1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = PDE_DATA(file_inode(m->file)); 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = PDE_DATA(file_inode(m->file)); 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int __init ioresources_init(void) 139 { 140 proc_create_seq_data("ioports", 0, NULL, &resource_op, 141 &ioport_resource); 142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 143 return 0; 144 } 145 __initcall(ioresources_init); 146 147 #endif /* CONFIG_PROC_FS */ 148 149 static void free_resource(struct resource *res) 150 { 151 if (!res) 152 return; 153 154 if (!PageSlab(virt_to_head_page(res))) { 155 spin_lock(&bootmem_resource_lock); 156 res->sibling = bootmem_resource_free; 157 bootmem_resource_free = res; 158 spin_unlock(&bootmem_resource_lock); 159 } else { 160 kfree(res); 161 } 162 } 163 164 static struct resource *alloc_resource(gfp_t flags) 165 { 166 struct resource *res = NULL; 167 168 spin_lock(&bootmem_resource_lock); 169 if (bootmem_resource_free) { 170 res = bootmem_resource_free; 171 bootmem_resource_free = res->sibling; 172 } 173 spin_unlock(&bootmem_resource_lock); 174 175 if (res) 176 memset(res, 0, sizeof(struct resource)); 177 else 178 res = kzalloc(sizeof(struct resource), flags); 179 180 return res; 181 } 182 183 /* Return the conflict entry if you can't request it */ 184 static struct resource * __request_resource(struct resource *root, struct resource *new) 185 { 186 resource_size_t start = new->start; 187 resource_size_t end = new->end; 188 struct resource *tmp, **p; 189 190 if (end < start) 191 return root; 192 if (start < root->start) 193 return root; 194 if (end > root->end) 195 return root; 196 p = &root->child; 197 for (;;) { 198 tmp = *p; 199 if (!tmp || tmp->start > end) { 200 new->sibling = tmp; 201 *p = new; 202 new->parent = root; 203 return NULL; 204 } 205 p = &tmp->sibling; 206 if (tmp->end < start) 207 continue; 208 return tmp; 209 } 210 } 211 212 static int __release_resource(struct resource *old, bool release_child) 213 { 214 struct resource *tmp, **p, *chd; 215 216 p = &old->parent->child; 217 for (;;) { 218 tmp = *p; 219 if (!tmp) 220 break; 221 if (tmp == old) { 222 if (release_child || !(tmp->child)) { 223 *p = tmp->sibling; 224 } else { 225 for (chd = tmp->child;; chd = chd->sibling) { 226 chd->parent = tmp->parent; 227 if (!(chd->sibling)) 228 break; 229 } 230 *p = tmp->child; 231 chd->sibling = tmp->sibling; 232 } 233 old->parent = NULL; 234 return 0; 235 } 236 p = &tmp->sibling; 237 } 238 return -EINVAL; 239 } 240 241 static void __release_child_resources(struct resource *r) 242 { 243 struct resource *tmp, *p; 244 resource_size_t size; 245 246 p = r->child; 247 r->child = NULL; 248 while (p) { 249 tmp = p; 250 p = p->sibling; 251 252 tmp->parent = NULL; 253 tmp->sibling = NULL; 254 __release_child_resources(tmp); 255 256 printk(KERN_DEBUG "release child resource %pR\n", tmp); 257 /* need to restore size, and keep flags */ 258 size = resource_size(tmp); 259 tmp->start = 0; 260 tmp->end = size - 1; 261 } 262 } 263 264 void release_child_resources(struct resource *r) 265 { 266 write_lock(&resource_lock); 267 __release_child_resources(r); 268 write_unlock(&resource_lock); 269 } 270 271 /** 272 * request_resource_conflict - request and reserve an I/O or memory resource 273 * @root: root resource descriptor 274 * @new: resource descriptor desired by caller 275 * 276 * Returns 0 for success, conflict resource on error. 277 */ 278 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 279 { 280 struct resource *conflict; 281 282 write_lock(&resource_lock); 283 conflict = __request_resource(root, new); 284 write_unlock(&resource_lock); 285 return conflict; 286 } 287 288 /** 289 * request_resource - request and reserve an I/O or memory resource 290 * @root: root resource descriptor 291 * @new: resource descriptor desired by caller 292 * 293 * Returns 0 for success, negative error code on error. 294 */ 295 int request_resource(struct resource *root, struct resource *new) 296 { 297 struct resource *conflict; 298 299 conflict = request_resource_conflict(root, new); 300 return conflict ? -EBUSY : 0; 301 } 302 303 EXPORT_SYMBOL(request_resource); 304 305 /** 306 * release_resource - release a previously reserved resource 307 * @old: resource pointer 308 */ 309 int release_resource(struct resource *old) 310 { 311 int retval; 312 313 write_lock(&resource_lock); 314 retval = __release_resource(old, true); 315 write_unlock(&resource_lock); 316 return retval; 317 } 318 319 EXPORT_SYMBOL(release_resource); 320 321 /* 322 * Finds the lowest iomem resource existing within [res->start.res->end). 323 * The caller must specify res->start, res->end, res->flags, and optionally 324 * desc. If found, returns 0, res is overwritten, if not found, returns -1. 325 * This function walks the whole tree and not just first level children until 326 * and unless first_level_children_only is true. 327 */ 328 static int find_next_iomem_res(struct resource *res, unsigned long desc, 329 bool first_level_children_only) 330 { 331 resource_size_t start, end; 332 struct resource *p; 333 bool sibling_only = false; 334 335 BUG_ON(!res); 336 337 start = res->start; 338 end = res->end; 339 BUG_ON(start >= end); 340 341 if (first_level_children_only) 342 sibling_only = true; 343 344 read_lock(&resource_lock); 345 346 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) { 347 if ((p->flags & res->flags) != res->flags) 348 continue; 349 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 350 continue; 351 if (p->start > end) { 352 p = NULL; 353 break; 354 } 355 if ((p->end >= start) && (p->start < end)) 356 break; 357 } 358 359 read_unlock(&resource_lock); 360 if (!p) 361 return -1; 362 /* copy data */ 363 if (res->start < p->start) 364 res->start = p->start; 365 if (res->end > p->end) 366 res->end = p->end; 367 res->flags = p->flags; 368 res->desc = p->desc; 369 return 0; 370 } 371 372 static int __walk_iomem_res_desc(struct resource *res, unsigned long desc, 373 bool first_level_children_only, 374 void *arg, 375 int (*func)(struct resource *, void *)) 376 { 377 u64 orig_end = res->end; 378 int ret = -1; 379 380 while ((res->start < res->end) && 381 !find_next_iomem_res(res, desc, first_level_children_only)) { 382 ret = (*func)(res, arg); 383 if (ret) 384 break; 385 386 res->start = res->end + 1; 387 res->end = orig_end; 388 } 389 390 return ret; 391 } 392 393 /* 394 * Walks through iomem resources and calls func() with matching resource 395 * ranges. This walks through whole tree and not just first level children. 396 * All the memory ranges which overlap start,end and also match flags and 397 * desc are valid candidates. 398 * 399 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 400 * @flags: I/O resource flags 401 * @start: start addr 402 * @end: end addr 403 * 404 * NOTE: For a new descriptor search, define a new IORES_DESC in 405 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 406 */ 407 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 408 u64 end, void *arg, int (*func)(struct resource *, void *)) 409 { 410 struct resource res; 411 412 res.start = start; 413 res.end = end; 414 res.flags = flags; 415 416 return __walk_iomem_res_desc(&res, desc, false, arg, func); 417 } 418 419 /* 420 * This function calls the @func callback against all memory ranges of type 421 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 422 * Now, this function is only for System RAM, it deals with full ranges and 423 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 424 * ranges. 425 */ 426 int walk_system_ram_res(u64 start, u64 end, void *arg, 427 int (*func)(struct resource *, void *)) 428 { 429 struct resource res; 430 431 res.start = start; 432 res.end = end; 433 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 434 435 return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true, 436 arg, func); 437 } 438 439 /* 440 * This function calls the @func callback against all memory ranges, which 441 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 442 */ 443 int walk_mem_res(u64 start, u64 end, void *arg, 444 int (*func)(struct resource *, void *)) 445 { 446 struct resource res; 447 448 res.start = start; 449 res.end = end; 450 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 451 452 return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true, 453 arg, func); 454 } 455 456 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 457 458 /* 459 * This function calls the @func callback against all memory ranges of type 460 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 461 * It is to be used only for System RAM. 462 */ 463 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 464 void *arg, int (*func)(unsigned long, unsigned long, void *)) 465 { 466 struct resource res; 467 unsigned long pfn, end_pfn; 468 u64 orig_end; 469 int ret = -1; 470 471 res.start = (u64) start_pfn << PAGE_SHIFT; 472 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 473 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 474 orig_end = res.end; 475 while ((res.start < res.end) && 476 (find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) { 477 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 478 end_pfn = (res.end + 1) >> PAGE_SHIFT; 479 if (end_pfn > pfn) 480 ret = (*func)(pfn, end_pfn - pfn, arg); 481 if (ret) 482 break; 483 res.start = res.end + 1; 484 res.end = orig_end; 485 } 486 return ret; 487 } 488 489 #endif 490 491 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 492 { 493 return 1; 494 } 495 496 /* 497 * This generic page_is_ram() returns true if specified address is 498 * registered as System RAM in iomem_resource list. 499 */ 500 int __weak page_is_ram(unsigned long pfn) 501 { 502 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 503 } 504 EXPORT_SYMBOL_GPL(page_is_ram); 505 506 /** 507 * region_intersects() - determine intersection of region with known resources 508 * @start: region start address 509 * @size: size of region 510 * @flags: flags of resource (in iomem_resource) 511 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 512 * 513 * Check if the specified region partially overlaps or fully eclipses a 514 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 515 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 516 * return REGION_MIXED if the region overlaps @flags/@desc and another 517 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 518 * and no other defined resource. Note that REGION_INTERSECTS is also 519 * returned in the case when the specified region overlaps RAM and undefined 520 * memory holes. 521 * 522 * region_intersect() is used by memory remapping functions to ensure 523 * the user is not remapping RAM and is a vast speed up over walking 524 * through the resource table page by page. 525 */ 526 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 527 unsigned long desc) 528 { 529 resource_size_t end = start + size - 1; 530 int type = 0; int other = 0; 531 struct resource *p; 532 533 read_lock(&resource_lock); 534 for (p = iomem_resource.child; p ; p = p->sibling) { 535 bool is_type = (((p->flags & flags) == flags) && 536 ((desc == IORES_DESC_NONE) || 537 (desc == p->desc))); 538 539 if (start >= p->start && start <= p->end) 540 is_type ? type++ : other++; 541 if (end >= p->start && end <= p->end) 542 is_type ? type++ : other++; 543 if (p->start >= start && p->end <= end) 544 is_type ? type++ : other++; 545 } 546 read_unlock(&resource_lock); 547 548 if (other == 0) 549 return type ? REGION_INTERSECTS : REGION_DISJOINT; 550 551 if (type) 552 return REGION_MIXED; 553 554 return REGION_DISJOINT; 555 } 556 EXPORT_SYMBOL_GPL(region_intersects); 557 558 void __weak arch_remove_reservations(struct resource *avail) 559 { 560 } 561 562 static resource_size_t simple_align_resource(void *data, 563 const struct resource *avail, 564 resource_size_t size, 565 resource_size_t align) 566 { 567 return avail->start; 568 } 569 570 static void resource_clip(struct resource *res, resource_size_t min, 571 resource_size_t max) 572 { 573 if (res->start < min) 574 res->start = min; 575 if (res->end > max) 576 res->end = max; 577 } 578 579 /* 580 * Find empty slot in the resource tree with the given range and 581 * alignment constraints 582 */ 583 static int __find_resource(struct resource *root, struct resource *old, 584 struct resource *new, 585 resource_size_t size, 586 struct resource_constraint *constraint) 587 { 588 struct resource *this = root->child; 589 struct resource tmp = *new, avail, alloc; 590 591 tmp.start = root->start; 592 /* 593 * Skip past an allocated resource that starts at 0, since the assignment 594 * of this->start - 1 to tmp->end below would cause an underflow. 595 */ 596 if (this && this->start == root->start) { 597 tmp.start = (this == old) ? old->start : this->end + 1; 598 this = this->sibling; 599 } 600 for(;;) { 601 if (this) 602 tmp.end = (this == old) ? this->end : this->start - 1; 603 else 604 tmp.end = root->end; 605 606 if (tmp.end < tmp.start) 607 goto next; 608 609 resource_clip(&tmp, constraint->min, constraint->max); 610 arch_remove_reservations(&tmp); 611 612 /* Check for overflow after ALIGN() */ 613 avail.start = ALIGN(tmp.start, constraint->align); 614 avail.end = tmp.end; 615 avail.flags = new->flags & ~IORESOURCE_UNSET; 616 if (avail.start >= tmp.start) { 617 alloc.flags = avail.flags; 618 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 619 size, constraint->align); 620 alloc.end = alloc.start + size - 1; 621 if (alloc.start <= alloc.end && 622 resource_contains(&avail, &alloc)) { 623 new->start = alloc.start; 624 new->end = alloc.end; 625 return 0; 626 } 627 } 628 629 next: if (!this || this->end == root->end) 630 break; 631 632 if (this != old) 633 tmp.start = this->end + 1; 634 this = this->sibling; 635 } 636 return -EBUSY; 637 } 638 639 /* 640 * Find empty slot in the resource tree given range and alignment. 641 */ 642 static int find_resource(struct resource *root, struct resource *new, 643 resource_size_t size, 644 struct resource_constraint *constraint) 645 { 646 return __find_resource(root, NULL, new, size, constraint); 647 } 648 649 /** 650 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 651 * The resource will be relocated if the new size cannot be reallocated in the 652 * current location. 653 * 654 * @root: root resource descriptor 655 * @old: resource descriptor desired by caller 656 * @newsize: new size of the resource descriptor 657 * @constraint: the size and alignment constraints to be met. 658 */ 659 static int reallocate_resource(struct resource *root, struct resource *old, 660 resource_size_t newsize, 661 struct resource_constraint *constraint) 662 { 663 int err=0; 664 struct resource new = *old; 665 struct resource *conflict; 666 667 write_lock(&resource_lock); 668 669 if ((err = __find_resource(root, old, &new, newsize, constraint))) 670 goto out; 671 672 if (resource_contains(&new, old)) { 673 old->start = new.start; 674 old->end = new.end; 675 goto out; 676 } 677 678 if (old->child) { 679 err = -EBUSY; 680 goto out; 681 } 682 683 if (resource_contains(old, &new)) { 684 old->start = new.start; 685 old->end = new.end; 686 } else { 687 __release_resource(old, true); 688 *old = new; 689 conflict = __request_resource(root, old); 690 BUG_ON(conflict); 691 } 692 out: 693 write_unlock(&resource_lock); 694 return err; 695 } 696 697 698 /** 699 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 700 * The resource will be reallocated with a new size if it was already allocated 701 * @root: root resource descriptor 702 * @new: resource descriptor desired by caller 703 * @size: requested resource region size 704 * @min: minimum boundary to allocate 705 * @max: maximum boundary to allocate 706 * @align: alignment requested, in bytes 707 * @alignf: alignment function, optional, called if not NULL 708 * @alignf_data: arbitrary data to pass to the @alignf function 709 */ 710 int allocate_resource(struct resource *root, struct resource *new, 711 resource_size_t size, resource_size_t min, 712 resource_size_t max, resource_size_t align, 713 resource_size_t (*alignf)(void *, 714 const struct resource *, 715 resource_size_t, 716 resource_size_t), 717 void *alignf_data) 718 { 719 int err; 720 struct resource_constraint constraint; 721 722 if (!alignf) 723 alignf = simple_align_resource; 724 725 constraint.min = min; 726 constraint.max = max; 727 constraint.align = align; 728 constraint.alignf = alignf; 729 constraint.alignf_data = alignf_data; 730 731 if ( new->parent ) { 732 /* resource is already allocated, try reallocating with 733 the new constraints */ 734 return reallocate_resource(root, new, size, &constraint); 735 } 736 737 write_lock(&resource_lock); 738 err = find_resource(root, new, size, &constraint); 739 if (err >= 0 && __request_resource(root, new)) 740 err = -EBUSY; 741 write_unlock(&resource_lock); 742 return err; 743 } 744 745 EXPORT_SYMBOL(allocate_resource); 746 747 /** 748 * lookup_resource - find an existing resource by a resource start address 749 * @root: root resource descriptor 750 * @start: resource start address 751 * 752 * Returns a pointer to the resource if found, NULL otherwise 753 */ 754 struct resource *lookup_resource(struct resource *root, resource_size_t start) 755 { 756 struct resource *res; 757 758 read_lock(&resource_lock); 759 for (res = root->child; res; res = res->sibling) { 760 if (res->start == start) 761 break; 762 } 763 read_unlock(&resource_lock); 764 765 return res; 766 } 767 768 /* 769 * Insert a resource into the resource tree. If successful, return NULL, 770 * otherwise return the conflicting resource (compare to __request_resource()) 771 */ 772 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 773 { 774 struct resource *first, *next; 775 776 for (;; parent = first) { 777 first = __request_resource(parent, new); 778 if (!first) 779 return first; 780 781 if (first == parent) 782 return first; 783 if (WARN_ON(first == new)) /* duplicated insertion */ 784 return first; 785 786 if ((first->start > new->start) || (first->end < new->end)) 787 break; 788 if ((first->start == new->start) && (first->end == new->end)) 789 break; 790 } 791 792 for (next = first; ; next = next->sibling) { 793 /* Partial overlap? Bad, and unfixable */ 794 if (next->start < new->start || next->end > new->end) 795 return next; 796 if (!next->sibling) 797 break; 798 if (next->sibling->start > new->end) 799 break; 800 } 801 802 new->parent = parent; 803 new->sibling = next->sibling; 804 new->child = first; 805 806 next->sibling = NULL; 807 for (next = first; next; next = next->sibling) 808 next->parent = new; 809 810 if (parent->child == first) { 811 parent->child = new; 812 } else { 813 next = parent->child; 814 while (next->sibling != first) 815 next = next->sibling; 816 next->sibling = new; 817 } 818 return NULL; 819 } 820 821 /** 822 * insert_resource_conflict - Inserts resource in the resource tree 823 * @parent: parent of the new resource 824 * @new: new resource to insert 825 * 826 * Returns 0 on success, conflict resource if the resource can't be inserted. 827 * 828 * This function is equivalent to request_resource_conflict when no conflict 829 * happens. If a conflict happens, and the conflicting resources 830 * entirely fit within the range of the new resource, then the new 831 * resource is inserted and the conflicting resources become children of 832 * the new resource. 833 * 834 * This function is intended for producers of resources, such as FW modules 835 * and bus drivers. 836 */ 837 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 838 { 839 struct resource *conflict; 840 841 write_lock(&resource_lock); 842 conflict = __insert_resource(parent, new); 843 write_unlock(&resource_lock); 844 return conflict; 845 } 846 847 /** 848 * insert_resource - Inserts a resource in the resource tree 849 * @parent: parent of the new resource 850 * @new: new resource to insert 851 * 852 * Returns 0 on success, -EBUSY if the resource can't be inserted. 853 * 854 * This function is intended for producers of resources, such as FW modules 855 * and bus drivers. 856 */ 857 int insert_resource(struct resource *parent, struct resource *new) 858 { 859 struct resource *conflict; 860 861 conflict = insert_resource_conflict(parent, new); 862 return conflict ? -EBUSY : 0; 863 } 864 EXPORT_SYMBOL_GPL(insert_resource); 865 866 /** 867 * insert_resource_expand_to_fit - Insert a resource into the resource tree 868 * @root: root resource descriptor 869 * @new: new resource to insert 870 * 871 * Insert a resource into the resource tree, possibly expanding it in order 872 * to make it encompass any conflicting resources. 873 */ 874 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 875 { 876 if (new->parent) 877 return; 878 879 write_lock(&resource_lock); 880 for (;;) { 881 struct resource *conflict; 882 883 conflict = __insert_resource(root, new); 884 if (!conflict) 885 break; 886 if (conflict == root) 887 break; 888 889 /* Ok, expand resource to cover the conflict, then try again .. */ 890 if (conflict->start < new->start) 891 new->start = conflict->start; 892 if (conflict->end > new->end) 893 new->end = conflict->end; 894 895 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 896 } 897 write_unlock(&resource_lock); 898 } 899 900 /** 901 * remove_resource - Remove a resource in the resource tree 902 * @old: resource to remove 903 * 904 * Returns 0 on success, -EINVAL if the resource is not valid. 905 * 906 * This function removes a resource previously inserted by insert_resource() 907 * or insert_resource_conflict(), and moves the children (if any) up to 908 * where they were before. insert_resource() and insert_resource_conflict() 909 * insert a new resource, and move any conflicting resources down to the 910 * children of the new resource. 911 * 912 * insert_resource(), insert_resource_conflict() and remove_resource() are 913 * intended for producers of resources, such as FW modules and bus drivers. 914 */ 915 int remove_resource(struct resource *old) 916 { 917 int retval; 918 919 write_lock(&resource_lock); 920 retval = __release_resource(old, false); 921 write_unlock(&resource_lock); 922 return retval; 923 } 924 EXPORT_SYMBOL_GPL(remove_resource); 925 926 static int __adjust_resource(struct resource *res, resource_size_t start, 927 resource_size_t size) 928 { 929 struct resource *tmp, *parent = res->parent; 930 resource_size_t end = start + size - 1; 931 int result = -EBUSY; 932 933 if (!parent) 934 goto skip; 935 936 if ((start < parent->start) || (end > parent->end)) 937 goto out; 938 939 if (res->sibling && (res->sibling->start <= end)) 940 goto out; 941 942 tmp = parent->child; 943 if (tmp != res) { 944 while (tmp->sibling != res) 945 tmp = tmp->sibling; 946 if (start <= tmp->end) 947 goto out; 948 } 949 950 skip: 951 for (tmp = res->child; tmp; tmp = tmp->sibling) 952 if ((tmp->start < start) || (tmp->end > end)) 953 goto out; 954 955 res->start = start; 956 res->end = end; 957 result = 0; 958 959 out: 960 return result; 961 } 962 963 /** 964 * adjust_resource - modify a resource's start and size 965 * @res: resource to modify 966 * @start: new start value 967 * @size: new size 968 * 969 * Given an existing resource, change its start and size to match the 970 * arguments. Returns 0 on success, -EBUSY if it can't fit. 971 * Existing children of the resource are assumed to be immutable. 972 */ 973 int adjust_resource(struct resource *res, resource_size_t start, 974 resource_size_t size) 975 { 976 int result; 977 978 write_lock(&resource_lock); 979 result = __adjust_resource(res, start, size); 980 write_unlock(&resource_lock); 981 return result; 982 } 983 EXPORT_SYMBOL(adjust_resource); 984 985 static void __init __reserve_region_with_split(struct resource *root, 986 resource_size_t start, resource_size_t end, 987 const char *name) 988 { 989 struct resource *parent = root; 990 struct resource *conflict; 991 struct resource *res = alloc_resource(GFP_ATOMIC); 992 struct resource *next_res = NULL; 993 int type = resource_type(root); 994 995 if (!res) 996 return; 997 998 res->name = name; 999 res->start = start; 1000 res->end = end; 1001 res->flags = type | IORESOURCE_BUSY; 1002 res->desc = IORES_DESC_NONE; 1003 1004 while (1) { 1005 1006 conflict = __request_resource(parent, res); 1007 if (!conflict) { 1008 if (!next_res) 1009 break; 1010 res = next_res; 1011 next_res = NULL; 1012 continue; 1013 } 1014 1015 /* conflict covered whole area */ 1016 if (conflict->start <= res->start && 1017 conflict->end >= res->end) { 1018 free_resource(res); 1019 WARN_ON(next_res); 1020 break; 1021 } 1022 1023 /* failed, split and try again */ 1024 if (conflict->start > res->start) { 1025 end = res->end; 1026 res->end = conflict->start - 1; 1027 if (conflict->end < end) { 1028 next_res = alloc_resource(GFP_ATOMIC); 1029 if (!next_res) { 1030 free_resource(res); 1031 break; 1032 } 1033 next_res->name = name; 1034 next_res->start = conflict->end + 1; 1035 next_res->end = end; 1036 next_res->flags = type | IORESOURCE_BUSY; 1037 next_res->desc = IORES_DESC_NONE; 1038 } 1039 } else { 1040 res->start = conflict->end + 1; 1041 } 1042 } 1043 1044 } 1045 1046 void __init reserve_region_with_split(struct resource *root, 1047 resource_size_t start, resource_size_t end, 1048 const char *name) 1049 { 1050 int abort = 0; 1051 1052 write_lock(&resource_lock); 1053 if (root->start > start || root->end < end) { 1054 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1055 (unsigned long long)start, (unsigned long long)end, 1056 root); 1057 if (start > root->end || end < root->start) 1058 abort = 1; 1059 else { 1060 if (end > root->end) 1061 end = root->end; 1062 if (start < root->start) 1063 start = root->start; 1064 pr_err("fixing request to [0x%llx-0x%llx]\n", 1065 (unsigned long long)start, 1066 (unsigned long long)end); 1067 } 1068 dump_stack(); 1069 } 1070 if (!abort) 1071 __reserve_region_with_split(root, start, end, name); 1072 write_unlock(&resource_lock); 1073 } 1074 1075 /** 1076 * resource_alignment - calculate resource's alignment 1077 * @res: resource pointer 1078 * 1079 * Returns alignment on success, 0 (invalid alignment) on failure. 1080 */ 1081 resource_size_t resource_alignment(struct resource *res) 1082 { 1083 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1084 case IORESOURCE_SIZEALIGN: 1085 return resource_size(res); 1086 case IORESOURCE_STARTALIGN: 1087 return res->start; 1088 default: 1089 return 0; 1090 } 1091 } 1092 1093 /* 1094 * This is compatibility stuff for IO resources. 1095 * 1096 * Note how this, unlike the above, knows about 1097 * the IO flag meanings (busy etc). 1098 * 1099 * request_region creates a new busy region. 1100 * 1101 * release_region releases a matching busy region. 1102 */ 1103 1104 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1105 1106 /** 1107 * __request_region - create a new busy resource region 1108 * @parent: parent resource descriptor 1109 * @start: resource start address 1110 * @n: resource region size 1111 * @name: reserving caller's ID string 1112 * @flags: IO resource flags 1113 */ 1114 struct resource * __request_region(struct resource *parent, 1115 resource_size_t start, resource_size_t n, 1116 const char *name, int flags) 1117 { 1118 DECLARE_WAITQUEUE(wait, current); 1119 struct resource *res = alloc_resource(GFP_KERNEL); 1120 1121 if (!res) 1122 return NULL; 1123 1124 res->name = name; 1125 res->start = start; 1126 res->end = start + n - 1; 1127 1128 write_lock(&resource_lock); 1129 1130 for (;;) { 1131 struct resource *conflict; 1132 1133 res->flags = resource_type(parent) | resource_ext_type(parent); 1134 res->flags |= IORESOURCE_BUSY | flags; 1135 res->desc = parent->desc; 1136 1137 conflict = __request_resource(parent, res); 1138 if (!conflict) 1139 break; 1140 if (conflict != parent) { 1141 if (!(conflict->flags & IORESOURCE_BUSY)) { 1142 parent = conflict; 1143 continue; 1144 } 1145 } 1146 if (conflict->flags & flags & IORESOURCE_MUXED) { 1147 add_wait_queue(&muxed_resource_wait, &wait); 1148 write_unlock(&resource_lock); 1149 set_current_state(TASK_UNINTERRUPTIBLE); 1150 schedule(); 1151 remove_wait_queue(&muxed_resource_wait, &wait); 1152 write_lock(&resource_lock); 1153 continue; 1154 } 1155 /* Uhhuh, that didn't work out.. */ 1156 free_resource(res); 1157 res = NULL; 1158 break; 1159 } 1160 write_unlock(&resource_lock); 1161 return res; 1162 } 1163 EXPORT_SYMBOL(__request_region); 1164 1165 /** 1166 * __release_region - release a previously reserved resource region 1167 * @parent: parent resource descriptor 1168 * @start: resource start address 1169 * @n: resource region size 1170 * 1171 * The described resource region must match a currently busy region. 1172 */ 1173 void __release_region(struct resource *parent, resource_size_t start, 1174 resource_size_t n) 1175 { 1176 struct resource **p; 1177 resource_size_t end; 1178 1179 p = &parent->child; 1180 end = start + n - 1; 1181 1182 write_lock(&resource_lock); 1183 1184 for (;;) { 1185 struct resource *res = *p; 1186 1187 if (!res) 1188 break; 1189 if (res->start <= start && res->end >= end) { 1190 if (!(res->flags & IORESOURCE_BUSY)) { 1191 p = &res->child; 1192 continue; 1193 } 1194 if (res->start != start || res->end != end) 1195 break; 1196 *p = res->sibling; 1197 write_unlock(&resource_lock); 1198 if (res->flags & IORESOURCE_MUXED) 1199 wake_up(&muxed_resource_wait); 1200 free_resource(res); 1201 return; 1202 } 1203 p = &res->sibling; 1204 } 1205 1206 write_unlock(&resource_lock); 1207 1208 printk(KERN_WARNING "Trying to free nonexistent resource " 1209 "<%016llx-%016llx>\n", (unsigned long long)start, 1210 (unsigned long long)end); 1211 } 1212 EXPORT_SYMBOL(__release_region); 1213 1214 #ifdef CONFIG_MEMORY_HOTREMOVE 1215 /** 1216 * release_mem_region_adjustable - release a previously reserved memory region 1217 * @parent: parent resource descriptor 1218 * @start: resource start address 1219 * @size: resource region size 1220 * 1221 * This interface is intended for memory hot-delete. The requested region 1222 * is released from a currently busy memory resource. The requested region 1223 * must either match exactly or fit into a single busy resource entry. In 1224 * the latter case, the remaining resource is adjusted accordingly. 1225 * Existing children of the busy memory resource must be immutable in the 1226 * request. 1227 * 1228 * Note: 1229 * - Additional release conditions, such as overlapping region, can be 1230 * supported after they are confirmed as valid cases. 1231 * - When a busy memory resource gets split into two entries, the code 1232 * assumes that all children remain in the lower address entry for 1233 * simplicity. Enhance this logic when necessary. 1234 */ 1235 int release_mem_region_adjustable(struct resource *parent, 1236 resource_size_t start, resource_size_t size) 1237 { 1238 struct resource **p; 1239 struct resource *res; 1240 struct resource *new_res; 1241 resource_size_t end; 1242 int ret = -EINVAL; 1243 1244 end = start + size - 1; 1245 if ((start < parent->start) || (end > parent->end)) 1246 return ret; 1247 1248 /* The alloc_resource() result gets checked later */ 1249 new_res = alloc_resource(GFP_KERNEL); 1250 1251 p = &parent->child; 1252 write_lock(&resource_lock); 1253 1254 while ((res = *p)) { 1255 if (res->start >= end) 1256 break; 1257 1258 /* look for the next resource if it does not fit into */ 1259 if (res->start > start || res->end < end) { 1260 p = &res->sibling; 1261 continue; 1262 } 1263 1264 if (!(res->flags & IORESOURCE_MEM)) 1265 break; 1266 1267 if (!(res->flags & IORESOURCE_BUSY)) { 1268 p = &res->child; 1269 continue; 1270 } 1271 1272 /* found the target resource; let's adjust accordingly */ 1273 if (res->start == start && res->end == end) { 1274 /* free the whole entry */ 1275 *p = res->sibling; 1276 free_resource(res); 1277 ret = 0; 1278 } else if (res->start == start && res->end != end) { 1279 /* adjust the start */ 1280 ret = __adjust_resource(res, end + 1, 1281 res->end - end); 1282 } else if (res->start != start && res->end == end) { 1283 /* adjust the end */ 1284 ret = __adjust_resource(res, res->start, 1285 start - res->start); 1286 } else { 1287 /* split into two entries */ 1288 if (!new_res) { 1289 ret = -ENOMEM; 1290 break; 1291 } 1292 new_res->name = res->name; 1293 new_res->start = end + 1; 1294 new_res->end = res->end; 1295 new_res->flags = res->flags; 1296 new_res->desc = res->desc; 1297 new_res->parent = res->parent; 1298 new_res->sibling = res->sibling; 1299 new_res->child = NULL; 1300 1301 ret = __adjust_resource(res, res->start, 1302 start - res->start); 1303 if (ret) 1304 break; 1305 res->sibling = new_res; 1306 new_res = NULL; 1307 } 1308 1309 break; 1310 } 1311 1312 write_unlock(&resource_lock); 1313 free_resource(new_res); 1314 return ret; 1315 } 1316 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1317 1318 /* 1319 * Managed region resource 1320 */ 1321 static void devm_resource_release(struct device *dev, void *ptr) 1322 { 1323 struct resource **r = ptr; 1324 1325 release_resource(*r); 1326 } 1327 1328 /** 1329 * devm_request_resource() - request and reserve an I/O or memory resource 1330 * @dev: device for which to request the resource 1331 * @root: root of the resource tree from which to request the resource 1332 * @new: descriptor of the resource to request 1333 * 1334 * This is a device-managed version of request_resource(). There is usually 1335 * no need to release resources requested by this function explicitly since 1336 * that will be taken care of when the device is unbound from its driver. 1337 * If for some reason the resource needs to be released explicitly, because 1338 * of ordering issues for example, drivers must call devm_release_resource() 1339 * rather than the regular release_resource(). 1340 * 1341 * When a conflict is detected between any existing resources and the newly 1342 * requested resource, an error message will be printed. 1343 * 1344 * Returns 0 on success or a negative error code on failure. 1345 */ 1346 int devm_request_resource(struct device *dev, struct resource *root, 1347 struct resource *new) 1348 { 1349 struct resource *conflict, **ptr; 1350 1351 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1352 if (!ptr) 1353 return -ENOMEM; 1354 1355 *ptr = new; 1356 1357 conflict = request_resource_conflict(root, new); 1358 if (conflict) { 1359 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1360 new, conflict->name, conflict); 1361 devres_free(ptr); 1362 return -EBUSY; 1363 } 1364 1365 devres_add(dev, ptr); 1366 return 0; 1367 } 1368 EXPORT_SYMBOL(devm_request_resource); 1369 1370 static int devm_resource_match(struct device *dev, void *res, void *data) 1371 { 1372 struct resource **ptr = res; 1373 1374 return *ptr == data; 1375 } 1376 1377 /** 1378 * devm_release_resource() - release a previously requested resource 1379 * @dev: device for which to release the resource 1380 * @new: descriptor of the resource to release 1381 * 1382 * Releases a resource previously requested using devm_request_resource(). 1383 */ 1384 void devm_release_resource(struct device *dev, struct resource *new) 1385 { 1386 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1387 new)); 1388 } 1389 EXPORT_SYMBOL(devm_release_resource); 1390 1391 struct region_devres { 1392 struct resource *parent; 1393 resource_size_t start; 1394 resource_size_t n; 1395 }; 1396 1397 static void devm_region_release(struct device *dev, void *res) 1398 { 1399 struct region_devres *this = res; 1400 1401 __release_region(this->parent, this->start, this->n); 1402 } 1403 1404 static int devm_region_match(struct device *dev, void *res, void *match_data) 1405 { 1406 struct region_devres *this = res, *match = match_data; 1407 1408 return this->parent == match->parent && 1409 this->start == match->start && this->n == match->n; 1410 } 1411 1412 struct resource * __devm_request_region(struct device *dev, 1413 struct resource *parent, resource_size_t start, 1414 resource_size_t n, const char *name) 1415 { 1416 struct region_devres *dr = NULL; 1417 struct resource *res; 1418 1419 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1420 GFP_KERNEL); 1421 if (!dr) 1422 return NULL; 1423 1424 dr->parent = parent; 1425 dr->start = start; 1426 dr->n = n; 1427 1428 res = __request_region(parent, start, n, name, 0); 1429 if (res) 1430 devres_add(dev, dr); 1431 else 1432 devres_free(dr); 1433 1434 return res; 1435 } 1436 EXPORT_SYMBOL(__devm_request_region); 1437 1438 void __devm_release_region(struct device *dev, struct resource *parent, 1439 resource_size_t start, resource_size_t n) 1440 { 1441 struct region_devres match_data = { parent, start, n }; 1442 1443 __release_region(parent, start, n); 1444 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1445 &match_data)); 1446 } 1447 EXPORT_SYMBOL(__devm_release_region); 1448 1449 /* 1450 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1451 */ 1452 #define MAXRESERVE 4 1453 static int __init reserve_setup(char *str) 1454 { 1455 static int reserved; 1456 static struct resource reserve[MAXRESERVE]; 1457 1458 for (;;) { 1459 unsigned int io_start, io_num; 1460 int x = reserved; 1461 struct resource *parent; 1462 1463 if (get_option(&str, &io_start) != 2) 1464 break; 1465 if (get_option(&str, &io_num) == 0) 1466 break; 1467 if (x < MAXRESERVE) { 1468 struct resource *res = reserve + x; 1469 1470 /* 1471 * If the region starts below 0x10000, we assume it's 1472 * I/O port space; otherwise assume it's memory. 1473 */ 1474 if (io_start < 0x10000) { 1475 res->flags = IORESOURCE_IO; 1476 parent = &ioport_resource; 1477 } else { 1478 res->flags = IORESOURCE_MEM; 1479 parent = &iomem_resource; 1480 } 1481 res->name = "reserved"; 1482 res->start = io_start; 1483 res->end = io_start + io_num - 1; 1484 res->flags |= IORESOURCE_BUSY; 1485 res->desc = IORES_DESC_NONE; 1486 res->child = NULL; 1487 if (request_resource(parent, res) == 0) 1488 reserved = x+1; 1489 } 1490 } 1491 return 1; 1492 } 1493 __setup("reserve=", reserve_setup); 1494 1495 /* 1496 * Check if the requested addr and size spans more than any slot in the 1497 * iomem resource tree. 1498 */ 1499 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1500 { 1501 struct resource *p = &iomem_resource; 1502 int err = 0; 1503 loff_t l; 1504 1505 read_lock(&resource_lock); 1506 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1507 /* 1508 * We can probably skip the resources without 1509 * IORESOURCE_IO attribute? 1510 */ 1511 if (p->start >= addr + size) 1512 continue; 1513 if (p->end < addr) 1514 continue; 1515 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1516 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1517 continue; 1518 /* 1519 * if a resource is "BUSY", it's not a hardware resource 1520 * but a driver mapping of such a resource; we don't want 1521 * to warn for those; some drivers legitimately map only 1522 * partial hardware resources. (example: vesafb) 1523 */ 1524 if (p->flags & IORESOURCE_BUSY) 1525 continue; 1526 1527 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1528 (unsigned long long)addr, 1529 (unsigned long long)(addr + size - 1), 1530 p->name, p); 1531 err = -1; 1532 break; 1533 } 1534 read_unlock(&resource_lock); 1535 1536 return err; 1537 } 1538 1539 #ifdef CONFIG_STRICT_DEVMEM 1540 static int strict_iomem_checks = 1; 1541 #else 1542 static int strict_iomem_checks; 1543 #endif 1544 1545 /* 1546 * check if an address is reserved in the iomem resource tree 1547 * returns true if reserved, false if not reserved. 1548 */ 1549 bool iomem_is_exclusive(u64 addr) 1550 { 1551 struct resource *p = &iomem_resource; 1552 bool err = false; 1553 loff_t l; 1554 int size = PAGE_SIZE; 1555 1556 if (!strict_iomem_checks) 1557 return false; 1558 1559 addr = addr & PAGE_MASK; 1560 1561 read_lock(&resource_lock); 1562 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1563 /* 1564 * We can probably skip the resources without 1565 * IORESOURCE_IO attribute? 1566 */ 1567 if (p->start >= addr + size) 1568 break; 1569 if (p->end < addr) 1570 continue; 1571 /* 1572 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1573 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1574 * resource is busy. 1575 */ 1576 if ((p->flags & IORESOURCE_BUSY) == 0) 1577 continue; 1578 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1579 || p->flags & IORESOURCE_EXCLUSIVE) { 1580 err = true; 1581 break; 1582 } 1583 } 1584 read_unlock(&resource_lock); 1585 1586 return err; 1587 } 1588 1589 struct resource_entry *resource_list_create_entry(struct resource *res, 1590 size_t extra_size) 1591 { 1592 struct resource_entry *entry; 1593 1594 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1595 if (entry) { 1596 INIT_LIST_HEAD(&entry->node); 1597 entry->res = res ? res : &entry->__res; 1598 } 1599 1600 return entry; 1601 } 1602 EXPORT_SYMBOL(resource_list_create_entry); 1603 1604 void resource_list_free(struct list_head *head) 1605 { 1606 struct resource_entry *entry, *tmp; 1607 1608 list_for_each_entry_safe(entry, tmp, head, node) 1609 resource_list_destroy_entry(entry); 1610 } 1611 EXPORT_SYMBOL(resource_list_free); 1612 1613 static int __init strict_iomem(char *str) 1614 { 1615 if (strstr(str, "relaxed")) 1616 strict_iomem_checks = 0; 1617 if (strstr(str, "strict")) 1618 strict_iomem_checks = 1; 1619 return 1; 1620 } 1621 1622 __setup("iomem=", strict_iomem); 1623