely(p->policy != SCHED_IDLE)) 5375 goto preempt; 5376 5377 /* 5378 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5379 * is driven by the tick): 5380 */ 5381 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5382 return; 5383 5384 find_matching_se(&se, &pse); 5385 update_curr(cfs_rq_of(se)); 5386 BUG_ON(!pse); 5387 if (wakeup_preempt_entity(se, pse) == 1) { 5388 /* 5389 * Bias pick_next to pick the sched entity that is 5390 * triggering this preemption. 5391 */ 5392 if (!next_buddy_marked) 5393 set_next_buddy(pse); 5394 goto preempt; 5395 } 5396 5397 return; 5398 5399 preempt: 5400 resched_curr(rq); 5401 /* 5402 * Only set the backward buddy when the current task is still 5403 * on the rq. This can happen when a wakeup gets interleaved 5404 * with schedule on the ->pre_schedule() or idle_balance() 5405 * point, either of which can * drop the rq lock. 5406 * 5407 * Also, during early boot the idle thread is in the fair class, 5408 * for obvious reasons its a bad idea to schedule back to it. 5409 */ 5410 if (unlikely(!se->on_rq || curr == rq->idle)) 5411 return; 5412 5413 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5414 set_last_buddy(se); 5415 } 5416 5417 static struct task_struct * 5418 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 5419 { 5420 struct cfs_rq *cfs_rq = &rq->cfs; 5421 struct sched_entity *se; 5422 struct task_struct *p; 5423 int new_tasks; 5424 5425 again: 5426 #ifdef CONFIG_FAIR_GROUP_SCHED 5427 if (!cfs_rq->nr_running) 5428 goto idle; 5429 5430 if (prev->sched_class != &fair_sched_class) 5431 goto simple; 5432 5433 /* 5434 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5435 * likely that a next task is from the same cgroup as the current. 5436 * 5437 * Therefore attempt to avoid putting and setting the entire cgroup 5438 * hierarchy, only change the part that actually changes. 5439 */ 5440 5441 do { 5442 struct sched_entity *curr = cfs_rq->curr; 5443 5444 /* 5445 * Since we got here without doing put_prev_entity() we also 5446 * have to consider cfs_rq->curr. If it is still a runnable 5447 * entity, update_curr() will update its vruntime, otherwise 5448 * forget we've ever seen it. 5449 */ 5450 if (curr) { 5451 if (curr->on_rq) 5452 update_curr(cfs_rq); 5453 else 5454 curr = NULL; 5455 5456 /* 5457 * This call to check_cfs_rq_runtime() will do the 5458 * throttle and dequeue its entity in the parent(s). 5459 * Therefore the 'simple' nr_running test will indeed 5460 * be correct. 5461 */ 5462 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5463 goto simple; 5464 } 5465 5466 se = pick_next_entity(cfs_rq, curr); 5467 cfs_rq = group_cfs_rq(se); 5468 } while (cfs_rq); 5469 5470 p = task_of(se); 5471 5472 /* 5473 * Since we haven't yet done put_prev_entity and if the selected task 5474 * is a different task than we started out with, try and touch the 5475 * least amount of cfs_rqs. 5476 */ 5477 if (prev != p) { 5478 struct sched_entity *pse = &prev->se; 5479 5480 while (!(cfs_rq = is_same_group(se, pse))) { 5481 int se_depth = se->depth; 5482 int pse_depth = pse->depth; 5483 5484 if (se_depth <= pse_depth) { 5485 put_prev_entity(cfs_rq_of(pse), pse); 5486 pse = parent_entity(pse); 5487 } 5488 if (se_depth >= pse_depth) { 5489 set_next_entity(cfs_rq_of(se), se); 5490 se = parent_entity(se); 5491 } 5492 } 5493 5494 put_prev_entity(cfs_rq, pse); 5495 set_next_entity(cfs_rq, se); 5496 } 5497 5498 if (hrtick_enabled(rq)) 5499 hrtick_start_fair(rq, p); 5500 5501 return p; 5502 simple: 5503 cfs_rq = &rq->cfs; 5504 #endif 5505 5506 if (!cfs_rq->nr_running) 5507 goto idle; 5508 5509 put_prev_task(rq, prev); 5510 5511 do { 5512 se = pick_next_entity(cfs_rq, NULL); 5513 set_next_entity(cfs_rq, se); 5514 cfs_rq = group_cfs_rq(se); 5515 } while (cfs_rq); 5516 5517 p = task_of(se); 5518 5519 if (hrtick_enabled(rq)) 5520 hrtick_start_fair(rq, p); 5521 5522 return p; 5523 5524 idle: 5525 /* 5526 * This is OK, because current is on_cpu, which avoids it being picked 5527 * for load-balance and preemption/IRQs are still disabled avoiding 5528 * further scheduler activity on it and we're being very careful to 5529 * re-start the picking loop. 5530 */ 5531 lockdep_unpin_lock(&rq->lock); 5532 new_tasks = idle_balance(rq); 5533 lockdep_pin_lock(&rq->lock); 5534 /* 5535 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5536 * possible for any higher priority task to appear. In that case we 5537 * must re-start the pick_next_entity() loop. 5538 */ 5539 if (new_tasks < 0) 5540 return RETRY_TASK; 5541 5542 if (new_tasks > 0) 5543 goto again; 5544 5545 return NULL; 5546 } 5547 5548 /* 5549 * Account for a descheduled task: 5550 */ 5551 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5552 { 5553 struct sched_entity *se = &prev->se; 5554 struct cfs_rq *cfs_rq; 5555 5556 for_each_sched_entity(se) { 5557 cfs_rq = cfs_rq_of(se); 5558 put_prev_entity(cfs_rq, se); 5559 } 5560 } 5561 5562 /* 5563 * sched_yield() is very simple 5564 * 5565 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5566 */ 5567 static void yield_task_fair(struct rq *rq) 5568 { 5569 struct task_struct *curr = rq->curr; 5570 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5571 struct sched_entity *se = &curr->se; 5572 5573 /* 5574 * Are we the only task in the tree? 5575 */ 5576 if (unlikely(rq->nr_running == 1)) 5577 return; 5578 5579 clear_buddies(cfs_rq, se); 5580 5581 if (curr->policy != SCHED_BATCH) { 5582 update_rq_clock(rq); 5583 /* 5584 * Update run-time statistics of the 'current'. 5585 */ 5586 update_curr(cfs_rq); 5587 /* 5588 * Tell update_rq_clock() that we've just updated, 5589 * so we don't do microscopic update in schedule() 5590 * and double the fastpath cost. 5591 */ 5592 rq_clock_skip_update(rq, true); 5593 } 5594 5595 set_skip_buddy(se); 5596 } 5597 5598 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5599 { 5600 struct sched_entity *se = &p->se; 5601 5602 /* throttled hierarchies are not runnable */ 5603 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5604 return false; 5605 5606 /* Tell the scheduler that we'd really like pse to run next. */ 5607 set_next_buddy(se); 5608 5609 yield_task_fair(rq); 5610 5611 return true; 5612 } 5613 5614 #ifdef CONFIG_SMP 5615 /************************************************** 5616 * Fair scheduling class load-balancing methods. 5617 * 5618 * BASICS 5619 * 5620 * The purpose of load-balancing is to achieve the same basic fairness the 5621 * per-cpu scheduler provides, namely provide a proportional amount of compute 5622 * time to each task. This is expressed in the following equation: 5623 * 5624 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5625 * 5626 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5627 * W_i,0 is defined as: 5628 * 5629 * W_i,0 = \Sum_j w_i,j (2) 5630 * 5631 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5632 * is derived from the nice value as per prio_to_weight[]. 5633 * 5634 * The weight average is an exponential decay average of the instantaneous 5635 * weight: 5636 * 5637 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5638 * 5639 * C_i is the compute capacity of cpu i, typically it is the 5640 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5641 * can also include other factors [XXX]. 5642 * 5643 * To achieve this balance we define a measure of imbalance which follows 5644 * directly from (1): 5645 * 5646 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5647 * 5648 * We them move tasks around to minimize the imbalance. In the continuous 5649 * function space it is obvious this converges, in the discrete case we get 5650 * a few fun cases generally called infeasible weight scenarios. 5651 * 5652 * [XXX expand on: 5653 * - infeasible weights; 5654 * - local vs global optima in the discrete case. ] 5655 * 5656 * 5657 * SCHED DOMAINS 5658 * 5659 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5660 * for all i,j solution, we create a tree of cpus that follows the hardware 5661 * topology where each level pairs two lower groups (or better). This results 5662 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5663 * tree to only the first of the previous level and we decrease the frequency 5664 * of load-balance at each level inv. proportional to the number of cpus in 5665 * the groups. 5666 * 5667 * This yields: 5668 * 5669 * log_2 n 1 n 5670 * \Sum { --- * --- * 2^i } = O(n) (5) 5671 * i = 0 2^i 2^i 5672 * `- size of each group 5673 * | | `- number of cpus doing load-balance 5674 * | `- freq 5675 * `- sum over all levels 5676 * 5677 * Coupled with a limit on how many tasks we can migrate every balance pass, 5678 * this makes (5) the runtime complexity of the balancer. 5679 * 5680 * An important property here is that each CPU is still (indirectly) connected 5681 * to every other cpu in at most O(log n) steps: 5682 * 5683 * The adjacency matrix of the resulting graph is given by: 5684 * 5685 * log_2 n 5686 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5687 * k = 0 5688 * 5689 * And you'll find that: 5690 * 5691 * A^(log_2 n)_i,j != 0 for all i,j (7) 5692 * 5693 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5694 * The task movement gives a factor of O(m), giving a convergence complexity 5695 * of: 5696 * 5697 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5698 * 5699 * 5700 * WORK CONSERVING 5701 * 5702 * In order to avoid CPUs going idle while there's still work to do, new idle 5703 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5704 * tree itself instead of relying on other CPUs to bring it work. 5705 * 5706 * This adds some complexity to both (5) and (8) but it reduces the total idle 5707 * time. 5708 * 5709 * [XXX more?] 5710 * 5711 * 5712 * CGROUPS 5713 * 5714 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5715 * 5716 * s_k,i 5717 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5718 * S_k 5719 * 5720 * Where 5721 * 5722 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5723 * 5724 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5725 * 5726 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5727 * property. 5728 * 5729 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5730 * rewrite all of this once again.] 5731 */ 5732 5733 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5734 5735 enum fbq_type { regular, remote, all }; 5736 5737 #define LBF_ALL_PINNED 0x01 5738 #define LBF_NEED_BREAK 0x02 5739 #define LBF_DST_PINNED 0x04 5740 #define LBF_SOME_PINNED 0x08 5741 5742 struct lb_env { 5743 struct sched_domain *sd; 5744 5745 struct rq *src_rq; 5746 int src_cpu; 5747 5748 int dst_cpu; 5749 struct rq *dst_rq; 5750 5751 struct cpumask *dst_grpmask; 5752 int new_dst_cpu; 5753 enum cpu_idle_type idle; 5754 long imbalance; 5755 /* The set of CPUs under consideration for load-balancing */ 5756 struct cpumask *cpus; 5757 5758 unsigned int flags; 5759 5760 unsigned int loop; 5761 unsigned int loop_break; 5762 unsigned int loop_max; 5763 5764 enum fbq_type fbq_type; 5765 struct list_head tasks; 5766 }; 5767 5768 /* 5769 * Is this task likely cache-hot: 5770 */ 5771 static int task_hot(struct task_struct *p, struct lb_env *env) 5772 { 5773 s64 delta; 5774 5775 lockdep_assert_held(&env->src_rq->lock); 5776 5777 if (p->sched_class != &fair_sched_class) 5778 return 0; 5779 5780 if (unlikely(p->policy == SCHED_IDLE)) 5781 return 0; 5782 5783 /* 5784 * Buddy candidates are cache hot: 5785 */ 5786 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5787 (&p->se == cfs_rq_of(&p->se)->next || 5788 &p->se == cfs_rq_of(&p->se)->last)) 5789 return 1; 5790 5791 if (sysctl_sched_migration_cost == -1) 5792 return 1; 5793 if (sysctl_sched_migration_cost == 0) 5794 return 0; 5795 5796 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5797 5798 return delta < (s64)sysctl_sched_migration_cost; 5799 } 5800 5801 #ifdef CONFIG_NUMA_BALANCING 5802 /* 5803 * Returns 1, if task migration degrades locality 5804 * Returns 0, if task migration improves locality i.e migration preferred. 5805 * Returns -1, if task migration is not affected by locality. 5806 */ 5807 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5808 { 5809 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5810 unsigned long src_faults, dst_faults; 5811 int src_nid, dst_nid; 5812 5813 if (!static_branch_likely(&sched_numa_balancing)) 5814 return -1; 5815 5816 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 5817 return -1; 5818 5819 src_nid = cpu_to_node(env->src_cpu); 5820 dst_nid = cpu_to_node(env->dst_cpu); 5821 5822 if (src_nid == dst_nid) 5823 return -1; 5824 5825 /* Migrating away from the preferred node is always bad. */ 5826 if (src_nid == p->numa_preferred_nid) { 5827 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 5828 return 1; 5829 else 5830 return -1; 5831 } 5832 5833 /* Encourage migration to the preferred node. */ 5834 if (dst_nid == p->numa_preferred_nid) 5835 return 0; 5836 5837 if (numa_group) { 5838 src_faults = group_faults(p, src_nid); 5839 dst_faults = group_faults(p, dst_nid); 5840 } else { 5841 src_faults = task_faults(p, src_nid); 5842 dst_faults = task_faults(p, dst_nid); 5843 } 5844 5845 return dst_faults < src_faults; 5846 } 5847 5848 #else 5849 static inline int migrate_degrades_locality(struct task_struct *p, 5850 struct lb_env *env) 5851 { 5852 return -1; 5853 } 5854 #endif 5855 5856 /* 5857 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5858 */ 5859 static 5860 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5861 { 5862 int tsk_cache_hot; 5863 5864 lockdep_assert_held(&env->src_rq->lock); 5865 5866 /* 5867 * We do not migrate tasks that are: 5868 * 1) throttled_lb_pair, or 5869 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5870 * 3) running (obviously), or 5871 * 4) are cache-hot on their current CPU. 5872 */ 5873 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5874 return 0; 5875 5876 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5877 int cpu; 5878 5879 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5880 5881 env->flags |= LBF_SOME_PINNED; 5882 5883 /* 5884 * Remember if this task can be migrated to any other cpu in 5885 * our sched_group. We may want to revisit it if we couldn't 5886 * meet load balance goals by pulling other tasks on src_cpu. 5887 * 5888 * Also avoid computing new_dst_cpu if we have already computed 5889 * one in current iteration. 5890 */ 5891 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5892 return 0; 5893 5894 /* Prevent to re-select dst_cpu via env's cpus */ 5895 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5896 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5897 env->flags |= LBF_DST_PINNED; 5898 env->new_dst_cpu = cpu; 5899 break; 5900 } 5901 } 5902 5903 return 0; 5904 } 5905 5906 /* Record that we found atleast one task that could run on dst_cpu */ 5907 env->flags &= ~LBF_ALL_PINNED; 5908 5909 if (task_running(env->src_rq, p)) { 5910 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5911 return 0; 5912 } 5913 5914 /* 5915 * Aggressive migration if: 5916 * 1) destination numa is preferred 5917 * 2) task is cache cold, or 5918 * 3) too many balance attempts have failed. 5919 */ 5920 tsk_cache_hot = migrate_degrades_locality(p, env); 5921 if (tsk_cache_hot == -1) 5922 tsk_cache_hot = task_hot(p, env); 5923 5924 if (tsk_cache_hot <= 0 || 5925 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5926 if (tsk_cache_hot == 1) { 5927 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5928 schedstat_inc(p, se.statistics.nr_forced_migrations); 5929 } 5930 return 1; 5931 } 5932 5933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5934 return 0; 5935 } 5936 5937 /* 5938 * detach_task() -- detach the task for the migration specified in env 5939 */ 5940 static void detach_task(struct task_struct *p, struct lb_env *env) 5941 { 5942 lockdep_assert_held(&env->src_rq->lock); 5943 5944 p->on_rq = TASK_ON_RQ_MIGRATING; 5945 deactivate_task(env->src_rq, p, 0); 5946 set_task_cpu(p, env->dst_cpu); 5947 } 5948 5949 /* 5950 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 5951 * part of active balancing operations within "domain". 5952 * 5953 * Returns a task if successful and NULL otherwise. 5954 */ 5955 static struct task_struct *detach_one_task(struct lb_env *env) 5956 { 5957 struct task_struct *p, *n; 5958 5959 lockdep_assert_held(&env->src_rq->lock); 5960 5961 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5962 if (!can_migrate_task(p, env)) 5963 continue; 5964 5965 detach_task(p, env); 5966 5967 /* 5968 * Right now, this is only the second place where 5969 * lb_gained[env->idle] is updated (other is detach_tasks) 5970 * so we can safely collect stats here rather than 5971 * inside detach_tasks(). 5972 */ 5973 schedstat_inc(env->sd, lb_gained[env->idle]); 5974 return p; 5975 } 5976 return NULL; 5977 } 5978 5979 static const unsigned int sched_nr_migrate_break = 32; 5980 5981 /* 5982 * detach_tasks() -- tries to detach up to imbalance weighted load from 5983 * busiest_rq, as part of a balancing operation within domain "sd". 5984 * 5985 * Returns number of detached tasks if successful and 0 otherwise. 5986 */ 5987 static int detach_tasks(struct lb_env *env) 5988 { 5989 struct list_head *tasks = &env->src_rq->cfs_tasks; 5990 struct task_struct *p; 5991 unsigned long load; 5992 int detached = 0; 5993 5994 lockdep_assert_held(&env->src_rq->lock); 5995 5996 if (env->imbalance <= 0) 5997 return 0; 5998 5999 while (!list_empty(tasks)) { 6000 /* 6001 * We don't want to steal all, otherwise we may be treated likewise, 6002 * which could at worst lead to a livelock crash. 6003 */ 6004 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6005 break; 6006 6007 p = list_first_entry(tasks, struct task_struct, se.group_node); 6008 6009 env->loop++; 6010 /* We've more or less seen every task there is, call it quits */ 6011 if (env->loop > env->loop_max) 6012 break; 6013 6014 /* take a breather every nr_migrate tasks */ 6015 if (env->loop > env->loop_break) { 6016 env->loop_break += sched_nr_migrate_break; 6017 env->flags |= LBF_NEED_BREAK; 6018 break; 6019 } 6020 6021 if (!can_migrate_task(p, env)) 6022 goto next; 6023 6024 load = task_h_load(p); 6025 6026 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6027 goto next; 6028 6029 if ((load / 2) > env->imbalance) 6030 goto next; 6031 6032 detach_task(p, env); 6033 list_add(&p->se.group_node, &env->tasks); 6034 6035 detached++; 6036 env->imbalance -= load; 6037 6038 #ifdef CONFIG_PREEMPT 6039 /* 6040 * NEWIDLE balancing is a source of latency, so preemptible 6041 * kernels will stop after the first task is detached to minimize 6042 * the critical section. 6043 */ 6044 if (env->idle == CPU_NEWLY_IDLE) 6045 break; 6046 #endif 6047 6048 /* 6049 * We only want to steal up to the prescribed amount of 6050 * weighted load. 6051 */ 6052 if (env->imbalance <= 0) 6053 break; 6054 6055 continue; 6056 next: 6057 list_move_tail(&p->se.group_node, tasks); 6058 } 6059 6060 /* 6061 * Right now, this is one of only two places we collect this stat 6062 * so we can safely collect detach_one_task() stats here rather 6063 * than inside detach_one_task(). 6064 */ 6065 schedstat_add(env->sd, lb_gained[env->idle], detached); 6066 6067 return detached; 6068 } 6069 6070 /* 6071 * attach_task() -- attach the task detached by detach_task() to its new rq. 6072 */ 6073 static void attach_task(struct rq *rq, struct task_struct *p) 6074 { 6075 lockdep_assert_held(&rq->lock); 6076 6077 BUG_ON(task_rq(p) != rq); 6078 activate_task(rq, p, 0); 6079 p->on_rq = TASK_ON_RQ_QUEUED; 6080 check_preempt_curr(rq, p, 0); 6081 } 6082 6083 /* 6084 * attach_one_task() -- attaches the task returned from detach_one_task() to 6085 * its new rq. 6086 */ 6087 static void attach_one_task(struct rq *rq, struct task_struct *p) 6088 { 6089 raw_spin_lock(&rq->lock); 6090 attach_task(rq, p); 6091 raw_spin_unlock(&rq->lock); 6092 } 6093 6094 /* 6095 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6096 * new rq. 6097 */ 6098 static void attach_tasks(struct lb_env *env) 6099 { 6100 struct list_head *tasks = &env->tasks; 6101 struct task_struct *p; 6102 6103 raw_spin_lock(&env->dst_rq->lock); 6104 6105 while (!list_empty(tasks)) { 6106 p = list_first_entry(tasks, struct task_struct, se.group_node); 6107 list_del_init(&p->se.group_node); 6108 6109 attach_task(env->dst_rq, p); 6110 } 6111 6112 raw_spin_unlock(&env->dst_rq->lock); 6113 } 6114 6115 #ifdef CONFIG_FAIR_GROUP_SCHED 6116 static void update_blocked_averages(int cpu) 6117 { 6118 struct rq *rq = cpu_rq(cpu); 6119 struct cfs_rq *cfs_rq; 6120 unsigned long flags; 6121 6122 raw_spin_lock_irqsave(&rq->lock, flags); 6123 update_rq_clock(rq); 6124 6125 /* 6126 * Iterates the task_group tree in a bottom up fashion, see 6127 * list_add_leaf_cfs_rq() for details. 6128 */ 6129 for_each_leaf_cfs_rq(rq, cfs_rq) { 6130 /* throttled entities do not contribute to load */ 6131 if (throttled_hierarchy(cfs_rq)) 6132 continue; 6133 6134 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 6135 update_tg_load_avg(cfs_rq, 0); 6136 } 6137 raw_spin_unlock_irqrestore(&rq->lock, flags); 6138 } 6139 6140 /* 6141 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6142 * This needs to be done in a top-down fashion because the load of a child 6143 * group is a fraction of its parents load. 6144 */ 6145 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6146 { 6147 struct rq *rq = rq_of(cfs_rq); 6148 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6149 unsigned long now = jiffies; 6150 unsigned long load; 6151 6152 if (cfs_rq->last_h_load_update == now) 6153 return; 6154 6155 cfs_rq->h_load_next = NULL; 6156 for_each_sched_entity(se) { 6157 cfs_rq = cfs_rq_of(se); 6158 cfs_rq->h_load_next = se; 6159 if (cfs_rq->last_h_load_update == now) 6160 break; 6161 } 6162 6163 if (!se) { 6164 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6165 cfs_rq->last_h_load_update = now; 6166 } 6167 6168 while ((se = cfs_rq->h_load_next) != NULL) { 6169 load = cfs_rq->h_load; 6170 load = div64_ul(load * se->avg.load_avg, 6171 cfs_rq_load_avg(cfs_rq) + 1); 6172 cfs_rq = group_cfs_rq(se); 6173 cfs_rq->h_load = load; 6174 cfs_rq->last_h_load_update = now; 6175 } 6176 } 6177 6178 static unsigned long task_h_load(struct task_struct *p) 6179 { 6180 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6181 6182 update_cfs_rq_h_load(cfs_rq); 6183 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 6184 cfs_rq_load_avg(cfs_rq) + 1); 6185 } 6186 #else 6187 static inline void update_blocked_averages(int cpu) 6188 { 6189 struct rq *rq = cpu_rq(cpu); 6190 struct cfs_rq *cfs_rq = &rq->cfs; 6191 unsigned long flags; 6192 6193 raw_spin_lock_irqsave(&rq->lock, flags); 6194 update_rq_clock(rq); 6195 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 6196 raw_spin_unlock_irqrestore(&rq->lock, flags); 6197 } 6198 6199 static unsigned long task_h_load(struct task_struct *p) 6200 { 6201 return p->se.avg.load_avg; 6202 } 6203 #endif 6204 6205 /********** Helpers for find_busiest_group ************************/ 6206 6207 enum group_type { 6208 group_other = 0, 6209 group_imbalanced, 6210 group_overloaded, 6211 }; 6212 6213 /* 6214 * sg_lb_stats - stats of a sched_group required for load_balancing 6215 */ 6216 struct sg_lb_stats { 6217 unsigned long avg_load; /*Avg load across the CPUs of the group */ 6218 unsigned long group_load; /* Total load over the CPUs of the group */ 6219 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 6220 unsigned long load_per_task; 6221 unsigned long group_capacity; 6222 unsigned long group_util; /* Total utilization of the group */ 6223 unsigned int sum_nr_running; /* Nr tasks running in the group */ 6224 unsigned int idle_cpus; 6225 unsigned int group_weight; 6226 enum group_type group_type; 6227 int group_no_capacity; 6228 #ifdef CONFIG_NUMA_BALANCING 6229 unsigned int nr_numa_running; 6230 unsigned int nr_preferred_running; 6231 #endif 6232 }; 6233 6234 /* 6235 * sd_lb_stats - Structure to store the statistics of a sched_domain 6236 * during load balancing. 6237 */ 6238 struct sd_lb_stats { 6239 struct sched_group *busiest; /* Busiest group in this sd */ 6240 struct sched_group *local; /* Local group in this sd */ 6241 unsigned long total_load; /* Total load of all groups in sd */ 6242 unsigned long total_capacity; /* Total capacity of all groups in sd */ 6243 unsigned long avg_load; /* Average load across all groups in sd */ 6244 6245 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 6246 struct sg_lb_stats local_stat; /* Statistics of the local group */ 6247 }; 6248 6249 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 6250 { 6251 /* 6252 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 6253 * local_stat because update_sg_lb_stats() does a full clear/assignment. 6254 * We must however clear busiest_stat::avg_load because 6255 * update_sd_pick_busiest() reads this before assignment. 6256 */ 6257 *sds = (struct sd_lb_stats){ 6258 .busiest = NULL, 6259 .local = NULL, 6260 .total_load = 0UL, 6261 .total_capacity = 0UL, 6262 .busiest_stat = { 6263 .avg_load = 0UL, 6264 .sum_nr_running = 0, 6265 .group_type = group_other, 6266 }, 6267 }; 6268 } 6269 6270 /** 6271 * get_sd_load_idx - Obtain the load index for a given sched domain. 6272 * @sd: The sched_domain whose load_idx is to be obtained. 6273 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 6274 * 6275 * Return: The load index. 6276 */ 6277 static inline int get_sd_load_idx(struct sched_domain *sd, 6278 enum cpu_idle_type idle) 6279 { 6280 int load_idx; 6281 6282 switch (idle) { 6283 case CPU_NOT_IDLE: 6284 load_idx = sd->busy_idx; 6285 break; 6286 6287 case CPU_NEWLY_IDLE: 6288 load_idx = sd->newidle_idx; 6289 break; 6290 default: 6291 load_idx = sd->idle_idx; 6292 break; 6293 } 6294 6295 return load_idx; 6296 } 6297 6298 static unsigned long scale_rt_capacity(int cpu) 6299 { 6300 struct rq *rq = cpu_rq(cpu); 6301 u64 total, used, age_stamp, avg; 6302 s64 delta; 6303 6304 /* 6305 * Since we're reading these variables without serialization make sure 6306 * we read them once before doing sanity checks on them. 6307 */ 6308 age_stamp = READ_ONCE(rq->age_stamp); 6309 avg = READ_ONCE(rq->rt_avg); 6310 delta = __rq_clock_broken(rq) - age_stamp; 6311 6312 if (unlikely(delta < 0)) 6313 delta = 0; 6314 6315 total = sched_avg_period() + delta; 6316 6317 used = div_u64(avg, total); 6318 6319 if (likely(used < SCHED_CAPACITY_SCALE)) 6320 return SCHED_CAPACITY_SCALE - used; 6321 6322 return 1; 6323 } 6324 6325 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6326 { 6327 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 6328 struct sched_group *sdg = sd->groups; 6329 6330 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6331 6332 capacity *= scale_rt_capacity(cpu); 6333 capacity >>= SCHED_CAPACITY_SHIFT; 6334 6335 if (!capacity) 6336 capacity = 1; 6337 6338 cpu_rq(cpu)->cpu_capacity = capacity; 6339 sdg->sgc->capacity = capacity; 6340 } 6341 6342 void update_group_capacity(struct sched_domain *sd, int cpu) 6343 { 6344 struct sched_domain *child = sd->child; 6345 struct sched_group *group, *sdg = sd->groups; 6346 unsigned long capacity; 6347 unsigned long interval; 6348 6349 interval = msecs_to_jiffies(sd->balance_interval); 6350 interval = clamp(interval, 1UL, max_load_balance_interval); 6351 sdg->sgc->next_update = jiffies + interval; 6352 6353 if (!child) { 6354 update_cpu_capacity(sd, cpu); 6355 return; 6356 } 6357 6358 capacity = 0; 6359 6360 if (child->flags & SD_OVERLAP) { 6361 /* 6362 * SD_OVERLAP domains cannot assume that child groups 6363 * span the current group. 6364 */ 6365 6366 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6367 struct sched_group_capacity *sgc; 6368 struct rq *rq = cpu_rq(cpu); 6369 6370 /* 6371 * build_sched_domains() -> init_sched_groups_capacity() 6372 * gets here before we've attached the domains to the 6373 * runqueues. 6374 * 6375 * Use capacity_of(), which is set irrespective of domains 6376 * in update_cpu_capacity(). 6377 * 6378 * This avoids capacity from being 0 and 6379 * causing divide-by-zero issues on boot. 6380 */ 6381 if (unlikely(!rq->sd)) { 6382 capacity += capacity_of(cpu); 6383 continue; 6384 } 6385 6386 sgc = rq->sd->groups->sgc; 6387 capacity += sgc->capacity; 6388 } 6389 } else { 6390 /* 6391 * !SD_OVERLAP domains can assume that child groups 6392 * span the current group. 6393 */ 6394 6395 group = child->groups; 6396 do { 6397 capacity += group->sgc->capacity; 6398 group = group->next; 6399 } while (group != child->groups); 6400 } 6401 6402 sdg->sgc->capacity = capacity; 6403 } 6404 6405 /* 6406 * Check whether the capacity of the rq has been noticeably reduced by side 6407 * activity. The imbalance_pct is used for the threshold. 6408 * Return true is the capacity is reduced 6409 */ 6410 static inline int 6411 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6412 { 6413 return ((rq->cpu_capacity * sd->imbalance_pct) < 6414 (rq->cpu_capacity_orig * 100)); 6415 } 6416 6417 /* 6418 * Group imbalance indicates (and tries to solve) the problem where balancing 6419 * groups is inadequate due to tsk_cpus_allowed() constraints. 6420 * 6421 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6422 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6423 * Something like: 6424 * 6425 * { 0 1 2 3 } { 4 5 6 7 } 6426 * * * * * 6427 * 6428 * If we were to balance group-wise we'd place two tasks in the first group and 6429 * two tasks in the second group. Clearly this is undesired as it will overload 6430 * cpu 3 and leave one of the cpus in the second group unused. 6431 * 6432 * The current solution to this issue is detecting the skew in the first group 6433 * by noticing the lower domain failed to reach balance and had difficulty 6434 * moving tasks due to affinity constraints. 6435 * 6436 * When this is so detected; this group becomes a candidate for busiest; see 6437 * update_sd_pick_busiest(). And calculate_imbalance() and 6438 * find_busiest_group() avoid some of the usual balance conditions to allow it 6439 * to create an effective group imbalance. 6440 * 6441 * This is a somewhat tricky proposition since the next run might not find the 6442 * group imbalance and decide the groups need to be balanced again. A most 6443 * subtle and fragile situation. 6444 */ 6445 6446 static inline int sg_imbalanced(struct sched_group *group) 6447 { 6448 return group->sgc->imbalance; 6449 } 6450 6451 /* 6452 * group_has_capacity returns true if the group has spare capacity that could 6453 * be used by some tasks. 6454 * We consider that a group has spare capacity if the * number of task is 6455 * smaller than the number of CPUs or if the utilization is lower than the 6456 * available capacity for CFS tasks. 6457 * For the latter, we use a threshold to stabilize the state, to take into 6458 * account the variance of the tasks' load and to return true if the available 6459 * capacity in meaningful for the load balancer. 6460 * As an example, an available capacity of 1% can appear but it doesn't make 6461 * any benefit for the load balance. 6462 */ 6463 static inline bool 6464 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6465 { 6466 if (sgs->sum_nr_running < sgs->group_weight) 6467 return true; 6468 6469 if ((sgs->group_capacity * 100) > 6470 (sgs->group_util * env->sd->imbalance_pct)) 6471 return true; 6472 6473 return false; 6474 } 6475 6476 /* 6477 * group_is_overloaded returns true if the group has more tasks than it can 6478 * handle. 6479 * group_is_overloaded is not equals to !group_has_capacity because a group 6480 * with the exact right number of tasks, has no more spare capacity but is not 6481 * overloaded so both group_has_capacity and group_is_overloaded return 6482 * false. 6483 */ 6484 static inline bool 6485 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6486 { 6487 if (sgs->sum_nr_running <= sgs->group_weight) 6488 return false; 6489 6490 if ((sgs->group_capacity * 100) < 6491 (sgs->group_util * env->sd->imbalance_pct)) 6492 return true; 6493 6494 return false; 6495 } 6496 6497 static inline enum 6498 group_type group_classify(struct sched_group *group, 6499 struct sg_lb_stats *sgs) 6500 { 6501 if (sgs->group_no_capacity) 6502 return group_overloaded; 6503 6504 if (sg_imbalanced(group)) 6505 return group_imbalanced; 6506 6507 return group_other; 6508 } 6509 6510 /** 6511 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6512 * @env: The load balancing environment. 6513 * @group: sched_group whose statistics are to be updated. 6514 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6515 * @local_group: Does group contain this_cpu. 6516 * @sgs: variable to hold the statistics for this group. 6517 * @overload: Indicate more than one runnable task for any CPU. 6518 */ 6519 static inline void update_sg_lb_stats(struct lb_env *env, 6520 struct sched_group *group, int load_idx, 6521 int local_group, struct sg_lb_stats *sgs, 6522 bool *overload) 6523 { 6524 unsigned long load; 6525 int i, nr_running; 6526 6527 memset(sgs, 0, sizeof(*sgs)); 6528 6529 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6530 struct rq *rq = cpu_rq(i); 6531 6532 /* Bias balancing toward cpus of our domain */ 6533 if (local_group) 6534 load = target_load(i, load_idx); 6535 else 6536 load = source_load(i, load_idx); 6537 6538 sgs->group_load += load; 6539 sgs->group_util += cpu_util(i); 6540 sgs->sum_nr_running += rq->cfs.h_nr_running; 6541 6542 nr_running = rq->nr_running; 6543 if (nr_running > 1) 6544 *overload = true; 6545 6546 #ifdef CONFIG_NUMA_BALANCING 6547 sgs->nr_numa_running += rq->nr_numa_running; 6548 sgs->nr_preferred_running += rq->nr_preferred_running; 6549 #endif 6550 sgs->sum_weighted_load += weighted_cpuload(i); 6551 /* 6552 * No need to call idle_cpu() if nr_running is not 0 6553 */ 6554 if (!nr_running && idle_cpu(i)) 6555 sgs->idle_cpus++; 6556 } 6557 6558 /* Adjust by relative CPU capacity of the group */ 6559 sgs->group_capacity = group->sgc->capacity; 6560 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6561 6562 if (sgs->sum_nr_running) 6563 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6564 6565 sgs->group_weight = group->group_weight; 6566 6567 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6568 sgs->group_type = group_classify(group, sgs); 6569 } 6570 6571 /** 6572 * update_sd_pick_busiest - return 1 on busiest group 6573 * @env: The load balancing environment. 6574 * @sds: sched_domain statistics 6575 * @sg: sched_group candidate to be checked for being the busiest 6576 * @sgs: sched_group statistics 6577 * 6578 * Determine if @sg is a busier group than the previously selected 6579 * busiest group. 6580 * 6581 * Return: %true if @sg is a busier group than the previously selected 6582 * busiest group. %false otherwise. 6583 */ 6584 static bool update_sd_pick_busiest(struct lb_env *env, 6585 struct sd_lb_stats *sds, 6586 struct sched_group *sg, 6587 struct sg_lb_stats *sgs) 6588 { 6589 struct sg_lb_stats *busiest = &sds->busiest_stat; 6590 6591 if (sgs->group_type > busiest->group_type) 6592 return true; 6593 6594 if (sgs->group_type < busiest->group_type) 6595 return false; 6596 6597 if (sgs->avg_load <= busiest->avg_load) 6598 return false; 6599 6600 /* This is the busiest node in its class. */ 6601 if (!(env->sd->flags & SD_ASYM_PACKING)) 6602 return true; 6603 6604 /* 6605 * ASYM_PACKING needs to move all the work to the lowest 6606 * numbered CPUs in the group, therefore mark all groups 6607 * higher than ourself as busy. 6608 */ 6609 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6610 if (!sds->busiest) 6611 return true; 6612 6613 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 6614 return true; 6615 } 6616 6617 return false; 6618 } 6619 6620 #ifdef CONFIG_NUMA_BALANCING 6621 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6622 { 6623 if (sgs->sum_nr_running > sgs->nr_numa_running) 6624 return regular; 6625 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6626 return remote; 6627 return all; 6628 } 6629 6630 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6631 { 6632 if (rq->nr_running > rq->nr_numa_running) 6633 return regular; 6634 if (rq->nr_running > rq->nr_preferred_running) 6635 return remote; 6636 return all; 6637 } 6638 #else 6639 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6640 { 6641 return all; 6642 } 6643 6644 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6645 { 6646 return regular; 6647 } 6648 #endif /* CONFIG_NUMA_BALANCING */ 6649 6650 /** 6651 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6652 * @env: The load balancing environment. 6653 * @sds: variable to hold the statistics for this sched_domain. 6654 */ 6655 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6656 { 6657 struct sched_domain *child = env->sd->child; 6658 struct sched_group *sg = env->sd->groups; 6659 struct sg_lb_stats tmp_sgs; 6660 int load_idx, prefer_sibling = 0; 6661 bool overload = false; 6662 6663 if (child && child->flags & SD_PREFER_SIBLING) 6664 prefer_sibling = 1; 6665 6666 load_idx = get_sd_load_idx(env->sd, env->idle); 6667 6668 do { 6669 struct sg_lb_stats *sgs = &tmp_sgs; 6670 int local_group; 6671 6672 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6673 if (local_group) { 6674 sds->local = sg; 6675 sgs = &sds->local_stat; 6676 6677 if (env->idle != CPU_NEWLY_IDLE || 6678 time_after_eq(jiffies, sg->sgc->next_update)) 6679 update_group_capacity(env->sd, env->dst_cpu); 6680 } 6681 6682 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6683 &overload); 6684 6685 if (local_group) 6686 goto next_group; 6687 6688 /* 6689 * In case the child domain prefers tasks go to siblings 6690 * first, lower the sg capacity so that we'll try 6691 * and move all the excess tasks away. We lower the capacity 6692 * of a group only if the local group has the capacity to fit 6693 * these excess tasks. The extra check prevents the case where 6694 * you always pull from the heaviest group when it is already 6695 * under-utilized (possible with a large weight task outweighs 6696 * the tasks on the system). 6697 */ 6698 if (prefer_sibling && sds->local && 6699 group_has_capacity(env, &sds->local_stat) && 6700 (sgs->sum_nr_running > 1)) { 6701 sgs->group_no_capacity = 1; 6702 sgs->group_type = group_classify(sg, sgs); 6703 } 6704 6705 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6706 sds->busiest = sg; 6707 sds->busiest_stat = *sgs; 6708 } 6709 6710 next_group: 6711 /* Now, start updating sd_lb_stats */ 6712 sds->total_load += sgs->group_load; 6713 sds->total_capacity += sgs->group_capacity; 6714 6715 sg = sg->next; 6716 } while (sg != env->sd->groups); 6717 6718 if (env->sd->flags & SD_NUMA) 6719 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6720 6721 if (!env->sd->parent) { 6722 /* update overload indicator if we are at root domain */ 6723 if (env->dst_rq->rd->overload != overload) 6724 env->dst_rq->rd->overload = overload; 6725 } 6726 6727 } 6728 6729 /** 6730 * check_asym_packing - Check to see if the group is packed into the 6731 * sched doman. 6732 * 6733 * This is primarily intended to used at the sibling level. Some 6734 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6735 * case of POWER7, it can move to lower SMT modes only when higher 6736 * threads are idle. When in lower SMT modes, the threads will 6737 * perform better since they share less core resources. Hence when we 6738 * have idle threads, we want them to be the higher ones. 6739 * 6740 * This packing function is run on idle threads. It checks to see if 6741 * the busiest CPU in this domain (core in the P7 case) has a higher 6742 * CPU number than the packing function is being run on. Here we are 6743 * assuming lower CPU number will be equivalent to lower a SMT thread 6744 * number. 6745 * 6746 * Return: 1 when packing is required and a task should be moved to 6747 * this CPU. The amount of the imbalance is returned in *imbalance. 6748 * 6749 * @env: The load balancing environment. 6750 * @sds: Statistics of the sched_domain which is to be packed 6751 */ 6752 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6753 { 6754 int busiest_cpu; 6755 6756 if (!(env->sd->flags & SD_ASYM_PACKING)) 6757 return 0; 6758 6759 if (!sds->busiest) 6760 return 0; 6761 6762 busiest_cpu = group_first_cpu(sds->busiest); 6763 if (env->dst_cpu > busiest_cpu) 6764 return 0; 6765 6766 env->imbalance = DIV_ROUND_CLOSEST( 6767 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6768 SCHED_CAPACITY_SCALE); 6769 6770 return 1; 6771 } 6772 6773 /** 6774 * fix_small_imbalance - Calculate the minor imbalance that exists 6775 * amongst the groups of a sched_domain, during 6776 * load balancing. 6777 * @env: The load balancing environment. 6778 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6779 */ 6780 static inline 6781 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6782 { 6783 unsigned long tmp, capa_now = 0, capa_move = 0; 6784 unsigned int imbn = 2; 6785 unsigned long scaled_busy_load_per_task; 6786 struct sg_lb_stats *local, *busiest; 6787 6788 local = &sds->local_stat; 6789 busiest = &sds->busiest_stat; 6790 6791 if (!local->sum_nr_running) 6792 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6793 else if (busiest->load_per_task > local->load_per_task) 6794 imbn = 1; 6795 6796 scaled_busy_load_per_task = 6797 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6798 busiest->group_capacity; 6799 6800 if (busiest->avg_load + scaled_busy_load_per_task >= 6801 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6802 env->imbalance = busiest->load_per_task; 6803 return; 6804 } 6805 6806 /* 6807 * OK, we don't have enough imbalance to justify moving tasks, 6808 * however we may be able to increase total CPU capacity used by 6809 * moving them. 6810 */ 6811 6812 capa_now += busiest->group_capacity * 6813 min(busiest->load_per_task, busiest->avg_load); 6814 capa_now += local->group_capacity * 6815 min(local->load_per_task, local->avg_load); 6816 capa_now /= SCHED_CAPACITY_SCALE; 6817 6818 /* Amount of load we'd subtract */ 6819 if (busiest->avg_load > scaled_busy_load_per_task) { 6820 capa_move += busiest->group_capacity * 6821 min(busiest->load_per_task, 6822 busiest->avg_load - scaled_busy_load_per_task); 6823 } 6824 6825 /* Amount of load we'd add */ 6826 if (busiest->avg_load * busiest->group_capacity < 6827 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6828 tmp = (busiest->avg_load * busiest->group_capacity) / 6829 local->group_capacity; 6830 } else { 6831 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6832 local->group_capacity; 6833 } 6834 capa_move += local->group_capacity * 6835 min(local->load_per_task, local->avg_load + tmp); 6836 capa_move /= SCHED_CAPACITY_SCALE; 6837 6838 /* Move if we gain throughput */ 6839 if (capa_move > capa_now) 6840 env->imbalance = busiest->load_per_task; 6841 } 6842 6843 /** 6844 * calculate_imbalance - Calculate the amount of imbalance present within the 6845 * groups of a given sched_domain during load balance. 6846 * @env: load balance environment 6847 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6848 */ 6849 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6850 { 6851 unsigned long max_pull, load_above_capacity = ~0UL; 6852 struct sg_lb_stats *local, *busiest; 6853 6854 local = &sds->local_stat; 6855 busiest = &sds->busiest_stat; 6856 6857 if (busiest->group_type == group_imbalanced) { 6858 /* 6859 * In the group_imb case we cannot rely on group-wide averages 6860 * to ensure cpu-load equilibrium, look at wider averages. XXX 6861 */ 6862 busiest->load_per_task = 6863 min(busiest->load_per_task, sds->avg_load); 6864 } 6865 6866 /* 6867 * In the presence of smp nice balancing, certain scenarios can have 6868 * max load less than avg load(as we skip the groups at or below 6869 * its cpu_capacity, while calculating max_load..) 6870 */ 6871 if (busiest->avg_load <= sds->avg_load || 6872 local->avg_load >= sds->avg_load) { 6873 env->imbalance = 0; 6874 return fix_small_imbalance(env, sds); 6875 } 6876 6877 /* 6878 * If there aren't any idle cpus, avoid creating some. 6879 */ 6880 if (busiest->group_type == group_overloaded && 6881 local->group_type == group_overloaded) { 6882 load_above_capacity = busiest->sum_nr_running * 6883 SCHED_LOAD_SCALE; 6884 if (load_above_capacity > busiest->group_capacity) 6885 load_above_capacity -= busiest->group_capacity; 6886 else 6887 load_above_capacity = ~0UL; 6888 } 6889 6890 /* 6891 * We're trying to get all the cpus to the average_load, so we don't 6892 * want to push ourselves above the average load, nor do we wish to 6893 * reduce the max loaded cpu below the average load. At the same time, 6894 * we also don't want to reduce the group load below the group capacity 6895 * (so that we can implement power-savings policies etc). Thus we look 6896 * for the minimum possible imbalance. 6897 */ 6898 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6899 6900 /* How much load to actually move to equalise the imbalance */ 6901 env->imbalance = min( 6902 max_pull * busiest->group_capacity, 6903 (sds->avg_load - local->avg_load) * local->group_capacity 6904 ) / SCHED_CAPACITY_SCALE; 6905 6906 /* 6907 * if *imbalance is less than the average load per runnable task 6908 * there is no guarantee that any tasks will be moved so we'll have 6909 * a think about bumping its value to force at least one task to be 6910 * moved 6911 */ 6912 if (env->imbalance < busiest->load_per_task) 6913 return fix_small_imbalance(env, sds); 6914 } 6915 6916 /******* find_busiest_group() helpers end here *********************/ 6917 6918 /** 6919 * find_busiest_group - Returns the busiest group within the sched_domain 6920 * if there is an imbalance. If there isn't an imbalance, and 6921 * the user has opted for power-savings, it returns a group whose 6922 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6923 * such a group exists. 6924 * 6925 * Also calculates the amount of weighted load which should be moved 6926 * to restore balance. 6927 * 6928 * @env: The load balancing environment. 6929 * 6930 * Return: - The busiest group if imbalance exists. 6931 * - If no imbalance and user has opted for power-savings balance, 6932 * return the least loaded group whose CPUs can be 6933 * put to idle by rebalancing its tasks onto our group. 6934 */ 6935 static struct sched_group *find_busiest_group(struct lb_env *env) 6936 { 6937 struct sg_lb_stats *local, *busiest; 6938 struct sd_lb_stats sds; 6939 6940 init_sd_lb_stats(&sds); 6941 6942 /* 6943 * Compute the various statistics relavent for load balancing at 6944 * this level. 6945 */ 6946 update_sd_lb_stats(env, &sds); 6947 local = &sds.local_stat; 6948 busiest = &sds.busiest_stat; 6949 6950 /* ASYM feature bypasses nice load balance check */ 6951 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6952 check_asym_packing(env, &sds)) 6953 return sds.busiest; 6954 6955 /* There is no busy sibling group to pull tasks from */ 6956 if (!sds.busiest || busiest->sum_nr_running == 0) 6957 goto out_balanced; 6958 6959 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6960 / sds.total_capacity; 6961 6962 /* 6963 * If the busiest group is imbalanced the below checks don't 6964 * work because they assume all things are equal, which typically 6965 * isn't true due to cpus_allowed constraints and the like. 6966 */ 6967 if (busiest->group_type == group_imbalanced) 6968 goto force_balance; 6969 6970 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6971 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 6972 busiest->group_no_capacity) 6973 goto force_balance; 6974 6975 /* 6976 * If the local group is busier than the selected busiest group 6977 * don't try and pull any tasks. 6978 */ 6979 if (local->avg_load >= busiest->avg_load) 6980 goto out_balanced; 6981 6982 /* 6983 * Don't pull any tasks if this group is already above the domain 6984 * average load. 6985 */ 6986 if (local->avg_load >= sds.avg_load) 6987 goto out_balanced; 6988 6989 if (env->idle == CPU_IDLE) { 6990 /* 6991 * This cpu is idle. If the busiest group is not overloaded 6992 * and there is no imbalance between this and busiest group 6993 * wrt idle cpus, it is balanced. The imbalance becomes 6994 * significant if the diff is greater than 1 otherwise we 6995 * might end up to just move the imbalance on another group 6996 */ 6997 if ((busiest->group_type != group_overloaded) && 6998 (local->idle_cpus <= (busiest->idle_cpus + 1))) 6999 goto out_balanced; 7000 } else { 7001 /* 7002 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7003 * imbalance_pct to be conservative. 7004 */ 7005 if (100 * busiest->avg_load <= 7006 env->sd->imbalance_pct * local->avg_load) 7007 goto out_balanced; 7008 } 7009 7010 force_balance: 7011 /* Looks like there is an imbalance. Compute it */ 7012 calculate_imbalance(env, &sds); 7013 return sds.busiest; 7014 7015 out_balanced: 7016 env->imbalance = 0; 7017 return NULL; 7018 } 7019 7020 /* 7021 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7022 */ 7023 static struct rq *find_busiest_queue(struct lb_env *env, 7024 struct sched_group *group) 7025 { 7026 struct rq *busiest = NULL, *rq; 7027 unsigned long busiest_load = 0, busiest_capacity = 1; 7028 int i; 7029 7030 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7031 unsigned long capacity, wl; 7032 enum fbq_type rt; 7033 7034 rq = cpu_rq(i); 7035 rt = fbq_classify_rq(rq); 7036 7037 /* 7038 * We classify groups/runqueues into three groups: 7039 * - regular: there are !numa tasks 7040 * - remote: there are numa tasks that run on the 'wrong' node 7041 * - all: there is no distinction 7042 * 7043 * In order to avoid migrating ideally placed numa tasks, 7044 * ignore those when there's better options. 7045 * 7046 * If we ignore the actual busiest queue to migrate another 7047 * task, the next balance pass can still reduce the busiest 7048 * queue by moving tasks around inside the node. 7049 * 7050 * If we cannot move enough load due to this classification 7051 * the next pass will adjust the group classification and 7052 * allow migration of more tasks. 7053 * 7054 * Both cases only affect the total convergence complexity. 7055 */ 7056 if (rt > env->fbq_type) 7057 continue; 7058 7059 capacity = capacity_of(i); 7060 7061 wl = weighted_cpuload(i); 7062 7063 /* 7064 * When comparing with imbalance, use weighted_cpuload() 7065 * which is not scaled with the cpu capacity. 7066 */ 7067 7068 if (rq->nr_running == 1 && wl > env->imbalance && 7069 !check_cpu_capacity(rq, env->sd)) 7070 continue; 7071 7072 /* 7073 * For the load comparisons with the other cpu's, consider 7074 * the weighted_cpuload() scaled with the cpu capacity, so 7075 * that the load can be moved away from the cpu that is 7076 * potentially running at a lower capacity. 7077 * 7078 * Thus we're looking for max(wl_i / capacity_i), crosswise 7079 * multiplication to rid ourselves of the division works out 7080 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7081 * our previous maximum. 7082 */ 7083 if (wl * busiest_capacity > busiest_load * capacity) { 7084 busiest_load = wl; 7085 busiest_capacity = capacity; 7086 busiest = rq; 7087 } 7088 } 7089 7090 return busiest; 7091 } 7092 7093 /* 7094 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7095 * so long as it is large enough. 7096 */ 7097 #define MAX_PINNED_INTERVAL 512 7098 7099 /* Working cpumask for load_balance and load_balance_newidle. */ 7100 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7101 7102 static int need_active_balance(struct lb_env *env) 7103 { 7104 struct sched_domain *sd = env->sd; 7105 7106 if (env->idle == CPU_NEWLY_IDLE) { 7107 7108 /* 7109 * ASYM_PACKING needs to force migrate tasks from busy but 7110 * higher numbered CPUs in order to pack all tasks in the 7111 * lowest numbered CPUs. 7112 */ 7113 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 7114 return 1; 7115 } 7116 7117 /* 7118 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7119 * It's worth migrating the task if the src_cpu's capacity is reduced 7120 * because of other sched_class or IRQs if more capacity stays 7121 * available on dst_cpu. 7122 */ 7123 if ((env->idle != CPU_NOT_IDLE) && 7124 (env->src_rq->cfs.h_nr_running == 1)) { 7125 if ((check_cpu_capacity(env->src_rq, sd)) && 7126 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7127 return 1; 7128 } 7129 7130 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7131 } 7132 7133 static int active_load_balance_cpu_stop(void *data); 7134 7135 static int should_we_balance(struct lb_env *env) 7136 { 7137 struct sched_group *sg = env->sd->groups; 7138 struct cpumask *sg_cpus, *sg_mask; 7139 int cpu, balance_cpu = -1; 7140 7141 /* 7142 * In the newly idle case, we will allow all the cpu's 7143 * to do the newly idle load balance. 7144 */ 7145 if (env->idle == CPU_NEWLY_IDLE) 7146 return 1; 7147 7148 sg_cpus = sched_group_cpus(sg); 7149 sg_mask = sched_group_mask(sg); 7150 /* Try to find first idle cpu */ 7151 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 7152 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 7153 continue; 7154 7155 balance_cpu = cpu; 7156 break; 7157 } 7158 7159 if (balance_cpu == -1) 7160 balance_cpu = group_balance_cpu(sg); 7161 7162 /* 7163 * First idle cpu or the first cpu(busiest) in this sched group 7164 * is eligible for doing load balancing at this and above domains. 7165 */ 7166 return balance_cpu == env->dst_cpu; 7167 } 7168 7169 /* 7170 * Check this_cpu to ensure it is balanced within domain. Attempt to move 7171 * tasks if there is an imbalance. 7172 */ 7173 static int load_balance(int this_cpu, struct rq *this_rq, 7174 struct sched_domain *sd, enum cpu_idle_type idle, 7175 int *continue_balancing) 7176 { 7177 int ld_moved, cur_ld_moved, active_balance = 0; 7178 struct sched_domain *sd_parent = sd->parent; 7179 struct sched_group *group; 7180 struct rq *busiest; 7181 unsigned long flags; 7182 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 7183 7184 struct lb_env env = { 7185 .sd = sd, 7186 .dst_cpu = this_cpu, 7187 .dst_rq = this_rq, 7188 .dst_grpmask = sched_group_cpus(sd->groups), 7189 .idle = idle, 7190 .loop_break = sched_nr_migrate_break, 7191 .cpus = cpus, 7192 .fbq_type = all, 7193 .tasks = LIST_HEAD_INIT(env.tasks), 7194 }; 7195 7196 /* 7197 * For NEWLY_IDLE load_balancing, we don't need to consider 7198 * other cpus in our group 7199 */ 7200 if (idle == CPU_NEWLY_IDLE) 7201 env.dst_grpmask = NULL; 7202 7203 cpumask_copy(cpus, cpu_active_mask); 7204 7205 schedstat_inc(sd, lb_count[idle]); 7206 7207 redo: 7208 if (!should_we_balance(&env)) { 7209 *continue_balancing = 0; 7210 goto out_balanced; 7211 } 7212 7213 group = find_busiest_group(&env); 7214 if (!group) { 7215 schedstat_inc(sd, lb_nobusyg[idle]); 7216 goto out_balanced; 7217 } 7218 7219 busiest = find_busiest_queue(&env, group); 7220 if (!busiest) { 7221 schedstat_inc(sd, lb_nobusyq[idle]); 7222 goto out_balanced; 7223 } 7224 7225 BUG_ON(busiest == env.dst_rq); 7226 7227 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 7228 7229 env.src_cpu = busiest->cpu; 7230 env.src_rq = busiest; 7231 7232 ld_moved = 0; 7233 if (busiest->nr_running > 1) { 7234 /* 7235 * Attempt to move tasks. If find_busiest_group has found 7236 * an imbalance but busiest->nr_running <= 1, the group is 7237 * still unbalanced. ld_moved simply stays zero, so it is 7238 * correctly treated as an imbalance. 7239 */ 7240 env.flags |= LBF_ALL_PINNED; 7241 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 7242 7243 more_balance: 7244 raw_spin_lock_irqsave(&busiest->lock, flags); 7245 7246 /* 7247 * cur_ld_moved - load moved in current iteration 7248 * ld_moved - cumulative load moved across iterations 7249 */ 7250 cur_ld_moved = detach_tasks(&env); 7251 7252 /* 7253 * We've detached some tasks from busiest_rq. Every 7254 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 7255 * unlock busiest->lock, and we are able to be sure 7256 * that nobody can manipulate the tasks in parallel. 7257 * See task_rq_lock() family for the details. 7258 */ 7259 7260 raw_spin_unlock(&busiest->lock); 7261 7262 if (cur_ld_moved) { 7263 attach_tasks(&env); 7264 ld_moved += cur_ld_moved; 7265 } 7266 7267 local_irq_restore(flags); 7268 7269 if (env.flags & LBF_NEED_BREAK) { 7270 env.flags &= ~LBF_NEED_BREAK; 7271 goto more_balance; 7272 } 7273 7274 /* 7275 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7276 * us and move them to an alternate dst_cpu in our sched_group 7277 * where they can run. The upper limit on how many times we 7278 * iterate on same src_cpu is dependent on number of cpus in our 7279 * sched_group. 7280 * 7281 * This changes load balance semantics a bit on who can move 7282 * load to a given_cpu. In addition to the given_cpu itself 7283 * (or a ilb_cpu acting on its behalf where given_cpu is 7284 * nohz-idle), we now have balance_cpu in a position to move 7285 * load to given_cpu. In rare situations, this may cause 7286 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7287 * _independently_ and at _same_ time to move some load to 7288 * given_cpu) causing exceess load to be moved to given_cpu. 7289 * This however should not happen so much in practice and 7290 * moreover subsequent load balance cycles should correct the 7291 * excess load moved. 7292 */ 7293 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7294 7295 /* Prevent to re-select dst_cpu via env's cpus */ 7296 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7297 7298 env.dst_rq = cpu_rq(env.new_dst_cpu); 7299 env.dst_cpu = env.new_dst_cpu; 7300 env.flags &= ~LBF_DST_PINNED; 7301 env.loop = 0; 7302 env.loop_break = sched_nr_migrate_break; 7303 7304 /* 7305 * Go back to "more_balance" rather than "redo" since we 7306 * need to continue with same src_cpu. 7307 */ 7308 goto more_balance; 7309 } 7310 7311 /* 7312 * We failed to reach balance because of affinity. 7313 */ 7314 if (sd_parent) { 7315 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7316 7317 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7318 *group_imbalance = 1; 7319 } 7320 7321 /* All tasks on this runqueue were pinned by CPU affinity */ 7322 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7323 cpumask_clear_cpu(cpu_of(busiest), cpus); 7324 if (!cpumask_empty(cpus)) { 7325 env.loop = 0; 7326 env.loop_break = sched_nr_migrate_break; 7327 goto redo; 7328 } 7329 goto out_all_pinned; 7330 } 7331 } 7332 7333 if (!ld_moved) { 7334 schedstat_inc(sd, lb_failed[idle]); 7335 /* 7336 * Increment the failure counter only on periodic balance. 7337 * We do not want newidle balance, which can be very 7338 * frequent, pollute the failure counter causing 7339 * excessive cache_hot migrations and active balances. 7340 */ 7341 if (idle != CPU_NEWLY_IDLE) 7342 sd->nr_balance_failed++; 7343 7344 if (need_active_balance(&env)) { 7345 raw_spin_lock_irqsave(&busiest->lock, flags); 7346 7347 /* don't kick the active_load_balance_cpu_stop, 7348 * if the curr task on busiest cpu can't be 7349 * moved to this_cpu 7350 */ 7351 if (!cpumask_test_cpu(this_cpu, 7352 tsk_cpus_allowed(busiest->curr))) { 7353 raw_spin_unlock_irqrestore(&busiest->lock, 7354 flags); 7355 env.flags |= LBF_ALL_PINNED; 7356 goto out_one_pinned; 7357 } 7358 7359 /* 7360 * ->active_balance synchronizes accesses to 7361 * ->active_balance_work. Once set, it's cleared 7362 * only after active load balance is finished. 7363 */ 7364 if (!busiest->active_balance) { 7365 busiest->active_balance = 1; 7366 busiest->push_cpu = this_cpu; 7367 active_balance = 1; 7368 } 7369 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7370 7371 if (active_balance) { 7372 stop_one_cpu_nowait(cpu_of(busiest), 7373 active_load_balance_cpu_stop, busiest, 7374 &busiest->active_balance_work); 7375 } 7376 7377 /* 7378 * We've kicked active balancing, reset the failure 7379 * counter. 7380 */ 7381 sd->nr_balance_failed = sd->cache_nice_tries+1; 7382 } 7383 } else 7384 sd->nr_balance_failed = 0; 7385 7386 if (likely(!active_balance)) { 7387 /* We were unbalanced, so reset the balancing interval */ 7388 sd->balance_interval = sd->min_interval; 7389 } else { 7390 /* 7391 * If we've begun active balancing, start to back off. This 7392 * case may not be covered by the all_pinned logic if there 7393 * is only 1 task on the busy runqueue (because we don't call 7394 * detach_tasks). 7395 */ 7396 if (sd->balance_interval < sd->max_interval) 7397 sd->balance_interval *= 2; 7398 } 7399 7400 goto out; 7401 7402 out_balanced: 7403 /* 7404 * We reach balance although we may have faced some affinity 7405 * constraints. Clear the imbalance flag if it was set. 7406 */ 7407 if (sd_parent) { 7408 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7409 7410 if (*group_imbalance) 7411 *group_imbalance = 0; 7412 } 7413 7414 out_all_pinned: 7415 /* 7416 * We reach balance because all tasks are pinned at this level so 7417 * we can't migrate them. Let the imbalance flag set so parent level 7418 * can try to migrate them. 7419 */ 7420 schedstat_inc(sd, lb_balanced[idle]); 7421 7422 sd->nr_balance_failed = 0; 7423 7424 out_one_pinned: 7425 /* tune up the balancing interval */ 7426 if (((env.flags & LBF_ALL_PINNED) && 7427 sd->balance_interval < MAX_PINNED_INTERVAL) || 7428 (sd->balance_interval < sd->max_interval)) 7429 sd->balance_interval *= 2; 7430 7431 ld_moved = 0; 7432 out: 7433 return ld_moved; 7434 } 7435 7436 static inline unsigned long 7437 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7438 { 7439 unsigned long interval = sd->balance_interval; 7440 7441 if (cpu_busy) 7442 interval *= sd->busy_factor; 7443 7444 /* scale ms to jiffies */ 7445 interval = msecs_to_jiffies(interval); 7446 interval = clamp(interval, 1UL, max_load_balance_interval); 7447 7448 return interval; 7449 } 7450 7451 static inline void 7452 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7453 { 7454 unsigned long interval, next; 7455 7456 interval = get_sd_balance_interval(sd, cpu_busy); 7457 next = sd->last_balance + interval; 7458 7459 if (time_after(*next_balance, next)) 7460 *next_balance = next; 7461 } 7462 7463 /* 7464 * idle_balance is called by schedule() if this_cpu is about to become 7465 * idle. Attempts to pull tasks from other CPUs. 7466 */ 7467 static int idle_balance(struct rq *this_rq) 7468 { 7469 unsigned long next_balance = jiffies + HZ; 7470 int this_cpu = this_rq->cpu; 7471 struct sched_domain *sd; 7472 int pulled_task = 0; 7473 u64 curr_cost = 0; 7474 7475 /* 7476 * We must set idle_stamp _before_ calling idle_balance(), such that we 7477 * measure the duration of idle_balance() as idle time. 7478 */ 7479 this_rq->idle_stamp = rq_clock(this_rq); 7480 7481 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7482 !this_rq->rd->overload) { 7483 rcu_read_lock(); 7484 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7485 if (sd) 7486 update_next_balance(sd, 0, &next_balance); 7487 rcu_read_unlock(); 7488 7489 goto out; 7490 } 7491 7492 raw_spin_unlock(&this_rq->lock); 7493 7494 update_blocked_averages(this_cpu); 7495 rcu_read_lock(); 7496 for_each_domain(this_cpu, sd) { 7497 int continue_balancing = 1; 7498 u64 t0, domain_cost; 7499 7500 if (!(sd->flags & SD_LOAD_BALANCE)) 7501 continue; 7502 7503 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7504 update_next_balance(sd, 0, &next_balance); 7505 break; 7506 } 7507 7508 if (sd->flags & SD_BALANCE_NEWIDLE) { 7509 t0 = sched_clock_cpu(this_cpu); 7510 7511 pulled_task = load_balance(this_cpu, this_rq, 7512 sd, CPU_NEWLY_IDLE, 7513 &continue_balancing); 7514 7515 domain_cost = sched_clock_cpu(this_cpu) - t0; 7516 if (domain_cost > sd->max_newidle_lb_cost) 7517 sd->max_newidle_lb_cost = domain_cost; 7518 7519 curr_cost += domain_cost; 7520 } 7521 7522 update_next_balance(sd, 0, &next_balance); 7523 7524 /* 7525 * Stop searching for tasks to pull if there are 7526 * now runnable tasks on this rq. 7527 */ 7528 if (pulled_task || this_rq->nr_running > 0) 7529 break; 7530 } 7531 rcu_read_unlock(); 7532 7533 raw_spin_lock(&this_rq->lock); 7534 7535 if (curr_cost > this_rq->max_idle_balance_cost) 7536 this_rq->max_idle_balance_cost = curr_cost; 7537 7538 /* 7539 * While browsing the domains, we released the rq lock, a task could 7540 * have been enqueued in the meantime. Since we're not going idle, 7541 * pretend we pulled a task. 7542 */ 7543 if (this_rq->cfs.h_nr_running && !pulled_task) 7544 pulled_task = 1; 7545 7546 out: 7547 /* Move the next balance forward */ 7548 if (time_after(this_rq->next_balance, next_balance)) 7549 this_rq->next_balance = next_balance; 7550 7551 /* Is there a task of a high priority class? */ 7552 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7553 pulled_task = -1; 7554 7555 if (pulled_task) 7556 this_rq->idle_stamp = 0; 7557 7558 return pulled_task; 7559 } 7560 7561 /* 7562 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7563 * running tasks off the busiest CPU onto idle CPUs. It requires at 7564 * least 1 task to be running on each physical CPU where possible, and 7565 * avoids physical / logical imbalances. 7566 */ 7567 static int active_load_balance_cpu_stop(void *data) 7568 { 7569 struct rq *busiest_rq = data; 7570 int busiest_cpu = cpu_of(busiest_rq); 7571 int target_cpu = busiest_rq->push_cpu; 7572 struct rq *target_rq = cpu_rq(target_cpu); 7573 struct sched_domain *sd; 7574 struct task_struct *p = NULL; 7575 7576 raw_spin_lock_irq(&busiest_rq->lock); 7577 7578 /* make sure the requested cpu hasn't gone down in the meantime */ 7579 if (unlikely(busiest_cpu != smp_processor_id() || 7580 !busiest_rq->active_balance)) 7581 goto out_unlock; 7582 7583 /* Is there any task to move? */ 7584 if (busiest_rq->nr_running <= 1) 7585 goto out_unlock; 7586 7587 /* 7588 * This condition is "impossible", if it occurs 7589 * we need to fix it. Originally reported by 7590 * Bjorn Helgaas on a 128-cpu setup. 7591 */ 7592 BUG_ON(busiest_rq == target_rq); 7593 7594 /* Search for an sd spanning us and the target CPU. */ 7595 rcu_read_lock(); 7596 for_each_domain(target_cpu, sd) { 7597 if ((sd->flags & SD_LOAD_BALANCE) && 7598 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7599 break; 7600 } 7601 7602 if (likely(sd)) { 7603 struct lb_env env = { 7604 .sd = sd, 7605 .dst_cpu = target_cpu, 7606 .dst_rq = target_rq, 7607 .src_cpu = busiest_rq->cpu, 7608 .src_rq = busiest_rq, 7609 .idle = CPU_IDLE, 7610 }; 7611 7612 schedstat_inc(sd, alb_count); 7613 7614 p = detach_one_task(&env); 7615 if (p) 7616 schedstat_inc(sd, alb_pushed); 7617 else 7618 schedstat_inc(sd, alb_failed); 7619 } 7620 rcu_read_unlock(); 7621 out_unlock: 7622 busiest_rq->active_balance = 0; 7623 raw_spin_unlock(&busiest_rq->lock); 7624 7625 if (p) 7626 attach_one_task(target_rq, p); 7627 7628 local_irq_enable(); 7629 7630 return 0; 7631 } 7632 7633 static inline int on_null_domain(struct rq *rq) 7634 { 7635 return unlikely(!rcu_dereference_sched(rq->sd)); 7636 } 7637 7638 #ifdef CONFIG_NO_HZ_COMMON 7639 /* 7640 * idle load balancing details 7641 * - When one of the busy CPUs notice that there may be an idle rebalancing 7642 * needed, they will kick the idle load balancer, which then does idle 7643 * load balancing for all the idle CPUs. 7644 */ 7645 static struct { 7646 cpumask_var_t idle_cpus_mask; 7647 atomic_t nr_cpus; 7648 unsigned long next_balance; /* in jiffy units */ 7649 } nohz ____cacheline_aligned; 7650 7651 static inline int find_new_ilb(void) 7652 { 7653 int ilb = cpumask_first(nohz.idle_cpus_mask); 7654 7655 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7656 return ilb; 7657 7658 return nr_cpu_ids; 7659 } 7660 7661 /* 7662 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7663 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7664 * CPU (if there is one). 7665 */ 7666 static void nohz_balancer_kick(void) 7667 { 7668 int ilb_cpu; 7669 7670 nohz.next_balance++; 7671 7672 ilb_cpu = find_new_ilb(); 7673 7674 if (ilb_cpu >= nr_cpu_ids) 7675 return; 7676 7677 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7678 return; 7679 /* 7680 * Use smp_send_reschedule() instead of resched_cpu(). 7681 * This way we generate a sched IPI on the target cpu which 7682 * is idle. And the softirq performing nohz idle load balance 7683 * will be run before returning from the IPI. 7684 */ 7685 smp_send_reschedule(ilb_cpu); 7686 return; 7687 } 7688 7689 static inline void nohz_balance_exit_idle(int cpu) 7690 { 7691 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7692 /* 7693 * Completely isolated CPUs don't ever set, so we must test. 7694 */ 7695 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7696 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7697 atomic_dec(&nohz.nr_cpus); 7698 } 7699 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7700 } 7701 } 7702 7703 static inline void set_cpu_sd_state_busy(void) 7704 { 7705 struct sched_domain *sd; 7706 int cpu = smp_processor_id(); 7707 7708 rcu_read_lock(); 7709 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7710 7711 if (!sd || !sd->nohz_idle) 7712 goto unlock; 7713 sd->nohz_idle = 0; 7714 7715 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7716 unlock: 7717 rcu_read_unlock(); 7718 } 7719 7720 void set_cpu_sd_state_idle(void) 7721 { 7722 struct sched_domain *sd; 7723 int cpu = smp_processor_id(); 7724 7725 rcu_read_lock(); 7726 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7727 7728 if (!sd || sd->nohz_idle) 7729 goto unlock; 7730 sd->nohz_idle = 1; 7731 7732 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7733 unlock: 7734 rcu_read_unlock(); 7735 } 7736 7737 /* 7738 * This routine will record that the cpu is going idle with tick stopped. 7739 * This info will be used in performing idle load balancing in the future. 7740 */ 7741 void nohz_balance_enter_idle(int cpu) 7742 { 7743 /* 7744 * If this cpu is going down, then nothing needs to be done. 7745 */ 7746 if (!cpu_active(cpu)) 7747 return; 7748 7749 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7750 return; 7751 7752 /* 7753 * If we're a completely isolated CPU, we don't play. 7754 */ 7755 if (on_null_domain(cpu_rq(cpu))) 7756 return; 7757 7758 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7759 atomic_inc(&nohz.nr_cpus); 7760 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7761 } 7762 7763 static int sched_ilb_notifier(struct notifier_block *nfb, 7764 unsigned long action, void *hcpu) 7765 { 7766 switch (action & ~CPU_TASKS_FROZEN) { 7767 case CPU_DYING: 7768 nohz_balance_exit_idle(smp_processor_id()); 7769 return NOTIFY_OK; 7770 default: 7771 return NOTIFY_DONE; 7772 } 7773 } 7774 #endif 7775 7776 static DEFINE_SPINLOCK(balancing); 7777 7778 /* 7779 * Scale the max load_balance interval with the number of CPUs in the system. 7780 * This trades load-balance latency on larger machines for less cross talk. 7781 */ 7782 void update_max_interval(void) 7783 { 7784 max_load_balance_interval = HZ*num_online_cpus()/10; 7785 } 7786 7787 /* 7788 * It checks each scheduling domain to see if it is due to be balanced, 7789 * and initiates a balancing operation if so. 7790 * 7791 * Balancing parameters are set up in init_sched_domains. 7792 */ 7793 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7794 { 7795 int continue_balancing = 1; 7796 int cpu = rq->cpu; 7797 unsigned long interval; 7798 struct sched_domain *sd; 7799 /* Earliest time when we have to do rebalance again */ 7800 unsigned long next_balance = jiffies + 60*HZ; 7801 int update_next_balance = 0; 7802 int need_serialize, need_decay = 0; 7803 u64 max_cost = 0; 7804 7805 update_blocked_averages(cpu); 7806 7807 rcu_read_lock(); 7808 for_each_domain(cpu, sd) { 7809 /* 7810 * Decay the newidle max times here because this is a regular 7811 * visit to all the domains. Decay ~1% per second. 7812 */ 7813 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7814 sd->max_newidle_lb_cost = 7815 (sd->max_newidle_lb_cost * 253) / 256; 7816 sd->next_decay_max_lb_cost = jiffies + HZ; 7817 need_decay = 1; 7818 } 7819 max_cost += sd->max_newidle_lb_cost; 7820 7821 if (!(sd->flags & SD_LOAD_BALANCE)) 7822 continue; 7823 7824 /* 7825 * Stop the load balance at this level. There is another 7826 * CPU in our sched group which is doing load balancing more 7827 * actively. 7828 */ 7829 if (!continue_balancing) { 7830 if (need_decay) 7831 continue; 7832 break; 7833 } 7834 7835 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7836 7837 need_serialize = sd->flags & SD_SERIALIZE; 7838 if (need_serialize) { 7839 if (!spin_trylock(&balancing)) 7840 goto out; 7841 } 7842 7843 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7844 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7845 /* 7846 * The LBF_DST_PINNED logic could have changed 7847 * env->dst_cpu, so we can't know our idle 7848 * state even if we migrated tasks. Update it. 7849 */ 7850 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7851 } 7852 sd->last_balance = jiffies; 7853 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7854 } 7855 if (need_serialize) 7856 spin_unlock(&balancing); 7857 out: 7858 if (time_after(next_balance, sd->last_balance + interval)) { 7859 next_balance = sd->last_balance + interval; 7860 update_next_balance = 1; 7861 } 7862 } 7863 if (need_decay) { 7864 /* 7865 * Ensure the rq-wide value also decays but keep it at a 7866 * reasonable floor to avoid funnies with rq->avg_idle. 7867 */ 7868 rq->max_idle_balance_cost = 7869 max((u64)sysctl_sched_migration_cost, max_cost); 7870 } 7871 rcu_read_unlock(); 7872 7873 /* 7874 * next_balance will be updated only when there is a need. 7875 * When the cpu is attached to null domain for ex, it will not be 7876 * updated. 7877 */ 7878 if (likely(update_next_balance)) { 7879 rq->next_balance = next_balance; 7880 7881 #ifdef CONFIG_NO_HZ_COMMON 7882 /* 7883 * If this CPU has been elected to perform the nohz idle 7884 * balance. Other idle CPUs have already rebalanced with 7885 * nohz_idle_balance() and nohz.next_balance has been 7886 * updated accordingly. This CPU is now running the idle load 7887 * balance for itself and we need to update the 7888 * nohz.next_balance accordingly. 7889 */ 7890 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 7891 nohz.next_balance = rq->next_balance; 7892 #endif 7893 } 7894 } 7895 7896 #ifdef CONFIG_NO_HZ_COMMON 7897 /* 7898 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7899 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7900 */ 7901 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7902 { 7903 int this_cpu = this_rq->cpu; 7904 struct rq *rq; 7905 int balance_cpu; 7906 /* Earliest time when we have to do rebalance again */ 7907 unsigned long next_balance = jiffies + 60*HZ; 7908 int update_next_balance = 0; 7909 7910 if (idle != CPU_IDLE || 7911 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7912 goto end; 7913 7914 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7915 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7916 continue; 7917 7918 /* 7919 * If this cpu gets work to do, stop the load balancing 7920 * work being done for other cpus. Next load 7921 * balancing owner will pick it up. 7922 */ 7923 if (need_resched()) 7924 break; 7925 7926 rq = cpu_rq(balance_cpu); 7927 7928 /* 7929 * If time for next balance is due, 7930 * do the balance. 7931 */ 7932 if (time_after_eq(jiffies, rq->next_balance)) { 7933 raw_spin_lock_irq(&rq->lock); 7934 update_rq_clock(rq); 7935 update_cpu_load_idle(rq); 7936 raw_spin_unlock_irq(&rq->lock); 7937 rebalance_domains(rq, CPU_IDLE); 7938 } 7939 7940 if (time_after(next_balance, rq->next_balance)) { 7941 next_balance = rq->next_balance; 7942 update_next_balance = 1; 7943 } 7944 } 7945 7946 /* 7947 * next_balance will be updated only when there is a need. 7948 * When the CPU is attached to null domain for ex, it will not be 7949 * updated. 7950 */ 7951 if (likely(update_next_balance)) 7952 nohz.next_balance = next_balance; 7953 end: 7954 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7955 } 7956 7957 /* 7958 * Current heuristic for kicking the idle load balancer in the presence 7959 * of an idle cpu in the system. 7960 * - This rq has more than one task. 7961 * - This rq has at least one CFS task and the capacity of the CPU is 7962 * significantly reduced because of RT tasks or IRQs. 7963 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 7964 * multiple busy cpu. 7965 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7966 * domain span are idle. 7967 */ 7968 static inline bool nohz_kick_needed(struct rq *rq) 7969 { 7970 unsigned long now = jiffies; 7971 struct sched_domain *sd; 7972 struct sched_group_capacity *sgc; 7973 int nr_busy, cpu = rq->cpu; 7974 bool kick = false; 7975 7976 if (unlikely(rq->idle_balance)) 7977 return false; 7978 7979 /* 7980 * We may be recently in ticked or tickless idle mode. At the first 7981 * busy tick after returning from idle, we will update the busy stats. 7982 */ 7983 set_cpu_sd_state_busy(); 7984 nohz_balance_exit_idle(cpu); 7985 7986 /* 7987 * None are in tickless mode and hence no need for NOHZ idle load 7988 * balancing. 7989 */ 7990 if (likely(!atomic_read(&nohz.nr_cpus))) 7991 return false; 7992 7993 if (time_before(now, nohz.next_balance)) 7994 return false; 7995 7996 if (rq->nr_running >= 2) 7997 return true; 7998 7999 rcu_read_lock(); 8000 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 8001 if (sd) { 8002 sgc = sd->groups->sgc; 8003 nr_busy = atomic_read(&sgc->nr_busy_cpus); 8004 8005 if (nr_busy > 1) { 8006 kick = true; 8007 goto unlock; 8008 } 8009 8010 } 8011 8012 sd = rcu_dereference(rq->sd); 8013 if (sd) { 8014 if ((rq->cfs.h_nr_running >= 1) && 8015 check_cpu_capacity(rq, sd)) { 8016 kick = true; 8017 goto unlock; 8018 } 8019 } 8020 8021 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8022 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 8023 sched_domain_span(sd)) < cpu)) { 8024 kick = true; 8025 goto unlock; 8026 } 8027 8028 unlock: 8029 rcu_read_unlock(); 8030 return kick; 8031 } 8032 #else 8033 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8034 #endif 8035 8036 /* 8037 * run_rebalance_domains is triggered when needed from the scheduler tick. 8038 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8039 */ 8040 static void run_rebalance_domains(struct softirq_action *h) 8041 { 8042 struct rq *this_rq = this_rq(); 8043 enum cpu_idle_type idle = this_rq->idle_balance ? 8044 CPU_IDLE : CPU_NOT_IDLE; 8045 8046 /* 8047 * If this cpu has a pending nohz_balance_kick, then do the 8048 * balancing on behalf of the other idle cpus whose ticks are 8049 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8050 * give the idle cpus a chance to load balance. Else we may 8051 * load balance only within the local sched_domain hierarchy 8052 * and abort nohz_idle_balance altogether if we pull some load. 8053 */ 8054 nohz_idle_balance(this_rq, idle); 8055 rebalance_domains(this_rq, idle); 8056 } 8057 8058 /* 8059 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8060 */ 8061 void trigger_load_balance(struct rq *rq) 8062 { 8063 /* Don't need to rebalance while attached to NULL domain */ 8064 if (unlikely(on_null_domain(rq))) 8065 return; 8066 8067 if (time_after_eq(jiffies, rq->next_balance)) 8068 raise_softirq(SCHED_SOFTIRQ); 8069 #ifdef CONFIG_NO_HZ_COMMON 8070 if (nohz_kick_needed(rq)) 8071 nohz_balancer_kick(); 8072 #endif 8073 } 8074 8075 static void rq_online_fair(struct rq *rq) 8076 { 8077 update_sysctl(); 8078 8079 update_runtime_enabled(rq); 8080 } 8081 8082 static void rq_offline_fair(struct rq *rq) 8083 { 8084 update_sysctl(); 8085 8086 /* Ensure any throttled groups are reachable by pick_next_task */ 8087 unthrottle_offline_cfs_rqs(rq); 8088 } 8089 8090 #endif /* CONFIG_SMP */ 8091 8092 /* 8093 * scheduler tick hitting a task of our scheduling class: 8094 */ 8095 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8096 { 8097 struct cfs_rq *cfs_rq; 8098 struct sched_entity *se = &curr->se; 8099 8100 for_each_sched_entity(se) { 8101 cfs_rq = cfs_rq_of(se); 8102 entity_tick(cfs_rq, se, queued); 8103 } 8104 8105 if (static_branch_unlikely(&sched_numa_balancing)) 8106 task_tick_numa(rq, curr); 8107 } 8108 8109 /* 8110 * called on fork with the child task as argument from the parent's context 8111 * - child not yet on the tasklist 8112 * - preemption disabled 8113 */ 8114 static void task_fork_fair(struct task_struct *p) 8115 { 8116 struct cfs_rq *cfs_rq; 8117 struct sched_entity *se = &p->se, *curr; 8118 int this_cpu = smp_processor_id(); 8119 struct rq *rq = this_rq(); 8120 unsigned long flags; 8121 8122 raw_spin_lock_irqsave(&rq->lock, flags); 8123 8124 update_rq_clock(rq); 8125 8126 cfs_rq = task_cfs_rq(current); 8127 curr = cfs_rq->curr; 8128 8129 /* 8130 * Not only the cpu but also the task_group of the parent might have 8131 * been changed after parent->se.parent,cfs_rq were copied to 8132 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 8133 * of child point to valid ones. 8134 */ 8135 rcu_read_lock(); 8136 __set_task_cpu(p, this_cpu); 8137 rcu_read_unlock(); 8138 8139 update_curr(cfs_rq); 8140 8141 if (curr) 8142 se->vruntime = curr->vruntime; 8143 place_entity(cfs_rq, se, 1); 8144 8145 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 8146 /* 8147 * Upon rescheduling, sched_class::put_prev_task() will place 8148 * 'current' within the tree based on its new key value. 8149 */ 8150 swap(curr->vruntime, se->vruntime); 8151 resched_curr(rq); 8152 } 8153 8154 se->vruntime -= cfs_rq->min_vruntime; 8155 8156 raw_spin_unlock_irqrestore(&rq->lock, flags); 8157 } 8158 8159 /* 8160 * Priority of the task has changed. Check to see if we preempt 8161 * the current task. 8162 */ 8163 static void 8164 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 8165 { 8166 if (!task_on_rq_queued(p)) 8167 return; 8168 8169 /* 8170 * Reschedule if we are currently running on this runqueue and 8171 * our priority decreased, or if we are not currently running on 8172 * this runqueue and our priority is higher than the current's 8173 */ 8174 if (rq->curr == p) { 8175 if (p->prio > oldprio) 8176 resched_curr(rq); 8177 } else 8178 check_preempt_curr(rq, p, 0); 8179 } 8180 8181 static inline bool vruntime_normalized(struct task_struct *p) 8182 { 8183 struct sched_entity *se = &p->se; 8184 8185 /* 8186 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 8187 * the dequeue_entity(.flags=0) will already have normalized the 8188 * vruntime. 8189 */ 8190 if (p->on_rq) 8191 return true; 8192 8193 /* 8194 * When !on_rq, vruntime of the task has usually NOT been normalized. 8195 * But there are some cases where it has already been normalized: 8196 * 8197 * - A forked child which is waiting for being woken up by 8198 * wake_up_new_task(). 8199 * - A task which has been woken up by try_to_wake_up() and 8200 * waiting for actually being woken up by sched_ttwu_pending(). 8201 */ 8202 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 8203 return true; 8204 8205 return false; 8206 } 8207 8208 static void detach_task_cfs_rq(struct task_struct *p) 8209 { 8210 struct sched_entity *se = &p->se; 8211 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8212 8213 if (!vruntime_normalized(p)) { 8214 /* 8215 * Fix up our vruntime so that the current sleep doesn't 8216 * cause 'unlimited' sleep bonus. 8217 */ 8218 place_entity(cfs_rq, se, 0); 8219 se->vruntime -= cfs_rq->min_vruntime; 8220 } 8221 8222 /* Catch up with the cfs_rq and remove our load when we leave */ 8223 detach_entity_load_avg(cfs_rq, se); 8224 } 8225 8226 static void attach_task_cfs_rq(struct task_struct *p) 8227 { 8228 struct sched_entity *se = &p->se; 8229 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8230 8231 #ifdef CONFIG_FAIR_GROUP_SCHED 8232 /* 8233 * Since the real-depth could have been changed (only FAIR 8234 * class maintain depth value), reset depth properly. 8235 */ 8236 se->depth = se->parent ? se->parent->depth + 1 : 0; 8237 #endif 8238 8239 /* Synchronize task with its cfs_rq */ 8240 attach_entity_load_avg(cfs_rq, se); 8241 8242 if (!vruntime_normalized(p)) 8243 se->vruntime += cfs_rq->min_vruntime; 8244 } 8245 8246 static void switched_from_fair(struct rq *rq, struct task_struct *p) 8247 { 8248 detach_task_cfs_rq(p); 8249 } 8250 8251 static void switched_to_fair(struct rq *rq, struct task_struct *p) 8252 { 8253 attach_task_cfs_rq(p); 8254 8255 if (task_on_rq_queued(p)) { 8256 /* 8257 * We were most likely switched from sched_rt, so 8258 * kick off the schedule if running, otherwise just see 8259 * if we can still preempt the current task. 8260 */ 8261 if (rq->curr == p) 8262 resched_curr(rq); 8263 else 8264 check_preempt_curr(rq, p, 0); 8265 } 8266 } 8267 8268 /* Account for a task changing its policy or group. 8269 * 8270 * This routine is mostly called to set cfs_rq->curr field when a task 8271 * migrates between groups/classes. 8272 */ 8273 static void set_curr_task_fair(struct rq *rq) 8274 { 8275 struct sched_entity *se = &rq->curr->se; 8276 8277 for_each_sched_entity(se) { 8278 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8279 8280 set_next_entity(cfs_rq, se); 8281 /* ensure bandwidth has been allocated on our new cfs_rq */ 8282 account_cfs_rq_runtime(cfs_rq, 0); 8283 } 8284 } 8285 8286 void init_cfs_rq(struct cfs_rq *cfs_rq) 8287 { 8288 cfs_rq->tasks_timeline = RB_ROOT; 8289 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 8290 #ifndef CONFIG_64BIT 8291 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 8292 #endif 8293 #ifdef CONFIG_SMP 8294 atomic_long_set(&cfs_rq->removed_load_avg, 0); 8295 atomic_long_set(&cfs_rq->removed_util_avg, 0); 8296 #endif 8297 } 8298 8299 #ifdef CONFIG_FAIR_GROUP_SCHED 8300 static void task_move_group_fair(struct task_struct *p) 8301 { 8302 detach_task_cfs_rq(p); 8303 set_task_rq(p, task_cpu(p)); 8304 8305 #ifdef CONFIG_SMP 8306 /* Tell se's cfs_rq has been changed -- migrated */ 8307 p->se.avg.last_update_time = 0; 8308 #endif 8309 attach_task_cfs_rq(p); 8310 } 8311 8312 void free_fair_sched_group(struct task_group *tg) 8313 { 8314 int i; 8315 8316 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8317 8318 for_each_possible_cpu(i) { 8319 if (tg->cfs_rq) 8320 kfree(tg->cfs_rq[i]); 8321 if (tg->se) 8322 kfree(tg->se[i]); 8323 } 8324 8325 kfree(tg->cfs_rq); 8326 kfree(tg->se); 8327 } 8328 8329 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8330 { 8331 struct cfs_rq *cfs_rq; 8332 struct sched_entity *se; 8333 int i; 8334 8335 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8336 if (!tg->cfs_rq) 8337 goto err; 8338 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8339 if (!tg->se) 8340 goto err; 8341 8342 tg->shares = NICE_0_LOAD; 8343 8344 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8345 8346 for_each_possible_cpu(i) { 8347 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8348 GFP_KERNEL, cpu_to_node(i)); 8349 if (!cfs_rq) 8350 goto err; 8351 8352 se = kzalloc_node(sizeof(struct sched_entity), 8353 GFP_KERNEL, cpu_to_node(i)); 8354 if (!se) 8355 goto err_free_rq; 8356 8357 init_cfs_rq(cfs_rq); 8358 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8359 init_entity_runnable_average(se); 8360 } 8361 8362 return 1; 8363 8364 err_free_rq: 8365 kfree(cfs_rq); 8366 err: 8367 return 0; 8368 } 8369 8370 void unregister_fair_sched_group(struct task_group *tg) 8371 { 8372 unsigned long flags; 8373 struct rq *rq; 8374 int cpu; 8375 8376 for_each_possible_cpu(cpu) { 8377 if (tg->se[cpu]) 8378 remove_entity_load_avg(tg->se[cpu]); 8379 8380 /* 8381 * Only empty task groups can be destroyed; so we can speculatively 8382 * check on_list without danger of it being re-added. 8383 */ 8384 if (!tg->cfs_rq[cpu]->on_list) 8385 continue; 8386 8387 rq = cpu_rq(cpu); 8388 8389 raw_spin_lock_irqsave(&rq->lock, flags); 8390 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8391 raw_spin_unlock_irqrestore(&rq->lock, flags); 8392 } 8393 } 8394 8395 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8396 struct sched_entity *se, int cpu, 8397 struct sched_entity *parent) 8398 { 8399 struct rq *rq = cpu_rq(cpu); 8400 8401 cfs_rq->tg = tg; 8402 cfs_rq->rq = rq; 8403 init_cfs_rq_runtime(cfs_rq); 8404 8405 tg->cfs_rq[cpu] = cfs_rq; 8406 tg->se[cpu] = se; 8407 8408 /* se could be NULL for root_task_group */ 8409 if (!se) 8410 return; 8411 8412 if (!parent) { 8413 se->cfs_rq = &rq->cfs; 8414 se->depth = 0; 8415 } else { 8416 se->cfs_rq = parent->my_q; 8417 se->depth = parent->depth + 1; 8418 } 8419 8420 se->my_q = cfs_rq; 8421 /* guarantee group entities always have weight */ 8422 update_load_set(&se->load, NICE_0_LOAD); 8423 se->parent = parent; 8424 } 8425 8426 static DEFINE_MUTEX(shares_mutex); 8427 8428 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8429 { 8430 int i; 8431 unsigned long flags; 8432 8433 /* 8434 * We can't change the weight of the root cgroup. 8435 */ 8436 if (!tg->se[0]) 8437 return -EINVAL; 8438 8439 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8440 8441 mutex_lock(&shares_mutex); 8442 if (tg->shares == shares) 8443 goto done; 8444 8445 tg->shares = shares; 8446 for_each_possible_cpu(i) { 8447 struct rq *rq = cpu_rq(i); 8448 struct sched_entity *se; 8449 8450 se = tg->se[i]; 8451 /* Propagate contribution to hierarchy */ 8452 raw_spin_lock_irqsave(&rq->lock, flags); 8453 8454 /* Possible calls to update_curr() need rq clock */ 8455 update_rq_clock(rq); 8456 for_each_sched_entity(se) 8457 update_cfs_shares(group_cfs_rq(se)); 8458 raw_spin_unlock_irqrestore(&rq->lock, flags); 8459 } 8460 8461 done: 8462 mutex_unlock(&shares_mutex); 8463 return 0; 8464 } 8465 #else /* CONFIG_FAIR_GROUP_SCHED */ 8466 8467 void free_fair_sched_group(struct task_group *tg) { } 8468 8469 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8470 { 8471 return 1; 8472 } 8473 8474 void unregister_fair_sched_group(struct task_group *tg) { } 8475 8476 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8477 8478 8479 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8480 { 8481 struct sched_entity *se = &task->se; 8482 unsigned int rr_interval = 0; 8483 8484 /* 8485 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8486 * idle runqueue: 8487 */ 8488 if (rq->cfs.load.weight) 8489 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8490 8491 return rr_interval; 8492 } 8493 8494 /* 8495 * All the scheduling class methods: 8496 */ 8497 const struct sched_class fair_sched_class = { 8498 .next = &idle_sched_class, 8499 .enqueue_task = enqueue_task_fair, 8500 .dequeue_task = dequeue_task_fair, 8501 .yield_task = yield_task_fair, 8502 .yield_to_task = yield_to_task_fair, 8503 8504 .check_preempt_curr = check_preempt_wakeup, 8505 8506 .pick_next_task = pick_next_task_fair, 8507 .put_prev_task = put_prev_task_fair, 8508 8509 #ifdef CONFIG_SMP 8510 .select_task_rq = select_task_rq_fair, 8511 .migrate_task_rq = migrate_task_rq_fair, 8512 8513 .rq_online = rq_online_fair, 8514 .rq_offline = rq_offline_fair, 8515 8516 .task_waking = task_waking_fair, 8517 .task_dead = task_dead_fair, 8518 .set_cpus_allowed = set_cpus_allowed_common, 8519 #endif 8520 8521 .set_curr_task = set_curr_task_fair, 8522 .task_tick = task_tick_fair, 8523 .task_fork = task_fork_fair, 8524 8525 .prio_changed = prio_changed_fair, 8526 .switched_from = switched_from_fair, 8527 .switched_to = switched_to_fair, 8528 8529 .get_rr_interval = get_rr_interval_fair, 8530 8531 .update_curr = update_curr_fair, 8532 8533 #ifdef CONFIG_FAIR_GROUP_SCHED 8534 .task_move_group = task_move_group_fair, 8535 #endif 8536 }; 8537 8538 #ifdef CONFIG_SCHED_DEBUG 8539 void print_cfs_stats(struct seq_file *m, int cpu) 8540 { 8541 struct cfs_rq *cfs_rq; 8542 8543 rcu_read_lock(); 8544 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8545 print_cfs_rq(m, cpu, cfs_rq); 8546 rcu_read_unlock(); 8547 } 8548 8549 #ifdef CONFIG_NUMA_BALANCING 8550 void show_numa_stats(struct task_struct *p, struct seq_file *m) 8551 { 8552 int node; 8553 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 8554 8555 for_each_online_node(node) { 8556 if (p->numa_faults) { 8557 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 8558 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 8559 } 8560 if (p->numa_group) { 8561 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 8562 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 8563 } 8564 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 8565 } 8566 } 8567 #endif /* CONFIG_NUMA_BALANCING */ 8568 #endif /* CONFIG_SCHED_DEBUG */ 8569 8570 __init void init_sched_fair_class(void) 8571 { 8572 #ifdef CONFIG_SMP 8573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8574 8575 #ifdef CONFIG_NO_HZ_COMMON 8576 nohz.next_balance = jiffies; 8577 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8578 cpu_notifier(sched_ilb_notifier, 0); 8579 #endif 8580 #endif /* SMP */ 8581 8582 } 8583