xref: /linux/kernel/sched/cputime.c (revision 5ad75fcdd712d18b393c3b3fe52ab4108703d337)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11 
12 
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14 
15 /*
16  * There are no locks covering percpu hardirq/softirq time.
17  * They are only modified in vtime_account, on corresponding CPU
18  * with interrupts disabled. So, writes are safe.
19  * They are read and saved off onto struct rq in update_rq_clock().
20  * This may result in other CPU reading this CPU's irq time and can
21  * race with irq/vtime_account on this CPU. We would either get old
22  * or new value with a side effect of accounting a slice of irq time to wrong
23  * task when irq is in progress while we read rq->clock. That is a worthy
24  * compromise in place of having locks on each irq in account_system_time.
25  */
26 DEFINE_PER_CPU(u64, cpu_hardirq_time);
27 DEFINE_PER_CPU(u64, cpu_softirq_time);
28 
29 static DEFINE_PER_CPU(u64, irq_start_time);
30 static int sched_clock_irqtime;
31 
32 void enable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 1;
35 }
36 
37 void disable_sched_clock_irqtime(void)
38 {
39 	sched_clock_irqtime = 0;
40 }
41 
42 #ifndef CONFIG_64BIT
43 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44 #endif /* CONFIG_64BIT */
45 
46 /*
47  * Called before incrementing preempt_count on {soft,}irq_enter
48  * and before decrementing preempt_count on {soft,}irq_exit.
49  */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 	s64 delta;
53 	int cpu;
54 
55 	if (!sched_clock_irqtime)
56 		return;
57 
58 	cpu = smp_processor_id();
59 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 	__this_cpu_add(irq_start_time, delta);
61 
62 	irq_time_write_begin();
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		__this_cpu_add(cpu_hardirq_time, delta);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		__this_cpu_add(cpu_softirq_time, delta);
73 
74 	irq_time_write_end();
75 }
76 EXPORT_SYMBOL_GPL(irqtime_account_irq);
77 
78 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
79 {
80 	u64 *cpustat = kcpustat_this_cpu->cpustat;
81 	unsigned long flags;
82 	cputime_t irq_cputime;
83 
84 	local_irq_save(flags);
85 	irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) -
86 		      cpustat[CPUTIME_IRQ];
87 	irq_cputime = min(irq_cputime, maxtime);
88 	cpustat[CPUTIME_IRQ] += irq_cputime;
89 	local_irq_restore(flags);
90 	return irq_cputime;
91 }
92 
93 static cputime_t irqtime_account_si_update(cputime_t maxtime)
94 {
95 	u64 *cpustat = kcpustat_this_cpu->cpustat;
96 	unsigned long flags;
97 	cputime_t softirq_cputime;
98 
99 	local_irq_save(flags);
100 	softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) -
101 			  cpustat[CPUTIME_SOFTIRQ];
102 	softirq_cputime = min(softirq_cputime, maxtime);
103 	cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
104 	local_irq_restore(flags);
105 	return softirq_cputime;
106 }
107 
108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
109 
110 #define sched_clock_irqtime	(0)
111 
112 static cputime_t irqtime_account_hi_update(cputime_t dummy)
113 {
114 	return 0;
115 }
116 
117 static cputime_t irqtime_account_si_update(cputime_t dummy)
118 {
119 	return 0;
120 }
121 
122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
123 
124 static inline void task_group_account_field(struct task_struct *p, int index,
125 					    u64 tmp)
126 {
127 	/*
128 	 * Since all updates are sure to touch the root cgroup, we
129 	 * get ourselves ahead and touch it first. If the root cgroup
130 	 * is the only cgroup, then nothing else should be necessary.
131 	 *
132 	 */
133 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
134 
135 	cpuacct_account_field(p, index, tmp);
136 }
137 
138 /*
139  * Account user cpu time to a process.
140  * @p: the process that the cpu time gets accounted to
141  * @cputime: the cpu time spent in user space since the last update
142  * @cputime_scaled: cputime scaled by cpu frequency
143  */
144 void account_user_time(struct task_struct *p, cputime_t cputime,
145 		       cputime_t cputime_scaled)
146 {
147 	int index;
148 
149 	/* Add user time to process. */
150 	p->utime += cputime;
151 	p->utimescaled += cputime_scaled;
152 	account_group_user_time(p, cputime);
153 
154 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
155 
156 	/* Add user time to cpustat. */
157 	task_group_account_field(p, index, (__force u64) cputime);
158 
159 	/* Account for user time used */
160 	acct_account_cputime(p);
161 }
162 
163 /*
164  * Account guest cpu time to a process.
165  * @p: the process that the cpu time gets accounted to
166  * @cputime: the cpu time spent in virtual machine since the last update
167  * @cputime_scaled: cputime scaled by cpu frequency
168  */
169 static void account_guest_time(struct task_struct *p, cputime_t cputime,
170 			       cputime_t cputime_scaled)
171 {
172 	u64 *cpustat = kcpustat_this_cpu->cpustat;
173 
174 	/* Add guest time to process. */
175 	p->utime += cputime;
176 	p->utimescaled += cputime_scaled;
177 	account_group_user_time(p, cputime);
178 	p->gtime += cputime;
179 
180 	/* Add guest time to cpustat. */
181 	if (task_nice(p) > 0) {
182 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
183 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
184 	} else {
185 		cpustat[CPUTIME_USER] += (__force u64) cputime;
186 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
187 	}
188 }
189 
190 /*
191  * Account system cpu time to a process and desired cpustat field
192  * @p: the process that the cpu time gets accounted to
193  * @cputime: the cpu time spent in kernel space since the last update
194  * @cputime_scaled: cputime scaled by cpu frequency
195  * @target_cputime64: pointer to cpustat field that has to be updated
196  */
197 static inline
198 void __account_system_time(struct task_struct *p, cputime_t cputime,
199 			cputime_t cputime_scaled, int index)
200 {
201 	/* Add system time to process. */
202 	p->stime += cputime;
203 	p->stimescaled += cputime_scaled;
204 	account_group_system_time(p, cputime);
205 
206 	/* Add system time to cpustat. */
207 	task_group_account_field(p, index, (__force u64) cputime);
208 
209 	/* Account for system time used */
210 	acct_account_cputime(p);
211 }
212 
213 /*
214  * Account system cpu time to a process.
215  * @p: the process that the cpu time gets accounted to
216  * @hardirq_offset: the offset to subtract from hardirq_count()
217  * @cputime: the cpu time spent in kernel space since the last update
218  * @cputime_scaled: cputime scaled by cpu frequency
219  */
220 void account_system_time(struct task_struct *p, int hardirq_offset,
221 			 cputime_t cputime, cputime_t cputime_scaled)
222 {
223 	int index;
224 
225 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
226 		account_guest_time(p, cputime, cputime_scaled);
227 		return;
228 	}
229 
230 	if (hardirq_count() - hardirq_offset)
231 		index = CPUTIME_IRQ;
232 	else if (in_serving_softirq())
233 		index = CPUTIME_SOFTIRQ;
234 	else
235 		index = CPUTIME_SYSTEM;
236 
237 	__account_system_time(p, cputime, cputime_scaled, index);
238 }
239 
240 /*
241  * Account for involuntary wait time.
242  * @cputime: the cpu time spent in involuntary wait
243  */
244 void account_steal_time(cputime_t cputime)
245 {
246 	u64 *cpustat = kcpustat_this_cpu->cpustat;
247 
248 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
249 }
250 
251 /*
252  * Account for idle time.
253  * @cputime: the cpu time spent in idle wait
254  */
255 void account_idle_time(cputime_t cputime)
256 {
257 	u64 *cpustat = kcpustat_this_cpu->cpustat;
258 	struct rq *rq = this_rq();
259 
260 	if (atomic_read(&rq->nr_iowait) > 0)
261 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
262 	else
263 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
264 }
265 
266 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
267 {
268 #ifdef CONFIG_PARAVIRT
269 	if (static_key_false(&paravirt_steal_enabled)) {
270 		cputime_t steal_cputime;
271 		u64 steal;
272 
273 		steal = paravirt_steal_clock(smp_processor_id());
274 		steal -= this_rq()->prev_steal_time;
275 
276 		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
277 		account_steal_time(steal_cputime);
278 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
279 
280 		return steal_cputime;
281 	}
282 #endif
283 	return 0;
284 }
285 
286 /*
287  * Account how much elapsed time was spent in steal, irq, or softirq time.
288  */
289 static inline cputime_t account_other_time(cputime_t max)
290 {
291 	cputime_t accounted;
292 
293 	accounted = steal_account_process_time(max);
294 
295 	if (accounted < max)
296 		accounted += irqtime_account_hi_update(max - accounted);
297 
298 	if (accounted < max)
299 		accounted += irqtime_account_si_update(max - accounted);
300 
301 	return accounted;
302 }
303 
304 /*
305  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
306  * tasks (sum on group iteration) belonging to @tsk's group.
307  */
308 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
309 {
310 	struct signal_struct *sig = tsk->signal;
311 	cputime_t utime, stime;
312 	struct task_struct *t;
313 	unsigned int seq, nextseq;
314 	unsigned long flags;
315 
316 	rcu_read_lock();
317 	/* Attempt a lockless read on the first round. */
318 	nextseq = 0;
319 	do {
320 		seq = nextseq;
321 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
322 		times->utime = sig->utime;
323 		times->stime = sig->stime;
324 		times->sum_exec_runtime = sig->sum_sched_runtime;
325 
326 		for_each_thread(tsk, t) {
327 			task_cputime(t, &utime, &stime);
328 			times->utime += utime;
329 			times->stime += stime;
330 			times->sum_exec_runtime += task_sched_runtime(t);
331 		}
332 		/* If lockless access failed, take the lock. */
333 		nextseq = 1;
334 	} while (need_seqretry(&sig->stats_lock, seq));
335 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
336 	rcu_read_unlock();
337 }
338 
339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
340 /*
341  * Account a tick to a process and cpustat
342  * @p: the process that the cpu time gets accounted to
343  * @user_tick: is the tick from userspace
344  * @rq: the pointer to rq
345  *
346  * Tick demultiplexing follows the order
347  * - pending hardirq update
348  * - pending softirq update
349  * - user_time
350  * - idle_time
351  * - system time
352  *   - check for guest_time
353  *   - else account as system_time
354  *
355  * Check for hardirq is done both for system and user time as there is
356  * no timer going off while we are on hardirq and hence we may never get an
357  * opportunity to update it solely in system time.
358  * p->stime and friends are only updated on system time and not on irq
359  * softirq as those do not count in task exec_runtime any more.
360  */
361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
362 					 struct rq *rq, int ticks)
363 {
364 	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
365 	cputime_t scaled, other;
366 
367 	/*
368 	 * When returning from idle, many ticks can get accounted at
369 	 * once, including some ticks of steal, irq, and softirq time.
370 	 * Subtract those ticks from the amount of time accounted to
371 	 * idle, or potentially user or system time. Due to rounding,
372 	 * other time can exceed ticks occasionally.
373 	 */
374 	other = account_other_time(cputime);
375 	if (other >= cputime)
376 		return;
377 	cputime -= other;
378 	scaled = cputime_to_scaled(cputime);
379 
380 	if (this_cpu_ksoftirqd() == p) {
381 		/*
382 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
383 		 * So, we have to handle it separately here.
384 		 * Also, p->stime needs to be updated for ksoftirqd.
385 		 */
386 		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
387 	} else if (user_tick) {
388 		account_user_time(p, cputime, scaled);
389 	} else if (p == rq->idle) {
390 		account_idle_time(cputime);
391 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
392 		account_guest_time(p, cputime, scaled);
393 	} else {
394 		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
395 	}
396 }
397 
398 static void irqtime_account_idle_ticks(int ticks)
399 {
400 	struct rq *rq = this_rq();
401 
402 	irqtime_account_process_tick(current, 0, rq, ticks);
403 }
404 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
405 static inline void irqtime_account_idle_ticks(int ticks) {}
406 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
407 						struct rq *rq, int nr_ticks) {}
408 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
409 
410 /*
411  * Use precise platform statistics if available:
412  */
413 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
414 
415 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
416 void vtime_common_task_switch(struct task_struct *prev)
417 {
418 	if (is_idle_task(prev))
419 		vtime_account_idle(prev);
420 	else
421 		vtime_account_system(prev);
422 
423 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424 	vtime_account_user(prev);
425 #endif
426 	arch_vtime_task_switch(prev);
427 }
428 #endif
429 
430 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
431 
432 
433 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
434 /*
435  * Archs that account the whole time spent in the idle task
436  * (outside irq) as idle time can rely on this and just implement
437  * vtime_account_system() and vtime_account_idle(). Archs that
438  * have other meaning of the idle time (s390 only includes the
439  * time spent by the CPU when it's in low power mode) must override
440  * vtime_account().
441  */
442 #ifndef __ARCH_HAS_VTIME_ACCOUNT
443 void vtime_account_irq_enter(struct task_struct *tsk)
444 {
445 	if (!in_interrupt() && is_idle_task(tsk))
446 		vtime_account_idle(tsk);
447 	else
448 		vtime_account_system(tsk);
449 }
450 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
451 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
452 
453 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
454 {
455 	*ut = p->utime;
456 	*st = p->stime;
457 }
458 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
459 
460 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
461 {
462 	struct task_cputime cputime;
463 
464 	thread_group_cputime(p, &cputime);
465 
466 	*ut = cputime.utime;
467 	*st = cputime.stime;
468 }
469 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
470 /*
471  * Account a single tick of cpu time.
472  * @p: the process that the cpu time gets accounted to
473  * @user_tick: indicates if the tick is a user or a system tick
474  */
475 void account_process_tick(struct task_struct *p, int user_tick)
476 {
477 	cputime_t cputime, scaled, steal;
478 	struct rq *rq = this_rq();
479 
480 	if (vtime_accounting_cpu_enabled())
481 		return;
482 
483 	if (sched_clock_irqtime) {
484 		irqtime_account_process_tick(p, user_tick, rq, 1);
485 		return;
486 	}
487 
488 	cputime = cputime_one_jiffy;
489 	steal = steal_account_process_time(cputime);
490 
491 	if (steal >= cputime)
492 		return;
493 
494 	cputime -= steal;
495 	scaled = cputime_to_scaled(cputime);
496 
497 	if (user_tick)
498 		account_user_time(p, cputime, scaled);
499 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
500 		account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
501 	else
502 		account_idle_time(cputime);
503 }
504 
505 /*
506  * Account multiple ticks of idle time.
507  * @ticks: number of stolen ticks
508  */
509 void account_idle_ticks(unsigned long ticks)
510 {
511 	cputime_t cputime, steal;
512 
513 	if (sched_clock_irqtime) {
514 		irqtime_account_idle_ticks(ticks);
515 		return;
516 	}
517 
518 	cputime = jiffies_to_cputime(ticks);
519 	steal = steal_account_process_time(cputime);
520 
521 	if (steal >= cputime)
522 		return;
523 
524 	cputime -= steal;
525 	account_idle_time(cputime);
526 }
527 
528 /*
529  * Perform (stime * rtime) / total, but avoid multiplication overflow by
530  * loosing precision when the numbers are big.
531  */
532 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
533 {
534 	u64 scaled;
535 
536 	for (;;) {
537 		/* Make sure "rtime" is the bigger of stime/rtime */
538 		if (stime > rtime)
539 			swap(rtime, stime);
540 
541 		/* Make sure 'total' fits in 32 bits */
542 		if (total >> 32)
543 			goto drop_precision;
544 
545 		/* Does rtime (and thus stime) fit in 32 bits? */
546 		if (!(rtime >> 32))
547 			break;
548 
549 		/* Can we just balance rtime/stime rather than dropping bits? */
550 		if (stime >> 31)
551 			goto drop_precision;
552 
553 		/* We can grow stime and shrink rtime and try to make them both fit */
554 		stime <<= 1;
555 		rtime >>= 1;
556 		continue;
557 
558 drop_precision:
559 		/* We drop from rtime, it has more bits than stime */
560 		rtime >>= 1;
561 		total >>= 1;
562 	}
563 
564 	/*
565 	 * Make sure gcc understands that this is a 32x32->64 multiply,
566 	 * followed by a 64/32->64 divide.
567 	 */
568 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
569 	return (__force cputime_t) scaled;
570 }
571 
572 /*
573  * Adjust tick based cputime random precision against scheduler runtime
574  * accounting.
575  *
576  * Tick based cputime accounting depend on random scheduling timeslices of a
577  * task to be interrupted or not by the timer.  Depending on these
578  * circumstances, the number of these interrupts may be over or
579  * under-optimistic, matching the real user and system cputime with a variable
580  * precision.
581  *
582  * Fix this by scaling these tick based values against the total runtime
583  * accounted by the CFS scheduler.
584  *
585  * This code provides the following guarantees:
586  *
587  *   stime + utime == rtime
588  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
589  *
590  * Assuming that rtime_i+1 >= rtime_i.
591  */
592 static void cputime_adjust(struct task_cputime *curr,
593 			   struct prev_cputime *prev,
594 			   cputime_t *ut, cputime_t *st)
595 {
596 	cputime_t rtime, stime, utime;
597 	unsigned long flags;
598 
599 	/* Serialize concurrent callers such that we can honour our guarantees */
600 	raw_spin_lock_irqsave(&prev->lock, flags);
601 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
602 
603 	/*
604 	 * This is possible under two circumstances:
605 	 *  - rtime isn't monotonic after all (a bug);
606 	 *  - we got reordered by the lock.
607 	 *
608 	 * In both cases this acts as a filter such that the rest of the code
609 	 * can assume it is monotonic regardless of anything else.
610 	 */
611 	if (prev->stime + prev->utime >= rtime)
612 		goto out;
613 
614 	stime = curr->stime;
615 	utime = curr->utime;
616 
617 	if (utime == 0) {
618 		stime = rtime;
619 		goto update;
620 	}
621 
622 	if (stime == 0) {
623 		utime = rtime;
624 		goto update;
625 	}
626 
627 	stime = scale_stime((__force u64)stime, (__force u64)rtime,
628 			    (__force u64)(stime + utime));
629 
630 	/*
631 	 * Make sure stime doesn't go backwards; this preserves monotonicity
632 	 * for utime because rtime is monotonic.
633 	 *
634 	 *  utime_i+1 = rtime_i+1 - stime_i
635 	 *            = rtime_i+1 - (rtime_i - utime_i)
636 	 *            = (rtime_i+1 - rtime_i) + utime_i
637 	 *            >= utime_i
638 	 */
639 	if (stime < prev->stime)
640 		stime = prev->stime;
641 	utime = rtime - stime;
642 
643 	/*
644 	 * Make sure utime doesn't go backwards; this still preserves
645 	 * monotonicity for stime, analogous argument to above.
646 	 */
647 	if (utime < prev->utime) {
648 		utime = prev->utime;
649 		stime = rtime - utime;
650 	}
651 
652 update:
653 	prev->stime = stime;
654 	prev->utime = utime;
655 out:
656 	*ut = prev->utime;
657 	*st = prev->stime;
658 	raw_spin_unlock_irqrestore(&prev->lock, flags);
659 }
660 
661 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
662 {
663 	struct task_cputime cputime = {
664 		.sum_exec_runtime = p->se.sum_exec_runtime,
665 	};
666 
667 	task_cputime(p, &cputime.utime, &cputime.stime);
668 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
669 }
670 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
671 
672 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
673 {
674 	struct task_cputime cputime;
675 
676 	thread_group_cputime(p, &cputime);
677 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
678 }
679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
680 
681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
682 static cputime_t vtime_delta(struct task_struct *tsk)
683 {
684 	unsigned long now = READ_ONCE(jiffies);
685 
686 	if (time_before(now, (unsigned long)tsk->vtime_snap))
687 		return 0;
688 
689 	return jiffies_to_cputime(now - tsk->vtime_snap);
690 }
691 
692 static cputime_t get_vtime_delta(struct task_struct *tsk)
693 {
694 	unsigned long now = READ_ONCE(jiffies);
695 	cputime_t delta, other;
696 
697 	delta = jiffies_to_cputime(now - tsk->vtime_snap);
698 	other = account_other_time(delta);
699 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
700 	tsk->vtime_snap = now;
701 
702 	return delta - other;
703 }
704 
705 static void __vtime_account_system(struct task_struct *tsk)
706 {
707 	cputime_t delta_cpu = get_vtime_delta(tsk);
708 
709 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
710 }
711 
712 void vtime_account_system(struct task_struct *tsk)
713 {
714 	if (!vtime_delta(tsk))
715 		return;
716 
717 	write_seqcount_begin(&tsk->vtime_seqcount);
718 	__vtime_account_system(tsk);
719 	write_seqcount_end(&tsk->vtime_seqcount);
720 }
721 
722 void vtime_account_user(struct task_struct *tsk)
723 {
724 	cputime_t delta_cpu;
725 
726 	write_seqcount_begin(&tsk->vtime_seqcount);
727 	tsk->vtime_snap_whence = VTIME_SYS;
728 	if (vtime_delta(tsk)) {
729 		delta_cpu = get_vtime_delta(tsk);
730 		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
731 	}
732 	write_seqcount_end(&tsk->vtime_seqcount);
733 }
734 
735 void vtime_user_enter(struct task_struct *tsk)
736 {
737 	write_seqcount_begin(&tsk->vtime_seqcount);
738 	if (vtime_delta(tsk))
739 		__vtime_account_system(tsk);
740 	tsk->vtime_snap_whence = VTIME_USER;
741 	write_seqcount_end(&tsk->vtime_seqcount);
742 }
743 
744 void vtime_guest_enter(struct task_struct *tsk)
745 {
746 	/*
747 	 * The flags must be updated under the lock with
748 	 * the vtime_snap flush and update.
749 	 * That enforces a right ordering and update sequence
750 	 * synchronization against the reader (task_gtime())
751 	 * that can thus safely catch up with a tickless delta.
752 	 */
753 	write_seqcount_begin(&tsk->vtime_seqcount);
754 	if (vtime_delta(tsk))
755 		__vtime_account_system(tsk);
756 	current->flags |= PF_VCPU;
757 	write_seqcount_end(&tsk->vtime_seqcount);
758 }
759 EXPORT_SYMBOL_GPL(vtime_guest_enter);
760 
761 void vtime_guest_exit(struct task_struct *tsk)
762 {
763 	write_seqcount_begin(&tsk->vtime_seqcount);
764 	__vtime_account_system(tsk);
765 	current->flags &= ~PF_VCPU;
766 	write_seqcount_end(&tsk->vtime_seqcount);
767 }
768 EXPORT_SYMBOL_GPL(vtime_guest_exit);
769 
770 void vtime_account_idle(struct task_struct *tsk)
771 {
772 	cputime_t delta_cpu = get_vtime_delta(tsk);
773 
774 	account_idle_time(delta_cpu);
775 }
776 
777 void arch_vtime_task_switch(struct task_struct *prev)
778 {
779 	write_seqcount_begin(&prev->vtime_seqcount);
780 	prev->vtime_snap_whence = VTIME_INACTIVE;
781 	write_seqcount_end(&prev->vtime_seqcount);
782 
783 	write_seqcount_begin(&current->vtime_seqcount);
784 	current->vtime_snap_whence = VTIME_SYS;
785 	current->vtime_snap = jiffies;
786 	write_seqcount_end(&current->vtime_seqcount);
787 }
788 
789 void vtime_init_idle(struct task_struct *t, int cpu)
790 {
791 	unsigned long flags;
792 
793 	local_irq_save(flags);
794 	write_seqcount_begin(&t->vtime_seqcount);
795 	t->vtime_snap_whence = VTIME_SYS;
796 	t->vtime_snap = jiffies;
797 	write_seqcount_end(&t->vtime_seqcount);
798 	local_irq_restore(flags);
799 }
800 
801 cputime_t task_gtime(struct task_struct *t)
802 {
803 	unsigned int seq;
804 	cputime_t gtime;
805 
806 	if (!vtime_accounting_enabled())
807 		return t->gtime;
808 
809 	do {
810 		seq = read_seqcount_begin(&t->vtime_seqcount);
811 
812 		gtime = t->gtime;
813 		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
814 			gtime += vtime_delta(t);
815 
816 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
817 
818 	return gtime;
819 }
820 
821 /*
822  * Fetch cputime raw values from fields of task_struct and
823  * add up the pending nohz execution time since the last
824  * cputime snapshot.
825  */
826 static void
827 fetch_task_cputime(struct task_struct *t,
828 		   cputime_t *u_dst, cputime_t *s_dst,
829 		   cputime_t *u_src, cputime_t *s_src,
830 		   cputime_t *udelta, cputime_t *sdelta)
831 {
832 	unsigned int seq;
833 	unsigned long long delta;
834 
835 	do {
836 		*udelta = 0;
837 		*sdelta = 0;
838 
839 		seq = read_seqcount_begin(&t->vtime_seqcount);
840 
841 		if (u_dst)
842 			*u_dst = *u_src;
843 		if (s_dst)
844 			*s_dst = *s_src;
845 
846 		/* Task is sleeping, nothing to add */
847 		if (t->vtime_snap_whence == VTIME_INACTIVE ||
848 		    is_idle_task(t))
849 			continue;
850 
851 		delta = vtime_delta(t);
852 
853 		/*
854 		 * Task runs either in user or kernel space, add pending nohz time to
855 		 * the right place.
856 		 */
857 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
858 			*udelta = delta;
859 		} else {
860 			if (t->vtime_snap_whence == VTIME_SYS)
861 				*sdelta = delta;
862 		}
863 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
864 }
865 
866 
867 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
868 {
869 	cputime_t udelta, sdelta;
870 
871 	if (!vtime_accounting_enabled()) {
872 		if (utime)
873 			*utime = t->utime;
874 		if (stime)
875 			*stime = t->stime;
876 		return;
877 	}
878 
879 	fetch_task_cputime(t, utime, stime, &t->utime,
880 			   &t->stime, &udelta, &sdelta);
881 	if (utime)
882 		*utime += udelta;
883 	if (stime)
884 		*stime += sdelta;
885 }
886 
887 void task_cputime_scaled(struct task_struct *t,
888 			 cputime_t *utimescaled, cputime_t *stimescaled)
889 {
890 	cputime_t udelta, sdelta;
891 
892 	if (!vtime_accounting_enabled()) {
893 		if (utimescaled)
894 			*utimescaled = t->utimescaled;
895 		if (stimescaled)
896 			*stimescaled = t->stimescaled;
897 		return;
898 	}
899 
900 	fetch_task_cputime(t, utimescaled, stimescaled,
901 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
902 	if (utimescaled)
903 		*utimescaled += cputime_to_scaled(udelta);
904 	if (stimescaled)
905 		*stimescaled += cputime_to_scaled(sdelta);
906 }
907 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
908