xref: /linux/kernel/sched/cputime.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/sched/cputime.h>
8 #include "sched.h"
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24 
25 static int sched_clock_irqtime;
26 
27 void enable_sched_clock_irqtime(void)
28 {
29 	sched_clock_irqtime = 1;
30 }
31 
32 void disable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 0;
35 }
36 
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 				  enum cpu_usage_stat idx)
39 {
40 	u64 *cpustat = kcpustat_this_cpu->cpustat;
41 
42 	u64_stats_update_begin(&irqtime->sync);
43 	cpustat[idx] += delta;
44 	irqtime->total += delta;
45 	irqtime->tick_delta += delta;
46 	u64_stats_update_end(&irqtime->sync);
47 }
48 
49 /*
50  * Called before incrementing preempt_count on {soft,}irq_enter
51  * and before decrementing preempt_count on {soft,}irq_exit.
52  */
53 void irqtime_account_irq(struct task_struct *curr)
54 {
55 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 	s64 delta;
57 	int cpu;
58 
59 	if (!sched_clock_irqtime)
60 		return;
61 
62 	cpu = smp_processor_id();
63 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
64 	irqtime->irq_start_time += delta;
65 
66 	/*
67 	 * We do not account for softirq time from ksoftirqd here.
68 	 * We want to continue accounting softirq time to ksoftirqd thread
69 	 * in that case, so as not to confuse scheduler with a special task
70 	 * that do not consume any time, but still wants to run.
71 	 */
72 	if (hardirq_count())
73 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
74 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 
79 static u64 irqtime_tick_accounted(u64 maxtime)
80 {
81 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
82 	u64 delta;
83 
84 	delta = min(irqtime->tick_delta, maxtime);
85 	irqtime->tick_delta -= delta;
86 
87 	return delta;
88 }
89 
90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
91 
92 #define sched_clock_irqtime	(0)
93 
94 static u64 irqtime_tick_accounted(u64 dummy)
95 {
96 	return 0;
97 }
98 
99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
100 
101 static inline void task_group_account_field(struct task_struct *p, int index,
102 					    u64 tmp)
103 {
104 	/*
105 	 * Since all updates are sure to touch the root cgroup, we
106 	 * get ourselves ahead and touch it first. If the root cgroup
107 	 * is the only cgroup, then nothing else should be necessary.
108 	 *
109 	 */
110 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
111 
112 	cpuacct_account_field(p, index, tmp);
113 }
114 
115 /*
116  * Account user cpu time to a process.
117  * @p: the process that the cpu time gets accounted to
118  * @cputime: the cpu time spent in user space since the last update
119  */
120 void account_user_time(struct task_struct *p, u64 cputime)
121 {
122 	int index;
123 
124 	/* Add user time to process. */
125 	p->utime += cputime;
126 	account_group_user_time(p, cputime);
127 
128 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
129 
130 	/* Add user time to cpustat. */
131 	task_group_account_field(p, index, cputime);
132 
133 	/* Account for user time used */
134 	acct_account_cputime(p);
135 }
136 
137 /*
138  * Account guest cpu time to a process.
139  * @p: the process that the cpu time gets accounted to
140  * @cputime: the cpu time spent in virtual machine since the last update
141  */
142 void account_guest_time(struct task_struct *p, u64 cputime)
143 {
144 	u64 *cpustat = kcpustat_this_cpu->cpustat;
145 
146 	/* Add guest time to process. */
147 	p->utime += cputime;
148 	account_group_user_time(p, cputime);
149 	p->gtime += cputime;
150 
151 	/* Add guest time to cpustat. */
152 	if (task_nice(p) > 0) {
153 		cpustat[CPUTIME_NICE] += cputime;
154 		cpustat[CPUTIME_GUEST_NICE] += cputime;
155 	} else {
156 		cpustat[CPUTIME_USER] += cputime;
157 		cpustat[CPUTIME_GUEST] += cputime;
158 	}
159 }
160 
161 /*
162  * Account system cpu time to a process and desired cpustat field
163  * @p: the process that the cpu time gets accounted to
164  * @cputime: the cpu time spent in kernel space since the last update
165  * @index: pointer to cpustat field that has to be updated
166  */
167 void account_system_index_time(struct task_struct *p,
168 			       u64 cputime, enum cpu_usage_stat index)
169 {
170 	/* Add system time to process. */
171 	p->stime += cputime;
172 	account_group_system_time(p, cputime);
173 
174 	/* Add system time to cpustat. */
175 	task_group_account_field(p, index, cputime);
176 
177 	/* Account for system time used */
178 	acct_account_cputime(p);
179 }
180 
181 /*
182  * Account system cpu time to a process.
183  * @p: the process that the cpu time gets accounted to
184  * @hardirq_offset: the offset to subtract from hardirq_count()
185  * @cputime: the cpu time spent in kernel space since the last update
186  */
187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
188 {
189 	int index;
190 
191 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
192 		account_guest_time(p, cputime);
193 		return;
194 	}
195 
196 	if (hardirq_count() - hardirq_offset)
197 		index = CPUTIME_IRQ;
198 	else if (in_serving_softirq())
199 		index = CPUTIME_SOFTIRQ;
200 	else
201 		index = CPUTIME_SYSTEM;
202 
203 	account_system_index_time(p, cputime, index);
204 }
205 
206 /*
207  * Account for involuntary wait time.
208  * @cputime: the cpu time spent in involuntary wait
209  */
210 void account_steal_time(u64 cputime)
211 {
212 	u64 *cpustat = kcpustat_this_cpu->cpustat;
213 
214 	cpustat[CPUTIME_STEAL] += cputime;
215 }
216 
217 /*
218  * Account for idle time.
219  * @cputime: the cpu time spent in idle wait
220  */
221 void account_idle_time(u64 cputime)
222 {
223 	u64 *cpustat = kcpustat_this_cpu->cpustat;
224 	struct rq *rq = this_rq();
225 
226 	if (atomic_read(&rq->nr_iowait) > 0)
227 		cpustat[CPUTIME_IOWAIT] += cputime;
228 	else
229 		cpustat[CPUTIME_IDLE] += cputime;
230 }
231 
232 /*
233  * When a guest is interrupted for a longer amount of time, missed clock
234  * ticks are not redelivered later. Due to that, this function may on
235  * occasion account more time than the calling functions think elapsed.
236  */
237 static __always_inline u64 steal_account_process_time(u64 maxtime)
238 {
239 #ifdef CONFIG_PARAVIRT
240 	if (static_key_false(&paravirt_steal_enabled)) {
241 		u64 steal;
242 
243 		steal = paravirt_steal_clock(smp_processor_id());
244 		steal -= this_rq()->prev_steal_time;
245 		steal = min(steal, maxtime);
246 		account_steal_time(steal);
247 		this_rq()->prev_steal_time += steal;
248 
249 		return steal;
250 	}
251 #endif
252 	return 0;
253 }
254 
255 /*
256  * Account how much elapsed time was spent in steal, irq, or softirq time.
257  */
258 static inline u64 account_other_time(u64 max)
259 {
260 	u64 accounted;
261 
262 	lockdep_assert_irqs_disabled();
263 
264 	accounted = steal_account_process_time(max);
265 
266 	if (accounted < max)
267 		accounted += irqtime_tick_accounted(max - accounted);
268 
269 	return accounted;
270 }
271 
272 #ifdef CONFIG_64BIT
273 static inline u64 read_sum_exec_runtime(struct task_struct *t)
274 {
275 	return t->se.sum_exec_runtime;
276 }
277 #else
278 static u64 read_sum_exec_runtime(struct task_struct *t)
279 {
280 	u64 ns;
281 	struct rq_flags rf;
282 	struct rq *rq;
283 
284 	rq = task_rq_lock(t, &rf);
285 	ns = t->se.sum_exec_runtime;
286 	task_rq_unlock(rq, t, &rf);
287 
288 	return ns;
289 }
290 #endif
291 
292 /*
293  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
294  * tasks (sum on group iteration) belonging to @tsk's group.
295  */
296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
297 {
298 	struct signal_struct *sig = tsk->signal;
299 	u64 utime, stime;
300 	struct task_struct *t;
301 	unsigned int seq, nextseq;
302 	unsigned long flags;
303 
304 	/*
305 	 * Update current task runtime to account pending time since last
306 	 * scheduler action or thread_group_cputime() call. This thread group
307 	 * might have other running tasks on different CPUs, but updating
308 	 * their runtime can affect syscall performance, so we skip account
309 	 * those pending times and rely only on values updated on tick or
310 	 * other scheduler action.
311 	 */
312 	if (same_thread_group(current, tsk))
313 		(void) task_sched_runtime(current);
314 
315 	rcu_read_lock();
316 	/* Attempt a lockless read on the first round. */
317 	nextseq = 0;
318 	do {
319 		seq = nextseq;
320 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
321 		times->utime = sig->utime;
322 		times->stime = sig->stime;
323 		times->sum_exec_runtime = sig->sum_sched_runtime;
324 
325 		for_each_thread(tsk, t) {
326 			task_cputime(t, &utime, &stime);
327 			times->utime += utime;
328 			times->stime += stime;
329 			times->sum_exec_runtime += read_sum_exec_runtime(t);
330 		}
331 		/* If lockless access failed, take the lock. */
332 		nextseq = 1;
333 	} while (need_seqretry(&sig->stats_lock, seq));
334 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
335 	rcu_read_unlock();
336 }
337 
338 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
339 /*
340  * Account a tick to a process and cpustat
341  * @p: the process that the cpu time gets accounted to
342  * @user_tick: is the tick from userspace
343  * @rq: the pointer to rq
344  *
345  * Tick demultiplexing follows the order
346  * - pending hardirq update
347  * - pending softirq update
348  * - user_time
349  * - idle_time
350  * - system time
351  *   - check for guest_time
352  *   - else account as system_time
353  *
354  * Check for hardirq is done both for system and user time as there is
355  * no timer going off while we are on hardirq and hence we may never get an
356  * opportunity to update it solely in system time.
357  * p->stime and friends are only updated on system time and not on irq
358  * softirq as those do not count in task exec_runtime any more.
359  */
360 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
361 					 struct rq *rq, int ticks)
362 {
363 	u64 other, cputime = TICK_NSEC * ticks;
364 
365 	/*
366 	 * When returning from idle, many ticks can get accounted at
367 	 * once, including some ticks of steal, irq, and softirq time.
368 	 * Subtract those ticks from the amount of time accounted to
369 	 * idle, or potentially user or system time. Due to rounding,
370 	 * other time can exceed ticks occasionally.
371 	 */
372 	other = account_other_time(ULONG_MAX);
373 	if (other >= cputime)
374 		return;
375 
376 	cputime -= other;
377 
378 	if (this_cpu_ksoftirqd() == p) {
379 		/*
380 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
381 		 * So, we have to handle it separately here.
382 		 * Also, p->stime needs to be updated for ksoftirqd.
383 		 */
384 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
385 	} else if (user_tick) {
386 		account_user_time(p, cputime);
387 	} else if (p == rq->idle) {
388 		account_idle_time(cputime);
389 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
390 		account_guest_time(p, cputime);
391 	} else {
392 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
393 	}
394 }
395 
396 static void irqtime_account_idle_ticks(int ticks)
397 {
398 	struct rq *rq = this_rq();
399 
400 	irqtime_account_process_tick(current, 0, rq, ticks);
401 }
402 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
403 static inline void irqtime_account_idle_ticks(int ticks) {}
404 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
405 						struct rq *rq, int nr_ticks) {}
406 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
407 
408 /*
409  * Use precise platform statistics if available:
410  */
411 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
412 
413 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
414 void vtime_common_task_switch(struct task_struct *prev)
415 {
416 	if (is_idle_task(prev))
417 		vtime_account_idle(prev);
418 	else
419 		vtime_account_system(prev);
420 
421 	vtime_flush(prev);
422 	arch_vtime_task_switch(prev);
423 }
424 #endif
425 
426 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
427 
428 
429 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430 /*
431  * Archs that account the whole time spent in the idle task
432  * (outside irq) as idle time can rely on this and just implement
433  * vtime_account_system() and vtime_account_idle(). Archs that
434  * have other meaning of the idle time (s390 only includes the
435  * time spent by the CPU when it's in low power mode) must override
436  * vtime_account().
437  */
438 #ifndef __ARCH_HAS_VTIME_ACCOUNT
439 void vtime_account_irq_enter(struct task_struct *tsk)
440 {
441 	if (!in_interrupt() && is_idle_task(tsk))
442 		vtime_account_idle(tsk);
443 	else
444 		vtime_account_system(tsk);
445 }
446 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
447 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
448 
449 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
450 {
451 	*ut = p->utime;
452 	*st = p->stime;
453 }
454 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
455 
456 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
457 {
458 	struct task_cputime cputime;
459 
460 	thread_group_cputime(p, &cputime);
461 
462 	*ut = cputime.utime;
463 	*st = cputime.stime;
464 }
465 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
466 /*
467  * Account a single tick of cpu time.
468  * @p: the process that the cpu time gets accounted to
469  * @user_tick: indicates if the tick is a user or a system tick
470  */
471 void account_process_tick(struct task_struct *p, int user_tick)
472 {
473 	u64 cputime, steal;
474 	struct rq *rq = this_rq();
475 
476 	if (vtime_accounting_cpu_enabled())
477 		return;
478 
479 	if (sched_clock_irqtime) {
480 		irqtime_account_process_tick(p, user_tick, rq, 1);
481 		return;
482 	}
483 
484 	cputime = TICK_NSEC;
485 	steal = steal_account_process_time(ULONG_MAX);
486 
487 	if (steal >= cputime)
488 		return;
489 
490 	cputime -= steal;
491 
492 	if (user_tick)
493 		account_user_time(p, cputime);
494 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
495 		account_system_time(p, HARDIRQ_OFFSET, cputime);
496 	else
497 		account_idle_time(cputime);
498 }
499 
500 /*
501  * Account multiple ticks of idle time.
502  * @ticks: number of stolen ticks
503  */
504 void account_idle_ticks(unsigned long ticks)
505 {
506 	u64 cputime, steal;
507 
508 	if (sched_clock_irqtime) {
509 		irqtime_account_idle_ticks(ticks);
510 		return;
511 	}
512 
513 	cputime = ticks * TICK_NSEC;
514 	steal = steal_account_process_time(ULONG_MAX);
515 
516 	if (steal >= cputime)
517 		return;
518 
519 	cputime -= steal;
520 	account_idle_time(cputime);
521 }
522 
523 /*
524  * Perform (stime * rtime) / total, but avoid multiplication overflow by
525  * loosing precision when the numbers are big.
526  */
527 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
528 {
529 	u64 scaled;
530 
531 	for (;;) {
532 		/* Make sure "rtime" is the bigger of stime/rtime */
533 		if (stime > rtime)
534 			swap(rtime, stime);
535 
536 		/* Make sure 'total' fits in 32 bits */
537 		if (total >> 32)
538 			goto drop_precision;
539 
540 		/* Does rtime (and thus stime) fit in 32 bits? */
541 		if (!(rtime >> 32))
542 			break;
543 
544 		/* Can we just balance rtime/stime rather than dropping bits? */
545 		if (stime >> 31)
546 			goto drop_precision;
547 
548 		/* We can grow stime and shrink rtime and try to make them both fit */
549 		stime <<= 1;
550 		rtime >>= 1;
551 		continue;
552 
553 drop_precision:
554 		/* We drop from rtime, it has more bits than stime */
555 		rtime >>= 1;
556 		total >>= 1;
557 	}
558 
559 	/*
560 	 * Make sure gcc understands that this is a 32x32->64 multiply,
561 	 * followed by a 64/32->64 divide.
562 	 */
563 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
564 	return scaled;
565 }
566 
567 /*
568  * Adjust tick based cputime random precision against scheduler runtime
569  * accounting.
570  *
571  * Tick based cputime accounting depend on random scheduling timeslices of a
572  * task to be interrupted or not by the timer.  Depending on these
573  * circumstances, the number of these interrupts may be over or
574  * under-optimistic, matching the real user and system cputime with a variable
575  * precision.
576  *
577  * Fix this by scaling these tick based values against the total runtime
578  * accounted by the CFS scheduler.
579  *
580  * This code provides the following guarantees:
581  *
582  *   stime + utime == rtime
583  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
584  *
585  * Assuming that rtime_i+1 >= rtime_i.
586  */
587 static void cputime_adjust(struct task_cputime *curr,
588 			   struct prev_cputime *prev,
589 			   u64 *ut, u64 *st)
590 {
591 	u64 rtime, stime, utime;
592 	unsigned long flags;
593 
594 	/* Serialize concurrent callers such that we can honour our guarantees */
595 	raw_spin_lock_irqsave(&prev->lock, flags);
596 	rtime = curr->sum_exec_runtime;
597 
598 	/*
599 	 * This is possible under two circumstances:
600 	 *  - rtime isn't monotonic after all (a bug);
601 	 *  - we got reordered by the lock.
602 	 *
603 	 * In both cases this acts as a filter such that the rest of the code
604 	 * can assume it is monotonic regardless of anything else.
605 	 */
606 	if (prev->stime + prev->utime >= rtime)
607 		goto out;
608 
609 	stime = curr->stime;
610 	utime = curr->utime;
611 
612 	/*
613 	 * If either stime or utime are 0, assume all runtime is userspace.
614 	 * Once a task gets some ticks, the monotonicy code at 'update:'
615 	 * will ensure things converge to the observed ratio.
616 	 */
617 	if (stime == 0) {
618 		utime = rtime;
619 		goto update;
620 	}
621 
622 	if (utime == 0) {
623 		stime = rtime;
624 		goto update;
625 	}
626 
627 	stime = scale_stime(stime, rtime, stime + utime);
628 
629 update:
630 	/*
631 	 * Make sure stime doesn't go backwards; this preserves monotonicity
632 	 * for utime because rtime is monotonic.
633 	 *
634 	 *  utime_i+1 = rtime_i+1 - stime_i
635 	 *            = rtime_i+1 - (rtime_i - utime_i)
636 	 *            = (rtime_i+1 - rtime_i) + utime_i
637 	 *            >= utime_i
638 	 */
639 	if (stime < prev->stime)
640 		stime = prev->stime;
641 	utime = rtime - stime;
642 
643 	/*
644 	 * Make sure utime doesn't go backwards; this still preserves
645 	 * monotonicity for stime, analogous argument to above.
646 	 */
647 	if (utime < prev->utime) {
648 		utime = prev->utime;
649 		stime = rtime - utime;
650 	}
651 
652 	prev->stime = stime;
653 	prev->utime = utime;
654 out:
655 	*ut = prev->utime;
656 	*st = prev->stime;
657 	raw_spin_unlock_irqrestore(&prev->lock, flags);
658 }
659 
660 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
661 {
662 	struct task_cputime cputime = {
663 		.sum_exec_runtime = p->se.sum_exec_runtime,
664 	};
665 
666 	task_cputime(p, &cputime.utime, &cputime.stime);
667 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
668 }
669 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
670 
671 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
672 {
673 	struct task_cputime cputime;
674 
675 	thread_group_cputime(p, &cputime);
676 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
677 }
678 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
679 
680 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
681 static u64 vtime_delta(struct vtime *vtime)
682 {
683 	unsigned long long clock;
684 
685 	clock = sched_clock();
686 	if (clock < vtime->starttime)
687 		return 0;
688 
689 	return clock - vtime->starttime;
690 }
691 
692 static u64 get_vtime_delta(struct vtime *vtime)
693 {
694 	u64 delta = vtime_delta(vtime);
695 	u64 other;
696 
697 	/*
698 	 * Unlike tick based timing, vtime based timing never has lost
699 	 * ticks, and no need for steal time accounting to make up for
700 	 * lost ticks. Vtime accounts a rounded version of actual
701 	 * elapsed time. Limit account_other_time to prevent rounding
702 	 * errors from causing elapsed vtime to go negative.
703 	 */
704 	other = account_other_time(delta);
705 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
706 	vtime->starttime += delta;
707 
708 	return delta - other;
709 }
710 
711 static void __vtime_account_system(struct task_struct *tsk,
712 				   struct vtime *vtime)
713 {
714 	vtime->stime += get_vtime_delta(vtime);
715 	if (vtime->stime >= TICK_NSEC) {
716 		account_system_time(tsk, irq_count(), vtime->stime);
717 		vtime->stime = 0;
718 	}
719 }
720 
721 static void vtime_account_guest(struct task_struct *tsk,
722 				struct vtime *vtime)
723 {
724 	vtime->gtime += get_vtime_delta(vtime);
725 	if (vtime->gtime >= TICK_NSEC) {
726 		account_guest_time(tsk, vtime->gtime);
727 		vtime->gtime = 0;
728 	}
729 }
730 
731 void vtime_account_system(struct task_struct *tsk)
732 {
733 	struct vtime *vtime = &tsk->vtime;
734 
735 	if (!vtime_delta(vtime))
736 		return;
737 
738 	write_seqcount_begin(&vtime->seqcount);
739 	/* We might have scheduled out from guest path */
740 	if (current->flags & PF_VCPU)
741 		vtime_account_guest(tsk, vtime);
742 	else
743 		__vtime_account_system(tsk, vtime);
744 	write_seqcount_end(&vtime->seqcount);
745 }
746 
747 void vtime_user_enter(struct task_struct *tsk)
748 {
749 	struct vtime *vtime = &tsk->vtime;
750 
751 	write_seqcount_begin(&vtime->seqcount);
752 	__vtime_account_system(tsk, vtime);
753 	vtime->state = VTIME_USER;
754 	write_seqcount_end(&vtime->seqcount);
755 }
756 
757 void vtime_user_exit(struct task_struct *tsk)
758 {
759 	struct vtime *vtime = &tsk->vtime;
760 
761 	write_seqcount_begin(&vtime->seqcount);
762 	vtime->utime += get_vtime_delta(vtime);
763 	if (vtime->utime >= TICK_NSEC) {
764 		account_user_time(tsk, vtime->utime);
765 		vtime->utime = 0;
766 	}
767 	vtime->state = VTIME_SYS;
768 	write_seqcount_end(&vtime->seqcount);
769 }
770 
771 void vtime_guest_enter(struct task_struct *tsk)
772 {
773 	struct vtime *vtime = &tsk->vtime;
774 	/*
775 	 * The flags must be updated under the lock with
776 	 * the vtime_starttime flush and update.
777 	 * That enforces a right ordering and update sequence
778 	 * synchronization against the reader (task_gtime())
779 	 * that can thus safely catch up with a tickless delta.
780 	 */
781 	write_seqcount_begin(&vtime->seqcount);
782 	__vtime_account_system(tsk, vtime);
783 	current->flags |= PF_VCPU;
784 	write_seqcount_end(&vtime->seqcount);
785 }
786 EXPORT_SYMBOL_GPL(vtime_guest_enter);
787 
788 void vtime_guest_exit(struct task_struct *tsk)
789 {
790 	struct vtime *vtime = &tsk->vtime;
791 
792 	write_seqcount_begin(&vtime->seqcount);
793 	vtime_account_guest(tsk, vtime);
794 	current->flags &= ~PF_VCPU;
795 	write_seqcount_end(&vtime->seqcount);
796 }
797 EXPORT_SYMBOL_GPL(vtime_guest_exit);
798 
799 void vtime_account_idle(struct task_struct *tsk)
800 {
801 	account_idle_time(get_vtime_delta(&tsk->vtime));
802 }
803 
804 void arch_vtime_task_switch(struct task_struct *prev)
805 {
806 	struct vtime *vtime = &prev->vtime;
807 
808 	write_seqcount_begin(&vtime->seqcount);
809 	vtime->state = VTIME_INACTIVE;
810 	write_seqcount_end(&vtime->seqcount);
811 
812 	vtime = &current->vtime;
813 
814 	write_seqcount_begin(&vtime->seqcount);
815 	vtime->state = VTIME_SYS;
816 	vtime->starttime = sched_clock();
817 	write_seqcount_end(&vtime->seqcount);
818 }
819 
820 void vtime_init_idle(struct task_struct *t, int cpu)
821 {
822 	struct vtime *vtime = &t->vtime;
823 	unsigned long flags;
824 
825 	local_irq_save(flags);
826 	write_seqcount_begin(&vtime->seqcount);
827 	vtime->state = VTIME_SYS;
828 	vtime->starttime = sched_clock();
829 	write_seqcount_end(&vtime->seqcount);
830 	local_irq_restore(flags);
831 }
832 
833 u64 task_gtime(struct task_struct *t)
834 {
835 	struct vtime *vtime = &t->vtime;
836 	unsigned int seq;
837 	u64 gtime;
838 
839 	if (!vtime_accounting_enabled())
840 		return t->gtime;
841 
842 	do {
843 		seq = read_seqcount_begin(&vtime->seqcount);
844 
845 		gtime = t->gtime;
846 		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
847 			gtime += vtime->gtime + vtime_delta(vtime);
848 
849 	} while (read_seqcount_retry(&vtime->seqcount, seq));
850 
851 	return gtime;
852 }
853 
854 /*
855  * Fetch cputime raw values from fields of task_struct and
856  * add up the pending nohz execution time since the last
857  * cputime snapshot.
858  */
859 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
860 {
861 	struct vtime *vtime = &t->vtime;
862 	unsigned int seq;
863 	u64 delta;
864 
865 	if (!vtime_accounting_enabled()) {
866 		*utime = t->utime;
867 		*stime = t->stime;
868 		return;
869 	}
870 
871 	do {
872 		seq = read_seqcount_begin(&vtime->seqcount);
873 
874 		*utime = t->utime;
875 		*stime = t->stime;
876 
877 		/* Task is sleeping, nothing to add */
878 		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
879 			continue;
880 
881 		delta = vtime_delta(vtime);
882 
883 		/*
884 		 * Task runs either in user or kernel space, add pending nohz time to
885 		 * the right place.
886 		 */
887 		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
888 			*utime += vtime->utime + delta;
889 		else if (vtime->state == VTIME_SYS)
890 			*stime += vtime->stime + delta;
891 	} while (read_seqcount_retry(&vtime->seqcount, seq));
892 }
893 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
894