xref: /linux/kernel/sched/core.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 DEFINE_MUTEX(sched_domains_mutex);
93 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
94 
95 static void update_rq_clock_task(struct rq *rq, s64 delta);
96 
97 void update_rq_clock(struct rq *rq)
98 {
99 	s64 delta;
100 
101 	lockdep_assert_held(&rq->lock);
102 
103 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
104 		return;
105 
106 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
107 	if (delta < 0)
108 		return;
109 	rq->clock += delta;
110 	update_rq_clock_task(rq, delta);
111 }
112 
113 /*
114  * Debugging: various feature bits
115  */
116 
117 #define SCHED_FEAT(name, enabled)	\
118 	(1UL << __SCHED_FEAT_##name) * enabled |
119 
120 const_debug unsigned int sysctl_sched_features =
121 #include "features.h"
122 	0;
123 
124 #undef SCHED_FEAT
125 
126 /*
127  * Number of tasks to iterate in a single balance run.
128  * Limited because this is done with IRQs disabled.
129  */
130 const_debug unsigned int sysctl_sched_nr_migrate = 32;
131 
132 /*
133  * period over which we average the RT time consumption, measured
134  * in ms.
135  *
136  * default: 1s
137  */
138 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
139 
140 /*
141  * period over which we measure -rt task cpu usage in us.
142  * default: 1s
143  */
144 unsigned int sysctl_sched_rt_period = 1000000;
145 
146 __read_mostly int scheduler_running;
147 
148 /*
149  * part of the period that we allow rt tasks to run in us.
150  * default: 0.95s
151  */
152 int sysctl_sched_rt_runtime = 950000;
153 
154 /* cpus with isolated domains */
155 cpumask_var_t cpu_isolated_map;
156 
157 /*
158  * this_rq_lock - lock this runqueue and disable interrupts.
159  */
160 static struct rq *this_rq_lock(void)
161 	__acquires(rq->lock)
162 {
163 	struct rq *rq;
164 
165 	local_irq_disable();
166 	rq = this_rq();
167 	raw_spin_lock(&rq->lock);
168 
169 	return rq;
170 }
171 
172 #ifdef CONFIG_SCHED_HRTICK
173 /*
174  * Use HR-timers to deliver accurate preemption points.
175  */
176 
177 static void hrtick_clear(struct rq *rq)
178 {
179 	if (hrtimer_active(&rq->hrtick_timer))
180 		hrtimer_cancel(&rq->hrtick_timer);
181 }
182 
183 /*
184  * High-resolution timer tick.
185  * Runs from hardirq context with interrupts disabled.
186  */
187 static enum hrtimer_restart hrtick(struct hrtimer *timer)
188 {
189 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
190 
191 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
192 
193 	raw_spin_lock(&rq->lock);
194 	update_rq_clock(rq);
195 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
196 	raw_spin_unlock(&rq->lock);
197 
198 	return HRTIMER_NORESTART;
199 }
200 
201 #ifdef CONFIG_SMP
202 
203 static void __hrtick_restart(struct rq *rq)
204 {
205 	struct hrtimer *timer = &rq->hrtick_timer;
206 
207 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
208 }
209 
210 /*
211  * called from hardirq (IPI) context
212  */
213 static void __hrtick_start(void *arg)
214 {
215 	struct rq *rq = arg;
216 
217 	raw_spin_lock(&rq->lock);
218 	__hrtick_restart(rq);
219 	rq->hrtick_csd_pending = 0;
220 	raw_spin_unlock(&rq->lock);
221 }
222 
223 /*
224  * Called to set the hrtick timer state.
225  *
226  * called with rq->lock held and irqs disabled
227  */
228 void hrtick_start(struct rq *rq, u64 delay)
229 {
230 	struct hrtimer *timer = &rq->hrtick_timer;
231 	ktime_t time;
232 	s64 delta;
233 
234 	/*
235 	 * Don't schedule slices shorter than 10000ns, that just
236 	 * doesn't make sense and can cause timer DoS.
237 	 */
238 	delta = max_t(s64, delay, 10000LL);
239 	time = ktime_add_ns(timer->base->get_time(), delta);
240 
241 	hrtimer_set_expires(timer, time);
242 
243 	if (rq == this_rq()) {
244 		__hrtick_restart(rq);
245 	} else if (!rq->hrtick_csd_pending) {
246 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
247 		rq->hrtick_csd_pending = 1;
248 	}
249 }
250 
251 static int
252 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
253 {
254 	int cpu = (int)(long)hcpu;
255 
256 	switch (action) {
257 	case CPU_UP_CANCELED:
258 	case CPU_UP_CANCELED_FROZEN:
259 	case CPU_DOWN_PREPARE:
260 	case CPU_DOWN_PREPARE_FROZEN:
261 	case CPU_DEAD:
262 	case CPU_DEAD_FROZEN:
263 		hrtick_clear(cpu_rq(cpu));
264 		return NOTIFY_OK;
265 	}
266 
267 	return NOTIFY_DONE;
268 }
269 
270 static __init void init_hrtick(void)
271 {
272 	hotcpu_notifier(hotplug_hrtick, 0);
273 }
274 #else
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	/*
283 	 * Don't schedule slices shorter than 10000ns, that just
284 	 * doesn't make sense. Rely on vruntime for fairness.
285 	 */
286 	delay = max_t(u64, delay, 10000LL);
287 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
288 		      HRTIMER_MODE_REL_PINNED);
289 }
290 
291 static inline void init_hrtick(void)
292 {
293 }
294 #endif /* CONFIG_SMP */
295 
296 static void init_rq_hrtick(struct rq *rq)
297 {
298 #ifdef CONFIG_SMP
299 	rq->hrtick_csd_pending = 0;
300 
301 	rq->hrtick_csd.flags = 0;
302 	rq->hrtick_csd.func = __hrtick_start;
303 	rq->hrtick_csd.info = rq;
304 #endif
305 
306 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
307 	rq->hrtick_timer.function = hrtick;
308 }
309 #else	/* CONFIG_SCHED_HRTICK */
310 static inline void hrtick_clear(struct rq *rq)
311 {
312 }
313 
314 static inline void init_rq_hrtick(struct rq *rq)
315 {
316 }
317 
318 static inline void init_hrtick(void)
319 {
320 }
321 #endif	/* CONFIG_SCHED_HRTICK */
322 
323 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
324 /*
325  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
326  * this avoids any races wrt polling state changes and thereby avoids
327  * spurious IPIs.
328  */
329 static bool set_nr_and_not_polling(struct task_struct *p)
330 {
331 	struct thread_info *ti = task_thread_info(p);
332 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
333 }
334 
335 /*
336  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
337  *
338  * If this returns true, then the idle task promises to call
339  * sched_ttwu_pending() and reschedule soon.
340  */
341 static bool set_nr_if_polling(struct task_struct *p)
342 {
343 	struct thread_info *ti = task_thread_info(p);
344 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
345 
346 	for (;;) {
347 		if (!(val & _TIF_POLLING_NRFLAG))
348 			return false;
349 		if (val & _TIF_NEED_RESCHED)
350 			return true;
351 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
352 		if (old == val)
353 			break;
354 		val = old;
355 	}
356 	return true;
357 }
358 
359 #else
360 static bool set_nr_and_not_polling(struct task_struct *p)
361 {
362 	set_tsk_need_resched(p);
363 	return true;
364 }
365 
366 #ifdef CONFIG_SMP
367 static bool set_nr_if_polling(struct task_struct *p)
368 {
369 	return false;
370 }
371 #endif
372 #endif
373 
374 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
375 {
376 	struct wake_q_node *node = &task->wake_q;
377 
378 	/*
379 	 * Atomically grab the task, if ->wake_q is !nil already it means
380 	 * its already queued (either by us or someone else) and will get the
381 	 * wakeup due to that.
382 	 *
383 	 * This cmpxchg() implies a full barrier, which pairs with the write
384 	 * barrier implied by the wakeup in wake_up_list().
385 	 */
386 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
387 		return;
388 
389 	get_task_struct(task);
390 
391 	/*
392 	 * The head is context local, there can be no concurrency.
393 	 */
394 	*head->lastp = node;
395 	head->lastp = &node->next;
396 }
397 
398 void wake_up_q(struct wake_q_head *head)
399 {
400 	struct wake_q_node *node = head->first;
401 
402 	while (node != WAKE_Q_TAIL) {
403 		struct task_struct *task;
404 
405 		task = container_of(node, struct task_struct, wake_q);
406 		BUG_ON(!task);
407 		/* task can safely be re-inserted now */
408 		node = node->next;
409 		task->wake_q.next = NULL;
410 
411 		/*
412 		 * wake_up_process() implies a wmb() to pair with the queueing
413 		 * in wake_q_add() so as not to miss wakeups.
414 		 */
415 		wake_up_process(task);
416 		put_task_struct(task);
417 	}
418 }
419 
420 /*
421  * resched_curr - mark rq's current task 'to be rescheduled now'.
422  *
423  * On UP this means the setting of the need_resched flag, on SMP it
424  * might also involve a cross-CPU call to trigger the scheduler on
425  * the target CPU.
426  */
427 void resched_curr(struct rq *rq)
428 {
429 	struct task_struct *curr = rq->curr;
430 	int cpu;
431 
432 	lockdep_assert_held(&rq->lock);
433 
434 	if (test_tsk_need_resched(curr))
435 		return;
436 
437 	cpu = cpu_of(rq);
438 
439 	if (cpu == smp_processor_id()) {
440 		set_tsk_need_resched(curr);
441 		set_preempt_need_resched();
442 		return;
443 	}
444 
445 	if (set_nr_and_not_polling(curr))
446 		smp_send_reschedule(cpu);
447 	else
448 		trace_sched_wake_idle_without_ipi(cpu);
449 }
450 
451 void resched_cpu(int cpu)
452 {
453 	struct rq *rq = cpu_rq(cpu);
454 	unsigned long flags;
455 
456 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
457 		return;
458 	resched_curr(rq);
459 	raw_spin_unlock_irqrestore(&rq->lock, flags);
460 }
461 
462 #ifdef CONFIG_SMP
463 #ifdef CONFIG_NO_HZ_COMMON
464 /*
465  * In the semi idle case, use the nearest busy cpu for migrating timers
466  * from an idle cpu.  This is good for power-savings.
467  *
468  * We don't do similar optimization for completely idle system, as
469  * selecting an idle cpu will add more delays to the timers than intended
470  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
471  */
472 int get_nohz_timer_target(void)
473 {
474 	int i, cpu = smp_processor_id();
475 	struct sched_domain *sd;
476 
477 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
478 		return cpu;
479 
480 	rcu_read_lock();
481 	for_each_domain(cpu, sd) {
482 		for_each_cpu(i, sched_domain_span(sd)) {
483 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
484 				cpu = i;
485 				goto unlock;
486 			}
487 		}
488 	}
489 
490 	if (!is_housekeeping_cpu(cpu))
491 		cpu = housekeeping_any_cpu();
492 unlock:
493 	rcu_read_unlock();
494 	return cpu;
495 }
496 /*
497  * When add_timer_on() enqueues a timer into the timer wheel of an
498  * idle CPU then this timer might expire before the next timer event
499  * which is scheduled to wake up that CPU. In case of a completely
500  * idle system the next event might even be infinite time into the
501  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
502  * leaves the inner idle loop so the newly added timer is taken into
503  * account when the CPU goes back to idle and evaluates the timer
504  * wheel for the next timer event.
505  */
506 static void wake_up_idle_cpu(int cpu)
507 {
508 	struct rq *rq = cpu_rq(cpu);
509 
510 	if (cpu == smp_processor_id())
511 		return;
512 
513 	if (set_nr_and_not_polling(rq->idle))
514 		smp_send_reschedule(cpu);
515 	else
516 		trace_sched_wake_idle_without_ipi(cpu);
517 }
518 
519 static bool wake_up_full_nohz_cpu(int cpu)
520 {
521 	/*
522 	 * We just need the target to call irq_exit() and re-evaluate
523 	 * the next tick. The nohz full kick at least implies that.
524 	 * If needed we can still optimize that later with an
525 	 * empty IRQ.
526 	 */
527 	if (tick_nohz_full_cpu(cpu)) {
528 		if (cpu != smp_processor_id() ||
529 		    tick_nohz_tick_stopped())
530 			tick_nohz_full_kick_cpu(cpu);
531 		return true;
532 	}
533 
534 	return false;
535 }
536 
537 void wake_up_nohz_cpu(int cpu)
538 {
539 	if (!wake_up_full_nohz_cpu(cpu))
540 		wake_up_idle_cpu(cpu);
541 }
542 
543 static inline bool got_nohz_idle_kick(void)
544 {
545 	int cpu = smp_processor_id();
546 
547 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
548 		return false;
549 
550 	if (idle_cpu(cpu) && !need_resched())
551 		return true;
552 
553 	/*
554 	 * We can't run Idle Load Balance on this CPU for this time so we
555 	 * cancel it and clear NOHZ_BALANCE_KICK
556 	 */
557 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
558 	return false;
559 }
560 
561 #else /* CONFIG_NO_HZ_COMMON */
562 
563 static inline bool got_nohz_idle_kick(void)
564 {
565 	return false;
566 }
567 
568 #endif /* CONFIG_NO_HZ_COMMON */
569 
570 #ifdef CONFIG_NO_HZ_FULL
571 bool sched_can_stop_tick(struct rq *rq)
572 {
573 	int fifo_nr_running;
574 
575 	/* Deadline tasks, even if single, need the tick */
576 	if (rq->dl.dl_nr_running)
577 		return false;
578 
579 	/*
580 	 * FIFO realtime policy runs the highest priority task (after DEADLINE).
581 	 * Other runnable tasks are of a lower priority. The scheduler tick
582 	 * isn't needed.
583 	 */
584 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
585 	if (fifo_nr_running)
586 		return true;
587 
588 	/*
589 	 * Round-robin realtime tasks time slice with other tasks at the same
590 	 * realtime priority.
591 	 */
592 	if (rq->rt.rr_nr_running) {
593 		if (rq->rt.rr_nr_running == 1)
594 			return true;
595 		else
596 			return false;
597 	}
598 
599 	/* Normal multitasking need periodic preemption checks */
600 	if (rq->cfs.nr_running > 1)
601 		return false;
602 
603 	return true;
604 }
605 #endif /* CONFIG_NO_HZ_FULL */
606 
607 void sched_avg_update(struct rq *rq)
608 {
609 	s64 period = sched_avg_period();
610 
611 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
612 		/*
613 		 * Inline assembly required to prevent the compiler
614 		 * optimising this loop into a divmod call.
615 		 * See __iter_div_u64_rem() for another example of this.
616 		 */
617 		asm("" : "+rm" (rq->age_stamp));
618 		rq->age_stamp += period;
619 		rq->rt_avg /= 2;
620 	}
621 }
622 
623 #endif /* CONFIG_SMP */
624 
625 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
626 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
627 /*
628  * Iterate task_group tree rooted at *from, calling @down when first entering a
629  * node and @up when leaving it for the final time.
630  *
631  * Caller must hold rcu_lock or sufficient equivalent.
632  */
633 int walk_tg_tree_from(struct task_group *from,
634 			     tg_visitor down, tg_visitor up, void *data)
635 {
636 	struct task_group *parent, *child;
637 	int ret;
638 
639 	parent = from;
640 
641 down:
642 	ret = (*down)(parent, data);
643 	if (ret)
644 		goto out;
645 	list_for_each_entry_rcu(child, &parent->children, siblings) {
646 		parent = child;
647 		goto down;
648 
649 up:
650 		continue;
651 	}
652 	ret = (*up)(parent, data);
653 	if (ret || parent == from)
654 		goto out;
655 
656 	child = parent;
657 	parent = parent->parent;
658 	if (parent)
659 		goto up;
660 out:
661 	return ret;
662 }
663 
664 int tg_nop(struct task_group *tg, void *data)
665 {
666 	return 0;
667 }
668 #endif
669 
670 static void set_load_weight(struct task_struct *p)
671 {
672 	int prio = p->static_prio - MAX_RT_PRIO;
673 	struct load_weight *load = &p->se.load;
674 
675 	/*
676 	 * SCHED_IDLE tasks get minimal weight:
677 	 */
678 	if (idle_policy(p->policy)) {
679 		load->weight = scale_load(WEIGHT_IDLEPRIO);
680 		load->inv_weight = WMULT_IDLEPRIO;
681 		return;
682 	}
683 
684 	load->weight = scale_load(sched_prio_to_weight[prio]);
685 	load->inv_weight = sched_prio_to_wmult[prio];
686 }
687 
688 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
689 {
690 	update_rq_clock(rq);
691 	if (!(flags & ENQUEUE_RESTORE))
692 		sched_info_queued(rq, p);
693 	p->sched_class->enqueue_task(rq, p, flags);
694 }
695 
696 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
697 {
698 	update_rq_clock(rq);
699 	if (!(flags & DEQUEUE_SAVE))
700 		sched_info_dequeued(rq, p);
701 	p->sched_class->dequeue_task(rq, p, flags);
702 }
703 
704 void activate_task(struct rq *rq, struct task_struct *p, int flags)
705 {
706 	if (task_contributes_to_load(p))
707 		rq->nr_uninterruptible--;
708 
709 	enqueue_task(rq, p, flags);
710 }
711 
712 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
713 {
714 	if (task_contributes_to_load(p))
715 		rq->nr_uninterruptible++;
716 
717 	dequeue_task(rq, p, flags);
718 }
719 
720 static void update_rq_clock_task(struct rq *rq, s64 delta)
721 {
722 /*
723  * In theory, the compile should just see 0 here, and optimize out the call
724  * to sched_rt_avg_update. But I don't trust it...
725  */
726 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
727 	s64 steal = 0, irq_delta = 0;
728 #endif
729 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
730 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
731 
732 	/*
733 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
734 	 * this case when a previous update_rq_clock() happened inside a
735 	 * {soft,}irq region.
736 	 *
737 	 * When this happens, we stop ->clock_task and only update the
738 	 * prev_irq_time stamp to account for the part that fit, so that a next
739 	 * update will consume the rest. This ensures ->clock_task is
740 	 * monotonic.
741 	 *
742 	 * It does however cause some slight miss-attribution of {soft,}irq
743 	 * time, a more accurate solution would be to update the irq_time using
744 	 * the current rq->clock timestamp, except that would require using
745 	 * atomic ops.
746 	 */
747 	if (irq_delta > delta)
748 		irq_delta = delta;
749 
750 	rq->prev_irq_time += irq_delta;
751 	delta -= irq_delta;
752 #endif
753 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
754 	if (static_key_false((&paravirt_steal_rq_enabled))) {
755 		steal = paravirt_steal_clock(cpu_of(rq));
756 		steal -= rq->prev_steal_time_rq;
757 
758 		if (unlikely(steal > delta))
759 			steal = delta;
760 
761 		rq->prev_steal_time_rq += steal;
762 		delta -= steal;
763 	}
764 #endif
765 
766 	rq->clock_task += delta;
767 
768 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
769 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
770 		sched_rt_avg_update(rq, irq_delta + steal);
771 #endif
772 }
773 
774 void sched_set_stop_task(int cpu, struct task_struct *stop)
775 {
776 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
777 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
778 
779 	if (stop) {
780 		/*
781 		 * Make it appear like a SCHED_FIFO task, its something
782 		 * userspace knows about and won't get confused about.
783 		 *
784 		 * Also, it will make PI more or less work without too
785 		 * much confusion -- but then, stop work should not
786 		 * rely on PI working anyway.
787 		 */
788 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
789 
790 		stop->sched_class = &stop_sched_class;
791 	}
792 
793 	cpu_rq(cpu)->stop = stop;
794 
795 	if (old_stop) {
796 		/*
797 		 * Reset it back to a normal scheduling class so that
798 		 * it can die in pieces.
799 		 */
800 		old_stop->sched_class = &rt_sched_class;
801 	}
802 }
803 
804 /*
805  * __normal_prio - return the priority that is based on the static prio
806  */
807 static inline int __normal_prio(struct task_struct *p)
808 {
809 	return p->static_prio;
810 }
811 
812 /*
813  * Calculate the expected normal priority: i.e. priority
814  * without taking RT-inheritance into account. Might be
815  * boosted by interactivity modifiers. Changes upon fork,
816  * setprio syscalls, and whenever the interactivity
817  * estimator recalculates.
818  */
819 static inline int normal_prio(struct task_struct *p)
820 {
821 	int prio;
822 
823 	if (task_has_dl_policy(p))
824 		prio = MAX_DL_PRIO-1;
825 	else if (task_has_rt_policy(p))
826 		prio = MAX_RT_PRIO-1 - p->rt_priority;
827 	else
828 		prio = __normal_prio(p);
829 	return prio;
830 }
831 
832 /*
833  * Calculate the current priority, i.e. the priority
834  * taken into account by the scheduler. This value might
835  * be boosted by RT tasks, or might be boosted by
836  * interactivity modifiers. Will be RT if the task got
837  * RT-boosted. If not then it returns p->normal_prio.
838  */
839 static int effective_prio(struct task_struct *p)
840 {
841 	p->normal_prio = normal_prio(p);
842 	/*
843 	 * If we are RT tasks or we were boosted to RT priority,
844 	 * keep the priority unchanged. Otherwise, update priority
845 	 * to the normal priority:
846 	 */
847 	if (!rt_prio(p->prio))
848 		return p->normal_prio;
849 	return p->prio;
850 }
851 
852 /**
853  * task_curr - is this task currently executing on a CPU?
854  * @p: the task in question.
855  *
856  * Return: 1 if the task is currently executing. 0 otherwise.
857  */
858 inline int task_curr(const struct task_struct *p)
859 {
860 	return cpu_curr(task_cpu(p)) == p;
861 }
862 
863 /*
864  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
865  * use the balance_callback list if you want balancing.
866  *
867  * this means any call to check_class_changed() must be followed by a call to
868  * balance_callback().
869  */
870 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
871 				       const struct sched_class *prev_class,
872 				       int oldprio)
873 {
874 	if (prev_class != p->sched_class) {
875 		if (prev_class->switched_from)
876 			prev_class->switched_from(rq, p);
877 
878 		p->sched_class->switched_to(rq, p);
879 	} else if (oldprio != p->prio || dl_task(p))
880 		p->sched_class->prio_changed(rq, p, oldprio);
881 }
882 
883 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
884 {
885 	const struct sched_class *class;
886 
887 	if (p->sched_class == rq->curr->sched_class) {
888 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
889 	} else {
890 		for_each_class(class) {
891 			if (class == rq->curr->sched_class)
892 				break;
893 			if (class == p->sched_class) {
894 				resched_curr(rq);
895 				break;
896 			}
897 		}
898 	}
899 
900 	/*
901 	 * A queue event has occurred, and we're going to schedule.  In
902 	 * this case, we can save a useless back to back clock update.
903 	 */
904 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
905 		rq_clock_skip_update(rq, true);
906 }
907 
908 #ifdef CONFIG_SMP
909 /*
910  * This is how migration works:
911  *
912  * 1) we invoke migration_cpu_stop() on the target CPU using
913  *    stop_one_cpu().
914  * 2) stopper starts to run (implicitly forcing the migrated thread
915  *    off the CPU)
916  * 3) it checks whether the migrated task is still in the wrong runqueue.
917  * 4) if it's in the wrong runqueue then the migration thread removes
918  *    it and puts it into the right queue.
919  * 5) stopper completes and stop_one_cpu() returns and the migration
920  *    is done.
921  */
922 
923 /*
924  * move_queued_task - move a queued task to new rq.
925  *
926  * Returns (locked) new rq. Old rq's lock is released.
927  */
928 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
929 {
930 	lockdep_assert_held(&rq->lock);
931 
932 	p->on_rq = TASK_ON_RQ_MIGRATING;
933 	dequeue_task(rq, p, 0);
934 	set_task_cpu(p, new_cpu);
935 	raw_spin_unlock(&rq->lock);
936 
937 	rq = cpu_rq(new_cpu);
938 
939 	raw_spin_lock(&rq->lock);
940 	BUG_ON(task_cpu(p) != new_cpu);
941 	enqueue_task(rq, p, 0);
942 	p->on_rq = TASK_ON_RQ_QUEUED;
943 	check_preempt_curr(rq, p, 0);
944 
945 	return rq;
946 }
947 
948 struct migration_arg {
949 	struct task_struct *task;
950 	int dest_cpu;
951 };
952 
953 /*
954  * Move (not current) task off this cpu, onto dest cpu. We're doing
955  * this because either it can't run here any more (set_cpus_allowed()
956  * away from this CPU, or CPU going down), or because we're
957  * attempting to rebalance this task on exec (sched_exec).
958  *
959  * So we race with normal scheduler movements, but that's OK, as long
960  * as the task is no longer on this CPU.
961  */
962 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
963 {
964 	if (unlikely(!cpu_active(dest_cpu)))
965 		return rq;
966 
967 	/* Affinity changed (again). */
968 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
969 		return rq;
970 
971 	rq = move_queued_task(rq, p, dest_cpu);
972 
973 	return rq;
974 }
975 
976 /*
977  * migration_cpu_stop - this will be executed by a highprio stopper thread
978  * and performs thread migration by bumping thread off CPU then
979  * 'pushing' onto another runqueue.
980  */
981 static int migration_cpu_stop(void *data)
982 {
983 	struct migration_arg *arg = data;
984 	struct task_struct *p = arg->task;
985 	struct rq *rq = this_rq();
986 
987 	/*
988 	 * The original target cpu might have gone down and we might
989 	 * be on another cpu but it doesn't matter.
990 	 */
991 	local_irq_disable();
992 	/*
993 	 * We need to explicitly wake pending tasks before running
994 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
995 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
996 	 */
997 	sched_ttwu_pending();
998 
999 	raw_spin_lock(&p->pi_lock);
1000 	raw_spin_lock(&rq->lock);
1001 	/*
1002 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1003 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1004 	 * we're holding p->pi_lock.
1005 	 */
1006 	if (task_rq(p) == rq && task_on_rq_queued(p))
1007 		rq = __migrate_task(rq, p, arg->dest_cpu);
1008 	raw_spin_unlock(&rq->lock);
1009 	raw_spin_unlock(&p->pi_lock);
1010 
1011 	local_irq_enable();
1012 	return 0;
1013 }
1014 
1015 /*
1016  * sched_class::set_cpus_allowed must do the below, but is not required to
1017  * actually call this function.
1018  */
1019 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1020 {
1021 	cpumask_copy(&p->cpus_allowed, new_mask);
1022 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1023 }
1024 
1025 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1026 {
1027 	struct rq *rq = task_rq(p);
1028 	bool queued, running;
1029 
1030 	lockdep_assert_held(&p->pi_lock);
1031 
1032 	queued = task_on_rq_queued(p);
1033 	running = task_current(rq, p);
1034 
1035 	if (queued) {
1036 		/*
1037 		 * Because __kthread_bind() calls this on blocked tasks without
1038 		 * holding rq->lock.
1039 		 */
1040 		lockdep_assert_held(&rq->lock);
1041 		dequeue_task(rq, p, DEQUEUE_SAVE);
1042 	}
1043 	if (running)
1044 		put_prev_task(rq, p);
1045 
1046 	p->sched_class->set_cpus_allowed(p, new_mask);
1047 
1048 	if (running)
1049 		p->sched_class->set_curr_task(rq);
1050 	if (queued)
1051 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1052 }
1053 
1054 /*
1055  * Change a given task's CPU affinity. Migrate the thread to a
1056  * proper CPU and schedule it away if the CPU it's executing on
1057  * is removed from the allowed bitmask.
1058  *
1059  * NOTE: the caller must have a valid reference to the task, the
1060  * task must not exit() & deallocate itself prematurely. The
1061  * call is not atomic; no spinlocks may be held.
1062  */
1063 static int __set_cpus_allowed_ptr(struct task_struct *p,
1064 				  const struct cpumask *new_mask, bool check)
1065 {
1066 	unsigned long flags;
1067 	struct rq *rq;
1068 	unsigned int dest_cpu;
1069 	int ret = 0;
1070 
1071 	rq = task_rq_lock(p, &flags);
1072 
1073 	/*
1074 	 * Must re-check here, to close a race against __kthread_bind(),
1075 	 * sched_setaffinity() is not guaranteed to observe the flag.
1076 	 */
1077 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1078 		ret = -EINVAL;
1079 		goto out;
1080 	}
1081 
1082 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1083 		goto out;
1084 
1085 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1086 		ret = -EINVAL;
1087 		goto out;
1088 	}
1089 
1090 	do_set_cpus_allowed(p, new_mask);
1091 
1092 	/* Can the task run on the task's current CPU? If so, we're done */
1093 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1094 		goto out;
1095 
1096 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1097 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1098 		struct migration_arg arg = { p, dest_cpu };
1099 		/* Need help from migration thread: drop lock and wait. */
1100 		task_rq_unlock(rq, p, &flags);
1101 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1102 		tlb_migrate_finish(p->mm);
1103 		return 0;
1104 	} else if (task_on_rq_queued(p)) {
1105 		/*
1106 		 * OK, since we're going to drop the lock immediately
1107 		 * afterwards anyway.
1108 		 */
1109 		lockdep_unpin_lock(&rq->lock);
1110 		rq = move_queued_task(rq, p, dest_cpu);
1111 		lockdep_pin_lock(&rq->lock);
1112 	}
1113 out:
1114 	task_rq_unlock(rq, p, &flags);
1115 
1116 	return ret;
1117 }
1118 
1119 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1120 {
1121 	return __set_cpus_allowed_ptr(p, new_mask, false);
1122 }
1123 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1124 
1125 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1126 {
1127 #ifdef CONFIG_SCHED_DEBUG
1128 	/*
1129 	 * We should never call set_task_cpu() on a blocked task,
1130 	 * ttwu() will sort out the placement.
1131 	 */
1132 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1133 			!p->on_rq);
1134 
1135 	/*
1136 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1137 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1138 	 * time relying on p->on_rq.
1139 	 */
1140 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1141 		     p->sched_class == &fair_sched_class &&
1142 		     (p->on_rq && !task_on_rq_migrating(p)));
1143 
1144 #ifdef CONFIG_LOCKDEP
1145 	/*
1146 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1147 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1148 	 *
1149 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1150 	 * see task_group().
1151 	 *
1152 	 * Furthermore, all task_rq users should acquire both locks, see
1153 	 * task_rq_lock().
1154 	 */
1155 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1156 				      lockdep_is_held(&task_rq(p)->lock)));
1157 #endif
1158 #endif
1159 
1160 	trace_sched_migrate_task(p, new_cpu);
1161 
1162 	if (task_cpu(p) != new_cpu) {
1163 		if (p->sched_class->migrate_task_rq)
1164 			p->sched_class->migrate_task_rq(p);
1165 		p->se.nr_migrations++;
1166 		perf_event_task_migrate(p);
1167 	}
1168 
1169 	__set_task_cpu(p, new_cpu);
1170 }
1171 
1172 static void __migrate_swap_task(struct task_struct *p, int cpu)
1173 {
1174 	if (task_on_rq_queued(p)) {
1175 		struct rq *src_rq, *dst_rq;
1176 
1177 		src_rq = task_rq(p);
1178 		dst_rq = cpu_rq(cpu);
1179 
1180 		p->on_rq = TASK_ON_RQ_MIGRATING;
1181 		deactivate_task(src_rq, p, 0);
1182 		set_task_cpu(p, cpu);
1183 		activate_task(dst_rq, p, 0);
1184 		p->on_rq = TASK_ON_RQ_QUEUED;
1185 		check_preempt_curr(dst_rq, p, 0);
1186 	} else {
1187 		/*
1188 		 * Task isn't running anymore; make it appear like we migrated
1189 		 * it before it went to sleep. This means on wakeup we make the
1190 		 * previous cpu our targer instead of where it really is.
1191 		 */
1192 		p->wake_cpu = cpu;
1193 	}
1194 }
1195 
1196 struct migration_swap_arg {
1197 	struct task_struct *src_task, *dst_task;
1198 	int src_cpu, dst_cpu;
1199 };
1200 
1201 static int migrate_swap_stop(void *data)
1202 {
1203 	struct migration_swap_arg *arg = data;
1204 	struct rq *src_rq, *dst_rq;
1205 	int ret = -EAGAIN;
1206 
1207 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1208 		return -EAGAIN;
1209 
1210 	src_rq = cpu_rq(arg->src_cpu);
1211 	dst_rq = cpu_rq(arg->dst_cpu);
1212 
1213 	double_raw_lock(&arg->src_task->pi_lock,
1214 			&arg->dst_task->pi_lock);
1215 	double_rq_lock(src_rq, dst_rq);
1216 
1217 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1218 		goto unlock;
1219 
1220 	if (task_cpu(arg->src_task) != arg->src_cpu)
1221 		goto unlock;
1222 
1223 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1224 		goto unlock;
1225 
1226 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1227 		goto unlock;
1228 
1229 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1230 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1231 
1232 	ret = 0;
1233 
1234 unlock:
1235 	double_rq_unlock(src_rq, dst_rq);
1236 	raw_spin_unlock(&arg->dst_task->pi_lock);
1237 	raw_spin_unlock(&arg->src_task->pi_lock);
1238 
1239 	return ret;
1240 }
1241 
1242 /*
1243  * Cross migrate two tasks
1244  */
1245 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1246 {
1247 	struct migration_swap_arg arg;
1248 	int ret = -EINVAL;
1249 
1250 	arg = (struct migration_swap_arg){
1251 		.src_task = cur,
1252 		.src_cpu = task_cpu(cur),
1253 		.dst_task = p,
1254 		.dst_cpu = task_cpu(p),
1255 	};
1256 
1257 	if (arg.src_cpu == arg.dst_cpu)
1258 		goto out;
1259 
1260 	/*
1261 	 * These three tests are all lockless; this is OK since all of them
1262 	 * will be re-checked with proper locks held further down the line.
1263 	 */
1264 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1265 		goto out;
1266 
1267 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1268 		goto out;
1269 
1270 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1271 		goto out;
1272 
1273 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1274 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1275 
1276 out:
1277 	return ret;
1278 }
1279 
1280 /*
1281  * wait_task_inactive - wait for a thread to unschedule.
1282  *
1283  * If @match_state is nonzero, it's the @p->state value just checked and
1284  * not expected to change.  If it changes, i.e. @p might have woken up,
1285  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1286  * we return a positive number (its total switch count).  If a second call
1287  * a short while later returns the same number, the caller can be sure that
1288  * @p has remained unscheduled the whole time.
1289  *
1290  * The caller must ensure that the task *will* unschedule sometime soon,
1291  * else this function might spin for a *long* time. This function can't
1292  * be called with interrupts off, or it may introduce deadlock with
1293  * smp_call_function() if an IPI is sent by the same process we are
1294  * waiting to become inactive.
1295  */
1296 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1297 {
1298 	unsigned long flags;
1299 	int running, queued;
1300 	unsigned long ncsw;
1301 	struct rq *rq;
1302 
1303 	for (;;) {
1304 		/*
1305 		 * We do the initial early heuristics without holding
1306 		 * any task-queue locks at all. We'll only try to get
1307 		 * the runqueue lock when things look like they will
1308 		 * work out!
1309 		 */
1310 		rq = task_rq(p);
1311 
1312 		/*
1313 		 * If the task is actively running on another CPU
1314 		 * still, just relax and busy-wait without holding
1315 		 * any locks.
1316 		 *
1317 		 * NOTE! Since we don't hold any locks, it's not
1318 		 * even sure that "rq" stays as the right runqueue!
1319 		 * But we don't care, since "task_running()" will
1320 		 * return false if the runqueue has changed and p
1321 		 * is actually now running somewhere else!
1322 		 */
1323 		while (task_running(rq, p)) {
1324 			if (match_state && unlikely(p->state != match_state))
1325 				return 0;
1326 			cpu_relax();
1327 		}
1328 
1329 		/*
1330 		 * Ok, time to look more closely! We need the rq
1331 		 * lock now, to be *sure*. If we're wrong, we'll
1332 		 * just go back and repeat.
1333 		 */
1334 		rq = task_rq_lock(p, &flags);
1335 		trace_sched_wait_task(p);
1336 		running = task_running(rq, p);
1337 		queued = task_on_rq_queued(p);
1338 		ncsw = 0;
1339 		if (!match_state || p->state == match_state)
1340 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1341 		task_rq_unlock(rq, p, &flags);
1342 
1343 		/*
1344 		 * If it changed from the expected state, bail out now.
1345 		 */
1346 		if (unlikely(!ncsw))
1347 			break;
1348 
1349 		/*
1350 		 * Was it really running after all now that we
1351 		 * checked with the proper locks actually held?
1352 		 *
1353 		 * Oops. Go back and try again..
1354 		 */
1355 		if (unlikely(running)) {
1356 			cpu_relax();
1357 			continue;
1358 		}
1359 
1360 		/*
1361 		 * It's not enough that it's not actively running,
1362 		 * it must be off the runqueue _entirely_, and not
1363 		 * preempted!
1364 		 *
1365 		 * So if it was still runnable (but just not actively
1366 		 * running right now), it's preempted, and we should
1367 		 * yield - it could be a while.
1368 		 */
1369 		if (unlikely(queued)) {
1370 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1371 
1372 			set_current_state(TASK_UNINTERRUPTIBLE);
1373 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1374 			continue;
1375 		}
1376 
1377 		/*
1378 		 * Ahh, all good. It wasn't running, and it wasn't
1379 		 * runnable, which means that it will never become
1380 		 * running in the future either. We're all done!
1381 		 */
1382 		break;
1383 	}
1384 
1385 	return ncsw;
1386 }
1387 
1388 /***
1389  * kick_process - kick a running thread to enter/exit the kernel
1390  * @p: the to-be-kicked thread
1391  *
1392  * Cause a process which is running on another CPU to enter
1393  * kernel-mode, without any delay. (to get signals handled.)
1394  *
1395  * NOTE: this function doesn't have to take the runqueue lock,
1396  * because all it wants to ensure is that the remote task enters
1397  * the kernel. If the IPI races and the task has been migrated
1398  * to another CPU then no harm is done and the purpose has been
1399  * achieved as well.
1400  */
1401 void kick_process(struct task_struct *p)
1402 {
1403 	int cpu;
1404 
1405 	preempt_disable();
1406 	cpu = task_cpu(p);
1407 	if ((cpu != smp_processor_id()) && task_curr(p))
1408 		smp_send_reschedule(cpu);
1409 	preempt_enable();
1410 }
1411 EXPORT_SYMBOL_GPL(kick_process);
1412 
1413 /*
1414  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1415  */
1416 static int select_fallback_rq(int cpu, struct task_struct *p)
1417 {
1418 	int nid = cpu_to_node(cpu);
1419 	const struct cpumask *nodemask = NULL;
1420 	enum { cpuset, possible, fail } state = cpuset;
1421 	int dest_cpu;
1422 
1423 	/*
1424 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1425 	 * will return -1. There is no cpu on the node, and we should
1426 	 * select the cpu on the other node.
1427 	 */
1428 	if (nid != -1) {
1429 		nodemask = cpumask_of_node(nid);
1430 
1431 		/* Look for allowed, online CPU in same node. */
1432 		for_each_cpu(dest_cpu, nodemask) {
1433 			if (!cpu_online(dest_cpu))
1434 				continue;
1435 			if (!cpu_active(dest_cpu))
1436 				continue;
1437 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1438 				return dest_cpu;
1439 		}
1440 	}
1441 
1442 	for (;;) {
1443 		/* Any allowed, online CPU? */
1444 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1445 			if (!cpu_online(dest_cpu))
1446 				continue;
1447 			if (!cpu_active(dest_cpu))
1448 				continue;
1449 			goto out;
1450 		}
1451 
1452 		/* No more Mr. Nice Guy. */
1453 		switch (state) {
1454 		case cpuset:
1455 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1456 				cpuset_cpus_allowed_fallback(p);
1457 				state = possible;
1458 				break;
1459 			}
1460 			/* fall-through */
1461 		case possible:
1462 			do_set_cpus_allowed(p, cpu_possible_mask);
1463 			state = fail;
1464 			break;
1465 
1466 		case fail:
1467 			BUG();
1468 			break;
1469 		}
1470 	}
1471 
1472 out:
1473 	if (state != cpuset) {
1474 		/*
1475 		 * Don't tell them about moving exiting tasks or
1476 		 * kernel threads (both mm NULL), since they never
1477 		 * leave kernel.
1478 		 */
1479 		if (p->mm && printk_ratelimit()) {
1480 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1481 					task_pid_nr(p), p->comm, cpu);
1482 		}
1483 	}
1484 
1485 	return dest_cpu;
1486 }
1487 
1488 /*
1489  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1490  */
1491 static inline
1492 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1493 {
1494 	lockdep_assert_held(&p->pi_lock);
1495 
1496 	if (p->nr_cpus_allowed > 1)
1497 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1498 
1499 	/*
1500 	 * In order not to call set_task_cpu() on a blocking task we need
1501 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1502 	 * cpu.
1503 	 *
1504 	 * Since this is common to all placement strategies, this lives here.
1505 	 *
1506 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1507 	 *   not worry about this generic constraint ]
1508 	 */
1509 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1510 		     !cpu_online(cpu)))
1511 		cpu = select_fallback_rq(task_cpu(p), p);
1512 
1513 	return cpu;
1514 }
1515 
1516 static void update_avg(u64 *avg, u64 sample)
1517 {
1518 	s64 diff = sample - *avg;
1519 	*avg += diff >> 3;
1520 }
1521 
1522 #else
1523 
1524 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1525 					 const struct cpumask *new_mask, bool check)
1526 {
1527 	return set_cpus_allowed_ptr(p, new_mask);
1528 }
1529 
1530 #endif /* CONFIG_SMP */
1531 
1532 static void
1533 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1534 {
1535 #ifdef CONFIG_SCHEDSTATS
1536 	struct rq *rq = this_rq();
1537 
1538 #ifdef CONFIG_SMP
1539 	int this_cpu = smp_processor_id();
1540 
1541 	if (cpu == this_cpu) {
1542 		schedstat_inc(rq, ttwu_local);
1543 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1544 	} else {
1545 		struct sched_domain *sd;
1546 
1547 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1548 		rcu_read_lock();
1549 		for_each_domain(this_cpu, sd) {
1550 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1551 				schedstat_inc(sd, ttwu_wake_remote);
1552 				break;
1553 			}
1554 		}
1555 		rcu_read_unlock();
1556 	}
1557 
1558 	if (wake_flags & WF_MIGRATED)
1559 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1560 
1561 #endif /* CONFIG_SMP */
1562 
1563 	schedstat_inc(rq, ttwu_count);
1564 	schedstat_inc(p, se.statistics.nr_wakeups);
1565 
1566 	if (wake_flags & WF_SYNC)
1567 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1568 
1569 #endif /* CONFIG_SCHEDSTATS */
1570 }
1571 
1572 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1573 {
1574 	activate_task(rq, p, en_flags);
1575 	p->on_rq = TASK_ON_RQ_QUEUED;
1576 
1577 	/* if a worker is waking up, notify workqueue */
1578 	if (p->flags & PF_WQ_WORKER)
1579 		wq_worker_waking_up(p, cpu_of(rq));
1580 }
1581 
1582 /*
1583  * Mark the task runnable and perform wakeup-preemption.
1584  */
1585 static void
1586 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1587 {
1588 	check_preempt_curr(rq, p, wake_flags);
1589 	p->state = TASK_RUNNING;
1590 	trace_sched_wakeup(p);
1591 
1592 #ifdef CONFIG_SMP
1593 	if (p->sched_class->task_woken) {
1594 		/*
1595 		 * Our task @p is fully woken up and running; so its safe to
1596 		 * drop the rq->lock, hereafter rq is only used for statistics.
1597 		 */
1598 		lockdep_unpin_lock(&rq->lock);
1599 		p->sched_class->task_woken(rq, p);
1600 		lockdep_pin_lock(&rq->lock);
1601 	}
1602 
1603 	if (rq->idle_stamp) {
1604 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1605 		u64 max = 2*rq->max_idle_balance_cost;
1606 
1607 		update_avg(&rq->avg_idle, delta);
1608 
1609 		if (rq->avg_idle > max)
1610 			rq->avg_idle = max;
1611 
1612 		rq->idle_stamp = 0;
1613 	}
1614 #endif
1615 }
1616 
1617 static void
1618 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1619 {
1620 	lockdep_assert_held(&rq->lock);
1621 
1622 #ifdef CONFIG_SMP
1623 	if (p->sched_contributes_to_load)
1624 		rq->nr_uninterruptible--;
1625 #endif
1626 
1627 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1628 	ttwu_do_wakeup(rq, p, wake_flags);
1629 }
1630 
1631 /*
1632  * Called in case the task @p isn't fully descheduled from its runqueue,
1633  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1634  * since all we need to do is flip p->state to TASK_RUNNING, since
1635  * the task is still ->on_rq.
1636  */
1637 static int ttwu_remote(struct task_struct *p, int wake_flags)
1638 {
1639 	struct rq *rq;
1640 	int ret = 0;
1641 
1642 	rq = __task_rq_lock(p);
1643 	if (task_on_rq_queued(p)) {
1644 		/* check_preempt_curr() may use rq clock */
1645 		update_rq_clock(rq);
1646 		ttwu_do_wakeup(rq, p, wake_flags);
1647 		ret = 1;
1648 	}
1649 	__task_rq_unlock(rq);
1650 
1651 	return ret;
1652 }
1653 
1654 #ifdef CONFIG_SMP
1655 void sched_ttwu_pending(void)
1656 {
1657 	struct rq *rq = this_rq();
1658 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1659 	struct task_struct *p;
1660 	unsigned long flags;
1661 
1662 	if (!llist)
1663 		return;
1664 
1665 	raw_spin_lock_irqsave(&rq->lock, flags);
1666 	lockdep_pin_lock(&rq->lock);
1667 
1668 	while (llist) {
1669 		p = llist_entry(llist, struct task_struct, wake_entry);
1670 		llist = llist_next(llist);
1671 		ttwu_do_activate(rq, p, 0);
1672 	}
1673 
1674 	lockdep_unpin_lock(&rq->lock);
1675 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1676 }
1677 
1678 void scheduler_ipi(void)
1679 {
1680 	/*
1681 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1682 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1683 	 * this IPI.
1684 	 */
1685 	preempt_fold_need_resched();
1686 
1687 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1688 		return;
1689 
1690 	/*
1691 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1692 	 * traditionally all their work was done from the interrupt return
1693 	 * path. Now that we actually do some work, we need to make sure
1694 	 * we do call them.
1695 	 *
1696 	 * Some archs already do call them, luckily irq_enter/exit nest
1697 	 * properly.
1698 	 *
1699 	 * Arguably we should visit all archs and update all handlers,
1700 	 * however a fair share of IPIs are still resched only so this would
1701 	 * somewhat pessimize the simple resched case.
1702 	 */
1703 	irq_enter();
1704 	sched_ttwu_pending();
1705 
1706 	/*
1707 	 * Check if someone kicked us for doing the nohz idle load balance.
1708 	 */
1709 	if (unlikely(got_nohz_idle_kick())) {
1710 		this_rq()->idle_balance = 1;
1711 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1712 	}
1713 	irq_exit();
1714 }
1715 
1716 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1717 {
1718 	struct rq *rq = cpu_rq(cpu);
1719 
1720 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1721 		if (!set_nr_if_polling(rq->idle))
1722 			smp_send_reschedule(cpu);
1723 		else
1724 			trace_sched_wake_idle_without_ipi(cpu);
1725 	}
1726 }
1727 
1728 void wake_up_if_idle(int cpu)
1729 {
1730 	struct rq *rq = cpu_rq(cpu);
1731 	unsigned long flags;
1732 
1733 	rcu_read_lock();
1734 
1735 	if (!is_idle_task(rcu_dereference(rq->curr)))
1736 		goto out;
1737 
1738 	if (set_nr_if_polling(rq->idle)) {
1739 		trace_sched_wake_idle_without_ipi(cpu);
1740 	} else {
1741 		raw_spin_lock_irqsave(&rq->lock, flags);
1742 		if (is_idle_task(rq->curr))
1743 			smp_send_reschedule(cpu);
1744 		/* Else cpu is not in idle, do nothing here */
1745 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1746 	}
1747 
1748 out:
1749 	rcu_read_unlock();
1750 }
1751 
1752 bool cpus_share_cache(int this_cpu, int that_cpu)
1753 {
1754 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1755 }
1756 #endif /* CONFIG_SMP */
1757 
1758 static void ttwu_queue(struct task_struct *p, int cpu)
1759 {
1760 	struct rq *rq = cpu_rq(cpu);
1761 
1762 #if defined(CONFIG_SMP)
1763 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1764 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1765 		ttwu_queue_remote(p, cpu);
1766 		return;
1767 	}
1768 #endif
1769 
1770 	raw_spin_lock(&rq->lock);
1771 	lockdep_pin_lock(&rq->lock);
1772 	ttwu_do_activate(rq, p, 0);
1773 	lockdep_unpin_lock(&rq->lock);
1774 	raw_spin_unlock(&rq->lock);
1775 }
1776 
1777 /*
1778  * Notes on Program-Order guarantees on SMP systems.
1779  *
1780  *  MIGRATION
1781  *
1782  * The basic program-order guarantee on SMP systems is that when a task [t]
1783  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1784  * execution on its new cpu [c1].
1785  *
1786  * For migration (of runnable tasks) this is provided by the following means:
1787  *
1788  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1789  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1790  *     rq(c1)->lock (if not at the same time, then in that order).
1791  *  C) LOCK of the rq(c1)->lock scheduling in task
1792  *
1793  * Transitivity guarantees that B happens after A and C after B.
1794  * Note: we only require RCpc transitivity.
1795  * Note: the cpu doing B need not be c0 or c1
1796  *
1797  * Example:
1798  *
1799  *   CPU0            CPU1            CPU2
1800  *
1801  *   LOCK rq(0)->lock
1802  *   sched-out X
1803  *   sched-in Y
1804  *   UNLOCK rq(0)->lock
1805  *
1806  *                                   LOCK rq(0)->lock // orders against CPU0
1807  *                                   dequeue X
1808  *                                   UNLOCK rq(0)->lock
1809  *
1810  *                                   LOCK rq(1)->lock
1811  *                                   enqueue X
1812  *                                   UNLOCK rq(1)->lock
1813  *
1814  *                   LOCK rq(1)->lock // orders against CPU2
1815  *                   sched-out Z
1816  *                   sched-in X
1817  *                   UNLOCK rq(1)->lock
1818  *
1819  *
1820  *  BLOCKING -- aka. SLEEP + WAKEUP
1821  *
1822  * For blocking we (obviously) need to provide the same guarantee as for
1823  * migration. However the means are completely different as there is no lock
1824  * chain to provide order. Instead we do:
1825  *
1826  *   1) smp_store_release(X->on_cpu, 0)
1827  *   2) smp_cond_acquire(!X->on_cpu)
1828  *
1829  * Example:
1830  *
1831  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1832  *
1833  *   LOCK rq(0)->lock LOCK X->pi_lock
1834  *   dequeue X
1835  *   sched-out X
1836  *   smp_store_release(X->on_cpu, 0);
1837  *
1838  *                    smp_cond_acquire(!X->on_cpu);
1839  *                    X->state = WAKING
1840  *                    set_task_cpu(X,2)
1841  *
1842  *                    LOCK rq(2)->lock
1843  *                    enqueue X
1844  *                    X->state = RUNNING
1845  *                    UNLOCK rq(2)->lock
1846  *
1847  *                                          LOCK rq(2)->lock // orders against CPU1
1848  *                                          sched-out Z
1849  *                                          sched-in X
1850  *                                          UNLOCK rq(2)->lock
1851  *
1852  *                    UNLOCK X->pi_lock
1853  *   UNLOCK rq(0)->lock
1854  *
1855  *
1856  * However; for wakeups there is a second guarantee we must provide, namely we
1857  * must observe the state that lead to our wakeup. That is, not only must our
1858  * task observe its own prior state, it must also observe the stores prior to
1859  * its wakeup.
1860  *
1861  * This means that any means of doing remote wakeups must order the CPU doing
1862  * the wakeup against the CPU the task is going to end up running on. This,
1863  * however, is already required for the regular Program-Order guarantee above,
1864  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1865  *
1866  */
1867 
1868 /**
1869  * try_to_wake_up - wake up a thread
1870  * @p: the thread to be awakened
1871  * @state: the mask of task states that can be woken
1872  * @wake_flags: wake modifier flags (WF_*)
1873  *
1874  * Put it on the run-queue if it's not already there. The "current"
1875  * thread is always on the run-queue (except when the actual
1876  * re-schedule is in progress), and as such you're allowed to do
1877  * the simpler "current->state = TASK_RUNNING" to mark yourself
1878  * runnable without the overhead of this.
1879  *
1880  * Return: %true if @p was woken up, %false if it was already running.
1881  * or @state didn't match @p's state.
1882  */
1883 static int
1884 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1885 {
1886 	unsigned long flags;
1887 	int cpu, success = 0;
1888 
1889 	/*
1890 	 * If we are going to wake up a thread waiting for CONDITION we
1891 	 * need to ensure that CONDITION=1 done by the caller can not be
1892 	 * reordered with p->state check below. This pairs with mb() in
1893 	 * set_current_state() the waiting thread does.
1894 	 */
1895 	smp_mb__before_spinlock();
1896 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1897 	if (!(p->state & state))
1898 		goto out;
1899 
1900 	trace_sched_waking(p);
1901 
1902 	success = 1; /* we're going to change ->state */
1903 	cpu = task_cpu(p);
1904 
1905 	if (p->on_rq && ttwu_remote(p, wake_flags))
1906 		goto stat;
1907 
1908 #ifdef CONFIG_SMP
1909 	/*
1910 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1911 	 * possible to, falsely, observe p->on_cpu == 0.
1912 	 *
1913 	 * One must be running (->on_cpu == 1) in order to remove oneself
1914 	 * from the runqueue.
1915 	 *
1916 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1917 	 *      UNLOCK rq->lock
1918 	 *			RMB
1919 	 *      LOCK   rq->lock
1920 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1921 	 *
1922 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1923 	 * from the consecutive calls to schedule(); the first switching to our
1924 	 * task, the second putting it to sleep.
1925 	 */
1926 	smp_rmb();
1927 
1928 	/*
1929 	 * If the owning (remote) cpu is still in the middle of schedule() with
1930 	 * this task as prev, wait until its done referencing the task.
1931 	 *
1932 	 * Pairs with the smp_store_release() in finish_lock_switch().
1933 	 *
1934 	 * This ensures that tasks getting woken will be fully ordered against
1935 	 * their previous state and preserve Program Order.
1936 	 */
1937 	smp_cond_acquire(!p->on_cpu);
1938 
1939 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1940 	p->state = TASK_WAKING;
1941 
1942 	if (p->sched_class->task_waking)
1943 		p->sched_class->task_waking(p);
1944 
1945 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1946 	if (task_cpu(p) != cpu) {
1947 		wake_flags |= WF_MIGRATED;
1948 		set_task_cpu(p, cpu);
1949 	}
1950 #endif /* CONFIG_SMP */
1951 
1952 	ttwu_queue(p, cpu);
1953 stat:
1954 	if (schedstat_enabled())
1955 		ttwu_stat(p, cpu, wake_flags);
1956 out:
1957 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1958 
1959 	return success;
1960 }
1961 
1962 /**
1963  * try_to_wake_up_local - try to wake up a local task with rq lock held
1964  * @p: the thread to be awakened
1965  *
1966  * Put @p on the run-queue if it's not already there. The caller must
1967  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1968  * the current task.
1969  */
1970 static void try_to_wake_up_local(struct task_struct *p)
1971 {
1972 	struct rq *rq = task_rq(p);
1973 
1974 	if (WARN_ON_ONCE(rq != this_rq()) ||
1975 	    WARN_ON_ONCE(p == current))
1976 		return;
1977 
1978 	lockdep_assert_held(&rq->lock);
1979 
1980 	if (!raw_spin_trylock(&p->pi_lock)) {
1981 		/*
1982 		 * This is OK, because current is on_cpu, which avoids it being
1983 		 * picked for load-balance and preemption/IRQs are still
1984 		 * disabled avoiding further scheduler activity on it and we've
1985 		 * not yet picked a replacement task.
1986 		 */
1987 		lockdep_unpin_lock(&rq->lock);
1988 		raw_spin_unlock(&rq->lock);
1989 		raw_spin_lock(&p->pi_lock);
1990 		raw_spin_lock(&rq->lock);
1991 		lockdep_pin_lock(&rq->lock);
1992 	}
1993 
1994 	if (!(p->state & TASK_NORMAL))
1995 		goto out;
1996 
1997 	trace_sched_waking(p);
1998 
1999 	if (!task_on_rq_queued(p))
2000 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2001 
2002 	ttwu_do_wakeup(rq, p, 0);
2003 	if (schedstat_enabled())
2004 		ttwu_stat(p, smp_processor_id(), 0);
2005 out:
2006 	raw_spin_unlock(&p->pi_lock);
2007 }
2008 
2009 /**
2010  * wake_up_process - Wake up a specific process
2011  * @p: The process to be woken up.
2012  *
2013  * Attempt to wake up the nominated process and move it to the set of runnable
2014  * processes.
2015  *
2016  * Return: 1 if the process was woken up, 0 if it was already running.
2017  *
2018  * It may be assumed that this function implies a write memory barrier before
2019  * changing the task state if and only if any tasks are woken up.
2020  */
2021 int wake_up_process(struct task_struct *p)
2022 {
2023 	return try_to_wake_up(p, TASK_NORMAL, 0);
2024 }
2025 EXPORT_SYMBOL(wake_up_process);
2026 
2027 int wake_up_state(struct task_struct *p, unsigned int state)
2028 {
2029 	return try_to_wake_up(p, state, 0);
2030 }
2031 
2032 /*
2033  * This function clears the sched_dl_entity static params.
2034  */
2035 void __dl_clear_params(struct task_struct *p)
2036 {
2037 	struct sched_dl_entity *dl_se = &p->dl;
2038 
2039 	dl_se->dl_runtime = 0;
2040 	dl_se->dl_deadline = 0;
2041 	dl_se->dl_period = 0;
2042 	dl_se->flags = 0;
2043 	dl_se->dl_bw = 0;
2044 
2045 	dl_se->dl_throttled = 0;
2046 	dl_se->dl_yielded = 0;
2047 }
2048 
2049 /*
2050  * Perform scheduler related setup for a newly forked process p.
2051  * p is forked by current.
2052  *
2053  * __sched_fork() is basic setup used by init_idle() too:
2054  */
2055 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2056 {
2057 	p->on_rq			= 0;
2058 
2059 	p->se.on_rq			= 0;
2060 	p->se.exec_start		= 0;
2061 	p->se.sum_exec_runtime		= 0;
2062 	p->se.prev_sum_exec_runtime	= 0;
2063 	p->se.nr_migrations		= 0;
2064 	p->se.vruntime			= 0;
2065 	INIT_LIST_HEAD(&p->se.group_node);
2066 
2067 #ifdef CONFIG_FAIR_GROUP_SCHED
2068 	p->se.cfs_rq			= NULL;
2069 #endif
2070 
2071 #ifdef CONFIG_SCHEDSTATS
2072 	/* Even if schedstat is disabled, there should not be garbage */
2073 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2074 #endif
2075 
2076 	RB_CLEAR_NODE(&p->dl.rb_node);
2077 	init_dl_task_timer(&p->dl);
2078 	__dl_clear_params(p);
2079 
2080 	INIT_LIST_HEAD(&p->rt.run_list);
2081 	p->rt.timeout		= 0;
2082 	p->rt.time_slice	= sched_rr_timeslice;
2083 	p->rt.on_rq		= 0;
2084 	p->rt.on_list		= 0;
2085 
2086 #ifdef CONFIG_PREEMPT_NOTIFIERS
2087 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2088 #endif
2089 
2090 #ifdef CONFIG_NUMA_BALANCING
2091 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2092 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2093 		p->mm->numa_scan_seq = 0;
2094 	}
2095 
2096 	if (clone_flags & CLONE_VM)
2097 		p->numa_preferred_nid = current->numa_preferred_nid;
2098 	else
2099 		p->numa_preferred_nid = -1;
2100 
2101 	p->node_stamp = 0ULL;
2102 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2103 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2104 	p->numa_work.next = &p->numa_work;
2105 	p->numa_faults = NULL;
2106 	p->last_task_numa_placement = 0;
2107 	p->last_sum_exec_runtime = 0;
2108 
2109 	p->numa_group = NULL;
2110 #endif /* CONFIG_NUMA_BALANCING */
2111 }
2112 
2113 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2114 
2115 #ifdef CONFIG_NUMA_BALANCING
2116 
2117 void set_numabalancing_state(bool enabled)
2118 {
2119 	if (enabled)
2120 		static_branch_enable(&sched_numa_balancing);
2121 	else
2122 		static_branch_disable(&sched_numa_balancing);
2123 }
2124 
2125 #ifdef CONFIG_PROC_SYSCTL
2126 int sysctl_numa_balancing(struct ctl_table *table, int write,
2127 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2128 {
2129 	struct ctl_table t;
2130 	int err;
2131 	int state = static_branch_likely(&sched_numa_balancing);
2132 
2133 	if (write && !capable(CAP_SYS_ADMIN))
2134 		return -EPERM;
2135 
2136 	t = *table;
2137 	t.data = &state;
2138 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2139 	if (err < 0)
2140 		return err;
2141 	if (write)
2142 		set_numabalancing_state(state);
2143 	return err;
2144 }
2145 #endif
2146 #endif
2147 
2148 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2149 
2150 #ifdef CONFIG_SCHEDSTATS
2151 static void set_schedstats(bool enabled)
2152 {
2153 	if (enabled)
2154 		static_branch_enable(&sched_schedstats);
2155 	else
2156 		static_branch_disable(&sched_schedstats);
2157 }
2158 
2159 void force_schedstat_enabled(void)
2160 {
2161 	if (!schedstat_enabled()) {
2162 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2163 		static_branch_enable(&sched_schedstats);
2164 	}
2165 }
2166 
2167 static int __init setup_schedstats(char *str)
2168 {
2169 	int ret = 0;
2170 	if (!str)
2171 		goto out;
2172 
2173 	if (!strcmp(str, "enable")) {
2174 		set_schedstats(true);
2175 		ret = 1;
2176 	} else if (!strcmp(str, "disable")) {
2177 		set_schedstats(false);
2178 		ret = 1;
2179 	}
2180 out:
2181 	if (!ret)
2182 		pr_warn("Unable to parse schedstats=\n");
2183 
2184 	return ret;
2185 }
2186 __setup("schedstats=", setup_schedstats);
2187 
2188 #ifdef CONFIG_PROC_SYSCTL
2189 int sysctl_schedstats(struct ctl_table *table, int write,
2190 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2191 {
2192 	struct ctl_table t;
2193 	int err;
2194 	int state = static_branch_likely(&sched_schedstats);
2195 
2196 	if (write && !capable(CAP_SYS_ADMIN))
2197 		return -EPERM;
2198 
2199 	t = *table;
2200 	t.data = &state;
2201 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2202 	if (err < 0)
2203 		return err;
2204 	if (write)
2205 		set_schedstats(state);
2206 	return err;
2207 }
2208 #endif
2209 #endif
2210 
2211 /*
2212  * fork()/clone()-time setup:
2213  */
2214 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2215 {
2216 	unsigned long flags;
2217 	int cpu = get_cpu();
2218 
2219 	__sched_fork(clone_flags, p);
2220 	/*
2221 	 * We mark the process as running here. This guarantees that
2222 	 * nobody will actually run it, and a signal or other external
2223 	 * event cannot wake it up and insert it on the runqueue either.
2224 	 */
2225 	p->state = TASK_RUNNING;
2226 
2227 	/*
2228 	 * Make sure we do not leak PI boosting priority to the child.
2229 	 */
2230 	p->prio = current->normal_prio;
2231 
2232 	/*
2233 	 * Revert to default priority/policy on fork if requested.
2234 	 */
2235 	if (unlikely(p->sched_reset_on_fork)) {
2236 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2237 			p->policy = SCHED_NORMAL;
2238 			p->static_prio = NICE_TO_PRIO(0);
2239 			p->rt_priority = 0;
2240 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2241 			p->static_prio = NICE_TO_PRIO(0);
2242 
2243 		p->prio = p->normal_prio = __normal_prio(p);
2244 		set_load_weight(p);
2245 
2246 		/*
2247 		 * We don't need the reset flag anymore after the fork. It has
2248 		 * fulfilled its duty:
2249 		 */
2250 		p->sched_reset_on_fork = 0;
2251 	}
2252 
2253 	if (dl_prio(p->prio)) {
2254 		put_cpu();
2255 		return -EAGAIN;
2256 	} else if (rt_prio(p->prio)) {
2257 		p->sched_class = &rt_sched_class;
2258 	} else {
2259 		p->sched_class = &fair_sched_class;
2260 	}
2261 
2262 	if (p->sched_class->task_fork)
2263 		p->sched_class->task_fork(p);
2264 
2265 	/*
2266 	 * The child is not yet in the pid-hash so no cgroup attach races,
2267 	 * and the cgroup is pinned to this child due to cgroup_fork()
2268 	 * is ran before sched_fork().
2269 	 *
2270 	 * Silence PROVE_RCU.
2271 	 */
2272 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2273 	set_task_cpu(p, cpu);
2274 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2275 
2276 #ifdef CONFIG_SCHED_INFO
2277 	if (likely(sched_info_on()))
2278 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2279 #endif
2280 #if defined(CONFIG_SMP)
2281 	p->on_cpu = 0;
2282 #endif
2283 	init_task_preempt_count(p);
2284 #ifdef CONFIG_SMP
2285 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2286 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2287 #endif
2288 
2289 	put_cpu();
2290 	return 0;
2291 }
2292 
2293 unsigned long to_ratio(u64 period, u64 runtime)
2294 {
2295 	if (runtime == RUNTIME_INF)
2296 		return 1ULL << 20;
2297 
2298 	/*
2299 	 * Doing this here saves a lot of checks in all
2300 	 * the calling paths, and returning zero seems
2301 	 * safe for them anyway.
2302 	 */
2303 	if (period == 0)
2304 		return 0;
2305 
2306 	return div64_u64(runtime << 20, period);
2307 }
2308 
2309 #ifdef CONFIG_SMP
2310 inline struct dl_bw *dl_bw_of(int i)
2311 {
2312 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2313 			 "sched RCU must be held");
2314 	return &cpu_rq(i)->rd->dl_bw;
2315 }
2316 
2317 static inline int dl_bw_cpus(int i)
2318 {
2319 	struct root_domain *rd = cpu_rq(i)->rd;
2320 	int cpus = 0;
2321 
2322 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2323 			 "sched RCU must be held");
2324 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2325 		cpus++;
2326 
2327 	return cpus;
2328 }
2329 #else
2330 inline struct dl_bw *dl_bw_of(int i)
2331 {
2332 	return &cpu_rq(i)->dl.dl_bw;
2333 }
2334 
2335 static inline int dl_bw_cpus(int i)
2336 {
2337 	return 1;
2338 }
2339 #endif
2340 
2341 /*
2342  * We must be sure that accepting a new task (or allowing changing the
2343  * parameters of an existing one) is consistent with the bandwidth
2344  * constraints. If yes, this function also accordingly updates the currently
2345  * allocated bandwidth to reflect the new situation.
2346  *
2347  * This function is called while holding p's rq->lock.
2348  *
2349  * XXX we should delay bw change until the task's 0-lag point, see
2350  * __setparam_dl().
2351  */
2352 static int dl_overflow(struct task_struct *p, int policy,
2353 		       const struct sched_attr *attr)
2354 {
2355 
2356 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2357 	u64 period = attr->sched_period ?: attr->sched_deadline;
2358 	u64 runtime = attr->sched_runtime;
2359 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2360 	int cpus, err = -1;
2361 
2362 	if (new_bw == p->dl.dl_bw)
2363 		return 0;
2364 
2365 	/*
2366 	 * Either if a task, enters, leave, or stays -deadline but changes
2367 	 * its parameters, we may need to update accordingly the total
2368 	 * allocated bandwidth of the container.
2369 	 */
2370 	raw_spin_lock(&dl_b->lock);
2371 	cpus = dl_bw_cpus(task_cpu(p));
2372 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2373 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2374 		__dl_add(dl_b, new_bw);
2375 		err = 0;
2376 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2377 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2378 		__dl_clear(dl_b, p->dl.dl_bw);
2379 		__dl_add(dl_b, new_bw);
2380 		err = 0;
2381 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2382 		__dl_clear(dl_b, p->dl.dl_bw);
2383 		err = 0;
2384 	}
2385 	raw_spin_unlock(&dl_b->lock);
2386 
2387 	return err;
2388 }
2389 
2390 extern void init_dl_bw(struct dl_bw *dl_b);
2391 
2392 /*
2393  * wake_up_new_task - wake up a newly created task for the first time.
2394  *
2395  * This function will do some initial scheduler statistics housekeeping
2396  * that must be done for every newly created context, then puts the task
2397  * on the runqueue and wakes it.
2398  */
2399 void wake_up_new_task(struct task_struct *p)
2400 {
2401 	unsigned long flags;
2402 	struct rq *rq;
2403 
2404 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2405 	/* Initialize new task's runnable average */
2406 	init_entity_runnable_average(&p->se);
2407 #ifdef CONFIG_SMP
2408 	/*
2409 	 * Fork balancing, do it here and not earlier because:
2410 	 *  - cpus_allowed can change in the fork path
2411 	 *  - any previously selected cpu might disappear through hotplug
2412 	 */
2413 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2414 #endif
2415 
2416 	rq = __task_rq_lock(p);
2417 	activate_task(rq, p, 0);
2418 	p->on_rq = TASK_ON_RQ_QUEUED;
2419 	trace_sched_wakeup_new(p);
2420 	check_preempt_curr(rq, p, WF_FORK);
2421 #ifdef CONFIG_SMP
2422 	if (p->sched_class->task_woken) {
2423 		/*
2424 		 * Nothing relies on rq->lock after this, so its fine to
2425 		 * drop it.
2426 		 */
2427 		lockdep_unpin_lock(&rq->lock);
2428 		p->sched_class->task_woken(rq, p);
2429 		lockdep_pin_lock(&rq->lock);
2430 	}
2431 #endif
2432 	task_rq_unlock(rq, p, &flags);
2433 }
2434 
2435 #ifdef CONFIG_PREEMPT_NOTIFIERS
2436 
2437 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2438 
2439 void preempt_notifier_inc(void)
2440 {
2441 	static_key_slow_inc(&preempt_notifier_key);
2442 }
2443 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2444 
2445 void preempt_notifier_dec(void)
2446 {
2447 	static_key_slow_dec(&preempt_notifier_key);
2448 }
2449 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2450 
2451 /**
2452  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2453  * @notifier: notifier struct to register
2454  */
2455 void preempt_notifier_register(struct preempt_notifier *notifier)
2456 {
2457 	if (!static_key_false(&preempt_notifier_key))
2458 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2459 
2460 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2461 }
2462 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2463 
2464 /**
2465  * preempt_notifier_unregister - no longer interested in preemption notifications
2466  * @notifier: notifier struct to unregister
2467  *
2468  * This is *not* safe to call from within a preemption notifier.
2469  */
2470 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2471 {
2472 	hlist_del(&notifier->link);
2473 }
2474 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2475 
2476 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 {
2478 	struct preempt_notifier *notifier;
2479 
2480 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482 }
2483 
2484 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485 {
2486 	if (static_key_false(&preempt_notifier_key))
2487 		__fire_sched_in_preempt_notifiers(curr);
2488 }
2489 
2490 static void
2491 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492 				   struct task_struct *next)
2493 {
2494 	struct preempt_notifier *notifier;
2495 
2496 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497 		notifier->ops->sched_out(notifier, next);
2498 }
2499 
2500 static __always_inline void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 				 struct task_struct *next)
2503 {
2504 	if (static_key_false(&preempt_notifier_key))
2505 		__fire_sched_out_preempt_notifiers(curr, next);
2506 }
2507 
2508 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2509 
2510 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512 }
2513 
2514 static inline void
2515 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516 				 struct task_struct *next)
2517 {
2518 }
2519 
2520 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2521 
2522 /**
2523  * prepare_task_switch - prepare to switch tasks
2524  * @rq: the runqueue preparing to switch
2525  * @prev: the current task that is being switched out
2526  * @next: the task we are going to switch to.
2527  *
2528  * This is called with the rq lock held and interrupts off. It must
2529  * be paired with a subsequent finish_task_switch after the context
2530  * switch.
2531  *
2532  * prepare_task_switch sets up locking and calls architecture specific
2533  * hooks.
2534  */
2535 static inline void
2536 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2537 		    struct task_struct *next)
2538 {
2539 	sched_info_switch(rq, prev, next);
2540 	perf_event_task_sched_out(prev, next);
2541 	fire_sched_out_preempt_notifiers(prev, next);
2542 	prepare_lock_switch(rq, next);
2543 	prepare_arch_switch(next);
2544 }
2545 
2546 /**
2547  * finish_task_switch - clean up after a task-switch
2548  * @prev: the thread we just switched away from.
2549  *
2550  * finish_task_switch must be called after the context switch, paired
2551  * with a prepare_task_switch call before the context switch.
2552  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2553  * and do any other architecture-specific cleanup actions.
2554  *
2555  * Note that we may have delayed dropping an mm in context_switch(). If
2556  * so, we finish that here outside of the runqueue lock. (Doing it
2557  * with the lock held can cause deadlocks; see schedule() for
2558  * details.)
2559  *
2560  * The context switch have flipped the stack from under us and restored the
2561  * local variables which were saved when this task called schedule() in the
2562  * past. prev == current is still correct but we need to recalculate this_rq
2563  * because prev may have moved to another CPU.
2564  */
2565 static struct rq *finish_task_switch(struct task_struct *prev)
2566 	__releases(rq->lock)
2567 {
2568 	struct rq *rq = this_rq();
2569 	struct mm_struct *mm = rq->prev_mm;
2570 	long prev_state;
2571 
2572 	/*
2573 	 * The previous task will have left us with a preempt_count of 2
2574 	 * because it left us after:
2575 	 *
2576 	 *	schedule()
2577 	 *	  preempt_disable();			// 1
2578 	 *	  __schedule()
2579 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2580 	 *
2581 	 * Also, see FORK_PREEMPT_COUNT.
2582 	 */
2583 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2584 		      "corrupted preempt_count: %s/%d/0x%x\n",
2585 		      current->comm, current->pid, preempt_count()))
2586 		preempt_count_set(FORK_PREEMPT_COUNT);
2587 
2588 	rq->prev_mm = NULL;
2589 
2590 	/*
2591 	 * A task struct has one reference for the use as "current".
2592 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2593 	 * schedule one last time. The schedule call will never return, and
2594 	 * the scheduled task must drop that reference.
2595 	 *
2596 	 * We must observe prev->state before clearing prev->on_cpu (in
2597 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2598 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2599 	 * transition, resulting in a double drop.
2600 	 */
2601 	prev_state = prev->state;
2602 	vtime_task_switch(prev);
2603 	perf_event_task_sched_in(prev, current);
2604 	finish_lock_switch(rq, prev);
2605 	finish_arch_post_lock_switch();
2606 
2607 	fire_sched_in_preempt_notifiers(current);
2608 	if (mm)
2609 		mmdrop(mm);
2610 	if (unlikely(prev_state == TASK_DEAD)) {
2611 		if (prev->sched_class->task_dead)
2612 			prev->sched_class->task_dead(prev);
2613 
2614 		/*
2615 		 * Remove function-return probe instances associated with this
2616 		 * task and put them back on the free list.
2617 		 */
2618 		kprobe_flush_task(prev);
2619 		put_task_struct(prev);
2620 	}
2621 
2622 	tick_nohz_task_switch();
2623 	return rq;
2624 }
2625 
2626 #ifdef CONFIG_SMP
2627 
2628 /* rq->lock is NOT held, but preemption is disabled */
2629 static void __balance_callback(struct rq *rq)
2630 {
2631 	struct callback_head *head, *next;
2632 	void (*func)(struct rq *rq);
2633 	unsigned long flags;
2634 
2635 	raw_spin_lock_irqsave(&rq->lock, flags);
2636 	head = rq->balance_callback;
2637 	rq->balance_callback = NULL;
2638 	while (head) {
2639 		func = (void (*)(struct rq *))head->func;
2640 		next = head->next;
2641 		head->next = NULL;
2642 		head = next;
2643 
2644 		func(rq);
2645 	}
2646 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2647 }
2648 
2649 static inline void balance_callback(struct rq *rq)
2650 {
2651 	if (unlikely(rq->balance_callback))
2652 		__balance_callback(rq);
2653 }
2654 
2655 #else
2656 
2657 static inline void balance_callback(struct rq *rq)
2658 {
2659 }
2660 
2661 #endif
2662 
2663 /**
2664  * schedule_tail - first thing a freshly forked thread must call.
2665  * @prev: the thread we just switched away from.
2666  */
2667 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2668 	__releases(rq->lock)
2669 {
2670 	struct rq *rq;
2671 
2672 	/*
2673 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2674 	 * finish_task_switch() for details.
2675 	 *
2676 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2677 	 * and the preempt_enable() will end up enabling preemption (on
2678 	 * PREEMPT_COUNT kernels).
2679 	 */
2680 
2681 	rq = finish_task_switch(prev);
2682 	balance_callback(rq);
2683 	preempt_enable();
2684 
2685 	if (current->set_child_tid)
2686 		put_user(task_pid_vnr(current), current->set_child_tid);
2687 }
2688 
2689 /*
2690  * context_switch - switch to the new MM and the new thread's register state.
2691  */
2692 static inline struct rq *
2693 context_switch(struct rq *rq, struct task_struct *prev,
2694 	       struct task_struct *next)
2695 {
2696 	struct mm_struct *mm, *oldmm;
2697 
2698 	prepare_task_switch(rq, prev, next);
2699 
2700 	mm = next->mm;
2701 	oldmm = prev->active_mm;
2702 	/*
2703 	 * For paravirt, this is coupled with an exit in switch_to to
2704 	 * combine the page table reload and the switch backend into
2705 	 * one hypercall.
2706 	 */
2707 	arch_start_context_switch(prev);
2708 
2709 	if (!mm) {
2710 		next->active_mm = oldmm;
2711 		atomic_inc(&oldmm->mm_count);
2712 		enter_lazy_tlb(oldmm, next);
2713 	} else
2714 		switch_mm(oldmm, mm, next);
2715 
2716 	if (!prev->mm) {
2717 		prev->active_mm = NULL;
2718 		rq->prev_mm = oldmm;
2719 	}
2720 	/*
2721 	 * Since the runqueue lock will be released by the next
2722 	 * task (which is an invalid locking op but in the case
2723 	 * of the scheduler it's an obvious special-case), so we
2724 	 * do an early lockdep release here:
2725 	 */
2726 	lockdep_unpin_lock(&rq->lock);
2727 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2728 
2729 	/* Here we just switch the register state and the stack. */
2730 	switch_to(prev, next, prev);
2731 	barrier();
2732 
2733 	return finish_task_switch(prev);
2734 }
2735 
2736 /*
2737  * nr_running and nr_context_switches:
2738  *
2739  * externally visible scheduler statistics: current number of runnable
2740  * threads, total number of context switches performed since bootup.
2741  */
2742 unsigned long nr_running(void)
2743 {
2744 	unsigned long i, sum = 0;
2745 
2746 	for_each_online_cpu(i)
2747 		sum += cpu_rq(i)->nr_running;
2748 
2749 	return sum;
2750 }
2751 
2752 /*
2753  * Check if only the current task is running on the cpu.
2754  *
2755  * Caution: this function does not check that the caller has disabled
2756  * preemption, thus the result might have a time-of-check-to-time-of-use
2757  * race.  The caller is responsible to use it correctly, for example:
2758  *
2759  * - from a non-preemptable section (of course)
2760  *
2761  * - from a thread that is bound to a single CPU
2762  *
2763  * - in a loop with very short iterations (e.g. a polling loop)
2764  */
2765 bool single_task_running(void)
2766 {
2767 	return raw_rq()->nr_running == 1;
2768 }
2769 EXPORT_SYMBOL(single_task_running);
2770 
2771 unsigned long long nr_context_switches(void)
2772 {
2773 	int i;
2774 	unsigned long long sum = 0;
2775 
2776 	for_each_possible_cpu(i)
2777 		sum += cpu_rq(i)->nr_switches;
2778 
2779 	return sum;
2780 }
2781 
2782 unsigned long nr_iowait(void)
2783 {
2784 	unsigned long i, sum = 0;
2785 
2786 	for_each_possible_cpu(i)
2787 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2788 
2789 	return sum;
2790 }
2791 
2792 unsigned long nr_iowait_cpu(int cpu)
2793 {
2794 	struct rq *this = cpu_rq(cpu);
2795 	return atomic_read(&this->nr_iowait);
2796 }
2797 
2798 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2799 {
2800 	struct rq *rq = this_rq();
2801 	*nr_waiters = atomic_read(&rq->nr_iowait);
2802 	*load = rq->load.weight;
2803 }
2804 
2805 #ifdef CONFIG_SMP
2806 
2807 /*
2808  * sched_exec - execve() is a valuable balancing opportunity, because at
2809  * this point the task has the smallest effective memory and cache footprint.
2810  */
2811 void sched_exec(void)
2812 {
2813 	struct task_struct *p = current;
2814 	unsigned long flags;
2815 	int dest_cpu;
2816 
2817 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2818 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2819 	if (dest_cpu == smp_processor_id())
2820 		goto unlock;
2821 
2822 	if (likely(cpu_active(dest_cpu))) {
2823 		struct migration_arg arg = { p, dest_cpu };
2824 
2825 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2826 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2827 		return;
2828 	}
2829 unlock:
2830 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2831 }
2832 
2833 #endif
2834 
2835 DEFINE_PER_CPU(struct kernel_stat, kstat);
2836 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2837 
2838 EXPORT_PER_CPU_SYMBOL(kstat);
2839 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2840 
2841 /*
2842  * Return accounted runtime for the task.
2843  * In case the task is currently running, return the runtime plus current's
2844  * pending runtime that have not been accounted yet.
2845  */
2846 unsigned long long task_sched_runtime(struct task_struct *p)
2847 {
2848 	unsigned long flags;
2849 	struct rq *rq;
2850 	u64 ns;
2851 
2852 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2853 	/*
2854 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2855 	 * So we have a optimization chance when the task's delta_exec is 0.
2856 	 * Reading ->on_cpu is racy, but this is ok.
2857 	 *
2858 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2859 	 * If we race with it entering cpu, unaccounted time is 0. This is
2860 	 * indistinguishable from the read occurring a few cycles earlier.
2861 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2862 	 * been accounted, so we're correct here as well.
2863 	 */
2864 	if (!p->on_cpu || !task_on_rq_queued(p))
2865 		return p->se.sum_exec_runtime;
2866 #endif
2867 
2868 	rq = task_rq_lock(p, &flags);
2869 	/*
2870 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2871 	 * project cycles that may never be accounted to this
2872 	 * thread, breaking clock_gettime().
2873 	 */
2874 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2875 		update_rq_clock(rq);
2876 		p->sched_class->update_curr(rq);
2877 	}
2878 	ns = p->se.sum_exec_runtime;
2879 	task_rq_unlock(rq, p, &flags);
2880 
2881 	return ns;
2882 }
2883 
2884 /*
2885  * This function gets called by the timer code, with HZ frequency.
2886  * We call it with interrupts disabled.
2887  */
2888 void scheduler_tick(void)
2889 {
2890 	int cpu = smp_processor_id();
2891 	struct rq *rq = cpu_rq(cpu);
2892 	struct task_struct *curr = rq->curr;
2893 
2894 	sched_clock_tick();
2895 
2896 	raw_spin_lock(&rq->lock);
2897 	update_rq_clock(rq);
2898 	curr->sched_class->task_tick(rq, curr, 0);
2899 	update_cpu_load_active(rq);
2900 	calc_global_load_tick(rq);
2901 	raw_spin_unlock(&rq->lock);
2902 
2903 	perf_event_task_tick();
2904 
2905 #ifdef CONFIG_SMP
2906 	rq->idle_balance = idle_cpu(cpu);
2907 	trigger_load_balance(rq);
2908 #endif
2909 	rq_last_tick_reset(rq);
2910 }
2911 
2912 #ifdef CONFIG_NO_HZ_FULL
2913 /**
2914  * scheduler_tick_max_deferment
2915  *
2916  * Keep at least one tick per second when a single
2917  * active task is running because the scheduler doesn't
2918  * yet completely support full dynticks environment.
2919  *
2920  * This makes sure that uptime, CFS vruntime, load
2921  * balancing, etc... continue to move forward, even
2922  * with a very low granularity.
2923  *
2924  * Return: Maximum deferment in nanoseconds.
2925  */
2926 u64 scheduler_tick_max_deferment(void)
2927 {
2928 	struct rq *rq = this_rq();
2929 	unsigned long next, now = READ_ONCE(jiffies);
2930 
2931 	next = rq->last_sched_tick + HZ;
2932 
2933 	if (time_before_eq(next, now))
2934 		return 0;
2935 
2936 	return jiffies_to_nsecs(next - now);
2937 }
2938 #endif
2939 
2940 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2941 				defined(CONFIG_PREEMPT_TRACER))
2942 
2943 void preempt_count_add(int val)
2944 {
2945 #ifdef CONFIG_DEBUG_PREEMPT
2946 	/*
2947 	 * Underflow?
2948 	 */
2949 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2950 		return;
2951 #endif
2952 	__preempt_count_add(val);
2953 #ifdef CONFIG_DEBUG_PREEMPT
2954 	/*
2955 	 * Spinlock count overflowing soon?
2956 	 */
2957 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2958 				PREEMPT_MASK - 10);
2959 #endif
2960 	if (preempt_count() == val) {
2961 		unsigned long ip = get_lock_parent_ip();
2962 #ifdef CONFIG_DEBUG_PREEMPT
2963 		current->preempt_disable_ip = ip;
2964 #endif
2965 		trace_preempt_off(CALLER_ADDR0, ip);
2966 	}
2967 }
2968 EXPORT_SYMBOL(preempt_count_add);
2969 NOKPROBE_SYMBOL(preempt_count_add);
2970 
2971 void preempt_count_sub(int val)
2972 {
2973 #ifdef CONFIG_DEBUG_PREEMPT
2974 	/*
2975 	 * Underflow?
2976 	 */
2977 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2978 		return;
2979 	/*
2980 	 * Is the spinlock portion underflowing?
2981 	 */
2982 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2983 			!(preempt_count() & PREEMPT_MASK)))
2984 		return;
2985 #endif
2986 
2987 	if (preempt_count() == val)
2988 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
2989 	__preempt_count_sub(val);
2990 }
2991 EXPORT_SYMBOL(preempt_count_sub);
2992 NOKPROBE_SYMBOL(preempt_count_sub);
2993 
2994 #endif
2995 
2996 /*
2997  * Print scheduling while atomic bug:
2998  */
2999 static noinline void __schedule_bug(struct task_struct *prev)
3000 {
3001 	if (oops_in_progress)
3002 		return;
3003 
3004 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3005 		prev->comm, prev->pid, preempt_count());
3006 
3007 	debug_show_held_locks(prev);
3008 	print_modules();
3009 	if (irqs_disabled())
3010 		print_irqtrace_events(prev);
3011 #ifdef CONFIG_DEBUG_PREEMPT
3012 	if (in_atomic_preempt_off()) {
3013 		pr_err("Preemption disabled at:");
3014 		print_ip_sym(current->preempt_disable_ip);
3015 		pr_cont("\n");
3016 	}
3017 #endif
3018 	dump_stack();
3019 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3020 }
3021 
3022 /*
3023  * Various schedule()-time debugging checks and statistics:
3024  */
3025 static inline void schedule_debug(struct task_struct *prev)
3026 {
3027 #ifdef CONFIG_SCHED_STACK_END_CHECK
3028 	BUG_ON(task_stack_end_corrupted(prev));
3029 #endif
3030 
3031 	if (unlikely(in_atomic_preempt_off())) {
3032 		__schedule_bug(prev);
3033 		preempt_count_set(PREEMPT_DISABLED);
3034 	}
3035 	rcu_sleep_check();
3036 
3037 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3038 
3039 	schedstat_inc(this_rq(), sched_count);
3040 }
3041 
3042 /*
3043  * Pick up the highest-prio task:
3044  */
3045 static inline struct task_struct *
3046 pick_next_task(struct rq *rq, struct task_struct *prev)
3047 {
3048 	const struct sched_class *class = &fair_sched_class;
3049 	struct task_struct *p;
3050 
3051 	/*
3052 	 * Optimization: we know that if all tasks are in
3053 	 * the fair class we can call that function directly:
3054 	 */
3055 	if (likely(prev->sched_class == class &&
3056 		   rq->nr_running == rq->cfs.h_nr_running)) {
3057 		p = fair_sched_class.pick_next_task(rq, prev);
3058 		if (unlikely(p == RETRY_TASK))
3059 			goto again;
3060 
3061 		/* assumes fair_sched_class->next == idle_sched_class */
3062 		if (unlikely(!p))
3063 			p = idle_sched_class.pick_next_task(rq, prev);
3064 
3065 		return p;
3066 	}
3067 
3068 again:
3069 	for_each_class(class) {
3070 		p = class->pick_next_task(rq, prev);
3071 		if (p) {
3072 			if (unlikely(p == RETRY_TASK))
3073 				goto again;
3074 			return p;
3075 		}
3076 	}
3077 
3078 	BUG(); /* the idle class will always have a runnable task */
3079 }
3080 
3081 /*
3082  * __schedule() is the main scheduler function.
3083  *
3084  * The main means of driving the scheduler and thus entering this function are:
3085  *
3086  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3087  *
3088  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3089  *      paths. For example, see arch/x86/entry_64.S.
3090  *
3091  *      To drive preemption between tasks, the scheduler sets the flag in timer
3092  *      interrupt handler scheduler_tick().
3093  *
3094  *   3. Wakeups don't really cause entry into schedule(). They add a
3095  *      task to the run-queue and that's it.
3096  *
3097  *      Now, if the new task added to the run-queue preempts the current
3098  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3099  *      called on the nearest possible occasion:
3100  *
3101  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3102  *
3103  *         - in syscall or exception context, at the next outmost
3104  *           preempt_enable(). (this might be as soon as the wake_up()'s
3105  *           spin_unlock()!)
3106  *
3107  *         - in IRQ context, return from interrupt-handler to
3108  *           preemptible context
3109  *
3110  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3111  *         then at the next:
3112  *
3113  *          - cond_resched() call
3114  *          - explicit schedule() call
3115  *          - return from syscall or exception to user-space
3116  *          - return from interrupt-handler to user-space
3117  *
3118  * WARNING: must be called with preemption disabled!
3119  */
3120 static void __sched notrace __schedule(bool preempt)
3121 {
3122 	struct task_struct *prev, *next;
3123 	unsigned long *switch_count;
3124 	struct rq *rq;
3125 	int cpu;
3126 
3127 	cpu = smp_processor_id();
3128 	rq = cpu_rq(cpu);
3129 	prev = rq->curr;
3130 
3131 	/*
3132 	 * do_exit() calls schedule() with preemption disabled as an exception;
3133 	 * however we must fix that up, otherwise the next task will see an
3134 	 * inconsistent (higher) preempt count.
3135 	 *
3136 	 * It also avoids the below schedule_debug() test from complaining
3137 	 * about this.
3138 	 */
3139 	if (unlikely(prev->state == TASK_DEAD))
3140 		preempt_enable_no_resched_notrace();
3141 
3142 	schedule_debug(prev);
3143 
3144 	if (sched_feat(HRTICK))
3145 		hrtick_clear(rq);
3146 
3147 	local_irq_disable();
3148 	rcu_note_context_switch();
3149 
3150 	/*
3151 	 * Make sure that signal_pending_state()->signal_pending() below
3152 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3153 	 * done by the caller to avoid the race with signal_wake_up().
3154 	 */
3155 	smp_mb__before_spinlock();
3156 	raw_spin_lock(&rq->lock);
3157 	lockdep_pin_lock(&rq->lock);
3158 
3159 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3160 
3161 	switch_count = &prev->nivcsw;
3162 	if (!preempt && prev->state) {
3163 		if (unlikely(signal_pending_state(prev->state, prev))) {
3164 			prev->state = TASK_RUNNING;
3165 		} else {
3166 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3167 			prev->on_rq = 0;
3168 
3169 			/*
3170 			 * If a worker went to sleep, notify and ask workqueue
3171 			 * whether it wants to wake up a task to maintain
3172 			 * concurrency.
3173 			 */
3174 			if (prev->flags & PF_WQ_WORKER) {
3175 				struct task_struct *to_wakeup;
3176 
3177 				to_wakeup = wq_worker_sleeping(prev, cpu);
3178 				if (to_wakeup)
3179 					try_to_wake_up_local(to_wakeup);
3180 			}
3181 		}
3182 		switch_count = &prev->nvcsw;
3183 	}
3184 
3185 	if (task_on_rq_queued(prev))
3186 		update_rq_clock(rq);
3187 
3188 	next = pick_next_task(rq, prev);
3189 	clear_tsk_need_resched(prev);
3190 	clear_preempt_need_resched();
3191 	rq->clock_skip_update = 0;
3192 
3193 	if (likely(prev != next)) {
3194 		rq->nr_switches++;
3195 		rq->curr = next;
3196 		++*switch_count;
3197 
3198 		trace_sched_switch(preempt, prev, next);
3199 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3200 	} else {
3201 		lockdep_unpin_lock(&rq->lock);
3202 		raw_spin_unlock_irq(&rq->lock);
3203 	}
3204 
3205 	balance_callback(rq);
3206 }
3207 
3208 static inline void sched_submit_work(struct task_struct *tsk)
3209 {
3210 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3211 		return;
3212 	/*
3213 	 * If we are going to sleep and we have plugged IO queued,
3214 	 * make sure to submit it to avoid deadlocks.
3215 	 */
3216 	if (blk_needs_flush_plug(tsk))
3217 		blk_schedule_flush_plug(tsk);
3218 }
3219 
3220 asmlinkage __visible void __sched schedule(void)
3221 {
3222 	struct task_struct *tsk = current;
3223 
3224 	sched_submit_work(tsk);
3225 	do {
3226 		preempt_disable();
3227 		__schedule(false);
3228 		sched_preempt_enable_no_resched();
3229 	} while (need_resched());
3230 }
3231 EXPORT_SYMBOL(schedule);
3232 
3233 #ifdef CONFIG_CONTEXT_TRACKING
3234 asmlinkage __visible void __sched schedule_user(void)
3235 {
3236 	/*
3237 	 * If we come here after a random call to set_need_resched(),
3238 	 * or we have been woken up remotely but the IPI has not yet arrived,
3239 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3240 	 * we find a better solution.
3241 	 *
3242 	 * NB: There are buggy callers of this function.  Ideally we
3243 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3244 	 * too frequently to make sense yet.
3245 	 */
3246 	enum ctx_state prev_state = exception_enter();
3247 	schedule();
3248 	exception_exit(prev_state);
3249 }
3250 #endif
3251 
3252 /**
3253  * schedule_preempt_disabled - called with preemption disabled
3254  *
3255  * Returns with preemption disabled. Note: preempt_count must be 1
3256  */
3257 void __sched schedule_preempt_disabled(void)
3258 {
3259 	sched_preempt_enable_no_resched();
3260 	schedule();
3261 	preempt_disable();
3262 }
3263 
3264 static void __sched notrace preempt_schedule_common(void)
3265 {
3266 	do {
3267 		preempt_disable_notrace();
3268 		__schedule(true);
3269 		preempt_enable_no_resched_notrace();
3270 
3271 		/*
3272 		 * Check again in case we missed a preemption opportunity
3273 		 * between schedule and now.
3274 		 */
3275 	} while (need_resched());
3276 }
3277 
3278 #ifdef CONFIG_PREEMPT
3279 /*
3280  * this is the entry point to schedule() from in-kernel preemption
3281  * off of preempt_enable. Kernel preemptions off return from interrupt
3282  * occur there and call schedule directly.
3283  */
3284 asmlinkage __visible void __sched notrace preempt_schedule(void)
3285 {
3286 	/*
3287 	 * If there is a non-zero preempt_count or interrupts are disabled,
3288 	 * we do not want to preempt the current task. Just return..
3289 	 */
3290 	if (likely(!preemptible()))
3291 		return;
3292 
3293 	preempt_schedule_common();
3294 }
3295 NOKPROBE_SYMBOL(preempt_schedule);
3296 EXPORT_SYMBOL(preempt_schedule);
3297 
3298 /**
3299  * preempt_schedule_notrace - preempt_schedule called by tracing
3300  *
3301  * The tracing infrastructure uses preempt_enable_notrace to prevent
3302  * recursion and tracing preempt enabling caused by the tracing
3303  * infrastructure itself. But as tracing can happen in areas coming
3304  * from userspace or just about to enter userspace, a preempt enable
3305  * can occur before user_exit() is called. This will cause the scheduler
3306  * to be called when the system is still in usermode.
3307  *
3308  * To prevent this, the preempt_enable_notrace will use this function
3309  * instead of preempt_schedule() to exit user context if needed before
3310  * calling the scheduler.
3311  */
3312 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3313 {
3314 	enum ctx_state prev_ctx;
3315 
3316 	if (likely(!preemptible()))
3317 		return;
3318 
3319 	do {
3320 		preempt_disable_notrace();
3321 		/*
3322 		 * Needs preempt disabled in case user_exit() is traced
3323 		 * and the tracer calls preempt_enable_notrace() causing
3324 		 * an infinite recursion.
3325 		 */
3326 		prev_ctx = exception_enter();
3327 		__schedule(true);
3328 		exception_exit(prev_ctx);
3329 
3330 		preempt_enable_no_resched_notrace();
3331 	} while (need_resched());
3332 }
3333 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3334 
3335 #endif /* CONFIG_PREEMPT */
3336 
3337 /*
3338  * this is the entry point to schedule() from kernel preemption
3339  * off of irq context.
3340  * Note, that this is called and return with irqs disabled. This will
3341  * protect us against recursive calling from irq.
3342  */
3343 asmlinkage __visible void __sched preempt_schedule_irq(void)
3344 {
3345 	enum ctx_state prev_state;
3346 
3347 	/* Catch callers which need to be fixed */
3348 	BUG_ON(preempt_count() || !irqs_disabled());
3349 
3350 	prev_state = exception_enter();
3351 
3352 	do {
3353 		preempt_disable();
3354 		local_irq_enable();
3355 		__schedule(true);
3356 		local_irq_disable();
3357 		sched_preempt_enable_no_resched();
3358 	} while (need_resched());
3359 
3360 	exception_exit(prev_state);
3361 }
3362 
3363 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3364 			  void *key)
3365 {
3366 	return try_to_wake_up(curr->private, mode, wake_flags);
3367 }
3368 EXPORT_SYMBOL(default_wake_function);
3369 
3370 #ifdef CONFIG_RT_MUTEXES
3371 
3372 /*
3373  * rt_mutex_setprio - set the current priority of a task
3374  * @p: task
3375  * @prio: prio value (kernel-internal form)
3376  *
3377  * This function changes the 'effective' priority of a task. It does
3378  * not touch ->normal_prio like __setscheduler().
3379  *
3380  * Used by the rt_mutex code to implement priority inheritance
3381  * logic. Call site only calls if the priority of the task changed.
3382  */
3383 void rt_mutex_setprio(struct task_struct *p, int prio)
3384 {
3385 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3386 	struct rq *rq;
3387 	const struct sched_class *prev_class;
3388 
3389 	BUG_ON(prio > MAX_PRIO);
3390 
3391 	rq = __task_rq_lock(p);
3392 
3393 	/*
3394 	 * Idle task boosting is a nono in general. There is one
3395 	 * exception, when PREEMPT_RT and NOHZ is active:
3396 	 *
3397 	 * The idle task calls get_next_timer_interrupt() and holds
3398 	 * the timer wheel base->lock on the CPU and another CPU wants
3399 	 * to access the timer (probably to cancel it). We can safely
3400 	 * ignore the boosting request, as the idle CPU runs this code
3401 	 * with interrupts disabled and will complete the lock
3402 	 * protected section without being interrupted. So there is no
3403 	 * real need to boost.
3404 	 */
3405 	if (unlikely(p == rq->idle)) {
3406 		WARN_ON(p != rq->curr);
3407 		WARN_ON(p->pi_blocked_on);
3408 		goto out_unlock;
3409 	}
3410 
3411 	trace_sched_pi_setprio(p, prio);
3412 	oldprio = p->prio;
3413 
3414 	if (oldprio == prio)
3415 		queue_flag &= ~DEQUEUE_MOVE;
3416 
3417 	prev_class = p->sched_class;
3418 	queued = task_on_rq_queued(p);
3419 	running = task_current(rq, p);
3420 	if (queued)
3421 		dequeue_task(rq, p, queue_flag);
3422 	if (running)
3423 		put_prev_task(rq, p);
3424 
3425 	/*
3426 	 * Boosting condition are:
3427 	 * 1. -rt task is running and holds mutex A
3428 	 *      --> -dl task blocks on mutex A
3429 	 *
3430 	 * 2. -dl task is running and holds mutex A
3431 	 *      --> -dl task blocks on mutex A and could preempt the
3432 	 *          running task
3433 	 */
3434 	if (dl_prio(prio)) {
3435 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3436 		if (!dl_prio(p->normal_prio) ||
3437 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3438 			p->dl.dl_boosted = 1;
3439 			queue_flag |= ENQUEUE_REPLENISH;
3440 		} else
3441 			p->dl.dl_boosted = 0;
3442 		p->sched_class = &dl_sched_class;
3443 	} else if (rt_prio(prio)) {
3444 		if (dl_prio(oldprio))
3445 			p->dl.dl_boosted = 0;
3446 		if (oldprio < prio)
3447 			queue_flag |= ENQUEUE_HEAD;
3448 		p->sched_class = &rt_sched_class;
3449 	} else {
3450 		if (dl_prio(oldprio))
3451 			p->dl.dl_boosted = 0;
3452 		if (rt_prio(oldprio))
3453 			p->rt.timeout = 0;
3454 		p->sched_class = &fair_sched_class;
3455 	}
3456 
3457 	p->prio = prio;
3458 
3459 	if (running)
3460 		p->sched_class->set_curr_task(rq);
3461 	if (queued)
3462 		enqueue_task(rq, p, queue_flag);
3463 
3464 	check_class_changed(rq, p, prev_class, oldprio);
3465 out_unlock:
3466 	preempt_disable(); /* avoid rq from going away on us */
3467 	__task_rq_unlock(rq);
3468 
3469 	balance_callback(rq);
3470 	preempt_enable();
3471 }
3472 #endif
3473 
3474 void set_user_nice(struct task_struct *p, long nice)
3475 {
3476 	int old_prio, delta, queued;
3477 	unsigned long flags;
3478 	struct rq *rq;
3479 
3480 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3481 		return;
3482 	/*
3483 	 * We have to be careful, if called from sys_setpriority(),
3484 	 * the task might be in the middle of scheduling on another CPU.
3485 	 */
3486 	rq = task_rq_lock(p, &flags);
3487 	/*
3488 	 * The RT priorities are set via sched_setscheduler(), but we still
3489 	 * allow the 'normal' nice value to be set - but as expected
3490 	 * it wont have any effect on scheduling until the task is
3491 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3492 	 */
3493 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3494 		p->static_prio = NICE_TO_PRIO(nice);
3495 		goto out_unlock;
3496 	}
3497 	queued = task_on_rq_queued(p);
3498 	if (queued)
3499 		dequeue_task(rq, p, DEQUEUE_SAVE);
3500 
3501 	p->static_prio = NICE_TO_PRIO(nice);
3502 	set_load_weight(p);
3503 	old_prio = p->prio;
3504 	p->prio = effective_prio(p);
3505 	delta = p->prio - old_prio;
3506 
3507 	if (queued) {
3508 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3509 		/*
3510 		 * If the task increased its priority or is running and
3511 		 * lowered its priority, then reschedule its CPU:
3512 		 */
3513 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3514 			resched_curr(rq);
3515 	}
3516 out_unlock:
3517 	task_rq_unlock(rq, p, &flags);
3518 }
3519 EXPORT_SYMBOL(set_user_nice);
3520 
3521 /*
3522  * can_nice - check if a task can reduce its nice value
3523  * @p: task
3524  * @nice: nice value
3525  */
3526 int can_nice(const struct task_struct *p, const int nice)
3527 {
3528 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3529 	int nice_rlim = nice_to_rlimit(nice);
3530 
3531 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3532 		capable(CAP_SYS_NICE));
3533 }
3534 
3535 #ifdef __ARCH_WANT_SYS_NICE
3536 
3537 /*
3538  * sys_nice - change the priority of the current process.
3539  * @increment: priority increment
3540  *
3541  * sys_setpriority is a more generic, but much slower function that
3542  * does similar things.
3543  */
3544 SYSCALL_DEFINE1(nice, int, increment)
3545 {
3546 	long nice, retval;
3547 
3548 	/*
3549 	 * Setpriority might change our priority at the same moment.
3550 	 * We don't have to worry. Conceptually one call occurs first
3551 	 * and we have a single winner.
3552 	 */
3553 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3554 	nice = task_nice(current) + increment;
3555 
3556 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3557 	if (increment < 0 && !can_nice(current, nice))
3558 		return -EPERM;
3559 
3560 	retval = security_task_setnice(current, nice);
3561 	if (retval)
3562 		return retval;
3563 
3564 	set_user_nice(current, nice);
3565 	return 0;
3566 }
3567 
3568 #endif
3569 
3570 /**
3571  * task_prio - return the priority value of a given task.
3572  * @p: the task in question.
3573  *
3574  * Return: The priority value as seen by users in /proc.
3575  * RT tasks are offset by -200. Normal tasks are centered
3576  * around 0, value goes from -16 to +15.
3577  */
3578 int task_prio(const struct task_struct *p)
3579 {
3580 	return p->prio - MAX_RT_PRIO;
3581 }
3582 
3583 /**
3584  * idle_cpu - is a given cpu idle currently?
3585  * @cpu: the processor in question.
3586  *
3587  * Return: 1 if the CPU is currently idle. 0 otherwise.
3588  */
3589 int idle_cpu(int cpu)
3590 {
3591 	struct rq *rq = cpu_rq(cpu);
3592 
3593 	if (rq->curr != rq->idle)
3594 		return 0;
3595 
3596 	if (rq->nr_running)
3597 		return 0;
3598 
3599 #ifdef CONFIG_SMP
3600 	if (!llist_empty(&rq->wake_list))
3601 		return 0;
3602 #endif
3603 
3604 	return 1;
3605 }
3606 
3607 /**
3608  * idle_task - return the idle task for a given cpu.
3609  * @cpu: the processor in question.
3610  *
3611  * Return: The idle task for the cpu @cpu.
3612  */
3613 struct task_struct *idle_task(int cpu)
3614 {
3615 	return cpu_rq(cpu)->idle;
3616 }
3617 
3618 /**
3619  * find_process_by_pid - find a process with a matching PID value.
3620  * @pid: the pid in question.
3621  *
3622  * The task of @pid, if found. %NULL otherwise.
3623  */
3624 static struct task_struct *find_process_by_pid(pid_t pid)
3625 {
3626 	return pid ? find_task_by_vpid(pid) : current;
3627 }
3628 
3629 /*
3630  * This function initializes the sched_dl_entity of a newly becoming
3631  * SCHED_DEADLINE task.
3632  *
3633  * Only the static values are considered here, the actual runtime and the
3634  * absolute deadline will be properly calculated when the task is enqueued
3635  * for the first time with its new policy.
3636  */
3637 static void
3638 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3639 {
3640 	struct sched_dl_entity *dl_se = &p->dl;
3641 
3642 	dl_se->dl_runtime = attr->sched_runtime;
3643 	dl_se->dl_deadline = attr->sched_deadline;
3644 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3645 	dl_se->flags = attr->sched_flags;
3646 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3647 
3648 	/*
3649 	 * Changing the parameters of a task is 'tricky' and we're not doing
3650 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3651 	 *
3652 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3653 	 * point. This would include retaining the task_struct until that time
3654 	 * and change dl_overflow() to not immediately decrement the current
3655 	 * amount.
3656 	 *
3657 	 * Instead we retain the current runtime/deadline and let the new
3658 	 * parameters take effect after the current reservation period lapses.
3659 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3660 	 * before the current scheduling deadline.
3661 	 *
3662 	 * We can still have temporary overloads because we do not delay the
3663 	 * change in bandwidth until that time; so admission control is
3664 	 * not on the safe side. It does however guarantee tasks will never
3665 	 * consume more than promised.
3666 	 */
3667 }
3668 
3669 /*
3670  * sched_setparam() passes in -1 for its policy, to let the functions
3671  * it calls know not to change it.
3672  */
3673 #define SETPARAM_POLICY	-1
3674 
3675 static void __setscheduler_params(struct task_struct *p,
3676 		const struct sched_attr *attr)
3677 {
3678 	int policy = attr->sched_policy;
3679 
3680 	if (policy == SETPARAM_POLICY)
3681 		policy = p->policy;
3682 
3683 	p->policy = policy;
3684 
3685 	if (dl_policy(policy))
3686 		__setparam_dl(p, attr);
3687 	else if (fair_policy(policy))
3688 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3689 
3690 	/*
3691 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3692 	 * !rt_policy. Always setting this ensures that things like
3693 	 * getparam()/getattr() don't report silly values for !rt tasks.
3694 	 */
3695 	p->rt_priority = attr->sched_priority;
3696 	p->normal_prio = normal_prio(p);
3697 	set_load_weight(p);
3698 }
3699 
3700 /* Actually do priority change: must hold pi & rq lock. */
3701 static void __setscheduler(struct rq *rq, struct task_struct *p,
3702 			   const struct sched_attr *attr, bool keep_boost)
3703 {
3704 	__setscheduler_params(p, attr);
3705 
3706 	/*
3707 	 * Keep a potential priority boosting if called from
3708 	 * sched_setscheduler().
3709 	 */
3710 	if (keep_boost)
3711 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3712 	else
3713 		p->prio = normal_prio(p);
3714 
3715 	if (dl_prio(p->prio))
3716 		p->sched_class = &dl_sched_class;
3717 	else if (rt_prio(p->prio))
3718 		p->sched_class = &rt_sched_class;
3719 	else
3720 		p->sched_class = &fair_sched_class;
3721 }
3722 
3723 static void
3724 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3725 {
3726 	struct sched_dl_entity *dl_se = &p->dl;
3727 
3728 	attr->sched_priority = p->rt_priority;
3729 	attr->sched_runtime = dl_se->dl_runtime;
3730 	attr->sched_deadline = dl_se->dl_deadline;
3731 	attr->sched_period = dl_se->dl_period;
3732 	attr->sched_flags = dl_se->flags;
3733 }
3734 
3735 /*
3736  * This function validates the new parameters of a -deadline task.
3737  * We ask for the deadline not being zero, and greater or equal
3738  * than the runtime, as well as the period of being zero or
3739  * greater than deadline. Furthermore, we have to be sure that
3740  * user parameters are above the internal resolution of 1us (we
3741  * check sched_runtime only since it is always the smaller one) and
3742  * below 2^63 ns (we have to check both sched_deadline and
3743  * sched_period, as the latter can be zero).
3744  */
3745 static bool
3746 __checkparam_dl(const struct sched_attr *attr)
3747 {
3748 	/* deadline != 0 */
3749 	if (attr->sched_deadline == 0)
3750 		return false;
3751 
3752 	/*
3753 	 * Since we truncate DL_SCALE bits, make sure we're at least
3754 	 * that big.
3755 	 */
3756 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3757 		return false;
3758 
3759 	/*
3760 	 * Since we use the MSB for wrap-around and sign issues, make
3761 	 * sure it's not set (mind that period can be equal to zero).
3762 	 */
3763 	if (attr->sched_deadline & (1ULL << 63) ||
3764 	    attr->sched_period & (1ULL << 63))
3765 		return false;
3766 
3767 	/* runtime <= deadline <= period (if period != 0) */
3768 	if ((attr->sched_period != 0 &&
3769 	     attr->sched_period < attr->sched_deadline) ||
3770 	    attr->sched_deadline < attr->sched_runtime)
3771 		return false;
3772 
3773 	return true;
3774 }
3775 
3776 /*
3777  * check the target process has a UID that matches the current process's
3778  */
3779 static bool check_same_owner(struct task_struct *p)
3780 {
3781 	const struct cred *cred = current_cred(), *pcred;
3782 	bool match;
3783 
3784 	rcu_read_lock();
3785 	pcred = __task_cred(p);
3786 	match = (uid_eq(cred->euid, pcred->euid) ||
3787 		 uid_eq(cred->euid, pcred->uid));
3788 	rcu_read_unlock();
3789 	return match;
3790 }
3791 
3792 static bool dl_param_changed(struct task_struct *p,
3793 		const struct sched_attr *attr)
3794 {
3795 	struct sched_dl_entity *dl_se = &p->dl;
3796 
3797 	if (dl_se->dl_runtime != attr->sched_runtime ||
3798 		dl_se->dl_deadline != attr->sched_deadline ||
3799 		dl_se->dl_period != attr->sched_period ||
3800 		dl_se->flags != attr->sched_flags)
3801 		return true;
3802 
3803 	return false;
3804 }
3805 
3806 static int __sched_setscheduler(struct task_struct *p,
3807 				const struct sched_attr *attr,
3808 				bool user, bool pi)
3809 {
3810 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3811 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3812 	int retval, oldprio, oldpolicy = -1, queued, running;
3813 	int new_effective_prio, policy = attr->sched_policy;
3814 	unsigned long flags;
3815 	const struct sched_class *prev_class;
3816 	struct rq *rq;
3817 	int reset_on_fork;
3818 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3819 
3820 	/* may grab non-irq protected spin_locks */
3821 	BUG_ON(in_interrupt());
3822 recheck:
3823 	/* double check policy once rq lock held */
3824 	if (policy < 0) {
3825 		reset_on_fork = p->sched_reset_on_fork;
3826 		policy = oldpolicy = p->policy;
3827 	} else {
3828 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3829 
3830 		if (!valid_policy(policy))
3831 			return -EINVAL;
3832 	}
3833 
3834 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3835 		return -EINVAL;
3836 
3837 	/*
3838 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3839 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3840 	 * SCHED_BATCH and SCHED_IDLE is 0.
3841 	 */
3842 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3843 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3844 		return -EINVAL;
3845 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3846 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3847 		return -EINVAL;
3848 
3849 	/*
3850 	 * Allow unprivileged RT tasks to decrease priority:
3851 	 */
3852 	if (user && !capable(CAP_SYS_NICE)) {
3853 		if (fair_policy(policy)) {
3854 			if (attr->sched_nice < task_nice(p) &&
3855 			    !can_nice(p, attr->sched_nice))
3856 				return -EPERM;
3857 		}
3858 
3859 		if (rt_policy(policy)) {
3860 			unsigned long rlim_rtprio =
3861 					task_rlimit(p, RLIMIT_RTPRIO);
3862 
3863 			/* can't set/change the rt policy */
3864 			if (policy != p->policy && !rlim_rtprio)
3865 				return -EPERM;
3866 
3867 			/* can't increase priority */
3868 			if (attr->sched_priority > p->rt_priority &&
3869 			    attr->sched_priority > rlim_rtprio)
3870 				return -EPERM;
3871 		}
3872 
3873 		 /*
3874 		  * Can't set/change SCHED_DEADLINE policy at all for now
3875 		  * (safest behavior); in the future we would like to allow
3876 		  * unprivileged DL tasks to increase their relative deadline
3877 		  * or reduce their runtime (both ways reducing utilization)
3878 		  */
3879 		if (dl_policy(policy))
3880 			return -EPERM;
3881 
3882 		/*
3883 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3884 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3885 		 */
3886 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3887 			if (!can_nice(p, task_nice(p)))
3888 				return -EPERM;
3889 		}
3890 
3891 		/* can't change other user's priorities */
3892 		if (!check_same_owner(p))
3893 			return -EPERM;
3894 
3895 		/* Normal users shall not reset the sched_reset_on_fork flag */
3896 		if (p->sched_reset_on_fork && !reset_on_fork)
3897 			return -EPERM;
3898 	}
3899 
3900 	if (user) {
3901 		retval = security_task_setscheduler(p);
3902 		if (retval)
3903 			return retval;
3904 	}
3905 
3906 	/*
3907 	 * make sure no PI-waiters arrive (or leave) while we are
3908 	 * changing the priority of the task:
3909 	 *
3910 	 * To be able to change p->policy safely, the appropriate
3911 	 * runqueue lock must be held.
3912 	 */
3913 	rq = task_rq_lock(p, &flags);
3914 
3915 	/*
3916 	 * Changing the policy of the stop threads its a very bad idea
3917 	 */
3918 	if (p == rq->stop) {
3919 		task_rq_unlock(rq, p, &flags);
3920 		return -EINVAL;
3921 	}
3922 
3923 	/*
3924 	 * If not changing anything there's no need to proceed further,
3925 	 * but store a possible modification of reset_on_fork.
3926 	 */
3927 	if (unlikely(policy == p->policy)) {
3928 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3929 			goto change;
3930 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3931 			goto change;
3932 		if (dl_policy(policy) && dl_param_changed(p, attr))
3933 			goto change;
3934 
3935 		p->sched_reset_on_fork = reset_on_fork;
3936 		task_rq_unlock(rq, p, &flags);
3937 		return 0;
3938 	}
3939 change:
3940 
3941 	if (user) {
3942 #ifdef CONFIG_RT_GROUP_SCHED
3943 		/*
3944 		 * Do not allow realtime tasks into groups that have no runtime
3945 		 * assigned.
3946 		 */
3947 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3948 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3949 				!task_group_is_autogroup(task_group(p))) {
3950 			task_rq_unlock(rq, p, &flags);
3951 			return -EPERM;
3952 		}
3953 #endif
3954 #ifdef CONFIG_SMP
3955 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3956 			cpumask_t *span = rq->rd->span;
3957 
3958 			/*
3959 			 * Don't allow tasks with an affinity mask smaller than
3960 			 * the entire root_domain to become SCHED_DEADLINE. We
3961 			 * will also fail if there's no bandwidth available.
3962 			 */
3963 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3964 			    rq->rd->dl_bw.bw == 0) {
3965 				task_rq_unlock(rq, p, &flags);
3966 				return -EPERM;
3967 			}
3968 		}
3969 #endif
3970 	}
3971 
3972 	/* recheck policy now with rq lock held */
3973 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3974 		policy = oldpolicy = -1;
3975 		task_rq_unlock(rq, p, &flags);
3976 		goto recheck;
3977 	}
3978 
3979 	/*
3980 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3981 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3982 	 * is available.
3983 	 */
3984 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3985 		task_rq_unlock(rq, p, &flags);
3986 		return -EBUSY;
3987 	}
3988 
3989 	p->sched_reset_on_fork = reset_on_fork;
3990 	oldprio = p->prio;
3991 
3992 	if (pi) {
3993 		/*
3994 		 * Take priority boosted tasks into account. If the new
3995 		 * effective priority is unchanged, we just store the new
3996 		 * normal parameters and do not touch the scheduler class and
3997 		 * the runqueue. This will be done when the task deboost
3998 		 * itself.
3999 		 */
4000 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4001 		if (new_effective_prio == oldprio)
4002 			queue_flags &= ~DEQUEUE_MOVE;
4003 	}
4004 
4005 	queued = task_on_rq_queued(p);
4006 	running = task_current(rq, p);
4007 	if (queued)
4008 		dequeue_task(rq, p, queue_flags);
4009 	if (running)
4010 		put_prev_task(rq, p);
4011 
4012 	prev_class = p->sched_class;
4013 	__setscheduler(rq, p, attr, pi);
4014 
4015 	if (running)
4016 		p->sched_class->set_curr_task(rq);
4017 	if (queued) {
4018 		/*
4019 		 * We enqueue to tail when the priority of a task is
4020 		 * increased (user space view).
4021 		 */
4022 		if (oldprio < p->prio)
4023 			queue_flags |= ENQUEUE_HEAD;
4024 
4025 		enqueue_task(rq, p, queue_flags);
4026 	}
4027 
4028 	check_class_changed(rq, p, prev_class, oldprio);
4029 	preempt_disable(); /* avoid rq from going away on us */
4030 	task_rq_unlock(rq, p, &flags);
4031 
4032 	if (pi)
4033 		rt_mutex_adjust_pi(p);
4034 
4035 	/*
4036 	 * Run balance callbacks after we've adjusted the PI chain.
4037 	 */
4038 	balance_callback(rq);
4039 	preempt_enable();
4040 
4041 	return 0;
4042 }
4043 
4044 static int _sched_setscheduler(struct task_struct *p, int policy,
4045 			       const struct sched_param *param, bool check)
4046 {
4047 	struct sched_attr attr = {
4048 		.sched_policy   = policy,
4049 		.sched_priority = param->sched_priority,
4050 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4051 	};
4052 
4053 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4054 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4055 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4056 		policy &= ~SCHED_RESET_ON_FORK;
4057 		attr.sched_policy = policy;
4058 	}
4059 
4060 	return __sched_setscheduler(p, &attr, check, true);
4061 }
4062 /**
4063  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4064  * @p: the task in question.
4065  * @policy: new policy.
4066  * @param: structure containing the new RT priority.
4067  *
4068  * Return: 0 on success. An error code otherwise.
4069  *
4070  * NOTE that the task may be already dead.
4071  */
4072 int sched_setscheduler(struct task_struct *p, int policy,
4073 		       const struct sched_param *param)
4074 {
4075 	return _sched_setscheduler(p, policy, param, true);
4076 }
4077 EXPORT_SYMBOL_GPL(sched_setscheduler);
4078 
4079 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4080 {
4081 	return __sched_setscheduler(p, attr, true, true);
4082 }
4083 EXPORT_SYMBOL_GPL(sched_setattr);
4084 
4085 /**
4086  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4087  * @p: the task in question.
4088  * @policy: new policy.
4089  * @param: structure containing the new RT priority.
4090  *
4091  * Just like sched_setscheduler, only don't bother checking if the
4092  * current context has permission.  For example, this is needed in
4093  * stop_machine(): we create temporary high priority worker threads,
4094  * but our caller might not have that capability.
4095  *
4096  * Return: 0 on success. An error code otherwise.
4097  */
4098 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4099 			       const struct sched_param *param)
4100 {
4101 	return _sched_setscheduler(p, policy, param, false);
4102 }
4103 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4104 
4105 static int
4106 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4107 {
4108 	struct sched_param lparam;
4109 	struct task_struct *p;
4110 	int retval;
4111 
4112 	if (!param || pid < 0)
4113 		return -EINVAL;
4114 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4115 		return -EFAULT;
4116 
4117 	rcu_read_lock();
4118 	retval = -ESRCH;
4119 	p = find_process_by_pid(pid);
4120 	if (p != NULL)
4121 		retval = sched_setscheduler(p, policy, &lparam);
4122 	rcu_read_unlock();
4123 
4124 	return retval;
4125 }
4126 
4127 /*
4128  * Mimics kernel/events/core.c perf_copy_attr().
4129  */
4130 static int sched_copy_attr(struct sched_attr __user *uattr,
4131 			   struct sched_attr *attr)
4132 {
4133 	u32 size;
4134 	int ret;
4135 
4136 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4137 		return -EFAULT;
4138 
4139 	/*
4140 	 * zero the full structure, so that a short copy will be nice.
4141 	 */
4142 	memset(attr, 0, sizeof(*attr));
4143 
4144 	ret = get_user(size, &uattr->size);
4145 	if (ret)
4146 		return ret;
4147 
4148 	if (size > PAGE_SIZE)	/* silly large */
4149 		goto err_size;
4150 
4151 	if (!size)		/* abi compat */
4152 		size = SCHED_ATTR_SIZE_VER0;
4153 
4154 	if (size < SCHED_ATTR_SIZE_VER0)
4155 		goto err_size;
4156 
4157 	/*
4158 	 * If we're handed a bigger struct than we know of,
4159 	 * ensure all the unknown bits are 0 - i.e. new
4160 	 * user-space does not rely on any kernel feature
4161 	 * extensions we dont know about yet.
4162 	 */
4163 	if (size > sizeof(*attr)) {
4164 		unsigned char __user *addr;
4165 		unsigned char __user *end;
4166 		unsigned char val;
4167 
4168 		addr = (void __user *)uattr + sizeof(*attr);
4169 		end  = (void __user *)uattr + size;
4170 
4171 		for (; addr < end; addr++) {
4172 			ret = get_user(val, addr);
4173 			if (ret)
4174 				return ret;
4175 			if (val)
4176 				goto err_size;
4177 		}
4178 		size = sizeof(*attr);
4179 	}
4180 
4181 	ret = copy_from_user(attr, uattr, size);
4182 	if (ret)
4183 		return -EFAULT;
4184 
4185 	/*
4186 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4187 	 * to be strict and return an error on out-of-bounds values?
4188 	 */
4189 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4190 
4191 	return 0;
4192 
4193 err_size:
4194 	put_user(sizeof(*attr), &uattr->size);
4195 	return -E2BIG;
4196 }
4197 
4198 /**
4199  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4200  * @pid: the pid in question.
4201  * @policy: new policy.
4202  * @param: structure containing the new RT priority.
4203  *
4204  * Return: 0 on success. An error code otherwise.
4205  */
4206 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4207 		struct sched_param __user *, param)
4208 {
4209 	/* negative values for policy are not valid */
4210 	if (policy < 0)
4211 		return -EINVAL;
4212 
4213 	return do_sched_setscheduler(pid, policy, param);
4214 }
4215 
4216 /**
4217  * sys_sched_setparam - set/change the RT priority of a thread
4218  * @pid: the pid in question.
4219  * @param: structure containing the new RT priority.
4220  *
4221  * Return: 0 on success. An error code otherwise.
4222  */
4223 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4224 {
4225 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4226 }
4227 
4228 /**
4229  * sys_sched_setattr - same as above, but with extended sched_attr
4230  * @pid: the pid in question.
4231  * @uattr: structure containing the extended parameters.
4232  * @flags: for future extension.
4233  */
4234 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4235 			       unsigned int, flags)
4236 {
4237 	struct sched_attr attr;
4238 	struct task_struct *p;
4239 	int retval;
4240 
4241 	if (!uattr || pid < 0 || flags)
4242 		return -EINVAL;
4243 
4244 	retval = sched_copy_attr(uattr, &attr);
4245 	if (retval)
4246 		return retval;
4247 
4248 	if ((int)attr.sched_policy < 0)
4249 		return -EINVAL;
4250 
4251 	rcu_read_lock();
4252 	retval = -ESRCH;
4253 	p = find_process_by_pid(pid);
4254 	if (p != NULL)
4255 		retval = sched_setattr(p, &attr);
4256 	rcu_read_unlock();
4257 
4258 	return retval;
4259 }
4260 
4261 /**
4262  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4263  * @pid: the pid in question.
4264  *
4265  * Return: On success, the policy of the thread. Otherwise, a negative error
4266  * code.
4267  */
4268 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4269 {
4270 	struct task_struct *p;
4271 	int retval;
4272 
4273 	if (pid < 0)
4274 		return -EINVAL;
4275 
4276 	retval = -ESRCH;
4277 	rcu_read_lock();
4278 	p = find_process_by_pid(pid);
4279 	if (p) {
4280 		retval = security_task_getscheduler(p);
4281 		if (!retval)
4282 			retval = p->policy
4283 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4284 	}
4285 	rcu_read_unlock();
4286 	return retval;
4287 }
4288 
4289 /**
4290  * sys_sched_getparam - get the RT priority of a thread
4291  * @pid: the pid in question.
4292  * @param: structure containing the RT priority.
4293  *
4294  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4295  * code.
4296  */
4297 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4298 {
4299 	struct sched_param lp = { .sched_priority = 0 };
4300 	struct task_struct *p;
4301 	int retval;
4302 
4303 	if (!param || pid < 0)
4304 		return -EINVAL;
4305 
4306 	rcu_read_lock();
4307 	p = find_process_by_pid(pid);
4308 	retval = -ESRCH;
4309 	if (!p)
4310 		goto out_unlock;
4311 
4312 	retval = security_task_getscheduler(p);
4313 	if (retval)
4314 		goto out_unlock;
4315 
4316 	if (task_has_rt_policy(p))
4317 		lp.sched_priority = p->rt_priority;
4318 	rcu_read_unlock();
4319 
4320 	/*
4321 	 * This one might sleep, we cannot do it with a spinlock held ...
4322 	 */
4323 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4324 
4325 	return retval;
4326 
4327 out_unlock:
4328 	rcu_read_unlock();
4329 	return retval;
4330 }
4331 
4332 static int sched_read_attr(struct sched_attr __user *uattr,
4333 			   struct sched_attr *attr,
4334 			   unsigned int usize)
4335 {
4336 	int ret;
4337 
4338 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4339 		return -EFAULT;
4340 
4341 	/*
4342 	 * If we're handed a smaller struct than we know of,
4343 	 * ensure all the unknown bits are 0 - i.e. old
4344 	 * user-space does not get uncomplete information.
4345 	 */
4346 	if (usize < sizeof(*attr)) {
4347 		unsigned char *addr;
4348 		unsigned char *end;
4349 
4350 		addr = (void *)attr + usize;
4351 		end  = (void *)attr + sizeof(*attr);
4352 
4353 		for (; addr < end; addr++) {
4354 			if (*addr)
4355 				return -EFBIG;
4356 		}
4357 
4358 		attr->size = usize;
4359 	}
4360 
4361 	ret = copy_to_user(uattr, attr, attr->size);
4362 	if (ret)
4363 		return -EFAULT;
4364 
4365 	return 0;
4366 }
4367 
4368 /**
4369  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4370  * @pid: the pid in question.
4371  * @uattr: structure containing the extended parameters.
4372  * @size: sizeof(attr) for fwd/bwd comp.
4373  * @flags: for future extension.
4374  */
4375 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4376 		unsigned int, size, unsigned int, flags)
4377 {
4378 	struct sched_attr attr = {
4379 		.size = sizeof(struct sched_attr),
4380 	};
4381 	struct task_struct *p;
4382 	int retval;
4383 
4384 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4385 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4386 		return -EINVAL;
4387 
4388 	rcu_read_lock();
4389 	p = find_process_by_pid(pid);
4390 	retval = -ESRCH;
4391 	if (!p)
4392 		goto out_unlock;
4393 
4394 	retval = security_task_getscheduler(p);
4395 	if (retval)
4396 		goto out_unlock;
4397 
4398 	attr.sched_policy = p->policy;
4399 	if (p->sched_reset_on_fork)
4400 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4401 	if (task_has_dl_policy(p))
4402 		__getparam_dl(p, &attr);
4403 	else if (task_has_rt_policy(p))
4404 		attr.sched_priority = p->rt_priority;
4405 	else
4406 		attr.sched_nice = task_nice(p);
4407 
4408 	rcu_read_unlock();
4409 
4410 	retval = sched_read_attr(uattr, &attr, size);
4411 	return retval;
4412 
4413 out_unlock:
4414 	rcu_read_unlock();
4415 	return retval;
4416 }
4417 
4418 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4419 {
4420 	cpumask_var_t cpus_allowed, new_mask;
4421 	struct task_struct *p;
4422 	int retval;
4423 
4424 	rcu_read_lock();
4425 
4426 	p = find_process_by_pid(pid);
4427 	if (!p) {
4428 		rcu_read_unlock();
4429 		return -ESRCH;
4430 	}
4431 
4432 	/* Prevent p going away */
4433 	get_task_struct(p);
4434 	rcu_read_unlock();
4435 
4436 	if (p->flags & PF_NO_SETAFFINITY) {
4437 		retval = -EINVAL;
4438 		goto out_put_task;
4439 	}
4440 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4441 		retval = -ENOMEM;
4442 		goto out_put_task;
4443 	}
4444 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4445 		retval = -ENOMEM;
4446 		goto out_free_cpus_allowed;
4447 	}
4448 	retval = -EPERM;
4449 	if (!check_same_owner(p)) {
4450 		rcu_read_lock();
4451 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4452 			rcu_read_unlock();
4453 			goto out_free_new_mask;
4454 		}
4455 		rcu_read_unlock();
4456 	}
4457 
4458 	retval = security_task_setscheduler(p);
4459 	if (retval)
4460 		goto out_free_new_mask;
4461 
4462 
4463 	cpuset_cpus_allowed(p, cpus_allowed);
4464 	cpumask_and(new_mask, in_mask, cpus_allowed);
4465 
4466 	/*
4467 	 * Since bandwidth control happens on root_domain basis,
4468 	 * if admission test is enabled, we only admit -deadline
4469 	 * tasks allowed to run on all the CPUs in the task's
4470 	 * root_domain.
4471 	 */
4472 #ifdef CONFIG_SMP
4473 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4474 		rcu_read_lock();
4475 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4476 			retval = -EBUSY;
4477 			rcu_read_unlock();
4478 			goto out_free_new_mask;
4479 		}
4480 		rcu_read_unlock();
4481 	}
4482 #endif
4483 again:
4484 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4485 
4486 	if (!retval) {
4487 		cpuset_cpus_allowed(p, cpus_allowed);
4488 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4489 			/*
4490 			 * We must have raced with a concurrent cpuset
4491 			 * update. Just reset the cpus_allowed to the
4492 			 * cpuset's cpus_allowed
4493 			 */
4494 			cpumask_copy(new_mask, cpus_allowed);
4495 			goto again;
4496 		}
4497 	}
4498 out_free_new_mask:
4499 	free_cpumask_var(new_mask);
4500 out_free_cpus_allowed:
4501 	free_cpumask_var(cpus_allowed);
4502 out_put_task:
4503 	put_task_struct(p);
4504 	return retval;
4505 }
4506 
4507 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4508 			     struct cpumask *new_mask)
4509 {
4510 	if (len < cpumask_size())
4511 		cpumask_clear(new_mask);
4512 	else if (len > cpumask_size())
4513 		len = cpumask_size();
4514 
4515 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4516 }
4517 
4518 /**
4519  * sys_sched_setaffinity - set the cpu affinity of a process
4520  * @pid: pid of the process
4521  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4522  * @user_mask_ptr: user-space pointer to the new cpu mask
4523  *
4524  * Return: 0 on success. An error code otherwise.
4525  */
4526 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4527 		unsigned long __user *, user_mask_ptr)
4528 {
4529 	cpumask_var_t new_mask;
4530 	int retval;
4531 
4532 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4533 		return -ENOMEM;
4534 
4535 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4536 	if (retval == 0)
4537 		retval = sched_setaffinity(pid, new_mask);
4538 	free_cpumask_var(new_mask);
4539 	return retval;
4540 }
4541 
4542 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4543 {
4544 	struct task_struct *p;
4545 	unsigned long flags;
4546 	int retval;
4547 
4548 	rcu_read_lock();
4549 
4550 	retval = -ESRCH;
4551 	p = find_process_by_pid(pid);
4552 	if (!p)
4553 		goto out_unlock;
4554 
4555 	retval = security_task_getscheduler(p);
4556 	if (retval)
4557 		goto out_unlock;
4558 
4559 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4560 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4561 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4562 
4563 out_unlock:
4564 	rcu_read_unlock();
4565 
4566 	return retval;
4567 }
4568 
4569 /**
4570  * sys_sched_getaffinity - get the cpu affinity of a process
4571  * @pid: pid of the process
4572  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4573  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4574  *
4575  * Return: 0 on success. An error code otherwise.
4576  */
4577 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4578 		unsigned long __user *, user_mask_ptr)
4579 {
4580 	int ret;
4581 	cpumask_var_t mask;
4582 
4583 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4584 		return -EINVAL;
4585 	if (len & (sizeof(unsigned long)-1))
4586 		return -EINVAL;
4587 
4588 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4589 		return -ENOMEM;
4590 
4591 	ret = sched_getaffinity(pid, mask);
4592 	if (ret == 0) {
4593 		size_t retlen = min_t(size_t, len, cpumask_size());
4594 
4595 		if (copy_to_user(user_mask_ptr, mask, retlen))
4596 			ret = -EFAULT;
4597 		else
4598 			ret = retlen;
4599 	}
4600 	free_cpumask_var(mask);
4601 
4602 	return ret;
4603 }
4604 
4605 /**
4606  * sys_sched_yield - yield the current processor to other threads.
4607  *
4608  * This function yields the current CPU to other tasks. If there are no
4609  * other threads running on this CPU then this function will return.
4610  *
4611  * Return: 0.
4612  */
4613 SYSCALL_DEFINE0(sched_yield)
4614 {
4615 	struct rq *rq = this_rq_lock();
4616 
4617 	schedstat_inc(rq, yld_count);
4618 	current->sched_class->yield_task(rq);
4619 
4620 	/*
4621 	 * Since we are going to call schedule() anyway, there's
4622 	 * no need to preempt or enable interrupts:
4623 	 */
4624 	__release(rq->lock);
4625 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4626 	do_raw_spin_unlock(&rq->lock);
4627 	sched_preempt_enable_no_resched();
4628 
4629 	schedule();
4630 
4631 	return 0;
4632 }
4633 
4634 int __sched _cond_resched(void)
4635 {
4636 	if (should_resched(0)) {
4637 		preempt_schedule_common();
4638 		return 1;
4639 	}
4640 	return 0;
4641 }
4642 EXPORT_SYMBOL(_cond_resched);
4643 
4644 /*
4645  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4646  * call schedule, and on return reacquire the lock.
4647  *
4648  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4649  * operations here to prevent schedule() from being called twice (once via
4650  * spin_unlock(), once by hand).
4651  */
4652 int __cond_resched_lock(spinlock_t *lock)
4653 {
4654 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4655 	int ret = 0;
4656 
4657 	lockdep_assert_held(lock);
4658 
4659 	if (spin_needbreak(lock) || resched) {
4660 		spin_unlock(lock);
4661 		if (resched)
4662 			preempt_schedule_common();
4663 		else
4664 			cpu_relax();
4665 		ret = 1;
4666 		spin_lock(lock);
4667 	}
4668 	return ret;
4669 }
4670 EXPORT_SYMBOL(__cond_resched_lock);
4671 
4672 int __sched __cond_resched_softirq(void)
4673 {
4674 	BUG_ON(!in_softirq());
4675 
4676 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4677 		local_bh_enable();
4678 		preempt_schedule_common();
4679 		local_bh_disable();
4680 		return 1;
4681 	}
4682 	return 0;
4683 }
4684 EXPORT_SYMBOL(__cond_resched_softirq);
4685 
4686 /**
4687  * yield - yield the current processor to other threads.
4688  *
4689  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4690  *
4691  * The scheduler is at all times free to pick the calling task as the most
4692  * eligible task to run, if removing the yield() call from your code breaks
4693  * it, its already broken.
4694  *
4695  * Typical broken usage is:
4696  *
4697  * while (!event)
4698  * 	yield();
4699  *
4700  * where one assumes that yield() will let 'the other' process run that will
4701  * make event true. If the current task is a SCHED_FIFO task that will never
4702  * happen. Never use yield() as a progress guarantee!!
4703  *
4704  * If you want to use yield() to wait for something, use wait_event().
4705  * If you want to use yield() to be 'nice' for others, use cond_resched().
4706  * If you still want to use yield(), do not!
4707  */
4708 void __sched yield(void)
4709 {
4710 	set_current_state(TASK_RUNNING);
4711 	sys_sched_yield();
4712 }
4713 EXPORT_SYMBOL(yield);
4714 
4715 /**
4716  * yield_to - yield the current processor to another thread in
4717  * your thread group, or accelerate that thread toward the
4718  * processor it's on.
4719  * @p: target task
4720  * @preempt: whether task preemption is allowed or not
4721  *
4722  * It's the caller's job to ensure that the target task struct
4723  * can't go away on us before we can do any checks.
4724  *
4725  * Return:
4726  *	true (>0) if we indeed boosted the target task.
4727  *	false (0) if we failed to boost the target.
4728  *	-ESRCH if there's no task to yield to.
4729  */
4730 int __sched yield_to(struct task_struct *p, bool preempt)
4731 {
4732 	struct task_struct *curr = current;
4733 	struct rq *rq, *p_rq;
4734 	unsigned long flags;
4735 	int yielded = 0;
4736 
4737 	local_irq_save(flags);
4738 	rq = this_rq();
4739 
4740 again:
4741 	p_rq = task_rq(p);
4742 	/*
4743 	 * If we're the only runnable task on the rq and target rq also
4744 	 * has only one task, there's absolutely no point in yielding.
4745 	 */
4746 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4747 		yielded = -ESRCH;
4748 		goto out_irq;
4749 	}
4750 
4751 	double_rq_lock(rq, p_rq);
4752 	if (task_rq(p) != p_rq) {
4753 		double_rq_unlock(rq, p_rq);
4754 		goto again;
4755 	}
4756 
4757 	if (!curr->sched_class->yield_to_task)
4758 		goto out_unlock;
4759 
4760 	if (curr->sched_class != p->sched_class)
4761 		goto out_unlock;
4762 
4763 	if (task_running(p_rq, p) || p->state)
4764 		goto out_unlock;
4765 
4766 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4767 	if (yielded) {
4768 		schedstat_inc(rq, yld_count);
4769 		/*
4770 		 * Make p's CPU reschedule; pick_next_entity takes care of
4771 		 * fairness.
4772 		 */
4773 		if (preempt && rq != p_rq)
4774 			resched_curr(p_rq);
4775 	}
4776 
4777 out_unlock:
4778 	double_rq_unlock(rq, p_rq);
4779 out_irq:
4780 	local_irq_restore(flags);
4781 
4782 	if (yielded > 0)
4783 		schedule();
4784 
4785 	return yielded;
4786 }
4787 EXPORT_SYMBOL_GPL(yield_to);
4788 
4789 /*
4790  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4791  * that process accounting knows that this is a task in IO wait state.
4792  */
4793 long __sched io_schedule_timeout(long timeout)
4794 {
4795 	int old_iowait = current->in_iowait;
4796 	struct rq *rq;
4797 	long ret;
4798 
4799 	current->in_iowait = 1;
4800 	blk_schedule_flush_plug(current);
4801 
4802 	delayacct_blkio_start();
4803 	rq = raw_rq();
4804 	atomic_inc(&rq->nr_iowait);
4805 	ret = schedule_timeout(timeout);
4806 	current->in_iowait = old_iowait;
4807 	atomic_dec(&rq->nr_iowait);
4808 	delayacct_blkio_end();
4809 
4810 	return ret;
4811 }
4812 EXPORT_SYMBOL(io_schedule_timeout);
4813 
4814 /**
4815  * sys_sched_get_priority_max - return maximum RT priority.
4816  * @policy: scheduling class.
4817  *
4818  * Return: On success, this syscall returns the maximum
4819  * rt_priority that can be used by a given scheduling class.
4820  * On failure, a negative error code is returned.
4821  */
4822 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4823 {
4824 	int ret = -EINVAL;
4825 
4826 	switch (policy) {
4827 	case SCHED_FIFO:
4828 	case SCHED_RR:
4829 		ret = MAX_USER_RT_PRIO-1;
4830 		break;
4831 	case SCHED_DEADLINE:
4832 	case SCHED_NORMAL:
4833 	case SCHED_BATCH:
4834 	case SCHED_IDLE:
4835 		ret = 0;
4836 		break;
4837 	}
4838 	return ret;
4839 }
4840 
4841 /**
4842  * sys_sched_get_priority_min - return minimum RT priority.
4843  * @policy: scheduling class.
4844  *
4845  * Return: On success, this syscall returns the minimum
4846  * rt_priority that can be used by a given scheduling class.
4847  * On failure, a negative error code is returned.
4848  */
4849 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4850 {
4851 	int ret = -EINVAL;
4852 
4853 	switch (policy) {
4854 	case SCHED_FIFO:
4855 	case SCHED_RR:
4856 		ret = 1;
4857 		break;
4858 	case SCHED_DEADLINE:
4859 	case SCHED_NORMAL:
4860 	case SCHED_BATCH:
4861 	case SCHED_IDLE:
4862 		ret = 0;
4863 	}
4864 	return ret;
4865 }
4866 
4867 /**
4868  * sys_sched_rr_get_interval - return the default timeslice of a process.
4869  * @pid: pid of the process.
4870  * @interval: userspace pointer to the timeslice value.
4871  *
4872  * this syscall writes the default timeslice value of a given process
4873  * into the user-space timespec buffer. A value of '0' means infinity.
4874  *
4875  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4876  * an error code.
4877  */
4878 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4879 		struct timespec __user *, interval)
4880 {
4881 	struct task_struct *p;
4882 	unsigned int time_slice;
4883 	unsigned long flags;
4884 	struct rq *rq;
4885 	int retval;
4886 	struct timespec t;
4887 
4888 	if (pid < 0)
4889 		return -EINVAL;
4890 
4891 	retval = -ESRCH;
4892 	rcu_read_lock();
4893 	p = find_process_by_pid(pid);
4894 	if (!p)
4895 		goto out_unlock;
4896 
4897 	retval = security_task_getscheduler(p);
4898 	if (retval)
4899 		goto out_unlock;
4900 
4901 	rq = task_rq_lock(p, &flags);
4902 	time_slice = 0;
4903 	if (p->sched_class->get_rr_interval)
4904 		time_slice = p->sched_class->get_rr_interval(rq, p);
4905 	task_rq_unlock(rq, p, &flags);
4906 
4907 	rcu_read_unlock();
4908 	jiffies_to_timespec(time_slice, &t);
4909 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4910 	return retval;
4911 
4912 out_unlock:
4913 	rcu_read_unlock();
4914 	return retval;
4915 }
4916 
4917 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4918 
4919 void sched_show_task(struct task_struct *p)
4920 {
4921 	unsigned long free = 0;
4922 	int ppid;
4923 	unsigned long state = p->state;
4924 
4925 	if (state)
4926 		state = __ffs(state) + 1;
4927 	printk(KERN_INFO "%-15.15s %c", p->comm,
4928 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4929 #if BITS_PER_LONG == 32
4930 	if (state == TASK_RUNNING)
4931 		printk(KERN_CONT " running  ");
4932 	else
4933 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4934 #else
4935 	if (state == TASK_RUNNING)
4936 		printk(KERN_CONT "  running task    ");
4937 	else
4938 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4939 #endif
4940 #ifdef CONFIG_DEBUG_STACK_USAGE
4941 	free = stack_not_used(p);
4942 #endif
4943 	ppid = 0;
4944 	rcu_read_lock();
4945 	if (pid_alive(p))
4946 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4947 	rcu_read_unlock();
4948 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4949 		task_pid_nr(p), ppid,
4950 		(unsigned long)task_thread_info(p)->flags);
4951 
4952 	print_worker_info(KERN_INFO, p);
4953 	show_stack(p, NULL);
4954 }
4955 
4956 void show_state_filter(unsigned long state_filter)
4957 {
4958 	struct task_struct *g, *p;
4959 
4960 #if BITS_PER_LONG == 32
4961 	printk(KERN_INFO
4962 		"  task                PC stack   pid father\n");
4963 #else
4964 	printk(KERN_INFO
4965 		"  task                        PC stack   pid father\n");
4966 #endif
4967 	rcu_read_lock();
4968 	for_each_process_thread(g, p) {
4969 		/*
4970 		 * reset the NMI-timeout, listing all files on a slow
4971 		 * console might take a lot of time:
4972 		 */
4973 		touch_nmi_watchdog();
4974 		if (!state_filter || (p->state & state_filter))
4975 			sched_show_task(p);
4976 	}
4977 
4978 	touch_all_softlockup_watchdogs();
4979 
4980 #ifdef CONFIG_SCHED_DEBUG
4981 	sysrq_sched_debug_show();
4982 #endif
4983 	rcu_read_unlock();
4984 	/*
4985 	 * Only show locks if all tasks are dumped:
4986 	 */
4987 	if (!state_filter)
4988 		debug_show_all_locks();
4989 }
4990 
4991 void init_idle_bootup_task(struct task_struct *idle)
4992 {
4993 	idle->sched_class = &idle_sched_class;
4994 }
4995 
4996 /**
4997  * init_idle - set up an idle thread for a given CPU
4998  * @idle: task in question
4999  * @cpu: cpu the idle task belongs to
5000  *
5001  * NOTE: this function does not set the idle thread's NEED_RESCHED
5002  * flag, to make booting more robust.
5003  */
5004 void init_idle(struct task_struct *idle, int cpu)
5005 {
5006 	struct rq *rq = cpu_rq(cpu);
5007 	unsigned long flags;
5008 
5009 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5010 	raw_spin_lock(&rq->lock);
5011 
5012 	__sched_fork(0, idle);
5013 	idle->state = TASK_RUNNING;
5014 	idle->se.exec_start = sched_clock();
5015 
5016 	kasan_unpoison_task_stack(idle);
5017 
5018 #ifdef CONFIG_SMP
5019 	/*
5020 	 * Its possible that init_idle() gets called multiple times on a task,
5021 	 * in that case do_set_cpus_allowed() will not do the right thing.
5022 	 *
5023 	 * And since this is boot we can forgo the serialization.
5024 	 */
5025 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5026 #endif
5027 	/*
5028 	 * We're having a chicken and egg problem, even though we are
5029 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5030 	 * lockdep check in task_group() will fail.
5031 	 *
5032 	 * Similar case to sched_fork(). / Alternatively we could
5033 	 * use task_rq_lock() here and obtain the other rq->lock.
5034 	 *
5035 	 * Silence PROVE_RCU
5036 	 */
5037 	rcu_read_lock();
5038 	__set_task_cpu(idle, cpu);
5039 	rcu_read_unlock();
5040 
5041 	rq->curr = rq->idle = idle;
5042 	idle->on_rq = TASK_ON_RQ_QUEUED;
5043 #ifdef CONFIG_SMP
5044 	idle->on_cpu = 1;
5045 #endif
5046 	raw_spin_unlock(&rq->lock);
5047 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5048 
5049 	/* Set the preempt count _outside_ the spinlocks! */
5050 	init_idle_preempt_count(idle, cpu);
5051 
5052 	/*
5053 	 * The idle tasks have their own, simple scheduling class:
5054 	 */
5055 	idle->sched_class = &idle_sched_class;
5056 	ftrace_graph_init_idle_task(idle, cpu);
5057 	vtime_init_idle(idle, cpu);
5058 #ifdef CONFIG_SMP
5059 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5060 #endif
5061 }
5062 
5063 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5064 			      const struct cpumask *trial)
5065 {
5066 	int ret = 1, trial_cpus;
5067 	struct dl_bw *cur_dl_b;
5068 	unsigned long flags;
5069 
5070 	if (!cpumask_weight(cur))
5071 		return ret;
5072 
5073 	rcu_read_lock_sched();
5074 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5075 	trial_cpus = cpumask_weight(trial);
5076 
5077 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5078 	if (cur_dl_b->bw != -1 &&
5079 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5080 		ret = 0;
5081 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5082 	rcu_read_unlock_sched();
5083 
5084 	return ret;
5085 }
5086 
5087 int task_can_attach(struct task_struct *p,
5088 		    const struct cpumask *cs_cpus_allowed)
5089 {
5090 	int ret = 0;
5091 
5092 	/*
5093 	 * Kthreads which disallow setaffinity shouldn't be moved
5094 	 * to a new cpuset; we don't want to change their cpu
5095 	 * affinity and isolating such threads by their set of
5096 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5097 	 * applicable for such threads.  This prevents checking for
5098 	 * success of set_cpus_allowed_ptr() on all attached tasks
5099 	 * before cpus_allowed may be changed.
5100 	 */
5101 	if (p->flags & PF_NO_SETAFFINITY) {
5102 		ret = -EINVAL;
5103 		goto out;
5104 	}
5105 
5106 #ifdef CONFIG_SMP
5107 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5108 					      cs_cpus_allowed)) {
5109 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5110 							cs_cpus_allowed);
5111 		struct dl_bw *dl_b;
5112 		bool overflow;
5113 		int cpus;
5114 		unsigned long flags;
5115 
5116 		rcu_read_lock_sched();
5117 		dl_b = dl_bw_of(dest_cpu);
5118 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5119 		cpus = dl_bw_cpus(dest_cpu);
5120 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5121 		if (overflow)
5122 			ret = -EBUSY;
5123 		else {
5124 			/*
5125 			 * We reserve space for this task in the destination
5126 			 * root_domain, as we can't fail after this point.
5127 			 * We will free resources in the source root_domain
5128 			 * later on (see set_cpus_allowed_dl()).
5129 			 */
5130 			__dl_add(dl_b, p->dl.dl_bw);
5131 		}
5132 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5133 		rcu_read_unlock_sched();
5134 
5135 	}
5136 #endif
5137 out:
5138 	return ret;
5139 }
5140 
5141 #ifdef CONFIG_SMP
5142 
5143 #ifdef CONFIG_NUMA_BALANCING
5144 /* Migrate current task p to target_cpu */
5145 int migrate_task_to(struct task_struct *p, int target_cpu)
5146 {
5147 	struct migration_arg arg = { p, target_cpu };
5148 	int curr_cpu = task_cpu(p);
5149 
5150 	if (curr_cpu == target_cpu)
5151 		return 0;
5152 
5153 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5154 		return -EINVAL;
5155 
5156 	/* TODO: This is not properly updating schedstats */
5157 
5158 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5159 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5160 }
5161 
5162 /*
5163  * Requeue a task on a given node and accurately track the number of NUMA
5164  * tasks on the runqueues
5165  */
5166 void sched_setnuma(struct task_struct *p, int nid)
5167 {
5168 	struct rq *rq;
5169 	unsigned long flags;
5170 	bool queued, running;
5171 
5172 	rq = task_rq_lock(p, &flags);
5173 	queued = task_on_rq_queued(p);
5174 	running = task_current(rq, p);
5175 
5176 	if (queued)
5177 		dequeue_task(rq, p, DEQUEUE_SAVE);
5178 	if (running)
5179 		put_prev_task(rq, p);
5180 
5181 	p->numa_preferred_nid = nid;
5182 
5183 	if (running)
5184 		p->sched_class->set_curr_task(rq);
5185 	if (queued)
5186 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5187 	task_rq_unlock(rq, p, &flags);
5188 }
5189 #endif /* CONFIG_NUMA_BALANCING */
5190 
5191 #ifdef CONFIG_HOTPLUG_CPU
5192 /*
5193  * Ensures that the idle task is using init_mm right before its cpu goes
5194  * offline.
5195  */
5196 void idle_task_exit(void)
5197 {
5198 	struct mm_struct *mm = current->active_mm;
5199 
5200 	BUG_ON(cpu_online(smp_processor_id()));
5201 
5202 	if (mm != &init_mm) {
5203 		switch_mm(mm, &init_mm, current);
5204 		finish_arch_post_lock_switch();
5205 	}
5206 	mmdrop(mm);
5207 }
5208 
5209 /*
5210  * Since this CPU is going 'away' for a while, fold any nr_active delta
5211  * we might have. Assumes we're called after migrate_tasks() so that the
5212  * nr_active count is stable.
5213  *
5214  * Also see the comment "Global load-average calculations".
5215  */
5216 static void calc_load_migrate(struct rq *rq)
5217 {
5218 	long delta = calc_load_fold_active(rq);
5219 	if (delta)
5220 		atomic_long_add(delta, &calc_load_tasks);
5221 }
5222 
5223 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5224 {
5225 }
5226 
5227 static const struct sched_class fake_sched_class = {
5228 	.put_prev_task = put_prev_task_fake,
5229 };
5230 
5231 static struct task_struct fake_task = {
5232 	/*
5233 	 * Avoid pull_{rt,dl}_task()
5234 	 */
5235 	.prio = MAX_PRIO + 1,
5236 	.sched_class = &fake_sched_class,
5237 };
5238 
5239 /*
5240  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5241  * try_to_wake_up()->select_task_rq().
5242  *
5243  * Called with rq->lock held even though we'er in stop_machine() and
5244  * there's no concurrency possible, we hold the required locks anyway
5245  * because of lock validation efforts.
5246  */
5247 static void migrate_tasks(struct rq *dead_rq)
5248 {
5249 	struct rq *rq = dead_rq;
5250 	struct task_struct *next, *stop = rq->stop;
5251 	int dest_cpu;
5252 
5253 	/*
5254 	 * Fudge the rq selection such that the below task selection loop
5255 	 * doesn't get stuck on the currently eligible stop task.
5256 	 *
5257 	 * We're currently inside stop_machine() and the rq is either stuck
5258 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5259 	 * either way we should never end up calling schedule() until we're
5260 	 * done here.
5261 	 */
5262 	rq->stop = NULL;
5263 
5264 	/*
5265 	 * put_prev_task() and pick_next_task() sched
5266 	 * class method both need to have an up-to-date
5267 	 * value of rq->clock[_task]
5268 	 */
5269 	update_rq_clock(rq);
5270 
5271 	for (;;) {
5272 		/*
5273 		 * There's this thread running, bail when that's the only
5274 		 * remaining thread.
5275 		 */
5276 		if (rq->nr_running == 1)
5277 			break;
5278 
5279 		/*
5280 		 * pick_next_task assumes pinned rq->lock.
5281 		 */
5282 		lockdep_pin_lock(&rq->lock);
5283 		next = pick_next_task(rq, &fake_task);
5284 		BUG_ON(!next);
5285 		next->sched_class->put_prev_task(rq, next);
5286 
5287 		/*
5288 		 * Rules for changing task_struct::cpus_allowed are holding
5289 		 * both pi_lock and rq->lock, such that holding either
5290 		 * stabilizes the mask.
5291 		 *
5292 		 * Drop rq->lock is not quite as disastrous as it usually is
5293 		 * because !cpu_active at this point, which means load-balance
5294 		 * will not interfere. Also, stop-machine.
5295 		 */
5296 		lockdep_unpin_lock(&rq->lock);
5297 		raw_spin_unlock(&rq->lock);
5298 		raw_spin_lock(&next->pi_lock);
5299 		raw_spin_lock(&rq->lock);
5300 
5301 		/*
5302 		 * Since we're inside stop-machine, _nothing_ should have
5303 		 * changed the task, WARN if weird stuff happened, because in
5304 		 * that case the above rq->lock drop is a fail too.
5305 		 */
5306 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5307 			raw_spin_unlock(&next->pi_lock);
5308 			continue;
5309 		}
5310 
5311 		/* Find suitable destination for @next, with force if needed. */
5312 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5313 
5314 		rq = __migrate_task(rq, next, dest_cpu);
5315 		if (rq != dead_rq) {
5316 			raw_spin_unlock(&rq->lock);
5317 			rq = dead_rq;
5318 			raw_spin_lock(&rq->lock);
5319 		}
5320 		raw_spin_unlock(&next->pi_lock);
5321 	}
5322 
5323 	rq->stop = stop;
5324 }
5325 #endif /* CONFIG_HOTPLUG_CPU */
5326 
5327 static void set_rq_online(struct rq *rq)
5328 {
5329 	if (!rq->online) {
5330 		const struct sched_class *class;
5331 
5332 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5333 		rq->online = 1;
5334 
5335 		for_each_class(class) {
5336 			if (class->rq_online)
5337 				class->rq_online(rq);
5338 		}
5339 	}
5340 }
5341 
5342 static void set_rq_offline(struct rq *rq)
5343 {
5344 	if (rq->online) {
5345 		const struct sched_class *class;
5346 
5347 		for_each_class(class) {
5348 			if (class->rq_offline)
5349 				class->rq_offline(rq);
5350 		}
5351 
5352 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5353 		rq->online = 0;
5354 	}
5355 }
5356 
5357 /*
5358  * migration_call - callback that gets triggered when a CPU is added.
5359  * Here we can start up the necessary migration thread for the new CPU.
5360  */
5361 static int
5362 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5363 {
5364 	int cpu = (long)hcpu;
5365 	unsigned long flags;
5366 	struct rq *rq = cpu_rq(cpu);
5367 
5368 	switch (action & ~CPU_TASKS_FROZEN) {
5369 
5370 	case CPU_UP_PREPARE:
5371 		rq->calc_load_update = calc_load_update;
5372 		break;
5373 
5374 	case CPU_ONLINE:
5375 		/* Update our root-domain */
5376 		raw_spin_lock_irqsave(&rq->lock, flags);
5377 		if (rq->rd) {
5378 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5379 
5380 			set_rq_online(rq);
5381 		}
5382 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5383 		break;
5384 
5385 #ifdef CONFIG_HOTPLUG_CPU
5386 	case CPU_DYING:
5387 		sched_ttwu_pending();
5388 		/* Update our root-domain */
5389 		raw_spin_lock_irqsave(&rq->lock, flags);
5390 		if (rq->rd) {
5391 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5392 			set_rq_offline(rq);
5393 		}
5394 		migrate_tasks(rq);
5395 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5396 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5397 		break;
5398 
5399 	case CPU_DEAD:
5400 		calc_load_migrate(rq);
5401 		break;
5402 #endif
5403 	}
5404 
5405 	update_max_interval();
5406 
5407 	return NOTIFY_OK;
5408 }
5409 
5410 /*
5411  * Register at high priority so that task migration (migrate_all_tasks)
5412  * happens before everything else.  This has to be lower priority than
5413  * the notifier in the perf_event subsystem, though.
5414  */
5415 static struct notifier_block migration_notifier = {
5416 	.notifier_call = migration_call,
5417 	.priority = CPU_PRI_MIGRATION,
5418 };
5419 
5420 static void set_cpu_rq_start_time(void)
5421 {
5422 	int cpu = smp_processor_id();
5423 	struct rq *rq = cpu_rq(cpu);
5424 	rq->age_stamp = sched_clock_cpu(cpu);
5425 }
5426 
5427 static int sched_cpu_active(struct notifier_block *nfb,
5428 				      unsigned long action, void *hcpu)
5429 {
5430 	int cpu = (long)hcpu;
5431 
5432 	switch (action & ~CPU_TASKS_FROZEN) {
5433 	case CPU_STARTING:
5434 		set_cpu_rq_start_time();
5435 		return NOTIFY_OK;
5436 
5437 	case CPU_DOWN_FAILED:
5438 		set_cpu_active(cpu, true);
5439 		return NOTIFY_OK;
5440 
5441 	default:
5442 		return NOTIFY_DONE;
5443 	}
5444 }
5445 
5446 static int sched_cpu_inactive(struct notifier_block *nfb,
5447 					unsigned long action, void *hcpu)
5448 {
5449 	switch (action & ~CPU_TASKS_FROZEN) {
5450 	case CPU_DOWN_PREPARE:
5451 		set_cpu_active((long)hcpu, false);
5452 		return NOTIFY_OK;
5453 	default:
5454 		return NOTIFY_DONE;
5455 	}
5456 }
5457 
5458 static int __init migration_init(void)
5459 {
5460 	void *cpu = (void *)(long)smp_processor_id();
5461 	int err;
5462 
5463 	/* Initialize migration for the boot CPU */
5464 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5465 	BUG_ON(err == NOTIFY_BAD);
5466 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5467 	register_cpu_notifier(&migration_notifier);
5468 
5469 	/* Register cpu active notifiers */
5470 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5471 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5472 
5473 	return 0;
5474 }
5475 early_initcall(migration_init);
5476 
5477 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5478 
5479 #ifdef CONFIG_SCHED_DEBUG
5480 
5481 static __read_mostly int sched_debug_enabled;
5482 
5483 static int __init sched_debug_setup(char *str)
5484 {
5485 	sched_debug_enabled = 1;
5486 
5487 	return 0;
5488 }
5489 early_param("sched_debug", sched_debug_setup);
5490 
5491 static inline bool sched_debug(void)
5492 {
5493 	return sched_debug_enabled;
5494 }
5495 
5496 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5497 				  struct cpumask *groupmask)
5498 {
5499 	struct sched_group *group = sd->groups;
5500 
5501 	cpumask_clear(groupmask);
5502 
5503 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5504 
5505 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5506 		printk("does not load-balance\n");
5507 		if (sd->parent)
5508 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5509 					" has parent");
5510 		return -1;
5511 	}
5512 
5513 	printk(KERN_CONT "span %*pbl level %s\n",
5514 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5515 
5516 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5517 		printk(KERN_ERR "ERROR: domain->span does not contain "
5518 				"CPU%d\n", cpu);
5519 	}
5520 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5521 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5522 				" CPU%d\n", cpu);
5523 	}
5524 
5525 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5526 	do {
5527 		if (!group) {
5528 			printk("\n");
5529 			printk(KERN_ERR "ERROR: group is NULL\n");
5530 			break;
5531 		}
5532 
5533 		if (!cpumask_weight(sched_group_cpus(group))) {
5534 			printk(KERN_CONT "\n");
5535 			printk(KERN_ERR "ERROR: empty group\n");
5536 			break;
5537 		}
5538 
5539 		if (!(sd->flags & SD_OVERLAP) &&
5540 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5541 			printk(KERN_CONT "\n");
5542 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5543 			break;
5544 		}
5545 
5546 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5547 
5548 		printk(KERN_CONT " %*pbl",
5549 		       cpumask_pr_args(sched_group_cpus(group)));
5550 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5551 			printk(KERN_CONT " (cpu_capacity = %d)",
5552 				group->sgc->capacity);
5553 		}
5554 
5555 		group = group->next;
5556 	} while (group != sd->groups);
5557 	printk(KERN_CONT "\n");
5558 
5559 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5560 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5561 
5562 	if (sd->parent &&
5563 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5564 		printk(KERN_ERR "ERROR: parent span is not a superset "
5565 			"of domain->span\n");
5566 	return 0;
5567 }
5568 
5569 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5570 {
5571 	int level = 0;
5572 
5573 	if (!sched_debug_enabled)
5574 		return;
5575 
5576 	if (!sd) {
5577 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5578 		return;
5579 	}
5580 
5581 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5582 
5583 	for (;;) {
5584 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5585 			break;
5586 		level++;
5587 		sd = sd->parent;
5588 		if (!sd)
5589 			break;
5590 	}
5591 }
5592 #else /* !CONFIG_SCHED_DEBUG */
5593 # define sched_domain_debug(sd, cpu) do { } while (0)
5594 static inline bool sched_debug(void)
5595 {
5596 	return false;
5597 }
5598 #endif /* CONFIG_SCHED_DEBUG */
5599 
5600 static int sd_degenerate(struct sched_domain *sd)
5601 {
5602 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5603 		return 1;
5604 
5605 	/* Following flags need at least 2 groups */
5606 	if (sd->flags & (SD_LOAD_BALANCE |
5607 			 SD_BALANCE_NEWIDLE |
5608 			 SD_BALANCE_FORK |
5609 			 SD_BALANCE_EXEC |
5610 			 SD_SHARE_CPUCAPACITY |
5611 			 SD_SHARE_PKG_RESOURCES |
5612 			 SD_SHARE_POWERDOMAIN)) {
5613 		if (sd->groups != sd->groups->next)
5614 			return 0;
5615 	}
5616 
5617 	/* Following flags don't use groups */
5618 	if (sd->flags & (SD_WAKE_AFFINE))
5619 		return 0;
5620 
5621 	return 1;
5622 }
5623 
5624 static int
5625 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5626 {
5627 	unsigned long cflags = sd->flags, pflags = parent->flags;
5628 
5629 	if (sd_degenerate(parent))
5630 		return 1;
5631 
5632 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5633 		return 0;
5634 
5635 	/* Flags needing groups don't count if only 1 group in parent */
5636 	if (parent->groups == parent->groups->next) {
5637 		pflags &= ~(SD_LOAD_BALANCE |
5638 				SD_BALANCE_NEWIDLE |
5639 				SD_BALANCE_FORK |
5640 				SD_BALANCE_EXEC |
5641 				SD_SHARE_CPUCAPACITY |
5642 				SD_SHARE_PKG_RESOURCES |
5643 				SD_PREFER_SIBLING |
5644 				SD_SHARE_POWERDOMAIN);
5645 		if (nr_node_ids == 1)
5646 			pflags &= ~SD_SERIALIZE;
5647 	}
5648 	if (~cflags & pflags)
5649 		return 0;
5650 
5651 	return 1;
5652 }
5653 
5654 static void free_rootdomain(struct rcu_head *rcu)
5655 {
5656 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5657 
5658 	cpupri_cleanup(&rd->cpupri);
5659 	cpudl_cleanup(&rd->cpudl);
5660 	free_cpumask_var(rd->dlo_mask);
5661 	free_cpumask_var(rd->rto_mask);
5662 	free_cpumask_var(rd->online);
5663 	free_cpumask_var(rd->span);
5664 	kfree(rd);
5665 }
5666 
5667 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5668 {
5669 	struct root_domain *old_rd = NULL;
5670 	unsigned long flags;
5671 
5672 	raw_spin_lock_irqsave(&rq->lock, flags);
5673 
5674 	if (rq->rd) {
5675 		old_rd = rq->rd;
5676 
5677 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5678 			set_rq_offline(rq);
5679 
5680 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5681 
5682 		/*
5683 		 * If we dont want to free the old_rd yet then
5684 		 * set old_rd to NULL to skip the freeing later
5685 		 * in this function:
5686 		 */
5687 		if (!atomic_dec_and_test(&old_rd->refcount))
5688 			old_rd = NULL;
5689 	}
5690 
5691 	atomic_inc(&rd->refcount);
5692 	rq->rd = rd;
5693 
5694 	cpumask_set_cpu(rq->cpu, rd->span);
5695 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5696 		set_rq_online(rq);
5697 
5698 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5699 
5700 	if (old_rd)
5701 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5702 }
5703 
5704 static int init_rootdomain(struct root_domain *rd)
5705 {
5706 	memset(rd, 0, sizeof(*rd));
5707 
5708 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5709 		goto out;
5710 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5711 		goto free_span;
5712 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5713 		goto free_online;
5714 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5715 		goto free_dlo_mask;
5716 
5717 	init_dl_bw(&rd->dl_bw);
5718 	if (cpudl_init(&rd->cpudl) != 0)
5719 		goto free_dlo_mask;
5720 
5721 	if (cpupri_init(&rd->cpupri) != 0)
5722 		goto free_rto_mask;
5723 	return 0;
5724 
5725 free_rto_mask:
5726 	free_cpumask_var(rd->rto_mask);
5727 free_dlo_mask:
5728 	free_cpumask_var(rd->dlo_mask);
5729 free_online:
5730 	free_cpumask_var(rd->online);
5731 free_span:
5732 	free_cpumask_var(rd->span);
5733 out:
5734 	return -ENOMEM;
5735 }
5736 
5737 /*
5738  * By default the system creates a single root-domain with all cpus as
5739  * members (mimicking the global state we have today).
5740  */
5741 struct root_domain def_root_domain;
5742 
5743 static void init_defrootdomain(void)
5744 {
5745 	init_rootdomain(&def_root_domain);
5746 
5747 	atomic_set(&def_root_domain.refcount, 1);
5748 }
5749 
5750 static struct root_domain *alloc_rootdomain(void)
5751 {
5752 	struct root_domain *rd;
5753 
5754 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5755 	if (!rd)
5756 		return NULL;
5757 
5758 	if (init_rootdomain(rd) != 0) {
5759 		kfree(rd);
5760 		return NULL;
5761 	}
5762 
5763 	return rd;
5764 }
5765 
5766 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5767 {
5768 	struct sched_group *tmp, *first;
5769 
5770 	if (!sg)
5771 		return;
5772 
5773 	first = sg;
5774 	do {
5775 		tmp = sg->next;
5776 
5777 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5778 			kfree(sg->sgc);
5779 
5780 		kfree(sg);
5781 		sg = tmp;
5782 	} while (sg != first);
5783 }
5784 
5785 static void free_sched_domain(struct rcu_head *rcu)
5786 {
5787 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5788 
5789 	/*
5790 	 * If its an overlapping domain it has private groups, iterate and
5791 	 * nuke them all.
5792 	 */
5793 	if (sd->flags & SD_OVERLAP) {
5794 		free_sched_groups(sd->groups, 1);
5795 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5796 		kfree(sd->groups->sgc);
5797 		kfree(sd->groups);
5798 	}
5799 	kfree(sd);
5800 }
5801 
5802 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5803 {
5804 	call_rcu(&sd->rcu, free_sched_domain);
5805 }
5806 
5807 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5808 {
5809 	for (; sd; sd = sd->parent)
5810 		destroy_sched_domain(sd, cpu);
5811 }
5812 
5813 /*
5814  * Keep a special pointer to the highest sched_domain that has
5815  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5816  * allows us to avoid some pointer chasing select_idle_sibling().
5817  *
5818  * Also keep a unique ID per domain (we use the first cpu number in
5819  * the cpumask of the domain), this allows us to quickly tell if
5820  * two cpus are in the same cache domain, see cpus_share_cache().
5821  */
5822 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5823 DEFINE_PER_CPU(int, sd_llc_size);
5824 DEFINE_PER_CPU(int, sd_llc_id);
5825 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5826 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5827 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5828 
5829 static void update_top_cache_domain(int cpu)
5830 {
5831 	struct sched_domain *sd;
5832 	struct sched_domain *busy_sd = NULL;
5833 	int id = cpu;
5834 	int size = 1;
5835 
5836 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5837 	if (sd) {
5838 		id = cpumask_first(sched_domain_span(sd));
5839 		size = cpumask_weight(sched_domain_span(sd));
5840 		busy_sd = sd->parent; /* sd_busy */
5841 	}
5842 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5843 
5844 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5845 	per_cpu(sd_llc_size, cpu) = size;
5846 	per_cpu(sd_llc_id, cpu) = id;
5847 
5848 	sd = lowest_flag_domain(cpu, SD_NUMA);
5849 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5850 
5851 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5852 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5853 }
5854 
5855 /*
5856  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5857  * hold the hotplug lock.
5858  */
5859 static void
5860 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5861 {
5862 	struct rq *rq = cpu_rq(cpu);
5863 	struct sched_domain *tmp;
5864 
5865 	/* Remove the sched domains which do not contribute to scheduling. */
5866 	for (tmp = sd; tmp; ) {
5867 		struct sched_domain *parent = tmp->parent;
5868 		if (!parent)
5869 			break;
5870 
5871 		if (sd_parent_degenerate(tmp, parent)) {
5872 			tmp->parent = parent->parent;
5873 			if (parent->parent)
5874 				parent->parent->child = tmp;
5875 			/*
5876 			 * Transfer SD_PREFER_SIBLING down in case of a
5877 			 * degenerate parent; the spans match for this
5878 			 * so the property transfers.
5879 			 */
5880 			if (parent->flags & SD_PREFER_SIBLING)
5881 				tmp->flags |= SD_PREFER_SIBLING;
5882 			destroy_sched_domain(parent, cpu);
5883 		} else
5884 			tmp = tmp->parent;
5885 	}
5886 
5887 	if (sd && sd_degenerate(sd)) {
5888 		tmp = sd;
5889 		sd = sd->parent;
5890 		destroy_sched_domain(tmp, cpu);
5891 		if (sd)
5892 			sd->child = NULL;
5893 	}
5894 
5895 	sched_domain_debug(sd, cpu);
5896 
5897 	rq_attach_root(rq, rd);
5898 	tmp = rq->sd;
5899 	rcu_assign_pointer(rq->sd, sd);
5900 	destroy_sched_domains(tmp, cpu);
5901 
5902 	update_top_cache_domain(cpu);
5903 }
5904 
5905 /* Setup the mask of cpus configured for isolated domains */
5906 static int __init isolated_cpu_setup(char *str)
5907 {
5908 	int ret;
5909 
5910 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5911 	ret = cpulist_parse(str, cpu_isolated_map);
5912 	if (ret) {
5913 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5914 		return 0;
5915 	}
5916 	return 1;
5917 }
5918 __setup("isolcpus=", isolated_cpu_setup);
5919 
5920 struct s_data {
5921 	struct sched_domain ** __percpu sd;
5922 	struct root_domain	*rd;
5923 };
5924 
5925 enum s_alloc {
5926 	sa_rootdomain,
5927 	sa_sd,
5928 	sa_sd_storage,
5929 	sa_none,
5930 };
5931 
5932 /*
5933  * Build an iteration mask that can exclude certain CPUs from the upwards
5934  * domain traversal.
5935  *
5936  * Asymmetric node setups can result in situations where the domain tree is of
5937  * unequal depth, make sure to skip domains that already cover the entire
5938  * range.
5939  *
5940  * In that case build_sched_domains() will have terminated the iteration early
5941  * and our sibling sd spans will be empty. Domains should always include the
5942  * cpu they're built on, so check that.
5943  *
5944  */
5945 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5946 {
5947 	const struct cpumask *span = sched_domain_span(sd);
5948 	struct sd_data *sdd = sd->private;
5949 	struct sched_domain *sibling;
5950 	int i;
5951 
5952 	for_each_cpu(i, span) {
5953 		sibling = *per_cpu_ptr(sdd->sd, i);
5954 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5955 			continue;
5956 
5957 		cpumask_set_cpu(i, sched_group_mask(sg));
5958 	}
5959 }
5960 
5961 /*
5962  * Return the canonical balance cpu for this group, this is the first cpu
5963  * of this group that's also in the iteration mask.
5964  */
5965 int group_balance_cpu(struct sched_group *sg)
5966 {
5967 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5968 }
5969 
5970 static int
5971 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5972 {
5973 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5974 	const struct cpumask *span = sched_domain_span(sd);
5975 	struct cpumask *covered = sched_domains_tmpmask;
5976 	struct sd_data *sdd = sd->private;
5977 	struct sched_domain *sibling;
5978 	int i;
5979 
5980 	cpumask_clear(covered);
5981 
5982 	for_each_cpu(i, span) {
5983 		struct cpumask *sg_span;
5984 
5985 		if (cpumask_test_cpu(i, covered))
5986 			continue;
5987 
5988 		sibling = *per_cpu_ptr(sdd->sd, i);
5989 
5990 		/* See the comment near build_group_mask(). */
5991 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5992 			continue;
5993 
5994 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5995 				GFP_KERNEL, cpu_to_node(cpu));
5996 
5997 		if (!sg)
5998 			goto fail;
5999 
6000 		sg_span = sched_group_cpus(sg);
6001 		if (sibling->child)
6002 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6003 		else
6004 			cpumask_set_cpu(i, sg_span);
6005 
6006 		cpumask_or(covered, covered, sg_span);
6007 
6008 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6009 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6010 			build_group_mask(sd, sg);
6011 
6012 		/*
6013 		 * Initialize sgc->capacity such that even if we mess up the
6014 		 * domains and no possible iteration will get us here, we won't
6015 		 * die on a /0 trap.
6016 		 */
6017 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6018 
6019 		/*
6020 		 * Make sure the first group of this domain contains the
6021 		 * canonical balance cpu. Otherwise the sched_domain iteration
6022 		 * breaks. See update_sg_lb_stats().
6023 		 */
6024 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6025 		    group_balance_cpu(sg) == cpu)
6026 			groups = sg;
6027 
6028 		if (!first)
6029 			first = sg;
6030 		if (last)
6031 			last->next = sg;
6032 		last = sg;
6033 		last->next = first;
6034 	}
6035 	sd->groups = groups;
6036 
6037 	return 0;
6038 
6039 fail:
6040 	free_sched_groups(first, 0);
6041 
6042 	return -ENOMEM;
6043 }
6044 
6045 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6046 {
6047 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6048 	struct sched_domain *child = sd->child;
6049 
6050 	if (child)
6051 		cpu = cpumask_first(sched_domain_span(child));
6052 
6053 	if (sg) {
6054 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6055 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6056 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6057 	}
6058 
6059 	return cpu;
6060 }
6061 
6062 /*
6063  * build_sched_groups will build a circular linked list of the groups
6064  * covered by the given span, and will set each group's ->cpumask correctly,
6065  * and ->cpu_capacity to 0.
6066  *
6067  * Assumes the sched_domain tree is fully constructed
6068  */
6069 static int
6070 build_sched_groups(struct sched_domain *sd, int cpu)
6071 {
6072 	struct sched_group *first = NULL, *last = NULL;
6073 	struct sd_data *sdd = sd->private;
6074 	const struct cpumask *span = sched_domain_span(sd);
6075 	struct cpumask *covered;
6076 	int i;
6077 
6078 	get_group(cpu, sdd, &sd->groups);
6079 	atomic_inc(&sd->groups->ref);
6080 
6081 	if (cpu != cpumask_first(span))
6082 		return 0;
6083 
6084 	lockdep_assert_held(&sched_domains_mutex);
6085 	covered = sched_domains_tmpmask;
6086 
6087 	cpumask_clear(covered);
6088 
6089 	for_each_cpu(i, span) {
6090 		struct sched_group *sg;
6091 		int group, j;
6092 
6093 		if (cpumask_test_cpu(i, covered))
6094 			continue;
6095 
6096 		group = get_group(i, sdd, &sg);
6097 		cpumask_setall(sched_group_mask(sg));
6098 
6099 		for_each_cpu(j, span) {
6100 			if (get_group(j, sdd, NULL) != group)
6101 				continue;
6102 
6103 			cpumask_set_cpu(j, covered);
6104 			cpumask_set_cpu(j, sched_group_cpus(sg));
6105 		}
6106 
6107 		if (!first)
6108 			first = sg;
6109 		if (last)
6110 			last->next = sg;
6111 		last = sg;
6112 	}
6113 	last->next = first;
6114 
6115 	return 0;
6116 }
6117 
6118 /*
6119  * Initialize sched groups cpu_capacity.
6120  *
6121  * cpu_capacity indicates the capacity of sched group, which is used while
6122  * distributing the load between different sched groups in a sched domain.
6123  * Typically cpu_capacity for all the groups in a sched domain will be same
6124  * unless there are asymmetries in the topology. If there are asymmetries,
6125  * group having more cpu_capacity will pickup more load compared to the
6126  * group having less cpu_capacity.
6127  */
6128 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6129 {
6130 	struct sched_group *sg = sd->groups;
6131 
6132 	WARN_ON(!sg);
6133 
6134 	do {
6135 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6136 		sg = sg->next;
6137 	} while (sg != sd->groups);
6138 
6139 	if (cpu != group_balance_cpu(sg))
6140 		return;
6141 
6142 	update_group_capacity(sd, cpu);
6143 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6144 }
6145 
6146 /*
6147  * Initializers for schedule domains
6148  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6149  */
6150 
6151 static int default_relax_domain_level = -1;
6152 int sched_domain_level_max;
6153 
6154 static int __init setup_relax_domain_level(char *str)
6155 {
6156 	if (kstrtoint(str, 0, &default_relax_domain_level))
6157 		pr_warn("Unable to set relax_domain_level\n");
6158 
6159 	return 1;
6160 }
6161 __setup("relax_domain_level=", setup_relax_domain_level);
6162 
6163 static void set_domain_attribute(struct sched_domain *sd,
6164 				 struct sched_domain_attr *attr)
6165 {
6166 	int request;
6167 
6168 	if (!attr || attr->relax_domain_level < 0) {
6169 		if (default_relax_domain_level < 0)
6170 			return;
6171 		else
6172 			request = default_relax_domain_level;
6173 	} else
6174 		request = attr->relax_domain_level;
6175 	if (request < sd->level) {
6176 		/* turn off idle balance on this domain */
6177 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6178 	} else {
6179 		/* turn on idle balance on this domain */
6180 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6181 	}
6182 }
6183 
6184 static void __sdt_free(const struct cpumask *cpu_map);
6185 static int __sdt_alloc(const struct cpumask *cpu_map);
6186 
6187 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6188 				 const struct cpumask *cpu_map)
6189 {
6190 	switch (what) {
6191 	case sa_rootdomain:
6192 		if (!atomic_read(&d->rd->refcount))
6193 			free_rootdomain(&d->rd->rcu); /* fall through */
6194 	case sa_sd:
6195 		free_percpu(d->sd); /* fall through */
6196 	case sa_sd_storage:
6197 		__sdt_free(cpu_map); /* fall through */
6198 	case sa_none:
6199 		break;
6200 	}
6201 }
6202 
6203 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6204 						   const struct cpumask *cpu_map)
6205 {
6206 	memset(d, 0, sizeof(*d));
6207 
6208 	if (__sdt_alloc(cpu_map))
6209 		return sa_sd_storage;
6210 	d->sd = alloc_percpu(struct sched_domain *);
6211 	if (!d->sd)
6212 		return sa_sd_storage;
6213 	d->rd = alloc_rootdomain();
6214 	if (!d->rd)
6215 		return sa_sd;
6216 	return sa_rootdomain;
6217 }
6218 
6219 /*
6220  * NULL the sd_data elements we've used to build the sched_domain and
6221  * sched_group structure so that the subsequent __free_domain_allocs()
6222  * will not free the data we're using.
6223  */
6224 static void claim_allocations(int cpu, struct sched_domain *sd)
6225 {
6226 	struct sd_data *sdd = sd->private;
6227 
6228 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6229 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6230 
6231 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6232 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6233 
6234 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6235 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6236 }
6237 
6238 #ifdef CONFIG_NUMA
6239 static int sched_domains_numa_levels;
6240 enum numa_topology_type sched_numa_topology_type;
6241 static int *sched_domains_numa_distance;
6242 int sched_max_numa_distance;
6243 static struct cpumask ***sched_domains_numa_masks;
6244 static int sched_domains_curr_level;
6245 #endif
6246 
6247 /*
6248  * SD_flags allowed in topology descriptions.
6249  *
6250  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6251  * SD_SHARE_PKG_RESOURCES - describes shared caches
6252  * SD_NUMA                - describes NUMA topologies
6253  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6254  *
6255  * Odd one out:
6256  * SD_ASYM_PACKING        - describes SMT quirks
6257  */
6258 #define TOPOLOGY_SD_FLAGS		\
6259 	(SD_SHARE_CPUCAPACITY |		\
6260 	 SD_SHARE_PKG_RESOURCES |	\
6261 	 SD_NUMA |			\
6262 	 SD_ASYM_PACKING |		\
6263 	 SD_SHARE_POWERDOMAIN)
6264 
6265 static struct sched_domain *
6266 sd_init(struct sched_domain_topology_level *tl, int cpu)
6267 {
6268 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6269 	int sd_weight, sd_flags = 0;
6270 
6271 #ifdef CONFIG_NUMA
6272 	/*
6273 	 * Ugly hack to pass state to sd_numa_mask()...
6274 	 */
6275 	sched_domains_curr_level = tl->numa_level;
6276 #endif
6277 
6278 	sd_weight = cpumask_weight(tl->mask(cpu));
6279 
6280 	if (tl->sd_flags)
6281 		sd_flags = (*tl->sd_flags)();
6282 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6283 			"wrong sd_flags in topology description\n"))
6284 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6285 
6286 	*sd = (struct sched_domain){
6287 		.min_interval		= sd_weight,
6288 		.max_interval		= 2*sd_weight,
6289 		.busy_factor		= 32,
6290 		.imbalance_pct		= 125,
6291 
6292 		.cache_nice_tries	= 0,
6293 		.busy_idx		= 0,
6294 		.idle_idx		= 0,
6295 		.newidle_idx		= 0,
6296 		.wake_idx		= 0,
6297 		.forkexec_idx		= 0,
6298 
6299 		.flags			= 1*SD_LOAD_BALANCE
6300 					| 1*SD_BALANCE_NEWIDLE
6301 					| 1*SD_BALANCE_EXEC
6302 					| 1*SD_BALANCE_FORK
6303 					| 0*SD_BALANCE_WAKE
6304 					| 1*SD_WAKE_AFFINE
6305 					| 0*SD_SHARE_CPUCAPACITY
6306 					| 0*SD_SHARE_PKG_RESOURCES
6307 					| 0*SD_SERIALIZE
6308 					| 0*SD_PREFER_SIBLING
6309 					| 0*SD_NUMA
6310 					| sd_flags
6311 					,
6312 
6313 		.last_balance		= jiffies,
6314 		.balance_interval	= sd_weight,
6315 		.smt_gain		= 0,
6316 		.max_newidle_lb_cost	= 0,
6317 		.next_decay_max_lb_cost	= jiffies,
6318 #ifdef CONFIG_SCHED_DEBUG
6319 		.name			= tl->name,
6320 #endif
6321 	};
6322 
6323 	/*
6324 	 * Convert topological properties into behaviour.
6325 	 */
6326 
6327 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6328 		sd->flags |= SD_PREFER_SIBLING;
6329 		sd->imbalance_pct = 110;
6330 		sd->smt_gain = 1178; /* ~15% */
6331 
6332 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6333 		sd->imbalance_pct = 117;
6334 		sd->cache_nice_tries = 1;
6335 		sd->busy_idx = 2;
6336 
6337 #ifdef CONFIG_NUMA
6338 	} else if (sd->flags & SD_NUMA) {
6339 		sd->cache_nice_tries = 2;
6340 		sd->busy_idx = 3;
6341 		sd->idle_idx = 2;
6342 
6343 		sd->flags |= SD_SERIALIZE;
6344 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6345 			sd->flags &= ~(SD_BALANCE_EXEC |
6346 				       SD_BALANCE_FORK |
6347 				       SD_WAKE_AFFINE);
6348 		}
6349 
6350 #endif
6351 	} else {
6352 		sd->flags |= SD_PREFER_SIBLING;
6353 		sd->cache_nice_tries = 1;
6354 		sd->busy_idx = 2;
6355 		sd->idle_idx = 1;
6356 	}
6357 
6358 	sd->private = &tl->data;
6359 
6360 	return sd;
6361 }
6362 
6363 /*
6364  * Topology list, bottom-up.
6365  */
6366 static struct sched_domain_topology_level default_topology[] = {
6367 #ifdef CONFIG_SCHED_SMT
6368 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6369 #endif
6370 #ifdef CONFIG_SCHED_MC
6371 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6372 #endif
6373 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6374 	{ NULL, },
6375 };
6376 
6377 static struct sched_domain_topology_level *sched_domain_topology =
6378 	default_topology;
6379 
6380 #define for_each_sd_topology(tl)			\
6381 	for (tl = sched_domain_topology; tl->mask; tl++)
6382 
6383 void set_sched_topology(struct sched_domain_topology_level *tl)
6384 {
6385 	sched_domain_topology = tl;
6386 }
6387 
6388 #ifdef CONFIG_NUMA
6389 
6390 static const struct cpumask *sd_numa_mask(int cpu)
6391 {
6392 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6393 }
6394 
6395 static void sched_numa_warn(const char *str)
6396 {
6397 	static int done = false;
6398 	int i,j;
6399 
6400 	if (done)
6401 		return;
6402 
6403 	done = true;
6404 
6405 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6406 
6407 	for (i = 0; i < nr_node_ids; i++) {
6408 		printk(KERN_WARNING "  ");
6409 		for (j = 0; j < nr_node_ids; j++)
6410 			printk(KERN_CONT "%02d ", node_distance(i,j));
6411 		printk(KERN_CONT "\n");
6412 	}
6413 	printk(KERN_WARNING "\n");
6414 }
6415 
6416 bool find_numa_distance(int distance)
6417 {
6418 	int i;
6419 
6420 	if (distance == node_distance(0, 0))
6421 		return true;
6422 
6423 	for (i = 0; i < sched_domains_numa_levels; i++) {
6424 		if (sched_domains_numa_distance[i] == distance)
6425 			return true;
6426 	}
6427 
6428 	return false;
6429 }
6430 
6431 /*
6432  * A system can have three types of NUMA topology:
6433  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6434  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6435  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6436  *
6437  * The difference between a glueless mesh topology and a backplane
6438  * topology lies in whether communication between not directly
6439  * connected nodes goes through intermediary nodes (where programs
6440  * could run), or through backplane controllers. This affects
6441  * placement of programs.
6442  *
6443  * The type of topology can be discerned with the following tests:
6444  * - If the maximum distance between any nodes is 1 hop, the system
6445  *   is directly connected.
6446  * - If for two nodes A and B, located N > 1 hops away from each other,
6447  *   there is an intermediary node C, which is < N hops away from both
6448  *   nodes A and B, the system is a glueless mesh.
6449  */
6450 static void init_numa_topology_type(void)
6451 {
6452 	int a, b, c, n;
6453 
6454 	n = sched_max_numa_distance;
6455 
6456 	if (sched_domains_numa_levels <= 1) {
6457 		sched_numa_topology_type = NUMA_DIRECT;
6458 		return;
6459 	}
6460 
6461 	for_each_online_node(a) {
6462 		for_each_online_node(b) {
6463 			/* Find two nodes furthest removed from each other. */
6464 			if (node_distance(a, b) < n)
6465 				continue;
6466 
6467 			/* Is there an intermediary node between a and b? */
6468 			for_each_online_node(c) {
6469 				if (node_distance(a, c) < n &&
6470 				    node_distance(b, c) < n) {
6471 					sched_numa_topology_type =
6472 							NUMA_GLUELESS_MESH;
6473 					return;
6474 				}
6475 			}
6476 
6477 			sched_numa_topology_type = NUMA_BACKPLANE;
6478 			return;
6479 		}
6480 	}
6481 }
6482 
6483 static void sched_init_numa(void)
6484 {
6485 	int next_distance, curr_distance = node_distance(0, 0);
6486 	struct sched_domain_topology_level *tl;
6487 	int level = 0;
6488 	int i, j, k;
6489 
6490 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6491 	if (!sched_domains_numa_distance)
6492 		return;
6493 
6494 	/*
6495 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6496 	 * unique distances in the node_distance() table.
6497 	 *
6498 	 * Assumes node_distance(0,j) includes all distances in
6499 	 * node_distance(i,j) in order to avoid cubic time.
6500 	 */
6501 	next_distance = curr_distance;
6502 	for (i = 0; i < nr_node_ids; i++) {
6503 		for (j = 0; j < nr_node_ids; j++) {
6504 			for (k = 0; k < nr_node_ids; k++) {
6505 				int distance = node_distance(i, k);
6506 
6507 				if (distance > curr_distance &&
6508 				    (distance < next_distance ||
6509 				     next_distance == curr_distance))
6510 					next_distance = distance;
6511 
6512 				/*
6513 				 * While not a strong assumption it would be nice to know
6514 				 * about cases where if node A is connected to B, B is not
6515 				 * equally connected to A.
6516 				 */
6517 				if (sched_debug() && node_distance(k, i) != distance)
6518 					sched_numa_warn("Node-distance not symmetric");
6519 
6520 				if (sched_debug() && i && !find_numa_distance(distance))
6521 					sched_numa_warn("Node-0 not representative");
6522 			}
6523 			if (next_distance != curr_distance) {
6524 				sched_domains_numa_distance[level++] = next_distance;
6525 				sched_domains_numa_levels = level;
6526 				curr_distance = next_distance;
6527 			} else break;
6528 		}
6529 
6530 		/*
6531 		 * In case of sched_debug() we verify the above assumption.
6532 		 */
6533 		if (!sched_debug())
6534 			break;
6535 	}
6536 
6537 	if (!level)
6538 		return;
6539 
6540 	/*
6541 	 * 'level' contains the number of unique distances, excluding the
6542 	 * identity distance node_distance(i,i).
6543 	 *
6544 	 * The sched_domains_numa_distance[] array includes the actual distance
6545 	 * numbers.
6546 	 */
6547 
6548 	/*
6549 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6550 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6551 	 * the array will contain less then 'level' members. This could be
6552 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6553 	 * in other functions.
6554 	 *
6555 	 * We reset it to 'level' at the end of this function.
6556 	 */
6557 	sched_domains_numa_levels = 0;
6558 
6559 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6560 	if (!sched_domains_numa_masks)
6561 		return;
6562 
6563 	/*
6564 	 * Now for each level, construct a mask per node which contains all
6565 	 * cpus of nodes that are that many hops away from us.
6566 	 */
6567 	for (i = 0; i < level; i++) {
6568 		sched_domains_numa_masks[i] =
6569 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6570 		if (!sched_domains_numa_masks[i])
6571 			return;
6572 
6573 		for (j = 0; j < nr_node_ids; j++) {
6574 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6575 			if (!mask)
6576 				return;
6577 
6578 			sched_domains_numa_masks[i][j] = mask;
6579 
6580 			for_each_node(k) {
6581 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6582 					continue;
6583 
6584 				cpumask_or(mask, mask, cpumask_of_node(k));
6585 			}
6586 		}
6587 	}
6588 
6589 	/* Compute default topology size */
6590 	for (i = 0; sched_domain_topology[i].mask; i++);
6591 
6592 	tl = kzalloc((i + level + 1) *
6593 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6594 	if (!tl)
6595 		return;
6596 
6597 	/*
6598 	 * Copy the default topology bits..
6599 	 */
6600 	for (i = 0; sched_domain_topology[i].mask; i++)
6601 		tl[i] = sched_domain_topology[i];
6602 
6603 	/*
6604 	 * .. and append 'j' levels of NUMA goodness.
6605 	 */
6606 	for (j = 0; j < level; i++, j++) {
6607 		tl[i] = (struct sched_domain_topology_level){
6608 			.mask = sd_numa_mask,
6609 			.sd_flags = cpu_numa_flags,
6610 			.flags = SDTL_OVERLAP,
6611 			.numa_level = j,
6612 			SD_INIT_NAME(NUMA)
6613 		};
6614 	}
6615 
6616 	sched_domain_topology = tl;
6617 
6618 	sched_domains_numa_levels = level;
6619 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6620 
6621 	init_numa_topology_type();
6622 }
6623 
6624 static void sched_domains_numa_masks_set(int cpu)
6625 {
6626 	int i, j;
6627 	int node = cpu_to_node(cpu);
6628 
6629 	for (i = 0; i < sched_domains_numa_levels; i++) {
6630 		for (j = 0; j < nr_node_ids; j++) {
6631 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6632 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6633 		}
6634 	}
6635 }
6636 
6637 static void sched_domains_numa_masks_clear(int cpu)
6638 {
6639 	int i, j;
6640 	for (i = 0; i < sched_domains_numa_levels; i++) {
6641 		for (j = 0; j < nr_node_ids; j++)
6642 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6643 	}
6644 }
6645 
6646 /*
6647  * Update sched_domains_numa_masks[level][node] array when new cpus
6648  * are onlined.
6649  */
6650 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6651 					   unsigned long action,
6652 					   void *hcpu)
6653 {
6654 	int cpu = (long)hcpu;
6655 
6656 	switch (action & ~CPU_TASKS_FROZEN) {
6657 	case CPU_ONLINE:
6658 		sched_domains_numa_masks_set(cpu);
6659 		break;
6660 
6661 	case CPU_DEAD:
6662 		sched_domains_numa_masks_clear(cpu);
6663 		break;
6664 
6665 	default:
6666 		return NOTIFY_DONE;
6667 	}
6668 
6669 	return NOTIFY_OK;
6670 }
6671 #else
6672 static inline void sched_init_numa(void)
6673 {
6674 }
6675 
6676 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6677 					   unsigned long action,
6678 					   void *hcpu)
6679 {
6680 	return 0;
6681 }
6682 #endif /* CONFIG_NUMA */
6683 
6684 static int __sdt_alloc(const struct cpumask *cpu_map)
6685 {
6686 	struct sched_domain_topology_level *tl;
6687 	int j;
6688 
6689 	for_each_sd_topology(tl) {
6690 		struct sd_data *sdd = &tl->data;
6691 
6692 		sdd->sd = alloc_percpu(struct sched_domain *);
6693 		if (!sdd->sd)
6694 			return -ENOMEM;
6695 
6696 		sdd->sg = alloc_percpu(struct sched_group *);
6697 		if (!sdd->sg)
6698 			return -ENOMEM;
6699 
6700 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6701 		if (!sdd->sgc)
6702 			return -ENOMEM;
6703 
6704 		for_each_cpu(j, cpu_map) {
6705 			struct sched_domain *sd;
6706 			struct sched_group *sg;
6707 			struct sched_group_capacity *sgc;
6708 
6709 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6710 					GFP_KERNEL, cpu_to_node(j));
6711 			if (!sd)
6712 				return -ENOMEM;
6713 
6714 			*per_cpu_ptr(sdd->sd, j) = sd;
6715 
6716 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6717 					GFP_KERNEL, cpu_to_node(j));
6718 			if (!sg)
6719 				return -ENOMEM;
6720 
6721 			sg->next = sg;
6722 
6723 			*per_cpu_ptr(sdd->sg, j) = sg;
6724 
6725 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6726 					GFP_KERNEL, cpu_to_node(j));
6727 			if (!sgc)
6728 				return -ENOMEM;
6729 
6730 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6731 		}
6732 	}
6733 
6734 	return 0;
6735 }
6736 
6737 static void __sdt_free(const struct cpumask *cpu_map)
6738 {
6739 	struct sched_domain_topology_level *tl;
6740 	int j;
6741 
6742 	for_each_sd_topology(tl) {
6743 		struct sd_data *sdd = &tl->data;
6744 
6745 		for_each_cpu(j, cpu_map) {
6746 			struct sched_domain *sd;
6747 
6748 			if (sdd->sd) {
6749 				sd = *per_cpu_ptr(sdd->sd, j);
6750 				if (sd && (sd->flags & SD_OVERLAP))
6751 					free_sched_groups(sd->groups, 0);
6752 				kfree(*per_cpu_ptr(sdd->sd, j));
6753 			}
6754 
6755 			if (sdd->sg)
6756 				kfree(*per_cpu_ptr(sdd->sg, j));
6757 			if (sdd->sgc)
6758 				kfree(*per_cpu_ptr(sdd->sgc, j));
6759 		}
6760 		free_percpu(sdd->sd);
6761 		sdd->sd = NULL;
6762 		free_percpu(sdd->sg);
6763 		sdd->sg = NULL;
6764 		free_percpu(sdd->sgc);
6765 		sdd->sgc = NULL;
6766 	}
6767 }
6768 
6769 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6770 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6771 		struct sched_domain *child, int cpu)
6772 {
6773 	struct sched_domain *sd = sd_init(tl, cpu);
6774 	if (!sd)
6775 		return child;
6776 
6777 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6778 	if (child) {
6779 		sd->level = child->level + 1;
6780 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6781 		child->parent = sd;
6782 		sd->child = child;
6783 
6784 		if (!cpumask_subset(sched_domain_span(child),
6785 				    sched_domain_span(sd))) {
6786 			pr_err("BUG: arch topology borken\n");
6787 #ifdef CONFIG_SCHED_DEBUG
6788 			pr_err("     the %s domain not a subset of the %s domain\n",
6789 					child->name, sd->name);
6790 #endif
6791 			/* Fixup, ensure @sd has at least @child cpus. */
6792 			cpumask_or(sched_domain_span(sd),
6793 				   sched_domain_span(sd),
6794 				   sched_domain_span(child));
6795 		}
6796 
6797 	}
6798 	set_domain_attribute(sd, attr);
6799 
6800 	return sd;
6801 }
6802 
6803 /*
6804  * Build sched domains for a given set of cpus and attach the sched domains
6805  * to the individual cpus
6806  */
6807 static int build_sched_domains(const struct cpumask *cpu_map,
6808 			       struct sched_domain_attr *attr)
6809 {
6810 	enum s_alloc alloc_state;
6811 	struct sched_domain *sd;
6812 	struct s_data d;
6813 	int i, ret = -ENOMEM;
6814 
6815 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6816 	if (alloc_state != sa_rootdomain)
6817 		goto error;
6818 
6819 	/* Set up domains for cpus specified by the cpu_map. */
6820 	for_each_cpu(i, cpu_map) {
6821 		struct sched_domain_topology_level *tl;
6822 
6823 		sd = NULL;
6824 		for_each_sd_topology(tl) {
6825 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6826 			if (tl == sched_domain_topology)
6827 				*per_cpu_ptr(d.sd, i) = sd;
6828 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6829 				sd->flags |= SD_OVERLAP;
6830 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6831 				break;
6832 		}
6833 	}
6834 
6835 	/* Build the groups for the domains */
6836 	for_each_cpu(i, cpu_map) {
6837 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6838 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6839 			if (sd->flags & SD_OVERLAP) {
6840 				if (build_overlap_sched_groups(sd, i))
6841 					goto error;
6842 			} else {
6843 				if (build_sched_groups(sd, i))
6844 					goto error;
6845 			}
6846 		}
6847 	}
6848 
6849 	/* Calculate CPU capacity for physical packages and nodes */
6850 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6851 		if (!cpumask_test_cpu(i, cpu_map))
6852 			continue;
6853 
6854 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6855 			claim_allocations(i, sd);
6856 			init_sched_groups_capacity(i, sd);
6857 		}
6858 	}
6859 
6860 	/* Attach the domains */
6861 	rcu_read_lock();
6862 	for_each_cpu(i, cpu_map) {
6863 		sd = *per_cpu_ptr(d.sd, i);
6864 		cpu_attach_domain(sd, d.rd, i);
6865 	}
6866 	rcu_read_unlock();
6867 
6868 	ret = 0;
6869 error:
6870 	__free_domain_allocs(&d, alloc_state, cpu_map);
6871 	return ret;
6872 }
6873 
6874 static cpumask_var_t *doms_cur;	/* current sched domains */
6875 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6876 static struct sched_domain_attr *dattr_cur;
6877 				/* attribues of custom domains in 'doms_cur' */
6878 
6879 /*
6880  * Special case: If a kmalloc of a doms_cur partition (array of
6881  * cpumask) fails, then fallback to a single sched domain,
6882  * as determined by the single cpumask fallback_doms.
6883  */
6884 static cpumask_var_t fallback_doms;
6885 
6886 /*
6887  * arch_update_cpu_topology lets virtualized architectures update the
6888  * cpu core maps. It is supposed to return 1 if the topology changed
6889  * or 0 if it stayed the same.
6890  */
6891 int __weak arch_update_cpu_topology(void)
6892 {
6893 	return 0;
6894 }
6895 
6896 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6897 {
6898 	int i;
6899 	cpumask_var_t *doms;
6900 
6901 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6902 	if (!doms)
6903 		return NULL;
6904 	for (i = 0; i < ndoms; i++) {
6905 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6906 			free_sched_domains(doms, i);
6907 			return NULL;
6908 		}
6909 	}
6910 	return doms;
6911 }
6912 
6913 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6914 {
6915 	unsigned int i;
6916 	for (i = 0; i < ndoms; i++)
6917 		free_cpumask_var(doms[i]);
6918 	kfree(doms);
6919 }
6920 
6921 /*
6922  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6923  * For now this just excludes isolated cpus, but could be used to
6924  * exclude other special cases in the future.
6925  */
6926 static int init_sched_domains(const struct cpumask *cpu_map)
6927 {
6928 	int err;
6929 
6930 	arch_update_cpu_topology();
6931 	ndoms_cur = 1;
6932 	doms_cur = alloc_sched_domains(ndoms_cur);
6933 	if (!doms_cur)
6934 		doms_cur = &fallback_doms;
6935 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6936 	err = build_sched_domains(doms_cur[0], NULL);
6937 	register_sched_domain_sysctl();
6938 
6939 	return err;
6940 }
6941 
6942 /*
6943  * Detach sched domains from a group of cpus specified in cpu_map
6944  * These cpus will now be attached to the NULL domain
6945  */
6946 static void detach_destroy_domains(const struct cpumask *cpu_map)
6947 {
6948 	int i;
6949 
6950 	rcu_read_lock();
6951 	for_each_cpu(i, cpu_map)
6952 		cpu_attach_domain(NULL, &def_root_domain, i);
6953 	rcu_read_unlock();
6954 }
6955 
6956 /* handle null as "default" */
6957 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6958 			struct sched_domain_attr *new, int idx_new)
6959 {
6960 	struct sched_domain_attr tmp;
6961 
6962 	/* fast path */
6963 	if (!new && !cur)
6964 		return 1;
6965 
6966 	tmp = SD_ATTR_INIT;
6967 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6968 			new ? (new + idx_new) : &tmp,
6969 			sizeof(struct sched_domain_attr));
6970 }
6971 
6972 /*
6973  * Partition sched domains as specified by the 'ndoms_new'
6974  * cpumasks in the array doms_new[] of cpumasks. This compares
6975  * doms_new[] to the current sched domain partitioning, doms_cur[].
6976  * It destroys each deleted domain and builds each new domain.
6977  *
6978  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6979  * The masks don't intersect (don't overlap.) We should setup one
6980  * sched domain for each mask. CPUs not in any of the cpumasks will
6981  * not be load balanced. If the same cpumask appears both in the
6982  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6983  * it as it is.
6984  *
6985  * The passed in 'doms_new' should be allocated using
6986  * alloc_sched_domains.  This routine takes ownership of it and will
6987  * free_sched_domains it when done with it. If the caller failed the
6988  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6989  * and partition_sched_domains() will fallback to the single partition
6990  * 'fallback_doms', it also forces the domains to be rebuilt.
6991  *
6992  * If doms_new == NULL it will be replaced with cpu_online_mask.
6993  * ndoms_new == 0 is a special case for destroying existing domains,
6994  * and it will not create the default domain.
6995  *
6996  * Call with hotplug lock held
6997  */
6998 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6999 			     struct sched_domain_attr *dattr_new)
7000 {
7001 	int i, j, n;
7002 	int new_topology;
7003 
7004 	mutex_lock(&sched_domains_mutex);
7005 
7006 	/* always unregister in case we don't destroy any domains */
7007 	unregister_sched_domain_sysctl();
7008 
7009 	/* Let architecture update cpu core mappings. */
7010 	new_topology = arch_update_cpu_topology();
7011 
7012 	n = doms_new ? ndoms_new : 0;
7013 
7014 	/* Destroy deleted domains */
7015 	for (i = 0; i < ndoms_cur; i++) {
7016 		for (j = 0; j < n && !new_topology; j++) {
7017 			if (cpumask_equal(doms_cur[i], doms_new[j])
7018 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7019 				goto match1;
7020 		}
7021 		/* no match - a current sched domain not in new doms_new[] */
7022 		detach_destroy_domains(doms_cur[i]);
7023 match1:
7024 		;
7025 	}
7026 
7027 	n = ndoms_cur;
7028 	if (doms_new == NULL) {
7029 		n = 0;
7030 		doms_new = &fallback_doms;
7031 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7032 		WARN_ON_ONCE(dattr_new);
7033 	}
7034 
7035 	/* Build new domains */
7036 	for (i = 0; i < ndoms_new; i++) {
7037 		for (j = 0; j < n && !new_topology; j++) {
7038 			if (cpumask_equal(doms_new[i], doms_cur[j])
7039 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7040 				goto match2;
7041 		}
7042 		/* no match - add a new doms_new */
7043 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7044 match2:
7045 		;
7046 	}
7047 
7048 	/* Remember the new sched domains */
7049 	if (doms_cur != &fallback_doms)
7050 		free_sched_domains(doms_cur, ndoms_cur);
7051 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7052 	doms_cur = doms_new;
7053 	dattr_cur = dattr_new;
7054 	ndoms_cur = ndoms_new;
7055 
7056 	register_sched_domain_sysctl();
7057 
7058 	mutex_unlock(&sched_domains_mutex);
7059 }
7060 
7061 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7062 
7063 /*
7064  * Update cpusets according to cpu_active mask.  If cpusets are
7065  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7066  * around partition_sched_domains().
7067  *
7068  * If we come here as part of a suspend/resume, don't touch cpusets because we
7069  * want to restore it back to its original state upon resume anyway.
7070  */
7071 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7072 			     void *hcpu)
7073 {
7074 	switch (action) {
7075 	case CPU_ONLINE_FROZEN:
7076 	case CPU_DOWN_FAILED_FROZEN:
7077 
7078 		/*
7079 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7080 		 * resume sequence. As long as this is not the last online
7081 		 * operation in the resume sequence, just build a single sched
7082 		 * domain, ignoring cpusets.
7083 		 */
7084 		num_cpus_frozen--;
7085 		if (likely(num_cpus_frozen)) {
7086 			partition_sched_domains(1, NULL, NULL);
7087 			break;
7088 		}
7089 
7090 		/*
7091 		 * This is the last CPU online operation. So fall through and
7092 		 * restore the original sched domains by considering the
7093 		 * cpuset configurations.
7094 		 */
7095 
7096 	case CPU_ONLINE:
7097 		cpuset_update_active_cpus(true);
7098 		break;
7099 	default:
7100 		return NOTIFY_DONE;
7101 	}
7102 	return NOTIFY_OK;
7103 }
7104 
7105 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7106 			       void *hcpu)
7107 {
7108 	unsigned long flags;
7109 	long cpu = (long)hcpu;
7110 	struct dl_bw *dl_b;
7111 	bool overflow;
7112 	int cpus;
7113 
7114 	switch (action) {
7115 	case CPU_DOWN_PREPARE:
7116 		rcu_read_lock_sched();
7117 		dl_b = dl_bw_of(cpu);
7118 
7119 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7120 		cpus = dl_bw_cpus(cpu);
7121 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7122 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7123 
7124 		rcu_read_unlock_sched();
7125 
7126 		if (overflow)
7127 			return notifier_from_errno(-EBUSY);
7128 		cpuset_update_active_cpus(false);
7129 		break;
7130 	case CPU_DOWN_PREPARE_FROZEN:
7131 		num_cpus_frozen++;
7132 		partition_sched_domains(1, NULL, NULL);
7133 		break;
7134 	default:
7135 		return NOTIFY_DONE;
7136 	}
7137 	return NOTIFY_OK;
7138 }
7139 
7140 void __init sched_init_smp(void)
7141 {
7142 	cpumask_var_t non_isolated_cpus;
7143 
7144 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7145 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7146 
7147 	sched_init_numa();
7148 
7149 	/*
7150 	 * There's no userspace yet to cause hotplug operations; hence all the
7151 	 * cpu masks are stable and all blatant races in the below code cannot
7152 	 * happen.
7153 	 */
7154 	mutex_lock(&sched_domains_mutex);
7155 	init_sched_domains(cpu_active_mask);
7156 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7157 	if (cpumask_empty(non_isolated_cpus))
7158 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7159 	mutex_unlock(&sched_domains_mutex);
7160 
7161 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7162 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7163 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7164 
7165 	init_hrtick();
7166 
7167 	/* Move init over to a non-isolated CPU */
7168 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7169 		BUG();
7170 	sched_init_granularity();
7171 	free_cpumask_var(non_isolated_cpus);
7172 
7173 	init_sched_rt_class();
7174 	init_sched_dl_class();
7175 }
7176 #else
7177 void __init sched_init_smp(void)
7178 {
7179 	sched_init_granularity();
7180 }
7181 #endif /* CONFIG_SMP */
7182 
7183 int in_sched_functions(unsigned long addr)
7184 {
7185 	return in_lock_functions(addr) ||
7186 		(addr >= (unsigned long)__sched_text_start
7187 		&& addr < (unsigned long)__sched_text_end);
7188 }
7189 
7190 #ifdef CONFIG_CGROUP_SCHED
7191 /*
7192  * Default task group.
7193  * Every task in system belongs to this group at bootup.
7194  */
7195 struct task_group root_task_group;
7196 LIST_HEAD(task_groups);
7197 
7198 /* Cacheline aligned slab cache for task_group */
7199 static struct kmem_cache *task_group_cache __read_mostly;
7200 #endif
7201 
7202 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7203 
7204 void __init sched_init(void)
7205 {
7206 	int i, j;
7207 	unsigned long alloc_size = 0, ptr;
7208 
7209 #ifdef CONFIG_FAIR_GROUP_SCHED
7210 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7211 #endif
7212 #ifdef CONFIG_RT_GROUP_SCHED
7213 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7214 #endif
7215 	if (alloc_size) {
7216 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7217 
7218 #ifdef CONFIG_FAIR_GROUP_SCHED
7219 		root_task_group.se = (struct sched_entity **)ptr;
7220 		ptr += nr_cpu_ids * sizeof(void **);
7221 
7222 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7223 		ptr += nr_cpu_ids * sizeof(void **);
7224 
7225 #endif /* CONFIG_FAIR_GROUP_SCHED */
7226 #ifdef CONFIG_RT_GROUP_SCHED
7227 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7228 		ptr += nr_cpu_ids * sizeof(void **);
7229 
7230 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7231 		ptr += nr_cpu_ids * sizeof(void **);
7232 
7233 #endif /* CONFIG_RT_GROUP_SCHED */
7234 	}
7235 #ifdef CONFIG_CPUMASK_OFFSTACK
7236 	for_each_possible_cpu(i) {
7237 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7238 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7239 	}
7240 #endif /* CONFIG_CPUMASK_OFFSTACK */
7241 
7242 	init_rt_bandwidth(&def_rt_bandwidth,
7243 			global_rt_period(), global_rt_runtime());
7244 	init_dl_bandwidth(&def_dl_bandwidth,
7245 			global_rt_period(), global_rt_runtime());
7246 
7247 #ifdef CONFIG_SMP
7248 	init_defrootdomain();
7249 #endif
7250 
7251 #ifdef CONFIG_RT_GROUP_SCHED
7252 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7253 			global_rt_period(), global_rt_runtime());
7254 #endif /* CONFIG_RT_GROUP_SCHED */
7255 
7256 #ifdef CONFIG_CGROUP_SCHED
7257 	task_group_cache = KMEM_CACHE(task_group, 0);
7258 
7259 	list_add(&root_task_group.list, &task_groups);
7260 	INIT_LIST_HEAD(&root_task_group.children);
7261 	INIT_LIST_HEAD(&root_task_group.siblings);
7262 	autogroup_init(&init_task);
7263 #endif /* CONFIG_CGROUP_SCHED */
7264 
7265 	for_each_possible_cpu(i) {
7266 		struct rq *rq;
7267 
7268 		rq = cpu_rq(i);
7269 		raw_spin_lock_init(&rq->lock);
7270 		rq->nr_running = 0;
7271 		rq->calc_load_active = 0;
7272 		rq->calc_load_update = jiffies + LOAD_FREQ;
7273 		init_cfs_rq(&rq->cfs);
7274 		init_rt_rq(&rq->rt);
7275 		init_dl_rq(&rq->dl);
7276 #ifdef CONFIG_FAIR_GROUP_SCHED
7277 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7278 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7279 		/*
7280 		 * How much cpu bandwidth does root_task_group get?
7281 		 *
7282 		 * In case of task-groups formed thr' the cgroup filesystem, it
7283 		 * gets 100% of the cpu resources in the system. This overall
7284 		 * system cpu resource is divided among the tasks of
7285 		 * root_task_group and its child task-groups in a fair manner,
7286 		 * based on each entity's (task or task-group's) weight
7287 		 * (se->load.weight).
7288 		 *
7289 		 * In other words, if root_task_group has 10 tasks of weight
7290 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7291 		 * then A0's share of the cpu resource is:
7292 		 *
7293 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7294 		 *
7295 		 * We achieve this by letting root_task_group's tasks sit
7296 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7297 		 */
7298 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7299 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7300 #endif /* CONFIG_FAIR_GROUP_SCHED */
7301 
7302 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7303 #ifdef CONFIG_RT_GROUP_SCHED
7304 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7305 #endif
7306 
7307 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7308 			rq->cpu_load[j] = 0;
7309 
7310 		rq->last_load_update_tick = jiffies;
7311 
7312 #ifdef CONFIG_SMP
7313 		rq->sd = NULL;
7314 		rq->rd = NULL;
7315 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7316 		rq->balance_callback = NULL;
7317 		rq->active_balance = 0;
7318 		rq->next_balance = jiffies;
7319 		rq->push_cpu = 0;
7320 		rq->cpu = i;
7321 		rq->online = 0;
7322 		rq->idle_stamp = 0;
7323 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7324 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7325 
7326 		INIT_LIST_HEAD(&rq->cfs_tasks);
7327 
7328 		rq_attach_root(rq, &def_root_domain);
7329 #ifdef CONFIG_NO_HZ_COMMON
7330 		rq->nohz_flags = 0;
7331 #endif
7332 #ifdef CONFIG_NO_HZ_FULL
7333 		rq->last_sched_tick = 0;
7334 #endif
7335 #endif
7336 		init_rq_hrtick(rq);
7337 		atomic_set(&rq->nr_iowait, 0);
7338 	}
7339 
7340 	set_load_weight(&init_task);
7341 
7342 #ifdef CONFIG_PREEMPT_NOTIFIERS
7343 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7344 #endif
7345 
7346 	/*
7347 	 * The boot idle thread does lazy MMU switching as well:
7348 	 */
7349 	atomic_inc(&init_mm.mm_count);
7350 	enter_lazy_tlb(&init_mm, current);
7351 
7352 	/*
7353 	 * During early bootup we pretend to be a normal task:
7354 	 */
7355 	current->sched_class = &fair_sched_class;
7356 
7357 	/*
7358 	 * Make us the idle thread. Technically, schedule() should not be
7359 	 * called from this thread, however somewhere below it might be,
7360 	 * but because we are the idle thread, we just pick up running again
7361 	 * when this runqueue becomes "idle".
7362 	 */
7363 	init_idle(current, smp_processor_id());
7364 
7365 	calc_load_update = jiffies + LOAD_FREQ;
7366 
7367 #ifdef CONFIG_SMP
7368 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7369 	/* May be allocated at isolcpus cmdline parse time */
7370 	if (cpu_isolated_map == NULL)
7371 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7372 	idle_thread_set_boot_cpu();
7373 	set_cpu_rq_start_time();
7374 #endif
7375 	init_sched_fair_class();
7376 
7377 	scheduler_running = 1;
7378 }
7379 
7380 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7381 static inline int preempt_count_equals(int preempt_offset)
7382 {
7383 	int nested = preempt_count() + rcu_preempt_depth();
7384 
7385 	return (nested == preempt_offset);
7386 }
7387 
7388 void __might_sleep(const char *file, int line, int preempt_offset)
7389 {
7390 	/*
7391 	 * Blocking primitives will set (and therefore destroy) current->state,
7392 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7393 	 * otherwise we will destroy state.
7394 	 */
7395 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7396 			"do not call blocking ops when !TASK_RUNNING; "
7397 			"state=%lx set at [<%p>] %pS\n",
7398 			current->state,
7399 			(void *)current->task_state_change,
7400 			(void *)current->task_state_change);
7401 
7402 	___might_sleep(file, line, preempt_offset);
7403 }
7404 EXPORT_SYMBOL(__might_sleep);
7405 
7406 void ___might_sleep(const char *file, int line, int preempt_offset)
7407 {
7408 	static unsigned long prev_jiffy;	/* ratelimiting */
7409 
7410 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7411 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7412 	     !is_idle_task(current)) ||
7413 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7414 		return;
7415 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7416 		return;
7417 	prev_jiffy = jiffies;
7418 
7419 	printk(KERN_ERR
7420 		"BUG: sleeping function called from invalid context at %s:%d\n",
7421 			file, line);
7422 	printk(KERN_ERR
7423 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7424 			in_atomic(), irqs_disabled(),
7425 			current->pid, current->comm);
7426 
7427 	if (task_stack_end_corrupted(current))
7428 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7429 
7430 	debug_show_held_locks(current);
7431 	if (irqs_disabled())
7432 		print_irqtrace_events(current);
7433 #ifdef CONFIG_DEBUG_PREEMPT
7434 	if (!preempt_count_equals(preempt_offset)) {
7435 		pr_err("Preemption disabled at:");
7436 		print_ip_sym(current->preempt_disable_ip);
7437 		pr_cont("\n");
7438 	}
7439 #endif
7440 	dump_stack();
7441 }
7442 EXPORT_SYMBOL(___might_sleep);
7443 #endif
7444 
7445 #ifdef CONFIG_MAGIC_SYSRQ
7446 void normalize_rt_tasks(void)
7447 {
7448 	struct task_struct *g, *p;
7449 	struct sched_attr attr = {
7450 		.sched_policy = SCHED_NORMAL,
7451 	};
7452 
7453 	read_lock(&tasklist_lock);
7454 	for_each_process_thread(g, p) {
7455 		/*
7456 		 * Only normalize user tasks:
7457 		 */
7458 		if (p->flags & PF_KTHREAD)
7459 			continue;
7460 
7461 		p->se.exec_start		= 0;
7462 #ifdef CONFIG_SCHEDSTATS
7463 		p->se.statistics.wait_start	= 0;
7464 		p->se.statistics.sleep_start	= 0;
7465 		p->se.statistics.block_start	= 0;
7466 #endif
7467 
7468 		if (!dl_task(p) && !rt_task(p)) {
7469 			/*
7470 			 * Renice negative nice level userspace
7471 			 * tasks back to 0:
7472 			 */
7473 			if (task_nice(p) < 0)
7474 				set_user_nice(p, 0);
7475 			continue;
7476 		}
7477 
7478 		__sched_setscheduler(p, &attr, false, false);
7479 	}
7480 	read_unlock(&tasklist_lock);
7481 }
7482 
7483 #endif /* CONFIG_MAGIC_SYSRQ */
7484 
7485 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7486 /*
7487  * These functions are only useful for the IA64 MCA handling, or kdb.
7488  *
7489  * They can only be called when the whole system has been
7490  * stopped - every CPU needs to be quiescent, and no scheduling
7491  * activity can take place. Using them for anything else would
7492  * be a serious bug, and as a result, they aren't even visible
7493  * under any other configuration.
7494  */
7495 
7496 /**
7497  * curr_task - return the current task for a given cpu.
7498  * @cpu: the processor in question.
7499  *
7500  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7501  *
7502  * Return: The current task for @cpu.
7503  */
7504 struct task_struct *curr_task(int cpu)
7505 {
7506 	return cpu_curr(cpu);
7507 }
7508 
7509 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7510 
7511 #ifdef CONFIG_IA64
7512 /**
7513  * set_curr_task - set the current task for a given cpu.
7514  * @cpu: the processor in question.
7515  * @p: the task pointer to set.
7516  *
7517  * Description: This function must only be used when non-maskable interrupts
7518  * are serviced on a separate stack. It allows the architecture to switch the
7519  * notion of the current task on a cpu in a non-blocking manner. This function
7520  * must be called with all CPU's synchronized, and interrupts disabled, the
7521  * and caller must save the original value of the current task (see
7522  * curr_task() above) and restore that value before reenabling interrupts and
7523  * re-starting the system.
7524  *
7525  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7526  */
7527 void set_curr_task(int cpu, struct task_struct *p)
7528 {
7529 	cpu_curr(cpu) = p;
7530 }
7531 
7532 #endif
7533 
7534 #ifdef CONFIG_CGROUP_SCHED
7535 /* task_group_lock serializes the addition/removal of task groups */
7536 static DEFINE_SPINLOCK(task_group_lock);
7537 
7538 static void free_sched_group(struct task_group *tg)
7539 {
7540 	free_fair_sched_group(tg);
7541 	free_rt_sched_group(tg);
7542 	autogroup_free(tg);
7543 	kmem_cache_free(task_group_cache, tg);
7544 }
7545 
7546 /* allocate runqueue etc for a new task group */
7547 struct task_group *sched_create_group(struct task_group *parent)
7548 {
7549 	struct task_group *tg;
7550 
7551 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7552 	if (!tg)
7553 		return ERR_PTR(-ENOMEM);
7554 
7555 	if (!alloc_fair_sched_group(tg, parent))
7556 		goto err;
7557 
7558 	if (!alloc_rt_sched_group(tg, parent))
7559 		goto err;
7560 
7561 	return tg;
7562 
7563 err:
7564 	free_sched_group(tg);
7565 	return ERR_PTR(-ENOMEM);
7566 }
7567 
7568 void sched_online_group(struct task_group *tg, struct task_group *parent)
7569 {
7570 	unsigned long flags;
7571 
7572 	spin_lock_irqsave(&task_group_lock, flags);
7573 	list_add_rcu(&tg->list, &task_groups);
7574 
7575 	WARN_ON(!parent); /* root should already exist */
7576 
7577 	tg->parent = parent;
7578 	INIT_LIST_HEAD(&tg->children);
7579 	list_add_rcu(&tg->siblings, &parent->children);
7580 	spin_unlock_irqrestore(&task_group_lock, flags);
7581 }
7582 
7583 /* rcu callback to free various structures associated with a task group */
7584 static void free_sched_group_rcu(struct rcu_head *rhp)
7585 {
7586 	/* now it should be safe to free those cfs_rqs */
7587 	free_sched_group(container_of(rhp, struct task_group, rcu));
7588 }
7589 
7590 /* Destroy runqueue etc associated with a task group */
7591 void sched_destroy_group(struct task_group *tg)
7592 {
7593 	/* wait for possible concurrent references to cfs_rqs complete */
7594 	call_rcu(&tg->rcu, free_sched_group_rcu);
7595 }
7596 
7597 void sched_offline_group(struct task_group *tg)
7598 {
7599 	unsigned long flags;
7600 
7601 	/* end participation in shares distribution */
7602 	unregister_fair_sched_group(tg);
7603 
7604 	spin_lock_irqsave(&task_group_lock, flags);
7605 	list_del_rcu(&tg->list);
7606 	list_del_rcu(&tg->siblings);
7607 	spin_unlock_irqrestore(&task_group_lock, flags);
7608 }
7609 
7610 /* change task's runqueue when it moves between groups.
7611  *	The caller of this function should have put the task in its new group
7612  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7613  *	reflect its new group.
7614  */
7615 void sched_move_task(struct task_struct *tsk)
7616 {
7617 	struct task_group *tg;
7618 	int queued, running;
7619 	unsigned long flags;
7620 	struct rq *rq;
7621 
7622 	rq = task_rq_lock(tsk, &flags);
7623 
7624 	running = task_current(rq, tsk);
7625 	queued = task_on_rq_queued(tsk);
7626 
7627 	if (queued)
7628 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7629 	if (unlikely(running))
7630 		put_prev_task(rq, tsk);
7631 
7632 	/*
7633 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7634 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7635 	 * to prevent lockdep warnings.
7636 	 */
7637 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7638 			  struct task_group, css);
7639 	tg = autogroup_task_group(tsk, tg);
7640 	tsk->sched_task_group = tg;
7641 
7642 #ifdef CONFIG_FAIR_GROUP_SCHED
7643 	if (tsk->sched_class->task_move_group)
7644 		tsk->sched_class->task_move_group(tsk);
7645 	else
7646 #endif
7647 		set_task_rq(tsk, task_cpu(tsk));
7648 
7649 	if (unlikely(running))
7650 		tsk->sched_class->set_curr_task(rq);
7651 	if (queued)
7652 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7653 
7654 	task_rq_unlock(rq, tsk, &flags);
7655 }
7656 #endif /* CONFIG_CGROUP_SCHED */
7657 
7658 #ifdef CONFIG_RT_GROUP_SCHED
7659 /*
7660  * Ensure that the real time constraints are schedulable.
7661  */
7662 static DEFINE_MUTEX(rt_constraints_mutex);
7663 
7664 /* Must be called with tasklist_lock held */
7665 static inline int tg_has_rt_tasks(struct task_group *tg)
7666 {
7667 	struct task_struct *g, *p;
7668 
7669 	/*
7670 	 * Autogroups do not have RT tasks; see autogroup_create().
7671 	 */
7672 	if (task_group_is_autogroup(tg))
7673 		return 0;
7674 
7675 	for_each_process_thread(g, p) {
7676 		if (rt_task(p) && task_group(p) == tg)
7677 			return 1;
7678 	}
7679 
7680 	return 0;
7681 }
7682 
7683 struct rt_schedulable_data {
7684 	struct task_group *tg;
7685 	u64 rt_period;
7686 	u64 rt_runtime;
7687 };
7688 
7689 static int tg_rt_schedulable(struct task_group *tg, void *data)
7690 {
7691 	struct rt_schedulable_data *d = data;
7692 	struct task_group *child;
7693 	unsigned long total, sum = 0;
7694 	u64 period, runtime;
7695 
7696 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7697 	runtime = tg->rt_bandwidth.rt_runtime;
7698 
7699 	if (tg == d->tg) {
7700 		period = d->rt_period;
7701 		runtime = d->rt_runtime;
7702 	}
7703 
7704 	/*
7705 	 * Cannot have more runtime than the period.
7706 	 */
7707 	if (runtime > period && runtime != RUNTIME_INF)
7708 		return -EINVAL;
7709 
7710 	/*
7711 	 * Ensure we don't starve existing RT tasks.
7712 	 */
7713 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7714 		return -EBUSY;
7715 
7716 	total = to_ratio(period, runtime);
7717 
7718 	/*
7719 	 * Nobody can have more than the global setting allows.
7720 	 */
7721 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7722 		return -EINVAL;
7723 
7724 	/*
7725 	 * The sum of our children's runtime should not exceed our own.
7726 	 */
7727 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7728 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7729 		runtime = child->rt_bandwidth.rt_runtime;
7730 
7731 		if (child == d->tg) {
7732 			period = d->rt_period;
7733 			runtime = d->rt_runtime;
7734 		}
7735 
7736 		sum += to_ratio(period, runtime);
7737 	}
7738 
7739 	if (sum > total)
7740 		return -EINVAL;
7741 
7742 	return 0;
7743 }
7744 
7745 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7746 {
7747 	int ret;
7748 
7749 	struct rt_schedulable_data data = {
7750 		.tg = tg,
7751 		.rt_period = period,
7752 		.rt_runtime = runtime,
7753 	};
7754 
7755 	rcu_read_lock();
7756 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7757 	rcu_read_unlock();
7758 
7759 	return ret;
7760 }
7761 
7762 static int tg_set_rt_bandwidth(struct task_group *tg,
7763 		u64 rt_period, u64 rt_runtime)
7764 {
7765 	int i, err = 0;
7766 
7767 	/*
7768 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7769 	 * kernel creating (and or operating) RT threads.
7770 	 */
7771 	if (tg == &root_task_group && rt_runtime == 0)
7772 		return -EINVAL;
7773 
7774 	/* No period doesn't make any sense. */
7775 	if (rt_period == 0)
7776 		return -EINVAL;
7777 
7778 	mutex_lock(&rt_constraints_mutex);
7779 	read_lock(&tasklist_lock);
7780 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7781 	if (err)
7782 		goto unlock;
7783 
7784 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7785 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7786 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7787 
7788 	for_each_possible_cpu(i) {
7789 		struct rt_rq *rt_rq = tg->rt_rq[i];
7790 
7791 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7792 		rt_rq->rt_runtime = rt_runtime;
7793 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7794 	}
7795 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7796 unlock:
7797 	read_unlock(&tasklist_lock);
7798 	mutex_unlock(&rt_constraints_mutex);
7799 
7800 	return err;
7801 }
7802 
7803 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7804 {
7805 	u64 rt_runtime, rt_period;
7806 
7807 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7808 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7809 	if (rt_runtime_us < 0)
7810 		rt_runtime = RUNTIME_INF;
7811 
7812 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7813 }
7814 
7815 static long sched_group_rt_runtime(struct task_group *tg)
7816 {
7817 	u64 rt_runtime_us;
7818 
7819 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7820 		return -1;
7821 
7822 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7823 	do_div(rt_runtime_us, NSEC_PER_USEC);
7824 	return rt_runtime_us;
7825 }
7826 
7827 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7828 {
7829 	u64 rt_runtime, rt_period;
7830 
7831 	rt_period = rt_period_us * NSEC_PER_USEC;
7832 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7833 
7834 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7835 }
7836 
7837 static long sched_group_rt_period(struct task_group *tg)
7838 {
7839 	u64 rt_period_us;
7840 
7841 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7842 	do_div(rt_period_us, NSEC_PER_USEC);
7843 	return rt_period_us;
7844 }
7845 #endif /* CONFIG_RT_GROUP_SCHED */
7846 
7847 #ifdef CONFIG_RT_GROUP_SCHED
7848 static int sched_rt_global_constraints(void)
7849 {
7850 	int ret = 0;
7851 
7852 	mutex_lock(&rt_constraints_mutex);
7853 	read_lock(&tasklist_lock);
7854 	ret = __rt_schedulable(NULL, 0, 0);
7855 	read_unlock(&tasklist_lock);
7856 	mutex_unlock(&rt_constraints_mutex);
7857 
7858 	return ret;
7859 }
7860 
7861 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7862 {
7863 	/* Don't accept realtime tasks when there is no way for them to run */
7864 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7865 		return 0;
7866 
7867 	return 1;
7868 }
7869 
7870 #else /* !CONFIG_RT_GROUP_SCHED */
7871 static int sched_rt_global_constraints(void)
7872 {
7873 	unsigned long flags;
7874 	int i, ret = 0;
7875 
7876 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7877 	for_each_possible_cpu(i) {
7878 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7879 
7880 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7881 		rt_rq->rt_runtime = global_rt_runtime();
7882 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7883 	}
7884 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7885 
7886 	return ret;
7887 }
7888 #endif /* CONFIG_RT_GROUP_SCHED */
7889 
7890 static int sched_dl_global_validate(void)
7891 {
7892 	u64 runtime = global_rt_runtime();
7893 	u64 period = global_rt_period();
7894 	u64 new_bw = to_ratio(period, runtime);
7895 	struct dl_bw *dl_b;
7896 	int cpu, ret = 0;
7897 	unsigned long flags;
7898 
7899 	/*
7900 	 * Here we want to check the bandwidth not being set to some
7901 	 * value smaller than the currently allocated bandwidth in
7902 	 * any of the root_domains.
7903 	 *
7904 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7905 	 * cycling on root_domains... Discussion on different/better
7906 	 * solutions is welcome!
7907 	 */
7908 	for_each_possible_cpu(cpu) {
7909 		rcu_read_lock_sched();
7910 		dl_b = dl_bw_of(cpu);
7911 
7912 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7913 		if (new_bw < dl_b->total_bw)
7914 			ret = -EBUSY;
7915 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7916 
7917 		rcu_read_unlock_sched();
7918 
7919 		if (ret)
7920 			break;
7921 	}
7922 
7923 	return ret;
7924 }
7925 
7926 static void sched_dl_do_global(void)
7927 {
7928 	u64 new_bw = -1;
7929 	struct dl_bw *dl_b;
7930 	int cpu;
7931 	unsigned long flags;
7932 
7933 	def_dl_bandwidth.dl_period = global_rt_period();
7934 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7935 
7936 	if (global_rt_runtime() != RUNTIME_INF)
7937 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7938 
7939 	/*
7940 	 * FIXME: As above...
7941 	 */
7942 	for_each_possible_cpu(cpu) {
7943 		rcu_read_lock_sched();
7944 		dl_b = dl_bw_of(cpu);
7945 
7946 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7947 		dl_b->bw = new_bw;
7948 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7949 
7950 		rcu_read_unlock_sched();
7951 	}
7952 }
7953 
7954 static int sched_rt_global_validate(void)
7955 {
7956 	if (sysctl_sched_rt_period <= 0)
7957 		return -EINVAL;
7958 
7959 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7960 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7961 		return -EINVAL;
7962 
7963 	return 0;
7964 }
7965 
7966 static void sched_rt_do_global(void)
7967 {
7968 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7969 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7970 }
7971 
7972 int sched_rt_handler(struct ctl_table *table, int write,
7973 		void __user *buffer, size_t *lenp,
7974 		loff_t *ppos)
7975 {
7976 	int old_period, old_runtime;
7977 	static DEFINE_MUTEX(mutex);
7978 	int ret;
7979 
7980 	mutex_lock(&mutex);
7981 	old_period = sysctl_sched_rt_period;
7982 	old_runtime = sysctl_sched_rt_runtime;
7983 
7984 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7985 
7986 	if (!ret && write) {
7987 		ret = sched_rt_global_validate();
7988 		if (ret)
7989 			goto undo;
7990 
7991 		ret = sched_dl_global_validate();
7992 		if (ret)
7993 			goto undo;
7994 
7995 		ret = sched_rt_global_constraints();
7996 		if (ret)
7997 			goto undo;
7998 
7999 		sched_rt_do_global();
8000 		sched_dl_do_global();
8001 	}
8002 	if (0) {
8003 undo:
8004 		sysctl_sched_rt_period = old_period;
8005 		sysctl_sched_rt_runtime = old_runtime;
8006 	}
8007 	mutex_unlock(&mutex);
8008 
8009 	return ret;
8010 }
8011 
8012 int sched_rr_handler(struct ctl_table *table, int write,
8013 		void __user *buffer, size_t *lenp,
8014 		loff_t *ppos)
8015 {
8016 	int ret;
8017 	static DEFINE_MUTEX(mutex);
8018 
8019 	mutex_lock(&mutex);
8020 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8021 	/* make sure that internally we keep jiffies */
8022 	/* also, writing zero resets timeslice to default */
8023 	if (!ret && write) {
8024 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8025 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8026 	}
8027 	mutex_unlock(&mutex);
8028 	return ret;
8029 }
8030 
8031 #ifdef CONFIG_CGROUP_SCHED
8032 
8033 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8034 {
8035 	return css ? container_of(css, struct task_group, css) : NULL;
8036 }
8037 
8038 static struct cgroup_subsys_state *
8039 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8040 {
8041 	struct task_group *parent = css_tg(parent_css);
8042 	struct task_group *tg;
8043 
8044 	if (!parent) {
8045 		/* This is early initialization for the top cgroup */
8046 		return &root_task_group.css;
8047 	}
8048 
8049 	tg = sched_create_group(parent);
8050 	if (IS_ERR(tg))
8051 		return ERR_PTR(-ENOMEM);
8052 
8053 	return &tg->css;
8054 }
8055 
8056 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8057 {
8058 	struct task_group *tg = css_tg(css);
8059 	struct task_group *parent = css_tg(css->parent);
8060 
8061 	if (parent)
8062 		sched_online_group(tg, parent);
8063 	return 0;
8064 }
8065 
8066 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8067 {
8068 	struct task_group *tg = css_tg(css);
8069 
8070 	sched_destroy_group(tg);
8071 }
8072 
8073 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8074 {
8075 	struct task_group *tg = css_tg(css);
8076 
8077 	sched_offline_group(tg);
8078 }
8079 
8080 static void cpu_cgroup_fork(struct task_struct *task)
8081 {
8082 	sched_move_task(task);
8083 }
8084 
8085 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8086 {
8087 	struct task_struct *task;
8088 	struct cgroup_subsys_state *css;
8089 
8090 	cgroup_taskset_for_each(task, css, tset) {
8091 #ifdef CONFIG_RT_GROUP_SCHED
8092 		if (!sched_rt_can_attach(css_tg(css), task))
8093 			return -EINVAL;
8094 #else
8095 		/* We don't support RT-tasks being in separate groups */
8096 		if (task->sched_class != &fair_sched_class)
8097 			return -EINVAL;
8098 #endif
8099 	}
8100 	return 0;
8101 }
8102 
8103 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8104 {
8105 	struct task_struct *task;
8106 	struct cgroup_subsys_state *css;
8107 
8108 	cgroup_taskset_for_each(task, css, tset)
8109 		sched_move_task(task);
8110 }
8111 
8112 #ifdef CONFIG_FAIR_GROUP_SCHED
8113 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8114 				struct cftype *cftype, u64 shareval)
8115 {
8116 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8117 }
8118 
8119 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8120 			       struct cftype *cft)
8121 {
8122 	struct task_group *tg = css_tg(css);
8123 
8124 	return (u64) scale_load_down(tg->shares);
8125 }
8126 
8127 #ifdef CONFIG_CFS_BANDWIDTH
8128 static DEFINE_MUTEX(cfs_constraints_mutex);
8129 
8130 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8131 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8132 
8133 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8134 
8135 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8136 {
8137 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8138 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8139 
8140 	if (tg == &root_task_group)
8141 		return -EINVAL;
8142 
8143 	/*
8144 	 * Ensure we have at some amount of bandwidth every period.  This is
8145 	 * to prevent reaching a state of large arrears when throttled via
8146 	 * entity_tick() resulting in prolonged exit starvation.
8147 	 */
8148 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8149 		return -EINVAL;
8150 
8151 	/*
8152 	 * Likewise, bound things on the otherside by preventing insane quota
8153 	 * periods.  This also allows us to normalize in computing quota
8154 	 * feasibility.
8155 	 */
8156 	if (period > max_cfs_quota_period)
8157 		return -EINVAL;
8158 
8159 	/*
8160 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8161 	 * unthrottle_offline_cfs_rqs().
8162 	 */
8163 	get_online_cpus();
8164 	mutex_lock(&cfs_constraints_mutex);
8165 	ret = __cfs_schedulable(tg, period, quota);
8166 	if (ret)
8167 		goto out_unlock;
8168 
8169 	runtime_enabled = quota != RUNTIME_INF;
8170 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8171 	/*
8172 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8173 	 * before making related changes, and on->off must occur afterwards
8174 	 */
8175 	if (runtime_enabled && !runtime_was_enabled)
8176 		cfs_bandwidth_usage_inc();
8177 	raw_spin_lock_irq(&cfs_b->lock);
8178 	cfs_b->period = ns_to_ktime(period);
8179 	cfs_b->quota = quota;
8180 
8181 	__refill_cfs_bandwidth_runtime(cfs_b);
8182 	/* restart the period timer (if active) to handle new period expiry */
8183 	if (runtime_enabled)
8184 		start_cfs_bandwidth(cfs_b);
8185 	raw_spin_unlock_irq(&cfs_b->lock);
8186 
8187 	for_each_online_cpu(i) {
8188 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8189 		struct rq *rq = cfs_rq->rq;
8190 
8191 		raw_spin_lock_irq(&rq->lock);
8192 		cfs_rq->runtime_enabled = runtime_enabled;
8193 		cfs_rq->runtime_remaining = 0;
8194 
8195 		if (cfs_rq->throttled)
8196 			unthrottle_cfs_rq(cfs_rq);
8197 		raw_spin_unlock_irq(&rq->lock);
8198 	}
8199 	if (runtime_was_enabled && !runtime_enabled)
8200 		cfs_bandwidth_usage_dec();
8201 out_unlock:
8202 	mutex_unlock(&cfs_constraints_mutex);
8203 	put_online_cpus();
8204 
8205 	return ret;
8206 }
8207 
8208 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8209 {
8210 	u64 quota, period;
8211 
8212 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8213 	if (cfs_quota_us < 0)
8214 		quota = RUNTIME_INF;
8215 	else
8216 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8217 
8218 	return tg_set_cfs_bandwidth(tg, period, quota);
8219 }
8220 
8221 long tg_get_cfs_quota(struct task_group *tg)
8222 {
8223 	u64 quota_us;
8224 
8225 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8226 		return -1;
8227 
8228 	quota_us = tg->cfs_bandwidth.quota;
8229 	do_div(quota_us, NSEC_PER_USEC);
8230 
8231 	return quota_us;
8232 }
8233 
8234 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8235 {
8236 	u64 quota, period;
8237 
8238 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8239 	quota = tg->cfs_bandwidth.quota;
8240 
8241 	return tg_set_cfs_bandwidth(tg, period, quota);
8242 }
8243 
8244 long tg_get_cfs_period(struct task_group *tg)
8245 {
8246 	u64 cfs_period_us;
8247 
8248 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8249 	do_div(cfs_period_us, NSEC_PER_USEC);
8250 
8251 	return cfs_period_us;
8252 }
8253 
8254 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8255 				  struct cftype *cft)
8256 {
8257 	return tg_get_cfs_quota(css_tg(css));
8258 }
8259 
8260 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8261 				   struct cftype *cftype, s64 cfs_quota_us)
8262 {
8263 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8264 }
8265 
8266 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8267 				   struct cftype *cft)
8268 {
8269 	return tg_get_cfs_period(css_tg(css));
8270 }
8271 
8272 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8273 				    struct cftype *cftype, u64 cfs_period_us)
8274 {
8275 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8276 }
8277 
8278 struct cfs_schedulable_data {
8279 	struct task_group *tg;
8280 	u64 period, quota;
8281 };
8282 
8283 /*
8284  * normalize group quota/period to be quota/max_period
8285  * note: units are usecs
8286  */
8287 static u64 normalize_cfs_quota(struct task_group *tg,
8288 			       struct cfs_schedulable_data *d)
8289 {
8290 	u64 quota, period;
8291 
8292 	if (tg == d->tg) {
8293 		period = d->period;
8294 		quota = d->quota;
8295 	} else {
8296 		period = tg_get_cfs_period(tg);
8297 		quota = tg_get_cfs_quota(tg);
8298 	}
8299 
8300 	/* note: these should typically be equivalent */
8301 	if (quota == RUNTIME_INF || quota == -1)
8302 		return RUNTIME_INF;
8303 
8304 	return to_ratio(period, quota);
8305 }
8306 
8307 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8308 {
8309 	struct cfs_schedulable_data *d = data;
8310 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8311 	s64 quota = 0, parent_quota = -1;
8312 
8313 	if (!tg->parent) {
8314 		quota = RUNTIME_INF;
8315 	} else {
8316 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8317 
8318 		quota = normalize_cfs_quota(tg, d);
8319 		parent_quota = parent_b->hierarchical_quota;
8320 
8321 		/*
8322 		 * ensure max(child_quota) <= parent_quota, inherit when no
8323 		 * limit is set
8324 		 */
8325 		if (quota == RUNTIME_INF)
8326 			quota = parent_quota;
8327 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8328 			return -EINVAL;
8329 	}
8330 	cfs_b->hierarchical_quota = quota;
8331 
8332 	return 0;
8333 }
8334 
8335 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8336 {
8337 	int ret;
8338 	struct cfs_schedulable_data data = {
8339 		.tg = tg,
8340 		.period = period,
8341 		.quota = quota,
8342 	};
8343 
8344 	if (quota != RUNTIME_INF) {
8345 		do_div(data.period, NSEC_PER_USEC);
8346 		do_div(data.quota, NSEC_PER_USEC);
8347 	}
8348 
8349 	rcu_read_lock();
8350 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8351 	rcu_read_unlock();
8352 
8353 	return ret;
8354 }
8355 
8356 static int cpu_stats_show(struct seq_file *sf, void *v)
8357 {
8358 	struct task_group *tg = css_tg(seq_css(sf));
8359 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8360 
8361 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8362 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8363 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8364 
8365 	return 0;
8366 }
8367 #endif /* CONFIG_CFS_BANDWIDTH */
8368 #endif /* CONFIG_FAIR_GROUP_SCHED */
8369 
8370 #ifdef CONFIG_RT_GROUP_SCHED
8371 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8372 				struct cftype *cft, s64 val)
8373 {
8374 	return sched_group_set_rt_runtime(css_tg(css), val);
8375 }
8376 
8377 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8378 			       struct cftype *cft)
8379 {
8380 	return sched_group_rt_runtime(css_tg(css));
8381 }
8382 
8383 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8384 				    struct cftype *cftype, u64 rt_period_us)
8385 {
8386 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8387 }
8388 
8389 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8390 				   struct cftype *cft)
8391 {
8392 	return sched_group_rt_period(css_tg(css));
8393 }
8394 #endif /* CONFIG_RT_GROUP_SCHED */
8395 
8396 static struct cftype cpu_files[] = {
8397 #ifdef CONFIG_FAIR_GROUP_SCHED
8398 	{
8399 		.name = "shares",
8400 		.read_u64 = cpu_shares_read_u64,
8401 		.write_u64 = cpu_shares_write_u64,
8402 	},
8403 #endif
8404 #ifdef CONFIG_CFS_BANDWIDTH
8405 	{
8406 		.name = "cfs_quota_us",
8407 		.read_s64 = cpu_cfs_quota_read_s64,
8408 		.write_s64 = cpu_cfs_quota_write_s64,
8409 	},
8410 	{
8411 		.name = "cfs_period_us",
8412 		.read_u64 = cpu_cfs_period_read_u64,
8413 		.write_u64 = cpu_cfs_period_write_u64,
8414 	},
8415 	{
8416 		.name = "stat",
8417 		.seq_show = cpu_stats_show,
8418 	},
8419 #endif
8420 #ifdef CONFIG_RT_GROUP_SCHED
8421 	{
8422 		.name = "rt_runtime_us",
8423 		.read_s64 = cpu_rt_runtime_read,
8424 		.write_s64 = cpu_rt_runtime_write,
8425 	},
8426 	{
8427 		.name = "rt_period_us",
8428 		.read_u64 = cpu_rt_period_read_uint,
8429 		.write_u64 = cpu_rt_period_write_uint,
8430 	},
8431 #endif
8432 	{ }	/* terminate */
8433 };
8434 
8435 struct cgroup_subsys cpu_cgrp_subsys = {
8436 	.css_alloc	= cpu_cgroup_css_alloc,
8437 	.css_free	= cpu_cgroup_css_free,
8438 	.css_online	= cpu_cgroup_css_online,
8439 	.css_offline	= cpu_cgroup_css_offline,
8440 	.fork		= cpu_cgroup_fork,
8441 	.can_attach	= cpu_cgroup_can_attach,
8442 	.attach		= cpu_cgroup_attach,
8443 	.legacy_cftypes	= cpu_files,
8444 	.early_init	= 1,
8445 };
8446 
8447 #endif	/* CONFIG_CGROUP_SCHED */
8448 
8449 void dump_cpu_task(int cpu)
8450 {
8451 	pr_info("Task dump for CPU %d:\n", cpu);
8452 	sched_show_task(cpu_curr(cpu));
8453 }
8454 
8455 /*
8456  * Nice levels are multiplicative, with a gentle 10% change for every
8457  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8458  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8459  * that remained on nice 0.
8460  *
8461  * The "10% effect" is relative and cumulative: from _any_ nice level,
8462  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8463  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8464  * If a task goes up by ~10% and another task goes down by ~10% then
8465  * the relative distance between them is ~25%.)
8466  */
8467 const int sched_prio_to_weight[40] = {
8468  /* -20 */     88761,     71755,     56483,     46273,     36291,
8469  /* -15 */     29154,     23254,     18705,     14949,     11916,
8470  /* -10 */      9548,      7620,      6100,      4904,      3906,
8471  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8472  /*   0 */      1024,       820,       655,       526,       423,
8473  /*   5 */       335,       272,       215,       172,       137,
8474  /*  10 */       110,        87,        70,        56,        45,
8475  /*  15 */        36,        29,        23,        18,        15,
8476 };
8477 
8478 /*
8479  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8480  *
8481  * In cases where the weight does not change often, we can use the
8482  * precalculated inverse to speed up arithmetics by turning divisions
8483  * into multiplications:
8484  */
8485 const u32 sched_prio_to_wmult[40] = {
8486  /* -20 */     48388,     59856,     76040,     92818,    118348,
8487  /* -15 */    147320,    184698,    229616,    287308,    360437,
8488  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8489  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8490  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8491  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8492  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8493  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8494 };
8495