1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 #ifdef CONFIG_PARAVIRT 9 #include <asm/paravirt.h> 10 #endif 11 12 13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 14 15 /* 16 * There are no locks covering percpu hardirq/softirq time. 17 * They are only modified in vtime_account, on corresponding CPU 18 * with interrupts disabled. So, writes are safe. 19 * They are read and saved off onto struct rq in update_rq_clock(). 20 * This may result in other CPU reading this CPU's irq time and can 21 * race with irq/vtime_account on this CPU. We would either get old 22 * or new value with a side effect of accounting a slice of irq time to wrong 23 * task when irq is in progress while we read rq->clock. That is a worthy 24 * compromise in place of having locks on each irq in account_system_time. 25 */ 26 DEFINE_PER_CPU(u64, cpu_hardirq_time); 27 DEFINE_PER_CPU(u64, cpu_softirq_time); 28 29 static DEFINE_PER_CPU(u64, irq_start_time); 30 static int sched_clock_irqtime; 31 32 void enable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 1; 35 } 36 37 void disable_sched_clock_irqtime(void) 38 { 39 sched_clock_irqtime = 0; 40 } 41 42 #ifndef CONFIG_64BIT 43 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 44 #endif /* CONFIG_64BIT */ 45 46 /* 47 * Called before incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr) 51 { 52 s64 delta; 53 int cpu; 54 55 if (!sched_clock_irqtime) 56 return; 57 58 cpu = smp_processor_id(); 59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 60 __this_cpu_add(irq_start_time, delta); 61 62 irq_time_write_begin(); 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 __this_cpu_add(cpu_hardirq_time, delta); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 __this_cpu_add(cpu_softirq_time, delta); 73 74 irq_time_write_end(); 75 } 76 EXPORT_SYMBOL_GPL(irqtime_account_irq); 77 78 static cputime_t irqtime_account_hi_update(cputime_t maxtime) 79 { 80 u64 *cpustat = kcpustat_this_cpu->cpustat; 81 unsigned long flags; 82 cputime_t irq_cputime; 83 84 local_irq_save(flags); 85 irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) - 86 cpustat[CPUTIME_IRQ]; 87 irq_cputime = min(irq_cputime, maxtime); 88 cpustat[CPUTIME_IRQ] += irq_cputime; 89 local_irq_restore(flags); 90 return irq_cputime; 91 } 92 93 static cputime_t irqtime_account_si_update(cputime_t maxtime) 94 { 95 u64 *cpustat = kcpustat_this_cpu->cpustat; 96 unsigned long flags; 97 cputime_t softirq_cputime; 98 99 local_irq_save(flags); 100 softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) - 101 cpustat[CPUTIME_SOFTIRQ]; 102 softirq_cputime = min(softirq_cputime, maxtime); 103 cpustat[CPUTIME_SOFTIRQ] += softirq_cputime; 104 local_irq_restore(flags); 105 return softirq_cputime; 106 } 107 108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 109 110 #define sched_clock_irqtime (0) 111 112 static cputime_t irqtime_account_hi_update(cputime_t dummy) 113 { 114 return 0; 115 } 116 117 static cputime_t irqtime_account_si_update(cputime_t dummy) 118 { 119 return 0; 120 } 121 122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 123 124 static inline void task_group_account_field(struct task_struct *p, int index, 125 u64 tmp) 126 { 127 /* 128 * Since all updates are sure to touch the root cgroup, we 129 * get ourselves ahead and touch it first. If the root cgroup 130 * is the only cgroup, then nothing else should be necessary. 131 * 132 */ 133 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 134 135 cpuacct_account_field(p, index, tmp); 136 } 137 138 /* 139 * Account user cpu time to a process. 140 * @p: the process that the cpu time gets accounted to 141 * @cputime: the cpu time spent in user space since the last update 142 * @cputime_scaled: cputime scaled by cpu frequency 143 */ 144 void account_user_time(struct task_struct *p, cputime_t cputime, 145 cputime_t cputime_scaled) 146 { 147 int index; 148 149 /* Add user time to process. */ 150 p->utime += cputime; 151 p->utimescaled += cputime_scaled; 152 account_group_user_time(p, cputime); 153 154 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 155 156 /* Add user time to cpustat. */ 157 task_group_account_field(p, index, (__force u64) cputime); 158 159 /* Account for user time used */ 160 acct_account_cputime(p); 161 } 162 163 /* 164 * Account guest cpu time to a process. 165 * @p: the process that the cpu time gets accounted to 166 * @cputime: the cpu time spent in virtual machine since the last update 167 * @cputime_scaled: cputime scaled by cpu frequency 168 */ 169 static void account_guest_time(struct task_struct *p, cputime_t cputime, 170 cputime_t cputime_scaled) 171 { 172 u64 *cpustat = kcpustat_this_cpu->cpustat; 173 174 /* Add guest time to process. */ 175 p->utime += cputime; 176 p->utimescaled += cputime_scaled; 177 account_group_user_time(p, cputime); 178 p->gtime += cputime; 179 180 /* Add guest time to cpustat. */ 181 if (task_nice(p) > 0) { 182 cpustat[CPUTIME_NICE] += (__force u64) cputime; 183 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 184 } else { 185 cpustat[CPUTIME_USER] += (__force u64) cputime; 186 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 187 } 188 } 189 190 /* 191 * Account system cpu time to a process and desired cpustat field 192 * @p: the process that the cpu time gets accounted to 193 * @cputime: the cpu time spent in kernel space since the last update 194 * @cputime_scaled: cputime scaled by cpu frequency 195 * @target_cputime64: pointer to cpustat field that has to be updated 196 */ 197 static inline 198 void __account_system_time(struct task_struct *p, cputime_t cputime, 199 cputime_t cputime_scaled, int index) 200 { 201 /* Add system time to process. */ 202 p->stime += cputime; 203 p->stimescaled += cputime_scaled; 204 account_group_system_time(p, cputime); 205 206 /* Add system time to cpustat. */ 207 task_group_account_field(p, index, (__force u64) cputime); 208 209 /* Account for system time used */ 210 acct_account_cputime(p); 211 } 212 213 /* 214 * Account system cpu time to a process. 215 * @p: the process that the cpu time gets accounted to 216 * @hardirq_offset: the offset to subtract from hardirq_count() 217 * @cputime: the cpu time spent in kernel space since the last update 218 * @cputime_scaled: cputime scaled by cpu frequency 219 */ 220 void account_system_time(struct task_struct *p, int hardirq_offset, 221 cputime_t cputime, cputime_t cputime_scaled) 222 { 223 int index; 224 225 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 226 account_guest_time(p, cputime, cputime_scaled); 227 return; 228 } 229 230 if (hardirq_count() - hardirq_offset) 231 index = CPUTIME_IRQ; 232 else if (in_serving_softirq()) 233 index = CPUTIME_SOFTIRQ; 234 else 235 index = CPUTIME_SYSTEM; 236 237 __account_system_time(p, cputime, cputime_scaled, index); 238 } 239 240 /* 241 * Account for involuntary wait time. 242 * @cputime: the cpu time spent in involuntary wait 243 */ 244 void account_steal_time(cputime_t cputime) 245 { 246 u64 *cpustat = kcpustat_this_cpu->cpustat; 247 248 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 249 } 250 251 /* 252 * Account for idle time. 253 * @cputime: the cpu time spent in idle wait 254 */ 255 void account_idle_time(cputime_t cputime) 256 { 257 u64 *cpustat = kcpustat_this_cpu->cpustat; 258 struct rq *rq = this_rq(); 259 260 if (atomic_read(&rq->nr_iowait) > 0) 261 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 262 else 263 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 264 } 265 266 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime) 267 { 268 #ifdef CONFIG_PARAVIRT 269 if (static_key_false(¶virt_steal_enabled)) { 270 cputime_t steal_cputime; 271 u64 steal; 272 273 steal = paravirt_steal_clock(smp_processor_id()); 274 steal -= this_rq()->prev_steal_time; 275 276 steal_cputime = min(nsecs_to_cputime(steal), maxtime); 277 account_steal_time(steal_cputime); 278 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime); 279 280 return steal_cputime; 281 } 282 #endif 283 return 0; 284 } 285 286 /* 287 * Account how much elapsed time was spent in steal, irq, or softirq time. 288 */ 289 static inline cputime_t account_other_time(cputime_t max) 290 { 291 cputime_t accounted; 292 293 accounted = steal_account_process_time(max); 294 295 if (accounted < max) 296 accounted += irqtime_account_hi_update(max - accounted); 297 298 if (accounted < max) 299 accounted += irqtime_account_si_update(max - accounted); 300 301 return accounted; 302 } 303 304 /* 305 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 306 * tasks (sum on group iteration) belonging to @tsk's group. 307 */ 308 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 309 { 310 struct signal_struct *sig = tsk->signal; 311 cputime_t utime, stime; 312 struct task_struct *t; 313 unsigned int seq, nextseq; 314 unsigned long flags; 315 316 rcu_read_lock(); 317 /* Attempt a lockless read on the first round. */ 318 nextseq = 0; 319 do { 320 seq = nextseq; 321 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 322 times->utime = sig->utime; 323 times->stime = sig->stime; 324 times->sum_exec_runtime = sig->sum_sched_runtime; 325 326 for_each_thread(tsk, t) { 327 task_cputime(t, &utime, &stime); 328 times->utime += utime; 329 times->stime += stime; 330 times->sum_exec_runtime += task_sched_runtime(t); 331 } 332 /* If lockless access failed, take the lock. */ 333 nextseq = 1; 334 } while (need_seqretry(&sig->stats_lock, seq)); 335 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 336 rcu_read_unlock(); 337 } 338 339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 340 /* 341 * Account a tick to a process and cpustat 342 * @p: the process that the cpu time gets accounted to 343 * @user_tick: is the tick from userspace 344 * @rq: the pointer to rq 345 * 346 * Tick demultiplexing follows the order 347 * - pending hardirq update 348 * - pending softirq update 349 * - user_time 350 * - idle_time 351 * - system time 352 * - check for guest_time 353 * - else account as system_time 354 * 355 * Check for hardirq is done both for system and user time as there is 356 * no timer going off while we are on hardirq and hence we may never get an 357 * opportunity to update it solely in system time. 358 * p->stime and friends are only updated on system time and not on irq 359 * softirq as those do not count in task exec_runtime any more. 360 */ 361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 362 struct rq *rq, int ticks) 363 { 364 u64 cputime = (__force u64) cputime_one_jiffy * ticks; 365 cputime_t scaled, other; 366 367 /* 368 * When returning from idle, many ticks can get accounted at 369 * once, including some ticks of steal, irq, and softirq time. 370 * Subtract those ticks from the amount of time accounted to 371 * idle, or potentially user or system time. Due to rounding, 372 * other time can exceed ticks occasionally. 373 */ 374 other = account_other_time(cputime); 375 if (other >= cputime) 376 return; 377 cputime -= other; 378 scaled = cputime_to_scaled(cputime); 379 380 if (this_cpu_ksoftirqd() == p) { 381 /* 382 * ksoftirqd time do not get accounted in cpu_softirq_time. 383 * So, we have to handle it separately here. 384 * Also, p->stime needs to be updated for ksoftirqd. 385 */ 386 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ); 387 } else if (user_tick) { 388 account_user_time(p, cputime, scaled); 389 } else if (p == rq->idle) { 390 account_idle_time(cputime); 391 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 392 account_guest_time(p, cputime, scaled); 393 } else { 394 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM); 395 } 396 } 397 398 static void irqtime_account_idle_ticks(int ticks) 399 { 400 struct rq *rq = this_rq(); 401 402 irqtime_account_process_tick(current, 0, rq, ticks); 403 } 404 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 405 static inline void irqtime_account_idle_ticks(int ticks) {} 406 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 407 struct rq *rq, int nr_ticks) {} 408 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 409 410 /* 411 * Use precise platform statistics if available: 412 */ 413 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 414 415 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 416 void vtime_common_task_switch(struct task_struct *prev) 417 { 418 if (is_idle_task(prev)) 419 vtime_account_idle(prev); 420 else 421 vtime_account_system(prev); 422 423 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 424 vtime_account_user(prev); 425 #endif 426 arch_vtime_task_switch(prev); 427 } 428 #endif 429 430 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 431 432 433 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 434 /* 435 * Archs that account the whole time spent in the idle task 436 * (outside irq) as idle time can rely on this and just implement 437 * vtime_account_system() and vtime_account_idle(). Archs that 438 * have other meaning of the idle time (s390 only includes the 439 * time spent by the CPU when it's in low power mode) must override 440 * vtime_account(). 441 */ 442 #ifndef __ARCH_HAS_VTIME_ACCOUNT 443 void vtime_account_irq_enter(struct task_struct *tsk) 444 { 445 if (!in_interrupt() && is_idle_task(tsk)) 446 vtime_account_idle(tsk); 447 else 448 vtime_account_system(tsk); 449 } 450 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 451 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 452 453 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 454 { 455 *ut = p->utime; 456 *st = p->stime; 457 } 458 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 459 460 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 461 { 462 struct task_cputime cputime; 463 464 thread_group_cputime(p, &cputime); 465 466 *ut = cputime.utime; 467 *st = cputime.stime; 468 } 469 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 470 /* 471 * Account a single tick of cpu time. 472 * @p: the process that the cpu time gets accounted to 473 * @user_tick: indicates if the tick is a user or a system tick 474 */ 475 void account_process_tick(struct task_struct *p, int user_tick) 476 { 477 cputime_t cputime, scaled, steal; 478 struct rq *rq = this_rq(); 479 480 if (vtime_accounting_cpu_enabled()) 481 return; 482 483 if (sched_clock_irqtime) { 484 irqtime_account_process_tick(p, user_tick, rq, 1); 485 return; 486 } 487 488 cputime = cputime_one_jiffy; 489 steal = steal_account_process_time(cputime); 490 491 if (steal >= cputime) 492 return; 493 494 cputime -= steal; 495 scaled = cputime_to_scaled(cputime); 496 497 if (user_tick) 498 account_user_time(p, cputime, scaled); 499 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 500 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled); 501 else 502 account_idle_time(cputime); 503 } 504 505 /* 506 * Account multiple ticks of idle time. 507 * @ticks: number of stolen ticks 508 */ 509 void account_idle_ticks(unsigned long ticks) 510 { 511 cputime_t cputime, steal; 512 513 if (sched_clock_irqtime) { 514 irqtime_account_idle_ticks(ticks); 515 return; 516 } 517 518 cputime = jiffies_to_cputime(ticks); 519 steal = steal_account_process_time(cputime); 520 521 if (steal >= cputime) 522 return; 523 524 cputime -= steal; 525 account_idle_time(cputime); 526 } 527 528 /* 529 * Perform (stime * rtime) / total, but avoid multiplication overflow by 530 * loosing precision when the numbers are big. 531 */ 532 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) 533 { 534 u64 scaled; 535 536 for (;;) { 537 /* Make sure "rtime" is the bigger of stime/rtime */ 538 if (stime > rtime) 539 swap(rtime, stime); 540 541 /* Make sure 'total' fits in 32 bits */ 542 if (total >> 32) 543 goto drop_precision; 544 545 /* Does rtime (and thus stime) fit in 32 bits? */ 546 if (!(rtime >> 32)) 547 break; 548 549 /* Can we just balance rtime/stime rather than dropping bits? */ 550 if (stime >> 31) 551 goto drop_precision; 552 553 /* We can grow stime and shrink rtime and try to make them both fit */ 554 stime <<= 1; 555 rtime >>= 1; 556 continue; 557 558 drop_precision: 559 /* We drop from rtime, it has more bits than stime */ 560 rtime >>= 1; 561 total >>= 1; 562 } 563 564 /* 565 * Make sure gcc understands that this is a 32x32->64 multiply, 566 * followed by a 64/32->64 divide. 567 */ 568 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 569 return (__force cputime_t) scaled; 570 } 571 572 /* 573 * Adjust tick based cputime random precision against scheduler runtime 574 * accounting. 575 * 576 * Tick based cputime accounting depend on random scheduling timeslices of a 577 * task to be interrupted or not by the timer. Depending on these 578 * circumstances, the number of these interrupts may be over or 579 * under-optimistic, matching the real user and system cputime with a variable 580 * precision. 581 * 582 * Fix this by scaling these tick based values against the total runtime 583 * accounted by the CFS scheduler. 584 * 585 * This code provides the following guarantees: 586 * 587 * stime + utime == rtime 588 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 589 * 590 * Assuming that rtime_i+1 >= rtime_i. 591 */ 592 static void cputime_adjust(struct task_cputime *curr, 593 struct prev_cputime *prev, 594 cputime_t *ut, cputime_t *st) 595 { 596 cputime_t rtime, stime, utime; 597 unsigned long flags; 598 599 /* Serialize concurrent callers such that we can honour our guarantees */ 600 raw_spin_lock_irqsave(&prev->lock, flags); 601 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 602 603 /* 604 * This is possible under two circumstances: 605 * - rtime isn't monotonic after all (a bug); 606 * - we got reordered by the lock. 607 * 608 * In both cases this acts as a filter such that the rest of the code 609 * can assume it is monotonic regardless of anything else. 610 */ 611 if (prev->stime + prev->utime >= rtime) 612 goto out; 613 614 stime = curr->stime; 615 utime = curr->utime; 616 617 if (utime == 0) { 618 stime = rtime; 619 goto update; 620 } 621 622 if (stime == 0) { 623 utime = rtime; 624 goto update; 625 } 626 627 stime = scale_stime((__force u64)stime, (__force u64)rtime, 628 (__force u64)(stime + utime)); 629 630 /* 631 * Make sure stime doesn't go backwards; this preserves monotonicity 632 * for utime because rtime is monotonic. 633 * 634 * utime_i+1 = rtime_i+1 - stime_i 635 * = rtime_i+1 - (rtime_i - utime_i) 636 * = (rtime_i+1 - rtime_i) + utime_i 637 * >= utime_i 638 */ 639 if (stime < prev->stime) 640 stime = prev->stime; 641 utime = rtime - stime; 642 643 /* 644 * Make sure utime doesn't go backwards; this still preserves 645 * monotonicity for stime, analogous argument to above. 646 */ 647 if (utime < prev->utime) { 648 utime = prev->utime; 649 stime = rtime - utime; 650 } 651 652 update: 653 prev->stime = stime; 654 prev->utime = utime; 655 out: 656 *ut = prev->utime; 657 *st = prev->stime; 658 raw_spin_unlock_irqrestore(&prev->lock, flags); 659 } 660 661 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 662 { 663 struct task_cputime cputime = { 664 .sum_exec_runtime = p->se.sum_exec_runtime, 665 }; 666 667 task_cputime(p, &cputime.utime, &cputime.stime); 668 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 669 } 670 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 671 672 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 673 { 674 struct task_cputime cputime; 675 676 thread_group_cputime(p, &cputime); 677 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 678 } 679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 680 681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 682 static cputime_t vtime_delta(struct task_struct *tsk) 683 { 684 unsigned long now = READ_ONCE(jiffies); 685 686 if (time_before(now, (unsigned long)tsk->vtime_snap)) 687 return 0; 688 689 return jiffies_to_cputime(now - tsk->vtime_snap); 690 } 691 692 static cputime_t get_vtime_delta(struct task_struct *tsk) 693 { 694 unsigned long now = READ_ONCE(jiffies); 695 cputime_t delta, other; 696 697 delta = jiffies_to_cputime(now - tsk->vtime_snap); 698 other = account_other_time(delta); 699 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE); 700 tsk->vtime_snap = now; 701 702 return delta - other; 703 } 704 705 static void __vtime_account_system(struct task_struct *tsk) 706 { 707 cputime_t delta_cpu = get_vtime_delta(tsk); 708 709 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 710 } 711 712 void vtime_account_system(struct task_struct *tsk) 713 { 714 if (!vtime_delta(tsk)) 715 return; 716 717 write_seqcount_begin(&tsk->vtime_seqcount); 718 __vtime_account_system(tsk); 719 write_seqcount_end(&tsk->vtime_seqcount); 720 } 721 722 void vtime_account_user(struct task_struct *tsk) 723 { 724 cputime_t delta_cpu; 725 726 write_seqcount_begin(&tsk->vtime_seqcount); 727 tsk->vtime_snap_whence = VTIME_SYS; 728 if (vtime_delta(tsk)) { 729 delta_cpu = get_vtime_delta(tsk); 730 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 731 } 732 write_seqcount_end(&tsk->vtime_seqcount); 733 } 734 735 void vtime_user_enter(struct task_struct *tsk) 736 { 737 write_seqcount_begin(&tsk->vtime_seqcount); 738 if (vtime_delta(tsk)) 739 __vtime_account_system(tsk); 740 tsk->vtime_snap_whence = VTIME_USER; 741 write_seqcount_end(&tsk->vtime_seqcount); 742 } 743 744 void vtime_guest_enter(struct task_struct *tsk) 745 { 746 /* 747 * The flags must be updated under the lock with 748 * the vtime_snap flush and update. 749 * That enforces a right ordering and update sequence 750 * synchronization against the reader (task_gtime()) 751 * that can thus safely catch up with a tickless delta. 752 */ 753 write_seqcount_begin(&tsk->vtime_seqcount); 754 if (vtime_delta(tsk)) 755 __vtime_account_system(tsk); 756 current->flags |= PF_VCPU; 757 write_seqcount_end(&tsk->vtime_seqcount); 758 } 759 EXPORT_SYMBOL_GPL(vtime_guest_enter); 760 761 void vtime_guest_exit(struct task_struct *tsk) 762 { 763 write_seqcount_begin(&tsk->vtime_seqcount); 764 __vtime_account_system(tsk); 765 current->flags &= ~PF_VCPU; 766 write_seqcount_end(&tsk->vtime_seqcount); 767 } 768 EXPORT_SYMBOL_GPL(vtime_guest_exit); 769 770 void vtime_account_idle(struct task_struct *tsk) 771 { 772 cputime_t delta_cpu = get_vtime_delta(tsk); 773 774 account_idle_time(delta_cpu); 775 } 776 777 void arch_vtime_task_switch(struct task_struct *prev) 778 { 779 write_seqcount_begin(&prev->vtime_seqcount); 780 prev->vtime_snap_whence = VTIME_INACTIVE; 781 write_seqcount_end(&prev->vtime_seqcount); 782 783 write_seqcount_begin(¤t->vtime_seqcount); 784 current->vtime_snap_whence = VTIME_SYS; 785 current->vtime_snap = jiffies; 786 write_seqcount_end(¤t->vtime_seqcount); 787 } 788 789 void vtime_init_idle(struct task_struct *t, int cpu) 790 { 791 unsigned long flags; 792 793 local_irq_save(flags); 794 write_seqcount_begin(&t->vtime_seqcount); 795 t->vtime_snap_whence = VTIME_SYS; 796 t->vtime_snap = jiffies; 797 write_seqcount_end(&t->vtime_seqcount); 798 local_irq_restore(flags); 799 } 800 801 cputime_t task_gtime(struct task_struct *t) 802 { 803 unsigned int seq; 804 cputime_t gtime; 805 806 if (!vtime_accounting_enabled()) 807 return t->gtime; 808 809 do { 810 seq = read_seqcount_begin(&t->vtime_seqcount); 811 812 gtime = t->gtime; 813 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU) 814 gtime += vtime_delta(t); 815 816 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 817 818 return gtime; 819 } 820 821 /* 822 * Fetch cputime raw values from fields of task_struct and 823 * add up the pending nohz execution time since the last 824 * cputime snapshot. 825 */ 826 static void 827 fetch_task_cputime(struct task_struct *t, 828 cputime_t *u_dst, cputime_t *s_dst, 829 cputime_t *u_src, cputime_t *s_src, 830 cputime_t *udelta, cputime_t *sdelta) 831 { 832 unsigned int seq; 833 unsigned long long delta; 834 835 do { 836 *udelta = 0; 837 *sdelta = 0; 838 839 seq = read_seqcount_begin(&t->vtime_seqcount); 840 841 if (u_dst) 842 *u_dst = *u_src; 843 if (s_dst) 844 *s_dst = *s_src; 845 846 /* Task is sleeping, nothing to add */ 847 if (t->vtime_snap_whence == VTIME_INACTIVE || 848 is_idle_task(t)) 849 continue; 850 851 delta = vtime_delta(t); 852 853 /* 854 * Task runs either in user or kernel space, add pending nohz time to 855 * the right place. 856 */ 857 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 858 *udelta = delta; 859 } else { 860 if (t->vtime_snap_whence == VTIME_SYS) 861 *sdelta = delta; 862 } 863 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 864 } 865 866 867 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 868 { 869 cputime_t udelta, sdelta; 870 871 if (!vtime_accounting_enabled()) { 872 if (utime) 873 *utime = t->utime; 874 if (stime) 875 *stime = t->stime; 876 return; 877 } 878 879 fetch_task_cputime(t, utime, stime, &t->utime, 880 &t->stime, &udelta, &sdelta); 881 if (utime) 882 *utime += udelta; 883 if (stime) 884 *stime += sdelta; 885 } 886 887 void task_cputime_scaled(struct task_struct *t, 888 cputime_t *utimescaled, cputime_t *stimescaled) 889 { 890 cputime_t udelta, sdelta; 891 892 if (!vtime_accounting_enabled()) { 893 if (utimescaled) 894 *utimescaled = t->utimescaled; 895 if (stimescaled) 896 *stimescaled = t->stimescaled; 897 return; 898 } 899 900 fetch_task_cputime(t, utimescaled, stimescaled, 901 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 902 if (utimescaled) 903 *utimescaled += cputime_to_scaled(udelta); 904 if (stimescaled) 905 *stimescaled += cputime_to_scaled(sdelta); 906 } 907 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 908