xref: /linux/kernel/relay.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84 	kvfree(array);
85 }
86 
87 /**
88  *	relay_mmap_buf: - mmap channel buffer to process address space
89  *	@buf: relay channel buffer
90  *	@vma: vm_area_struct describing memory to be mapped
91  *
92  *	Returns 0 if ok, negative on error
93  *
94  *	Caller should already have grabbed mmap_sem.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 	unsigned long length = vma->vm_end - vma->vm_start;
99 	struct file *filp = vma->vm_file;
100 
101 	if (!buf)
102 		return -EBADF;
103 
104 	if (length != (unsigned long)buf->chan->alloc_size)
105 		return -EINVAL;
106 
107 	vma->vm_ops = &relay_file_mmap_ops;
108 	vma->vm_flags |= VM_DONTEXPAND;
109 	vma->vm_private_data = buf;
110 	buf->chan->cb->buf_mapped(buf, filp);
111 
112 	return 0;
113 }
114 
115 /**
116  *	relay_alloc_buf - allocate a channel buffer
117  *	@buf: the buffer struct
118  *	@size: total size of the buffer
119  *
120  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *	passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 	void *mem;
126 	unsigned int i, j, n_pages;
127 
128 	*size = PAGE_ALIGN(*size);
129 	n_pages = *size >> PAGE_SHIFT;
130 
131 	buf->page_array = relay_alloc_page_array(n_pages);
132 	if (!buf->page_array)
133 		return NULL;
134 
135 	for (i = 0; i < n_pages; i++) {
136 		buf->page_array[i] = alloc_page(GFP_KERNEL);
137 		if (unlikely(!buf->page_array[i]))
138 			goto depopulate;
139 		set_page_private(buf->page_array[i], (unsigned long)buf);
140 	}
141 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 	if (!mem)
143 		goto depopulate;
144 
145 	memset(mem, 0, *size);
146 	buf->page_count = n_pages;
147 	return mem;
148 
149 depopulate:
150 	for (j = 0; j < i; j++)
151 		__free_page(buf->page_array[j]);
152 	relay_free_page_array(buf->page_array);
153 	return NULL;
154 }
155 
156 /**
157  *	relay_create_buf - allocate and initialize a channel buffer
158  *	@chan: the relay channel
159  *
160  *	Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 	struct rchan_buf *buf;
165 
166 	if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
167 		return NULL;
168 
169 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 	if (!buf)
171 		return NULL;
172 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 	if (!buf->padding)
174 		goto free_buf;
175 
176 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 	if (!buf->start)
178 		goto free_buf;
179 
180 	buf->chan = chan;
181 	kref_get(&buf->chan->kref);
182 	return buf;
183 
184 free_buf:
185 	kfree(buf->padding);
186 	kfree(buf);
187 	return NULL;
188 }
189 
190 /**
191  *	relay_destroy_channel - free the channel struct
192  *	@kref: target kernel reference that contains the relay channel
193  *
194  *	Should only be called from kref_put().
195  */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 	struct rchan *chan = container_of(kref, struct rchan, kref);
199 	kfree(chan);
200 }
201 
202 /**
203  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204  *	@buf: the buffer struct
205  */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 	struct rchan *chan = buf->chan;
209 	unsigned int i;
210 
211 	if (likely(buf->start)) {
212 		vunmap(buf->start);
213 		for (i = 0; i < buf->page_count; i++)
214 			__free_page(buf->page_array[i]);
215 		relay_free_page_array(buf->page_array);
216 	}
217 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
218 	kfree(buf->padding);
219 	kfree(buf);
220 	kref_put(&chan->kref, relay_destroy_channel);
221 }
222 
223 /**
224  *	relay_remove_buf - remove a channel buffer
225  *	@kref: target kernel reference that contains the relay buffer
226  *
227  *	Removes the file from the filesystem, which also frees the
228  *	rchan_buf_struct and the channel buffer.  Should only be called from
229  *	kref_put().
230  */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 	relay_destroy_buf(buf);
235 }
236 
237 /**
238  *	relay_buf_empty - boolean, is the channel buffer empty?
239  *	@buf: channel buffer
240  *
241  *	Returns 1 if the buffer is empty, 0 otherwise.
242  */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247 
248 /**
249  *	relay_buf_full - boolean, is the channel buffer full?
250  *	@buf: channel buffer
251  *
252  *	Returns 1 if the buffer is full, 0 otherwise.
253  */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260 
261 /*
262  * High-level relay kernel API and associated functions.
263  */
264 
265 /*
266  * rchan_callback implementations defining default channel behavior.  Used
267  * in place of corresponding NULL values in client callback struct.
268  */
269 
270 /*
271  * subbuf_start() default callback.  Does nothing.
272  */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 					  void *subbuf,
275 					  void *prev_subbuf,
276 					  size_t prev_padding)
277 {
278 	if (relay_buf_full(buf))
279 		return 0;
280 
281 	return 1;
282 }
283 
284 /*
285  * buf_mapped() default callback.  Does nothing.
286  */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 					struct file *filp)
289 {
290 }
291 
292 /*
293  * buf_unmapped() default callback.  Does nothing.
294  */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 					  struct file *filp)
297 {
298 }
299 
300 /*
301  * create_buf_file_create() default callback.  Does nothing.
302  */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 						       struct dentry *parent,
305 						       umode_t mode,
306 						       struct rchan_buf *buf,
307 						       int *is_global)
308 {
309 	return NULL;
310 }
311 
312 /*
313  * remove_buf_file() default callback.  Does nothing.
314  */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 	return -EINVAL;
318 }
319 
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 	.subbuf_start = subbuf_start_default_callback,
323 	.buf_mapped = buf_mapped_default_callback,
324 	.buf_unmapped = buf_unmapped_default_callback,
325 	.create_buf_file = create_buf_file_default_callback,
326 	.remove_buf_file = remove_buf_file_default_callback,
327 };
328 
329 /**
330  *	wakeup_readers - wake up readers waiting on a channel
331  *	@data: contains the channel buffer
332  *
333  *	This is the timer function used to defer reader waking.
334  */
335 static void wakeup_readers(unsigned long data)
336 {
337 	struct rchan_buf *buf = (struct rchan_buf *)data;
338 	wake_up_interruptible(&buf->read_wait);
339 }
340 
341 /**
342  *	__relay_reset - reset a channel buffer
343  *	@buf: the channel buffer
344  *	@init: 1 if this is a first-time initialization
345  *
346  *	See relay_reset() for description of effect.
347  */
348 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
349 {
350 	size_t i;
351 
352 	if (init) {
353 		init_waitqueue_head(&buf->read_wait);
354 		kref_init(&buf->kref);
355 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
356 	} else
357 		del_timer_sync(&buf->timer);
358 
359 	buf->subbufs_produced = 0;
360 	buf->subbufs_consumed = 0;
361 	buf->bytes_consumed = 0;
362 	buf->finalized = 0;
363 	buf->data = buf->start;
364 	buf->offset = 0;
365 
366 	for (i = 0; i < buf->chan->n_subbufs; i++)
367 		buf->padding[i] = 0;
368 
369 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
370 }
371 
372 /**
373  *	relay_reset - reset the channel
374  *	@chan: the channel
375  *
376  *	This has the effect of erasing all data from all channel buffers
377  *	and restarting the channel in its initial state.  The buffers
378  *	are not freed, so any mappings are still in effect.
379  *
380  *	NOTE. Care should be taken that the channel isn't actually
381  *	being used by anything when this call is made.
382  */
383 void relay_reset(struct rchan *chan)
384 {
385 	struct rchan_buf *buf;
386 	unsigned int i;
387 
388 	if (!chan)
389 		return;
390 
391 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
392 		__relay_reset(buf, 0);
393 		return;
394 	}
395 
396 	mutex_lock(&relay_channels_mutex);
397 	for_each_possible_cpu(i)
398 		if ((buf = *per_cpu_ptr(chan->buf, i)))
399 			__relay_reset(buf, 0);
400 	mutex_unlock(&relay_channels_mutex);
401 }
402 EXPORT_SYMBOL_GPL(relay_reset);
403 
404 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
405 					struct dentry *dentry)
406 {
407 	buf->dentry = dentry;
408 	d_inode(buf->dentry)->i_size = buf->early_bytes;
409 }
410 
411 static struct dentry *relay_create_buf_file(struct rchan *chan,
412 					    struct rchan_buf *buf,
413 					    unsigned int cpu)
414 {
415 	struct dentry *dentry;
416 	char *tmpname;
417 
418 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
419 	if (!tmpname)
420 		return NULL;
421 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
422 
423 	/* Create file in fs */
424 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
425 					   S_IRUSR, buf,
426 					   &chan->is_global);
427 
428 	kfree(tmpname);
429 
430 	return dentry;
431 }
432 
433 /*
434  *	relay_open_buf - create a new relay channel buffer
435  *
436  *	used by relay_open() and CPU hotplug.
437  */
438 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
439 {
440  	struct rchan_buf *buf = NULL;
441 	struct dentry *dentry;
442 
443  	if (chan->is_global)
444 		return *per_cpu_ptr(chan->buf, 0);
445 
446 	buf = relay_create_buf(chan);
447 	if (!buf)
448 		return NULL;
449 
450 	if (chan->has_base_filename) {
451 		dentry = relay_create_buf_file(chan, buf, cpu);
452 		if (!dentry)
453 			goto free_buf;
454 		relay_set_buf_dentry(buf, dentry);
455 	} else {
456 		/* Only retrieve global info, nothing more, nothing less */
457 		dentry = chan->cb->create_buf_file(NULL, NULL,
458 						   S_IRUSR, buf,
459 						   &chan->is_global);
460 		if (WARN_ON(dentry))
461 			goto free_buf;
462 	}
463 
464  	buf->cpu = cpu;
465  	__relay_reset(buf, 1);
466 
467  	if(chan->is_global) {
468 		*per_cpu_ptr(chan->buf, 0) = buf;
469  		buf->cpu = 0;
470   	}
471 
472 	return buf;
473 
474 free_buf:
475  	relay_destroy_buf(buf);
476 	return NULL;
477 }
478 
479 /**
480  *	relay_close_buf - close a channel buffer
481  *	@buf: channel buffer
482  *
483  *	Marks the buffer finalized and restores the default callbacks.
484  *	The channel buffer and channel buffer data structure are then freed
485  *	automatically when the last reference is given up.
486  */
487 static void relay_close_buf(struct rchan_buf *buf)
488 {
489 	buf->finalized = 1;
490 	del_timer_sync(&buf->timer);
491 	buf->chan->cb->remove_buf_file(buf->dentry);
492 	kref_put(&buf->kref, relay_remove_buf);
493 }
494 
495 static void setup_callbacks(struct rchan *chan,
496 				   struct rchan_callbacks *cb)
497 {
498 	if (!cb) {
499 		chan->cb = &default_channel_callbacks;
500 		return;
501 	}
502 
503 	if (!cb->subbuf_start)
504 		cb->subbuf_start = subbuf_start_default_callback;
505 	if (!cb->buf_mapped)
506 		cb->buf_mapped = buf_mapped_default_callback;
507 	if (!cb->buf_unmapped)
508 		cb->buf_unmapped = buf_unmapped_default_callback;
509 	if (!cb->create_buf_file)
510 		cb->create_buf_file = create_buf_file_default_callback;
511 	if (!cb->remove_buf_file)
512 		cb->remove_buf_file = remove_buf_file_default_callback;
513 	chan->cb = cb;
514 }
515 
516 int relay_prepare_cpu(unsigned int cpu)
517 {
518 	struct rchan *chan;
519 	struct rchan_buf *buf;
520 
521 	mutex_lock(&relay_channels_mutex);
522 	list_for_each_entry(chan, &relay_channels, list) {
523 		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
524 			continue;
525 		buf = relay_open_buf(chan, cpu);
526 		if (!buf) {
527 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
528 			mutex_unlock(&relay_channels_mutex);
529 			return -ENOMEM;
530 		}
531 		*per_cpu_ptr(chan->buf, cpu) = buf;
532 	}
533 	mutex_unlock(&relay_channels_mutex);
534 	return 0;
535 }
536 
537 /**
538  *	relay_open - create a new relay channel
539  *	@base_filename: base name of files to create, %NULL for buffering only
540  *	@parent: dentry of parent directory, %NULL for root directory or buffer
541  *	@subbuf_size: size of sub-buffers
542  *	@n_subbufs: number of sub-buffers
543  *	@cb: client callback functions
544  *	@private_data: user-defined data
545  *
546  *	Returns channel pointer if successful, %NULL otherwise.
547  *
548  *	Creates a channel buffer for each cpu using the sizes and
549  *	attributes specified.  The created channel buffer files
550  *	will be named base_filename0...base_filenameN-1.  File
551  *	permissions will be %S_IRUSR.
552  *
553  *	If opening a buffer (@parent = NULL) that you later wish to register
554  *	in a filesystem, call relay_late_setup_files() once the @parent dentry
555  *	is available.
556  */
557 struct rchan *relay_open(const char *base_filename,
558 			 struct dentry *parent,
559 			 size_t subbuf_size,
560 			 size_t n_subbufs,
561 			 struct rchan_callbacks *cb,
562 			 void *private_data)
563 {
564 	unsigned int i;
565 	struct rchan *chan;
566 	struct rchan_buf *buf;
567 
568 	if (!(subbuf_size && n_subbufs))
569 		return NULL;
570 	if (subbuf_size > UINT_MAX / n_subbufs)
571 		return NULL;
572 
573 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
574 	if (!chan)
575 		return NULL;
576 
577 	chan->buf = alloc_percpu(struct rchan_buf *);
578 	chan->version = RELAYFS_CHANNEL_VERSION;
579 	chan->n_subbufs = n_subbufs;
580 	chan->subbuf_size = subbuf_size;
581 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
582 	chan->parent = parent;
583 	chan->private_data = private_data;
584 	if (base_filename) {
585 		chan->has_base_filename = 1;
586 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
587 	}
588 	setup_callbacks(chan, cb);
589 	kref_init(&chan->kref);
590 
591 	mutex_lock(&relay_channels_mutex);
592 	for_each_online_cpu(i) {
593 		buf = relay_open_buf(chan, i);
594 		if (!buf)
595 			goto free_bufs;
596 		*per_cpu_ptr(chan->buf, i) = buf;
597 	}
598 	list_add(&chan->list, &relay_channels);
599 	mutex_unlock(&relay_channels_mutex);
600 
601 	return chan;
602 
603 free_bufs:
604 	for_each_possible_cpu(i) {
605 		if ((buf = *per_cpu_ptr(chan->buf, i)))
606 			relay_close_buf(buf);
607 	}
608 
609 	kref_put(&chan->kref, relay_destroy_channel);
610 	mutex_unlock(&relay_channels_mutex);
611 	kfree(chan);
612 	return NULL;
613 }
614 EXPORT_SYMBOL_GPL(relay_open);
615 
616 struct rchan_percpu_buf_dispatcher {
617 	struct rchan_buf *buf;
618 	struct dentry *dentry;
619 };
620 
621 /* Called in atomic context. */
622 static void __relay_set_buf_dentry(void *info)
623 {
624 	struct rchan_percpu_buf_dispatcher *p = info;
625 
626 	relay_set_buf_dentry(p->buf, p->dentry);
627 }
628 
629 /**
630  *	relay_late_setup_files - triggers file creation
631  *	@chan: channel to operate on
632  *	@base_filename: base name of files to create
633  *	@parent: dentry of parent directory, %NULL for root directory
634  *
635  *	Returns 0 if successful, non-zero otherwise.
636  *
637  *	Use to setup files for a previously buffer-only channel created
638  *	by relay_open() with a NULL parent dentry.
639  *
640  *	For example, this is useful for perfomring early tracing in kernel,
641  *	before VFS is up and then exposing the early results once the dentry
642  *	is available.
643  */
644 int relay_late_setup_files(struct rchan *chan,
645 			   const char *base_filename,
646 			   struct dentry *parent)
647 {
648 	int err = 0;
649 	unsigned int i, curr_cpu;
650 	unsigned long flags;
651 	struct dentry *dentry;
652 	struct rchan_buf *buf;
653 	struct rchan_percpu_buf_dispatcher disp;
654 
655 	if (!chan || !base_filename)
656 		return -EINVAL;
657 
658 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
659 
660 	mutex_lock(&relay_channels_mutex);
661 	/* Is chan already set up? */
662 	if (unlikely(chan->has_base_filename)) {
663 		mutex_unlock(&relay_channels_mutex);
664 		return -EEXIST;
665 	}
666 	chan->has_base_filename = 1;
667 	chan->parent = parent;
668 
669 	if (chan->is_global) {
670 		err = -EINVAL;
671 		buf = *per_cpu_ptr(chan->buf, 0);
672 		if (!WARN_ON_ONCE(!buf)) {
673 			dentry = relay_create_buf_file(chan, buf, 0);
674 			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
675 				relay_set_buf_dentry(buf, dentry);
676 				err = 0;
677 			}
678 		}
679 		mutex_unlock(&relay_channels_mutex);
680 		return err;
681 	}
682 
683 	curr_cpu = get_cpu();
684 	/*
685 	 * The CPU hotplug notifier ran before us and created buffers with
686 	 * no files associated. So it's safe to call relay_setup_buf_file()
687 	 * on all currently online CPUs.
688 	 */
689 	for_each_online_cpu(i) {
690 		buf = *per_cpu_ptr(chan->buf, i);
691 		if (unlikely(!buf)) {
692 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
693 			err = -EINVAL;
694 			break;
695 		}
696 
697 		dentry = relay_create_buf_file(chan, buf, i);
698 		if (unlikely(!dentry)) {
699 			err = -EINVAL;
700 			break;
701 		}
702 
703 		if (curr_cpu == i) {
704 			local_irq_save(flags);
705 			relay_set_buf_dentry(buf, dentry);
706 			local_irq_restore(flags);
707 		} else {
708 			disp.buf = buf;
709 			disp.dentry = dentry;
710 			smp_mb();
711 			/* relay_channels_mutex must be held, so wait. */
712 			err = smp_call_function_single(i,
713 						       __relay_set_buf_dentry,
714 						       &disp, 1);
715 		}
716 		if (unlikely(err))
717 			break;
718 	}
719 	put_cpu();
720 	mutex_unlock(&relay_channels_mutex);
721 
722 	return err;
723 }
724 EXPORT_SYMBOL_GPL(relay_late_setup_files);
725 
726 /**
727  *	relay_switch_subbuf - switch to a new sub-buffer
728  *	@buf: channel buffer
729  *	@length: size of current event
730  *
731  *	Returns either the length passed in or 0 if full.
732  *
733  *	Performs sub-buffer-switch tasks such as invoking callbacks,
734  *	updating padding counts, waking up readers, etc.
735  */
736 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
737 {
738 	void *old, *new;
739 	size_t old_subbuf, new_subbuf;
740 
741 	if (unlikely(length > buf->chan->subbuf_size))
742 		goto toobig;
743 
744 	if (buf->offset != buf->chan->subbuf_size + 1) {
745 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
746 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
747 		buf->padding[old_subbuf] = buf->prev_padding;
748 		buf->subbufs_produced++;
749 		if (buf->dentry)
750 			d_inode(buf->dentry)->i_size +=
751 				buf->chan->subbuf_size -
752 				buf->padding[old_subbuf];
753 		else
754 			buf->early_bytes += buf->chan->subbuf_size -
755 					    buf->padding[old_subbuf];
756 		smp_mb();
757 		if (waitqueue_active(&buf->read_wait))
758 			/*
759 			 * Calling wake_up_interruptible() from here
760 			 * will deadlock if we happen to be logging
761 			 * from the scheduler (trying to re-grab
762 			 * rq->lock), so defer it.
763 			 */
764 			mod_timer(&buf->timer, jiffies + 1);
765 	}
766 
767 	old = buf->data;
768 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
769 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
770 	buf->offset = 0;
771 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
772 		buf->offset = buf->chan->subbuf_size + 1;
773 		return 0;
774 	}
775 	buf->data = new;
776 	buf->padding[new_subbuf] = 0;
777 
778 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
779 		goto toobig;
780 
781 	return length;
782 
783 toobig:
784 	buf->chan->last_toobig = length;
785 	return 0;
786 }
787 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
788 
789 /**
790  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
791  *	@chan: the channel
792  *	@cpu: the cpu associated with the channel buffer to update
793  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
794  *
795  *	Adds to the channel buffer's consumed sub-buffer count.
796  *	subbufs_consumed should be the number of sub-buffers newly consumed,
797  *	not the total consumed.
798  *
799  *	NOTE. Kernel clients don't need to call this function if the channel
800  *	mode is 'overwrite'.
801  */
802 void relay_subbufs_consumed(struct rchan *chan,
803 			    unsigned int cpu,
804 			    size_t subbufs_consumed)
805 {
806 	struct rchan_buf *buf;
807 
808 	if (!chan)
809 		return;
810 
811 	buf = *per_cpu_ptr(chan->buf, cpu);
812 	if (cpu >= NR_CPUS || !buf || subbufs_consumed > chan->n_subbufs)
813 		return;
814 
815 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
816 		buf->subbufs_consumed = buf->subbufs_produced;
817 	else
818 		buf->subbufs_consumed += subbufs_consumed;
819 }
820 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
821 
822 /**
823  *	relay_close - close the channel
824  *	@chan: the channel
825  *
826  *	Closes all channel buffers and frees the channel.
827  */
828 void relay_close(struct rchan *chan)
829 {
830 	struct rchan_buf *buf;
831 	unsigned int i;
832 
833 	if (!chan)
834 		return;
835 
836 	mutex_lock(&relay_channels_mutex);
837 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
838 		relay_close_buf(buf);
839 	else
840 		for_each_possible_cpu(i)
841 			if ((buf = *per_cpu_ptr(chan->buf, i)))
842 				relay_close_buf(buf);
843 
844 	if (chan->last_toobig)
845 		printk(KERN_WARNING "relay: one or more items not logged "
846 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
847 		       chan->last_toobig, chan->subbuf_size);
848 
849 	list_del(&chan->list);
850 	kref_put(&chan->kref, relay_destroy_channel);
851 	mutex_unlock(&relay_channels_mutex);
852 }
853 EXPORT_SYMBOL_GPL(relay_close);
854 
855 /**
856  *	relay_flush - close the channel
857  *	@chan: the channel
858  *
859  *	Flushes all channel buffers, i.e. forces buffer switch.
860  */
861 void relay_flush(struct rchan *chan)
862 {
863 	struct rchan_buf *buf;
864 	unsigned int i;
865 
866 	if (!chan)
867 		return;
868 
869 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
870 		relay_switch_subbuf(buf, 0);
871 		return;
872 	}
873 
874 	mutex_lock(&relay_channels_mutex);
875 	for_each_possible_cpu(i)
876 		if ((buf = *per_cpu_ptr(chan->buf, i)))
877 			relay_switch_subbuf(buf, 0);
878 	mutex_unlock(&relay_channels_mutex);
879 }
880 EXPORT_SYMBOL_GPL(relay_flush);
881 
882 /**
883  *	relay_file_open - open file op for relay files
884  *	@inode: the inode
885  *	@filp: the file
886  *
887  *	Increments the channel buffer refcount.
888  */
889 static int relay_file_open(struct inode *inode, struct file *filp)
890 {
891 	struct rchan_buf *buf = inode->i_private;
892 	kref_get(&buf->kref);
893 	filp->private_data = buf;
894 
895 	return nonseekable_open(inode, filp);
896 }
897 
898 /**
899  *	relay_file_mmap - mmap file op for relay files
900  *	@filp: the file
901  *	@vma: the vma describing what to map
902  *
903  *	Calls upon relay_mmap_buf() to map the file into user space.
904  */
905 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
906 {
907 	struct rchan_buf *buf = filp->private_data;
908 	return relay_mmap_buf(buf, vma);
909 }
910 
911 /**
912  *	relay_file_poll - poll file op for relay files
913  *	@filp: the file
914  *	@wait: poll table
915  *
916  *	Poll implemention.
917  */
918 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
919 {
920 	unsigned int mask = 0;
921 	struct rchan_buf *buf = filp->private_data;
922 
923 	if (buf->finalized)
924 		return POLLERR;
925 
926 	if (filp->f_mode & FMODE_READ) {
927 		poll_wait(filp, &buf->read_wait, wait);
928 		if (!relay_buf_empty(buf))
929 			mask |= POLLIN | POLLRDNORM;
930 	}
931 
932 	return mask;
933 }
934 
935 /**
936  *	relay_file_release - release file op for relay files
937  *	@inode: the inode
938  *	@filp: the file
939  *
940  *	Decrements the channel refcount, as the filesystem is
941  *	no longer using it.
942  */
943 static int relay_file_release(struct inode *inode, struct file *filp)
944 {
945 	struct rchan_buf *buf = filp->private_data;
946 	kref_put(&buf->kref, relay_remove_buf);
947 
948 	return 0;
949 }
950 
951 /*
952  *	relay_file_read_consume - update the consumed count for the buffer
953  */
954 static void relay_file_read_consume(struct rchan_buf *buf,
955 				    size_t read_pos,
956 				    size_t bytes_consumed)
957 {
958 	size_t subbuf_size = buf->chan->subbuf_size;
959 	size_t n_subbufs = buf->chan->n_subbufs;
960 	size_t read_subbuf;
961 
962 	if (buf->subbufs_produced == buf->subbufs_consumed &&
963 	    buf->offset == buf->bytes_consumed)
964 		return;
965 
966 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
967 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
968 		buf->bytes_consumed = 0;
969 	}
970 
971 	buf->bytes_consumed += bytes_consumed;
972 	if (!read_pos)
973 		read_subbuf = buf->subbufs_consumed % n_subbufs;
974 	else
975 		read_subbuf = read_pos / buf->chan->subbuf_size;
976 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
977 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
978 		    (buf->offset == subbuf_size))
979 			return;
980 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
981 		buf->bytes_consumed = 0;
982 	}
983 }
984 
985 /*
986  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
987  */
988 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
989 {
990 	size_t subbuf_size = buf->chan->subbuf_size;
991 	size_t n_subbufs = buf->chan->n_subbufs;
992 	size_t produced = buf->subbufs_produced;
993 	size_t consumed = buf->subbufs_consumed;
994 
995 	relay_file_read_consume(buf, read_pos, 0);
996 
997 	consumed = buf->subbufs_consumed;
998 
999 	if (unlikely(buf->offset > subbuf_size)) {
1000 		if (produced == consumed)
1001 			return 0;
1002 		return 1;
1003 	}
1004 
1005 	if (unlikely(produced - consumed >= n_subbufs)) {
1006 		consumed = produced - n_subbufs + 1;
1007 		buf->subbufs_consumed = consumed;
1008 		buf->bytes_consumed = 0;
1009 	}
1010 
1011 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1012 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1013 
1014 	if (consumed > produced)
1015 		produced += n_subbufs * subbuf_size;
1016 
1017 	if (consumed == produced) {
1018 		if (buf->offset == subbuf_size &&
1019 		    buf->subbufs_produced > buf->subbufs_consumed)
1020 			return 1;
1021 		return 0;
1022 	}
1023 
1024 	return 1;
1025 }
1026 
1027 /**
1028  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1029  *	@read_pos: file read position
1030  *	@buf: relay channel buffer
1031  */
1032 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1033 					   struct rchan_buf *buf)
1034 {
1035 	size_t padding, avail = 0;
1036 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1037 	size_t subbuf_size = buf->chan->subbuf_size;
1038 
1039 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1040 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1041 	read_subbuf = read_pos / subbuf_size;
1042 	read_offset = read_pos % subbuf_size;
1043 	padding = buf->padding[read_subbuf];
1044 
1045 	if (read_subbuf == write_subbuf) {
1046 		if (read_offset + padding < write_offset)
1047 			avail = write_offset - (read_offset + padding);
1048 	} else
1049 		avail = (subbuf_size - padding) - read_offset;
1050 
1051 	return avail;
1052 }
1053 
1054 /**
1055  *	relay_file_read_start_pos - find the first available byte to read
1056  *	@read_pos: file read position
1057  *	@buf: relay channel buffer
1058  *
1059  *	If the @read_pos is in the middle of padding, return the
1060  *	position of the first actually available byte, otherwise
1061  *	return the original value.
1062  */
1063 static size_t relay_file_read_start_pos(size_t read_pos,
1064 					struct rchan_buf *buf)
1065 {
1066 	size_t read_subbuf, padding, padding_start, padding_end;
1067 	size_t subbuf_size = buf->chan->subbuf_size;
1068 	size_t n_subbufs = buf->chan->n_subbufs;
1069 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1070 
1071 	if (!read_pos)
1072 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1073 	read_subbuf = read_pos / subbuf_size;
1074 	padding = buf->padding[read_subbuf];
1075 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1076 	padding_end = (read_subbuf + 1) * subbuf_size;
1077 	if (read_pos >= padding_start && read_pos < padding_end) {
1078 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1079 		read_pos = read_subbuf * subbuf_size;
1080 	}
1081 
1082 	return read_pos;
1083 }
1084 
1085 /**
1086  *	relay_file_read_end_pos - return the new read position
1087  *	@read_pos: file read position
1088  *	@buf: relay channel buffer
1089  *	@count: number of bytes to be read
1090  */
1091 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1092 				      size_t read_pos,
1093 				      size_t count)
1094 {
1095 	size_t read_subbuf, padding, end_pos;
1096 	size_t subbuf_size = buf->chan->subbuf_size;
1097 	size_t n_subbufs = buf->chan->n_subbufs;
1098 
1099 	read_subbuf = read_pos / subbuf_size;
1100 	padding = buf->padding[read_subbuf];
1101 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1102 		end_pos = (read_subbuf + 1) * subbuf_size;
1103 	else
1104 		end_pos = read_pos + count;
1105 	if (end_pos >= subbuf_size * n_subbufs)
1106 		end_pos = 0;
1107 
1108 	return end_pos;
1109 }
1110 
1111 /*
1112  *	subbuf_read_actor - read up to one subbuf's worth of data
1113  */
1114 static int subbuf_read_actor(size_t read_start,
1115 			     struct rchan_buf *buf,
1116 			     size_t avail,
1117 			     read_descriptor_t *desc)
1118 {
1119 	void *from;
1120 	int ret = 0;
1121 
1122 	from = buf->start + read_start;
1123 	ret = avail;
1124 	if (copy_to_user(desc->arg.buf, from, avail)) {
1125 		desc->error = -EFAULT;
1126 		ret = 0;
1127 	}
1128 	desc->arg.data += ret;
1129 	desc->written += ret;
1130 	desc->count -= ret;
1131 
1132 	return ret;
1133 }
1134 
1135 typedef int (*subbuf_actor_t) (size_t read_start,
1136 			       struct rchan_buf *buf,
1137 			       size_t avail,
1138 			       read_descriptor_t *desc);
1139 
1140 /*
1141  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1142  */
1143 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1144 					subbuf_actor_t subbuf_actor,
1145 					read_descriptor_t *desc)
1146 {
1147 	struct rchan_buf *buf = filp->private_data;
1148 	size_t read_start, avail;
1149 	int ret;
1150 
1151 	if (!desc->count)
1152 		return 0;
1153 
1154 	inode_lock(file_inode(filp));
1155 	do {
1156 		if (!relay_file_read_avail(buf, *ppos))
1157 			break;
1158 
1159 		read_start = relay_file_read_start_pos(*ppos, buf);
1160 		avail = relay_file_read_subbuf_avail(read_start, buf);
1161 		if (!avail)
1162 			break;
1163 
1164 		avail = min(desc->count, avail);
1165 		ret = subbuf_actor(read_start, buf, avail, desc);
1166 		if (desc->error < 0)
1167 			break;
1168 
1169 		if (ret) {
1170 			relay_file_read_consume(buf, read_start, ret);
1171 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1172 		}
1173 	} while (desc->count && ret);
1174 	inode_unlock(file_inode(filp));
1175 
1176 	return desc->written;
1177 }
1178 
1179 static ssize_t relay_file_read(struct file *filp,
1180 			       char __user *buffer,
1181 			       size_t count,
1182 			       loff_t *ppos)
1183 {
1184 	read_descriptor_t desc;
1185 	desc.written = 0;
1186 	desc.count = count;
1187 	desc.arg.buf = buffer;
1188 	desc.error = 0;
1189 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1190 }
1191 
1192 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1193 {
1194 	rbuf->bytes_consumed += bytes_consumed;
1195 
1196 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1197 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1198 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1199 	}
1200 }
1201 
1202 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1203 				   struct pipe_buffer *buf)
1204 {
1205 	struct rchan_buf *rbuf;
1206 
1207 	rbuf = (struct rchan_buf *)page_private(buf->page);
1208 	relay_consume_bytes(rbuf, buf->private);
1209 }
1210 
1211 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1212 	.can_merge = 0,
1213 	.confirm = generic_pipe_buf_confirm,
1214 	.release = relay_pipe_buf_release,
1215 	.steal = generic_pipe_buf_steal,
1216 	.get = generic_pipe_buf_get,
1217 };
1218 
1219 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1220 {
1221 }
1222 
1223 /*
1224  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1225  */
1226 static ssize_t subbuf_splice_actor(struct file *in,
1227 			       loff_t *ppos,
1228 			       struct pipe_inode_info *pipe,
1229 			       size_t len,
1230 			       unsigned int flags,
1231 			       int *nonpad_ret)
1232 {
1233 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1234 	struct rchan_buf *rbuf = in->private_data;
1235 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1236 	uint64_t pos = (uint64_t) *ppos;
1237 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1238 	size_t read_start = (size_t) do_div(pos, alloc_size);
1239 	size_t read_subbuf = read_start / subbuf_size;
1240 	size_t padding = rbuf->padding[read_subbuf];
1241 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1242 	struct page *pages[PIPE_DEF_BUFFERS];
1243 	struct partial_page partial[PIPE_DEF_BUFFERS];
1244 	struct splice_pipe_desc spd = {
1245 		.pages = pages,
1246 		.nr_pages = 0,
1247 		.nr_pages_max = PIPE_DEF_BUFFERS,
1248 		.partial = partial,
1249 		.flags = flags,
1250 		.ops = &relay_pipe_buf_ops,
1251 		.spd_release = relay_page_release,
1252 	};
1253 	ssize_t ret;
1254 
1255 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1256 		return 0;
1257 	if (splice_grow_spd(pipe, &spd))
1258 		return -ENOMEM;
1259 
1260 	/*
1261 	 * Adjust read len, if longer than what is available
1262 	 */
1263 	if (len > (subbuf_size - read_start % subbuf_size))
1264 		len = subbuf_size - read_start % subbuf_size;
1265 
1266 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1267 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1268 	poff = read_start & ~PAGE_MASK;
1269 	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1270 
1271 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1272 		unsigned int this_len, this_end, private;
1273 		unsigned int cur_pos = read_start + total_len;
1274 
1275 		if (!len)
1276 			break;
1277 
1278 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1279 		private = this_len;
1280 
1281 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1282 		spd.partial[spd.nr_pages].offset = poff;
1283 
1284 		this_end = cur_pos + this_len;
1285 		if (this_end >= nonpad_end) {
1286 			this_len = nonpad_end - cur_pos;
1287 			private = this_len + padding;
1288 		}
1289 		spd.partial[spd.nr_pages].len = this_len;
1290 		spd.partial[spd.nr_pages].private = private;
1291 
1292 		len -= this_len;
1293 		total_len += this_len;
1294 		poff = 0;
1295 		pidx = (pidx + 1) % subbuf_pages;
1296 
1297 		if (this_end >= nonpad_end) {
1298 			spd.nr_pages++;
1299 			break;
1300 		}
1301 	}
1302 
1303 	ret = 0;
1304 	if (!spd.nr_pages)
1305 		goto out;
1306 
1307 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1308 	if (ret < 0 || ret < total_len)
1309 		goto out;
1310 
1311         if (read_start + ret == nonpad_end)
1312                 ret += padding;
1313 
1314 out:
1315 	splice_shrink_spd(&spd);
1316 	return ret;
1317 }
1318 
1319 static ssize_t relay_file_splice_read(struct file *in,
1320 				      loff_t *ppos,
1321 				      struct pipe_inode_info *pipe,
1322 				      size_t len,
1323 				      unsigned int flags)
1324 {
1325 	ssize_t spliced;
1326 	int ret;
1327 	int nonpad_ret = 0;
1328 
1329 	ret = 0;
1330 	spliced = 0;
1331 
1332 	while (len && !spliced) {
1333 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1334 		if (ret < 0)
1335 			break;
1336 		else if (!ret) {
1337 			if (flags & SPLICE_F_NONBLOCK)
1338 				ret = -EAGAIN;
1339 			break;
1340 		}
1341 
1342 		*ppos += ret;
1343 		if (ret > len)
1344 			len = 0;
1345 		else
1346 			len -= ret;
1347 		spliced += nonpad_ret;
1348 		nonpad_ret = 0;
1349 	}
1350 
1351 	if (spliced)
1352 		return spliced;
1353 
1354 	return ret;
1355 }
1356 
1357 const struct file_operations relay_file_operations = {
1358 	.open		= relay_file_open,
1359 	.poll		= relay_file_poll,
1360 	.mmap		= relay_file_mmap,
1361 	.read		= relay_file_read,
1362 	.llseek		= no_llseek,
1363 	.release	= relay_file_release,
1364 	.splice_read	= relay_file_splice_read,
1365 };
1366 EXPORT_SYMBOL_GPL(relay_file_operations);
1367