xref: /linux/kernel/relay.c (revision 6ab3d5624e172c553004ecc862bfeac16d9d68b7)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  *
11  * This file is released under the GPL.
12  */
13 #include <linux/errno.h>
14 #include <linux/stddef.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/string.h>
18 #include <linux/relay.h>
19 #include <linux/vmalloc.h>
20 #include <linux/mm.h>
21 
22 /*
23  * close() vm_op implementation for relay file mapping.
24  */
25 static void relay_file_mmap_close(struct vm_area_struct *vma)
26 {
27 	struct rchan_buf *buf = vma->vm_private_data;
28 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
29 }
30 
31 /*
32  * nopage() vm_op implementation for relay file mapping.
33  */
34 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
35 				     unsigned long address,
36 				     int *type)
37 {
38 	struct page *page;
39 	struct rchan_buf *buf = vma->vm_private_data;
40 	unsigned long offset = address - vma->vm_start;
41 
42 	if (address > vma->vm_end)
43 		return NOPAGE_SIGBUS; /* Disallow mremap */
44 	if (!buf)
45 		return NOPAGE_OOM;
46 
47 	page = vmalloc_to_page(buf->start + offset);
48 	if (!page)
49 		return NOPAGE_OOM;
50 	get_page(page);
51 
52 	if (type)
53 		*type = VM_FAULT_MINOR;
54 
55 	return page;
56 }
57 
58 /*
59  * vm_ops for relay file mappings.
60  */
61 static struct vm_operations_struct relay_file_mmap_ops = {
62 	.nopage = relay_buf_nopage,
63 	.close = relay_file_mmap_close,
64 };
65 
66 /**
67  *	relay_mmap_buf: - mmap channel buffer to process address space
68  *	@buf: relay channel buffer
69  *	@vma: vm_area_struct describing memory to be mapped
70  *
71  *	Returns 0 if ok, negative on error
72  *
73  *	Caller should already have grabbed mmap_sem.
74  */
75 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
76 {
77 	unsigned long length = vma->vm_end - vma->vm_start;
78 	struct file *filp = vma->vm_file;
79 
80 	if (!buf)
81 		return -EBADF;
82 
83 	if (length != (unsigned long)buf->chan->alloc_size)
84 		return -EINVAL;
85 
86 	vma->vm_ops = &relay_file_mmap_ops;
87 	vma->vm_private_data = buf;
88 	buf->chan->cb->buf_mapped(buf, filp);
89 
90 	return 0;
91 }
92 
93 /**
94  *	relay_alloc_buf - allocate a channel buffer
95  *	@buf: the buffer struct
96  *	@size: total size of the buffer
97  *
98  *	Returns a pointer to the resulting buffer, NULL if unsuccessful. The
99  *	passed in size will get page aligned, if it isn't already.
100  */
101 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
102 {
103 	void *mem;
104 	unsigned int i, j, n_pages;
105 
106 	*size = PAGE_ALIGN(*size);
107 	n_pages = *size >> PAGE_SHIFT;
108 
109 	buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
110 	if (!buf->page_array)
111 		return NULL;
112 
113 	for (i = 0; i < n_pages; i++) {
114 		buf->page_array[i] = alloc_page(GFP_KERNEL);
115 		if (unlikely(!buf->page_array[i]))
116 			goto depopulate;
117 	}
118 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
119 	if (!mem)
120 		goto depopulate;
121 
122 	memset(mem, 0, *size);
123 	buf->page_count = n_pages;
124 	return mem;
125 
126 depopulate:
127 	for (j = 0; j < i; j++)
128 		__free_page(buf->page_array[j]);
129 	kfree(buf->page_array);
130 	return NULL;
131 }
132 
133 /**
134  *	relay_create_buf - allocate and initialize a channel buffer
135  *	@alloc_size: size of the buffer to allocate
136  *	@n_subbufs: number of sub-buffers in the channel
137  *
138  *	Returns channel buffer if successful, NULL otherwise
139  */
140 struct rchan_buf *relay_create_buf(struct rchan *chan)
141 {
142 	struct rchan_buf *buf = kcalloc(1, sizeof(struct rchan_buf), GFP_KERNEL);
143 	if (!buf)
144 		return NULL;
145 
146 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
147 	if (!buf->padding)
148 		goto free_buf;
149 
150 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
151 	if (!buf->start)
152 		goto free_buf;
153 
154 	buf->chan = chan;
155 	kref_get(&buf->chan->kref);
156 	return buf;
157 
158 free_buf:
159 	kfree(buf->padding);
160 	kfree(buf);
161 	return NULL;
162 }
163 
164 /**
165  *	relay_destroy_channel - free the channel struct
166  *
167  *	Should only be called from kref_put().
168  */
169 void relay_destroy_channel(struct kref *kref)
170 {
171 	struct rchan *chan = container_of(kref, struct rchan, kref);
172 	kfree(chan);
173 }
174 
175 /**
176  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
177  *	@buf: the buffer struct
178  */
179 void relay_destroy_buf(struct rchan_buf *buf)
180 {
181 	struct rchan *chan = buf->chan;
182 	unsigned int i;
183 
184 	if (likely(buf->start)) {
185 		vunmap(buf->start);
186 		for (i = 0; i < buf->page_count; i++)
187 			__free_page(buf->page_array[i]);
188 		kfree(buf->page_array);
189 	}
190 	kfree(buf->padding);
191 	kfree(buf);
192 	kref_put(&chan->kref, relay_destroy_channel);
193 }
194 
195 /**
196  *	relay_remove_buf - remove a channel buffer
197  *
198  *	Removes the file from the fileystem, which also frees the
199  *	rchan_buf_struct and the channel buffer.  Should only be called from
200  *	kref_put().
201  */
202 void relay_remove_buf(struct kref *kref)
203 {
204 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
205 	buf->chan->cb->remove_buf_file(buf->dentry);
206 	relay_destroy_buf(buf);
207 }
208 
209 /**
210  *	relay_buf_empty - boolean, is the channel buffer empty?
211  *	@buf: channel buffer
212  *
213  *	Returns 1 if the buffer is empty, 0 otherwise.
214  */
215 int relay_buf_empty(struct rchan_buf *buf)
216 {
217 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
218 }
219 EXPORT_SYMBOL_GPL(relay_buf_empty);
220 
221 /**
222  *	relay_buf_full - boolean, is the channel buffer full?
223  *	@buf: channel buffer
224  *
225  *	Returns 1 if the buffer is full, 0 otherwise.
226  */
227 int relay_buf_full(struct rchan_buf *buf)
228 {
229 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
230 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
231 }
232 EXPORT_SYMBOL_GPL(relay_buf_full);
233 
234 /*
235  * High-level relay kernel API and associated functions.
236  */
237 
238 /*
239  * rchan_callback implementations defining default channel behavior.  Used
240  * in place of corresponding NULL values in client callback struct.
241  */
242 
243 /*
244  * subbuf_start() default callback.  Does nothing.
245  */
246 static int subbuf_start_default_callback (struct rchan_buf *buf,
247 					  void *subbuf,
248 					  void *prev_subbuf,
249 					  size_t prev_padding)
250 {
251 	if (relay_buf_full(buf))
252 		return 0;
253 
254 	return 1;
255 }
256 
257 /*
258  * buf_mapped() default callback.  Does nothing.
259  */
260 static void buf_mapped_default_callback(struct rchan_buf *buf,
261 					struct file *filp)
262 {
263 }
264 
265 /*
266  * buf_unmapped() default callback.  Does nothing.
267  */
268 static void buf_unmapped_default_callback(struct rchan_buf *buf,
269 					  struct file *filp)
270 {
271 }
272 
273 /*
274  * create_buf_file_create() default callback.  Does nothing.
275  */
276 static struct dentry *create_buf_file_default_callback(const char *filename,
277 						       struct dentry *parent,
278 						       int mode,
279 						       struct rchan_buf *buf,
280 						       int *is_global)
281 {
282 	return NULL;
283 }
284 
285 /*
286  * remove_buf_file() default callback.  Does nothing.
287  */
288 static int remove_buf_file_default_callback(struct dentry *dentry)
289 {
290 	return -EINVAL;
291 }
292 
293 /* relay channel default callbacks */
294 static struct rchan_callbacks default_channel_callbacks = {
295 	.subbuf_start = subbuf_start_default_callback,
296 	.buf_mapped = buf_mapped_default_callback,
297 	.buf_unmapped = buf_unmapped_default_callback,
298 	.create_buf_file = create_buf_file_default_callback,
299 	.remove_buf_file = remove_buf_file_default_callback,
300 };
301 
302 /**
303  *	wakeup_readers - wake up readers waiting on a channel
304  *	@private: the channel buffer
305  *
306  *	This is the work function used to defer reader waking.  The
307  *	reason waking is deferred is that calling directly from write
308  *	causes problems if you're writing from say the scheduler.
309  */
310 static void wakeup_readers(void *private)
311 {
312 	struct rchan_buf *buf = private;
313 	wake_up_interruptible(&buf->read_wait);
314 }
315 
316 /**
317  *	__relay_reset - reset a channel buffer
318  *	@buf: the channel buffer
319  *	@init: 1 if this is a first-time initialization
320  *
321  *	See relay_reset for description of effect.
322  */
323 static inline void __relay_reset(struct rchan_buf *buf, unsigned int init)
324 {
325 	size_t i;
326 
327 	if (init) {
328 		init_waitqueue_head(&buf->read_wait);
329 		kref_init(&buf->kref);
330 		INIT_WORK(&buf->wake_readers, NULL, NULL);
331 	} else {
332 		cancel_delayed_work(&buf->wake_readers);
333 		flush_scheduled_work();
334 	}
335 
336 	buf->subbufs_produced = 0;
337 	buf->subbufs_consumed = 0;
338 	buf->bytes_consumed = 0;
339 	buf->finalized = 0;
340 	buf->data = buf->start;
341 	buf->offset = 0;
342 
343 	for (i = 0; i < buf->chan->n_subbufs; i++)
344 		buf->padding[i] = 0;
345 
346 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
347 }
348 
349 /**
350  *	relay_reset - reset the channel
351  *	@chan: the channel
352  *
353  *	This has the effect of erasing all data from all channel buffers
354  *	and restarting the channel in its initial state.  The buffers
355  *	are not freed, so any mappings are still in effect.
356  *
357  *	NOTE: Care should be taken that the channel isn't actually
358  *	being used by anything when this call is made.
359  */
360 void relay_reset(struct rchan *chan)
361 {
362 	unsigned int i;
363 	struct rchan_buf *prev = NULL;
364 
365 	if (!chan)
366 		return;
367 
368 	for (i = 0; i < NR_CPUS; i++) {
369 		if (!chan->buf[i] || chan->buf[i] == prev)
370 			break;
371 		__relay_reset(chan->buf[i], 0);
372 		prev = chan->buf[i];
373 	}
374 }
375 EXPORT_SYMBOL_GPL(relay_reset);
376 
377 /**
378  *	relay_open_buf - create a new relay channel buffer
379  *
380  *	Internal - used by relay_open().
381  */
382 static struct rchan_buf *relay_open_buf(struct rchan *chan,
383 					const char *filename,
384 					struct dentry *parent,
385 					int *is_global)
386 {
387 	struct rchan_buf *buf;
388 	struct dentry *dentry;
389 
390 	if (*is_global)
391 		return chan->buf[0];
392 
393 	buf = relay_create_buf(chan);
394 	if (!buf)
395 		return NULL;
396 
397 	/* Create file in fs */
398 	dentry = chan->cb->create_buf_file(filename, parent, S_IRUSR,
399 					   buf, is_global);
400 	if (!dentry) {
401 		relay_destroy_buf(buf);
402 		return NULL;
403 	}
404 
405 	buf->dentry = dentry;
406 	__relay_reset(buf, 1);
407 
408 	return buf;
409 }
410 
411 /**
412  *	relay_close_buf - close a channel buffer
413  *	@buf: channel buffer
414  *
415  *	Marks the buffer finalized and restores the default callbacks.
416  *	The channel buffer and channel buffer data structure are then freed
417  *	automatically when the last reference is given up.
418  */
419 static inline void relay_close_buf(struct rchan_buf *buf)
420 {
421 	buf->finalized = 1;
422 	cancel_delayed_work(&buf->wake_readers);
423 	flush_scheduled_work();
424 	kref_put(&buf->kref, relay_remove_buf);
425 }
426 
427 static inline void setup_callbacks(struct rchan *chan,
428 				   struct rchan_callbacks *cb)
429 {
430 	if (!cb) {
431 		chan->cb = &default_channel_callbacks;
432 		return;
433 	}
434 
435 	if (!cb->subbuf_start)
436 		cb->subbuf_start = subbuf_start_default_callback;
437 	if (!cb->buf_mapped)
438 		cb->buf_mapped = buf_mapped_default_callback;
439 	if (!cb->buf_unmapped)
440 		cb->buf_unmapped = buf_unmapped_default_callback;
441 	if (!cb->create_buf_file)
442 		cb->create_buf_file = create_buf_file_default_callback;
443 	if (!cb->remove_buf_file)
444 		cb->remove_buf_file = remove_buf_file_default_callback;
445 	chan->cb = cb;
446 }
447 
448 /**
449  *	relay_open - create a new relay channel
450  *	@base_filename: base name of files to create
451  *	@parent: dentry of parent directory, NULL for root directory
452  *	@subbuf_size: size of sub-buffers
453  *	@n_subbufs: number of sub-buffers
454  *	@cb: client callback functions
455  *
456  *	Returns channel pointer if successful, NULL otherwise.
457  *
458  *	Creates a channel buffer for each cpu using the sizes and
459  *	attributes specified.  The created channel buffer files
460  *	will be named base_filename0...base_filenameN-1.  File
461  *	permissions will be S_IRUSR.
462  */
463 struct rchan *relay_open(const char *base_filename,
464 			 struct dentry *parent,
465 			 size_t subbuf_size,
466 			 size_t n_subbufs,
467 			 struct rchan_callbacks *cb)
468 {
469 	unsigned int i;
470 	struct rchan *chan;
471 	char *tmpname;
472 	int is_global = 0;
473 
474 	if (!base_filename)
475 		return NULL;
476 
477 	if (!(subbuf_size && n_subbufs))
478 		return NULL;
479 
480 	chan = kcalloc(1, sizeof(struct rchan), GFP_KERNEL);
481 	if (!chan)
482 		return NULL;
483 
484 	chan->version = RELAYFS_CHANNEL_VERSION;
485 	chan->n_subbufs = n_subbufs;
486 	chan->subbuf_size = subbuf_size;
487 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
488 	setup_callbacks(chan, cb);
489 	kref_init(&chan->kref);
490 
491 	tmpname = kmalloc(NAME_MAX + 1, GFP_KERNEL);
492 	if (!tmpname)
493 		goto free_chan;
494 
495 	for_each_online_cpu(i) {
496 		sprintf(tmpname, "%s%d", base_filename, i);
497 		chan->buf[i] = relay_open_buf(chan, tmpname, parent,
498 					      &is_global);
499 		if (!chan->buf[i])
500 			goto free_bufs;
501 
502 		chan->buf[i]->cpu = i;
503 	}
504 
505 	kfree(tmpname);
506 	return chan;
507 
508 free_bufs:
509 	for (i = 0; i < NR_CPUS; i++) {
510 		if (!chan->buf[i])
511 			break;
512 		relay_close_buf(chan->buf[i]);
513 		if (is_global)
514 			break;
515 	}
516 	kfree(tmpname);
517 
518 free_chan:
519 	kref_put(&chan->kref, relay_destroy_channel);
520 	return NULL;
521 }
522 EXPORT_SYMBOL_GPL(relay_open);
523 
524 /**
525  *	relay_switch_subbuf - switch to a new sub-buffer
526  *	@buf: channel buffer
527  *	@length: size of current event
528  *
529  *	Returns either the length passed in or 0 if full.
530  *
531  *	Performs sub-buffer-switch tasks such as invoking callbacks,
532  *	updating padding counts, waking up readers, etc.
533  */
534 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
535 {
536 	void *old, *new;
537 	size_t old_subbuf, new_subbuf;
538 
539 	if (unlikely(length > buf->chan->subbuf_size))
540 		goto toobig;
541 
542 	if (buf->offset != buf->chan->subbuf_size + 1) {
543 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
544 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
545 		buf->padding[old_subbuf] = buf->prev_padding;
546 		buf->subbufs_produced++;
547 		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
548 			buf->padding[old_subbuf];
549 		smp_mb();
550 		if (waitqueue_active(&buf->read_wait)) {
551 			PREPARE_WORK(&buf->wake_readers, wakeup_readers, buf);
552 			schedule_delayed_work(&buf->wake_readers, 1);
553 		}
554 	}
555 
556 	old = buf->data;
557 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
558 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
559 	buf->offset = 0;
560 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
561 		buf->offset = buf->chan->subbuf_size + 1;
562 		return 0;
563 	}
564 	buf->data = new;
565 	buf->padding[new_subbuf] = 0;
566 
567 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
568 		goto toobig;
569 
570 	return length;
571 
572 toobig:
573 	buf->chan->last_toobig = length;
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
577 
578 /**
579  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
580  *	@chan: the channel
581  *	@cpu: the cpu associated with the channel buffer to update
582  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
583  *
584  *	Adds to the channel buffer's consumed sub-buffer count.
585  *	subbufs_consumed should be the number of sub-buffers newly consumed,
586  *	not the total consumed.
587  *
588  *	NOTE: kernel clients don't need to call this function if the channel
589  *	mode is 'overwrite'.
590  */
591 void relay_subbufs_consumed(struct rchan *chan,
592 			    unsigned int cpu,
593 			    size_t subbufs_consumed)
594 {
595 	struct rchan_buf *buf;
596 
597 	if (!chan)
598 		return;
599 
600 	if (cpu >= NR_CPUS || !chan->buf[cpu])
601 		return;
602 
603 	buf = chan->buf[cpu];
604 	buf->subbufs_consumed += subbufs_consumed;
605 	if (buf->subbufs_consumed > buf->subbufs_produced)
606 		buf->subbufs_consumed = buf->subbufs_produced;
607 }
608 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
609 
610 /**
611  *	relay_close - close the channel
612  *	@chan: the channel
613  *
614  *	Closes all channel buffers and frees the channel.
615  */
616 void relay_close(struct rchan *chan)
617 {
618 	unsigned int i;
619 	struct rchan_buf *prev = NULL;
620 
621 	if (!chan)
622 		return;
623 
624 	for (i = 0; i < NR_CPUS; i++) {
625 		if (!chan->buf[i] || chan->buf[i] == prev)
626 			break;
627 		relay_close_buf(chan->buf[i]);
628 		prev = chan->buf[i];
629 	}
630 
631 	if (chan->last_toobig)
632 		printk(KERN_WARNING "relay: one or more items not logged "
633 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
634 		       chan->last_toobig, chan->subbuf_size);
635 
636 	kref_put(&chan->kref, relay_destroy_channel);
637 }
638 EXPORT_SYMBOL_GPL(relay_close);
639 
640 /**
641  *	relay_flush - close the channel
642  *	@chan: the channel
643  *
644  *	Flushes all channel buffers i.e. forces buffer switch.
645  */
646 void relay_flush(struct rchan *chan)
647 {
648 	unsigned int i;
649 	struct rchan_buf *prev = NULL;
650 
651 	if (!chan)
652 		return;
653 
654 	for (i = 0; i < NR_CPUS; i++) {
655 		if (!chan->buf[i] || chan->buf[i] == prev)
656 			break;
657 		relay_switch_subbuf(chan->buf[i], 0);
658 		prev = chan->buf[i];
659 	}
660 }
661 EXPORT_SYMBOL_GPL(relay_flush);
662 
663 /**
664  *	relay_file_open - open file op for relay files
665  *	@inode: the inode
666  *	@filp: the file
667  *
668  *	Increments the channel buffer refcount.
669  */
670 static int relay_file_open(struct inode *inode, struct file *filp)
671 {
672 	struct rchan_buf *buf = inode->u.generic_ip;
673 	kref_get(&buf->kref);
674 	filp->private_data = buf;
675 
676 	return 0;
677 }
678 
679 /**
680  *	relay_file_mmap - mmap file op for relay files
681  *	@filp: the file
682  *	@vma: the vma describing what to map
683  *
684  *	Calls upon relay_mmap_buf to map the file into user space.
685  */
686 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
687 {
688 	struct rchan_buf *buf = filp->private_data;
689 	return relay_mmap_buf(buf, vma);
690 }
691 
692 /**
693  *	relay_file_poll - poll file op for relay files
694  *	@filp: the file
695  *	@wait: poll table
696  *
697  *	Poll implemention.
698  */
699 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
700 {
701 	unsigned int mask = 0;
702 	struct rchan_buf *buf = filp->private_data;
703 
704 	if (buf->finalized)
705 		return POLLERR;
706 
707 	if (filp->f_mode & FMODE_READ) {
708 		poll_wait(filp, &buf->read_wait, wait);
709 		if (!relay_buf_empty(buf))
710 			mask |= POLLIN | POLLRDNORM;
711 	}
712 
713 	return mask;
714 }
715 
716 /**
717  *	relay_file_release - release file op for relay files
718  *	@inode: the inode
719  *	@filp: the file
720  *
721  *	Decrements the channel refcount, as the filesystem is
722  *	no longer using it.
723  */
724 static int relay_file_release(struct inode *inode, struct file *filp)
725 {
726 	struct rchan_buf *buf = filp->private_data;
727 	kref_put(&buf->kref, relay_remove_buf);
728 
729 	return 0;
730 }
731 
732 /**
733  *	relay_file_read_consume - update the consumed count for the buffer
734  */
735 static void relay_file_read_consume(struct rchan_buf *buf,
736 				    size_t read_pos,
737 				    size_t bytes_consumed)
738 {
739 	size_t subbuf_size = buf->chan->subbuf_size;
740 	size_t n_subbufs = buf->chan->n_subbufs;
741 	size_t read_subbuf;
742 
743 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
744 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
745 		buf->bytes_consumed = 0;
746 	}
747 
748 	buf->bytes_consumed += bytes_consumed;
749 	read_subbuf = read_pos / buf->chan->subbuf_size;
750 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
751 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
752 		    (buf->offset == subbuf_size))
753 			return;
754 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
755 		buf->bytes_consumed = 0;
756 	}
757 }
758 
759 /**
760  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
761  */
762 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
763 {
764 	size_t subbuf_size = buf->chan->subbuf_size;
765 	size_t n_subbufs = buf->chan->n_subbufs;
766 	size_t produced = buf->subbufs_produced;
767 	size_t consumed = buf->subbufs_consumed;
768 
769 	relay_file_read_consume(buf, read_pos, 0);
770 
771 	if (unlikely(buf->offset > subbuf_size)) {
772 		if (produced == consumed)
773 			return 0;
774 		return 1;
775 	}
776 
777 	if (unlikely(produced - consumed >= n_subbufs)) {
778 		consumed = (produced / n_subbufs) * n_subbufs;
779 		buf->subbufs_consumed = consumed;
780 	}
781 
782 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
783 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
784 
785 	if (consumed > produced)
786 		produced += n_subbufs * subbuf_size;
787 
788 	if (consumed == produced)
789 		return 0;
790 
791 	return 1;
792 }
793 
794 /**
795  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
796  */
797 static size_t relay_file_read_subbuf_avail(size_t read_pos,
798 					   struct rchan_buf *buf)
799 {
800 	size_t padding, avail = 0;
801 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
802 	size_t subbuf_size = buf->chan->subbuf_size;
803 
804 	write_subbuf = (buf->data - buf->start) / subbuf_size;
805 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
806 	read_subbuf = read_pos / subbuf_size;
807 	read_offset = read_pos % subbuf_size;
808 	padding = buf->padding[read_subbuf];
809 
810 	if (read_subbuf == write_subbuf) {
811 		if (read_offset + padding < write_offset)
812 			avail = write_offset - (read_offset + padding);
813 	} else
814 		avail = (subbuf_size - padding) - read_offset;
815 
816 	return avail;
817 }
818 
819 /**
820  *	relay_file_read_start_pos - find the first available byte to read
821  *
822  *	If the read_pos is in the middle of padding, return the
823  *	position of the first actually available byte, otherwise
824  *	return the original value.
825  */
826 static size_t relay_file_read_start_pos(size_t read_pos,
827 					struct rchan_buf *buf)
828 {
829 	size_t read_subbuf, padding, padding_start, padding_end;
830 	size_t subbuf_size = buf->chan->subbuf_size;
831 	size_t n_subbufs = buf->chan->n_subbufs;
832 
833 	read_subbuf = read_pos / subbuf_size;
834 	padding = buf->padding[read_subbuf];
835 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
836 	padding_end = (read_subbuf + 1) * subbuf_size;
837 	if (read_pos >= padding_start && read_pos < padding_end) {
838 		read_subbuf = (read_subbuf + 1) % n_subbufs;
839 		read_pos = read_subbuf * subbuf_size;
840 	}
841 
842 	return read_pos;
843 }
844 
845 /**
846  *	relay_file_read_end_pos - return the new read position
847  */
848 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
849 				      size_t read_pos,
850 				      size_t count)
851 {
852 	size_t read_subbuf, padding, end_pos;
853 	size_t subbuf_size = buf->chan->subbuf_size;
854 	size_t n_subbufs = buf->chan->n_subbufs;
855 
856 	read_subbuf = read_pos / subbuf_size;
857 	padding = buf->padding[read_subbuf];
858 	if (read_pos % subbuf_size + count + padding == subbuf_size)
859 		end_pos = (read_subbuf + 1) * subbuf_size;
860 	else
861 		end_pos = read_pos + count;
862 	if (end_pos >= subbuf_size * n_subbufs)
863 		end_pos = 0;
864 
865 	return end_pos;
866 }
867 
868 /**
869  *	subbuf_read_actor - read up to one subbuf's worth of data
870  */
871 static int subbuf_read_actor(size_t read_start,
872 			     struct rchan_buf *buf,
873 			     size_t avail,
874 			     read_descriptor_t *desc,
875 			     read_actor_t actor)
876 {
877 	void *from;
878 	int ret = 0;
879 
880 	from = buf->start + read_start;
881 	ret = avail;
882 	if (copy_to_user(desc->arg.data, from, avail)) {
883 		desc->error = -EFAULT;
884 		ret = 0;
885 	}
886 	desc->arg.data += ret;
887 	desc->written += ret;
888 	desc->count -= ret;
889 
890 	return ret;
891 }
892 
893 /**
894  *	subbuf_send_actor - send up to one subbuf's worth of data
895  */
896 static int subbuf_send_actor(size_t read_start,
897 			     struct rchan_buf *buf,
898 			     size_t avail,
899 			     read_descriptor_t *desc,
900 			     read_actor_t actor)
901 {
902 	unsigned long pidx, poff;
903 	unsigned int subbuf_pages;
904 	int ret = 0;
905 
906 	subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
907 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
908 	poff = read_start & ~PAGE_MASK;
909 	while (avail) {
910 		struct page *p = buf->page_array[pidx];
911 		unsigned int len;
912 
913 		len = PAGE_SIZE - poff;
914 		if (len > avail)
915 			len = avail;
916 
917 		len = actor(desc, p, poff, len);
918 		if (desc->error)
919 			break;
920 
921 		avail -= len;
922 		ret += len;
923 		poff = 0;
924 		pidx = (pidx + 1) % subbuf_pages;
925 	}
926 
927 	return ret;
928 }
929 
930 typedef int (*subbuf_actor_t) (size_t read_start,
931 			       struct rchan_buf *buf,
932 			       size_t avail,
933 			       read_descriptor_t *desc,
934 			       read_actor_t actor);
935 
936 /**
937  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
938  */
939 static inline ssize_t relay_file_read_subbufs(struct file *filp,
940 					      loff_t *ppos,
941 					      size_t count,
942 					      subbuf_actor_t subbuf_actor,
943 					      read_actor_t actor,
944 					      void *target)
945 {
946 	struct rchan_buf *buf = filp->private_data;
947 	size_t read_start, avail;
948 	read_descriptor_t desc;
949 	int ret;
950 
951 	if (!count)
952 		return 0;
953 
954 	desc.written = 0;
955 	desc.count = count;
956 	desc.arg.data = target;
957 	desc.error = 0;
958 
959 	mutex_lock(&filp->f_dentry->d_inode->i_mutex);
960 	do {
961 		if (!relay_file_read_avail(buf, *ppos))
962 			break;
963 
964 		read_start = relay_file_read_start_pos(*ppos, buf);
965 		avail = relay_file_read_subbuf_avail(read_start, buf);
966 		if (!avail)
967 			break;
968 
969 		avail = min(desc.count, avail);
970 		ret = subbuf_actor(read_start, buf, avail, &desc, actor);
971 		if (desc.error < 0)
972 			break;
973 
974 		if (ret) {
975 			relay_file_read_consume(buf, read_start, ret);
976 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
977 		}
978 	} while (desc.count && ret);
979 	mutex_unlock(&filp->f_dentry->d_inode->i_mutex);
980 
981 	return desc.written;
982 }
983 
984 static ssize_t relay_file_read(struct file *filp,
985 			       char __user *buffer,
986 			       size_t count,
987 			       loff_t *ppos)
988 {
989 	return relay_file_read_subbufs(filp, ppos, count, subbuf_read_actor,
990 				       NULL, buffer);
991 }
992 
993 static ssize_t relay_file_sendfile(struct file *filp,
994 				   loff_t *ppos,
995 				   size_t count,
996 				   read_actor_t actor,
997 				   void *target)
998 {
999 	return relay_file_read_subbufs(filp, ppos, count, subbuf_send_actor,
1000 				       actor, target);
1001 }
1002 
1003 struct file_operations relay_file_operations = {
1004 	.open		= relay_file_open,
1005 	.poll		= relay_file_poll,
1006 	.mmap		= relay_file_mmap,
1007 	.read		= relay_file_read,
1008 	.llseek		= no_llseek,
1009 	.release	= relay_file_release,
1010 	.sendfile       = relay_file_sendfile,
1011 };
1012 EXPORT_SYMBOL_GPL(relay_file_operations);
1013