xref: /linux/kernel/sched/core.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 
20 #include <linux/blkdev.h>
21 #include <linux/kprobes.h>
22 #include <linux/mmu_context.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/prefetch.h>
26 #include <linux/profile.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/sched/isolation.h>
30 
31 #include <asm/switch_to.h>
32 #include <asm/tlb.h>
33 #ifdef CONFIG_PARAVIRT
34 #include <asm/paravirt.h>
35 #endif
36 
37 #include "sched.h"
38 #include "../workqueue_internal.h"
39 #include "../smpboot.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/sched.h>
43 
44 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
45 
46 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
47 /*
48  * Debugging: various feature bits
49  *
50  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
51  * sysctl_sched_features, defined in sched.h, to allow constants propagation
52  * at compile time and compiler optimization based on features default.
53  */
54 #define SCHED_FEAT(name, enabled)	\
55 	(1UL << __SCHED_FEAT_##name) * enabled |
56 const_debug unsigned int sysctl_sched_features =
57 #include "features.h"
58 	0;
59 #undef SCHED_FEAT
60 #endif
61 
62 /*
63  * Number of tasks to iterate in a single balance run.
64  * Limited because this is done with IRQs disabled.
65  */
66 const_debug unsigned int sysctl_sched_nr_migrate = 32;
67 
68 /*
69  * period over which we average the RT time consumption, measured
70  * in ms.
71  *
72  * default: 1s
73  */
74 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
75 
76 /*
77  * period over which we measure -rt task CPU usage in us.
78  * default: 1s
79  */
80 unsigned int sysctl_sched_rt_period = 1000000;
81 
82 __read_mostly int scheduler_running;
83 
84 /*
85  * part of the period that we allow rt tasks to run in us.
86  * default: 0.95s
87  */
88 int sysctl_sched_rt_runtime = 950000;
89 
90 /*
91  * __task_rq_lock - lock the rq @p resides on.
92  */
93 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
94 	__acquires(rq->lock)
95 {
96 	struct rq *rq;
97 
98 	lockdep_assert_held(&p->pi_lock);
99 
100 	for (;;) {
101 		rq = task_rq(p);
102 		raw_spin_lock(&rq->lock);
103 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
104 			rq_pin_lock(rq, rf);
105 			return rq;
106 		}
107 		raw_spin_unlock(&rq->lock);
108 
109 		while (unlikely(task_on_rq_migrating(p)))
110 			cpu_relax();
111 	}
112 }
113 
114 /*
115  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
116  */
117 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
118 	__acquires(p->pi_lock)
119 	__acquires(rq->lock)
120 {
121 	struct rq *rq;
122 
123 	for (;;) {
124 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
125 		rq = task_rq(p);
126 		raw_spin_lock(&rq->lock);
127 		/*
128 		 *	move_queued_task()		task_rq_lock()
129 		 *
130 		 *	ACQUIRE (rq->lock)
131 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
132 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
133 		 *	[S] ->cpu = new_cpu		[L] task_rq()
134 		 *					[L] ->on_rq
135 		 *	RELEASE (rq->lock)
136 		 *
137 		 * If we observe the old cpu in task_rq_lock, the acquire of
138 		 * the old rq->lock will fully serialize against the stores.
139 		 *
140 		 * If we observe the new CPU in task_rq_lock, the acquire will
141 		 * pair with the WMB to ensure we must then also see migrating.
142 		 */
143 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
144 			rq_pin_lock(rq, rf);
145 			return rq;
146 		}
147 		raw_spin_unlock(&rq->lock);
148 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
149 
150 		while (unlikely(task_on_rq_migrating(p)))
151 			cpu_relax();
152 	}
153 }
154 
155 /*
156  * RQ-clock updating methods:
157  */
158 
159 static void update_rq_clock_task(struct rq *rq, s64 delta)
160 {
161 /*
162  * In theory, the compile should just see 0 here, and optimize out the call
163  * to sched_rt_avg_update. But I don't trust it...
164  */
165 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
166 	s64 steal = 0, irq_delta = 0;
167 #endif
168 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
169 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
170 
171 	/*
172 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
173 	 * this case when a previous update_rq_clock() happened inside a
174 	 * {soft,}irq region.
175 	 *
176 	 * When this happens, we stop ->clock_task and only update the
177 	 * prev_irq_time stamp to account for the part that fit, so that a next
178 	 * update will consume the rest. This ensures ->clock_task is
179 	 * monotonic.
180 	 *
181 	 * It does however cause some slight miss-attribution of {soft,}irq
182 	 * time, a more accurate solution would be to update the irq_time using
183 	 * the current rq->clock timestamp, except that would require using
184 	 * atomic ops.
185 	 */
186 	if (irq_delta > delta)
187 		irq_delta = delta;
188 
189 	rq->prev_irq_time += irq_delta;
190 	delta -= irq_delta;
191 #endif
192 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
193 	if (static_key_false((&paravirt_steal_rq_enabled))) {
194 		steal = paravirt_steal_clock(cpu_of(rq));
195 		steal -= rq->prev_steal_time_rq;
196 
197 		if (unlikely(steal > delta))
198 			steal = delta;
199 
200 		rq->prev_steal_time_rq += steal;
201 		delta -= steal;
202 	}
203 #endif
204 
205 	rq->clock_task += delta;
206 
207 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
208 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
209 		sched_rt_avg_update(rq, irq_delta + steal);
210 #endif
211 }
212 
213 void update_rq_clock(struct rq *rq)
214 {
215 	s64 delta;
216 
217 	lockdep_assert_held(&rq->lock);
218 
219 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
220 		return;
221 
222 #ifdef CONFIG_SCHED_DEBUG
223 	if (sched_feat(WARN_DOUBLE_CLOCK))
224 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
225 	rq->clock_update_flags |= RQCF_UPDATED;
226 #endif
227 
228 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
229 	if (delta < 0)
230 		return;
231 	rq->clock += delta;
232 	update_rq_clock_task(rq, delta);
233 }
234 
235 
236 #ifdef CONFIG_SCHED_HRTICK
237 /*
238  * Use HR-timers to deliver accurate preemption points.
239  */
240 
241 static void hrtick_clear(struct rq *rq)
242 {
243 	if (hrtimer_active(&rq->hrtick_timer))
244 		hrtimer_cancel(&rq->hrtick_timer);
245 }
246 
247 /*
248  * High-resolution timer tick.
249  * Runs from hardirq context with interrupts disabled.
250  */
251 static enum hrtimer_restart hrtick(struct hrtimer *timer)
252 {
253 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
254 	struct rq_flags rf;
255 
256 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
257 
258 	rq_lock(rq, &rf);
259 	update_rq_clock(rq);
260 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
261 	rq_unlock(rq, &rf);
262 
263 	return HRTIMER_NORESTART;
264 }
265 
266 #ifdef CONFIG_SMP
267 
268 static void __hrtick_restart(struct rq *rq)
269 {
270 	struct hrtimer *timer = &rq->hrtick_timer;
271 
272 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
273 }
274 
275 /*
276  * called from hardirq (IPI) context
277  */
278 static void __hrtick_start(void *arg)
279 {
280 	struct rq *rq = arg;
281 	struct rq_flags rf;
282 
283 	rq_lock(rq, &rf);
284 	__hrtick_restart(rq);
285 	rq->hrtick_csd_pending = 0;
286 	rq_unlock(rq, &rf);
287 }
288 
289 /*
290  * Called to set the hrtick timer state.
291  *
292  * called with rq->lock held and irqs disabled
293  */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 	struct hrtimer *timer = &rq->hrtick_timer;
297 	ktime_t time;
298 	s64 delta;
299 
300 	/*
301 	 * Don't schedule slices shorter than 10000ns, that just
302 	 * doesn't make sense and can cause timer DoS.
303 	 */
304 	delta = max_t(s64, delay, 10000LL);
305 	time = ktime_add_ns(timer->base->get_time(), delta);
306 
307 	hrtimer_set_expires(timer, time);
308 
309 	if (rq == this_rq()) {
310 		__hrtick_restart(rq);
311 	} else if (!rq->hrtick_csd_pending) {
312 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 		rq->hrtick_csd_pending = 1;
314 	}
315 }
316 
317 #else
318 /*
319  * Called to set the hrtick timer state.
320  *
321  * called with rq->lock held and irqs disabled
322  */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 	/*
326 	 * Don't schedule slices shorter than 10000ns, that just
327 	 * doesn't make sense. Rely on vruntime for fairness.
328 	 */
329 	delay = max_t(u64, delay, 10000LL);
330 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 		      HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334 
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 	rq->hrtick_csd_pending = 0;
339 
340 	rq->hrtick_csd.flags = 0;
341 	rq->hrtick_csd.func = __hrtick_start;
342 	rq->hrtick_csd.info = rq;
343 #endif
344 
345 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 	rq->hrtick_timer.function = hrtick;
347 }
348 #else	/* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352 
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif	/* CONFIG_SCHED_HRTICK */
357 
358 /*
359  * cmpxchg based fetch_or, macro so it works for different integer types
360  */
361 #define fetch_or(ptr, mask)						\
362 	({								\
363 		typeof(ptr) _ptr = (ptr);				\
364 		typeof(mask) _mask = (mask);				\
365 		typeof(*_ptr) _old, _val = *_ptr;			\
366 									\
367 		for (;;) {						\
368 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
369 			if (_old == _val)				\
370 				break;					\
371 			_val = _old;					\
372 		}							\
373 	_old;								\
374 })
375 
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379  * this avoids any races wrt polling state changes and thereby avoids
380  * spurious IPIs.
381  */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 	struct thread_info *ti = task_thread_info(p);
385 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387 
388 /*
389  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390  *
391  * If this returns true, then the idle task promises to call
392  * sched_ttwu_pending() and reschedule soon.
393  */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	struct thread_info *ti = task_thread_info(p);
397 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 
399 	for (;;) {
400 		if (!(val & _TIF_POLLING_NRFLAG))
401 			return false;
402 		if (val & _TIF_NEED_RESCHED)
403 			return true;
404 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 		if (old == val)
406 			break;
407 		val = old;
408 	}
409 	return true;
410 }
411 
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 	set_tsk_need_resched(p);
416 	return true;
417 }
418 
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 	return false;
423 }
424 #endif
425 #endif
426 
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 	struct wake_q_node *node = &task->wake_q;
430 
431 	/*
432 	 * Atomically grab the task, if ->wake_q is !nil already it means
433 	 * its already queued (either by us or someone else) and will get the
434 	 * wakeup due to that.
435 	 *
436 	 * This cmpxchg() implies a full barrier, which pairs with the write
437 	 * barrier implied by the wakeup in wake_up_q().
438 	 */
439 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 		return;
441 
442 	get_task_struct(task);
443 
444 	/*
445 	 * The head is context local, there can be no concurrency.
446 	 */
447 	*head->lastp = node;
448 	head->lastp = &node->next;
449 }
450 
451 void wake_up_q(struct wake_q_head *head)
452 {
453 	struct wake_q_node *node = head->first;
454 
455 	while (node != WAKE_Q_TAIL) {
456 		struct task_struct *task;
457 
458 		task = container_of(node, struct task_struct, wake_q);
459 		BUG_ON(!task);
460 		/* Task can safely be re-inserted now: */
461 		node = node->next;
462 		task->wake_q.next = NULL;
463 
464 		/*
465 		 * wake_up_process() implies a wmb() to pair with the queueing
466 		 * in wake_q_add() so as not to miss wakeups.
467 		 */
468 		wake_up_process(task);
469 		put_task_struct(task);
470 	}
471 }
472 
473 /*
474  * resched_curr - mark rq's current task 'to be rescheduled now'.
475  *
476  * On UP this means the setting of the need_resched flag, on SMP it
477  * might also involve a cross-CPU call to trigger the scheduler on
478  * the target CPU.
479  */
480 void resched_curr(struct rq *rq)
481 {
482 	struct task_struct *curr = rq->curr;
483 	int cpu;
484 
485 	lockdep_assert_held(&rq->lock);
486 
487 	if (test_tsk_need_resched(curr))
488 		return;
489 
490 	cpu = cpu_of(rq);
491 
492 	if (cpu == smp_processor_id()) {
493 		set_tsk_need_resched(curr);
494 		set_preempt_need_resched();
495 		return;
496 	}
497 
498 	if (set_nr_and_not_polling(curr))
499 		smp_send_reschedule(cpu);
500 	else
501 		trace_sched_wake_idle_without_ipi(cpu);
502 }
503 
504 void resched_cpu(int cpu)
505 {
506 	struct rq *rq = cpu_rq(cpu);
507 	unsigned long flags;
508 
509 	raw_spin_lock_irqsave(&rq->lock, flags);
510 	resched_curr(rq);
511 	raw_spin_unlock_irqrestore(&rq->lock, flags);
512 }
513 
514 #ifdef CONFIG_SMP
515 #ifdef CONFIG_NO_HZ_COMMON
516 /*
517  * In the semi idle case, use the nearest busy CPU for migrating timers
518  * from an idle CPU.  This is good for power-savings.
519  *
520  * We don't do similar optimization for completely idle system, as
521  * selecting an idle CPU will add more delays to the timers than intended
522  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523  */
524 int get_nohz_timer_target(void)
525 {
526 	int i, cpu = smp_processor_id();
527 	struct sched_domain *sd;
528 
529 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
530 		return cpu;
531 
532 	rcu_read_lock();
533 	for_each_domain(cpu, sd) {
534 		for_each_cpu(i, sched_domain_span(sd)) {
535 			if (cpu == i)
536 				continue;
537 
538 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
539 				cpu = i;
540 				goto unlock;
541 			}
542 		}
543 	}
544 
545 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
546 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
547 unlock:
548 	rcu_read_unlock();
549 	return cpu;
550 }
551 
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (cpu_is_offline(cpu))
584 		return true;  /* Don't try to wake offline CPUs. */
585 	if (tick_nohz_full_cpu(cpu)) {
586 		if (cpu != smp_processor_id() ||
587 		    tick_nohz_tick_stopped())
588 			tick_nohz_full_kick_cpu(cpu);
589 		return true;
590 	}
591 
592 	return false;
593 }
594 
595 /*
596  * Wake up the specified CPU.  If the CPU is going offline, it is the
597  * caller's responsibility to deal with the lost wakeup, for example,
598  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
599  */
600 void wake_up_nohz_cpu(int cpu)
601 {
602 	if (!wake_up_full_nohz_cpu(cpu))
603 		wake_up_idle_cpu(cpu);
604 }
605 
606 static inline bool got_nohz_idle_kick(void)
607 {
608 	int cpu = smp_processor_id();
609 
610 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
611 		return false;
612 
613 	if (idle_cpu(cpu) && !need_resched())
614 		return true;
615 
616 	/*
617 	 * We can't run Idle Load Balance on this CPU for this time so we
618 	 * cancel it and clear NOHZ_BALANCE_KICK
619 	 */
620 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
621 	return false;
622 }
623 
624 #else /* CONFIG_NO_HZ_COMMON */
625 
626 static inline bool got_nohz_idle_kick(void)
627 {
628 	return false;
629 }
630 
631 #endif /* CONFIG_NO_HZ_COMMON */
632 
633 #ifdef CONFIG_NO_HZ_FULL
634 bool sched_can_stop_tick(struct rq *rq)
635 {
636 	int fifo_nr_running;
637 
638 	/* Deadline tasks, even if single, need the tick */
639 	if (rq->dl.dl_nr_running)
640 		return false;
641 
642 	/*
643 	 * If there are more than one RR tasks, we need the tick to effect the
644 	 * actual RR behaviour.
645 	 */
646 	if (rq->rt.rr_nr_running) {
647 		if (rq->rt.rr_nr_running == 1)
648 			return true;
649 		else
650 			return false;
651 	}
652 
653 	/*
654 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
655 	 * forced preemption between FIFO tasks.
656 	 */
657 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
658 	if (fifo_nr_running)
659 		return true;
660 
661 	/*
662 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
663 	 * if there's more than one we need the tick for involuntary
664 	 * preemption.
665 	 */
666 	if (rq->nr_running > 1)
667 		return false;
668 
669 	return true;
670 }
671 #endif /* CONFIG_NO_HZ_FULL */
672 
673 void sched_avg_update(struct rq *rq)
674 {
675 	s64 period = sched_avg_period();
676 
677 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 		/*
679 		 * Inline assembly required to prevent the compiler
680 		 * optimising this loop into a divmod call.
681 		 * See __iter_div_u64_rem() for another example of this.
682 		 */
683 		asm("" : "+rm" (rq->age_stamp));
684 		rq->age_stamp += period;
685 		rq->rt_avg /= 2;
686 	}
687 }
688 
689 #endif /* CONFIG_SMP */
690 
691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693 /*
694  * Iterate task_group tree rooted at *from, calling @down when first entering a
695  * node and @up when leaving it for the final time.
696  *
697  * Caller must hold rcu_lock or sufficient equivalent.
698  */
699 int walk_tg_tree_from(struct task_group *from,
700 			     tg_visitor down, tg_visitor up, void *data)
701 {
702 	struct task_group *parent, *child;
703 	int ret;
704 
705 	parent = from;
706 
707 down:
708 	ret = (*down)(parent, data);
709 	if (ret)
710 		goto out;
711 	list_for_each_entry_rcu(child, &parent->children, siblings) {
712 		parent = child;
713 		goto down;
714 
715 up:
716 		continue;
717 	}
718 	ret = (*up)(parent, data);
719 	if (ret || parent == from)
720 		goto out;
721 
722 	child = parent;
723 	parent = parent->parent;
724 	if (parent)
725 		goto up;
726 out:
727 	return ret;
728 }
729 
730 int tg_nop(struct task_group *tg, void *data)
731 {
732 	return 0;
733 }
734 #endif
735 
736 static void set_load_weight(struct task_struct *p, bool update_load)
737 {
738 	int prio = p->static_prio - MAX_RT_PRIO;
739 	struct load_weight *load = &p->se.load;
740 
741 	/*
742 	 * SCHED_IDLE tasks get minimal weight:
743 	 */
744 	if (idle_policy(p->policy)) {
745 		load->weight = scale_load(WEIGHT_IDLEPRIO);
746 		load->inv_weight = WMULT_IDLEPRIO;
747 		return;
748 	}
749 
750 	/*
751 	 * SCHED_OTHER tasks have to update their load when changing their
752 	 * weight
753 	 */
754 	if (update_load && p->sched_class == &fair_sched_class) {
755 		reweight_task(p, prio);
756 	} else {
757 		load->weight = scale_load(sched_prio_to_weight[prio]);
758 		load->inv_weight = sched_prio_to_wmult[prio];
759 	}
760 }
761 
762 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
763 {
764 	if (!(flags & ENQUEUE_NOCLOCK))
765 		update_rq_clock(rq);
766 
767 	if (!(flags & ENQUEUE_RESTORE))
768 		sched_info_queued(rq, p);
769 
770 	p->sched_class->enqueue_task(rq, p, flags);
771 }
772 
773 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
774 {
775 	if (!(flags & DEQUEUE_NOCLOCK))
776 		update_rq_clock(rq);
777 
778 	if (!(flags & DEQUEUE_SAVE))
779 		sched_info_dequeued(rq, p);
780 
781 	p->sched_class->dequeue_task(rq, p, flags);
782 }
783 
784 void activate_task(struct rq *rq, struct task_struct *p, int flags)
785 {
786 	if (task_contributes_to_load(p))
787 		rq->nr_uninterruptible--;
788 
789 	enqueue_task(rq, p, flags);
790 }
791 
792 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
793 {
794 	if (task_contributes_to_load(p))
795 		rq->nr_uninterruptible++;
796 
797 	dequeue_task(rq, p, flags);
798 }
799 
800 /*
801  * __normal_prio - return the priority that is based on the static prio
802  */
803 static inline int __normal_prio(struct task_struct *p)
804 {
805 	return p->static_prio;
806 }
807 
808 /*
809  * Calculate the expected normal priority: i.e. priority
810  * without taking RT-inheritance into account. Might be
811  * boosted by interactivity modifiers. Changes upon fork,
812  * setprio syscalls, and whenever the interactivity
813  * estimator recalculates.
814  */
815 static inline int normal_prio(struct task_struct *p)
816 {
817 	int prio;
818 
819 	if (task_has_dl_policy(p))
820 		prio = MAX_DL_PRIO-1;
821 	else if (task_has_rt_policy(p))
822 		prio = MAX_RT_PRIO-1 - p->rt_priority;
823 	else
824 		prio = __normal_prio(p);
825 	return prio;
826 }
827 
828 /*
829  * Calculate the current priority, i.e. the priority
830  * taken into account by the scheduler. This value might
831  * be boosted by RT tasks, or might be boosted by
832  * interactivity modifiers. Will be RT if the task got
833  * RT-boosted. If not then it returns p->normal_prio.
834  */
835 static int effective_prio(struct task_struct *p)
836 {
837 	p->normal_prio = normal_prio(p);
838 	/*
839 	 * If we are RT tasks or we were boosted to RT priority,
840 	 * keep the priority unchanged. Otherwise, update priority
841 	 * to the normal priority:
842 	 */
843 	if (!rt_prio(p->prio))
844 		return p->normal_prio;
845 	return p->prio;
846 }
847 
848 /**
849  * task_curr - is this task currently executing on a CPU?
850  * @p: the task in question.
851  *
852  * Return: 1 if the task is currently executing. 0 otherwise.
853  */
854 inline int task_curr(const struct task_struct *p)
855 {
856 	return cpu_curr(task_cpu(p)) == p;
857 }
858 
859 /*
860  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
861  * use the balance_callback list if you want balancing.
862  *
863  * this means any call to check_class_changed() must be followed by a call to
864  * balance_callback().
865  */
866 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
867 				       const struct sched_class *prev_class,
868 				       int oldprio)
869 {
870 	if (prev_class != p->sched_class) {
871 		if (prev_class->switched_from)
872 			prev_class->switched_from(rq, p);
873 
874 		p->sched_class->switched_to(rq, p);
875 	} else if (oldprio != p->prio || dl_task(p))
876 		p->sched_class->prio_changed(rq, p, oldprio);
877 }
878 
879 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
880 {
881 	const struct sched_class *class;
882 
883 	if (p->sched_class == rq->curr->sched_class) {
884 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
885 	} else {
886 		for_each_class(class) {
887 			if (class == rq->curr->sched_class)
888 				break;
889 			if (class == p->sched_class) {
890 				resched_curr(rq);
891 				break;
892 			}
893 		}
894 	}
895 
896 	/*
897 	 * A queue event has occurred, and we're going to schedule.  In
898 	 * this case, we can save a useless back to back clock update.
899 	 */
900 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
901 		rq_clock_skip_update(rq, true);
902 }
903 
904 #ifdef CONFIG_SMP
905 /*
906  * This is how migration works:
907  *
908  * 1) we invoke migration_cpu_stop() on the target CPU using
909  *    stop_one_cpu().
910  * 2) stopper starts to run (implicitly forcing the migrated thread
911  *    off the CPU)
912  * 3) it checks whether the migrated task is still in the wrong runqueue.
913  * 4) if it's in the wrong runqueue then the migration thread removes
914  *    it and puts it into the right queue.
915  * 5) stopper completes and stop_one_cpu() returns and the migration
916  *    is done.
917  */
918 
919 /*
920  * move_queued_task - move a queued task to new rq.
921  *
922  * Returns (locked) new rq. Old rq's lock is released.
923  */
924 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
925 				   struct task_struct *p, int new_cpu)
926 {
927 	lockdep_assert_held(&rq->lock);
928 
929 	p->on_rq = TASK_ON_RQ_MIGRATING;
930 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
931 	set_task_cpu(p, new_cpu);
932 	rq_unlock(rq, rf);
933 
934 	rq = cpu_rq(new_cpu);
935 
936 	rq_lock(rq, rf);
937 	BUG_ON(task_cpu(p) != new_cpu);
938 	enqueue_task(rq, p, 0);
939 	p->on_rq = TASK_ON_RQ_QUEUED;
940 	check_preempt_curr(rq, p, 0);
941 
942 	return rq;
943 }
944 
945 struct migration_arg {
946 	struct task_struct *task;
947 	int dest_cpu;
948 };
949 
950 /*
951  * Move (not current) task off this CPU, onto the destination CPU. We're doing
952  * this because either it can't run here any more (set_cpus_allowed()
953  * away from this CPU, or CPU going down), or because we're
954  * attempting to rebalance this task on exec (sched_exec).
955  *
956  * So we race with normal scheduler movements, but that's OK, as long
957  * as the task is no longer on this CPU.
958  */
959 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
960 				 struct task_struct *p, int dest_cpu)
961 {
962 	if (p->flags & PF_KTHREAD) {
963 		if (unlikely(!cpu_online(dest_cpu)))
964 			return rq;
965 	} else {
966 		if (unlikely(!cpu_active(dest_cpu)))
967 			return rq;
968 	}
969 
970 	/* Affinity changed (again). */
971 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
972 		return rq;
973 
974 	update_rq_clock(rq);
975 	rq = move_queued_task(rq, rf, p, dest_cpu);
976 
977 	return rq;
978 }
979 
980 /*
981  * migration_cpu_stop - this will be executed by a highprio stopper thread
982  * and performs thread migration by bumping thread off CPU then
983  * 'pushing' onto another runqueue.
984  */
985 static int migration_cpu_stop(void *data)
986 {
987 	struct migration_arg *arg = data;
988 	struct task_struct *p = arg->task;
989 	struct rq *rq = this_rq();
990 	struct rq_flags rf;
991 
992 	/*
993 	 * The original target CPU might have gone down and we might
994 	 * be on another CPU but it doesn't matter.
995 	 */
996 	local_irq_disable();
997 	/*
998 	 * We need to explicitly wake pending tasks before running
999 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1000 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1001 	 */
1002 	sched_ttwu_pending();
1003 
1004 	raw_spin_lock(&p->pi_lock);
1005 	rq_lock(rq, &rf);
1006 	/*
1007 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1008 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1009 	 * we're holding p->pi_lock.
1010 	 */
1011 	if (task_rq(p) == rq) {
1012 		if (task_on_rq_queued(p))
1013 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1014 		else
1015 			p->wake_cpu = arg->dest_cpu;
1016 	}
1017 	rq_unlock(rq, &rf);
1018 	raw_spin_unlock(&p->pi_lock);
1019 
1020 	local_irq_enable();
1021 	return 0;
1022 }
1023 
1024 /*
1025  * sched_class::set_cpus_allowed must do the below, but is not required to
1026  * actually call this function.
1027  */
1028 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1029 {
1030 	cpumask_copy(&p->cpus_allowed, new_mask);
1031 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1032 }
1033 
1034 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1035 {
1036 	struct rq *rq = task_rq(p);
1037 	bool queued, running;
1038 
1039 	lockdep_assert_held(&p->pi_lock);
1040 
1041 	queued = task_on_rq_queued(p);
1042 	running = task_current(rq, p);
1043 
1044 	if (queued) {
1045 		/*
1046 		 * Because __kthread_bind() calls this on blocked tasks without
1047 		 * holding rq->lock.
1048 		 */
1049 		lockdep_assert_held(&rq->lock);
1050 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1051 	}
1052 	if (running)
1053 		put_prev_task(rq, p);
1054 
1055 	p->sched_class->set_cpus_allowed(p, new_mask);
1056 
1057 	if (queued)
1058 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1059 	if (running)
1060 		set_curr_task(rq, p);
1061 }
1062 
1063 /*
1064  * Change a given task's CPU affinity. Migrate the thread to a
1065  * proper CPU and schedule it away if the CPU it's executing on
1066  * is removed from the allowed bitmask.
1067  *
1068  * NOTE: the caller must have a valid reference to the task, the
1069  * task must not exit() & deallocate itself prematurely. The
1070  * call is not atomic; no spinlocks may be held.
1071  */
1072 static int __set_cpus_allowed_ptr(struct task_struct *p,
1073 				  const struct cpumask *new_mask, bool check)
1074 {
1075 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1076 	unsigned int dest_cpu;
1077 	struct rq_flags rf;
1078 	struct rq *rq;
1079 	int ret = 0;
1080 
1081 	rq = task_rq_lock(p, &rf);
1082 	update_rq_clock(rq);
1083 
1084 	if (p->flags & PF_KTHREAD) {
1085 		/*
1086 		 * Kernel threads are allowed on online && !active CPUs
1087 		 */
1088 		cpu_valid_mask = cpu_online_mask;
1089 	}
1090 
1091 	/*
1092 	 * Must re-check here, to close a race against __kthread_bind(),
1093 	 * sched_setaffinity() is not guaranteed to observe the flag.
1094 	 */
1095 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1096 		ret = -EINVAL;
1097 		goto out;
1098 	}
1099 
1100 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1101 		goto out;
1102 
1103 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1104 		ret = -EINVAL;
1105 		goto out;
1106 	}
1107 
1108 	do_set_cpus_allowed(p, new_mask);
1109 
1110 	if (p->flags & PF_KTHREAD) {
1111 		/*
1112 		 * For kernel threads that do indeed end up on online &&
1113 		 * !active we want to ensure they are strict per-CPU threads.
1114 		 */
1115 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1116 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1117 			p->nr_cpus_allowed != 1);
1118 	}
1119 
1120 	/* Can the task run on the task's current CPU? If so, we're done */
1121 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1122 		goto out;
1123 
1124 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1125 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1126 		struct migration_arg arg = { p, dest_cpu };
1127 		/* Need help from migration thread: drop lock and wait. */
1128 		task_rq_unlock(rq, p, &rf);
1129 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1130 		tlb_migrate_finish(p->mm);
1131 		return 0;
1132 	} else if (task_on_rq_queued(p)) {
1133 		/*
1134 		 * OK, since we're going to drop the lock immediately
1135 		 * afterwards anyway.
1136 		 */
1137 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1138 	}
1139 out:
1140 	task_rq_unlock(rq, p, &rf);
1141 
1142 	return ret;
1143 }
1144 
1145 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1146 {
1147 	return __set_cpus_allowed_ptr(p, new_mask, false);
1148 }
1149 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1150 
1151 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1152 {
1153 #ifdef CONFIG_SCHED_DEBUG
1154 	/*
1155 	 * We should never call set_task_cpu() on a blocked task,
1156 	 * ttwu() will sort out the placement.
1157 	 */
1158 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1159 			!p->on_rq);
1160 
1161 	/*
1162 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1163 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1164 	 * time relying on p->on_rq.
1165 	 */
1166 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1167 		     p->sched_class == &fair_sched_class &&
1168 		     (p->on_rq && !task_on_rq_migrating(p)));
1169 
1170 #ifdef CONFIG_LOCKDEP
1171 	/*
1172 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1173 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1174 	 *
1175 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1176 	 * see task_group().
1177 	 *
1178 	 * Furthermore, all task_rq users should acquire both locks, see
1179 	 * task_rq_lock().
1180 	 */
1181 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1182 				      lockdep_is_held(&task_rq(p)->lock)));
1183 #endif
1184 	/*
1185 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1186 	 */
1187 	WARN_ON_ONCE(!cpu_online(new_cpu));
1188 #endif
1189 
1190 	trace_sched_migrate_task(p, new_cpu);
1191 
1192 	if (task_cpu(p) != new_cpu) {
1193 		if (p->sched_class->migrate_task_rq)
1194 			p->sched_class->migrate_task_rq(p);
1195 		p->se.nr_migrations++;
1196 		perf_event_task_migrate(p);
1197 	}
1198 
1199 	__set_task_cpu(p, new_cpu);
1200 }
1201 
1202 static void __migrate_swap_task(struct task_struct *p, int cpu)
1203 {
1204 	if (task_on_rq_queued(p)) {
1205 		struct rq *src_rq, *dst_rq;
1206 		struct rq_flags srf, drf;
1207 
1208 		src_rq = task_rq(p);
1209 		dst_rq = cpu_rq(cpu);
1210 
1211 		rq_pin_lock(src_rq, &srf);
1212 		rq_pin_lock(dst_rq, &drf);
1213 
1214 		p->on_rq = TASK_ON_RQ_MIGRATING;
1215 		deactivate_task(src_rq, p, 0);
1216 		set_task_cpu(p, cpu);
1217 		activate_task(dst_rq, p, 0);
1218 		p->on_rq = TASK_ON_RQ_QUEUED;
1219 		check_preempt_curr(dst_rq, p, 0);
1220 
1221 		rq_unpin_lock(dst_rq, &drf);
1222 		rq_unpin_lock(src_rq, &srf);
1223 
1224 	} else {
1225 		/*
1226 		 * Task isn't running anymore; make it appear like we migrated
1227 		 * it before it went to sleep. This means on wakeup we make the
1228 		 * previous CPU our target instead of where it really is.
1229 		 */
1230 		p->wake_cpu = cpu;
1231 	}
1232 }
1233 
1234 struct migration_swap_arg {
1235 	struct task_struct *src_task, *dst_task;
1236 	int src_cpu, dst_cpu;
1237 };
1238 
1239 static int migrate_swap_stop(void *data)
1240 {
1241 	struct migration_swap_arg *arg = data;
1242 	struct rq *src_rq, *dst_rq;
1243 	int ret = -EAGAIN;
1244 
1245 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1246 		return -EAGAIN;
1247 
1248 	src_rq = cpu_rq(arg->src_cpu);
1249 	dst_rq = cpu_rq(arg->dst_cpu);
1250 
1251 	double_raw_lock(&arg->src_task->pi_lock,
1252 			&arg->dst_task->pi_lock);
1253 	double_rq_lock(src_rq, dst_rq);
1254 
1255 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1256 		goto unlock;
1257 
1258 	if (task_cpu(arg->src_task) != arg->src_cpu)
1259 		goto unlock;
1260 
1261 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1262 		goto unlock;
1263 
1264 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1265 		goto unlock;
1266 
1267 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1268 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1269 
1270 	ret = 0;
1271 
1272 unlock:
1273 	double_rq_unlock(src_rq, dst_rq);
1274 	raw_spin_unlock(&arg->dst_task->pi_lock);
1275 	raw_spin_unlock(&arg->src_task->pi_lock);
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * Cross migrate two tasks
1282  */
1283 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1284 {
1285 	struct migration_swap_arg arg;
1286 	int ret = -EINVAL;
1287 
1288 	arg = (struct migration_swap_arg){
1289 		.src_task = cur,
1290 		.src_cpu = task_cpu(cur),
1291 		.dst_task = p,
1292 		.dst_cpu = task_cpu(p),
1293 	};
1294 
1295 	if (arg.src_cpu == arg.dst_cpu)
1296 		goto out;
1297 
1298 	/*
1299 	 * These three tests are all lockless; this is OK since all of them
1300 	 * will be re-checked with proper locks held further down the line.
1301 	 */
1302 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1303 		goto out;
1304 
1305 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1306 		goto out;
1307 
1308 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1309 		goto out;
1310 
1311 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1312 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1313 
1314 out:
1315 	return ret;
1316 }
1317 
1318 /*
1319  * wait_task_inactive - wait for a thread to unschedule.
1320  *
1321  * If @match_state is nonzero, it's the @p->state value just checked and
1322  * not expected to change.  If it changes, i.e. @p might have woken up,
1323  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1324  * we return a positive number (its total switch count).  If a second call
1325  * a short while later returns the same number, the caller can be sure that
1326  * @p has remained unscheduled the whole time.
1327  *
1328  * The caller must ensure that the task *will* unschedule sometime soon,
1329  * else this function might spin for a *long* time. This function can't
1330  * be called with interrupts off, or it may introduce deadlock with
1331  * smp_call_function() if an IPI is sent by the same process we are
1332  * waiting to become inactive.
1333  */
1334 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1335 {
1336 	int running, queued;
1337 	struct rq_flags rf;
1338 	unsigned long ncsw;
1339 	struct rq *rq;
1340 
1341 	for (;;) {
1342 		/*
1343 		 * We do the initial early heuristics without holding
1344 		 * any task-queue locks at all. We'll only try to get
1345 		 * the runqueue lock when things look like they will
1346 		 * work out!
1347 		 */
1348 		rq = task_rq(p);
1349 
1350 		/*
1351 		 * If the task is actively running on another CPU
1352 		 * still, just relax and busy-wait without holding
1353 		 * any locks.
1354 		 *
1355 		 * NOTE! Since we don't hold any locks, it's not
1356 		 * even sure that "rq" stays as the right runqueue!
1357 		 * But we don't care, since "task_running()" will
1358 		 * return false if the runqueue has changed and p
1359 		 * is actually now running somewhere else!
1360 		 */
1361 		while (task_running(rq, p)) {
1362 			if (match_state && unlikely(p->state != match_state))
1363 				return 0;
1364 			cpu_relax();
1365 		}
1366 
1367 		/*
1368 		 * Ok, time to look more closely! We need the rq
1369 		 * lock now, to be *sure*. If we're wrong, we'll
1370 		 * just go back and repeat.
1371 		 */
1372 		rq = task_rq_lock(p, &rf);
1373 		trace_sched_wait_task(p);
1374 		running = task_running(rq, p);
1375 		queued = task_on_rq_queued(p);
1376 		ncsw = 0;
1377 		if (!match_state || p->state == match_state)
1378 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1379 		task_rq_unlock(rq, p, &rf);
1380 
1381 		/*
1382 		 * If it changed from the expected state, bail out now.
1383 		 */
1384 		if (unlikely(!ncsw))
1385 			break;
1386 
1387 		/*
1388 		 * Was it really running after all now that we
1389 		 * checked with the proper locks actually held?
1390 		 *
1391 		 * Oops. Go back and try again..
1392 		 */
1393 		if (unlikely(running)) {
1394 			cpu_relax();
1395 			continue;
1396 		}
1397 
1398 		/*
1399 		 * It's not enough that it's not actively running,
1400 		 * it must be off the runqueue _entirely_, and not
1401 		 * preempted!
1402 		 *
1403 		 * So if it was still runnable (but just not actively
1404 		 * running right now), it's preempted, and we should
1405 		 * yield - it could be a while.
1406 		 */
1407 		if (unlikely(queued)) {
1408 			ktime_t to = NSEC_PER_SEC / HZ;
1409 
1410 			set_current_state(TASK_UNINTERRUPTIBLE);
1411 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1412 			continue;
1413 		}
1414 
1415 		/*
1416 		 * Ahh, all good. It wasn't running, and it wasn't
1417 		 * runnable, which means that it will never become
1418 		 * running in the future either. We're all done!
1419 		 */
1420 		break;
1421 	}
1422 
1423 	return ncsw;
1424 }
1425 
1426 /***
1427  * kick_process - kick a running thread to enter/exit the kernel
1428  * @p: the to-be-kicked thread
1429  *
1430  * Cause a process which is running on another CPU to enter
1431  * kernel-mode, without any delay. (to get signals handled.)
1432  *
1433  * NOTE: this function doesn't have to take the runqueue lock,
1434  * because all it wants to ensure is that the remote task enters
1435  * the kernel. If the IPI races and the task has been migrated
1436  * to another CPU then no harm is done and the purpose has been
1437  * achieved as well.
1438  */
1439 void kick_process(struct task_struct *p)
1440 {
1441 	int cpu;
1442 
1443 	preempt_disable();
1444 	cpu = task_cpu(p);
1445 	if ((cpu != smp_processor_id()) && task_curr(p))
1446 		smp_send_reschedule(cpu);
1447 	preempt_enable();
1448 }
1449 EXPORT_SYMBOL_GPL(kick_process);
1450 
1451 /*
1452  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1453  *
1454  * A few notes on cpu_active vs cpu_online:
1455  *
1456  *  - cpu_active must be a subset of cpu_online
1457  *
1458  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1459  *    see __set_cpus_allowed_ptr(). At this point the newly online
1460  *    CPU isn't yet part of the sched domains, and balancing will not
1461  *    see it.
1462  *
1463  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1464  *    avoid the load balancer to place new tasks on the to be removed
1465  *    CPU. Existing tasks will remain running there and will be taken
1466  *    off.
1467  *
1468  * This means that fallback selection must not select !active CPUs.
1469  * And can assume that any active CPU must be online. Conversely
1470  * select_task_rq() below may allow selection of !active CPUs in order
1471  * to satisfy the above rules.
1472  */
1473 static int select_fallback_rq(int cpu, struct task_struct *p)
1474 {
1475 	int nid = cpu_to_node(cpu);
1476 	const struct cpumask *nodemask = NULL;
1477 	enum { cpuset, possible, fail } state = cpuset;
1478 	int dest_cpu;
1479 
1480 	/*
1481 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1482 	 * will return -1. There is no CPU on the node, and we should
1483 	 * select the CPU on the other node.
1484 	 */
1485 	if (nid != -1) {
1486 		nodemask = cpumask_of_node(nid);
1487 
1488 		/* Look for allowed, online CPU in same node. */
1489 		for_each_cpu(dest_cpu, nodemask) {
1490 			if (!cpu_active(dest_cpu))
1491 				continue;
1492 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1493 				return dest_cpu;
1494 		}
1495 	}
1496 
1497 	for (;;) {
1498 		/* Any allowed, online CPU? */
1499 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1500 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1501 				continue;
1502 			if (!cpu_online(dest_cpu))
1503 				continue;
1504 			goto out;
1505 		}
1506 
1507 		/* No more Mr. Nice Guy. */
1508 		switch (state) {
1509 		case cpuset:
1510 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1511 				cpuset_cpus_allowed_fallback(p);
1512 				state = possible;
1513 				break;
1514 			}
1515 			/* Fall-through */
1516 		case possible:
1517 			do_set_cpus_allowed(p, cpu_possible_mask);
1518 			state = fail;
1519 			break;
1520 
1521 		case fail:
1522 			BUG();
1523 			break;
1524 		}
1525 	}
1526 
1527 out:
1528 	if (state != cpuset) {
1529 		/*
1530 		 * Don't tell them about moving exiting tasks or
1531 		 * kernel threads (both mm NULL), since they never
1532 		 * leave kernel.
1533 		 */
1534 		if (p->mm && printk_ratelimit()) {
1535 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1536 					task_pid_nr(p), p->comm, cpu);
1537 		}
1538 	}
1539 
1540 	return dest_cpu;
1541 }
1542 
1543 /*
1544  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1545  */
1546 static inline
1547 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1548 {
1549 	lockdep_assert_held(&p->pi_lock);
1550 
1551 	if (p->nr_cpus_allowed > 1)
1552 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1553 	else
1554 		cpu = cpumask_any(&p->cpus_allowed);
1555 
1556 	/*
1557 	 * In order not to call set_task_cpu() on a blocking task we need
1558 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1559 	 * CPU.
1560 	 *
1561 	 * Since this is common to all placement strategies, this lives here.
1562 	 *
1563 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1564 	 *   not worry about this generic constraint ]
1565 	 */
1566 	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1567 		     !cpu_online(cpu)))
1568 		cpu = select_fallback_rq(task_cpu(p), p);
1569 
1570 	return cpu;
1571 }
1572 
1573 static void update_avg(u64 *avg, u64 sample)
1574 {
1575 	s64 diff = sample - *avg;
1576 	*avg += diff >> 3;
1577 }
1578 
1579 void sched_set_stop_task(int cpu, struct task_struct *stop)
1580 {
1581 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1582 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1583 
1584 	if (stop) {
1585 		/*
1586 		 * Make it appear like a SCHED_FIFO task, its something
1587 		 * userspace knows about and won't get confused about.
1588 		 *
1589 		 * Also, it will make PI more or less work without too
1590 		 * much confusion -- but then, stop work should not
1591 		 * rely on PI working anyway.
1592 		 */
1593 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1594 
1595 		stop->sched_class = &stop_sched_class;
1596 	}
1597 
1598 	cpu_rq(cpu)->stop = stop;
1599 
1600 	if (old_stop) {
1601 		/*
1602 		 * Reset it back to a normal scheduling class so that
1603 		 * it can die in pieces.
1604 		 */
1605 		old_stop->sched_class = &rt_sched_class;
1606 	}
1607 }
1608 
1609 #else
1610 
1611 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1612 					 const struct cpumask *new_mask, bool check)
1613 {
1614 	return set_cpus_allowed_ptr(p, new_mask);
1615 }
1616 
1617 #endif /* CONFIG_SMP */
1618 
1619 static void
1620 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1621 {
1622 	struct rq *rq;
1623 
1624 	if (!schedstat_enabled())
1625 		return;
1626 
1627 	rq = this_rq();
1628 
1629 #ifdef CONFIG_SMP
1630 	if (cpu == rq->cpu) {
1631 		schedstat_inc(rq->ttwu_local);
1632 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1633 	} else {
1634 		struct sched_domain *sd;
1635 
1636 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1637 		rcu_read_lock();
1638 		for_each_domain(rq->cpu, sd) {
1639 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1640 				schedstat_inc(sd->ttwu_wake_remote);
1641 				break;
1642 			}
1643 		}
1644 		rcu_read_unlock();
1645 	}
1646 
1647 	if (wake_flags & WF_MIGRATED)
1648 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1649 #endif /* CONFIG_SMP */
1650 
1651 	schedstat_inc(rq->ttwu_count);
1652 	schedstat_inc(p->se.statistics.nr_wakeups);
1653 
1654 	if (wake_flags & WF_SYNC)
1655 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1656 }
1657 
1658 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1659 {
1660 	activate_task(rq, p, en_flags);
1661 	p->on_rq = TASK_ON_RQ_QUEUED;
1662 
1663 	/* If a worker is waking up, notify the workqueue: */
1664 	if (p->flags & PF_WQ_WORKER)
1665 		wq_worker_waking_up(p, cpu_of(rq));
1666 }
1667 
1668 /*
1669  * Mark the task runnable and perform wakeup-preemption.
1670  */
1671 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1672 			   struct rq_flags *rf)
1673 {
1674 	check_preempt_curr(rq, p, wake_flags);
1675 	p->state = TASK_RUNNING;
1676 	trace_sched_wakeup(p);
1677 
1678 #ifdef CONFIG_SMP
1679 	if (p->sched_class->task_woken) {
1680 		/*
1681 		 * Our task @p is fully woken up and running; so its safe to
1682 		 * drop the rq->lock, hereafter rq is only used for statistics.
1683 		 */
1684 		rq_unpin_lock(rq, rf);
1685 		p->sched_class->task_woken(rq, p);
1686 		rq_repin_lock(rq, rf);
1687 	}
1688 
1689 	if (rq->idle_stamp) {
1690 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1691 		u64 max = 2*rq->max_idle_balance_cost;
1692 
1693 		update_avg(&rq->avg_idle, delta);
1694 
1695 		if (rq->avg_idle > max)
1696 			rq->avg_idle = max;
1697 
1698 		rq->idle_stamp = 0;
1699 	}
1700 #endif
1701 }
1702 
1703 static void
1704 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1705 		 struct rq_flags *rf)
1706 {
1707 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1708 
1709 	lockdep_assert_held(&rq->lock);
1710 
1711 #ifdef CONFIG_SMP
1712 	if (p->sched_contributes_to_load)
1713 		rq->nr_uninterruptible--;
1714 
1715 	if (wake_flags & WF_MIGRATED)
1716 		en_flags |= ENQUEUE_MIGRATED;
1717 #endif
1718 
1719 	ttwu_activate(rq, p, en_flags);
1720 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1721 }
1722 
1723 /*
1724  * Called in case the task @p isn't fully descheduled from its runqueue,
1725  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1726  * since all we need to do is flip p->state to TASK_RUNNING, since
1727  * the task is still ->on_rq.
1728  */
1729 static int ttwu_remote(struct task_struct *p, int wake_flags)
1730 {
1731 	struct rq_flags rf;
1732 	struct rq *rq;
1733 	int ret = 0;
1734 
1735 	rq = __task_rq_lock(p, &rf);
1736 	if (task_on_rq_queued(p)) {
1737 		/* check_preempt_curr() may use rq clock */
1738 		update_rq_clock(rq);
1739 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1740 		ret = 1;
1741 	}
1742 	__task_rq_unlock(rq, &rf);
1743 
1744 	return ret;
1745 }
1746 
1747 #ifdef CONFIG_SMP
1748 void sched_ttwu_pending(void)
1749 {
1750 	struct rq *rq = this_rq();
1751 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1752 	struct task_struct *p, *t;
1753 	struct rq_flags rf;
1754 
1755 	if (!llist)
1756 		return;
1757 
1758 	rq_lock_irqsave(rq, &rf);
1759 	update_rq_clock(rq);
1760 
1761 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1762 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1763 
1764 	rq_unlock_irqrestore(rq, &rf);
1765 }
1766 
1767 void scheduler_ipi(void)
1768 {
1769 	/*
1770 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1771 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1772 	 * this IPI.
1773 	 */
1774 	preempt_fold_need_resched();
1775 
1776 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1777 		return;
1778 
1779 	/*
1780 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1781 	 * traditionally all their work was done from the interrupt return
1782 	 * path. Now that we actually do some work, we need to make sure
1783 	 * we do call them.
1784 	 *
1785 	 * Some archs already do call them, luckily irq_enter/exit nest
1786 	 * properly.
1787 	 *
1788 	 * Arguably we should visit all archs and update all handlers,
1789 	 * however a fair share of IPIs are still resched only so this would
1790 	 * somewhat pessimize the simple resched case.
1791 	 */
1792 	irq_enter();
1793 	sched_ttwu_pending();
1794 
1795 	/*
1796 	 * Check if someone kicked us for doing the nohz idle load balance.
1797 	 */
1798 	if (unlikely(got_nohz_idle_kick())) {
1799 		this_rq()->idle_balance = 1;
1800 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1801 	}
1802 	irq_exit();
1803 }
1804 
1805 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1806 {
1807 	struct rq *rq = cpu_rq(cpu);
1808 
1809 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1810 
1811 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1812 		if (!set_nr_if_polling(rq->idle))
1813 			smp_send_reschedule(cpu);
1814 		else
1815 			trace_sched_wake_idle_without_ipi(cpu);
1816 	}
1817 }
1818 
1819 void wake_up_if_idle(int cpu)
1820 {
1821 	struct rq *rq = cpu_rq(cpu);
1822 	struct rq_flags rf;
1823 
1824 	rcu_read_lock();
1825 
1826 	if (!is_idle_task(rcu_dereference(rq->curr)))
1827 		goto out;
1828 
1829 	if (set_nr_if_polling(rq->idle)) {
1830 		trace_sched_wake_idle_without_ipi(cpu);
1831 	} else {
1832 		rq_lock_irqsave(rq, &rf);
1833 		if (is_idle_task(rq->curr))
1834 			smp_send_reschedule(cpu);
1835 		/* Else CPU is not idle, do nothing here: */
1836 		rq_unlock_irqrestore(rq, &rf);
1837 	}
1838 
1839 out:
1840 	rcu_read_unlock();
1841 }
1842 
1843 bool cpus_share_cache(int this_cpu, int that_cpu)
1844 {
1845 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1846 }
1847 #endif /* CONFIG_SMP */
1848 
1849 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1850 {
1851 	struct rq *rq = cpu_rq(cpu);
1852 	struct rq_flags rf;
1853 
1854 #if defined(CONFIG_SMP)
1855 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1856 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1857 		ttwu_queue_remote(p, cpu, wake_flags);
1858 		return;
1859 	}
1860 #endif
1861 
1862 	rq_lock(rq, &rf);
1863 	update_rq_clock(rq);
1864 	ttwu_do_activate(rq, p, wake_flags, &rf);
1865 	rq_unlock(rq, &rf);
1866 }
1867 
1868 /*
1869  * Notes on Program-Order guarantees on SMP systems.
1870  *
1871  *  MIGRATION
1872  *
1873  * The basic program-order guarantee on SMP systems is that when a task [t]
1874  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1875  * execution on its new CPU [c1].
1876  *
1877  * For migration (of runnable tasks) this is provided by the following means:
1878  *
1879  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1880  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1881  *     rq(c1)->lock (if not at the same time, then in that order).
1882  *  C) LOCK of the rq(c1)->lock scheduling in task
1883  *
1884  * Transitivity guarantees that B happens after A and C after B.
1885  * Note: we only require RCpc transitivity.
1886  * Note: the CPU doing B need not be c0 or c1
1887  *
1888  * Example:
1889  *
1890  *   CPU0            CPU1            CPU2
1891  *
1892  *   LOCK rq(0)->lock
1893  *   sched-out X
1894  *   sched-in Y
1895  *   UNLOCK rq(0)->lock
1896  *
1897  *                                   LOCK rq(0)->lock // orders against CPU0
1898  *                                   dequeue X
1899  *                                   UNLOCK rq(0)->lock
1900  *
1901  *                                   LOCK rq(1)->lock
1902  *                                   enqueue X
1903  *                                   UNLOCK rq(1)->lock
1904  *
1905  *                   LOCK rq(1)->lock // orders against CPU2
1906  *                   sched-out Z
1907  *                   sched-in X
1908  *                   UNLOCK rq(1)->lock
1909  *
1910  *
1911  *  BLOCKING -- aka. SLEEP + WAKEUP
1912  *
1913  * For blocking we (obviously) need to provide the same guarantee as for
1914  * migration. However the means are completely different as there is no lock
1915  * chain to provide order. Instead we do:
1916  *
1917  *   1) smp_store_release(X->on_cpu, 0)
1918  *   2) smp_cond_load_acquire(!X->on_cpu)
1919  *
1920  * Example:
1921  *
1922  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1923  *
1924  *   LOCK rq(0)->lock LOCK X->pi_lock
1925  *   dequeue X
1926  *   sched-out X
1927  *   smp_store_release(X->on_cpu, 0);
1928  *
1929  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1930  *                    X->state = WAKING
1931  *                    set_task_cpu(X,2)
1932  *
1933  *                    LOCK rq(2)->lock
1934  *                    enqueue X
1935  *                    X->state = RUNNING
1936  *                    UNLOCK rq(2)->lock
1937  *
1938  *                                          LOCK rq(2)->lock // orders against CPU1
1939  *                                          sched-out Z
1940  *                                          sched-in X
1941  *                                          UNLOCK rq(2)->lock
1942  *
1943  *                    UNLOCK X->pi_lock
1944  *   UNLOCK rq(0)->lock
1945  *
1946  *
1947  * However; for wakeups there is a second guarantee we must provide, namely we
1948  * must observe the state that lead to our wakeup. That is, not only must our
1949  * task observe its own prior state, it must also observe the stores prior to
1950  * its wakeup.
1951  *
1952  * This means that any means of doing remote wakeups must order the CPU doing
1953  * the wakeup against the CPU the task is going to end up running on. This,
1954  * however, is already required for the regular Program-Order guarantee above,
1955  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1956  *
1957  */
1958 
1959 /**
1960  * try_to_wake_up - wake up a thread
1961  * @p: the thread to be awakened
1962  * @state: the mask of task states that can be woken
1963  * @wake_flags: wake modifier flags (WF_*)
1964  *
1965  * If (@state & @p->state) @p->state = TASK_RUNNING.
1966  *
1967  * If the task was not queued/runnable, also place it back on a runqueue.
1968  *
1969  * Atomic against schedule() which would dequeue a task, also see
1970  * set_current_state().
1971  *
1972  * Return: %true if @p->state changes (an actual wakeup was done),
1973  *	   %false otherwise.
1974  */
1975 static int
1976 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1977 {
1978 	unsigned long flags;
1979 	int cpu, success = 0;
1980 
1981 	/*
1982 	 * If we are going to wake up a thread waiting for CONDITION we
1983 	 * need to ensure that CONDITION=1 done by the caller can not be
1984 	 * reordered with p->state check below. This pairs with mb() in
1985 	 * set_current_state() the waiting thread does.
1986 	 */
1987 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1988 	smp_mb__after_spinlock();
1989 	if (!(p->state & state))
1990 		goto out;
1991 
1992 	trace_sched_waking(p);
1993 
1994 	/* We're going to change ->state: */
1995 	success = 1;
1996 	cpu = task_cpu(p);
1997 
1998 	/*
1999 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2000 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2001 	 * in smp_cond_load_acquire() below.
2002 	 *
2003 	 * sched_ttwu_pending()                 try_to_wake_up()
2004 	 *   [S] p->on_rq = 1;                  [L] P->state
2005 	 *       UNLOCK rq->lock  -----.
2006 	 *                              \
2007 	 *				 +---   RMB
2008 	 * schedule()                   /
2009 	 *       LOCK rq->lock    -----'
2010 	 *       UNLOCK rq->lock
2011 	 *
2012 	 * [task p]
2013 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2014 	 *
2015 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2016 	 * last wakeup of our task and the schedule that got our task
2017 	 * current.
2018 	 */
2019 	smp_rmb();
2020 	if (p->on_rq && ttwu_remote(p, wake_flags))
2021 		goto stat;
2022 
2023 #ifdef CONFIG_SMP
2024 	/*
2025 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2026 	 * possible to, falsely, observe p->on_cpu == 0.
2027 	 *
2028 	 * One must be running (->on_cpu == 1) in order to remove oneself
2029 	 * from the runqueue.
2030 	 *
2031 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2032 	 *      UNLOCK rq->lock
2033 	 *			RMB
2034 	 *      LOCK   rq->lock
2035 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2036 	 *
2037 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2038 	 * from the consecutive calls to schedule(); the first switching to our
2039 	 * task, the second putting it to sleep.
2040 	 */
2041 	smp_rmb();
2042 
2043 	/*
2044 	 * If the owning (remote) CPU is still in the middle of schedule() with
2045 	 * this task as prev, wait until its done referencing the task.
2046 	 *
2047 	 * Pairs with the smp_store_release() in finish_lock_switch().
2048 	 *
2049 	 * This ensures that tasks getting woken will be fully ordered against
2050 	 * their previous state and preserve Program Order.
2051 	 */
2052 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2053 
2054 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2055 	p->state = TASK_WAKING;
2056 
2057 	if (p->in_iowait) {
2058 		delayacct_blkio_end();
2059 		atomic_dec(&task_rq(p)->nr_iowait);
2060 	}
2061 
2062 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2063 	if (task_cpu(p) != cpu) {
2064 		wake_flags |= WF_MIGRATED;
2065 		set_task_cpu(p, cpu);
2066 	}
2067 
2068 #else /* CONFIG_SMP */
2069 
2070 	if (p->in_iowait) {
2071 		delayacct_blkio_end();
2072 		atomic_dec(&task_rq(p)->nr_iowait);
2073 	}
2074 
2075 #endif /* CONFIG_SMP */
2076 
2077 	ttwu_queue(p, cpu, wake_flags);
2078 stat:
2079 	ttwu_stat(p, cpu, wake_flags);
2080 out:
2081 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2082 
2083 	return success;
2084 }
2085 
2086 /**
2087  * try_to_wake_up_local - try to wake up a local task with rq lock held
2088  * @p: the thread to be awakened
2089  * @rf: request-queue flags for pinning
2090  *
2091  * Put @p on the run-queue if it's not already there. The caller must
2092  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2093  * the current task.
2094  */
2095 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2096 {
2097 	struct rq *rq = task_rq(p);
2098 
2099 	if (WARN_ON_ONCE(rq != this_rq()) ||
2100 	    WARN_ON_ONCE(p == current))
2101 		return;
2102 
2103 	lockdep_assert_held(&rq->lock);
2104 
2105 	if (!raw_spin_trylock(&p->pi_lock)) {
2106 		/*
2107 		 * This is OK, because current is on_cpu, which avoids it being
2108 		 * picked for load-balance and preemption/IRQs are still
2109 		 * disabled avoiding further scheduler activity on it and we've
2110 		 * not yet picked a replacement task.
2111 		 */
2112 		rq_unlock(rq, rf);
2113 		raw_spin_lock(&p->pi_lock);
2114 		rq_relock(rq, rf);
2115 	}
2116 
2117 	if (!(p->state & TASK_NORMAL))
2118 		goto out;
2119 
2120 	trace_sched_waking(p);
2121 
2122 	if (!task_on_rq_queued(p)) {
2123 		if (p->in_iowait) {
2124 			delayacct_blkio_end();
2125 			atomic_dec(&rq->nr_iowait);
2126 		}
2127 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2128 	}
2129 
2130 	ttwu_do_wakeup(rq, p, 0, rf);
2131 	ttwu_stat(p, smp_processor_id(), 0);
2132 out:
2133 	raw_spin_unlock(&p->pi_lock);
2134 }
2135 
2136 /**
2137  * wake_up_process - Wake up a specific process
2138  * @p: The process to be woken up.
2139  *
2140  * Attempt to wake up the nominated process and move it to the set of runnable
2141  * processes.
2142  *
2143  * Return: 1 if the process was woken up, 0 if it was already running.
2144  *
2145  * It may be assumed that this function implies a write memory barrier before
2146  * changing the task state if and only if any tasks are woken up.
2147  */
2148 int wake_up_process(struct task_struct *p)
2149 {
2150 	return try_to_wake_up(p, TASK_NORMAL, 0);
2151 }
2152 EXPORT_SYMBOL(wake_up_process);
2153 
2154 int wake_up_state(struct task_struct *p, unsigned int state)
2155 {
2156 	return try_to_wake_up(p, state, 0);
2157 }
2158 
2159 /*
2160  * Perform scheduler related setup for a newly forked process p.
2161  * p is forked by current.
2162  *
2163  * __sched_fork() is basic setup used by init_idle() too:
2164  */
2165 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2166 {
2167 	p->on_rq			= 0;
2168 
2169 	p->se.on_rq			= 0;
2170 	p->se.exec_start		= 0;
2171 	p->se.sum_exec_runtime		= 0;
2172 	p->se.prev_sum_exec_runtime	= 0;
2173 	p->se.nr_migrations		= 0;
2174 	p->se.vruntime			= 0;
2175 	INIT_LIST_HEAD(&p->se.group_node);
2176 
2177 #ifdef CONFIG_FAIR_GROUP_SCHED
2178 	p->se.cfs_rq			= NULL;
2179 #endif
2180 
2181 #ifdef CONFIG_SCHEDSTATS
2182 	/* Even if schedstat is disabled, there should not be garbage */
2183 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2184 #endif
2185 
2186 	RB_CLEAR_NODE(&p->dl.rb_node);
2187 	init_dl_task_timer(&p->dl);
2188 	init_dl_inactive_task_timer(&p->dl);
2189 	__dl_clear_params(p);
2190 
2191 	INIT_LIST_HEAD(&p->rt.run_list);
2192 	p->rt.timeout		= 0;
2193 	p->rt.time_slice	= sched_rr_timeslice;
2194 	p->rt.on_rq		= 0;
2195 	p->rt.on_list		= 0;
2196 
2197 #ifdef CONFIG_PREEMPT_NOTIFIERS
2198 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2199 #endif
2200 
2201 #ifdef CONFIG_NUMA_BALANCING
2202 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2203 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2204 		p->mm->numa_scan_seq = 0;
2205 	}
2206 
2207 	if (clone_flags & CLONE_VM)
2208 		p->numa_preferred_nid = current->numa_preferred_nid;
2209 	else
2210 		p->numa_preferred_nid = -1;
2211 
2212 	p->node_stamp = 0ULL;
2213 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2214 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2215 	p->numa_work.next = &p->numa_work;
2216 	p->numa_faults = NULL;
2217 	p->last_task_numa_placement = 0;
2218 	p->last_sum_exec_runtime = 0;
2219 
2220 	p->numa_group = NULL;
2221 #endif /* CONFIG_NUMA_BALANCING */
2222 }
2223 
2224 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2225 
2226 #ifdef CONFIG_NUMA_BALANCING
2227 
2228 void set_numabalancing_state(bool enabled)
2229 {
2230 	if (enabled)
2231 		static_branch_enable(&sched_numa_balancing);
2232 	else
2233 		static_branch_disable(&sched_numa_balancing);
2234 }
2235 
2236 #ifdef CONFIG_PROC_SYSCTL
2237 int sysctl_numa_balancing(struct ctl_table *table, int write,
2238 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2239 {
2240 	struct ctl_table t;
2241 	int err;
2242 	int state = static_branch_likely(&sched_numa_balancing);
2243 
2244 	if (write && !capable(CAP_SYS_ADMIN))
2245 		return -EPERM;
2246 
2247 	t = *table;
2248 	t.data = &state;
2249 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2250 	if (err < 0)
2251 		return err;
2252 	if (write)
2253 		set_numabalancing_state(state);
2254 	return err;
2255 }
2256 #endif
2257 #endif
2258 
2259 #ifdef CONFIG_SCHEDSTATS
2260 
2261 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2262 static bool __initdata __sched_schedstats = false;
2263 
2264 static void set_schedstats(bool enabled)
2265 {
2266 	if (enabled)
2267 		static_branch_enable(&sched_schedstats);
2268 	else
2269 		static_branch_disable(&sched_schedstats);
2270 }
2271 
2272 void force_schedstat_enabled(void)
2273 {
2274 	if (!schedstat_enabled()) {
2275 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2276 		static_branch_enable(&sched_schedstats);
2277 	}
2278 }
2279 
2280 static int __init setup_schedstats(char *str)
2281 {
2282 	int ret = 0;
2283 	if (!str)
2284 		goto out;
2285 
2286 	/*
2287 	 * This code is called before jump labels have been set up, so we can't
2288 	 * change the static branch directly just yet.  Instead set a temporary
2289 	 * variable so init_schedstats() can do it later.
2290 	 */
2291 	if (!strcmp(str, "enable")) {
2292 		__sched_schedstats = true;
2293 		ret = 1;
2294 	} else if (!strcmp(str, "disable")) {
2295 		__sched_schedstats = false;
2296 		ret = 1;
2297 	}
2298 out:
2299 	if (!ret)
2300 		pr_warn("Unable to parse schedstats=\n");
2301 
2302 	return ret;
2303 }
2304 __setup("schedstats=", setup_schedstats);
2305 
2306 static void __init init_schedstats(void)
2307 {
2308 	set_schedstats(__sched_schedstats);
2309 }
2310 
2311 #ifdef CONFIG_PROC_SYSCTL
2312 int sysctl_schedstats(struct ctl_table *table, int write,
2313 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2314 {
2315 	struct ctl_table t;
2316 	int err;
2317 	int state = static_branch_likely(&sched_schedstats);
2318 
2319 	if (write && !capable(CAP_SYS_ADMIN))
2320 		return -EPERM;
2321 
2322 	t = *table;
2323 	t.data = &state;
2324 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2325 	if (err < 0)
2326 		return err;
2327 	if (write)
2328 		set_schedstats(state);
2329 	return err;
2330 }
2331 #endif /* CONFIG_PROC_SYSCTL */
2332 #else  /* !CONFIG_SCHEDSTATS */
2333 static inline void init_schedstats(void) {}
2334 #endif /* CONFIG_SCHEDSTATS */
2335 
2336 /*
2337  * fork()/clone()-time setup:
2338  */
2339 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2340 {
2341 	unsigned long flags;
2342 	int cpu = get_cpu();
2343 
2344 	__sched_fork(clone_flags, p);
2345 	/*
2346 	 * We mark the process as NEW here. This guarantees that
2347 	 * nobody will actually run it, and a signal or other external
2348 	 * event cannot wake it up and insert it on the runqueue either.
2349 	 */
2350 	p->state = TASK_NEW;
2351 
2352 	/*
2353 	 * Make sure we do not leak PI boosting priority to the child.
2354 	 */
2355 	p->prio = current->normal_prio;
2356 
2357 	/*
2358 	 * Revert to default priority/policy on fork if requested.
2359 	 */
2360 	if (unlikely(p->sched_reset_on_fork)) {
2361 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2362 			p->policy = SCHED_NORMAL;
2363 			p->static_prio = NICE_TO_PRIO(0);
2364 			p->rt_priority = 0;
2365 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2366 			p->static_prio = NICE_TO_PRIO(0);
2367 
2368 		p->prio = p->normal_prio = __normal_prio(p);
2369 		set_load_weight(p, false);
2370 
2371 		/*
2372 		 * We don't need the reset flag anymore after the fork. It has
2373 		 * fulfilled its duty:
2374 		 */
2375 		p->sched_reset_on_fork = 0;
2376 	}
2377 
2378 	if (dl_prio(p->prio)) {
2379 		put_cpu();
2380 		return -EAGAIN;
2381 	} else if (rt_prio(p->prio)) {
2382 		p->sched_class = &rt_sched_class;
2383 	} else {
2384 		p->sched_class = &fair_sched_class;
2385 	}
2386 
2387 	init_entity_runnable_average(&p->se);
2388 
2389 	/*
2390 	 * The child is not yet in the pid-hash so no cgroup attach races,
2391 	 * and the cgroup is pinned to this child due to cgroup_fork()
2392 	 * is ran before sched_fork().
2393 	 *
2394 	 * Silence PROVE_RCU.
2395 	 */
2396 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2397 	/*
2398 	 * We're setting the CPU for the first time, we don't migrate,
2399 	 * so use __set_task_cpu().
2400 	 */
2401 	__set_task_cpu(p, cpu);
2402 	if (p->sched_class->task_fork)
2403 		p->sched_class->task_fork(p);
2404 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2405 
2406 #ifdef CONFIG_SCHED_INFO
2407 	if (likely(sched_info_on()))
2408 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2409 #endif
2410 #if defined(CONFIG_SMP)
2411 	p->on_cpu = 0;
2412 #endif
2413 	init_task_preempt_count(p);
2414 #ifdef CONFIG_SMP
2415 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2416 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2417 #endif
2418 
2419 	put_cpu();
2420 	return 0;
2421 }
2422 
2423 unsigned long to_ratio(u64 period, u64 runtime)
2424 {
2425 	if (runtime == RUNTIME_INF)
2426 		return BW_UNIT;
2427 
2428 	/*
2429 	 * Doing this here saves a lot of checks in all
2430 	 * the calling paths, and returning zero seems
2431 	 * safe for them anyway.
2432 	 */
2433 	if (period == 0)
2434 		return 0;
2435 
2436 	return div64_u64(runtime << BW_SHIFT, period);
2437 }
2438 
2439 /*
2440  * wake_up_new_task - wake up a newly created task for the first time.
2441  *
2442  * This function will do some initial scheduler statistics housekeeping
2443  * that must be done for every newly created context, then puts the task
2444  * on the runqueue and wakes it.
2445  */
2446 void wake_up_new_task(struct task_struct *p)
2447 {
2448 	struct rq_flags rf;
2449 	struct rq *rq;
2450 
2451 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2452 	p->state = TASK_RUNNING;
2453 #ifdef CONFIG_SMP
2454 	/*
2455 	 * Fork balancing, do it here and not earlier because:
2456 	 *  - cpus_allowed can change in the fork path
2457 	 *  - any previously selected CPU might disappear through hotplug
2458 	 *
2459 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2460 	 * as we're not fully set-up yet.
2461 	 */
2462 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2463 #endif
2464 	rq = __task_rq_lock(p, &rf);
2465 	update_rq_clock(rq);
2466 	post_init_entity_util_avg(&p->se);
2467 
2468 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2469 	p->on_rq = TASK_ON_RQ_QUEUED;
2470 	trace_sched_wakeup_new(p);
2471 	check_preempt_curr(rq, p, WF_FORK);
2472 #ifdef CONFIG_SMP
2473 	if (p->sched_class->task_woken) {
2474 		/*
2475 		 * Nothing relies on rq->lock after this, so its fine to
2476 		 * drop it.
2477 		 */
2478 		rq_unpin_lock(rq, &rf);
2479 		p->sched_class->task_woken(rq, p);
2480 		rq_repin_lock(rq, &rf);
2481 	}
2482 #endif
2483 	task_rq_unlock(rq, p, &rf);
2484 }
2485 
2486 #ifdef CONFIG_PREEMPT_NOTIFIERS
2487 
2488 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2489 
2490 void preempt_notifier_inc(void)
2491 {
2492 	static_key_slow_inc(&preempt_notifier_key);
2493 }
2494 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2495 
2496 void preempt_notifier_dec(void)
2497 {
2498 	static_key_slow_dec(&preempt_notifier_key);
2499 }
2500 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2501 
2502 /**
2503  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2504  * @notifier: notifier struct to register
2505  */
2506 void preempt_notifier_register(struct preempt_notifier *notifier)
2507 {
2508 	if (!static_key_false(&preempt_notifier_key))
2509 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2510 
2511 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2512 }
2513 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2514 
2515 /**
2516  * preempt_notifier_unregister - no longer interested in preemption notifications
2517  * @notifier: notifier struct to unregister
2518  *
2519  * This is *not* safe to call from within a preemption notifier.
2520  */
2521 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2522 {
2523 	hlist_del(&notifier->link);
2524 }
2525 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2526 
2527 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2528 {
2529 	struct preempt_notifier *notifier;
2530 
2531 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2532 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2533 }
2534 
2535 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2536 {
2537 	if (static_key_false(&preempt_notifier_key))
2538 		__fire_sched_in_preempt_notifiers(curr);
2539 }
2540 
2541 static void
2542 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2543 				   struct task_struct *next)
2544 {
2545 	struct preempt_notifier *notifier;
2546 
2547 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2548 		notifier->ops->sched_out(notifier, next);
2549 }
2550 
2551 static __always_inline void
2552 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2553 				 struct task_struct *next)
2554 {
2555 	if (static_key_false(&preempt_notifier_key))
2556 		__fire_sched_out_preempt_notifiers(curr, next);
2557 }
2558 
2559 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2560 
2561 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2562 {
2563 }
2564 
2565 static inline void
2566 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2567 				 struct task_struct *next)
2568 {
2569 }
2570 
2571 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2572 
2573 /**
2574  * prepare_task_switch - prepare to switch tasks
2575  * @rq: the runqueue preparing to switch
2576  * @prev: the current task that is being switched out
2577  * @next: the task we are going to switch to.
2578  *
2579  * This is called with the rq lock held and interrupts off. It must
2580  * be paired with a subsequent finish_task_switch after the context
2581  * switch.
2582  *
2583  * prepare_task_switch sets up locking and calls architecture specific
2584  * hooks.
2585  */
2586 static inline void
2587 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2588 		    struct task_struct *next)
2589 {
2590 	sched_info_switch(rq, prev, next);
2591 	perf_event_task_sched_out(prev, next);
2592 	fire_sched_out_preempt_notifiers(prev, next);
2593 	prepare_lock_switch(rq, next);
2594 	prepare_arch_switch(next);
2595 }
2596 
2597 /**
2598  * finish_task_switch - clean up after a task-switch
2599  * @prev: the thread we just switched away from.
2600  *
2601  * finish_task_switch must be called after the context switch, paired
2602  * with a prepare_task_switch call before the context switch.
2603  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2604  * and do any other architecture-specific cleanup actions.
2605  *
2606  * Note that we may have delayed dropping an mm in context_switch(). If
2607  * so, we finish that here outside of the runqueue lock. (Doing it
2608  * with the lock held can cause deadlocks; see schedule() for
2609  * details.)
2610  *
2611  * The context switch have flipped the stack from under us and restored the
2612  * local variables which were saved when this task called schedule() in the
2613  * past. prev == current is still correct but we need to recalculate this_rq
2614  * because prev may have moved to another CPU.
2615  */
2616 static struct rq *finish_task_switch(struct task_struct *prev)
2617 	__releases(rq->lock)
2618 {
2619 	struct rq *rq = this_rq();
2620 	struct mm_struct *mm = rq->prev_mm;
2621 	long prev_state;
2622 
2623 	/*
2624 	 * The previous task will have left us with a preempt_count of 2
2625 	 * because it left us after:
2626 	 *
2627 	 *	schedule()
2628 	 *	  preempt_disable();			// 1
2629 	 *	  __schedule()
2630 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2631 	 *
2632 	 * Also, see FORK_PREEMPT_COUNT.
2633 	 */
2634 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2635 		      "corrupted preempt_count: %s/%d/0x%x\n",
2636 		      current->comm, current->pid, preempt_count()))
2637 		preempt_count_set(FORK_PREEMPT_COUNT);
2638 
2639 	rq->prev_mm = NULL;
2640 
2641 	/*
2642 	 * A task struct has one reference for the use as "current".
2643 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2644 	 * schedule one last time. The schedule call will never return, and
2645 	 * the scheduled task must drop that reference.
2646 	 *
2647 	 * We must observe prev->state before clearing prev->on_cpu (in
2648 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2649 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2650 	 * transition, resulting in a double drop.
2651 	 */
2652 	prev_state = prev->state;
2653 	vtime_task_switch(prev);
2654 	perf_event_task_sched_in(prev, current);
2655 	/*
2656 	 * The membarrier system call requires a full memory barrier
2657 	 * after storing to rq->curr, before going back to user-space.
2658 	 *
2659 	 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
2660 	 * up adding a full barrier to switch_mm(), or we should figure
2661 	 * out if a smp_mb__after_unlock_lock is really the proper API
2662 	 * to use.
2663 	 */
2664 	smp_mb__after_unlock_lock();
2665 	finish_lock_switch(rq, prev);
2666 	finish_arch_post_lock_switch();
2667 
2668 	fire_sched_in_preempt_notifiers(current);
2669 	if (mm)
2670 		mmdrop(mm);
2671 	if (unlikely(prev_state == TASK_DEAD)) {
2672 		if (prev->sched_class->task_dead)
2673 			prev->sched_class->task_dead(prev);
2674 
2675 		/*
2676 		 * Remove function-return probe instances associated with this
2677 		 * task and put them back on the free list.
2678 		 */
2679 		kprobe_flush_task(prev);
2680 
2681 		/* Task is done with its stack. */
2682 		put_task_stack(prev);
2683 
2684 		put_task_struct(prev);
2685 	}
2686 
2687 	tick_nohz_task_switch();
2688 	return rq;
2689 }
2690 
2691 #ifdef CONFIG_SMP
2692 
2693 /* rq->lock is NOT held, but preemption is disabled */
2694 static void __balance_callback(struct rq *rq)
2695 {
2696 	struct callback_head *head, *next;
2697 	void (*func)(struct rq *rq);
2698 	unsigned long flags;
2699 
2700 	raw_spin_lock_irqsave(&rq->lock, flags);
2701 	head = rq->balance_callback;
2702 	rq->balance_callback = NULL;
2703 	while (head) {
2704 		func = (void (*)(struct rq *))head->func;
2705 		next = head->next;
2706 		head->next = NULL;
2707 		head = next;
2708 
2709 		func(rq);
2710 	}
2711 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2712 }
2713 
2714 static inline void balance_callback(struct rq *rq)
2715 {
2716 	if (unlikely(rq->balance_callback))
2717 		__balance_callback(rq);
2718 }
2719 
2720 #else
2721 
2722 static inline void balance_callback(struct rq *rq)
2723 {
2724 }
2725 
2726 #endif
2727 
2728 /**
2729  * schedule_tail - first thing a freshly forked thread must call.
2730  * @prev: the thread we just switched away from.
2731  */
2732 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2733 	__releases(rq->lock)
2734 {
2735 	struct rq *rq;
2736 
2737 	/*
2738 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2739 	 * finish_task_switch() for details.
2740 	 *
2741 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2742 	 * and the preempt_enable() will end up enabling preemption (on
2743 	 * PREEMPT_COUNT kernels).
2744 	 */
2745 
2746 	rq = finish_task_switch(prev);
2747 	balance_callback(rq);
2748 	preempt_enable();
2749 
2750 	if (current->set_child_tid)
2751 		put_user(task_pid_vnr(current), current->set_child_tid);
2752 }
2753 
2754 /*
2755  * context_switch - switch to the new MM and the new thread's register state.
2756  */
2757 static __always_inline struct rq *
2758 context_switch(struct rq *rq, struct task_struct *prev,
2759 	       struct task_struct *next, struct rq_flags *rf)
2760 {
2761 	struct mm_struct *mm, *oldmm;
2762 
2763 	prepare_task_switch(rq, prev, next);
2764 
2765 	mm = next->mm;
2766 	oldmm = prev->active_mm;
2767 	/*
2768 	 * For paravirt, this is coupled with an exit in switch_to to
2769 	 * combine the page table reload and the switch backend into
2770 	 * one hypercall.
2771 	 */
2772 	arch_start_context_switch(prev);
2773 
2774 	if (!mm) {
2775 		next->active_mm = oldmm;
2776 		mmgrab(oldmm);
2777 		enter_lazy_tlb(oldmm, next);
2778 	} else
2779 		switch_mm_irqs_off(oldmm, mm, next);
2780 
2781 	if (!prev->mm) {
2782 		prev->active_mm = NULL;
2783 		rq->prev_mm = oldmm;
2784 	}
2785 
2786 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2787 
2788 	/*
2789 	 * Since the runqueue lock will be released by the next
2790 	 * task (which is an invalid locking op but in the case
2791 	 * of the scheduler it's an obvious special-case), so we
2792 	 * do an early lockdep release here:
2793 	 */
2794 	rq_unpin_lock(rq, rf);
2795 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2796 
2797 	/* Here we just switch the register state and the stack. */
2798 	switch_to(prev, next, prev);
2799 	barrier();
2800 
2801 	return finish_task_switch(prev);
2802 }
2803 
2804 /*
2805  * nr_running and nr_context_switches:
2806  *
2807  * externally visible scheduler statistics: current number of runnable
2808  * threads, total number of context switches performed since bootup.
2809  */
2810 unsigned long nr_running(void)
2811 {
2812 	unsigned long i, sum = 0;
2813 
2814 	for_each_online_cpu(i)
2815 		sum += cpu_rq(i)->nr_running;
2816 
2817 	return sum;
2818 }
2819 
2820 /*
2821  * Check if only the current task is running on the CPU.
2822  *
2823  * Caution: this function does not check that the caller has disabled
2824  * preemption, thus the result might have a time-of-check-to-time-of-use
2825  * race.  The caller is responsible to use it correctly, for example:
2826  *
2827  * - from a non-preemptable section (of course)
2828  *
2829  * - from a thread that is bound to a single CPU
2830  *
2831  * - in a loop with very short iterations (e.g. a polling loop)
2832  */
2833 bool single_task_running(void)
2834 {
2835 	return raw_rq()->nr_running == 1;
2836 }
2837 EXPORT_SYMBOL(single_task_running);
2838 
2839 unsigned long long nr_context_switches(void)
2840 {
2841 	int i;
2842 	unsigned long long sum = 0;
2843 
2844 	for_each_possible_cpu(i)
2845 		sum += cpu_rq(i)->nr_switches;
2846 
2847 	return sum;
2848 }
2849 
2850 /*
2851  * IO-wait accounting, and how its mostly bollocks (on SMP).
2852  *
2853  * The idea behind IO-wait account is to account the idle time that we could
2854  * have spend running if it were not for IO. That is, if we were to improve the
2855  * storage performance, we'd have a proportional reduction in IO-wait time.
2856  *
2857  * This all works nicely on UP, where, when a task blocks on IO, we account
2858  * idle time as IO-wait, because if the storage were faster, it could've been
2859  * running and we'd not be idle.
2860  *
2861  * This has been extended to SMP, by doing the same for each CPU. This however
2862  * is broken.
2863  *
2864  * Imagine for instance the case where two tasks block on one CPU, only the one
2865  * CPU will have IO-wait accounted, while the other has regular idle. Even
2866  * though, if the storage were faster, both could've ran at the same time,
2867  * utilising both CPUs.
2868  *
2869  * This means, that when looking globally, the current IO-wait accounting on
2870  * SMP is a lower bound, by reason of under accounting.
2871  *
2872  * Worse, since the numbers are provided per CPU, they are sometimes
2873  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2874  * associated with any one particular CPU, it can wake to another CPU than it
2875  * blocked on. This means the per CPU IO-wait number is meaningless.
2876  *
2877  * Task CPU affinities can make all that even more 'interesting'.
2878  */
2879 
2880 unsigned long nr_iowait(void)
2881 {
2882 	unsigned long i, sum = 0;
2883 
2884 	for_each_possible_cpu(i)
2885 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2886 
2887 	return sum;
2888 }
2889 
2890 /*
2891  * Consumers of these two interfaces, like for example the cpufreq menu
2892  * governor are using nonsensical data. Boosting frequency for a CPU that has
2893  * IO-wait which might not even end up running the task when it does become
2894  * runnable.
2895  */
2896 
2897 unsigned long nr_iowait_cpu(int cpu)
2898 {
2899 	struct rq *this = cpu_rq(cpu);
2900 	return atomic_read(&this->nr_iowait);
2901 }
2902 
2903 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2904 {
2905 	struct rq *rq = this_rq();
2906 	*nr_waiters = atomic_read(&rq->nr_iowait);
2907 	*load = rq->load.weight;
2908 }
2909 
2910 #ifdef CONFIG_SMP
2911 
2912 /*
2913  * sched_exec - execve() is a valuable balancing opportunity, because at
2914  * this point the task has the smallest effective memory and cache footprint.
2915  */
2916 void sched_exec(void)
2917 {
2918 	struct task_struct *p = current;
2919 	unsigned long flags;
2920 	int dest_cpu;
2921 
2922 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2923 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2924 	if (dest_cpu == smp_processor_id())
2925 		goto unlock;
2926 
2927 	if (likely(cpu_active(dest_cpu))) {
2928 		struct migration_arg arg = { p, dest_cpu };
2929 
2930 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2931 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2932 		return;
2933 	}
2934 unlock:
2935 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2936 }
2937 
2938 #endif
2939 
2940 DEFINE_PER_CPU(struct kernel_stat, kstat);
2941 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2942 
2943 EXPORT_PER_CPU_SYMBOL(kstat);
2944 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2945 
2946 /*
2947  * The function fair_sched_class.update_curr accesses the struct curr
2948  * and its field curr->exec_start; when called from task_sched_runtime(),
2949  * we observe a high rate of cache misses in practice.
2950  * Prefetching this data results in improved performance.
2951  */
2952 static inline void prefetch_curr_exec_start(struct task_struct *p)
2953 {
2954 #ifdef CONFIG_FAIR_GROUP_SCHED
2955 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2956 #else
2957 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2958 #endif
2959 	prefetch(curr);
2960 	prefetch(&curr->exec_start);
2961 }
2962 
2963 /*
2964  * Return accounted runtime for the task.
2965  * In case the task is currently running, return the runtime plus current's
2966  * pending runtime that have not been accounted yet.
2967  */
2968 unsigned long long task_sched_runtime(struct task_struct *p)
2969 {
2970 	struct rq_flags rf;
2971 	struct rq *rq;
2972 	u64 ns;
2973 
2974 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2975 	/*
2976 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2977 	 * So we have a optimization chance when the task's delta_exec is 0.
2978 	 * Reading ->on_cpu is racy, but this is ok.
2979 	 *
2980 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2981 	 * If we race with it entering CPU, unaccounted time is 0. This is
2982 	 * indistinguishable from the read occurring a few cycles earlier.
2983 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2984 	 * been accounted, so we're correct here as well.
2985 	 */
2986 	if (!p->on_cpu || !task_on_rq_queued(p))
2987 		return p->se.sum_exec_runtime;
2988 #endif
2989 
2990 	rq = task_rq_lock(p, &rf);
2991 	/*
2992 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2993 	 * project cycles that may never be accounted to this
2994 	 * thread, breaking clock_gettime().
2995 	 */
2996 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2997 		prefetch_curr_exec_start(p);
2998 		update_rq_clock(rq);
2999 		p->sched_class->update_curr(rq);
3000 	}
3001 	ns = p->se.sum_exec_runtime;
3002 	task_rq_unlock(rq, p, &rf);
3003 
3004 	return ns;
3005 }
3006 
3007 /*
3008  * This function gets called by the timer code, with HZ frequency.
3009  * We call it with interrupts disabled.
3010  */
3011 void scheduler_tick(void)
3012 {
3013 	int cpu = smp_processor_id();
3014 	struct rq *rq = cpu_rq(cpu);
3015 	struct task_struct *curr = rq->curr;
3016 	struct rq_flags rf;
3017 
3018 	sched_clock_tick();
3019 
3020 	rq_lock(rq, &rf);
3021 
3022 	update_rq_clock(rq);
3023 	curr->sched_class->task_tick(rq, curr, 0);
3024 	cpu_load_update_active(rq);
3025 	calc_global_load_tick(rq);
3026 
3027 	rq_unlock(rq, &rf);
3028 
3029 	perf_event_task_tick();
3030 
3031 #ifdef CONFIG_SMP
3032 	rq->idle_balance = idle_cpu(cpu);
3033 	trigger_load_balance(rq);
3034 #endif
3035 	rq_last_tick_reset(rq);
3036 }
3037 
3038 #ifdef CONFIG_NO_HZ_FULL
3039 /**
3040  * scheduler_tick_max_deferment
3041  *
3042  * Keep at least one tick per second when a single
3043  * active task is running because the scheduler doesn't
3044  * yet completely support full dynticks environment.
3045  *
3046  * This makes sure that uptime, CFS vruntime, load
3047  * balancing, etc... continue to move forward, even
3048  * with a very low granularity.
3049  *
3050  * Return: Maximum deferment in nanoseconds.
3051  */
3052 u64 scheduler_tick_max_deferment(void)
3053 {
3054 	struct rq *rq = this_rq();
3055 	unsigned long next, now = READ_ONCE(jiffies);
3056 
3057 	next = rq->last_sched_tick + HZ;
3058 
3059 	if (time_before_eq(next, now))
3060 		return 0;
3061 
3062 	return jiffies_to_nsecs(next - now);
3063 }
3064 #endif
3065 
3066 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3067 				defined(CONFIG_PREEMPT_TRACER))
3068 /*
3069  * If the value passed in is equal to the current preempt count
3070  * then we just disabled preemption. Start timing the latency.
3071  */
3072 static inline void preempt_latency_start(int val)
3073 {
3074 	if (preempt_count() == val) {
3075 		unsigned long ip = get_lock_parent_ip();
3076 #ifdef CONFIG_DEBUG_PREEMPT
3077 		current->preempt_disable_ip = ip;
3078 #endif
3079 		trace_preempt_off(CALLER_ADDR0, ip);
3080 	}
3081 }
3082 
3083 void preempt_count_add(int val)
3084 {
3085 #ifdef CONFIG_DEBUG_PREEMPT
3086 	/*
3087 	 * Underflow?
3088 	 */
3089 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3090 		return;
3091 #endif
3092 	__preempt_count_add(val);
3093 #ifdef CONFIG_DEBUG_PREEMPT
3094 	/*
3095 	 * Spinlock count overflowing soon?
3096 	 */
3097 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3098 				PREEMPT_MASK - 10);
3099 #endif
3100 	preempt_latency_start(val);
3101 }
3102 EXPORT_SYMBOL(preempt_count_add);
3103 NOKPROBE_SYMBOL(preempt_count_add);
3104 
3105 /*
3106  * If the value passed in equals to the current preempt count
3107  * then we just enabled preemption. Stop timing the latency.
3108  */
3109 static inline void preempt_latency_stop(int val)
3110 {
3111 	if (preempt_count() == val)
3112 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3113 }
3114 
3115 void preempt_count_sub(int val)
3116 {
3117 #ifdef CONFIG_DEBUG_PREEMPT
3118 	/*
3119 	 * Underflow?
3120 	 */
3121 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3122 		return;
3123 	/*
3124 	 * Is the spinlock portion underflowing?
3125 	 */
3126 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3127 			!(preempt_count() & PREEMPT_MASK)))
3128 		return;
3129 #endif
3130 
3131 	preempt_latency_stop(val);
3132 	__preempt_count_sub(val);
3133 }
3134 EXPORT_SYMBOL(preempt_count_sub);
3135 NOKPROBE_SYMBOL(preempt_count_sub);
3136 
3137 #else
3138 static inline void preempt_latency_start(int val) { }
3139 static inline void preempt_latency_stop(int val) { }
3140 #endif
3141 
3142 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3143 {
3144 #ifdef CONFIG_DEBUG_PREEMPT
3145 	return p->preempt_disable_ip;
3146 #else
3147 	return 0;
3148 #endif
3149 }
3150 
3151 /*
3152  * Print scheduling while atomic bug:
3153  */
3154 static noinline void __schedule_bug(struct task_struct *prev)
3155 {
3156 	/* Save this before calling printk(), since that will clobber it */
3157 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3158 
3159 	if (oops_in_progress)
3160 		return;
3161 
3162 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3163 		prev->comm, prev->pid, preempt_count());
3164 
3165 	debug_show_held_locks(prev);
3166 	print_modules();
3167 	if (irqs_disabled())
3168 		print_irqtrace_events(prev);
3169 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3170 	    && in_atomic_preempt_off()) {
3171 		pr_err("Preemption disabled at:");
3172 		print_ip_sym(preempt_disable_ip);
3173 		pr_cont("\n");
3174 	}
3175 	if (panic_on_warn)
3176 		panic("scheduling while atomic\n");
3177 
3178 	dump_stack();
3179 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3180 }
3181 
3182 /*
3183  * Various schedule()-time debugging checks and statistics:
3184  */
3185 static inline void schedule_debug(struct task_struct *prev)
3186 {
3187 #ifdef CONFIG_SCHED_STACK_END_CHECK
3188 	if (task_stack_end_corrupted(prev))
3189 		panic("corrupted stack end detected inside scheduler\n");
3190 #endif
3191 
3192 	if (unlikely(in_atomic_preempt_off())) {
3193 		__schedule_bug(prev);
3194 		preempt_count_set(PREEMPT_DISABLED);
3195 	}
3196 	rcu_sleep_check();
3197 
3198 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3199 
3200 	schedstat_inc(this_rq()->sched_count);
3201 }
3202 
3203 /*
3204  * Pick up the highest-prio task:
3205  */
3206 static inline struct task_struct *
3207 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3208 {
3209 	const struct sched_class *class;
3210 	struct task_struct *p;
3211 
3212 	/*
3213 	 * Optimization: we know that if all tasks are in the fair class we can
3214 	 * call that function directly, but only if the @prev task wasn't of a
3215 	 * higher scheduling class, because otherwise those loose the
3216 	 * opportunity to pull in more work from other CPUs.
3217 	 */
3218 	if (likely((prev->sched_class == &idle_sched_class ||
3219 		    prev->sched_class == &fair_sched_class) &&
3220 		   rq->nr_running == rq->cfs.h_nr_running)) {
3221 
3222 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3223 		if (unlikely(p == RETRY_TASK))
3224 			goto again;
3225 
3226 		/* Assumes fair_sched_class->next == idle_sched_class */
3227 		if (unlikely(!p))
3228 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3229 
3230 		return p;
3231 	}
3232 
3233 again:
3234 	for_each_class(class) {
3235 		p = class->pick_next_task(rq, prev, rf);
3236 		if (p) {
3237 			if (unlikely(p == RETRY_TASK))
3238 				goto again;
3239 			return p;
3240 		}
3241 	}
3242 
3243 	/* The idle class should always have a runnable task: */
3244 	BUG();
3245 }
3246 
3247 /*
3248  * __schedule() is the main scheduler function.
3249  *
3250  * The main means of driving the scheduler and thus entering this function are:
3251  *
3252  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3253  *
3254  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3255  *      paths. For example, see arch/x86/entry_64.S.
3256  *
3257  *      To drive preemption between tasks, the scheduler sets the flag in timer
3258  *      interrupt handler scheduler_tick().
3259  *
3260  *   3. Wakeups don't really cause entry into schedule(). They add a
3261  *      task to the run-queue and that's it.
3262  *
3263  *      Now, if the new task added to the run-queue preempts the current
3264  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3265  *      called on the nearest possible occasion:
3266  *
3267  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3268  *
3269  *         - in syscall or exception context, at the next outmost
3270  *           preempt_enable(). (this might be as soon as the wake_up()'s
3271  *           spin_unlock()!)
3272  *
3273  *         - in IRQ context, return from interrupt-handler to
3274  *           preemptible context
3275  *
3276  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3277  *         then at the next:
3278  *
3279  *          - cond_resched() call
3280  *          - explicit schedule() call
3281  *          - return from syscall or exception to user-space
3282  *          - return from interrupt-handler to user-space
3283  *
3284  * WARNING: must be called with preemption disabled!
3285  */
3286 static void __sched notrace __schedule(bool preempt)
3287 {
3288 	struct task_struct *prev, *next;
3289 	unsigned long *switch_count;
3290 	struct rq_flags rf;
3291 	struct rq *rq;
3292 	int cpu;
3293 
3294 	cpu = smp_processor_id();
3295 	rq = cpu_rq(cpu);
3296 	prev = rq->curr;
3297 
3298 	schedule_debug(prev);
3299 
3300 	if (sched_feat(HRTICK))
3301 		hrtick_clear(rq);
3302 
3303 	local_irq_disable();
3304 	rcu_note_context_switch(preempt);
3305 
3306 	/*
3307 	 * Make sure that signal_pending_state()->signal_pending() below
3308 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3309 	 * done by the caller to avoid the race with signal_wake_up().
3310 	 */
3311 	rq_lock(rq, &rf);
3312 	smp_mb__after_spinlock();
3313 
3314 	/* Promote REQ to ACT */
3315 	rq->clock_update_flags <<= 1;
3316 	update_rq_clock(rq);
3317 
3318 	switch_count = &prev->nivcsw;
3319 	if (!preempt && prev->state) {
3320 		if (unlikely(signal_pending_state(prev->state, prev))) {
3321 			prev->state = TASK_RUNNING;
3322 		} else {
3323 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3324 			prev->on_rq = 0;
3325 
3326 			if (prev->in_iowait) {
3327 				atomic_inc(&rq->nr_iowait);
3328 				delayacct_blkio_start();
3329 			}
3330 
3331 			/*
3332 			 * If a worker went to sleep, notify and ask workqueue
3333 			 * whether it wants to wake up a task to maintain
3334 			 * concurrency.
3335 			 */
3336 			if (prev->flags & PF_WQ_WORKER) {
3337 				struct task_struct *to_wakeup;
3338 
3339 				to_wakeup = wq_worker_sleeping(prev);
3340 				if (to_wakeup)
3341 					try_to_wake_up_local(to_wakeup, &rf);
3342 			}
3343 		}
3344 		switch_count = &prev->nvcsw;
3345 	}
3346 
3347 	next = pick_next_task(rq, prev, &rf);
3348 	clear_tsk_need_resched(prev);
3349 	clear_preempt_need_resched();
3350 
3351 	if (likely(prev != next)) {
3352 		rq->nr_switches++;
3353 		rq->curr = next;
3354 		/*
3355 		 * The membarrier system call requires each architecture
3356 		 * to have a full memory barrier after updating
3357 		 * rq->curr, before returning to user-space. For TSO
3358 		 * (e.g. x86), the architecture must provide its own
3359 		 * barrier in switch_mm(). For weakly ordered machines
3360 		 * for which spin_unlock() acts as a full memory
3361 		 * barrier, finish_lock_switch() in common code takes
3362 		 * care of this barrier. For weakly ordered machines for
3363 		 * which spin_unlock() acts as a RELEASE barrier (only
3364 		 * arm64 and PowerPC), arm64 has a full barrier in
3365 		 * switch_to(), and PowerPC has
3366 		 * smp_mb__after_unlock_lock() before
3367 		 * finish_lock_switch().
3368 		 */
3369 		++*switch_count;
3370 
3371 		trace_sched_switch(preempt, prev, next);
3372 
3373 		/* Also unlocks the rq: */
3374 		rq = context_switch(rq, prev, next, &rf);
3375 	} else {
3376 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3377 		rq_unlock_irq(rq, &rf);
3378 	}
3379 
3380 	balance_callback(rq);
3381 }
3382 
3383 void __noreturn do_task_dead(void)
3384 {
3385 	/*
3386 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3387 	 * when the following two conditions become true.
3388 	 *   - There is race condition of mmap_sem (It is acquired by
3389 	 *     exit_mm()), and
3390 	 *   - SMI occurs before setting TASK_RUNINNG.
3391 	 *     (or hypervisor of virtual machine switches to other guest)
3392 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3393 	 *
3394 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3395 	 * is held by try_to_wake_up()
3396 	 */
3397 	raw_spin_lock_irq(&current->pi_lock);
3398 	raw_spin_unlock_irq(&current->pi_lock);
3399 
3400 	/* Causes final put_task_struct in finish_task_switch(): */
3401 	__set_current_state(TASK_DEAD);
3402 
3403 	/* Tell freezer to ignore us: */
3404 	current->flags |= PF_NOFREEZE;
3405 
3406 	__schedule(false);
3407 	BUG();
3408 
3409 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3410 	for (;;)
3411 		cpu_relax();
3412 }
3413 
3414 static inline void sched_submit_work(struct task_struct *tsk)
3415 {
3416 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3417 		return;
3418 	/*
3419 	 * If we are going to sleep and we have plugged IO queued,
3420 	 * make sure to submit it to avoid deadlocks.
3421 	 */
3422 	if (blk_needs_flush_plug(tsk))
3423 		blk_schedule_flush_plug(tsk);
3424 }
3425 
3426 asmlinkage __visible void __sched schedule(void)
3427 {
3428 	struct task_struct *tsk = current;
3429 
3430 	sched_submit_work(tsk);
3431 	do {
3432 		preempt_disable();
3433 		__schedule(false);
3434 		sched_preempt_enable_no_resched();
3435 	} while (need_resched());
3436 }
3437 EXPORT_SYMBOL(schedule);
3438 
3439 /*
3440  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3441  * state (have scheduled out non-voluntarily) by making sure that all
3442  * tasks have either left the run queue or have gone into user space.
3443  * As idle tasks do not do either, they must not ever be preempted
3444  * (schedule out non-voluntarily).
3445  *
3446  * schedule_idle() is similar to schedule_preempt_disable() except that it
3447  * never enables preemption because it does not call sched_submit_work().
3448  */
3449 void __sched schedule_idle(void)
3450 {
3451 	/*
3452 	 * As this skips calling sched_submit_work(), which the idle task does
3453 	 * regardless because that function is a nop when the task is in a
3454 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3455 	 * current task can be in any other state. Note, idle is always in the
3456 	 * TASK_RUNNING state.
3457 	 */
3458 	WARN_ON_ONCE(current->state);
3459 	do {
3460 		__schedule(false);
3461 	} while (need_resched());
3462 }
3463 
3464 #ifdef CONFIG_CONTEXT_TRACKING
3465 asmlinkage __visible void __sched schedule_user(void)
3466 {
3467 	/*
3468 	 * If we come here after a random call to set_need_resched(),
3469 	 * or we have been woken up remotely but the IPI has not yet arrived,
3470 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3471 	 * we find a better solution.
3472 	 *
3473 	 * NB: There are buggy callers of this function.  Ideally we
3474 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3475 	 * too frequently to make sense yet.
3476 	 */
3477 	enum ctx_state prev_state = exception_enter();
3478 	schedule();
3479 	exception_exit(prev_state);
3480 }
3481 #endif
3482 
3483 /**
3484  * schedule_preempt_disabled - called with preemption disabled
3485  *
3486  * Returns with preemption disabled. Note: preempt_count must be 1
3487  */
3488 void __sched schedule_preempt_disabled(void)
3489 {
3490 	sched_preempt_enable_no_resched();
3491 	schedule();
3492 	preempt_disable();
3493 }
3494 
3495 static void __sched notrace preempt_schedule_common(void)
3496 {
3497 	do {
3498 		/*
3499 		 * Because the function tracer can trace preempt_count_sub()
3500 		 * and it also uses preempt_enable/disable_notrace(), if
3501 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3502 		 * by the function tracer will call this function again and
3503 		 * cause infinite recursion.
3504 		 *
3505 		 * Preemption must be disabled here before the function
3506 		 * tracer can trace. Break up preempt_disable() into two
3507 		 * calls. One to disable preemption without fear of being
3508 		 * traced. The other to still record the preemption latency,
3509 		 * which can also be traced by the function tracer.
3510 		 */
3511 		preempt_disable_notrace();
3512 		preempt_latency_start(1);
3513 		__schedule(true);
3514 		preempt_latency_stop(1);
3515 		preempt_enable_no_resched_notrace();
3516 
3517 		/*
3518 		 * Check again in case we missed a preemption opportunity
3519 		 * between schedule and now.
3520 		 */
3521 	} while (need_resched());
3522 }
3523 
3524 #ifdef CONFIG_PREEMPT
3525 /*
3526  * this is the entry point to schedule() from in-kernel preemption
3527  * off of preempt_enable. Kernel preemptions off return from interrupt
3528  * occur there and call schedule directly.
3529  */
3530 asmlinkage __visible void __sched notrace preempt_schedule(void)
3531 {
3532 	/*
3533 	 * If there is a non-zero preempt_count or interrupts are disabled,
3534 	 * we do not want to preempt the current task. Just return..
3535 	 */
3536 	if (likely(!preemptible()))
3537 		return;
3538 
3539 	preempt_schedule_common();
3540 }
3541 NOKPROBE_SYMBOL(preempt_schedule);
3542 EXPORT_SYMBOL(preempt_schedule);
3543 
3544 /**
3545  * preempt_schedule_notrace - preempt_schedule called by tracing
3546  *
3547  * The tracing infrastructure uses preempt_enable_notrace to prevent
3548  * recursion and tracing preempt enabling caused by the tracing
3549  * infrastructure itself. But as tracing can happen in areas coming
3550  * from userspace or just about to enter userspace, a preempt enable
3551  * can occur before user_exit() is called. This will cause the scheduler
3552  * to be called when the system is still in usermode.
3553  *
3554  * To prevent this, the preempt_enable_notrace will use this function
3555  * instead of preempt_schedule() to exit user context if needed before
3556  * calling the scheduler.
3557  */
3558 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3559 {
3560 	enum ctx_state prev_ctx;
3561 
3562 	if (likely(!preemptible()))
3563 		return;
3564 
3565 	do {
3566 		/*
3567 		 * Because the function tracer can trace preempt_count_sub()
3568 		 * and it also uses preempt_enable/disable_notrace(), if
3569 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3570 		 * by the function tracer will call this function again and
3571 		 * cause infinite recursion.
3572 		 *
3573 		 * Preemption must be disabled here before the function
3574 		 * tracer can trace. Break up preempt_disable() into two
3575 		 * calls. One to disable preemption without fear of being
3576 		 * traced. The other to still record the preemption latency,
3577 		 * which can also be traced by the function tracer.
3578 		 */
3579 		preempt_disable_notrace();
3580 		preempt_latency_start(1);
3581 		/*
3582 		 * Needs preempt disabled in case user_exit() is traced
3583 		 * and the tracer calls preempt_enable_notrace() causing
3584 		 * an infinite recursion.
3585 		 */
3586 		prev_ctx = exception_enter();
3587 		__schedule(true);
3588 		exception_exit(prev_ctx);
3589 
3590 		preempt_latency_stop(1);
3591 		preempt_enable_no_resched_notrace();
3592 	} while (need_resched());
3593 }
3594 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3595 
3596 #endif /* CONFIG_PREEMPT */
3597 
3598 /*
3599  * this is the entry point to schedule() from kernel preemption
3600  * off of irq context.
3601  * Note, that this is called and return with irqs disabled. This will
3602  * protect us against recursive calling from irq.
3603  */
3604 asmlinkage __visible void __sched preempt_schedule_irq(void)
3605 {
3606 	enum ctx_state prev_state;
3607 
3608 	/* Catch callers which need to be fixed */
3609 	BUG_ON(preempt_count() || !irqs_disabled());
3610 
3611 	prev_state = exception_enter();
3612 
3613 	do {
3614 		preempt_disable();
3615 		local_irq_enable();
3616 		__schedule(true);
3617 		local_irq_disable();
3618 		sched_preempt_enable_no_resched();
3619 	} while (need_resched());
3620 
3621 	exception_exit(prev_state);
3622 }
3623 
3624 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3625 			  void *key)
3626 {
3627 	return try_to_wake_up(curr->private, mode, wake_flags);
3628 }
3629 EXPORT_SYMBOL(default_wake_function);
3630 
3631 #ifdef CONFIG_RT_MUTEXES
3632 
3633 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3634 {
3635 	if (pi_task)
3636 		prio = min(prio, pi_task->prio);
3637 
3638 	return prio;
3639 }
3640 
3641 static inline int rt_effective_prio(struct task_struct *p, int prio)
3642 {
3643 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3644 
3645 	return __rt_effective_prio(pi_task, prio);
3646 }
3647 
3648 /*
3649  * rt_mutex_setprio - set the current priority of a task
3650  * @p: task to boost
3651  * @pi_task: donor task
3652  *
3653  * This function changes the 'effective' priority of a task. It does
3654  * not touch ->normal_prio like __setscheduler().
3655  *
3656  * Used by the rt_mutex code to implement priority inheritance
3657  * logic. Call site only calls if the priority of the task changed.
3658  */
3659 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3660 {
3661 	int prio, oldprio, queued, running, queue_flag =
3662 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3663 	const struct sched_class *prev_class;
3664 	struct rq_flags rf;
3665 	struct rq *rq;
3666 
3667 	/* XXX used to be waiter->prio, not waiter->task->prio */
3668 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3669 
3670 	/*
3671 	 * If nothing changed; bail early.
3672 	 */
3673 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3674 		return;
3675 
3676 	rq = __task_rq_lock(p, &rf);
3677 	update_rq_clock(rq);
3678 	/*
3679 	 * Set under pi_lock && rq->lock, such that the value can be used under
3680 	 * either lock.
3681 	 *
3682 	 * Note that there is loads of tricky to make this pointer cache work
3683 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3684 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3685 	 * task is allowed to run again (and can exit). This ensures the pointer
3686 	 * points to a blocked task -- which guaratees the task is present.
3687 	 */
3688 	p->pi_top_task = pi_task;
3689 
3690 	/*
3691 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3692 	 */
3693 	if (prio == p->prio && !dl_prio(prio))
3694 		goto out_unlock;
3695 
3696 	/*
3697 	 * Idle task boosting is a nono in general. There is one
3698 	 * exception, when PREEMPT_RT and NOHZ is active:
3699 	 *
3700 	 * The idle task calls get_next_timer_interrupt() and holds
3701 	 * the timer wheel base->lock on the CPU and another CPU wants
3702 	 * to access the timer (probably to cancel it). We can safely
3703 	 * ignore the boosting request, as the idle CPU runs this code
3704 	 * with interrupts disabled and will complete the lock
3705 	 * protected section without being interrupted. So there is no
3706 	 * real need to boost.
3707 	 */
3708 	if (unlikely(p == rq->idle)) {
3709 		WARN_ON(p != rq->curr);
3710 		WARN_ON(p->pi_blocked_on);
3711 		goto out_unlock;
3712 	}
3713 
3714 	trace_sched_pi_setprio(p, pi_task);
3715 	oldprio = p->prio;
3716 
3717 	if (oldprio == prio)
3718 		queue_flag &= ~DEQUEUE_MOVE;
3719 
3720 	prev_class = p->sched_class;
3721 	queued = task_on_rq_queued(p);
3722 	running = task_current(rq, p);
3723 	if (queued)
3724 		dequeue_task(rq, p, queue_flag);
3725 	if (running)
3726 		put_prev_task(rq, p);
3727 
3728 	/*
3729 	 * Boosting condition are:
3730 	 * 1. -rt task is running and holds mutex A
3731 	 *      --> -dl task blocks on mutex A
3732 	 *
3733 	 * 2. -dl task is running and holds mutex A
3734 	 *      --> -dl task blocks on mutex A and could preempt the
3735 	 *          running task
3736 	 */
3737 	if (dl_prio(prio)) {
3738 		if (!dl_prio(p->normal_prio) ||
3739 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3740 			p->dl.dl_boosted = 1;
3741 			queue_flag |= ENQUEUE_REPLENISH;
3742 		} else
3743 			p->dl.dl_boosted = 0;
3744 		p->sched_class = &dl_sched_class;
3745 	} else if (rt_prio(prio)) {
3746 		if (dl_prio(oldprio))
3747 			p->dl.dl_boosted = 0;
3748 		if (oldprio < prio)
3749 			queue_flag |= ENQUEUE_HEAD;
3750 		p->sched_class = &rt_sched_class;
3751 	} else {
3752 		if (dl_prio(oldprio))
3753 			p->dl.dl_boosted = 0;
3754 		if (rt_prio(oldprio))
3755 			p->rt.timeout = 0;
3756 		p->sched_class = &fair_sched_class;
3757 	}
3758 
3759 	p->prio = prio;
3760 
3761 	if (queued)
3762 		enqueue_task(rq, p, queue_flag);
3763 	if (running)
3764 		set_curr_task(rq, p);
3765 
3766 	check_class_changed(rq, p, prev_class, oldprio);
3767 out_unlock:
3768 	/* Avoid rq from going away on us: */
3769 	preempt_disable();
3770 	__task_rq_unlock(rq, &rf);
3771 
3772 	balance_callback(rq);
3773 	preempt_enable();
3774 }
3775 #else
3776 static inline int rt_effective_prio(struct task_struct *p, int prio)
3777 {
3778 	return prio;
3779 }
3780 #endif
3781 
3782 void set_user_nice(struct task_struct *p, long nice)
3783 {
3784 	bool queued, running;
3785 	int old_prio, delta;
3786 	struct rq_flags rf;
3787 	struct rq *rq;
3788 
3789 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3790 		return;
3791 	/*
3792 	 * We have to be careful, if called from sys_setpriority(),
3793 	 * the task might be in the middle of scheduling on another CPU.
3794 	 */
3795 	rq = task_rq_lock(p, &rf);
3796 	update_rq_clock(rq);
3797 
3798 	/*
3799 	 * The RT priorities are set via sched_setscheduler(), but we still
3800 	 * allow the 'normal' nice value to be set - but as expected
3801 	 * it wont have any effect on scheduling until the task is
3802 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3803 	 */
3804 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3805 		p->static_prio = NICE_TO_PRIO(nice);
3806 		goto out_unlock;
3807 	}
3808 	queued = task_on_rq_queued(p);
3809 	running = task_current(rq, p);
3810 	if (queued)
3811 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3812 	if (running)
3813 		put_prev_task(rq, p);
3814 
3815 	p->static_prio = NICE_TO_PRIO(nice);
3816 	set_load_weight(p, true);
3817 	old_prio = p->prio;
3818 	p->prio = effective_prio(p);
3819 	delta = p->prio - old_prio;
3820 
3821 	if (queued) {
3822 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3823 		/*
3824 		 * If the task increased its priority or is running and
3825 		 * lowered its priority, then reschedule its CPU:
3826 		 */
3827 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3828 			resched_curr(rq);
3829 	}
3830 	if (running)
3831 		set_curr_task(rq, p);
3832 out_unlock:
3833 	task_rq_unlock(rq, p, &rf);
3834 }
3835 EXPORT_SYMBOL(set_user_nice);
3836 
3837 /*
3838  * can_nice - check if a task can reduce its nice value
3839  * @p: task
3840  * @nice: nice value
3841  */
3842 int can_nice(const struct task_struct *p, const int nice)
3843 {
3844 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3845 	int nice_rlim = nice_to_rlimit(nice);
3846 
3847 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3848 		capable(CAP_SYS_NICE));
3849 }
3850 
3851 #ifdef __ARCH_WANT_SYS_NICE
3852 
3853 /*
3854  * sys_nice - change the priority of the current process.
3855  * @increment: priority increment
3856  *
3857  * sys_setpriority is a more generic, but much slower function that
3858  * does similar things.
3859  */
3860 SYSCALL_DEFINE1(nice, int, increment)
3861 {
3862 	long nice, retval;
3863 
3864 	/*
3865 	 * Setpriority might change our priority at the same moment.
3866 	 * We don't have to worry. Conceptually one call occurs first
3867 	 * and we have a single winner.
3868 	 */
3869 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3870 	nice = task_nice(current) + increment;
3871 
3872 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3873 	if (increment < 0 && !can_nice(current, nice))
3874 		return -EPERM;
3875 
3876 	retval = security_task_setnice(current, nice);
3877 	if (retval)
3878 		return retval;
3879 
3880 	set_user_nice(current, nice);
3881 	return 0;
3882 }
3883 
3884 #endif
3885 
3886 /**
3887  * task_prio - return the priority value of a given task.
3888  * @p: the task in question.
3889  *
3890  * Return: The priority value as seen by users in /proc.
3891  * RT tasks are offset by -200. Normal tasks are centered
3892  * around 0, value goes from -16 to +15.
3893  */
3894 int task_prio(const struct task_struct *p)
3895 {
3896 	return p->prio - MAX_RT_PRIO;
3897 }
3898 
3899 /**
3900  * idle_cpu - is a given CPU idle currently?
3901  * @cpu: the processor in question.
3902  *
3903  * Return: 1 if the CPU is currently idle. 0 otherwise.
3904  */
3905 int idle_cpu(int cpu)
3906 {
3907 	struct rq *rq = cpu_rq(cpu);
3908 
3909 	if (rq->curr != rq->idle)
3910 		return 0;
3911 
3912 	if (rq->nr_running)
3913 		return 0;
3914 
3915 #ifdef CONFIG_SMP
3916 	if (!llist_empty(&rq->wake_list))
3917 		return 0;
3918 #endif
3919 
3920 	return 1;
3921 }
3922 
3923 /**
3924  * idle_task - return the idle task for a given CPU.
3925  * @cpu: the processor in question.
3926  *
3927  * Return: The idle task for the CPU @cpu.
3928  */
3929 struct task_struct *idle_task(int cpu)
3930 {
3931 	return cpu_rq(cpu)->idle;
3932 }
3933 
3934 /**
3935  * find_process_by_pid - find a process with a matching PID value.
3936  * @pid: the pid in question.
3937  *
3938  * The task of @pid, if found. %NULL otherwise.
3939  */
3940 static struct task_struct *find_process_by_pid(pid_t pid)
3941 {
3942 	return pid ? find_task_by_vpid(pid) : current;
3943 }
3944 
3945 /*
3946  * sched_setparam() passes in -1 for its policy, to let the functions
3947  * it calls know not to change it.
3948  */
3949 #define SETPARAM_POLICY	-1
3950 
3951 static void __setscheduler_params(struct task_struct *p,
3952 		const struct sched_attr *attr)
3953 {
3954 	int policy = attr->sched_policy;
3955 
3956 	if (policy == SETPARAM_POLICY)
3957 		policy = p->policy;
3958 
3959 	p->policy = policy;
3960 
3961 	if (dl_policy(policy))
3962 		__setparam_dl(p, attr);
3963 	else if (fair_policy(policy))
3964 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3965 
3966 	/*
3967 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3968 	 * !rt_policy. Always setting this ensures that things like
3969 	 * getparam()/getattr() don't report silly values for !rt tasks.
3970 	 */
3971 	p->rt_priority = attr->sched_priority;
3972 	p->normal_prio = normal_prio(p);
3973 	set_load_weight(p, true);
3974 }
3975 
3976 /* Actually do priority change: must hold pi & rq lock. */
3977 static void __setscheduler(struct rq *rq, struct task_struct *p,
3978 			   const struct sched_attr *attr, bool keep_boost)
3979 {
3980 	__setscheduler_params(p, attr);
3981 
3982 	/*
3983 	 * Keep a potential priority boosting if called from
3984 	 * sched_setscheduler().
3985 	 */
3986 	p->prio = normal_prio(p);
3987 	if (keep_boost)
3988 		p->prio = rt_effective_prio(p, p->prio);
3989 
3990 	if (dl_prio(p->prio))
3991 		p->sched_class = &dl_sched_class;
3992 	else if (rt_prio(p->prio))
3993 		p->sched_class = &rt_sched_class;
3994 	else
3995 		p->sched_class = &fair_sched_class;
3996 }
3997 
3998 /*
3999  * Check the target process has a UID that matches the current process's:
4000  */
4001 static bool check_same_owner(struct task_struct *p)
4002 {
4003 	const struct cred *cred = current_cred(), *pcred;
4004 	bool match;
4005 
4006 	rcu_read_lock();
4007 	pcred = __task_cred(p);
4008 	match = (uid_eq(cred->euid, pcred->euid) ||
4009 		 uid_eq(cred->euid, pcred->uid));
4010 	rcu_read_unlock();
4011 	return match;
4012 }
4013 
4014 static int __sched_setscheduler(struct task_struct *p,
4015 				const struct sched_attr *attr,
4016 				bool user, bool pi)
4017 {
4018 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4019 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4020 	int retval, oldprio, oldpolicy = -1, queued, running;
4021 	int new_effective_prio, policy = attr->sched_policy;
4022 	const struct sched_class *prev_class;
4023 	struct rq_flags rf;
4024 	int reset_on_fork;
4025 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4026 	struct rq *rq;
4027 
4028 	/* The pi code expects interrupts enabled */
4029 	BUG_ON(pi && in_interrupt());
4030 recheck:
4031 	/* Double check policy once rq lock held: */
4032 	if (policy < 0) {
4033 		reset_on_fork = p->sched_reset_on_fork;
4034 		policy = oldpolicy = p->policy;
4035 	} else {
4036 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4037 
4038 		if (!valid_policy(policy))
4039 			return -EINVAL;
4040 	}
4041 
4042 	if (attr->sched_flags &
4043 		~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4044 		return -EINVAL;
4045 
4046 	/*
4047 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4048 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4049 	 * SCHED_BATCH and SCHED_IDLE is 0.
4050 	 */
4051 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4052 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4053 		return -EINVAL;
4054 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4055 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4056 		return -EINVAL;
4057 
4058 	/*
4059 	 * Allow unprivileged RT tasks to decrease priority:
4060 	 */
4061 	if (user && !capable(CAP_SYS_NICE)) {
4062 		if (fair_policy(policy)) {
4063 			if (attr->sched_nice < task_nice(p) &&
4064 			    !can_nice(p, attr->sched_nice))
4065 				return -EPERM;
4066 		}
4067 
4068 		if (rt_policy(policy)) {
4069 			unsigned long rlim_rtprio =
4070 					task_rlimit(p, RLIMIT_RTPRIO);
4071 
4072 			/* Can't set/change the rt policy: */
4073 			if (policy != p->policy && !rlim_rtprio)
4074 				return -EPERM;
4075 
4076 			/* Can't increase priority: */
4077 			if (attr->sched_priority > p->rt_priority &&
4078 			    attr->sched_priority > rlim_rtprio)
4079 				return -EPERM;
4080 		}
4081 
4082 		 /*
4083 		  * Can't set/change SCHED_DEADLINE policy at all for now
4084 		  * (safest behavior); in the future we would like to allow
4085 		  * unprivileged DL tasks to increase their relative deadline
4086 		  * or reduce their runtime (both ways reducing utilization)
4087 		  */
4088 		if (dl_policy(policy))
4089 			return -EPERM;
4090 
4091 		/*
4092 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4093 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4094 		 */
4095 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4096 			if (!can_nice(p, task_nice(p)))
4097 				return -EPERM;
4098 		}
4099 
4100 		/* Can't change other user's priorities: */
4101 		if (!check_same_owner(p))
4102 			return -EPERM;
4103 
4104 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4105 		if (p->sched_reset_on_fork && !reset_on_fork)
4106 			return -EPERM;
4107 	}
4108 
4109 	if (user) {
4110 		retval = security_task_setscheduler(p);
4111 		if (retval)
4112 			return retval;
4113 	}
4114 
4115 	/*
4116 	 * Make sure no PI-waiters arrive (or leave) while we are
4117 	 * changing the priority of the task:
4118 	 *
4119 	 * To be able to change p->policy safely, the appropriate
4120 	 * runqueue lock must be held.
4121 	 */
4122 	rq = task_rq_lock(p, &rf);
4123 	update_rq_clock(rq);
4124 
4125 	/*
4126 	 * Changing the policy of the stop threads its a very bad idea:
4127 	 */
4128 	if (p == rq->stop) {
4129 		task_rq_unlock(rq, p, &rf);
4130 		return -EINVAL;
4131 	}
4132 
4133 	/*
4134 	 * If not changing anything there's no need to proceed further,
4135 	 * but store a possible modification of reset_on_fork.
4136 	 */
4137 	if (unlikely(policy == p->policy)) {
4138 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4139 			goto change;
4140 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4141 			goto change;
4142 		if (dl_policy(policy) && dl_param_changed(p, attr))
4143 			goto change;
4144 
4145 		p->sched_reset_on_fork = reset_on_fork;
4146 		task_rq_unlock(rq, p, &rf);
4147 		return 0;
4148 	}
4149 change:
4150 
4151 	if (user) {
4152 #ifdef CONFIG_RT_GROUP_SCHED
4153 		/*
4154 		 * Do not allow realtime tasks into groups that have no runtime
4155 		 * assigned.
4156 		 */
4157 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4158 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4159 				!task_group_is_autogroup(task_group(p))) {
4160 			task_rq_unlock(rq, p, &rf);
4161 			return -EPERM;
4162 		}
4163 #endif
4164 #ifdef CONFIG_SMP
4165 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4166 			cpumask_t *span = rq->rd->span;
4167 
4168 			/*
4169 			 * Don't allow tasks with an affinity mask smaller than
4170 			 * the entire root_domain to become SCHED_DEADLINE. We
4171 			 * will also fail if there's no bandwidth available.
4172 			 */
4173 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4174 			    rq->rd->dl_bw.bw == 0) {
4175 				task_rq_unlock(rq, p, &rf);
4176 				return -EPERM;
4177 			}
4178 		}
4179 #endif
4180 	}
4181 
4182 	/* Re-check policy now with rq lock held: */
4183 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4184 		policy = oldpolicy = -1;
4185 		task_rq_unlock(rq, p, &rf);
4186 		goto recheck;
4187 	}
4188 
4189 	/*
4190 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4191 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4192 	 * is available.
4193 	 */
4194 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4195 		task_rq_unlock(rq, p, &rf);
4196 		return -EBUSY;
4197 	}
4198 
4199 	p->sched_reset_on_fork = reset_on_fork;
4200 	oldprio = p->prio;
4201 
4202 	if (pi) {
4203 		/*
4204 		 * Take priority boosted tasks into account. If the new
4205 		 * effective priority is unchanged, we just store the new
4206 		 * normal parameters and do not touch the scheduler class and
4207 		 * the runqueue. This will be done when the task deboost
4208 		 * itself.
4209 		 */
4210 		new_effective_prio = rt_effective_prio(p, newprio);
4211 		if (new_effective_prio == oldprio)
4212 			queue_flags &= ~DEQUEUE_MOVE;
4213 	}
4214 
4215 	queued = task_on_rq_queued(p);
4216 	running = task_current(rq, p);
4217 	if (queued)
4218 		dequeue_task(rq, p, queue_flags);
4219 	if (running)
4220 		put_prev_task(rq, p);
4221 
4222 	prev_class = p->sched_class;
4223 	__setscheduler(rq, p, attr, pi);
4224 
4225 	if (queued) {
4226 		/*
4227 		 * We enqueue to tail when the priority of a task is
4228 		 * increased (user space view).
4229 		 */
4230 		if (oldprio < p->prio)
4231 			queue_flags |= ENQUEUE_HEAD;
4232 
4233 		enqueue_task(rq, p, queue_flags);
4234 	}
4235 	if (running)
4236 		set_curr_task(rq, p);
4237 
4238 	check_class_changed(rq, p, prev_class, oldprio);
4239 
4240 	/* Avoid rq from going away on us: */
4241 	preempt_disable();
4242 	task_rq_unlock(rq, p, &rf);
4243 
4244 	if (pi)
4245 		rt_mutex_adjust_pi(p);
4246 
4247 	/* Run balance callbacks after we've adjusted the PI chain: */
4248 	balance_callback(rq);
4249 	preempt_enable();
4250 
4251 	return 0;
4252 }
4253 
4254 static int _sched_setscheduler(struct task_struct *p, int policy,
4255 			       const struct sched_param *param, bool check)
4256 {
4257 	struct sched_attr attr = {
4258 		.sched_policy   = policy,
4259 		.sched_priority = param->sched_priority,
4260 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4261 	};
4262 
4263 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4264 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4265 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4266 		policy &= ~SCHED_RESET_ON_FORK;
4267 		attr.sched_policy = policy;
4268 	}
4269 
4270 	return __sched_setscheduler(p, &attr, check, true);
4271 }
4272 /**
4273  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4274  * @p: the task in question.
4275  * @policy: new policy.
4276  * @param: structure containing the new RT priority.
4277  *
4278  * Return: 0 on success. An error code otherwise.
4279  *
4280  * NOTE that the task may be already dead.
4281  */
4282 int sched_setscheduler(struct task_struct *p, int policy,
4283 		       const struct sched_param *param)
4284 {
4285 	return _sched_setscheduler(p, policy, param, true);
4286 }
4287 EXPORT_SYMBOL_GPL(sched_setscheduler);
4288 
4289 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4290 {
4291 	return __sched_setscheduler(p, attr, true, true);
4292 }
4293 EXPORT_SYMBOL_GPL(sched_setattr);
4294 
4295 /**
4296  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4297  * @p: the task in question.
4298  * @policy: new policy.
4299  * @param: structure containing the new RT priority.
4300  *
4301  * Just like sched_setscheduler, only don't bother checking if the
4302  * current context has permission.  For example, this is needed in
4303  * stop_machine(): we create temporary high priority worker threads,
4304  * but our caller might not have that capability.
4305  *
4306  * Return: 0 on success. An error code otherwise.
4307  */
4308 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4309 			       const struct sched_param *param)
4310 {
4311 	return _sched_setscheduler(p, policy, param, false);
4312 }
4313 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4314 
4315 static int
4316 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4317 {
4318 	struct sched_param lparam;
4319 	struct task_struct *p;
4320 	int retval;
4321 
4322 	if (!param || pid < 0)
4323 		return -EINVAL;
4324 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4325 		return -EFAULT;
4326 
4327 	rcu_read_lock();
4328 	retval = -ESRCH;
4329 	p = find_process_by_pid(pid);
4330 	if (p != NULL)
4331 		retval = sched_setscheduler(p, policy, &lparam);
4332 	rcu_read_unlock();
4333 
4334 	return retval;
4335 }
4336 
4337 /*
4338  * Mimics kernel/events/core.c perf_copy_attr().
4339  */
4340 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4341 {
4342 	u32 size;
4343 	int ret;
4344 
4345 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4346 		return -EFAULT;
4347 
4348 	/* Zero the full structure, so that a short copy will be nice: */
4349 	memset(attr, 0, sizeof(*attr));
4350 
4351 	ret = get_user(size, &uattr->size);
4352 	if (ret)
4353 		return ret;
4354 
4355 	/* Bail out on silly large: */
4356 	if (size > PAGE_SIZE)
4357 		goto err_size;
4358 
4359 	/* ABI compatibility quirk: */
4360 	if (!size)
4361 		size = SCHED_ATTR_SIZE_VER0;
4362 
4363 	if (size < SCHED_ATTR_SIZE_VER0)
4364 		goto err_size;
4365 
4366 	/*
4367 	 * If we're handed a bigger struct than we know of,
4368 	 * ensure all the unknown bits are 0 - i.e. new
4369 	 * user-space does not rely on any kernel feature
4370 	 * extensions we dont know about yet.
4371 	 */
4372 	if (size > sizeof(*attr)) {
4373 		unsigned char __user *addr;
4374 		unsigned char __user *end;
4375 		unsigned char val;
4376 
4377 		addr = (void __user *)uattr + sizeof(*attr);
4378 		end  = (void __user *)uattr + size;
4379 
4380 		for (; addr < end; addr++) {
4381 			ret = get_user(val, addr);
4382 			if (ret)
4383 				return ret;
4384 			if (val)
4385 				goto err_size;
4386 		}
4387 		size = sizeof(*attr);
4388 	}
4389 
4390 	ret = copy_from_user(attr, uattr, size);
4391 	if (ret)
4392 		return -EFAULT;
4393 
4394 	/*
4395 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4396 	 * to be strict and return an error on out-of-bounds values?
4397 	 */
4398 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4399 
4400 	return 0;
4401 
4402 err_size:
4403 	put_user(sizeof(*attr), &uattr->size);
4404 	return -E2BIG;
4405 }
4406 
4407 /**
4408  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4409  * @pid: the pid in question.
4410  * @policy: new policy.
4411  * @param: structure containing the new RT priority.
4412  *
4413  * Return: 0 on success. An error code otherwise.
4414  */
4415 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4416 {
4417 	if (policy < 0)
4418 		return -EINVAL;
4419 
4420 	return do_sched_setscheduler(pid, policy, param);
4421 }
4422 
4423 /**
4424  * sys_sched_setparam - set/change the RT priority of a thread
4425  * @pid: the pid in question.
4426  * @param: structure containing the new RT priority.
4427  *
4428  * Return: 0 on success. An error code otherwise.
4429  */
4430 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4431 {
4432 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4433 }
4434 
4435 /**
4436  * sys_sched_setattr - same as above, but with extended sched_attr
4437  * @pid: the pid in question.
4438  * @uattr: structure containing the extended parameters.
4439  * @flags: for future extension.
4440  */
4441 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4442 			       unsigned int, flags)
4443 {
4444 	struct sched_attr attr;
4445 	struct task_struct *p;
4446 	int retval;
4447 
4448 	if (!uattr || pid < 0 || flags)
4449 		return -EINVAL;
4450 
4451 	retval = sched_copy_attr(uattr, &attr);
4452 	if (retval)
4453 		return retval;
4454 
4455 	if ((int)attr.sched_policy < 0)
4456 		return -EINVAL;
4457 
4458 	rcu_read_lock();
4459 	retval = -ESRCH;
4460 	p = find_process_by_pid(pid);
4461 	if (p != NULL)
4462 		retval = sched_setattr(p, &attr);
4463 	rcu_read_unlock();
4464 
4465 	return retval;
4466 }
4467 
4468 /**
4469  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4470  * @pid: the pid in question.
4471  *
4472  * Return: On success, the policy of the thread. Otherwise, a negative error
4473  * code.
4474  */
4475 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4476 {
4477 	struct task_struct *p;
4478 	int retval;
4479 
4480 	if (pid < 0)
4481 		return -EINVAL;
4482 
4483 	retval = -ESRCH;
4484 	rcu_read_lock();
4485 	p = find_process_by_pid(pid);
4486 	if (p) {
4487 		retval = security_task_getscheduler(p);
4488 		if (!retval)
4489 			retval = p->policy
4490 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4491 	}
4492 	rcu_read_unlock();
4493 	return retval;
4494 }
4495 
4496 /**
4497  * sys_sched_getparam - get the RT priority of a thread
4498  * @pid: the pid in question.
4499  * @param: structure containing the RT priority.
4500  *
4501  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4502  * code.
4503  */
4504 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4505 {
4506 	struct sched_param lp = { .sched_priority = 0 };
4507 	struct task_struct *p;
4508 	int retval;
4509 
4510 	if (!param || pid < 0)
4511 		return -EINVAL;
4512 
4513 	rcu_read_lock();
4514 	p = find_process_by_pid(pid);
4515 	retval = -ESRCH;
4516 	if (!p)
4517 		goto out_unlock;
4518 
4519 	retval = security_task_getscheduler(p);
4520 	if (retval)
4521 		goto out_unlock;
4522 
4523 	if (task_has_rt_policy(p))
4524 		lp.sched_priority = p->rt_priority;
4525 	rcu_read_unlock();
4526 
4527 	/*
4528 	 * This one might sleep, we cannot do it with a spinlock held ...
4529 	 */
4530 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4531 
4532 	return retval;
4533 
4534 out_unlock:
4535 	rcu_read_unlock();
4536 	return retval;
4537 }
4538 
4539 static int sched_read_attr(struct sched_attr __user *uattr,
4540 			   struct sched_attr *attr,
4541 			   unsigned int usize)
4542 {
4543 	int ret;
4544 
4545 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4546 		return -EFAULT;
4547 
4548 	/*
4549 	 * If we're handed a smaller struct than we know of,
4550 	 * ensure all the unknown bits are 0 - i.e. old
4551 	 * user-space does not get uncomplete information.
4552 	 */
4553 	if (usize < sizeof(*attr)) {
4554 		unsigned char *addr;
4555 		unsigned char *end;
4556 
4557 		addr = (void *)attr + usize;
4558 		end  = (void *)attr + sizeof(*attr);
4559 
4560 		for (; addr < end; addr++) {
4561 			if (*addr)
4562 				return -EFBIG;
4563 		}
4564 
4565 		attr->size = usize;
4566 	}
4567 
4568 	ret = copy_to_user(uattr, attr, attr->size);
4569 	if (ret)
4570 		return -EFAULT;
4571 
4572 	return 0;
4573 }
4574 
4575 /**
4576  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4577  * @pid: the pid in question.
4578  * @uattr: structure containing the extended parameters.
4579  * @size: sizeof(attr) for fwd/bwd comp.
4580  * @flags: for future extension.
4581  */
4582 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4583 		unsigned int, size, unsigned int, flags)
4584 {
4585 	struct sched_attr attr = {
4586 		.size = sizeof(struct sched_attr),
4587 	};
4588 	struct task_struct *p;
4589 	int retval;
4590 
4591 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4592 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4593 		return -EINVAL;
4594 
4595 	rcu_read_lock();
4596 	p = find_process_by_pid(pid);
4597 	retval = -ESRCH;
4598 	if (!p)
4599 		goto out_unlock;
4600 
4601 	retval = security_task_getscheduler(p);
4602 	if (retval)
4603 		goto out_unlock;
4604 
4605 	attr.sched_policy = p->policy;
4606 	if (p->sched_reset_on_fork)
4607 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4608 	if (task_has_dl_policy(p))
4609 		__getparam_dl(p, &attr);
4610 	else if (task_has_rt_policy(p))
4611 		attr.sched_priority = p->rt_priority;
4612 	else
4613 		attr.sched_nice = task_nice(p);
4614 
4615 	rcu_read_unlock();
4616 
4617 	retval = sched_read_attr(uattr, &attr, size);
4618 	return retval;
4619 
4620 out_unlock:
4621 	rcu_read_unlock();
4622 	return retval;
4623 }
4624 
4625 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4626 {
4627 	cpumask_var_t cpus_allowed, new_mask;
4628 	struct task_struct *p;
4629 	int retval;
4630 
4631 	rcu_read_lock();
4632 
4633 	p = find_process_by_pid(pid);
4634 	if (!p) {
4635 		rcu_read_unlock();
4636 		return -ESRCH;
4637 	}
4638 
4639 	/* Prevent p going away */
4640 	get_task_struct(p);
4641 	rcu_read_unlock();
4642 
4643 	if (p->flags & PF_NO_SETAFFINITY) {
4644 		retval = -EINVAL;
4645 		goto out_put_task;
4646 	}
4647 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4648 		retval = -ENOMEM;
4649 		goto out_put_task;
4650 	}
4651 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4652 		retval = -ENOMEM;
4653 		goto out_free_cpus_allowed;
4654 	}
4655 	retval = -EPERM;
4656 	if (!check_same_owner(p)) {
4657 		rcu_read_lock();
4658 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4659 			rcu_read_unlock();
4660 			goto out_free_new_mask;
4661 		}
4662 		rcu_read_unlock();
4663 	}
4664 
4665 	retval = security_task_setscheduler(p);
4666 	if (retval)
4667 		goto out_free_new_mask;
4668 
4669 
4670 	cpuset_cpus_allowed(p, cpus_allowed);
4671 	cpumask_and(new_mask, in_mask, cpus_allowed);
4672 
4673 	/*
4674 	 * Since bandwidth control happens on root_domain basis,
4675 	 * if admission test is enabled, we only admit -deadline
4676 	 * tasks allowed to run on all the CPUs in the task's
4677 	 * root_domain.
4678 	 */
4679 #ifdef CONFIG_SMP
4680 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4681 		rcu_read_lock();
4682 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4683 			retval = -EBUSY;
4684 			rcu_read_unlock();
4685 			goto out_free_new_mask;
4686 		}
4687 		rcu_read_unlock();
4688 	}
4689 #endif
4690 again:
4691 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4692 
4693 	if (!retval) {
4694 		cpuset_cpus_allowed(p, cpus_allowed);
4695 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4696 			/*
4697 			 * We must have raced with a concurrent cpuset
4698 			 * update. Just reset the cpus_allowed to the
4699 			 * cpuset's cpus_allowed
4700 			 */
4701 			cpumask_copy(new_mask, cpus_allowed);
4702 			goto again;
4703 		}
4704 	}
4705 out_free_new_mask:
4706 	free_cpumask_var(new_mask);
4707 out_free_cpus_allowed:
4708 	free_cpumask_var(cpus_allowed);
4709 out_put_task:
4710 	put_task_struct(p);
4711 	return retval;
4712 }
4713 
4714 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4715 			     struct cpumask *new_mask)
4716 {
4717 	if (len < cpumask_size())
4718 		cpumask_clear(new_mask);
4719 	else if (len > cpumask_size())
4720 		len = cpumask_size();
4721 
4722 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4723 }
4724 
4725 /**
4726  * sys_sched_setaffinity - set the CPU affinity of a process
4727  * @pid: pid of the process
4728  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4729  * @user_mask_ptr: user-space pointer to the new CPU mask
4730  *
4731  * Return: 0 on success. An error code otherwise.
4732  */
4733 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4734 		unsigned long __user *, user_mask_ptr)
4735 {
4736 	cpumask_var_t new_mask;
4737 	int retval;
4738 
4739 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4740 		return -ENOMEM;
4741 
4742 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4743 	if (retval == 0)
4744 		retval = sched_setaffinity(pid, new_mask);
4745 	free_cpumask_var(new_mask);
4746 	return retval;
4747 }
4748 
4749 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4750 {
4751 	struct task_struct *p;
4752 	unsigned long flags;
4753 	int retval;
4754 
4755 	rcu_read_lock();
4756 
4757 	retval = -ESRCH;
4758 	p = find_process_by_pid(pid);
4759 	if (!p)
4760 		goto out_unlock;
4761 
4762 	retval = security_task_getscheduler(p);
4763 	if (retval)
4764 		goto out_unlock;
4765 
4766 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4767 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4768 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4769 
4770 out_unlock:
4771 	rcu_read_unlock();
4772 
4773 	return retval;
4774 }
4775 
4776 /**
4777  * sys_sched_getaffinity - get the CPU affinity of a process
4778  * @pid: pid of the process
4779  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4780  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4781  *
4782  * Return: size of CPU mask copied to user_mask_ptr on success. An
4783  * error code otherwise.
4784  */
4785 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4786 		unsigned long __user *, user_mask_ptr)
4787 {
4788 	int ret;
4789 	cpumask_var_t mask;
4790 
4791 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4792 		return -EINVAL;
4793 	if (len & (sizeof(unsigned long)-1))
4794 		return -EINVAL;
4795 
4796 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4797 		return -ENOMEM;
4798 
4799 	ret = sched_getaffinity(pid, mask);
4800 	if (ret == 0) {
4801 		size_t retlen = min_t(size_t, len, cpumask_size());
4802 
4803 		if (copy_to_user(user_mask_ptr, mask, retlen))
4804 			ret = -EFAULT;
4805 		else
4806 			ret = retlen;
4807 	}
4808 	free_cpumask_var(mask);
4809 
4810 	return ret;
4811 }
4812 
4813 /**
4814  * sys_sched_yield - yield the current processor to other threads.
4815  *
4816  * This function yields the current CPU to other tasks. If there are no
4817  * other threads running on this CPU then this function will return.
4818  *
4819  * Return: 0.
4820  */
4821 SYSCALL_DEFINE0(sched_yield)
4822 {
4823 	struct rq_flags rf;
4824 	struct rq *rq;
4825 
4826 	local_irq_disable();
4827 	rq = this_rq();
4828 	rq_lock(rq, &rf);
4829 
4830 	schedstat_inc(rq->yld_count);
4831 	current->sched_class->yield_task(rq);
4832 
4833 	/*
4834 	 * Since we are going to call schedule() anyway, there's
4835 	 * no need to preempt or enable interrupts:
4836 	 */
4837 	preempt_disable();
4838 	rq_unlock(rq, &rf);
4839 	sched_preempt_enable_no_resched();
4840 
4841 	schedule();
4842 
4843 	return 0;
4844 }
4845 
4846 #ifndef CONFIG_PREEMPT
4847 int __sched _cond_resched(void)
4848 {
4849 	if (should_resched(0)) {
4850 		preempt_schedule_common();
4851 		return 1;
4852 	}
4853 	rcu_all_qs();
4854 	return 0;
4855 }
4856 EXPORT_SYMBOL(_cond_resched);
4857 #endif
4858 
4859 /*
4860  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4861  * call schedule, and on return reacquire the lock.
4862  *
4863  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4864  * operations here to prevent schedule() from being called twice (once via
4865  * spin_unlock(), once by hand).
4866  */
4867 int __cond_resched_lock(spinlock_t *lock)
4868 {
4869 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4870 	int ret = 0;
4871 
4872 	lockdep_assert_held(lock);
4873 
4874 	if (spin_needbreak(lock) || resched) {
4875 		spin_unlock(lock);
4876 		if (resched)
4877 			preempt_schedule_common();
4878 		else
4879 			cpu_relax();
4880 		ret = 1;
4881 		spin_lock(lock);
4882 	}
4883 	return ret;
4884 }
4885 EXPORT_SYMBOL(__cond_resched_lock);
4886 
4887 int __sched __cond_resched_softirq(void)
4888 {
4889 	BUG_ON(!in_softirq());
4890 
4891 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4892 		local_bh_enable();
4893 		preempt_schedule_common();
4894 		local_bh_disable();
4895 		return 1;
4896 	}
4897 	return 0;
4898 }
4899 EXPORT_SYMBOL(__cond_resched_softirq);
4900 
4901 /**
4902  * yield - yield the current processor to other threads.
4903  *
4904  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4905  *
4906  * The scheduler is at all times free to pick the calling task as the most
4907  * eligible task to run, if removing the yield() call from your code breaks
4908  * it, its already broken.
4909  *
4910  * Typical broken usage is:
4911  *
4912  * while (!event)
4913  *	yield();
4914  *
4915  * where one assumes that yield() will let 'the other' process run that will
4916  * make event true. If the current task is a SCHED_FIFO task that will never
4917  * happen. Never use yield() as a progress guarantee!!
4918  *
4919  * If you want to use yield() to wait for something, use wait_event().
4920  * If you want to use yield() to be 'nice' for others, use cond_resched().
4921  * If you still want to use yield(), do not!
4922  */
4923 void __sched yield(void)
4924 {
4925 	set_current_state(TASK_RUNNING);
4926 	sys_sched_yield();
4927 }
4928 EXPORT_SYMBOL(yield);
4929 
4930 /**
4931  * yield_to - yield the current processor to another thread in
4932  * your thread group, or accelerate that thread toward the
4933  * processor it's on.
4934  * @p: target task
4935  * @preempt: whether task preemption is allowed or not
4936  *
4937  * It's the caller's job to ensure that the target task struct
4938  * can't go away on us before we can do any checks.
4939  *
4940  * Return:
4941  *	true (>0) if we indeed boosted the target task.
4942  *	false (0) if we failed to boost the target.
4943  *	-ESRCH if there's no task to yield to.
4944  */
4945 int __sched yield_to(struct task_struct *p, bool preempt)
4946 {
4947 	struct task_struct *curr = current;
4948 	struct rq *rq, *p_rq;
4949 	unsigned long flags;
4950 	int yielded = 0;
4951 
4952 	local_irq_save(flags);
4953 	rq = this_rq();
4954 
4955 again:
4956 	p_rq = task_rq(p);
4957 	/*
4958 	 * If we're the only runnable task on the rq and target rq also
4959 	 * has only one task, there's absolutely no point in yielding.
4960 	 */
4961 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4962 		yielded = -ESRCH;
4963 		goto out_irq;
4964 	}
4965 
4966 	double_rq_lock(rq, p_rq);
4967 	if (task_rq(p) != p_rq) {
4968 		double_rq_unlock(rq, p_rq);
4969 		goto again;
4970 	}
4971 
4972 	if (!curr->sched_class->yield_to_task)
4973 		goto out_unlock;
4974 
4975 	if (curr->sched_class != p->sched_class)
4976 		goto out_unlock;
4977 
4978 	if (task_running(p_rq, p) || p->state)
4979 		goto out_unlock;
4980 
4981 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4982 	if (yielded) {
4983 		schedstat_inc(rq->yld_count);
4984 		/*
4985 		 * Make p's CPU reschedule; pick_next_entity takes care of
4986 		 * fairness.
4987 		 */
4988 		if (preempt && rq != p_rq)
4989 			resched_curr(p_rq);
4990 	}
4991 
4992 out_unlock:
4993 	double_rq_unlock(rq, p_rq);
4994 out_irq:
4995 	local_irq_restore(flags);
4996 
4997 	if (yielded > 0)
4998 		schedule();
4999 
5000 	return yielded;
5001 }
5002 EXPORT_SYMBOL_GPL(yield_to);
5003 
5004 int io_schedule_prepare(void)
5005 {
5006 	int old_iowait = current->in_iowait;
5007 
5008 	current->in_iowait = 1;
5009 	blk_schedule_flush_plug(current);
5010 
5011 	return old_iowait;
5012 }
5013 
5014 void io_schedule_finish(int token)
5015 {
5016 	current->in_iowait = token;
5017 }
5018 
5019 /*
5020  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5021  * that process accounting knows that this is a task in IO wait state.
5022  */
5023 long __sched io_schedule_timeout(long timeout)
5024 {
5025 	int token;
5026 	long ret;
5027 
5028 	token = io_schedule_prepare();
5029 	ret = schedule_timeout(timeout);
5030 	io_schedule_finish(token);
5031 
5032 	return ret;
5033 }
5034 EXPORT_SYMBOL(io_schedule_timeout);
5035 
5036 void io_schedule(void)
5037 {
5038 	int token;
5039 
5040 	token = io_schedule_prepare();
5041 	schedule();
5042 	io_schedule_finish(token);
5043 }
5044 EXPORT_SYMBOL(io_schedule);
5045 
5046 /**
5047  * sys_sched_get_priority_max - return maximum RT priority.
5048  * @policy: scheduling class.
5049  *
5050  * Return: On success, this syscall returns the maximum
5051  * rt_priority that can be used by a given scheduling class.
5052  * On failure, a negative error code is returned.
5053  */
5054 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5055 {
5056 	int ret = -EINVAL;
5057 
5058 	switch (policy) {
5059 	case SCHED_FIFO:
5060 	case SCHED_RR:
5061 		ret = MAX_USER_RT_PRIO-1;
5062 		break;
5063 	case SCHED_DEADLINE:
5064 	case SCHED_NORMAL:
5065 	case SCHED_BATCH:
5066 	case SCHED_IDLE:
5067 		ret = 0;
5068 		break;
5069 	}
5070 	return ret;
5071 }
5072 
5073 /**
5074  * sys_sched_get_priority_min - return minimum RT priority.
5075  * @policy: scheduling class.
5076  *
5077  * Return: On success, this syscall returns the minimum
5078  * rt_priority that can be used by a given scheduling class.
5079  * On failure, a negative error code is returned.
5080  */
5081 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5082 {
5083 	int ret = -EINVAL;
5084 
5085 	switch (policy) {
5086 	case SCHED_FIFO:
5087 	case SCHED_RR:
5088 		ret = 1;
5089 		break;
5090 	case SCHED_DEADLINE:
5091 	case SCHED_NORMAL:
5092 	case SCHED_BATCH:
5093 	case SCHED_IDLE:
5094 		ret = 0;
5095 	}
5096 	return ret;
5097 }
5098 
5099 /**
5100  * sys_sched_rr_get_interval - return the default timeslice of a process.
5101  * @pid: pid of the process.
5102  * @interval: userspace pointer to the timeslice value.
5103  *
5104  * this syscall writes the default timeslice value of a given process
5105  * into the user-space timespec buffer. A value of '0' means infinity.
5106  *
5107  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5108  * an error code.
5109  */
5110 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5111 		struct timespec __user *, interval)
5112 {
5113 	struct task_struct *p;
5114 	unsigned int time_slice;
5115 	struct rq_flags rf;
5116 	struct timespec t;
5117 	struct rq *rq;
5118 	int retval;
5119 
5120 	if (pid < 0)
5121 		return -EINVAL;
5122 
5123 	retval = -ESRCH;
5124 	rcu_read_lock();
5125 	p = find_process_by_pid(pid);
5126 	if (!p)
5127 		goto out_unlock;
5128 
5129 	retval = security_task_getscheduler(p);
5130 	if (retval)
5131 		goto out_unlock;
5132 
5133 	rq = task_rq_lock(p, &rf);
5134 	time_slice = 0;
5135 	if (p->sched_class->get_rr_interval)
5136 		time_slice = p->sched_class->get_rr_interval(rq, p);
5137 	task_rq_unlock(rq, p, &rf);
5138 
5139 	rcu_read_unlock();
5140 	jiffies_to_timespec(time_slice, &t);
5141 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5142 	return retval;
5143 
5144 out_unlock:
5145 	rcu_read_unlock();
5146 	return retval;
5147 }
5148 
5149 void sched_show_task(struct task_struct *p)
5150 {
5151 	unsigned long free = 0;
5152 	int ppid;
5153 
5154 	if (!try_get_task_stack(p))
5155 		return;
5156 
5157 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5158 
5159 	if (p->state == TASK_RUNNING)
5160 		printk(KERN_CONT "  running task    ");
5161 #ifdef CONFIG_DEBUG_STACK_USAGE
5162 	free = stack_not_used(p);
5163 #endif
5164 	ppid = 0;
5165 	rcu_read_lock();
5166 	if (pid_alive(p))
5167 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5168 	rcu_read_unlock();
5169 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5170 		task_pid_nr(p), ppid,
5171 		(unsigned long)task_thread_info(p)->flags);
5172 
5173 	print_worker_info(KERN_INFO, p);
5174 	show_stack(p, NULL);
5175 	put_task_stack(p);
5176 }
5177 EXPORT_SYMBOL_GPL(sched_show_task);
5178 
5179 static inline bool
5180 state_filter_match(unsigned long state_filter, struct task_struct *p)
5181 {
5182 	/* no filter, everything matches */
5183 	if (!state_filter)
5184 		return true;
5185 
5186 	/* filter, but doesn't match */
5187 	if (!(p->state & state_filter))
5188 		return false;
5189 
5190 	/*
5191 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5192 	 * TASK_KILLABLE).
5193 	 */
5194 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5195 		return false;
5196 
5197 	return true;
5198 }
5199 
5200 
5201 void show_state_filter(unsigned long state_filter)
5202 {
5203 	struct task_struct *g, *p;
5204 
5205 #if BITS_PER_LONG == 32
5206 	printk(KERN_INFO
5207 		"  task                PC stack   pid father\n");
5208 #else
5209 	printk(KERN_INFO
5210 		"  task                        PC stack   pid father\n");
5211 #endif
5212 	rcu_read_lock();
5213 	for_each_process_thread(g, p) {
5214 		/*
5215 		 * reset the NMI-timeout, listing all files on a slow
5216 		 * console might take a lot of time:
5217 		 * Also, reset softlockup watchdogs on all CPUs, because
5218 		 * another CPU might be blocked waiting for us to process
5219 		 * an IPI.
5220 		 */
5221 		touch_nmi_watchdog();
5222 		touch_all_softlockup_watchdogs();
5223 		if (state_filter_match(state_filter, p))
5224 			sched_show_task(p);
5225 	}
5226 
5227 #ifdef CONFIG_SCHED_DEBUG
5228 	if (!state_filter)
5229 		sysrq_sched_debug_show();
5230 #endif
5231 	rcu_read_unlock();
5232 	/*
5233 	 * Only show locks if all tasks are dumped:
5234 	 */
5235 	if (!state_filter)
5236 		debug_show_all_locks();
5237 }
5238 
5239 /**
5240  * init_idle - set up an idle thread for a given CPU
5241  * @idle: task in question
5242  * @cpu: CPU the idle task belongs to
5243  *
5244  * NOTE: this function does not set the idle thread's NEED_RESCHED
5245  * flag, to make booting more robust.
5246  */
5247 void init_idle(struct task_struct *idle, int cpu)
5248 {
5249 	struct rq *rq = cpu_rq(cpu);
5250 	unsigned long flags;
5251 
5252 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5253 	raw_spin_lock(&rq->lock);
5254 
5255 	__sched_fork(0, idle);
5256 	idle->state = TASK_RUNNING;
5257 	idle->se.exec_start = sched_clock();
5258 	idle->flags |= PF_IDLE;
5259 
5260 	kasan_unpoison_task_stack(idle);
5261 
5262 #ifdef CONFIG_SMP
5263 	/*
5264 	 * Its possible that init_idle() gets called multiple times on a task,
5265 	 * in that case do_set_cpus_allowed() will not do the right thing.
5266 	 *
5267 	 * And since this is boot we can forgo the serialization.
5268 	 */
5269 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5270 #endif
5271 	/*
5272 	 * We're having a chicken and egg problem, even though we are
5273 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5274 	 * lockdep check in task_group() will fail.
5275 	 *
5276 	 * Similar case to sched_fork(). / Alternatively we could
5277 	 * use task_rq_lock() here and obtain the other rq->lock.
5278 	 *
5279 	 * Silence PROVE_RCU
5280 	 */
5281 	rcu_read_lock();
5282 	__set_task_cpu(idle, cpu);
5283 	rcu_read_unlock();
5284 
5285 	rq->curr = rq->idle = idle;
5286 	idle->on_rq = TASK_ON_RQ_QUEUED;
5287 #ifdef CONFIG_SMP
5288 	idle->on_cpu = 1;
5289 #endif
5290 	raw_spin_unlock(&rq->lock);
5291 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5292 
5293 	/* Set the preempt count _outside_ the spinlocks! */
5294 	init_idle_preempt_count(idle, cpu);
5295 
5296 	/*
5297 	 * The idle tasks have their own, simple scheduling class:
5298 	 */
5299 	idle->sched_class = &idle_sched_class;
5300 	ftrace_graph_init_idle_task(idle, cpu);
5301 	vtime_init_idle(idle, cpu);
5302 #ifdef CONFIG_SMP
5303 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5304 #endif
5305 }
5306 
5307 #ifdef CONFIG_SMP
5308 
5309 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5310 			      const struct cpumask *trial)
5311 {
5312 	int ret = 1;
5313 
5314 	if (!cpumask_weight(cur))
5315 		return ret;
5316 
5317 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5318 
5319 	return ret;
5320 }
5321 
5322 int task_can_attach(struct task_struct *p,
5323 		    const struct cpumask *cs_cpus_allowed)
5324 {
5325 	int ret = 0;
5326 
5327 	/*
5328 	 * Kthreads which disallow setaffinity shouldn't be moved
5329 	 * to a new cpuset; we don't want to change their CPU
5330 	 * affinity and isolating such threads by their set of
5331 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5332 	 * applicable for such threads.  This prevents checking for
5333 	 * success of set_cpus_allowed_ptr() on all attached tasks
5334 	 * before cpus_allowed may be changed.
5335 	 */
5336 	if (p->flags & PF_NO_SETAFFINITY) {
5337 		ret = -EINVAL;
5338 		goto out;
5339 	}
5340 
5341 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5342 					      cs_cpus_allowed))
5343 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5344 
5345 out:
5346 	return ret;
5347 }
5348 
5349 bool sched_smp_initialized __read_mostly;
5350 
5351 #ifdef CONFIG_NUMA_BALANCING
5352 /* Migrate current task p to target_cpu */
5353 int migrate_task_to(struct task_struct *p, int target_cpu)
5354 {
5355 	struct migration_arg arg = { p, target_cpu };
5356 	int curr_cpu = task_cpu(p);
5357 
5358 	if (curr_cpu == target_cpu)
5359 		return 0;
5360 
5361 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5362 		return -EINVAL;
5363 
5364 	/* TODO: This is not properly updating schedstats */
5365 
5366 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5367 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5368 }
5369 
5370 /*
5371  * Requeue a task on a given node and accurately track the number of NUMA
5372  * tasks on the runqueues
5373  */
5374 void sched_setnuma(struct task_struct *p, int nid)
5375 {
5376 	bool queued, running;
5377 	struct rq_flags rf;
5378 	struct rq *rq;
5379 
5380 	rq = task_rq_lock(p, &rf);
5381 	queued = task_on_rq_queued(p);
5382 	running = task_current(rq, p);
5383 
5384 	if (queued)
5385 		dequeue_task(rq, p, DEQUEUE_SAVE);
5386 	if (running)
5387 		put_prev_task(rq, p);
5388 
5389 	p->numa_preferred_nid = nid;
5390 
5391 	if (queued)
5392 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5393 	if (running)
5394 		set_curr_task(rq, p);
5395 	task_rq_unlock(rq, p, &rf);
5396 }
5397 #endif /* CONFIG_NUMA_BALANCING */
5398 
5399 #ifdef CONFIG_HOTPLUG_CPU
5400 /*
5401  * Ensure that the idle task is using init_mm right before its CPU goes
5402  * offline.
5403  */
5404 void idle_task_exit(void)
5405 {
5406 	struct mm_struct *mm = current->active_mm;
5407 
5408 	BUG_ON(cpu_online(smp_processor_id()));
5409 
5410 	if (mm != &init_mm) {
5411 		switch_mm(mm, &init_mm, current);
5412 		finish_arch_post_lock_switch();
5413 	}
5414 	mmdrop(mm);
5415 }
5416 
5417 /*
5418  * Since this CPU is going 'away' for a while, fold any nr_active delta
5419  * we might have. Assumes we're called after migrate_tasks() so that the
5420  * nr_active count is stable. We need to take the teardown thread which
5421  * is calling this into account, so we hand in adjust = 1 to the load
5422  * calculation.
5423  *
5424  * Also see the comment "Global load-average calculations".
5425  */
5426 static void calc_load_migrate(struct rq *rq)
5427 {
5428 	long delta = calc_load_fold_active(rq, 1);
5429 	if (delta)
5430 		atomic_long_add(delta, &calc_load_tasks);
5431 }
5432 
5433 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5434 {
5435 }
5436 
5437 static const struct sched_class fake_sched_class = {
5438 	.put_prev_task = put_prev_task_fake,
5439 };
5440 
5441 static struct task_struct fake_task = {
5442 	/*
5443 	 * Avoid pull_{rt,dl}_task()
5444 	 */
5445 	.prio = MAX_PRIO + 1,
5446 	.sched_class = &fake_sched_class,
5447 };
5448 
5449 /*
5450  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5451  * try_to_wake_up()->select_task_rq().
5452  *
5453  * Called with rq->lock held even though we'er in stop_machine() and
5454  * there's no concurrency possible, we hold the required locks anyway
5455  * because of lock validation efforts.
5456  */
5457 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5458 {
5459 	struct rq *rq = dead_rq;
5460 	struct task_struct *next, *stop = rq->stop;
5461 	struct rq_flags orf = *rf;
5462 	int dest_cpu;
5463 
5464 	/*
5465 	 * Fudge the rq selection such that the below task selection loop
5466 	 * doesn't get stuck on the currently eligible stop task.
5467 	 *
5468 	 * We're currently inside stop_machine() and the rq is either stuck
5469 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5470 	 * either way we should never end up calling schedule() until we're
5471 	 * done here.
5472 	 */
5473 	rq->stop = NULL;
5474 
5475 	/*
5476 	 * put_prev_task() and pick_next_task() sched
5477 	 * class method both need to have an up-to-date
5478 	 * value of rq->clock[_task]
5479 	 */
5480 	update_rq_clock(rq);
5481 
5482 	for (;;) {
5483 		/*
5484 		 * There's this thread running, bail when that's the only
5485 		 * remaining thread:
5486 		 */
5487 		if (rq->nr_running == 1)
5488 			break;
5489 
5490 		/*
5491 		 * pick_next_task() assumes pinned rq->lock:
5492 		 */
5493 		next = pick_next_task(rq, &fake_task, rf);
5494 		BUG_ON(!next);
5495 		put_prev_task(rq, next);
5496 
5497 		/*
5498 		 * Rules for changing task_struct::cpus_allowed are holding
5499 		 * both pi_lock and rq->lock, such that holding either
5500 		 * stabilizes the mask.
5501 		 *
5502 		 * Drop rq->lock is not quite as disastrous as it usually is
5503 		 * because !cpu_active at this point, which means load-balance
5504 		 * will not interfere. Also, stop-machine.
5505 		 */
5506 		rq_unlock(rq, rf);
5507 		raw_spin_lock(&next->pi_lock);
5508 		rq_relock(rq, rf);
5509 
5510 		/*
5511 		 * Since we're inside stop-machine, _nothing_ should have
5512 		 * changed the task, WARN if weird stuff happened, because in
5513 		 * that case the above rq->lock drop is a fail too.
5514 		 */
5515 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5516 			raw_spin_unlock(&next->pi_lock);
5517 			continue;
5518 		}
5519 
5520 		/* Find suitable destination for @next, with force if needed. */
5521 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5522 		rq = __migrate_task(rq, rf, next, dest_cpu);
5523 		if (rq != dead_rq) {
5524 			rq_unlock(rq, rf);
5525 			rq = dead_rq;
5526 			*rf = orf;
5527 			rq_relock(rq, rf);
5528 		}
5529 		raw_spin_unlock(&next->pi_lock);
5530 	}
5531 
5532 	rq->stop = stop;
5533 }
5534 #endif /* CONFIG_HOTPLUG_CPU */
5535 
5536 void set_rq_online(struct rq *rq)
5537 {
5538 	if (!rq->online) {
5539 		const struct sched_class *class;
5540 
5541 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5542 		rq->online = 1;
5543 
5544 		for_each_class(class) {
5545 			if (class->rq_online)
5546 				class->rq_online(rq);
5547 		}
5548 	}
5549 }
5550 
5551 void set_rq_offline(struct rq *rq)
5552 {
5553 	if (rq->online) {
5554 		const struct sched_class *class;
5555 
5556 		for_each_class(class) {
5557 			if (class->rq_offline)
5558 				class->rq_offline(rq);
5559 		}
5560 
5561 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5562 		rq->online = 0;
5563 	}
5564 }
5565 
5566 static void set_cpu_rq_start_time(unsigned int cpu)
5567 {
5568 	struct rq *rq = cpu_rq(cpu);
5569 
5570 	rq->age_stamp = sched_clock_cpu(cpu);
5571 }
5572 
5573 /*
5574  * used to mark begin/end of suspend/resume:
5575  */
5576 static int num_cpus_frozen;
5577 
5578 /*
5579  * Update cpusets according to cpu_active mask.  If cpusets are
5580  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5581  * around partition_sched_domains().
5582  *
5583  * If we come here as part of a suspend/resume, don't touch cpusets because we
5584  * want to restore it back to its original state upon resume anyway.
5585  */
5586 static void cpuset_cpu_active(void)
5587 {
5588 	if (cpuhp_tasks_frozen) {
5589 		/*
5590 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5591 		 * resume sequence. As long as this is not the last online
5592 		 * operation in the resume sequence, just build a single sched
5593 		 * domain, ignoring cpusets.
5594 		 */
5595 		partition_sched_domains(1, NULL, NULL);
5596 		if (--num_cpus_frozen)
5597 			return;
5598 		/*
5599 		 * This is the last CPU online operation. So fall through and
5600 		 * restore the original sched domains by considering the
5601 		 * cpuset configurations.
5602 		 */
5603 		cpuset_force_rebuild();
5604 	}
5605 	cpuset_update_active_cpus();
5606 }
5607 
5608 static int cpuset_cpu_inactive(unsigned int cpu)
5609 {
5610 	if (!cpuhp_tasks_frozen) {
5611 		if (dl_cpu_busy(cpu))
5612 			return -EBUSY;
5613 		cpuset_update_active_cpus();
5614 	} else {
5615 		num_cpus_frozen++;
5616 		partition_sched_domains(1, NULL, NULL);
5617 	}
5618 	return 0;
5619 }
5620 
5621 int sched_cpu_activate(unsigned int cpu)
5622 {
5623 	struct rq *rq = cpu_rq(cpu);
5624 	struct rq_flags rf;
5625 
5626 	set_cpu_active(cpu, true);
5627 
5628 	if (sched_smp_initialized) {
5629 		sched_domains_numa_masks_set(cpu);
5630 		cpuset_cpu_active();
5631 	}
5632 
5633 	/*
5634 	 * Put the rq online, if not already. This happens:
5635 	 *
5636 	 * 1) In the early boot process, because we build the real domains
5637 	 *    after all CPUs have been brought up.
5638 	 *
5639 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5640 	 *    domains.
5641 	 */
5642 	rq_lock_irqsave(rq, &rf);
5643 	if (rq->rd) {
5644 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5645 		set_rq_online(rq);
5646 	}
5647 	rq_unlock_irqrestore(rq, &rf);
5648 
5649 	update_max_interval();
5650 
5651 	return 0;
5652 }
5653 
5654 int sched_cpu_deactivate(unsigned int cpu)
5655 {
5656 	int ret;
5657 
5658 	set_cpu_active(cpu, false);
5659 	/*
5660 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5661 	 * users of this state to go away such that all new such users will
5662 	 * observe it.
5663 	 *
5664 	 * Do sync before park smpboot threads to take care the rcu boost case.
5665 	 */
5666 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5667 
5668 	if (!sched_smp_initialized)
5669 		return 0;
5670 
5671 	ret = cpuset_cpu_inactive(cpu);
5672 	if (ret) {
5673 		set_cpu_active(cpu, true);
5674 		return ret;
5675 	}
5676 	sched_domains_numa_masks_clear(cpu);
5677 	return 0;
5678 }
5679 
5680 static void sched_rq_cpu_starting(unsigned int cpu)
5681 {
5682 	struct rq *rq = cpu_rq(cpu);
5683 
5684 	rq->calc_load_update = calc_load_update;
5685 	update_max_interval();
5686 }
5687 
5688 int sched_cpu_starting(unsigned int cpu)
5689 {
5690 	set_cpu_rq_start_time(cpu);
5691 	sched_rq_cpu_starting(cpu);
5692 	return 0;
5693 }
5694 
5695 #ifdef CONFIG_HOTPLUG_CPU
5696 int sched_cpu_dying(unsigned int cpu)
5697 {
5698 	struct rq *rq = cpu_rq(cpu);
5699 	struct rq_flags rf;
5700 
5701 	/* Handle pending wakeups and then migrate everything off */
5702 	sched_ttwu_pending();
5703 
5704 	rq_lock_irqsave(rq, &rf);
5705 	if (rq->rd) {
5706 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5707 		set_rq_offline(rq);
5708 	}
5709 	migrate_tasks(rq, &rf);
5710 	BUG_ON(rq->nr_running != 1);
5711 	rq_unlock_irqrestore(rq, &rf);
5712 
5713 	calc_load_migrate(rq);
5714 	update_max_interval();
5715 	nohz_balance_exit_idle(cpu);
5716 	hrtick_clear(rq);
5717 	return 0;
5718 }
5719 #endif
5720 
5721 #ifdef CONFIG_SCHED_SMT
5722 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5723 
5724 static void sched_init_smt(void)
5725 {
5726 	/*
5727 	 * We've enumerated all CPUs and will assume that if any CPU
5728 	 * has SMT siblings, CPU0 will too.
5729 	 */
5730 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5731 		static_branch_enable(&sched_smt_present);
5732 }
5733 #else
5734 static inline void sched_init_smt(void) { }
5735 #endif
5736 
5737 void __init sched_init_smp(void)
5738 {
5739 	sched_init_numa();
5740 
5741 	/*
5742 	 * There's no userspace yet to cause hotplug operations; hence all the
5743 	 * CPU masks are stable and all blatant races in the below code cannot
5744 	 * happen.
5745 	 */
5746 	mutex_lock(&sched_domains_mutex);
5747 	sched_init_domains(cpu_active_mask);
5748 	mutex_unlock(&sched_domains_mutex);
5749 
5750 	/* Move init over to a non-isolated CPU */
5751 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5752 		BUG();
5753 	sched_init_granularity();
5754 
5755 	init_sched_rt_class();
5756 	init_sched_dl_class();
5757 
5758 	sched_init_smt();
5759 
5760 	sched_smp_initialized = true;
5761 }
5762 
5763 static int __init migration_init(void)
5764 {
5765 	sched_rq_cpu_starting(smp_processor_id());
5766 	return 0;
5767 }
5768 early_initcall(migration_init);
5769 
5770 #else
5771 void __init sched_init_smp(void)
5772 {
5773 	sched_init_granularity();
5774 }
5775 #endif /* CONFIG_SMP */
5776 
5777 int in_sched_functions(unsigned long addr)
5778 {
5779 	return in_lock_functions(addr) ||
5780 		(addr >= (unsigned long)__sched_text_start
5781 		&& addr < (unsigned long)__sched_text_end);
5782 }
5783 
5784 #ifdef CONFIG_CGROUP_SCHED
5785 /*
5786  * Default task group.
5787  * Every task in system belongs to this group at bootup.
5788  */
5789 struct task_group root_task_group;
5790 LIST_HEAD(task_groups);
5791 
5792 /* Cacheline aligned slab cache for task_group */
5793 static struct kmem_cache *task_group_cache __read_mostly;
5794 #endif
5795 
5796 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5797 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5798 
5799 void __init sched_init(void)
5800 {
5801 	int i, j;
5802 	unsigned long alloc_size = 0, ptr;
5803 
5804 	sched_clock_init();
5805 	wait_bit_init();
5806 
5807 #ifdef CONFIG_FAIR_GROUP_SCHED
5808 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5809 #endif
5810 #ifdef CONFIG_RT_GROUP_SCHED
5811 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5812 #endif
5813 	if (alloc_size) {
5814 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5815 
5816 #ifdef CONFIG_FAIR_GROUP_SCHED
5817 		root_task_group.se = (struct sched_entity **)ptr;
5818 		ptr += nr_cpu_ids * sizeof(void **);
5819 
5820 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5821 		ptr += nr_cpu_ids * sizeof(void **);
5822 
5823 #endif /* CONFIG_FAIR_GROUP_SCHED */
5824 #ifdef CONFIG_RT_GROUP_SCHED
5825 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5826 		ptr += nr_cpu_ids * sizeof(void **);
5827 
5828 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5829 		ptr += nr_cpu_ids * sizeof(void **);
5830 
5831 #endif /* CONFIG_RT_GROUP_SCHED */
5832 	}
5833 #ifdef CONFIG_CPUMASK_OFFSTACK
5834 	for_each_possible_cpu(i) {
5835 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5836 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5837 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5838 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5839 	}
5840 #endif /* CONFIG_CPUMASK_OFFSTACK */
5841 
5842 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5843 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5844 
5845 #ifdef CONFIG_SMP
5846 	init_defrootdomain();
5847 #endif
5848 
5849 #ifdef CONFIG_RT_GROUP_SCHED
5850 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5851 			global_rt_period(), global_rt_runtime());
5852 #endif /* CONFIG_RT_GROUP_SCHED */
5853 
5854 #ifdef CONFIG_CGROUP_SCHED
5855 	task_group_cache = KMEM_CACHE(task_group, 0);
5856 
5857 	list_add(&root_task_group.list, &task_groups);
5858 	INIT_LIST_HEAD(&root_task_group.children);
5859 	INIT_LIST_HEAD(&root_task_group.siblings);
5860 	autogroup_init(&init_task);
5861 #endif /* CONFIG_CGROUP_SCHED */
5862 
5863 	for_each_possible_cpu(i) {
5864 		struct rq *rq;
5865 
5866 		rq = cpu_rq(i);
5867 		raw_spin_lock_init(&rq->lock);
5868 		rq->nr_running = 0;
5869 		rq->calc_load_active = 0;
5870 		rq->calc_load_update = jiffies + LOAD_FREQ;
5871 		init_cfs_rq(&rq->cfs);
5872 		init_rt_rq(&rq->rt);
5873 		init_dl_rq(&rq->dl);
5874 #ifdef CONFIG_FAIR_GROUP_SCHED
5875 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5876 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5877 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5878 		/*
5879 		 * How much CPU bandwidth does root_task_group get?
5880 		 *
5881 		 * In case of task-groups formed thr' the cgroup filesystem, it
5882 		 * gets 100% of the CPU resources in the system. This overall
5883 		 * system CPU resource is divided among the tasks of
5884 		 * root_task_group and its child task-groups in a fair manner,
5885 		 * based on each entity's (task or task-group's) weight
5886 		 * (se->load.weight).
5887 		 *
5888 		 * In other words, if root_task_group has 10 tasks of weight
5889 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5890 		 * then A0's share of the CPU resource is:
5891 		 *
5892 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5893 		 *
5894 		 * We achieve this by letting root_task_group's tasks sit
5895 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5896 		 */
5897 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5898 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5899 #endif /* CONFIG_FAIR_GROUP_SCHED */
5900 
5901 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5902 #ifdef CONFIG_RT_GROUP_SCHED
5903 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5904 #endif
5905 
5906 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5907 			rq->cpu_load[j] = 0;
5908 
5909 #ifdef CONFIG_SMP
5910 		rq->sd = NULL;
5911 		rq->rd = NULL;
5912 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5913 		rq->balance_callback = NULL;
5914 		rq->active_balance = 0;
5915 		rq->next_balance = jiffies;
5916 		rq->push_cpu = 0;
5917 		rq->cpu = i;
5918 		rq->online = 0;
5919 		rq->idle_stamp = 0;
5920 		rq->avg_idle = 2*sysctl_sched_migration_cost;
5921 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5922 
5923 		INIT_LIST_HEAD(&rq->cfs_tasks);
5924 
5925 		rq_attach_root(rq, &def_root_domain);
5926 #ifdef CONFIG_NO_HZ_COMMON
5927 		rq->last_load_update_tick = jiffies;
5928 		rq->nohz_flags = 0;
5929 #endif
5930 #ifdef CONFIG_NO_HZ_FULL
5931 		rq->last_sched_tick = 0;
5932 #endif
5933 #endif /* CONFIG_SMP */
5934 		init_rq_hrtick(rq);
5935 		atomic_set(&rq->nr_iowait, 0);
5936 	}
5937 
5938 	set_load_weight(&init_task, false);
5939 
5940 	/*
5941 	 * The boot idle thread does lazy MMU switching as well:
5942 	 */
5943 	mmgrab(&init_mm);
5944 	enter_lazy_tlb(&init_mm, current);
5945 
5946 	/*
5947 	 * Make us the idle thread. Technically, schedule() should not be
5948 	 * called from this thread, however somewhere below it might be,
5949 	 * but because we are the idle thread, we just pick up running again
5950 	 * when this runqueue becomes "idle".
5951 	 */
5952 	init_idle(current, smp_processor_id());
5953 
5954 	calc_load_update = jiffies + LOAD_FREQ;
5955 
5956 #ifdef CONFIG_SMP
5957 	idle_thread_set_boot_cpu();
5958 	set_cpu_rq_start_time(smp_processor_id());
5959 #endif
5960 	init_sched_fair_class();
5961 
5962 	init_schedstats();
5963 
5964 	scheduler_running = 1;
5965 }
5966 
5967 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5968 static inline int preempt_count_equals(int preempt_offset)
5969 {
5970 	int nested = preempt_count() + rcu_preempt_depth();
5971 
5972 	return (nested == preempt_offset);
5973 }
5974 
5975 void __might_sleep(const char *file, int line, int preempt_offset)
5976 {
5977 	/*
5978 	 * Blocking primitives will set (and therefore destroy) current->state,
5979 	 * since we will exit with TASK_RUNNING make sure we enter with it,
5980 	 * otherwise we will destroy state.
5981 	 */
5982 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
5983 			"do not call blocking ops when !TASK_RUNNING; "
5984 			"state=%lx set at [<%p>] %pS\n",
5985 			current->state,
5986 			(void *)current->task_state_change,
5987 			(void *)current->task_state_change);
5988 
5989 	___might_sleep(file, line, preempt_offset);
5990 }
5991 EXPORT_SYMBOL(__might_sleep);
5992 
5993 void ___might_sleep(const char *file, int line, int preempt_offset)
5994 {
5995 	/* Ratelimiting timestamp: */
5996 	static unsigned long prev_jiffy;
5997 
5998 	unsigned long preempt_disable_ip;
5999 
6000 	/* WARN_ON_ONCE() by default, no rate limit required: */
6001 	rcu_sleep_check();
6002 
6003 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6004 	     !is_idle_task(current)) ||
6005 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6006 	    oops_in_progress)
6007 		return;
6008 
6009 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6010 		return;
6011 	prev_jiffy = jiffies;
6012 
6013 	/* Save this before calling printk(), since that will clobber it: */
6014 	preempt_disable_ip = get_preempt_disable_ip(current);
6015 
6016 	printk(KERN_ERR
6017 		"BUG: sleeping function called from invalid context at %s:%d\n",
6018 			file, line);
6019 	printk(KERN_ERR
6020 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6021 			in_atomic(), irqs_disabled(),
6022 			current->pid, current->comm);
6023 
6024 	if (task_stack_end_corrupted(current))
6025 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6026 
6027 	debug_show_held_locks(current);
6028 	if (irqs_disabled())
6029 		print_irqtrace_events(current);
6030 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6031 	    && !preempt_count_equals(preempt_offset)) {
6032 		pr_err("Preemption disabled at:");
6033 		print_ip_sym(preempt_disable_ip);
6034 		pr_cont("\n");
6035 	}
6036 	dump_stack();
6037 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6038 }
6039 EXPORT_SYMBOL(___might_sleep);
6040 #endif
6041 
6042 #ifdef CONFIG_MAGIC_SYSRQ
6043 void normalize_rt_tasks(void)
6044 {
6045 	struct task_struct *g, *p;
6046 	struct sched_attr attr = {
6047 		.sched_policy = SCHED_NORMAL,
6048 	};
6049 
6050 	read_lock(&tasklist_lock);
6051 	for_each_process_thread(g, p) {
6052 		/*
6053 		 * Only normalize user tasks:
6054 		 */
6055 		if (p->flags & PF_KTHREAD)
6056 			continue;
6057 
6058 		p->se.exec_start = 0;
6059 		schedstat_set(p->se.statistics.wait_start,  0);
6060 		schedstat_set(p->se.statistics.sleep_start, 0);
6061 		schedstat_set(p->se.statistics.block_start, 0);
6062 
6063 		if (!dl_task(p) && !rt_task(p)) {
6064 			/*
6065 			 * Renice negative nice level userspace
6066 			 * tasks back to 0:
6067 			 */
6068 			if (task_nice(p) < 0)
6069 				set_user_nice(p, 0);
6070 			continue;
6071 		}
6072 
6073 		__sched_setscheduler(p, &attr, false, false);
6074 	}
6075 	read_unlock(&tasklist_lock);
6076 }
6077 
6078 #endif /* CONFIG_MAGIC_SYSRQ */
6079 
6080 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6081 /*
6082  * These functions are only useful for the IA64 MCA handling, or kdb.
6083  *
6084  * They can only be called when the whole system has been
6085  * stopped - every CPU needs to be quiescent, and no scheduling
6086  * activity can take place. Using them for anything else would
6087  * be a serious bug, and as a result, they aren't even visible
6088  * under any other configuration.
6089  */
6090 
6091 /**
6092  * curr_task - return the current task for a given CPU.
6093  * @cpu: the processor in question.
6094  *
6095  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6096  *
6097  * Return: The current task for @cpu.
6098  */
6099 struct task_struct *curr_task(int cpu)
6100 {
6101 	return cpu_curr(cpu);
6102 }
6103 
6104 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6105 
6106 #ifdef CONFIG_IA64
6107 /**
6108  * set_curr_task - set the current task for a given CPU.
6109  * @cpu: the processor in question.
6110  * @p: the task pointer to set.
6111  *
6112  * Description: This function must only be used when non-maskable interrupts
6113  * are serviced on a separate stack. It allows the architecture to switch the
6114  * notion of the current task on a CPU in a non-blocking manner. This function
6115  * must be called with all CPU's synchronized, and interrupts disabled, the
6116  * and caller must save the original value of the current task (see
6117  * curr_task() above) and restore that value before reenabling interrupts and
6118  * re-starting the system.
6119  *
6120  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6121  */
6122 void ia64_set_curr_task(int cpu, struct task_struct *p)
6123 {
6124 	cpu_curr(cpu) = p;
6125 }
6126 
6127 #endif
6128 
6129 #ifdef CONFIG_CGROUP_SCHED
6130 /* task_group_lock serializes the addition/removal of task groups */
6131 static DEFINE_SPINLOCK(task_group_lock);
6132 
6133 static void sched_free_group(struct task_group *tg)
6134 {
6135 	free_fair_sched_group(tg);
6136 	free_rt_sched_group(tg);
6137 	autogroup_free(tg);
6138 	kmem_cache_free(task_group_cache, tg);
6139 }
6140 
6141 /* allocate runqueue etc for a new task group */
6142 struct task_group *sched_create_group(struct task_group *parent)
6143 {
6144 	struct task_group *tg;
6145 
6146 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6147 	if (!tg)
6148 		return ERR_PTR(-ENOMEM);
6149 
6150 	if (!alloc_fair_sched_group(tg, parent))
6151 		goto err;
6152 
6153 	if (!alloc_rt_sched_group(tg, parent))
6154 		goto err;
6155 
6156 	return tg;
6157 
6158 err:
6159 	sched_free_group(tg);
6160 	return ERR_PTR(-ENOMEM);
6161 }
6162 
6163 void sched_online_group(struct task_group *tg, struct task_group *parent)
6164 {
6165 	unsigned long flags;
6166 
6167 	spin_lock_irqsave(&task_group_lock, flags);
6168 	list_add_rcu(&tg->list, &task_groups);
6169 
6170 	/* Root should already exist: */
6171 	WARN_ON(!parent);
6172 
6173 	tg->parent = parent;
6174 	INIT_LIST_HEAD(&tg->children);
6175 	list_add_rcu(&tg->siblings, &parent->children);
6176 	spin_unlock_irqrestore(&task_group_lock, flags);
6177 
6178 	online_fair_sched_group(tg);
6179 }
6180 
6181 /* rcu callback to free various structures associated with a task group */
6182 static void sched_free_group_rcu(struct rcu_head *rhp)
6183 {
6184 	/* Now it should be safe to free those cfs_rqs: */
6185 	sched_free_group(container_of(rhp, struct task_group, rcu));
6186 }
6187 
6188 void sched_destroy_group(struct task_group *tg)
6189 {
6190 	/* Wait for possible concurrent references to cfs_rqs complete: */
6191 	call_rcu(&tg->rcu, sched_free_group_rcu);
6192 }
6193 
6194 void sched_offline_group(struct task_group *tg)
6195 {
6196 	unsigned long flags;
6197 
6198 	/* End participation in shares distribution: */
6199 	unregister_fair_sched_group(tg);
6200 
6201 	spin_lock_irqsave(&task_group_lock, flags);
6202 	list_del_rcu(&tg->list);
6203 	list_del_rcu(&tg->siblings);
6204 	spin_unlock_irqrestore(&task_group_lock, flags);
6205 }
6206 
6207 static void sched_change_group(struct task_struct *tsk, int type)
6208 {
6209 	struct task_group *tg;
6210 
6211 	/*
6212 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6213 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6214 	 * to prevent lockdep warnings.
6215 	 */
6216 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6217 			  struct task_group, css);
6218 	tg = autogroup_task_group(tsk, tg);
6219 	tsk->sched_task_group = tg;
6220 
6221 #ifdef CONFIG_FAIR_GROUP_SCHED
6222 	if (tsk->sched_class->task_change_group)
6223 		tsk->sched_class->task_change_group(tsk, type);
6224 	else
6225 #endif
6226 		set_task_rq(tsk, task_cpu(tsk));
6227 }
6228 
6229 /*
6230  * Change task's runqueue when it moves between groups.
6231  *
6232  * The caller of this function should have put the task in its new group by
6233  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6234  * its new group.
6235  */
6236 void sched_move_task(struct task_struct *tsk)
6237 {
6238 	int queued, running, queue_flags =
6239 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6240 	struct rq_flags rf;
6241 	struct rq *rq;
6242 
6243 	rq = task_rq_lock(tsk, &rf);
6244 	update_rq_clock(rq);
6245 
6246 	running = task_current(rq, tsk);
6247 	queued = task_on_rq_queued(tsk);
6248 
6249 	if (queued)
6250 		dequeue_task(rq, tsk, queue_flags);
6251 	if (running)
6252 		put_prev_task(rq, tsk);
6253 
6254 	sched_change_group(tsk, TASK_MOVE_GROUP);
6255 
6256 	if (queued)
6257 		enqueue_task(rq, tsk, queue_flags);
6258 	if (running)
6259 		set_curr_task(rq, tsk);
6260 
6261 	task_rq_unlock(rq, tsk, &rf);
6262 }
6263 
6264 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6265 {
6266 	return css ? container_of(css, struct task_group, css) : NULL;
6267 }
6268 
6269 static struct cgroup_subsys_state *
6270 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6271 {
6272 	struct task_group *parent = css_tg(parent_css);
6273 	struct task_group *tg;
6274 
6275 	if (!parent) {
6276 		/* This is early initialization for the top cgroup */
6277 		return &root_task_group.css;
6278 	}
6279 
6280 	tg = sched_create_group(parent);
6281 	if (IS_ERR(tg))
6282 		return ERR_PTR(-ENOMEM);
6283 
6284 	return &tg->css;
6285 }
6286 
6287 /* Expose task group only after completing cgroup initialization */
6288 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6289 {
6290 	struct task_group *tg = css_tg(css);
6291 	struct task_group *parent = css_tg(css->parent);
6292 
6293 	if (parent)
6294 		sched_online_group(tg, parent);
6295 	return 0;
6296 }
6297 
6298 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6299 {
6300 	struct task_group *tg = css_tg(css);
6301 
6302 	sched_offline_group(tg);
6303 }
6304 
6305 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6306 {
6307 	struct task_group *tg = css_tg(css);
6308 
6309 	/*
6310 	 * Relies on the RCU grace period between css_released() and this.
6311 	 */
6312 	sched_free_group(tg);
6313 }
6314 
6315 /*
6316  * This is called before wake_up_new_task(), therefore we really only
6317  * have to set its group bits, all the other stuff does not apply.
6318  */
6319 static void cpu_cgroup_fork(struct task_struct *task)
6320 {
6321 	struct rq_flags rf;
6322 	struct rq *rq;
6323 
6324 	rq = task_rq_lock(task, &rf);
6325 
6326 	update_rq_clock(rq);
6327 	sched_change_group(task, TASK_SET_GROUP);
6328 
6329 	task_rq_unlock(rq, task, &rf);
6330 }
6331 
6332 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6333 {
6334 	struct task_struct *task;
6335 	struct cgroup_subsys_state *css;
6336 	int ret = 0;
6337 
6338 	cgroup_taskset_for_each(task, css, tset) {
6339 #ifdef CONFIG_RT_GROUP_SCHED
6340 		if (!sched_rt_can_attach(css_tg(css), task))
6341 			return -EINVAL;
6342 #else
6343 		/* We don't support RT-tasks being in separate groups */
6344 		if (task->sched_class != &fair_sched_class)
6345 			return -EINVAL;
6346 #endif
6347 		/*
6348 		 * Serialize against wake_up_new_task() such that if its
6349 		 * running, we're sure to observe its full state.
6350 		 */
6351 		raw_spin_lock_irq(&task->pi_lock);
6352 		/*
6353 		 * Avoid calling sched_move_task() before wake_up_new_task()
6354 		 * has happened. This would lead to problems with PELT, due to
6355 		 * move wanting to detach+attach while we're not attached yet.
6356 		 */
6357 		if (task->state == TASK_NEW)
6358 			ret = -EINVAL;
6359 		raw_spin_unlock_irq(&task->pi_lock);
6360 
6361 		if (ret)
6362 			break;
6363 	}
6364 	return ret;
6365 }
6366 
6367 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6368 {
6369 	struct task_struct *task;
6370 	struct cgroup_subsys_state *css;
6371 
6372 	cgroup_taskset_for_each(task, css, tset)
6373 		sched_move_task(task);
6374 }
6375 
6376 #ifdef CONFIG_FAIR_GROUP_SCHED
6377 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6378 				struct cftype *cftype, u64 shareval)
6379 {
6380 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6381 }
6382 
6383 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6384 			       struct cftype *cft)
6385 {
6386 	struct task_group *tg = css_tg(css);
6387 
6388 	return (u64) scale_load_down(tg->shares);
6389 }
6390 
6391 #ifdef CONFIG_CFS_BANDWIDTH
6392 static DEFINE_MUTEX(cfs_constraints_mutex);
6393 
6394 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6395 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6396 
6397 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6398 
6399 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6400 {
6401 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6402 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6403 
6404 	if (tg == &root_task_group)
6405 		return -EINVAL;
6406 
6407 	/*
6408 	 * Ensure we have at some amount of bandwidth every period.  This is
6409 	 * to prevent reaching a state of large arrears when throttled via
6410 	 * entity_tick() resulting in prolonged exit starvation.
6411 	 */
6412 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6413 		return -EINVAL;
6414 
6415 	/*
6416 	 * Likewise, bound things on the otherside by preventing insane quota
6417 	 * periods.  This also allows us to normalize in computing quota
6418 	 * feasibility.
6419 	 */
6420 	if (period > max_cfs_quota_period)
6421 		return -EINVAL;
6422 
6423 	/*
6424 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6425 	 * unthrottle_offline_cfs_rqs().
6426 	 */
6427 	get_online_cpus();
6428 	mutex_lock(&cfs_constraints_mutex);
6429 	ret = __cfs_schedulable(tg, period, quota);
6430 	if (ret)
6431 		goto out_unlock;
6432 
6433 	runtime_enabled = quota != RUNTIME_INF;
6434 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6435 	/*
6436 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6437 	 * before making related changes, and on->off must occur afterwards
6438 	 */
6439 	if (runtime_enabled && !runtime_was_enabled)
6440 		cfs_bandwidth_usage_inc();
6441 	raw_spin_lock_irq(&cfs_b->lock);
6442 	cfs_b->period = ns_to_ktime(period);
6443 	cfs_b->quota = quota;
6444 
6445 	__refill_cfs_bandwidth_runtime(cfs_b);
6446 
6447 	/* Restart the period timer (if active) to handle new period expiry: */
6448 	if (runtime_enabled)
6449 		start_cfs_bandwidth(cfs_b);
6450 
6451 	raw_spin_unlock_irq(&cfs_b->lock);
6452 
6453 	for_each_online_cpu(i) {
6454 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6455 		struct rq *rq = cfs_rq->rq;
6456 		struct rq_flags rf;
6457 
6458 		rq_lock_irq(rq, &rf);
6459 		cfs_rq->runtime_enabled = runtime_enabled;
6460 		cfs_rq->runtime_remaining = 0;
6461 
6462 		if (cfs_rq->throttled)
6463 			unthrottle_cfs_rq(cfs_rq);
6464 		rq_unlock_irq(rq, &rf);
6465 	}
6466 	if (runtime_was_enabled && !runtime_enabled)
6467 		cfs_bandwidth_usage_dec();
6468 out_unlock:
6469 	mutex_unlock(&cfs_constraints_mutex);
6470 	put_online_cpus();
6471 
6472 	return ret;
6473 }
6474 
6475 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6476 {
6477 	u64 quota, period;
6478 
6479 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6480 	if (cfs_quota_us < 0)
6481 		quota = RUNTIME_INF;
6482 	else
6483 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6484 
6485 	return tg_set_cfs_bandwidth(tg, period, quota);
6486 }
6487 
6488 long tg_get_cfs_quota(struct task_group *tg)
6489 {
6490 	u64 quota_us;
6491 
6492 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6493 		return -1;
6494 
6495 	quota_us = tg->cfs_bandwidth.quota;
6496 	do_div(quota_us, NSEC_PER_USEC);
6497 
6498 	return quota_us;
6499 }
6500 
6501 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6502 {
6503 	u64 quota, period;
6504 
6505 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6506 	quota = tg->cfs_bandwidth.quota;
6507 
6508 	return tg_set_cfs_bandwidth(tg, period, quota);
6509 }
6510 
6511 long tg_get_cfs_period(struct task_group *tg)
6512 {
6513 	u64 cfs_period_us;
6514 
6515 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6516 	do_div(cfs_period_us, NSEC_PER_USEC);
6517 
6518 	return cfs_period_us;
6519 }
6520 
6521 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6522 				  struct cftype *cft)
6523 {
6524 	return tg_get_cfs_quota(css_tg(css));
6525 }
6526 
6527 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6528 				   struct cftype *cftype, s64 cfs_quota_us)
6529 {
6530 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6531 }
6532 
6533 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6534 				   struct cftype *cft)
6535 {
6536 	return tg_get_cfs_period(css_tg(css));
6537 }
6538 
6539 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6540 				    struct cftype *cftype, u64 cfs_period_us)
6541 {
6542 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6543 }
6544 
6545 struct cfs_schedulable_data {
6546 	struct task_group *tg;
6547 	u64 period, quota;
6548 };
6549 
6550 /*
6551  * normalize group quota/period to be quota/max_period
6552  * note: units are usecs
6553  */
6554 static u64 normalize_cfs_quota(struct task_group *tg,
6555 			       struct cfs_schedulable_data *d)
6556 {
6557 	u64 quota, period;
6558 
6559 	if (tg == d->tg) {
6560 		period = d->period;
6561 		quota = d->quota;
6562 	} else {
6563 		period = tg_get_cfs_period(tg);
6564 		quota = tg_get_cfs_quota(tg);
6565 	}
6566 
6567 	/* note: these should typically be equivalent */
6568 	if (quota == RUNTIME_INF || quota == -1)
6569 		return RUNTIME_INF;
6570 
6571 	return to_ratio(period, quota);
6572 }
6573 
6574 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6575 {
6576 	struct cfs_schedulable_data *d = data;
6577 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6578 	s64 quota = 0, parent_quota = -1;
6579 
6580 	if (!tg->parent) {
6581 		quota = RUNTIME_INF;
6582 	} else {
6583 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6584 
6585 		quota = normalize_cfs_quota(tg, d);
6586 		parent_quota = parent_b->hierarchical_quota;
6587 
6588 		/*
6589 		 * Ensure max(child_quota) <= parent_quota, inherit when no
6590 		 * limit is set:
6591 		 */
6592 		if (quota == RUNTIME_INF)
6593 			quota = parent_quota;
6594 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6595 			return -EINVAL;
6596 	}
6597 	cfs_b->hierarchical_quota = quota;
6598 
6599 	return 0;
6600 }
6601 
6602 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6603 {
6604 	int ret;
6605 	struct cfs_schedulable_data data = {
6606 		.tg = tg,
6607 		.period = period,
6608 		.quota = quota,
6609 	};
6610 
6611 	if (quota != RUNTIME_INF) {
6612 		do_div(data.period, NSEC_PER_USEC);
6613 		do_div(data.quota, NSEC_PER_USEC);
6614 	}
6615 
6616 	rcu_read_lock();
6617 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6618 	rcu_read_unlock();
6619 
6620 	return ret;
6621 }
6622 
6623 static int cpu_stats_show(struct seq_file *sf, void *v)
6624 {
6625 	struct task_group *tg = css_tg(seq_css(sf));
6626 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6627 
6628 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6629 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6630 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6631 
6632 	return 0;
6633 }
6634 #endif /* CONFIG_CFS_BANDWIDTH */
6635 #endif /* CONFIG_FAIR_GROUP_SCHED */
6636 
6637 #ifdef CONFIG_RT_GROUP_SCHED
6638 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6639 				struct cftype *cft, s64 val)
6640 {
6641 	return sched_group_set_rt_runtime(css_tg(css), val);
6642 }
6643 
6644 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6645 			       struct cftype *cft)
6646 {
6647 	return sched_group_rt_runtime(css_tg(css));
6648 }
6649 
6650 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6651 				    struct cftype *cftype, u64 rt_period_us)
6652 {
6653 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6654 }
6655 
6656 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6657 				   struct cftype *cft)
6658 {
6659 	return sched_group_rt_period(css_tg(css));
6660 }
6661 #endif /* CONFIG_RT_GROUP_SCHED */
6662 
6663 static struct cftype cpu_files[] = {
6664 #ifdef CONFIG_FAIR_GROUP_SCHED
6665 	{
6666 		.name = "shares",
6667 		.read_u64 = cpu_shares_read_u64,
6668 		.write_u64 = cpu_shares_write_u64,
6669 	},
6670 #endif
6671 #ifdef CONFIG_CFS_BANDWIDTH
6672 	{
6673 		.name = "cfs_quota_us",
6674 		.read_s64 = cpu_cfs_quota_read_s64,
6675 		.write_s64 = cpu_cfs_quota_write_s64,
6676 	},
6677 	{
6678 		.name = "cfs_period_us",
6679 		.read_u64 = cpu_cfs_period_read_u64,
6680 		.write_u64 = cpu_cfs_period_write_u64,
6681 	},
6682 	{
6683 		.name = "stat",
6684 		.seq_show = cpu_stats_show,
6685 	},
6686 #endif
6687 #ifdef CONFIG_RT_GROUP_SCHED
6688 	{
6689 		.name = "rt_runtime_us",
6690 		.read_s64 = cpu_rt_runtime_read,
6691 		.write_s64 = cpu_rt_runtime_write,
6692 	},
6693 	{
6694 		.name = "rt_period_us",
6695 		.read_u64 = cpu_rt_period_read_uint,
6696 		.write_u64 = cpu_rt_period_write_uint,
6697 	},
6698 #endif
6699 	{ }	/* Terminate */
6700 };
6701 
6702 struct cgroup_subsys cpu_cgrp_subsys = {
6703 	.css_alloc	= cpu_cgroup_css_alloc,
6704 	.css_online	= cpu_cgroup_css_online,
6705 	.css_released	= cpu_cgroup_css_released,
6706 	.css_free	= cpu_cgroup_css_free,
6707 	.fork		= cpu_cgroup_fork,
6708 	.can_attach	= cpu_cgroup_can_attach,
6709 	.attach		= cpu_cgroup_attach,
6710 	.legacy_cftypes	= cpu_files,
6711 	.early_init	= true,
6712 };
6713 
6714 #endif	/* CONFIG_CGROUP_SCHED */
6715 
6716 void dump_cpu_task(int cpu)
6717 {
6718 	pr_info("Task dump for CPU %d:\n", cpu);
6719 	sched_show_task(cpu_curr(cpu));
6720 }
6721 
6722 /*
6723  * Nice levels are multiplicative, with a gentle 10% change for every
6724  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6725  * nice 1, it will get ~10% less CPU time than another CPU-bound task
6726  * that remained on nice 0.
6727  *
6728  * The "10% effect" is relative and cumulative: from _any_ nice level,
6729  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6730  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6731  * If a task goes up by ~10% and another task goes down by ~10% then
6732  * the relative distance between them is ~25%.)
6733  */
6734 const int sched_prio_to_weight[40] = {
6735  /* -20 */     88761,     71755,     56483,     46273,     36291,
6736  /* -15 */     29154,     23254,     18705,     14949,     11916,
6737  /* -10 */      9548,      7620,      6100,      4904,      3906,
6738  /*  -5 */      3121,      2501,      1991,      1586,      1277,
6739  /*   0 */      1024,       820,       655,       526,       423,
6740  /*   5 */       335,       272,       215,       172,       137,
6741  /*  10 */       110,        87,        70,        56,        45,
6742  /*  15 */        36,        29,        23,        18,        15,
6743 };
6744 
6745 /*
6746  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6747  *
6748  * In cases where the weight does not change often, we can use the
6749  * precalculated inverse to speed up arithmetics by turning divisions
6750  * into multiplications:
6751  */
6752 const u32 sched_prio_to_wmult[40] = {
6753  /* -20 */     48388,     59856,     76040,     92818,    118348,
6754  /* -15 */    147320,    184698,    229616,    287308,    360437,
6755  /* -10 */    449829,    563644,    704093,    875809,   1099582,
6756  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
6757  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
6758  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
6759  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
6760  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6761 };
6762