1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/percpu.h> 45 #include <linux/notifier.h> 46 #include <linux/cpu.h> 47 #include <linux/mutex.h> 48 #include <linux/time.h> 49 #include <linux/kernel_stat.h> 50 #include <linux/wait.h> 51 #include <linux/kthread.h> 52 #include <linux/prefetch.h> 53 #include <linux/delay.h> 54 #include <linux/stop_machine.h> 55 #include <linux/random.h> 56 #include <linux/trace_events.h> 57 #include <linux/suspend.h> 58 59 #include "tree.h" 60 #include "rcu.h" 61 62 #ifdef MODULE_PARAM_PREFIX 63 #undef MODULE_PARAM_PREFIX 64 #endif 65 #define MODULE_PARAM_PREFIX "rcutree." 66 67 /* Data structures. */ 68 69 /* 70 * In order to export the rcu_state name to the tracing tools, it 71 * needs to be added in the __tracepoint_string section. 72 * This requires defining a separate variable tp_<sname>_varname 73 * that points to the string being used, and this will allow 74 * the tracing userspace tools to be able to decipher the string 75 * address to the matching string. 76 */ 77 #ifdef CONFIG_TRACING 78 # define DEFINE_RCU_TPS(sname) \ 79 static char sname##_varname[] = #sname; \ 80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 81 # define RCU_STATE_NAME(sname) sname##_varname 82 #else 83 # define DEFINE_RCU_TPS(sname) 84 # define RCU_STATE_NAME(sname) __stringify(sname) 85 #endif 86 87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 88 DEFINE_RCU_TPS(sname) \ 89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 90 struct rcu_state sname##_state = { \ 91 .level = { &sname##_state.node[0] }, \ 92 .rda = &sname##_data, \ 93 .call = cr, \ 94 .gp_state = RCU_GP_IDLE, \ 95 .gpnum = 0UL - 300UL, \ 96 .completed = 0UL - 300UL, \ 97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 99 .orphan_donetail = &sname##_state.orphan_donelist, \ 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 101 .name = RCU_STATE_NAME(sname), \ 102 .abbr = sabbr, \ 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 LIST_HEAD(rcu_struct_flavors); 112 113 /* Dump rcu_node combining tree at boot to verify correct setup. */ 114 static bool dump_tree; 115 module_param(dump_tree, bool, 0444); 116 /* Control rcu_node-tree auto-balancing at boot time. */ 117 static bool rcu_fanout_exact; 118 module_param(rcu_fanout_exact, bool, 0444); 119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 121 module_param(rcu_fanout_leaf, int, 0444); 122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 123 /* Number of rcu_nodes at specified level. */ 124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 126 /* panic() on RCU Stall sysctl. */ 127 int sysctl_panic_on_rcu_stall __read_mostly; 128 129 /* 130 * The rcu_scheduler_active variable is initialized to the value 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 133 * RCU can assume that there is but one task, allowing RCU to (for example) 134 * optimize synchronize_rcu() to a simple barrier(). When this variable 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 136 * to detect real grace periods. This variable is also used to suppress 137 * boot-time false positives from lockdep-RCU error checking. Finally, it 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 139 * is fully initialized, including all of its kthreads having been spawned. 140 */ 141 int rcu_scheduler_active __read_mostly; 142 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 143 144 /* 145 * The rcu_scheduler_fully_active variable transitions from zero to one 146 * during the early_initcall() processing, which is after the scheduler 147 * is capable of creating new tasks. So RCU processing (for example, 148 * creating tasks for RCU priority boosting) must be delayed until after 149 * rcu_scheduler_fully_active transitions from zero to one. We also 150 * currently delay invocation of any RCU callbacks until after this point. 151 * 152 * It might later prove better for people registering RCU callbacks during 153 * early boot to take responsibility for these callbacks, but one step at 154 * a time. 155 */ 156 static int rcu_scheduler_fully_active __read_mostly; 157 158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 161 static void invoke_rcu_core(void); 162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 163 static void rcu_report_exp_rdp(struct rcu_state *rsp, 164 struct rcu_data *rdp, bool wake); 165 static void sync_sched_exp_online_cleanup(int cpu); 166 167 /* rcuc/rcub kthread realtime priority */ 168 #ifdef CONFIG_RCU_KTHREAD_PRIO 169 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 173 module_param(kthread_prio, int, 0644); 174 175 /* Delay in jiffies for grace-period initialization delays, debug only. */ 176 177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 178 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 179 module_param(gp_preinit_delay, int, 0644); 180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 181 static const int gp_preinit_delay; 182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 183 184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 185 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 186 module_param(gp_init_delay, int, 0644); 187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 188 static const int gp_init_delay; 189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 190 191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 192 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 193 module_param(gp_cleanup_delay, int, 0644); 194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 195 static const int gp_cleanup_delay; 196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 197 198 /* 199 * Number of grace periods between delays, normalized by the duration of 200 * the delay. The longer the the delay, the more the grace periods between 201 * each delay. The reason for this normalization is that it means that, 202 * for non-zero delays, the overall slowdown of grace periods is constant 203 * regardless of the duration of the delay. This arrangement balances 204 * the need for long delays to increase some race probabilities with the 205 * need for fast grace periods to increase other race probabilities. 206 */ 207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 208 209 /* 210 * Track the rcutorture test sequence number and the update version 211 * number within a given test. The rcutorture_testseq is incremented 212 * on every rcutorture module load and unload, so has an odd value 213 * when a test is running. The rcutorture_vernum is set to zero 214 * when rcutorture starts and is incremented on each rcutorture update. 215 * These variables enable correlating rcutorture output with the 216 * RCU tracing information. 217 */ 218 unsigned long rcutorture_testseq; 219 unsigned long rcutorture_vernum; 220 221 /* 222 * Compute the mask of online CPUs for the specified rcu_node structure. 223 * This will not be stable unless the rcu_node structure's ->lock is 224 * held, but the bit corresponding to the current CPU will be stable 225 * in most contexts. 226 */ 227 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 228 { 229 return READ_ONCE(rnp->qsmaskinitnext); 230 } 231 232 /* 233 * Return true if an RCU grace period is in progress. The READ_ONCE()s 234 * permit this function to be invoked without holding the root rcu_node 235 * structure's ->lock, but of course results can be subject to change. 236 */ 237 static int rcu_gp_in_progress(struct rcu_state *rsp) 238 { 239 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 240 } 241 242 /* 243 * Note a quiescent state. Because we do not need to know 244 * how many quiescent states passed, just if there was at least 245 * one since the start of the grace period, this just sets a flag. 246 * The caller must have disabled preemption. 247 */ 248 void rcu_sched_qs(void) 249 { 250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 251 return; 252 trace_rcu_grace_period(TPS("rcu_sched"), 253 __this_cpu_read(rcu_sched_data.gpnum), 254 TPS("cpuqs")); 255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 257 return; 258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 259 rcu_report_exp_rdp(&rcu_sched_state, 260 this_cpu_ptr(&rcu_sched_data), true); 261 } 262 263 void rcu_bh_qs(void) 264 { 265 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 266 trace_rcu_grace_period(TPS("rcu_bh"), 267 __this_cpu_read(rcu_bh_data.gpnum), 268 TPS("cpuqs")); 269 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 270 } 271 } 272 273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 274 275 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 276 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 277 .dynticks = ATOMIC_INIT(1), 278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 279 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 280 .dynticks_idle = ATOMIC_INIT(1), 281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 282 }; 283 284 /* 285 * Record entry into an extended quiescent state. This is only to be 286 * called when not already in an extended quiescent state. 287 */ 288 static void rcu_dynticks_eqs_enter(void) 289 { 290 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 291 int special; 292 293 /* 294 * CPUs seeing atomic_inc_return() must see prior RCU read-side 295 * critical sections, and we also must force ordering with the 296 * next idle sojourn. 297 */ 298 special = atomic_inc_return(&rdtp->dynticks); 299 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1); 300 } 301 302 /* 303 * Record exit from an extended quiescent state. This is only to be 304 * called from an extended quiescent state. 305 */ 306 static void rcu_dynticks_eqs_exit(void) 307 { 308 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 309 int special; 310 311 /* 312 * CPUs seeing atomic_inc_return() must see prior idle sojourns, 313 * and we also must force ordering with the next RCU read-side 314 * critical section. 315 */ 316 special = atomic_inc_return(&rdtp->dynticks); 317 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1)); 318 } 319 320 /* 321 * Reset the current CPU's ->dynticks counter to indicate that the 322 * newly onlined CPU is no longer in an extended quiescent state. 323 * This will either leave the counter unchanged, or increment it 324 * to the next non-quiescent value. 325 * 326 * The non-atomic test/increment sequence works because the upper bits 327 * of the ->dynticks counter are manipulated only by the corresponding CPU, 328 * or when the corresponding CPU is offline. 329 */ 330 static void rcu_dynticks_eqs_online(void) 331 { 332 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 333 334 if (atomic_read(&rdtp->dynticks) & 0x1) 335 return; 336 atomic_add(0x1, &rdtp->dynticks); 337 } 338 339 /* 340 * Is the current CPU in an extended quiescent state? 341 * 342 * No ordering, as we are sampling CPU-local information. 343 */ 344 bool rcu_dynticks_curr_cpu_in_eqs(void) 345 { 346 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 347 348 return !(atomic_read(&rdtp->dynticks) & 0x1); 349 } 350 351 /* 352 * Snapshot the ->dynticks counter with full ordering so as to allow 353 * stable comparison of this counter with past and future snapshots. 354 */ 355 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 356 { 357 int snap = atomic_add_return(0, &rdtp->dynticks); 358 359 return snap; 360 } 361 362 /* 363 * Return true if the snapshot returned from rcu_dynticks_snap() 364 * indicates that RCU is in an extended quiescent state. 365 */ 366 static bool rcu_dynticks_in_eqs(int snap) 367 { 368 return !(snap & 0x1); 369 } 370 371 /* 372 * Return true if the CPU corresponding to the specified rcu_dynticks 373 * structure has spent some time in an extended quiescent state since 374 * rcu_dynticks_snap() returned the specified snapshot. 375 */ 376 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 377 { 378 return snap != rcu_dynticks_snap(rdtp); 379 } 380 381 /* 382 * Do a double-increment of the ->dynticks counter to emulate a 383 * momentary idle-CPU quiescent state. 384 */ 385 static void rcu_dynticks_momentary_idle(void) 386 { 387 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 388 int special = atomic_add_return(2, &rdtp->dynticks); 389 390 /* It is illegal to call this from idle state. */ 391 WARN_ON_ONCE(!(special & 0x1)); 392 } 393 394 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 395 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 396 397 /* 398 * Let the RCU core know that this CPU has gone through the scheduler, 399 * which is a quiescent state. This is called when the need for a 400 * quiescent state is urgent, so we burn an atomic operation and full 401 * memory barriers to let the RCU core know about it, regardless of what 402 * this CPU might (or might not) do in the near future. 403 * 404 * We inform the RCU core by emulating a zero-duration dyntick-idle 405 * period, which we in turn do by incrementing the ->dynticks counter 406 * by two. 407 * 408 * The caller must have disabled interrupts. 409 */ 410 static void rcu_momentary_dyntick_idle(void) 411 { 412 struct rcu_data *rdp; 413 int resched_mask; 414 struct rcu_state *rsp; 415 416 /* 417 * Yes, we can lose flag-setting operations. This is OK, because 418 * the flag will be set again after some delay. 419 */ 420 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 421 raw_cpu_write(rcu_sched_qs_mask, 0); 422 423 /* Find the flavor that needs a quiescent state. */ 424 for_each_rcu_flavor(rsp) { 425 rdp = raw_cpu_ptr(rsp->rda); 426 if (!(resched_mask & rsp->flavor_mask)) 427 continue; 428 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 429 if (READ_ONCE(rdp->mynode->completed) != 430 READ_ONCE(rdp->cond_resched_completed)) 431 continue; 432 433 /* 434 * Pretend to be momentarily idle for the quiescent state. 435 * This allows the grace-period kthread to record the 436 * quiescent state, with no need for this CPU to do anything 437 * further. 438 */ 439 rcu_dynticks_momentary_idle(); 440 break; 441 } 442 } 443 444 /* 445 * Note a context switch. This is a quiescent state for RCU-sched, 446 * and requires special handling for preemptible RCU. 447 * The caller must have disabled interrupts. 448 */ 449 void rcu_note_context_switch(void) 450 { 451 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 452 trace_rcu_utilization(TPS("Start context switch")); 453 rcu_sched_qs(); 454 rcu_preempt_note_context_switch(); 455 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 456 rcu_momentary_dyntick_idle(); 457 trace_rcu_utilization(TPS("End context switch")); 458 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 459 } 460 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 461 462 /* 463 * Register a quiescent state for all RCU flavors. If there is an 464 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 465 * dyntick-idle quiescent state visible to other CPUs (but only for those 466 * RCU flavors in desperate need of a quiescent state, which will normally 467 * be none of them). Either way, do a lightweight quiescent state for 468 * all RCU flavors. 469 * 470 * The barrier() calls are redundant in the common case when this is 471 * called externally, but just in case this is called from within this 472 * file. 473 * 474 */ 475 void rcu_all_qs(void) 476 { 477 unsigned long flags; 478 479 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 480 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) { 481 local_irq_save(flags); 482 rcu_momentary_dyntick_idle(); 483 local_irq_restore(flags); 484 } 485 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) { 486 /* 487 * Yes, we just checked a per-CPU variable with preemption 488 * enabled, so we might be migrated to some other CPU at 489 * this point. That is OK because in that case, the 490 * migration will supply the needed quiescent state. 491 * We might end up needlessly disabling preemption and 492 * invoking rcu_sched_qs() on the destination CPU, but 493 * the probability and cost are both quite low, so this 494 * should not be a problem in practice. 495 */ 496 preempt_disable(); 497 rcu_sched_qs(); 498 preempt_enable(); 499 } 500 this_cpu_inc(rcu_qs_ctr); 501 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 502 } 503 EXPORT_SYMBOL_GPL(rcu_all_qs); 504 505 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 506 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 507 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 508 509 module_param(blimit, long, 0444); 510 module_param(qhimark, long, 0444); 511 module_param(qlowmark, long, 0444); 512 513 static ulong jiffies_till_first_fqs = ULONG_MAX; 514 static ulong jiffies_till_next_fqs = ULONG_MAX; 515 static bool rcu_kick_kthreads; 516 517 module_param(jiffies_till_first_fqs, ulong, 0644); 518 module_param(jiffies_till_next_fqs, ulong, 0644); 519 module_param(rcu_kick_kthreads, bool, 0644); 520 521 /* 522 * How long the grace period must be before we start recruiting 523 * quiescent-state help from rcu_note_context_switch(). 524 */ 525 static ulong jiffies_till_sched_qs = HZ / 20; 526 module_param(jiffies_till_sched_qs, ulong, 0644); 527 528 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 529 struct rcu_data *rdp); 530 static void force_qs_rnp(struct rcu_state *rsp, 531 int (*f)(struct rcu_data *rsp, bool *isidle, 532 unsigned long *maxj), 533 bool *isidle, unsigned long *maxj); 534 static void force_quiescent_state(struct rcu_state *rsp); 535 static int rcu_pending(void); 536 537 /* 538 * Return the number of RCU batches started thus far for debug & stats. 539 */ 540 unsigned long rcu_batches_started(void) 541 { 542 return rcu_state_p->gpnum; 543 } 544 EXPORT_SYMBOL_GPL(rcu_batches_started); 545 546 /* 547 * Return the number of RCU-sched batches started thus far for debug & stats. 548 */ 549 unsigned long rcu_batches_started_sched(void) 550 { 551 return rcu_sched_state.gpnum; 552 } 553 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 554 555 /* 556 * Return the number of RCU BH batches started thus far for debug & stats. 557 */ 558 unsigned long rcu_batches_started_bh(void) 559 { 560 return rcu_bh_state.gpnum; 561 } 562 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 563 564 /* 565 * Return the number of RCU batches completed thus far for debug & stats. 566 */ 567 unsigned long rcu_batches_completed(void) 568 { 569 return rcu_state_p->completed; 570 } 571 EXPORT_SYMBOL_GPL(rcu_batches_completed); 572 573 /* 574 * Return the number of RCU-sched batches completed thus far for debug & stats. 575 */ 576 unsigned long rcu_batches_completed_sched(void) 577 { 578 return rcu_sched_state.completed; 579 } 580 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 581 582 /* 583 * Return the number of RCU BH batches completed thus far for debug & stats. 584 */ 585 unsigned long rcu_batches_completed_bh(void) 586 { 587 return rcu_bh_state.completed; 588 } 589 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 590 591 /* 592 * Return the number of RCU expedited batches completed thus far for 593 * debug & stats. Odd numbers mean that a batch is in progress, even 594 * numbers mean idle. The value returned will thus be roughly double 595 * the cumulative batches since boot. 596 */ 597 unsigned long rcu_exp_batches_completed(void) 598 { 599 return rcu_state_p->expedited_sequence; 600 } 601 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 602 603 /* 604 * Return the number of RCU-sched expedited batches completed thus far 605 * for debug & stats. Similar to rcu_exp_batches_completed(). 606 */ 607 unsigned long rcu_exp_batches_completed_sched(void) 608 { 609 return rcu_sched_state.expedited_sequence; 610 } 611 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 612 613 /* 614 * Force a quiescent state. 615 */ 616 void rcu_force_quiescent_state(void) 617 { 618 force_quiescent_state(rcu_state_p); 619 } 620 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 621 622 /* 623 * Force a quiescent state for RCU BH. 624 */ 625 void rcu_bh_force_quiescent_state(void) 626 { 627 force_quiescent_state(&rcu_bh_state); 628 } 629 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 630 631 /* 632 * Force a quiescent state for RCU-sched. 633 */ 634 void rcu_sched_force_quiescent_state(void) 635 { 636 force_quiescent_state(&rcu_sched_state); 637 } 638 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 639 640 /* 641 * Show the state of the grace-period kthreads. 642 */ 643 void show_rcu_gp_kthreads(void) 644 { 645 struct rcu_state *rsp; 646 647 for_each_rcu_flavor(rsp) { 648 pr_info("%s: wait state: %d ->state: %#lx\n", 649 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 650 /* sched_show_task(rsp->gp_kthread); */ 651 } 652 } 653 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 654 655 /* 656 * Record the number of times rcutorture tests have been initiated and 657 * terminated. This information allows the debugfs tracing stats to be 658 * correlated to the rcutorture messages, even when the rcutorture module 659 * is being repeatedly loaded and unloaded. In other words, we cannot 660 * store this state in rcutorture itself. 661 */ 662 void rcutorture_record_test_transition(void) 663 { 664 rcutorture_testseq++; 665 rcutorture_vernum = 0; 666 } 667 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 668 669 /* 670 * Send along grace-period-related data for rcutorture diagnostics. 671 */ 672 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 673 unsigned long *gpnum, unsigned long *completed) 674 { 675 struct rcu_state *rsp = NULL; 676 677 switch (test_type) { 678 case RCU_FLAVOR: 679 rsp = rcu_state_p; 680 break; 681 case RCU_BH_FLAVOR: 682 rsp = &rcu_bh_state; 683 break; 684 case RCU_SCHED_FLAVOR: 685 rsp = &rcu_sched_state; 686 break; 687 default: 688 break; 689 } 690 if (rsp != NULL) { 691 *flags = READ_ONCE(rsp->gp_flags); 692 *gpnum = READ_ONCE(rsp->gpnum); 693 *completed = READ_ONCE(rsp->completed); 694 return; 695 } 696 *flags = 0; 697 *gpnum = 0; 698 *completed = 0; 699 } 700 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 701 702 /* 703 * Record the number of writer passes through the current rcutorture test. 704 * This is also used to correlate debugfs tracing stats with the rcutorture 705 * messages. 706 */ 707 void rcutorture_record_progress(unsigned long vernum) 708 { 709 rcutorture_vernum++; 710 } 711 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 712 713 /* 714 * Does the CPU have callbacks ready to be invoked? 715 */ 716 static int 717 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 718 { 719 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 720 rdp->nxttail[RCU_NEXT_TAIL] != NULL; 721 } 722 723 /* 724 * Return the root node of the specified rcu_state structure. 725 */ 726 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 727 { 728 return &rsp->node[0]; 729 } 730 731 /* 732 * Is there any need for future grace periods? 733 * Interrupts must be disabled. If the caller does not hold the root 734 * rnp_node structure's ->lock, the results are advisory only. 735 */ 736 static int rcu_future_needs_gp(struct rcu_state *rsp) 737 { 738 struct rcu_node *rnp = rcu_get_root(rsp); 739 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 740 int *fp = &rnp->need_future_gp[idx]; 741 742 return READ_ONCE(*fp); 743 } 744 745 /* 746 * Does the current CPU require a not-yet-started grace period? 747 * The caller must have disabled interrupts to prevent races with 748 * normal callback registry. 749 */ 750 static bool 751 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 752 { 753 int i; 754 755 if (rcu_gp_in_progress(rsp)) 756 return false; /* No, a grace period is already in progress. */ 757 if (rcu_future_needs_gp(rsp)) 758 return true; /* Yes, a no-CBs CPU needs one. */ 759 if (!rdp->nxttail[RCU_NEXT_TAIL]) 760 return false; /* No, this is a no-CBs (or offline) CPU. */ 761 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 762 return true; /* Yes, CPU has newly registered callbacks. */ 763 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 764 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 765 ULONG_CMP_LT(READ_ONCE(rsp->completed), 766 rdp->nxtcompleted[i])) 767 return true; /* Yes, CBs for future grace period. */ 768 return false; /* No grace period needed. */ 769 } 770 771 /* 772 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 773 * 774 * If the new value of the ->dynticks_nesting counter now is zero, 775 * we really have entered idle, and must do the appropriate accounting. 776 * The caller must have disabled interrupts. 777 */ 778 static void rcu_eqs_enter_common(long long oldval, bool user) 779 { 780 struct rcu_state *rsp; 781 struct rcu_data *rdp; 782 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 783 784 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 785 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 786 !user && !is_idle_task(current)) { 787 struct task_struct *idle __maybe_unused = 788 idle_task(smp_processor_id()); 789 790 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 791 rcu_ftrace_dump(DUMP_ORIG); 792 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 793 current->pid, current->comm, 794 idle->pid, idle->comm); /* must be idle task! */ 795 } 796 for_each_rcu_flavor(rsp) { 797 rdp = this_cpu_ptr(rsp->rda); 798 do_nocb_deferred_wakeup(rdp); 799 } 800 rcu_prepare_for_idle(); 801 rcu_dynticks_eqs_enter(); 802 rcu_dynticks_task_enter(); 803 804 /* 805 * It is illegal to enter an extended quiescent state while 806 * in an RCU read-side critical section. 807 */ 808 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 809 "Illegal idle entry in RCU read-side critical section."); 810 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 811 "Illegal idle entry in RCU-bh read-side critical section."); 812 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 813 "Illegal idle entry in RCU-sched read-side critical section."); 814 } 815 816 /* 817 * Enter an RCU extended quiescent state, which can be either the 818 * idle loop or adaptive-tickless usermode execution. 819 */ 820 static void rcu_eqs_enter(bool user) 821 { 822 long long oldval; 823 struct rcu_dynticks *rdtp; 824 825 rdtp = this_cpu_ptr(&rcu_dynticks); 826 oldval = rdtp->dynticks_nesting; 827 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 828 (oldval & DYNTICK_TASK_NEST_MASK) == 0); 829 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 830 rdtp->dynticks_nesting = 0; 831 rcu_eqs_enter_common(oldval, user); 832 } else { 833 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 834 } 835 } 836 837 /** 838 * rcu_idle_enter - inform RCU that current CPU is entering idle 839 * 840 * Enter idle mode, in other words, -leave- the mode in which RCU 841 * read-side critical sections can occur. (Though RCU read-side 842 * critical sections can occur in irq handlers in idle, a possibility 843 * handled by irq_enter() and irq_exit().) 844 * 845 * We crowbar the ->dynticks_nesting field to zero to allow for 846 * the possibility of usermode upcalls having messed up our count 847 * of interrupt nesting level during the prior busy period. 848 */ 849 void rcu_idle_enter(void) 850 { 851 unsigned long flags; 852 853 local_irq_save(flags); 854 rcu_eqs_enter(false); 855 rcu_sysidle_enter(0); 856 local_irq_restore(flags); 857 } 858 EXPORT_SYMBOL_GPL(rcu_idle_enter); 859 860 #ifdef CONFIG_NO_HZ_FULL 861 /** 862 * rcu_user_enter - inform RCU that we are resuming userspace. 863 * 864 * Enter RCU idle mode right before resuming userspace. No use of RCU 865 * is permitted between this call and rcu_user_exit(). This way the 866 * CPU doesn't need to maintain the tick for RCU maintenance purposes 867 * when the CPU runs in userspace. 868 */ 869 void rcu_user_enter(void) 870 { 871 rcu_eqs_enter(1); 872 } 873 #endif /* CONFIG_NO_HZ_FULL */ 874 875 /** 876 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 877 * 878 * Exit from an interrupt handler, which might possibly result in entering 879 * idle mode, in other words, leaving the mode in which read-side critical 880 * sections can occur. The caller must have disabled interrupts. 881 * 882 * This code assumes that the idle loop never does anything that might 883 * result in unbalanced calls to irq_enter() and irq_exit(). If your 884 * architecture violates this assumption, RCU will give you what you 885 * deserve, good and hard. But very infrequently and irreproducibly. 886 * 887 * Use things like work queues to work around this limitation. 888 * 889 * You have been warned. 890 */ 891 void rcu_irq_exit(void) 892 { 893 long long oldval; 894 struct rcu_dynticks *rdtp; 895 896 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 897 rdtp = this_cpu_ptr(&rcu_dynticks); 898 oldval = rdtp->dynticks_nesting; 899 rdtp->dynticks_nesting--; 900 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 901 rdtp->dynticks_nesting < 0); 902 if (rdtp->dynticks_nesting) 903 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 904 else 905 rcu_eqs_enter_common(oldval, true); 906 rcu_sysidle_enter(1); 907 } 908 909 /* 910 * Wrapper for rcu_irq_exit() where interrupts are enabled. 911 */ 912 void rcu_irq_exit_irqson(void) 913 { 914 unsigned long flags; 915 916 local_irq_save(flags); 917 rcu_irq_exit(); 918 local_irq_restore(flags); 919 } 920 921 /* 922 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 923 * 924 * If the new value of the ->dynticks_nesting counter was previously zero, 925 * we really have exited idle, and must do the appropriate accounting. 926 * The caller must have disabled interrupts. 927 */ 928 static void rcu_eqs_exit_common(long long oldval, int user) 929 { 930 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 931 932 rcu_dynticks_task_exit(); 933 rcu_dynticks_eqs_exit(); 934 rcu_cleanup_after_idle(); 935 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 936 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 937 !user && !is_idle_task(current)) { 938 struct task_struct *idle __maybe_unused = 939 idle_task(smp_processor_id()); 940 941 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 942 oldval, rdtp->dynticks_nesting); 943 rcu_ftrace_dump(DUMP_ORIG); 944 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 945 current->pid, current->comm, 946 idle->pid, idle->comm); /* must be idle task! */ 947 } 948 } 949 950 /* 951 * Exit an RCU extended quiescent state, which can be either the 952 * idle loop or adaptive-tickless usermode execution. 953 */ 954 static void rcu_eqs_exit(bool user) 955 { 956 struct rcu_dynticks *rdtp; 957 long long oldval; 958 959 rdtp = this_cpu_ptr(&rcu_dynticks); 960 oldval = rdtp->dynticks_nesting; 961 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 962 if (oldval & DYNTICK_TASK_NEST_MASK) { 963 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 964 } else { 965 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 966 rcu_eqs_exit_common(oldval, user); 967 } 968 } 969 970 /** 971 * rcu_idle_exit - inform RCU that current CPU is leaving idle 972 * 973 * Exit idle mode, in other words, -enter- the mode in which RCU 974 * read-side critical sections can occur. 975 * 976 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 977 * allow for the possibility of usermode upcalls messing up our count 978 * of interrupt nesting level during the busy period that is just 979 * now starting. 980 */ 981 void rcu_idle_exit(void) 982 { 983 unsigned long flags; 984 985 local_irq_save(flags); 986 rcu_eqs_exit(false); 987 rcu_sysidle_exit(0); 988 local_irq_restore(flags); 989 } 990 EXPORT_SYMBOL_GPL(rcu_idle_exit); 991 992 #ifdef CONFIG_NO_HZ_FULL 993 /** 994 * rcu_user_exit - inform RCU that we are exiting userspace. 995 * 996 * Exit RCU idle mode while entering the kernel because it can 997 * run a RCU read side critical section anytime. 998 */ 999 void rcu_user_exit(void) 1000 { 1001 rcu_eqs_exit(1); 1002 } 1003 #endif /* CONFIG_NO_HZ_FULL */ 1004 1005 /** 1006 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1007 * 1008 * Enter an interrupt handler, which might possibly result in exiting 1009 * idle mode, in other words, entering the mode in which read-side critical 1010 * sections can occur. The caller must have disabled interrupts. 1011 * 1012 * Note that the Linux kernel is fully capable of entering an interrupt 1013 * handler that it never exits, for example when doing upcalls to 1014 * user mode! This code assumes that the idle loop never does upcalls to 1015 * user mode. If your architecture does do upcalls from the idle loop (or 1016 * does anything else that results in unbalanced calls to the irq_enter() 1017 * and irq_exit() functions), RCU will give you what you deserve, good 1018 * and hard. But very infrequently and irreproducibly. 1019 * 1020 * Use things like work queues to work around this limitation. 1021 * 1022 * You have been warned. 1023 */ 1024 void rcu_irq_enter(void) 1025 { 1026 struct rcu_dynticks *rdtp; 1027 long long oldval; 1028 1029 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 1030 rdtp = this_cpu_ptr(&rcu_dynticks); 1031 oldval = rdtp->dynticks_nesting; 1032 rdtp->dynticks_nesting++; 1033 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 1034 rdtp->dynticks_nesting == 0); 1035 if (oldval) 1036 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 1037 else 1038 rcu_eqs_exit_common(oldval, true); 1039 rcu_sysidle_exit(1); 1040 } 1041 1042 /* 1043 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1044 */ 1045 void rcu_irq_enter_irqson(void) 1046 { 1047 unsigned long flags; 1048 1049 local_irq_save(flags); 1050 rcu_irq_enter(); 1051 local_irq_restore(flags); 1052 } 1053 1054 /** 1055 * rcu_nmi_enter - inform RCU of entry to NMI context 1056 * 1057 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 1058 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 1059 * that the CPU is active. This implementation permits nested NMIs, as 1060 * long as the nesting level does not overflow an int. (You will probably 1061 * run out of stack space first.) 1062 */ 1063 void rcu_nmi_enter(void) 1064 { 1065 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1066 int incby = 2; 1067 1068 /* Complain about underflow. */ 1069 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 1070 1071 /* 1072 * If idle from RCU viewpoint, atomically increment ->dynticks 1073 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1074 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1075 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1076 * to be in the outermost NMI handler that interrupted an RCU-idle 1077 * period (observation due to Andy Lutomirski). 1078 */ 1079 if (rcu_dynticks_curr_cpu_in_eqs()) { 1080 rcu_dynticks_eqs_exit(); 1081 incby = 1; 1082 } 1083 rdtp->dynticks_nmi_nesting += incby; 1084 barrier(); 1085 } 1086 1087 /** 1088 * rcu_nmi_exit - inform RCU of exit from NMI context 1089 * 1090 * If we are returning from the outermost NMI handler that interrupted an 1091 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 1092 * to let the RCU grace-period handling know that the CPU is back to 1093 * being RCU-idle. 1094 */ 1095 void rcu_nmi_exit(void) 1096 { 1097 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1098 1099 /* 1100 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1101 * (We are exiting an NMI handler, so RCU better be paying attention 1102 * to us!) 1103 */ 1104 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1105 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 1106 1107 /* 1108 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1109 * leave it in non-RCU-idle state. 1110 */ 1111 if (rdtp->dynticks_nmi_nesting != 1) { 1112 rdtp->dynticks_nmi_nesting -= 2; 1113 return; 1114 } 1115 1116 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1117 rdtp->dynticks_nmi_nesting = 0; 1118 rcu_dynticks_eqs_enter(); 1119 } 1120 1121 /** 1122 * __rcu_is_watching - are RCU read-side critical sections safe? 1123 * 1124 * Return true if RCU is watching the running CPU, which means that 1125 * this CPU can safely enter RCU read-side critical sections. Unlike 1126 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 1127 * least disabled preemption. 1128 */ 1129 bool notrace __rcu_is_watching(void) 1130 { 1131 return !rcu_dynticks_curr_cpu_in_eqs(); 1132 } 1133 1134 /** 1135 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1136 * 1137 * If the current CPU is in its idle loop and is neither in an interrupt 1138 * or NMI handler, return true. 1139 */ 1140 bool notrace rcu_is_watching(void) 1141 { 1142 bool ret; 1143 1144 preempt_disable_notrace(); 1145 ret = __rcu_is_watching(); 1146 preempt_enable_notrace(); 1147 return ret; 1148 } 1149 EXPORT_SYMBOL_GPL(rcu_is_watching); 1150 1151 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1152 1153 /* 1154 * Is the current CPU online? Disable preemption to avoid false positives 1155 * that could otherwise happen due to the current CPU number being sampled, 1156 * this task being preempted, its old CPU being taken offline, resuming 1157 * on some other CPU, then determining that its old CPU is now offline. 1158 * It is OK to use RCU on an offline processor during initial boot, hence 1159 * the check for rcu_scheduler_fully_active. Note also that it is OK 1160 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1161 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1162 * offline to continue to use RCU for one jiffy after marking itself 1163 * offline in the cpu_online_mask. This leniency is necessary given the 1164 * non-atomic nature of the online and offline processing, for example, 1165 * the fact that a CPU enters the scheduler after completing the teardown 1166 * of the CPU. 1167 * 1168 * This is also why RCU internally marks CPUs online during in the 1169 * preparation phase and offline after the CPU has been taken down. 1170 * 1171 * Disable checking if in an NMI handler because we cannot safely report 1172 * errors from NMI handlers anyway. 1173 */ 1174 bool rcu_lockdep_current_cpu_online(void) 1175 { 1176 struct rcu_data *rdp; 1177 struct rcu_node *rnp; 1178 bool ret; 1179 1180 if (in_nmi()) 1181 return true; 1182 preempt_disable(); 1183 rdp = this_cpu_ptr(&rcu_sched_data); 1184 rnp = rdp->mynode; 1185 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1186 !rcu_scheduler_fully_active; 1187 preempt_enable(); 1188 return ret; 1189 } 1190 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1191 1192 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1193 1194 /** 1195 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1196 * 1197 * If the current CPU is idle or running at a first-level (not nested) 1198 * interrupt from idle, return true. The caller must have at least 1199 * disabled preemption. 1200 */ 1201 static int rcu_is_cpu_rrupt_from_idle(void) 1202 { 1203 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1204 } 1205 1206 /* 1207 * Snapshot the specified CPU's dynticks counter so that we can later 1208 * credit them with an implicit quiescent state. Return 1 if this CPU 1209 * is in dynticks idle mode, which is an extended quiescent state. 1210 */ 1211 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1212 bool *isidle, unsigned long *maxj) 1213 { 1214 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1215 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1216 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1217 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1218 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1219 rdp->mynode->gpnum)) 1220 WRITE_ONCE(rdp->gpwrap, true); 1221 return 1; 1222 } 1223 return 0; 1224 } 1225 1226 /* 1227 * Return true if the specified CPU has passed through a quiescent 1228 * state by virtue of being in or having passed through an dynticks 1229 * idle state since the last call to dyntick_save_progress_counter() 1230 * for this same CPU, or by virtue of having been offline. 1231 */ 1232 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1233 bool *isidle, unsigned long *maxj) 1234 { 1235 unsigned long jtsq; 1236 int *rcrmp; 1237 unsigned long rjtsc; 1238 struct rcu_node *rnp; 1239 1240 /* 1241 * If the CPU passed through or entered a dynticks idle phase with 1242 * no active irq/NMI handlers, then we can safely pretend that the CPU 1243 * already acknowledged the request to pass through a quiescent 1244 * state. Either way, that CPU cannot possibly be in an RCU 1245 * read-side critical section that started before the beginning 1246 * of the current RCU grace period. 1247 */ 1248 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1249 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1250 rdp->dynticks_fqs++; 1251 return 1; 1252 } 1253 1254 /* Compute and saturate jiffies_till_sched_qs. */ 1255 jtsq = jiffies_till_sched_qs; 1256 rjtsc = rcu_jiffies_till_stall_check(); 1257 if (jtsq > rjtsc / 2) { 1258 WRITE_ONCE(jiffies_till_sched_qs, rjtsc); 1259 jtsq = rjtsc / 2; 1260 } else if (jtsq < 1) { 1261 WRITE_ONCE(jiffies_till_sched_qs, 1); 1262 jtsq = 1; 1263 } 1264 1265 /* 1266 * Has this CPU encountered a cond_resched_rcu_qs() since the 1267 * beginning of the grace period? For this to be the case, 1268 * the CPU has to have noticed the current grace period. This 1269 * might not be the case for nohz_full CPUs looping in the kernel. 1270 */ 1271 rnp = rdp->mynode; 1272 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1273 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) && 1274 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1275 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1276 return 1; 1277 } 1278 1279 /* Check for the CPU being offline. */ 1280 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1281 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1282 rdp->offline_fqs++; 1283 return 1; 1284 } 1285 1286 /* 1287 * A CPU running for an extended time within the kernel can 1288 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1289 * even context-switching back and forth between a pair of 1290 * in-kernel CPU-bound tasks cannot advance grace periods. 1291 * So if the grace period is old enough, make the CPU pay attention. 1292 * Note that the unsynchronized assignments to the per-CPU 1293 * rcu_sched_qs_mask variable are safe. Yes, setting of 1294 * bits can be lost, but they will be set again on the next 1295 * force-quiescent-state pass. So lost bit sets do not result 1296 * in incorrect behavior, merely in a grace period lasting 1297 * a few jiffies longer than it might otherwise. Because 1298 * there are at most four threads involved, and because the 1299 * updates are only once every few jiffies, the probability of 1300 * lossage (and thus of slight grace-period extension) is 1301 * quite low. 1302 * 1303 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1304 * is set too high, we override with half of the RCU CPU stall 1305 * warning delay. 1306 */ 1307 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1308 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1309 time_after(jiffies, rdp->rsp->jiffies_resched)) { 1310 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1311 WRITE_ONCE(rdp->cond_resched_completed, 1312 READ_ONCE(rdp->mynode->completed)); 1313 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1314 WRITE_ONCE(*rcrmp, 1315 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); 1316 } 1317 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1318 } 1319 1320 /* 1321 * If more than halfway to RCU CPU stall-warning time, do 1322 * a resched_cpu() to try to loosen things up a bit. 1323 */ 1324 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) 1325 resched_cpu(rdp->cpu); 1326 1327 return 0; 1328 } 1329 1330 static void record_gp_stall_check_time(struct rcu_state *rsp) 1331 { 1332 unsigned long j = jiffies; 1333 unsigned long j1; 1334 1335 rsp->gp_start = j; 1336 smp_wmb(); /* Record start time before stall time. */ 1337 j1 = rcu_jiffies_till_stall_check(); 1338 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1339 rsp->jiffies_resched = j + j1 / 2; 1340 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1341 } 1342 1343 /* 1344 * Convert a ->gp_state value to a character string. 1345 */ 1346 static const char *gp_state_getname(short gs) 1347 { 1348 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1349 return "???"; 1350 return gp_state_names[gs]; 1351 } 1352 1353 /* 1354 * Complain about starvation of grace-period kthread. 1355 */ 1356 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1357 { 1358 unsigned long gpa; 1359 unsigned long j; 1360 1361 j = jiffies; 1362 gpa = READ_ONCE(rsp->gp_activity); 1363 if (j - gpa > 2 * HZ) { 1364 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1365 rsp->name, j - gpa, 1366 rsp->gpnum, rsp->completed, 1367 rsp->gp_flags, 1368 gp_state_getname(rsp->gp_state), rsp->gp_state, 1369 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1370 if (rsp->gp_kthread) { 1371 sched_show_task(rsp->gp_kthread); 1372 wake_up_process(rsp->gp_kthread); 1373 } 1374 } 1375 } 1376 1377 /* 1378 * Dump stacks of all tasks running on stalled CPUs. First try using 1379 * NMIs, but fall back to manual remote stack tracing on architectures 1380 * that don't support NMI-based stack dumps. The NMI-triggered stack 1381 * traces are more accurate because they are printed by the target CPU. 1382 */ 1383 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1384 { 1385 int cpu; 1386 unsigned long flags; 1387 struct rcu_node *rnp; 1388 1389 rcu_for_each_leaf_node(rsp, rnp) { 1390 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1391 for_each_leaf_node_possible_cpu(rnp, cpu) 1392 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1393 if (!trigger_single_cpu_backtrace(cpu)) 1394 dump_cpu_task(cpu); 1395 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1396 } 1397 } 1398 1399 /* 1400 * If too much time has passed in the current grace period, and if 1401 * so configured, go kick the relevant kthreads. 1402 */ 1403 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1404 { 1405 unsigned long j; 1406 1407 if (!rcu_kick_kthreads) 1408 return; 1409 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1410 if (time_after(jiffies, j) && rsp->gp_kthread && 1411 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1412 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1413 rcu_ftrace_dump(DUMP_ALL); 1414 wake_up_process(rsp->gp_kthread); 1415 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1416 } 1417 } 1418 1419 static inline void panic_on_rcu_stall(void) 1420 { 1421 if (sysctl_panic_on_rcu_stall) 1422 panic("RCU Stall\n"); 1423 } 1424 1425 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1426 { 1427 int cpu; 1428 long delta; 1429 unsigned long flags; 1430 unsigned long gpa; 1431 unsigned long j; 1432 int ndetected = 0; 1433 struct rcu_node *rnp = rcu_get_root(rsp); 1434 long totqlen = 0; 1435 1436 /* Kick and suppress, if so configured. */ 1437 rcu_stall_kick_kthreads(rsp); 1438 if (rcu_cpu_stall_suppress) 1439 return; 1440 1441 /* Only let one CPU complain about others per time interval. */ 1442 1443 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1444 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1445 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1446 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1447 return; 1448 } 1449 WRITE_ONCE(rsp->jiffies_stall, 1450 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1451 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1452 1453 /* 1454 * OK, time to rat on our buddy... 1455 * See Documentation/RCU/stallwarn.txt for info on how to debug 1456 * RCU CPU stall warnings. 1457 */ 1458 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1459 rsp->name); 1460 print_cpu_stall_info_begin(); 1461 rcu_for_each_leaf_node(rsp, rnp) { 1462 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1463 ndetected += rcu_print_task_stall(rnp); 1464 if (rnp->qsmask != 0) { 1465 for_each_leaf_node_possible_cpu(rnp, cpu) 1466 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1467 print_cpu_stall_info(rsp, cpu); 1468 ndetected++; 1469 } 1470 } 1471 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1472 } 1473 1474 print_cpu_stall_info_end(); 1475 for_each_possible_cpu(cpu) 1476 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1477 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1478 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1479 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1480 if (ndetected) { 1481 rcu_dump_cpu_stacks(rsp); 1482 1483 /* Complain about tasks blocking the grace period. */ 1484 rcu_print_detail_task_stall(rsp); 1485 } else { 1486 if (READ_ONCE(rsp->gpnum) != gpnum || 1487 READ_ONCE(rsp->completed) == gpnum) { 1488 pr_err("INFO: Stall ended before state dump start\n"); 1489 } else { 1490 j = jiffies; 1491 gpa = READ_ONCE(rsp->gp_activity); 1492 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1493 rsp->name, j - gpa, j, gpa, 1494 jiffies_till_next_fqs, 1495 rcu_get_root(rsp)->qsmask); 1496 /* In this case, the current CPU might be at fault. */ 1497 sched_show_task(current); 1498 } 1499 } 1500 1501 rcu_check_gp_kthread_starvation(rsp); 1502 1503 panic_on_rcu_stall(); 1504 1505 force_quiescent_state(rsp); /* Kick them all. */ 1506 } 1507 1508 static void print_cpu_stall(struct rcu_state *rsp) 1509 { 1510 int cpu; 1511 unsigned long flags; 1512 struct rcu_node *rnp = rcu_get_root(rsp); 1513 long totqlen = 0; 1514 1515 /* Kick and suppress, if so configured. */ 1516 rcu_stall_kick_kthreads(rsp); 1517 if (rcu_cpu_stall_suppress) 1518 return; 1519 1520 /* 1521 * OK, time to rat on ourselves... 1522 * See Documentation/RCU/stallwarn.txt for info on how to debug 1523 * RCU CPU stall warnings. 1524 */ 1525 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1526 print_cpu_stall_info_begin(); 1527 print_cpu_stall_info(rsp, smp_processor_id()); 1528 print_cpu_stall_info_end(); 1529 for_each_possible_cpu(cpu) 1530 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1531 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1532 jiffies - rsp->gp_start, 1533 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1534 1535 rcu_check_gp_kthread_starvation(rsp); 1536 1537 rcu_dump_cpu_stacks(rsp); 1538 1539 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1540 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1541 WRITE_ONCE(rsp->jiffies_stall, 1542 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1543 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1544 1545 panic_on_rcu_stall(); 1546 1547 /* 1548 * Attempt to revive the RCU machinery by forcing a context switch. 1549 * 1550 * A context switch would normally allow the RCU state machine to make 1551 * progress and it could be we're stuck in kernel space without context 1552 * switches for an entirely unreasonable amount of time. 1553 */ 1554 resched_cpu(smp_processor_id()); 1555 } 1556 1557 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1558 { 1559 unsigned long completed; 1560 unsigned long gpnum; 1561 unsigned long gps; 1562 unsigned long j; 1563 unsigned long js; 1564 struct rcu_node *rnp; 1565 1566 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1567 !rcu_gp_in_progress(rsp)) 1568 return; 1569 rcu_stall_kick_kthreads(rsp); 1570 j = jiffies; 1571 1572 /* 1573 * Lots of memory barriers to reject false positives. 1574 * 1575 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1576 * then rsp->gp_start, and finally rsp->completed. These values 1577 * are updated in the opposite order with memory barriers (or 1578 * equivalent) during grace-period initialization and cleanup. 1579 * Now, a false positive can occur if we get an new value of 1580 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1581 * the memory barriers, the only way that this can happen is if one 1582 * grace period ends and another starts between these two fetches. 1583 * Detect this by comparing rsp->completed with the previous fetch 1584 * from rsp->gpnum. 1585 * 1586 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1587 * and rsp->gp_start suffice to forestall false positives. 1588 */ 1589 gpnum = READ_ONCE(rsp->gpnum); 1590 smp_rmb(); /* Pick up ->gpnum first... */ 1591 js = READ_ONCE(rsp->jiffies_stall); 1592 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1593 gps = READ_ONCE(rsp->gp_start); 1594 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1595 completed = READ_ONCE(rsp->completed); 1596 if (ULONG_CMP_GE(completed, gpnum) || 1597 ULONG_CMP_LT(j, js) || 1598 ULONG_CMP_GE(gps, js)) 1599 return; /* No stall or GP completed since entering function. */ 1600 rnp = rdp->mynode; 1601 if (rcu_gp_in_progress(rsp) && 1602 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1603 1604 /* We haven't checked in, so go dump stack. */ 1605 print_cpu_stall(rsp); 1606 1607 } else if (rcu_gp_in_progress(rsp) && 1608 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1609 1610 /* They had a few time units to dump stack, so complain. */ 1611 print_other_cpu_stall(rsp, gpnum); 1612 } 1613 } 1614 1615 /** 1616 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1617 * 1618 * Set the stall-warning timeout way off into the future, thus preventing 1619 * any RCU CPU stall-warning messages from appearing in the current set of 1620 * RCU grace periods. 1621 * 1622 * The caller must disable hard irqs. 1623 */ 1624 void rcu_cpu_stall_reset(void) 1625 { 1626 struct rcu_state *rsp; 1627 1628 for_each_rcu_flavor(rsp) 1629 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1630 } 1631 1632 /* 1633 * Initialize the specified rcu_data structure's default callback list 1634 * to empty. The default callback list is the one that is not used by 1635 * no-callbacks CPUs. 1636 */ 1637 static void init_default_callback_list(struct rcu_data *rdp) 1638 { 1639 int i; 1640 1641 rdp->nxtlist = NULL; 1642 for (i = 0; i < RCU_NEXT_SIZE; i++) 1643 rdp->nxttail[i] = &rdp->nxtlist; 1644 } 1645 1646 /* 1647 * Initialize the specified rcu_data structure's callback list to empty. 1648 */ 1649 static void init_callback_list(struct rcu_data *rdp) 1650 { 1651 if (init_nocb_callback_list(rdp)) 1652 return; 1653 init_default_callback_list(rdp); 1654 } 1655 1656 /* 1657 * Determine the value that ->completed will have at the end of the 1658 * next subsequent grace period. This is used to tag callbacks so that 1659 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1660 * been dyntick-idle for an extended period with callbacks under the 1661 * influence of RCU_FAST_NO_HZ. 1662 * 1663 * The caller must hold rnp->lock with interrupts disabled. 1664 */ 1665 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1666 struct rcu_node *rnp) 1667 { 1668 /* 1669 * If RCU is idle, we just wait for the next grace period. 1670 * But we can only be sure that RCU is idle if we are looking 1671 * at the root rcu_node structure -- otherwise, a new grace 1672 * period might have started, but just not yet gotten around 1673 * to initializing the current non-root rcu_node structure. 1674 */ 1675 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1676 return rnp->completed + 1; 1677 1678 /* 1679 * Otherwise, wait for a possible partial grace period and 1680 * then the subsequent full grace period. 1681 */ 1682 return rnp->completed + 2; 1683 } 1684 1685 /* 1686 * Trace-event helper function for rcu_start_future_gp() and 1687 * rcu_nocb_wait_gp(). 1688 */ 1689 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1690 unsigned long c, const char *s) 1691 { 1692 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1693 rnp->completed, c, rnp->level, 1694 rnp->grplo, rnp->grphi, s); 1695 } 1696 1697 /* 1698 * Start some future grace period, as needed to handle newly arrived 1699 * callbacks. The required future grace periods are recorded in each 1700 * rcu_node structure's ->need_future_gp field. Returns true if there 1701 * is reason to awaken the grace-period kthread. 1702 * 1703 * The caller must hold the specified rcu_node structure's ->lock. 1704 */ 1705 static bool __maybe_unused 1706 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1707 unsigned long *c_out) 1708 { 1709 unsigned long c; 1710 int i; 1711 bool ret = false; 1712 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1713 1714 /* 1715 * Pick up grace-period number for new callbacks. If this 1716 * grace period is already marked as needed, return to the caller. 1717 */ 1718 c = rcu_cbs_completed(rdp->rsp, rnp); 1719 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1720 if (rnp->need_future_gp[c & 0x1]) { 1721 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1722 goto out; 1723 } 1724 1725 /* 1726 * If either this rcu_node structure or the root rcu_node structure 1727 * believe that a grace period is in progress, then we must wait 1728 * for the one following, which is in "c". Because our request 1729 * will be noticed at the end of the current grace period, we don't 1730 * need to explicitly start one. We only do the lockless check 1731 * of rnp_root's fields if the current rcu_node structure thinks 1732 * there is no grace period in flight, and because we hold rnp->lock, 1733 * the only possible change is when rnp_root's two fields are 1734 * equal, in which case rnp_root->gpnum might be concurrently 1735 * incremented. But that is OK, as it will just result in our 1736 * doing some extra useless work. 1737 */ 1738 if (rnp->gpnum != rnp->completed || 1739 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1740 rnp->need_future_gp[c & 0x1]++; 1741 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1742 goto out; 1743 } 1744 1745 /* 1746 * There might be no grace period in progress. If we don't already 1747 * hold it, acquire the root rcu_node structure's lock in order to 1748 * start one (if needed). 1749 */ 1750 if (rnp != rnp_root) 1751 raw_spin_lock_rcu_node(rnp_root); 1752 1753 /* 1754 * Get a new grace-period number. If there really is no grace 1755 * period in progress, it will be smaller than the one we obtained 1756 * earlier. Adjust callbacks as needed. Note that even no-CBs 1757 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1758 */ 1759 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1760 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1761 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1762 rdp->nxtcompleted[i] = c; 1763 1764 /* 1765 * If the needed for the required grace period is already 1766 * recorded, trace and leave. 1767 */ 1768 if (rnp_root->need_future_gp[c & 0x1]) { 1769 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1770 goto unlock_out; 1771 } 1772 1773 /* Record the need for the future grace period. */ 1774 rnp_root->need_future_gp[c & 0x1]++; 1775 1776 /* If a grace period is not already in progress, start one. */ 1777 if (rnp_root->gpnum != rnp_root->completed) { 1778 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1779 } else { 1780 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1781 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1782 } 1783 unlock_out: 1784 if (rnp != rnp_root) 1785 raw_spin_unlock_rcu_node(rnp_root); 1786 out: 1787 if (c_out != NULL) 1788 *c_out = c; 1789 return ret; 1790 } 1791 1792 /* 1793 * Clean up any old requests for the just-ended grace period. Also return 1794 * whether any additional grace periods have been requested. Also invoke 1795 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1796 * waiting for this grace period to complete. 1797 */ 1798 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1799 { 1800 int c = rnp->completed; 1801 int needmore; 1802 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1803 1804 rnp->need_future_gp[c & 0x1] = 0; 1805 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1806 trace_rcu_future_gp(rnp, rdp, c, 1807 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1808 return needmore; 1809 } 1810 1811 /* 1812 * Awaken the grace-period kthread for the specified flavor of RCU. 1813 * Don't do a self-awaken, and don't bother awakening when there is 1814 * nothing for the grace-period kthread to do (as in several CPUs 1815 * raced to awaken, and we lost), and finally don't try to awaken 1816 * a kthread that has not yet been created. 1817 */ 1818 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1819 { 1820 if (current == rsp->gp_kthread || 1821 !READ_ONCE(rsp->gp_flags) || 1822 !rsp->gp_kthread) 1823 return; 1824 swake_up(&rsp->gp_wq); 1825 } 1826 1827 /* 1828 * If there is room, assign a ->completed number to any callbacks on 1829 * this CPU that have not already been assigned. Also accelerate any 1830 * callbacks that were previously assigned a ->completed number that has 1831 * since proven to be too conservative, which can happen if callbacks get 1832 * assigned a ->completed number while RCU is idle, but with reference to 1833 * a non-root rcu_node structure. This function is idempotent, so it does 1834 * not hurt to call it repeatedly. Returns an flag saying that we should 1835 * awaken the RCU grace-period kthread. 1836 * 1837 * The caller must hold rnp->lock with interrupts disabled. 1838 */ 1839 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1840 struct rcu_data *rdp) 1841 { 1842 unsigned long c; 1843 int i; 1844 bool ret; 1845 1846 /* If the CPU has no callbacks, nothing to do. */ 1847 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1848 return false; 1849 1850 /* 1851 * Starting from the sublist containing the callbacks most 1852 * recently assigned a ->completed number and working down, find the 1853 * first sublist that is not assignable to an upcoming grace period. 1854 * Such a sublist has something in it (first two tests) and has 1855 * a ->completed number assigned that will complete sooner than 1856 * the ->completed number for newly arrived callbacks (last test). 1857 * 1858 * The key point is that any later sublist can be assigned the 1859 * same ->completed number as the newly arrived callbacks, which 1860 * means that the callbacks in any of these later sublist can be 1861 * grouped into a single sublist, whether or not they have already 1862 * been assigned a ->completed number. 1863 */ 1864 c = rcu_cbs_completed(rsp, rnp); 1865 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1866 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1867 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1868 break; 1869 1870 /* 1871 * If there are no sublist for unassigned callbacks, leave. 1872 * At the same time, advance "i" one sublist, so that "i" will 1873 * index into the sublist where all the remaining callbacks should 1874 * be grouped into. 1875 */ 1876 if (++i >= RCU_NEXT_TAIL) 1877 return false; 1878 1879 /* 1880 * Assign all subsequent callbacks' ->completed number to the next 1881 * full grace period and group them all in the sublist initially 1882 * indexed by "i". 1883 */ 1884 for (; i <= RCU_NEXT_TAIL; i++) { 1885 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1886 rdp->nxtcompleted[i] = c; 1887 } 1888 /* Record any needed additional grace periods. */ 1889 ret = rcu_start_future_gp(rnp, rdp, NULL); 1890 1891 /* Trace depending on how much we were able to accelerate. */ 1892 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1893 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1894 else 1895 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1896 return ret; 1897 } 1898 1899 /* 1900 * Move any callbacks whose grace period has completed to the 1901 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1902 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1903 * sublist. This function is idempotent, so it does not hurt to 1904 * invoke it repeatedly. As long as it is not invoked -too- often... 1905 * Returns true if the RCU grace-period kthread needs to be awakened. 1906 * 1907 * The caller must hold rnp->lock with interrupts disabled. 1908 */ 1909 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1910 struct rcu_data *rdp) 1911 { 1912 int i, j; 1913 1914 /* If the CPU has no callbacks, nothing to do. */ 1915 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1916 return false; 1917 1918 /* 1919 * Find all callbacks whose ->completed numbers indicate that they 1920 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1921 */ 1922 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1923 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1924 break; 1925 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1926 } 1927 /* Clean up any sublist tail pointers that were misordered above. */ 1928 for (j = RCU_WAIT_TAIL; j < i; j++) 1929 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1930 1931 /* Copy down callbacks to fill in empty sublists. */ 1932 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1933 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1934 break; 1935 rdp->nxttail[j] = rdp->nxttail[i]; 1936 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1937 } 1938 1939 /* Classify any remaining callbacks. */ 1940 return rcu_accelerate_cbs(rsp, rnp, rdp); 1941 } 1942 1943 /* 1944 * Update CPU-local rcu_data state to record the beginnings and ends of 1945 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1946 * structure corresponding to the current CPU, and must have irqs disabled. 1947 * Returns true if the grace-period kthread needs to be awakened. 1948 */ 1949 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1950 struct rcu_data *rdp) 1951 { 1952 bool ret; 1953 bool need_gp; 1954 1955 /* Handle the ends of any preceding grace periods first. */ 1956 if (rdp->completed == rnp->completed && 1957 !unlikely(READ_ONCE(rdp->gpwrap))) { 1958 1959 /* No grace period end, so just accelerate recent callbacks. */ 1960 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1961 1962 } else { 1963 1964 /* Advance callbacks. */ 1965 ret = rcu_advance_cbs(rsp, rnp, rdp); 1966 1967 /* Remember that we saw this grace-period completion. */ 1968 rdp->completed = rnp->completed; 1969 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1970 } 1971 1972 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1973 /* 1974 * If the current grace period is waiting for this CPU, 1975 * set up to detect a quiescent state, otherwise don't 1976 * go looking for one. 1977 */ 1978 rdp->gpnum = rnp->gpnum; 1979 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1980 need_gp = !!(rnp->qsmask & rdp->grpmask); 1981 rdp->cpu_no_qs.b.norm = need_gp; 1982 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1983 rdp->core_needs_qs = need_gp; 1984 zero_cpu_stall_ticks(rdp); 1985 WRITE_ONCE(rdp->gpwrap, false); 1986 } 1987 return ret; 1988 } 1989 1990 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1991 { 1992 unsigned long flags; 1993 bool needwake; 1994 struct rcu_node *rnp; 1995 1996 local_irq_save(flags); 1997 rnp = rdp->mynode; 1998 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1999 rdp->completed == READ_ONCE(rnp->completed) && 2000 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 2001 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 2002 local_irq_restore(flags); 2003 return; 2004 } 2005 needwake = __note_gp_changes(rsp, rnp, rdp); 2006 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2007 if (needwake) 2008 rcu_gp_kthread_wake(rsp); 2009 } 2010 2011 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 2012 { 2013 if (delay > 0 && 2014 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 2015 schedule_timeout_uninterruptible(delay); 2016 } 2017 2018 /* 2019 * Initialize a new grace period. Return false if no grace period required. 2020 */ 2021 static bool rcu_gp_init(struct rcu_state *rsp) 2022 { 2023 unsigned long oldmask; 2024 struct rcu_data *rdp; 2025 struct rcu_node *rnp = rcu_get_root(rsp); 2026 2027 WRITE_ONCE(rsp->gp_activity, jiffies); 2028 raw_spin_lock_irq_rcu_node(rnp); 2029 if (!READ_ONCE(rsp->gp_flags)) { 2030 /* Spurious wakeup, tell caller to go back to sleep. */ 2031 raw_spin_unlock_irq_rcu_node(rnp); 2032 return false; 2033 } 2034 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 2035 2036 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 2037 /* 2038 * Grace period already in progress, don't start another. 2039 * Not supposed to be able to happen. 2040 */ 2041 raw_spin_unlock_irq_rcu_node(rnp); 2042 return false; 2043 } 2044 2045 /* Advance to a new grace period and initialize state. */ 2046 record_gp_stall_check_time(rsp); 2047 /* Record GP times before starting GP, hence smp_store_release(). */ 2048 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 2049 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 2050 raw_spin_unlock_irq_rcu_node(rnp); 2051 2052 /* 2053 * Apply per-leaf buffered online and offline operations to the 2054 * rcu_node tree. Note that this new grace period need not wait 2055 * for subsequent online CPUs, and that quiescent-state forcing 2056 * will handle subsequent offline CPUs. 2057 */ 2058 rcu_for_each_leaf_node(rsp, rnp) { 2059 rcu_gp_slow(rsp, gp_preinit_delay); 2060 raw_spin_lock_irq_rcu_node(rnp); 2061 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 2062 !rnp->wait_blkd_tasks) { 2063 /* Nothing to do on this leaf rcu_node structure. */ 2064 raw_spin_unlock_irq_rcu_node(rnp); 2065 continue; 2066 } 2067 2068 /* Record old state, apply changes to ->qsmaskinit field. */ 2069 oldmask = rnp->qsmaskinit; 2070 rnp->qsmaskinit = rnp->qsmaskinitnext; 2071 2072 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 2073 if (!oldmask != !rnp->qsmaskinit) { 2074 if (!oldmask) /* First online CPU for this rcu_node. */ 2075 rcu_init_new_rnp(rnp); 2076 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 2077 rnp->wait_blkd_tasks = true; 2078 else /* Last offline CPU and can propagate. */ 2079 rcu_cleanup_dead_rnp(rnp); 2080 } 2081 2082 /* 2083 * If all waited-on tasks from prior grace period are 2084 * done, and if all this rcu_node structure's CPUs are 2085 * still offline, propagate up the rcu_node tree and 2086 * clear ->wait_blkd_tasks. Otherwise, if one of this 2087 * rcu_node structure's CPUs has since come back online, 2088 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 2089 * checks for this, so just call it unconditionally). 2090 */ 2091 if (rnp->wait_blkd_tasks && 2092 (!rcu_preempt_has_tasks(rnp) || 2093 rnp->qsmaskinit)) { 2094 rnp->wait_blkd_tasks = false; 2095 rcu_cleanup_dead_rnp(rnp); 2096 } 2097 2098 raw_spin_unlock_irq_rcu_node(rnp); 2099 } 2100 2101 /* 2102 * Set the quiescent-state-needed bits in all the rcu_node 2103 * structures for all currently online CPUs in breadth-first order, 2104 * starting from the root rcu_node structure, relying on the layout 2105 * of the tree within the rsp->node[] array. Note that other CPUs 2106 * will access only the leaves of the hierarchy, thus seeing that no 2107 * grace period is in progress, at least until the corresponding 2108 * leaf node has been initialized. 2109 * 2110 * The grace period cannot complete until the initialization 2111 * process finishes, because this kthread handles both. 2112 */ 2113 rcu_for_each_node_breadth_first(rsp, rnp) { 2114 rcu_gp_slow(rsp, gp_init_delay); 2115 raw_spin_lock_irq_rcu_node(rnp); 2116 rdp = this_cpu_ptr(rsp->rda); 2117 rcu_preempt_check_blocked_tasks(rnp); 2118 rnp->qsmask = rnp->qsmaskinit; 2119 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2120 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2121 WRITE_ONCE(rnp->completed, rsp->completed); 2122 if (rnp == rdp->mynode) 2123 (void)__note_gp_changes(rsp, rnp, rdp); 2124 rcu_preempt_boost_start_gp(rnp); 2125 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2126 rnp->level, rnp->grplo, 2127 rnp->grphi, rnp->qsmask); 2128 raw_spin_unlock_irq_rcu_node(rnp); 2129 cond_resched_rcu_qs(); 2130 WRITE_ONCE(rsp->gp_activity, jiffies); 2131 } 2132 2133 return true; 2134 } 2135 2136 /* 2137 * Helper function for wait_event_interruptible_timeout() wakeup 2138 * at force-quiescent-state time. 2139 */ 2140 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2141 { 2142 struct rcu_node *rnp = rcu_get_root(rsp); 2143 2144 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2145 *gfp = READ_ONCE(rsp->gp_flags); 2146 if (*gfp & RCU_GP_FLAG_FQS) 2147 return true; 2148 2149 /* The current grace period has completed. */ 2150 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2151 return true; 2152 2153 return false; 2154 } 2155 2156 /* 2157 * Do one round of quiescent-state forcing. 2158 */ 2159 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2160 { 2161 bool isidle = false; 2162 unsigned long maxj; 2163 struct rcu_node *rnp = rcu_get_root(rsp); 2164 2165 WRITE_ONCE(rsp->gp_activity, jiffies); 2166 rsp->n_force_qs++; 2167 if (first_time) { 2168 /* Collect dyntick-idle snapshots. */ 2169 if (is_sysidle_rcu_state(rsp)) { 2170 isidle = true; 2171 maxj = jiffies - ULONG_MAX / 4; 2172 } 2173 force_qs_rnp(rsp, dyntick_save_progress_counter, 2174 &isidle, &maxj); 2175 rcu_sysidle_report_gp(rsp, isidle, maxj); 2176 } else { 2177 /* Handle dyntick-idle and offline CPUs. */ 2178 isidle = true; 2179 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 2180 } 2181 /* Clear flag to prevent immediate re-entry. */ 2182 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2183 raw_spin_lock_irq_rcu_node(rnp); 2184 WRITE_ONCE(rsp->gp_flags, 2185 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2186 raw_spin_unlock_irq_rcu_node(rnp); 2187 } 2188 } 2189 2190 /* 2191 * Clean up after the old grace period. 2192 */ 2193 static void rcu_gp_cleanup(struct rcu_state *rsp) 2194 { 2195 unsigned long gp_duration; 2196 bool needgp = false; 2197 int nocb = 0; 2198 struct rcu_data *rdp; 2199 struct rcu_node *rnp = rcu_get_root(rsp); 2200 struct swait_queue_head *sq; 2201 2202 WRITE_ONCE(rsp->gp_activity, jiffies); 2203 raw_spin_lock_irq_rcu_node(rnp); 2204 gp_duration = jiffies - rsp->gp_start; 2205 if (gp_duration > rsp->gp_max) 2206 rsp->gp_max = gp_duration; 2207 2208 /* 2209 * We know the grace period is complete, but to everyone else 2210 * it appears to still be ongoing. But it is also the case 2211 * that to everyone else it looks like there is nothing that 2212 * they can do to advance the grace period. It is therefore 2213 * safe for us to drop the lock in order to mark the grace 2214 * period as completed in all of the rcu_node structures. 2215 */ 2216 raw_spin_unlock_irq_rcu_node(rnp); 2217 2218 /* 2219 * Propagate new ->completed value to rcu_node structures so 2220 * that other CPUs don't have to wait until the start of the next 2221 * grace period to process their callbacks. This also avoids 2222 * some nasty RCU grace-period initialization races by forcing 2223 * the end of the current grace period to be completely recorded in 2224 * all of the rcu_node structures before the beginning of the next 2225 * grace period is recorded in any of the rcu_node structures. 2226 */ 2227 rcu_for_each_node_breadth_first(rsp, rnp) { 2228 raw_spin_lock_irq_rcu_node(rnp); 2229 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2230 WARN_ON_ONCE(rnp->qsmask); 2231 WRITE_ONCE(rnp->completed, rsp->gpnum); 2232 rdp = this_cpu_ptr(rsp->rda); 2233 if (rnp == rdp->mynode) 2234 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2235 /* smp_mb() provided by prior unlock-lock pair. */ 2236 nocb += rcu_future_gp_cleanup(rsp, rnp); 2237 sq = rcu_nocb_gp_get(rnp); 2238 raw_spin_unlock_irq_rcu_node(rnp); 2239 rcu_nocb_gp_cleanup(sq); 2240 cond_resched_rcu_qs(); 2241 WRITE_ONCE(rsp->gp_activity, jiffies); 2242 rcu_gp_slow(rsp, gp_cleanup_delay); 2243 } 2244 rnp = rcu_get_root(rsp); 2245 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2246 rcu_nocb_gp_set(rnp, nocb); 2247 2248 /* Declare grace period done. */ 2249 WRITE_ONCE(rsp->completed, rsp->gpnum); 2250 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2251 rsp->gp_state = RCU_GP_IDLE; 2252 rdp = this_cpu_ptr(rsp->rda); 2253 /* Advance CBs to reduce false positives below. */ 2254 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2255 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2256 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2257 trace_rcu_grace_period(rsp->name, 2258 READ_ONCE(rsp->gpnum), 2259 TPS("newreq")); 2260 } 2261 raw_spin_unlock_irq_rcu_node(rnp); 2262 } 2263 2264 /* 2265 * Body of kthread that handles grace periods. 2266 */ 2267 static int __noreturn rcu_gp_kthread(void *arg) 2268 { 2269 bool first_gp_fqs; 2270 int gf; 2271 unsigned long j; 2272 int ret; 2273 struct rcu_state *rsp = arg; 2274 struct rcu_node *rnp = rcu_get_root(rsp); 2275 2276 rcu_bind_gp_kthread(); 2277 for (;;) { 2278 2279 /* Handle grace-period start. */ 2280 for (;;) { 2281 trace_rcu_grace_period(rsp->name, 2282 READ_ONCE(rsp->gpnum), 2283 TPS("reqwait")); 2284 rsp->gp_state = RCU_GP_WAIT_GPS; 2285 swait_event_interruptible(rsp->gp_wq, 2286 READ_ONCE(rsp->gp_flags) & 2287 RCU_GP_FLAG_INIT); 2288 rsp->gp_state = RCU_GP_DONE_GPS; 2289 /* Locking provides needed memory barrier. */ 2290 if (rcu_gp_init(rsp)) 2291 break; 2292 cond_resched_rcu_qs(); 2293 WRITE_ONCE(rsp->gp_activity, jiffies); 2294 WARN_ON(signal_pending(current)); 2295 trace_rcu_grace_period(rsp->name, 2296 READ_ONCE(rsp->gpnum), 2297 TPS("reqwaitsig")); 2298 } 2299 2300 /* Handle quiescent-state forcing. */ 2301 first_gp_fqs = true; 2302 j = jiffies_till_first_fqs; 2303 if (j > HZ) { 2304 j = HZ; 2305 jiffies_till_first_fqs = HZ; 2306 } 2307 ret = 0; 2308 for (;;) { 2309 if (!ret) { 2310 rsp->jiffies_force_qs = jiffies + j; 2311 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2312 jiffies + 3 * j); 2313 } 2314 trace_rcu_grace_period(rsp->name, 2315 READ_ONCE(rsp->gpnum), 2316 TPS("fqswait")); 2317 rsp->gp_state = RCU_GP_WAIT_FQS; 2318 ret = swait_event_interruptible_timeout(rsp->gp_wq, 2319 rcu_gp_fqs_check_wake(rsp, &gf), j); 2320 rsp->gp_state = RCU_GP_DOING_FQS; 2321 /* Locking provides needed memory barriers. */ 2322 /* If grace period done, leave loop. */ 2323 if (!READ_ONCE(rnp->qsmask) && 2324 !rcu_preempt_blocked_readers_cgp(rnp)) 2325 break; 2326 /* If time for quiescent-state forcing, do it. */ 2327 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2328 (gf & RCU_GP_FLAG_FQS)) { 2329 trace_rcu_grace_period(rsp->name, 2330 READ_ONCE(rsp->gpnum), 2331 TPS("fqsstart")); 2332 rcu_gp_fqs(rsp, first_gp_fqs); 2333 first_gp_fqs = false; 2334 trace_rcu_grace_period(rsp->name, 2335 READ_ONCE(rsp->gpnum), 2336 TPS("fqsend")); 2337 cond_resched_rcu_qs(); 2338 WRITE_ONCE(rsp->gp_activity, jiffies); 2339 ret = 0; /* Force full wait till next FQS. */ 2340 j = jiffies_till_next_fqs; 2341 if (j > HZ) { 2342 j = HZ; 2343 jiffies_till_next_fqs = HZ; 2344 } else if (j < 1) { 2345 j = 1; 2346 jiffies_till_next_fqs = 1; 2347 } 2348 } else { 2349 /* Deal with stray signal. */ 2350 cond_resched_rcu_qs(); 2351 WRITE_ONCE(rsp->gp_activity, jiffies); 2352 WARN_ON(signal_pending(current)); 2353 trace_rcu_grace_period(rsp->name, 2354 READ_ONCE(rsp->gpnum), 2355 TPS("fqswaitsig")); 2356 ret = 1; /* Keep old FQS timing. */ 2357 j = jiffies; 2358 if (time_after(jiffies, rsp->jiffies_force_qs)) 2359 j = 1; 2360 else 2361 j = rsp->jiffies_force_qs - j; 2362 } 2363 } 2364 2365 /* Handle grace-period end. */ 2366 rsp->gp_state = RCU_GP_CLEANUP; 2367 rcu_gp_cleanup(rsp); 2368 rsp->gp_state = RCU_GP_CLEANED; 2369 } 2370 } 2371 2372 /* 2373 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2374 * in preparation for detecting the next grace period. The caller must hold 2375 * the root node's ->lock and hard irqs must be disabled. 2376 * 2377 * Note that it is legal for a dying CPU (which is marked as offline) to 2378 * invoke this function. This can happen when the dying CPU reports its 2379 * quiescent state. 2380 * 2381 * Returns true if the grace-period kthread must be awakened. 2382 */ 2383 static bool 2384 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2385 struct rcu_data *rdp) 2386 { 2387 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2388 /* 2389 * Either we have not yet spawned the grace-period 2390 * task, this CPU does not need another grace period, 2391 * or a grace period is already in progress. 2392 * Either way, don't start a new grace period. 2393 */ 2394 return false; 2395 } 2396 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2397 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2398 TPS("newreq")); 2399 2400 /* 2401 * We can't do wakeups while holding the rnp->lock, as that 2402 * could cause possible deadlocks with the rq->lock. Defer 2403 * the wakeup to our caller. 2404 */ 2405 return true; 2406 } 2407 2408 /* 2409 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2410 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2411 * is invoked indirectly from rcu_advance_cbs(), which would result in 2412 * endless recursion -- or would do so if it wasn't for the self-deadlock 2413 * that is encountered beforehand. 2414 * 2415 * Returns true if the grace-period kthread needs to be awakened. 2416 */ 2417 static bool rcu_start_gp(struct rcu_state *rsp) 2418 { 2419 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2420 struct rcu_node *rnp = rcu_get_root(rsp); 2421 bool ret = false; 2422 2423 /* 2424 * If there is no grace period in progress right now, any 2425 * callbacks we have up to this point will be satisfied by the 2426 * next grace period. Also, advancing the callbacks reduces the 2427 * probability of false positives from cpu_needs_another_gp() 2428 * resulting in pointless grace periods. So, advance callbacks 2429 * then start the grace period! 2430 */ 2431 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2432 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2433 return ret; 2434 } 2435 2436 /* 2437 * Report a full set of quiescent states to the specified rcu_state data 2438 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2439 * kthread if another grace period is required. Whether we wake 2440 * the grace-period kthread or it awakens itself for the next round 2441 * of quiescent-state forcing, that kthread will clean up after the 2442 * just-completed grace period. Note that the caller must hold rnp->lock, 2443 * which is released before return. 2444 */ 2445 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2446 __releases(rcu_get_root(rsp)->lock) 2447 { 2448 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2449 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2450 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2451 rcu_gp_kthread_wake(rsp); 2452 } 2453 2454 /* 2455 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2456 * Allows quiescent states for a group of CPUs to be reported at one go 2457 * to the specified rcu_node structure, though all the CPUs in the group 2458 * must be represented by the same rcu_node structure (which need not be a 2459 * leaf rcu_node structure, though it often will be). The gps parameter 2460 * is the grace-period snapshot, which means that the quiescent states 2461 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2462 * must be held upon entry, and it is released before return. 2463 */ 2464 static void 2465 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2466 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2467 __releases(rnp->lock) 2468 { 2469 unsigned long oldmask = 0; 2470 struct rcu_node *rnp_c; 2471 2472 /* Walk up the rcu_node hierarchy. */ 2473 for (;;) { 2474 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2475 2476 /* 2477 * Our bit has already been cleared, or the 2478 * relevant grace period is already over, so done. 2479 */ 2480 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2481 return; 2482 } 2483 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2484 rnp->qsmask &= ~mask; 2485 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2486 mask, rnp->qsmask, rnp->level, 2487 rnp->grplo, rnp->grphi, 2488 !!rnp->gp_tasks); 2489 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2490 2491 /* Other bits still set at this level, so done. */ 2492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2493 return; 2494 } 2495 mask = rnp->grpmask; 2496 if (rnp->parent == NULL) { 2497 2498 /* No more levels. Exit loop holding root lock. */ 2499 2500 break; 2501 } 2502 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2503 rnp_c = rnp; 2504 rnp = rnp->parent; 2505 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2506 oldmask = rnp_c->qsmask; 2507 } 2508 2509 /* 2510 * Get here if we are the last CPU to pass through a quiescent 2511 * state for this grace period. Invoke rcu_report_qs_rsp() 2512 * to clean up and start the next grace period if one is needed. 2513 */ 2514 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2515 } 2516 2517 /* 2518 * Record a quiescent state for all tasks that were previously queued 2519 * on the specified rcu_node structure and that were blocking the current 2520 * RCU grace period. The caller must hold the specified rnp->lock with 2521 * irqs disabled, and this lock is released upon return, but irqs remain 2522 * disabled. 2523 */ 2524 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2525 struct rcu_node *rnp, unsigned long flags) 2526 __releases(rnp->lock) 2527 { 2528 unsigned long gps; 2529 unsigned long mask; 2530 struct rcu_node *rnp_p; 2531 2532 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2533 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2534 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2535 return; /* Still need more quiescent states! */ 2536 } 2537 2538 rnp_p = rnp->parent; 2539 if (rnp_p == NULL) { 2540 /* 2541 * Only one rcu_node structure in the tree, so don't 2542 * try to report up to its nonexistent parent! 2543 */ 2544 rcu_report_qs_rsp(rsp, flags); 2545 return; 2546 } 2547 2548 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2549 gps = rnp->gpnum; 2550 mask = rnp->grpmask; 2551 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2552 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2553 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2554 } 2555 2556 /* 2557 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2558 * structure. This must be called from the specified CPU. 2559 */ 2560 static void 2561 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2562 { 2563 unsigned long flags; 2564 unsigned long mask; 2565 bool needwake; 2566 struct rcu_node *rnp; 2567 2568 rnp = rdp->mynode; 2569 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2570 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2571 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2572 2573 /* 2574 * The grace period in which this quiescent state was 2575 * recorded has ended, so don't report it upwards. 2576 * We will instead need a new quiescent state that lies 2577 * within the current grace period. 2578 */ 2579 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2580 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2581 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2582 return; 2583 } 2584 mask = rdp->grpmask; 2585 if ((rnp->qsmask & mask) == 0) { 2586 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2587 } else { 2588 rdp->core_needs_qs = false; 2589 2590 /* 2591 * This GP can't end until cpu checks in, so all of our 2592 * callbacks can be processed during the next GP. 2593 */ 2594 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2595 2596 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2597 /* ^^^ Released rnp->lock */ 2598 if (needwake) 2599 rcu_gp_kthread_wake(rsp); 2600 } 2601 } 2602 2603 /* 2604 * Check to see if there is a new grace period of which this CPU 2605 * is not yet aware, and if so, set up local rcu_data state for it. 2606 * Otherwise, see if this CPU has just passed through its first 2607 * quiescent state for this grace period, and record that fact if so. 2608 */ 2609 static void 2610 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2611 { 2612 /* Check for grace-period ends and beginnings. */ 2613 note_gp_changes(rsp, rdp); 2614 2615 /* 2616 * Does this CPU still need to do its part for current grace period? 2617 * If no, return and let the other CPUs do their part as well. 2618 */ 2619 if (!rdp->core_needs_qs) 2620 return; 2621 2622 /* 2623 * Was there a quiescent state since the beginning of the grace 2624 * period? If no, then exit and wait for the next call. 2625 */ 2626 if (rdp->cpu_no_qs.b.norm) 2627 return; 2628 2629 /* 2630 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2631 * judge of that). 2632 */ 2633 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2634 } 2635 2636 /* 2637 * Send the specified CPU's RCU callbacks to the orphanage. The 2638 * specified CPU must be offline, and the caller must hold the 2639 * ->orphan_lock. 2640 */ 2641 static void 2642 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2643 struct rcu_node *rnp, struct rcu_data *rdp) 2644 { 2645 /* No-CBs CPUs do not have orphanable callbacks. */ 2646 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2647 return; 2648 2649 /* 2650 * Orphan the callbacks. First adjust the counts. This is safe 2651 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2652 * cannot be running now. Thus no memory barrier is required. 2653 */ 2654 if (rdp->nxtlist != NULL) { 2655 rsp->qlen_lazy += rdp->qlen_lazy; 2656 rsp->qlen += rdp->qlen; 2657 rdp->n_cbs_orphaned += rdp->qlen; 2658 rdp->qlen_lazy = 0; 2659 WRITE_ONCE(rdp->qlen, 0); 2660 } 2661 2662 /* 2663 * Next, move those callbacks still needing a grace period to 2664 * the orphanage, where some other CPU will pick them up. 2665 * Some of the callbacks might have gone partway through a grace 2666 * period, but that is too bad. They get to start over because we 2667 * cannot assume that grace periods are synchronized across CPUs. 2668 * We don't bother updating the ->nxttail[] array yet, instead 2669 * we just reset the whole thing later on. 2670 */ 2671 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2672 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2673 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2674 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2675 } 2676 2677 /* 2678 * Then move the ready-to-invoke callbacks to the orphanage, 2679 * where some other CPU will pick them up. These will not be 2680 * required to pass though another grace period: They are done. 2681 */ 2682 if (rdp->nxtlist != NULL) { 2683 *rsp->orphan_donetail = rdp->nxtlist; 2684 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2685 } 2686 2687 /* 2688 * Finally, initialize the rcu_data structure's list to empty and 2689 * disallow further callbacks on this CPU. 2690 */ 2691 init_callback_list(rdp); 2692 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2693 } 2694 2695 /* 2696 * Adopt the RCU callbacks from the specified rcu_state structure's 2697 * orphanage. The caller must hold the ->orphan_lock. 2698 */ 2699 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2700 { 2701 int i; 2702 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2703 2704 /* No-CBs CPUs are handled specially. */ 2705 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2706 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2707 return; 2708 2709 /* Do the accounting first. */ 2710 rdp->qlen_lazy += rsp->qlen_lazy; 2711 rdp->qlen += rsp->qlen; 2712 rdp->n_cbs_adopted += rsp->qlen; 2713 if (rsp->qlen_lazy != rsp->qlen) 2714 rcu_idle_count_callbacks_posted(); 2715 rsp->qlen_lazy = 0; 2716 rsp->qlen = 0; 2717 2718 /* 2719 * We do not need a memory barrier here because the only way we 2720 * can get here if there is an rcu_barrier() in flight is if 2721 * we are the task doing the rcu_barrier(). 2722 */ 2723 2724 /* First adopt the ready-to-invoke callbacks. */ 2725 if (rsp->orphan_donelist != NULL) { 2726 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2727 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2728 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2729 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2730 rdp->nxttail[i] = rsp->orphan_donetail; 2731 rsp->orphan_donelist = NULL; 2732 rsp->orphan_donetail = &rsp->orphan_donelist; 2733 } 2734 2735 /* And then adopt the callbacks that still need a grace period. */ 2736 if (rsp->orphan_nxtlist != NULL) { 2737 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2738 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2739 rsp->orphan_nxtlist = NULL; 2740 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2741 } 2742 } 2743 2744 /* 2745 * Trace the fact that this CPU is going offline. 2746 */ 2747 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2748 { 2749 RCU_TRACE(unsigned long mask); 2750 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2751 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2752 2753 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2754 return; 2755 2756 RCU_TRACE(mask = rdp->grpmask); 2757 trace_rcu_grace_period(rsp->name, 2758 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2759 TPS("cpuofl")); 2760 } 2761 2762 /* 2763 * All CPUs for the specified rcu_node structure have gone offline, 2764 * and all tasks that were preempted within an RCU read-side critical 2765 * section while running on one of those CPUs have since exited their RCU 2766 * read-side critical section. Some other CPU is reporting this fact with 2767 * the specified rcu_node structure's ->lock held and interrupts disabled. 2768 * This function therefore goes up the tree of rcu_node structures, 2769 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2770 * the leaf rcu_node structure's ->qsmaskinit field has already been 2771 * updated 2772 * 2773 * This function does check that the specified rcu_node structure has 2774 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2775 * prematurely. That said, invoking it after the fact will cost you 2776 * a needless lock acquisition. So once it has done its work, don't 2777 * invoke it again. 2778 */ 2779 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2780 { 2781 long mask; 2782 struct rcu_node *rnp = rnp_leaf; 2783 2784 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2785 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2786 return; 2787 for (;;) { 2788 mask = rnp->grpmask; 2789 rnp = rnp->parent; 2790 if (!rnp) 2791 break; 2792 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2793 rnp->qsmaskinit &= ~mask; 2794 rnp->qsmask &= ~mask; 2795 if (rnp->qsmaskinit) { 2796 raw_spin_unlock_rcu_node(rnp); 2797 /* irqs remain disabled. */ 2798 return; 2799 } 2800 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2801 } 2802 } 2803 2804 /* 2805 * The CPU has been completely removed, and some other CPU is reporting 2806 * this fact from process context. Do the remainder of the cleanup, 2807 * including orphaning the outgoing CPU's RCU callbacks, and also 2808 * adopting them. There can only be one CPU hotplug operation at a time, 2809 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2810 */ 2811 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2812 { 2813 unsigned long flags; 2814 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2815 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2816 2817 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2818 return; 2819 2820 /* Adjust any no-longer-needed kthreads. */ 2821 rcu_boost_kthread_setaffinity(rnp, -1); 2822 2823 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2824 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2825 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2826 rcu_adopt_orphan_cbs(rsp, flags); 2827 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2828 2829 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2830 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2831 cpu, rdp->qlen, rdp->nxtlist); 2832 } 2833 2834 /* 2835 * Invoke any RCU callbacks that have made it to the end of their grace 2836 * period. Thottle as specified by rdp->blimit. 2837 */ 2838 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2839 { 2840 unsigned long flags; 2841 struct rcu_head *next, *list, **tail; 2842 long bl, count, count_lazy; 2843 int i; 2844 2845 /* If no callbacks are ready, just return. */ 2846 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2847 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2848 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist), 2849 need_resched(), is_idle_task(current), 2850 rcu_is_callbacks_kthread()); 2851 return; 2852 } 2853 2854 /* 2855 * Extract the list of ready callbacks, disabling to prevent 2856 * races with call_rcu() from interrupt handlers. 2857 */ 2858 local_irq_save(flags); 2859 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2860 bl = rdp->blimit; 2861 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2862 list = rdp->nxtlist; 2863 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2864 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2865 tail = rdp->nxttail[RCU_DONE_TAIL]; 2866 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2867 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2868 rdp->nxttail[i] = &rdp->nxtlist; 2869 local_irq_restore(flags); 2870 2871 /* Invoke callbacks. */ 2872 count = count_lazy = 0; 2873 while (list) { 2874 next = list->next; 2875 prefetch(next); 2876 debug_rcu_head_unqueue(list); 2877 if (__rcu_reclaim(rsp->name, list)) 2878 count_lazy++; 2879 list = next; 2880 /* Stop only if limit reached and CPU has something to do. */ 2881 if (++count >= bl && 2882 (need_resched() || 2883 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2884 break; 2885 } 2886 2887 local_irq_save(flags); 2888 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2889 is_idle_task(current), 2890 rcu_is_callbacks_kthread()); 2891 2892 /* Update count, and requeue any remaining callbacks. */ 2893 if (list != NULL) { 2894 *tail = rdp->nxtlist; 2895 rdp->nxtlist = list; 2896 for (i = 0; i < RCU_NEXT_SIZE; i++) 2897 if (&rdp->nxtlist == rdp->nxttail[i]) 2898 rdp->nxttail[i] = tail; 2899 else 2900 break; 2901 } 2902 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2903 rdp->qlen_lazy -= count_lazy; 2904 WRITE_ONCE(rdp->qlen, rdp->qlen - count); 2905 rdp->n_cbs_invoked += count; 2906 2907 /* Reinstate batch limit if we have worked down the excess. */ 2908 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2909 rdp->blimit = blimit; 2910 2911 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2912 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2913 rdp->qlen_last_fqs_check = 0; 2914 rdp->n_force_qs_snap = rsp->n_force_qs; 2915 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2916 rdp->qlen_last_fqs_check = rdp->qlen; 2917 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2918 2919 local_irq_restore(flags); 2920 2921 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2922 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2923 invoke_rcu_core(); 2924 } 2925 2926 /* 2927 * Check to see if this CPU is in a non-context-switch quiescent state 2928 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2929 * Also schedule RCU core processing. 2930 * 2931 * This function must be called from hardirq context. It is normally 2932 * invoked from the scheduling-clock interrupt. 2933 */ 2934 void rcu_check_callbacks(int user) 2935 { 2936 trace_rcu_utilization(TPS("Start scheduler-tick")); 2937 increment_cpu_stall_ticks(); 2938 if (user || rcu_is_cpu_rrupt_from_idle()) { 2939 2940 /* 2941 * Get here if this CPU took its interrupt from user 2942 * mode or from the idle loop, and if this is not a 2943 * nested interrupt. In this case, the CPU is in 2944 * a quiescent state, so note it. 2945 * 2946 * No memory barrier is required here because both 2947 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2948 * variables that other CPUs neither access nor modify, 2949 * at least not while the corresponding CPU is online. 2950 */ 2951 2952 rcu_sched_qs(); 2953 rcu_bh_qs(); 2954 2955 } else if (!in_softirq()) { 2956 2957 /* 2958 * Get here if this CPU did not take its interrupt from 2959 * softirq, in other words, if it is not interrupting 2960 * a rcu_bh read-side critical section. This is an _bh 2961 * critical section, so note it. 2962 */ 2963 2964 rcu_bh_qs(); 2965 } 2966 rcu_preempt_check_callbacks(); 2967 if (rcu_pending()) 2968 invoke_rcu_core(); 2969 if (user) 2970 rcu_note_voluntary_context_switch(current); 2971 trace_rcu_utilization(TPS("End scheduler-tick")); 2972 } 2973 2974 /* 2975 * Scan the leaf rcu_node structures, processing dyntick state for any that 2976 * have not yet encountered a quiescent state, using the function specified. 2977 * Also initiate boosting for any threads blocked on the root rcu_node. 2978 * 2979 * The caller must have suppressed start of new grace periods. 2980 */ 2981 static void force_qs_rnp(struct rcu_state *rsp, 2982 int (*f)(struct rcu_data *rsp, bool *isidle, 2983 unsigned long *maxj), 2984 bool *isidle, unsigned long *maxj) 2985 { 2986 int cpu; 2987 unsigned long flags; 2988 unsigned long mask; 2989 struct rcu_node *rnp; 2990 2991 rcu_for_each_leaf_node(rsp, rnp) { 2992 cond_resched_rcu_qs(); 2993 mask = 0; 2994 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2995 if (rnp->qsmask == 0) { 2996 if (rcu_state_p == &rcu_sched_state || 2997 rsp != rcu_state_p || 2998 rcu_preempt_blocked_readers_cgp(rnp)) { 2999 /* 3000 * No point in scanning bits because they 3001 * are all zero. But we might need to 3002 * priority-boost blocked readers. 3003 */ 3004 rcu_initiate_boost(rnp, flags); 3005 /* rcu_initiate_boost() releases rnp->lock */ 3006 continue; 3007 } 3008 if (rnp->parent && 3009 (rnp->parent->qsmask & rnp->grpmask)) { 3010 /* 3011 * Race between grace-period 3012 * initialization and task exiting RCU 3013 * read-side critical section: Report. 3014 */ 3015 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 3016 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 3017 continue; 3018 } 3019 } 3020 for_each_leaf_node_possible_cpu(rnp, cpu) { 3021 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 3022 if ((rnp->qsmask & bit) != 0) { 3023 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 3024 mask |= bit; 3025 } 3026 } 3027 if (mask != 0) { 3028 /* Idle/offline CPUs, report (releases rnp->lock. */ 3029 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 3030 } else { 3031 /* Nothing to do here, so just drop the lock. */ 3032 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3033 } 3034 } 3035 } 3036 3037 /* 3038 * Force quiescent states on reluctant CPUs, and also detect which 3039 * CPUs are in dyntick-idle mode. 3040 */ 3041 static void force_quiescent_state(struct rcu_state *rsp) 3042 { 3043 unsigned long flags; 3044 bool ret; 3045 struct rcu_node *rnp; 3046 struct rcu_node *rnp_old = NULL; 3047 3048 /* Funnel through hierarchy to reduce memory contention. */ 3049 rnp = __this_cpu_read(rsp->rda->mynode); 3050 for (; rnp != NULL; rnp = rnp->parent) { 3051 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 3052 !raw_spin_trylock(&rnp->fqslock); 3053 if (rnp_old != NULL) 3054 raw_spin_unlock(&rnp_old->fqslock); 3055 if (ret) { 3056 rsp->n_force_qs_lh++; 3057 return; 3058 } 3059 rnp_old = rnp; 3060 } 3061 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 3062 3063 /* Reached the root of the rcu_node tree, acquire lock. */ 3064 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 3065 raw_spin_unlock(&rnp_old->fqslock); 3066 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 3067 rsp->n_force_qs_lh++; 3068 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 3069 return; /* Someone beat us to it. */ 3070 } 3071 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 3072 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 3073 rcu_gp_kthread_wake(rsp); 3074 } 3075 3076 /* 3077 * This does the RCU core processing work for the specified rcu_state 3078 * and rcu_data structures. This may be called only from the CPU to 3079 * whom the rdp belongs. 3080 */ 3081 static void 3082 __rcu_process_callbacks(struct rcu_state *rsp) 3083 { 3084 unsigned long flags; 3085 bool needwake; 3086 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3087 3088 WARN_ON_ONCE(rdp->beenonline == 0); 3089 3090 /* Update RCU state based on any recent quiescent states. */ 3091 rcu_check_quiescent_state(rsp, rdp); 3092 3093 /* Does this CPU require a not-yet-started grace period? */ 3094 local_irq_save(flags); 3095 if (cpu_needs_another_gp(rsp, rdp)) { 3096 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 3097 needwake = rcu_start_gp(rsp); 3098 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 3099 if (needwake) 3100 rcu_gp_kthread_wake(rsp); 3101 } else { 3102 local_irq_restore(flags); 3103 } 3104 3105 /* If there are callbacks ready, invoke them. */ 3106 if (cpu_has_callbacks_ready_to_invoke(rdp)) 3107 invoke_rcu_callbacks(rsp, rdp); 3108 3109 /* Do any needed deferred wakeups of rcuo kthreads. */ 3110 do_nocb_deferred_wakeup(rdp); 3111 } 3112 3113 /* 3114 * Do RCU core processing for the current CPU. 3115 */ 3116 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 3117 { 3118 struct rcu_state *rsp; 3119 3120 if (cpu_is_offline(smp_processor_id())) 3121 return; 3122 trace_rcu_utilization(TPS("Start RCU core")); 3123 for_each_rcu_flavor(rsp) 3124 __rcu_process_callbacks(rsp); 3125 trace_rcu_utilization(TPS("End RCU core")); 3126 } 3127 3128 /* 3129 * Schedule RCU callback invocation. If the specified type of RCU 3130 * does not support RCU priority boosting, just do a direct call, 3131 * otherwise wake up the per-CPU kernel kthread. Note that because we 3132 * are running on the current CPU with softirqs disabled, the 3133 * rcu_cpu_kthread_task cannot disappear out from under us. 3134 */ 3135 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3136 { 3137 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3138 return; 3139 if (likely(!rsp->boost)) { 3140 rcu_do_batch(rsp, rdp); 3141 return; 3142 } 3143 invoke_rcu_callbacks_kthread(); 3144 } 3145 3146 static void invoke_rcu_core(void) 3147 { 3148 if (cpu_online(smp_processor_id())) 3149 raise_softirq(RCU_SOFTIRQ); 3150 } 3151 3152 /* 3153 * Handle any core-RCU processing required by a call_rcu() invocation. 3154 */ 3155 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3156 struct rcu_head *head, unsigned long flags) 3157 { 3158 bool needwake; 3159 3160 /* 3161 * If called from an extended quiescent state, invoke the RCU 3162 * core in order to force a re-evaluation of RCU's idleness. 3163 */ 3164 if (!rcu_is_watching()) 3165 invoke_rcu_core(); 3166 3167 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3168 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3169 return; 3170 3171 /* 3172 * Force the grace period if too many callbacks or too long waiting. 3173 * Enforce hysteresis, and don't invoke force_quiescent_state() 3174 * if some other CPU has recently done so. Also, don't bother 3175 * invoking force_quiescent_state() if the newly enqueued callback 3176 * is the only one waiting for a grace period to complete. 3177 */ 3178 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 3179 3180 /* Are we ignoring a completed grace period? */ 3181 note_gp_changes(rsp, rdp); 3182 3183 /* Start a new grace period if one not already started. */ 3184 if (!rcu_gp_in_progress(rsp)) { 3185 struct rcu_node *rnp_root = rcu_get_root(rsp); 3186 3187 raw_spin_lock_rcu_node(rnp_root); 3188 needwake = rcu_start_gp(rsp); 3189 raw_spin_unlock_rcu_node(rnp_root); 3190 if (needwake) 3191 rcu_gp_kthread_wake(rsp); 3192 } else { 3193 /* Give the grace period a kick. */ 3194 rdp->blimit = LONG_MAX; 3195 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3196 *rdp->nxttail[RCU_DONE_TAIL] != head) 3197 force_quiescent_state(rsp); 3198 rdp->n_force_qs_snap = rsp->n_force_qs; 3199 rdp->qlen_last_fqs_check = rdp->qlen; 3200 } 3201 } 3202 } 3203 3204 /* 3205 * RCU callback function to leak a callback. 3206 */ 3207 static void rcu_leak_callback(struct rcu_head *rhp) 3208 { 3209 } 3210 3211 /* 3212 * Helper function for call_rcu() and friends. The cpu argument will 3213 * normally be -1, indicating "currently running CPU". It may specify 3214 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3215 * is expected to specify a CPU. 3216 */ 3217 static void 3218 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3219 struct rcu_state *rsp, int cpu, bool lazy) 3220 { 3221 unsigned long flags; 3222 struct rcu_data *rdp; 3223 3224 /* Misaligned rcu_head! */ 3225 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3226 3227 if (debug_rcu_head_queue(head)) { 3228 /* Probable double call_rcu(), so leak the callback. */ 3229 WRITE_ONCE(head->func, rcu_leak_callback); 3230 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3231 return; 3232 } 3233 head->func = func; 3234 head->next = NULL; 3235 local_irq_save(flags); 3236 rdp = this_cpu_ptr(rsp->rda); 3237 3238 /* Add the callback to our list. */ 3239 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 3240 int offline; 3241 3242 if (cpu != -1) 3243 rdp = per_cpu_ptr(rsp->rda, cpu); 3244 if (likely(rdp->mynode)) { 3245 /* Post-boot, so this should be for a no-CBs CPU. */ 3246 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3247 WARN_ON_ONCE(offline); 3248 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3249 local_irq_restore(flags); 3250 return; 3251 } 3252 /* 3253 * Very early boot, before rcu_init(). Initialize if needed 3254 * and then drop through to queue the callback. 3255 */ 3256 BUG_ON(cpu != -1); 3257 WARN_ON_ONCE(!rcu_is_watching()); 3258 if (!likely(rdp->nxtlist)) 3259 init_default_callback_list(rdp); 3260 } 3261 WRITE_ONCE(rdp->qlen, rdp->qlen + 1); 3262 if (lazy) 3263 rdp->qlen_lazy++; 3264 else 3265 rcu_idle_count_callbacks_posted(); 3266 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3267 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3268 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3269 3270 if (__is_kfree_rcu_offset((unsigned long)func)) 3271 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3272 rdp->qlen_lazy, rdp->qlen); 3273 else 3274 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3275 3276 /* Go handle any RCU core processing required. */ 3277 __call_rcu_core(rsp, rdp, head, flags); 3278 local_irq_restore(flags); 3279 } 3280 3281 /* 3282 * Queue an RCU-sched callback for invocation after a grace period. 3283 */ 3284 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3285 { 3286 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3287 } 3288 EXPORT_SYMBOL_GPL(call_rcu_sched); 3289 3290 /* 3291 * Queue an RCU callback for invocation after a quicker grace period. 3292 */ 3293 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3294 { 3295 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3296 } 3297 EXPORT_SYMBOL_GPL(call_rcu_bh); 3298 3299 /* 3300 * Queue an RCU callback for lazy invocation after a grace period. 3301 * This will likely be later named something like "call_rcu_lazy()", 3302 * but this change will require some way of tagging the lazy RCU 3303 * callbacks in the list of pending callbacks. Until then, this 3304 * function may only be called from __kfree_rcu(). 3305 */ 3306 void kfree_call_rcu(struct rcu_head *head, 3307 rcu_callback_t func) 3308 { 3309 __call_rcu(head, func, rcu_state_p, -1, 1); 3310 } 3311 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3312 3313 /* 3314 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3315 * any blocking grace-period wait automatically implies a grace period 3316 * if there is only one CPU online at any point time during execution 3317 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3318 * occasionally incorrectly indicate that there are multiple CPUs online 3319 * when there was in fact only one the whole time, as this just adds 3320 * some overhead: RCU still operates correctly. 3321 */ 3322 static inline int rcu_blocking_is_gp(void) 3323 { 3324 int ret; 3325 3326 might_sleep(); /* Check for RCU read-side critical section. */ 3327 preempt_disable(); 3328 ret = num_online_cpus() <= 1; 3329 preempt_enable(); 3330 return ret; 3331 } 3332 3333 /** 3334 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3335 * 3336 * Control will return to the caller some time after a full rcu-sched 3337 * grace period has elapsed, in other words after all currently executing 3338 * rcu-sched read-side critical sections have completed. These read-side 3339 * critical sections are delimited by rcu_read_lock_sched() and 3340 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3341 * local_irq_disable(), and so on may be used in place of 3342 * rcu_read_lock_sched(). 3343 * 3344 * This means that all preempt_disable code sequences, including NMI and 3345 * non-threaded hardware-interrupt handlers, in progress on entry will 3346 * have completed before this primitive returns. However, this does not 3347 * guarantee that softirq handlers will have completed, since in some 3348 * kernels, these handlers can run in process context, and can block. 3349 * 3350 * Note that this guarantee implies further memory-ordering guarantees. 3351 * On systems with more than one CPU, when synchronize_sched() returns, 3352 * each CPU is guaranteed to have executed a full memory barrier since the 3353 * end of its last RCU-sched read-side critical section whose beginning 3354 * preceded the call to synchronize_sched(). In addition, each CPU having 3355 * an RCU read-side critical section that extends beyond the return from 3356 * synchronize_sched() is guaranteed to have executed a full memory barrier 3357 * after the beginning of synchronize_sched() and before the beginning of 3358 * that RCU read-side critical section. Note that these guarantees include 3359 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3360 * that are executing in the kernel. 3361 * 3362 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3363 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3364 * to have executed a full memory barrier during the execution of 3365 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3366 * again only if the system has more than one CPU). 3367 * 3368 * This primitive provides the guarantees made by the (now removed) 3369 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3370 * guarantees that rcu_read_lock() sections will have completed. 3371 * In "classic RCU", these two guarantees happen to be one and 3372 * the same, but can differ in realtime RCU implementations. 3373 */ 3374 void synchronize_sched(void) 3375 { 3376 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3377 lock_is_held(&rcu_lock_map) || 3378 lock_is_held(&rcu_sched_lock_map), 3379 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3380 if (rcu_blocking_is_gp()) 3381 return; 3382 if (rcu_gp_is_expedited()) 3383 synchronize_sched_expedited(); 3384 else 3385 wait_rcu_gp(call_rcu_sched); 3386 } 3387 EXPORT_SYMBOL_GPL(synchronize_sched); 3388 3389 /** 3390 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3391 * 3392 * Control will return to the caller some time after a full rcu_bh grace 3393 * period has elapsed, in other words after all currently executing rcu_bh 3394 * read-side critical sections have completed. RCU read-side critical 3395 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3396 * and may be nested. 3397 * 3398 * See the description of synchronize_sched() for more detailed information 3399 * on memory ordering guarantees. 3400 */ 3401 void synchronize_rcu_bh(void) 3402 { 3403 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3404 lock_is_held(&rcu_lock_map) || 3405 lock_is_held(&rcu_sched_lock_map), 3406 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3407 if (rcu_blocking_is_gp()) 3408 return; 3409 if (rcu_gp_is_expedited()) 3410 synchronize_rcu_bh_expedited(); 3411 else 3412 wait_rcu_gp(call_rcu_bh); 3413 } 3414 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3415 3416 /** 3417 * get_state_synchronize_rcu - Snapshot current RCU state 3418 * 3419 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3420 * to determine whether or not a full grace period has elapsed in the 3421 * meantime. 3422 */ 3423 unsigned long get_state_synchronize_rcu(void) 3424 { 3425 /* 3426 * Any prior manipulation of RCU-protected data must happen 3427 * before the load from ->gpnum. 3428 */ 3429 smp_mb(); /* ^^^ */ 3430 3431 /* 3432 * Make sure this load happens before the purportedly 3433 * time-consuming work between get_state_synchronize_rcu() 3434 * and cond_synchronize_rcu(). 3435 */ 3436 return smp_load_acquire(&rcu_state_p->gpnum); 3437 } 3438 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3439 3440 /** 3441 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3442 * 3443 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3444 * 3445 * If a full RCU grace period has elapsed since the earlier call to 3446 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3447 * synchronize_rcu() to wait for a full grace period. 3448 * 3449 * Yes, this function does not take counter wrap into account. But 3450 * counter wrap is harmless. If the counter wraps, we have waited for 3451 * more than 2 billion grace periods (and way more on a 64-bit system!), 3452 * so waiting for one additional grace period should be just fine. 3453 */ 3454 void cond_synchronize_rcu(unsigned long oldstate) 3455 { 3456 unsigned long newstate; 3457 3458 /* 3459 * Ensure that this load happens before any RCU-destructive 3460 * actions the caller might carry out after we return. 3461 */ 3462 newstate = smp_load_acquire(&rcu_state_p->completed); 3463 if (ULONG_CMP_GE(oldstate, newstate)) 3464 synchronize_rcu(); 3465 } 3466 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3467 3468 /** 3469 * get_state_synchronize_sched - Snapshot current RCU-sched state 3470 * 3471 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3472 * to determine whether or not a full grace period has elapsed in the 3473 * meantime. 3474 */ 3475 unsigned long get_state_synchronize_sched(void) 3476 { 3477 /* 3478 * Any prior manipulation of RCU-protected data must happen 3479 * before the load from ->gpnum. 3480 */ 3481 smp_mb(); /* ^^^ */ 3482 3483 /* 3484 * Make sure this load happens before the purportedly 3485 * time-consuming work between get_state_synchronize_sched() 3486 * and cond_synchronize_sched(). 3487 */ 3488 return smp_load_acquire(&rcu_sched_state.gpnum); 3489 } 3490 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3491 3492 /** 3493 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3494 * 3495 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3496 * 3497 * If a full RCU-sched grace period has elapsed since the earlier call to 3498 * get_state_synchronize_sched(), just return. Otherwise, invoke 3499 * synchronize_sched() to wait for a full grace period. 3500 * 3501 * Yes, this function does not take counter wrap into account. But 3502 * counter wrap is harmless. If the counter wraps, we have waited for 3503 * more than 2 billion grace periods (and way more on a 64-bit system!), 3504 * so waiting for one additional grace period should be just fine. 3505 */ 3506 void cond_synchronize_sched(unsigned long oldstate) 3507 { 3508 unsigned long newstate; 3509 3510 /* 3511 * Ensure that this load happens before any RCU-destructive 3512 * actions the caller might carry out after we return. 3513 */ 3514 newstate = smp_load_acquire(&rcu_sched_state.completed); 3515 if (ULONG_CMP_GE(oldstate, newstate)) 3516 synchronize_sched(); 3517 } 3518 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3519 3520 /* Adjust sequence number for start of update-side operation. */ 3521 static void rcu_seq_start(unsigned long *sp) 3522 { 3523 WRITE_ONCE(*sp, *sp + 1); 3524 smp_mb(); /* Ensure update-side operation after counter increment. */ 3525 WARN_ON_ONCE(!(*sp & 0x1)); 3526 } 3527 3528 /* Adjust sequence number for end of update-side operation. */ 3529 static void rcu_seq_end(unsigned long *sp) 3530 { 3531 smp_mb(); /* Ensure update-side operation before counter increment. */ 3532 WRITE_ONCE(*sp, *sp + 1); 3533 WARN_ON_ONCE(*sp & 0x1); 3534 } 3535 3536 /* Take a snapshot of the update side's sequence number. */ 3537 static unsigned long rcu_seq_snap(unsigned long *sp) 3538 { 3539 unsigned long s; 3540 3541 s = (READ_ONCE(*sp) + 3) & ~0x1; 3542 smp_mb(); /* Above access must not bleed into critical section. */ 3543 return s; 3544 } 3545 3546 /* 3547 * Given a snapshot from rcu_seq_snap(), determine whether or not a 3548 * full update-side operation has occurred. 3549 */ 3550 static bool rcu_seq_done(unsigned long *sp, unsigned long s) 3551 { 3552 return ULONG_CMP_GE(READ_ONCE(*sp), s); 3553 } 3554 3555 /* 3556 * Check to see if there is any immediate RCU-related work to be done 3557 * by the current CPU, for the specified type of RCU, returning 1 if so. 3558 * The checks are in order of increasing expense: checks that can be 3559 * carried out against CPU-local state are performed first. However, 3560 * we must check for CPU stalls first, else we might not get a chance. 3561 */ 3562 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3563 { 3564 struct rcu_node *rnp = rdp->mynode; 3565 3566 rdp->n_rcu_pending++; 3567 3568 /* Check for CPU stalls, if enabled. */ 3569 check_cpu_stall(rsp, rdp); 3570 3571 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3572 if (rcu_nohz_full_cpu(rsp)) 3573 return 0; 3574 3575 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3576 if (rcu_scheduler_fully_active && 3577 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3578 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3579 rdp->n_rp_core_needs_qs++; 3580 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) { 3581 rdp->n_rp_report_qs++; 3582 return 1; 3583 } 3584 3585 /* Does this CPU have callbacks ready to invoke? */ 3586 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3587 rdp->n_rp_cb_ready++; 3588 return 1; 3589 } 3590 3591 /* Has RCU gone idle with this CPU needing another grace period? */ 3592 if (cpu_needs_another_gp(rsp, rdp)) { 3593 rdp->n_rp_cpu_needs_gp++; 3594 return 1; 3595 } 3596 3597 /* Has another RCU grace period completed? */ 3598 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3599 rdp->n_rp_gp_completed++; 3600 return 1; 3601 } 3602 3603 /* Has a new RCU grace period started? */ 3604 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3605 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3606 rdp->n_rp_gp_started++; 3607 return 1; 3608 } 3609 3610 /* Does this CPU need a deferred NOCB wakeup? */ 3611 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3612 rdp->n_rp_nocb_defer_wakeup++; 3613 return 1; 3614 } 3615 3616 /* nothing to do */ 3617 rdp->n_rp_need_nothing++; 3618 return 0; 3619 } 3620 3621 /* 3622 * Check to see if there is any immediate RCU-related work to be done 3623 * by the current CPU, returning 1 if so. This function is part of the 3624 * RCU implementation; it is -not- an exported member of the RCU API. 3625 */ 3626 static int rcu_pending(void) 3627 { 3628 struct rcu_state *rsp; 3629 3630 for_each_rcu_flavor(rsp) 3631 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3632 return 1; 3633 return 0; 3634 } 3635 3636 /* 3637 * Return true if the specified CPU has any callback. If all_lazy is 3638 * non-NULL, store an indication of whether all callbacks are lazy. 3639 * (If there are no callbacks, all of them are deemed to be lazy.) 3640 */ 3641 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3642 { 3643 bool al = true; 3644 bool hc = false; 3645 struct rcu_data *rdp; 3646 struct rcu_state *rsp; 3647 3648 for_each_rcu_flavor(rsp) { 3649 rdp = this_cpu_ptr(rsp->rda); 3650 if (!rdp->nxtlist) 3651 continue; 3652 hc = true; 3653 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3654 al = false; 3655 break; 3656 } 3657 } 3658 if (all_lazy) 3659 *all_lazy = al; 3660 return hc; 3661 } 3662 3663 /* 3664 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3665 * the compiler is expected to optimize this away. 3666 */ 3667 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3668 int cpu, unsigned long done) 3669 { 3670 trace_rcu_barrier(rsp->name, s, cpu, 3671 atomic_read(&rsp->barrier_cpu_count), done); 3672 } 3673 3674 /* 3675 * RCU callback function for _rcu_barrier(). If we are last, wake 3676 * up the task executing _rcu_barrier(). 3677 */ 3678 static void rcu_barrier_callback(struct rcu_head *rhp) 3679 { 3680 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3681 struct rcu_state *rsp = rdp->rsp; 3682 3683 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3684 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 3685 complete(&rsp->barrier_completion); 3686 } else { 3687 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 3688 } 3689 } 3690 3691 /* 3692 * Called with preemption disabled, and from cross-cpu IRQ context. 3693 */ 3694 static void rcu_barrier_func(void *type) 3695 { 3696 struct rcu_state *rsp = type; 3697 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3698 3699 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 3700 atomic_inc(&rsp->barrier_cpu_count); 3701 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3702 } 3703 3704 /* 3705 * Orchestrate the specified type of RCU barrier, waiting for all 3706 * RCU callbacks of the specified type to complete. 3707 */ 3708 static void _rcu_barrier(struct rcu_state *rsp) 3709 { 3710 int cpu; 3711 struct rcu_data *rdp; 3712 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3713 3714 _rcu_barrier_trace(rsp, "Begin", -1, s); 3715 3716 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3717 mutex_lock(&rsp->barrier_mutex); 3718 3719 /* Did someone else do our work for us? */ 3720 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3721 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 3722 smp_mb(); /* caller's subsequent code after above check. */ 3723 mutex_unlock(&rsp->barrier_mutex); 3724 return; 3725 } 3726 3727 /* Mark the start of the barrier operation. */ 3728 rcu_seq_start(&rsp->barrier_sequence); 3729 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 3730 3731 /* 3732 * Initialize the count to one rather than to zero in order to 3733 * avoid a too-soon return to zero in case of a short grace period 3734 * (or preemption of this task). Exclude CPU-hotplug operations 3735 * to ensure that no offline CPU has callbacks queued. 3736 */ 3737 init_completion(&rsp->barrier_completion); 3738 atomic_set(&rsp->barrier_cpu_count, 1); 3739 get_online_cpus(); 3740 3741 /* 3742 * Force each CPU with callbacks to register a new callback. 3743 * When that callback is invoked, we will know that all of the 3744 * corresponding CPU's preceding callbacks have been invoked. 3745 */ 3746 for_each_possible_cpu(cpu) { 3747 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3748 continue; 3749 rdp = per_cpu_ptr(rsp->rda, cpu); 3750 if (rcu_is_nocb_cpu(cpu)) { 3751 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3752 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3753 rsp->barrier_sequence); 3754 } else { 3755 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3756 rsp->barrier_sequence); 3757 smp_mb__before_atomic(); 3758 atomic_inc(&rsp->barrier_cpu_count); 3759 __call_rcu(&rdp->barrier_head, 3760 rcu_barrier_callback, rsp, cpu, 0); 3761 } 3762 } else if (READ_ONCE(rdp->qlen)) { 3763 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3764 rsp->barrier_sequence); 3765 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3766 } else { 3767 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3768 rsp->barrier_sequence); 3769 } 3770 } 3771 put_online_cpus(); 3772 3773 /* 3774 * Now that we have an rcu_barrier_callback() callback on each 3775 * CPU, and thus each counted, remove the initial count. 3776 */ 3777 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3778 complete(&rsp->barrier_completion); 3779 3780 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3781 wait_for_completion(&rsp->barrier_completion); 3782 3783 /* Mark the end of the barrier operation. */ 3784 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 3785 rcu_seq_end(&rsp->barrier_sequence); 3786 3787 /* Other rcu_barrier() invocations can now safely proceed. */ 3788 mutex_unlock(&rsp->barrier_mutex); 3789 } 3790 3791 /** 3792 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3793 */ 3794 void rcu_barrier_bh(void) 3795 { 3796 _rcu_barrier(&rcu_bh_state); 3797 } 3798 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3799 3800 /** 3801 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3802 */ 3803 void rcu_barrier_sched(void) 3804 { 3805 _rcu_barrier(&rcu_sched_state); 3806 } 3807 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3808 3809 /* 3810 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3811 * first CPU in a given leaf rcu_node structure coming online. The caller 3812 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3813 * disabled. 3814 */ 3815 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3816 { 3817 long mask; 3818 struct rcu_node *rnp = rnp_leaf; 3819 3820 for (;;) { 3821 mask = rnp->grpmask; 3822 rnp = rnp->parent; 3823 if (rnp == NULL) 3824 return; 3825 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3826 rnp->qsmaskinit |= mask; 3827 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3828 } 3829 } 3830 3831 /* 3832 * Do boot-time initialization of a CPU's per-CPU RCU data. 3833 */ 3834 static void __init 3835 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3836 { 3837 unsigned long flags; 3838 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3839 struct rcu_node *rnp = rcu_get_root(rsp); 3840 3841 /* Set up local state, ensuring consistent view of global state. */ 3842 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3843 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3844 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3845 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3846 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3847 rdp->cpu = cpu; 3848 rdp->rsp = rsp; 3849 rcu_boot_init_nocb_percpu_data(rdp); 3850 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3851 } 3852 3853 /* 3854 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3855 * offline event can be happening at a given time. Note also that we 3856 * can accept some slop in the rsp->completed access due to the fact 3857 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3858 */ 3859 static void 3860 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3861 { 3862 unsigned long flags; 3863 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3864 struct rcu_node *rnp = rcu_get_root(rsp); 3865 3866 /* Set up local state, ensuring consistent view of global state. */ 3867 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3868 rdp->qlen_last_fqs_check = 0; 3869 rdp->n_force_qs_snap = rsp->n_force_qs; 3870 rdp->blimit = blimit; 3871 if (!rdp->nxtlist) 3872 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3873 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3874 rcu_sysidle_init_percpu_data(rdp->dynticks); 3875 rcu_dynticks_eqs_online(); 3876 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3877 3878 /* 3879 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3880 * propagation up the rcu_node tree will happen at the beginning 3881 * of the next grace period. 3882 */ 3883 rnp = rdp->mynode; 3884 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3885 if (!rdp->beenonline) 3886 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 3887 rdp->beenonline = true; /* We have now been online. */ 3888 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3889 rdp->completed = rnp->completed; 3890 rdp->cpu_no_qs.b.norm = true; 3891 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); 3892 rdp->core_needs_qs = false; 3893 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3894 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3895 } 3896 3897 int rcutree_prepare_cpu(unsigned int cpu) 3898 { 3899 struct rcu_state *rsp; 3900 3901 for_each_rcu_flavor(rsp) 3902 rcu_init_percpu_data(cpu, rsp); 3903 3904 rcu_prepare_kthreads(cpu); 3905 rcu_spawn_all_nocb_kthreads(cpu); 3906 3907 return 0; 3908 } 3909 3910 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3911 { 3912 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3913 3914 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3915 } 3916 3917 int rcutree_online_cpu(unsigned int cpu) 3918 { 3919 sync_sched_exp_online_cleanup(cpu); 3920 rcutree_affinity_setting(cpu, -1); 3921 return 0; 3922 } 3923 3924 int rcutree_offline_cpu(unsigned int cpu) 3925 { 3926 rcutree_affinity_setting(cpu, cpu); 3927 return 0; 3928 } 3929 3930 3931 int rcutree_dying_cpu(unsigned int cpu) 3932 { 3933 struct rcu_state *rsp; 3934 3935 for_each_rcu_flavor(rsp) 3936 rcu_cleanup_dying_cpu(rsp); 3937 return 0; 3938 } 3939 3940 int rcutree_dead_cpu(unsigned int cpu) 3941 { 3942 struct rcu_state *rsp; 3943 3944 for_each_rcu_flavor(rsp) { 3945 rcu_cleanup_dead_cpu(cpu, rsp); 3946 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3947 } 3948 return 0; 3949 } 3950 3951 /* 3952 * Mark the specified CPU as being online so that subsequent grace periods 3953 * (both expedited and normal) will wait on it. Note that this means that 3954 * incoming CPUs are not allowed to use RCU read-side critical sections 3955 * until this function is called. Failing to observe this restriction 3956 * will result in lockdep splats. 3957 */ 3958 void rcu_cpu_starting(unsigned int cpu) 3959 { 3960 unsigned long flags; 3961 unsigned long mask; 3962 struct rcu_data *rdp; 3963 struct rcu_node *rnp; 3964 struct rcu_state *rsp; 3965 3966 for_each_rcu_flavor(rsp) { 3967 rdp = per_cpu_ptr(rsp->rda, cpu); 3968 rnp = rdp->mynode; 3969 mask = rdp->grpmask; 3970 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3971 rnp->qsmaskinitnext |= mask; 3972 rnp->expmaskinitnext |= mask; 3973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3974 } 3975 } 3976 3977 #ifdef CONFIG_HOTPLUG_CPU 3978 /* 3979 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3980 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3981 * bit masks. 3982 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3983 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3984 * bit masks. 3985 */ 3986 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3987 { 3988 unsigned long flags; 3989 unsigned long mask; 3990 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3991 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3992 3993 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3994 mask = rdp->grpmask; 3995 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3996 rnp->qsmaskinitnext &= ~mask; 3997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3998 } 3999 4000 void rcu_report_dead(unsigned int cpu) 4001 { 4002 struct rcu_state *rsp; 4003 4004 /* QS for any half-done expedited RCU-sched GP. */ 4005 preempt_disable(); 4006 rcu_report_exp_rdp(&rcu_sched_state, 4007 this_cpu_ptr(rcu_sched_state.rda), true); 4008 preempt_enable(); 4009 for_each_rcu_flavor(rsp) 4010 rcu_cleanup_dying_idle_cpu(cpu, rsp); 4011 } 4012 #endif 4013 4014 static int rcu_pm_notify(struct notifier_block *self, 4015 unsigned long action, void *hcpu) 4016 { 4017 switch (action) { 4018 case PM_HIBERNATION_PREPARE: 4019 case PM_SUSPEND_PREPARE: 4020 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4021 rcu_expedite_gp(); 4022 break; 4023 case PM_POST_HIBERNATION: 4024 case PM_POST_SUSPEND: 4025 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4026 rcu_unexpedite_gp(); 4027 break; 4028 default: 4029 break; 4030 } 4031 return NOTIFY_OK; 4032 } 4033 4034 /* 4035 * Spawn the kthreads that handle each RCU flavor's grace periods. 4036 */ 4037 static int __init rcu_spawn_gp_kthread(void) 4038 { 4039 unsigned long flags; 4040 int kthread_prio_in = kthread_prio; 4041 struct rcu_node *rnp; 4042 struct rcu_state *rsp; 4043 struct sched_param sp; 4044 struct task_struct *t; 4045 4046 /* Force priority into range. */ 4047 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4048 kthread_prio = 1; 4049 else if (kthread_prio < 0) 4050 kthread_prio = 0; 4051 else if (kthread_prio > 99) 4052 kthread_prio = 99; 4053 if (kthread_prio != kthread_prio_in) 4054 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4055 kthread_prio, kthread_prio_in); 4056 4057 rcu_scheduler_fully_active = 1; 4058 for_each_rcu_flavor(rsp) { 4059 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 4060 BUG_ON(IS_ERR(t)); 4061 rnp = rcu_get_root(rsp); 4062 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4063 rsp->gp_kthread = t; 4064 if (kthread_prio) { 4065 sp.sched_priority = kthread_prio; 4066 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4067 } 4068 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4069 wake_up_process(t); 4070 } 4071 rcu_spawn_nocb_kthreads(); 4072 rcu_spawn_boost_kthreads(); 4073 return 0; 4074 } 4075 early_initcall(rcu_spawn_gp_kthread); 4076 4077 /* 4078 * This function is invoked towards the end of the scheduler's 4079 * initialization process. Before this is called, the idle task might 4080 * contain synchronous grace-period primitives (during which time, this idle 4081 * task is booting the system, and such primitives are no-ops). After this 4082 * function is called, any synchronous grace-period primitives are run as 4083 * expedited, with the requesting task driving the grace period forward. 4084 * A later core_initcall() rcu_exp_runtime_mode() will switch to full 4085 * runtime RCU functionality. 4086 */ 4087 void rcu_scheduler_starting(void) 4088 { 4089 WARN_ON(num_online_cpus() != 1); 4090 WARN_ON(nr_context_switches() > 0); 4091 rcu_test_sync_prims(); 4092 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4093 rcu_test_sync_prims(); 4094 } 4095 4096 /* 4097 * Compute the per-level fanout, either using the exact fanout specified 4098 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 4099 */ 4100 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt) 4101 { 4102 int i; 4103 4104 if (rcu_fanout_exact) { 4105 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 4106 for (i = rcu_num_lvls - 2; i >= 0; i--) 4107 levelspread[i] = RCU_FANOUT; 4108 } else { 4109 int ccur; 4110 int cprv; 4111 4112 cprv = nr_cpu_ids; 4113 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4114 ccur = levelcnt[i]; 4115 levelspread[i] = (cprv + ccur - 1) / ccur; 4116 cprv = ccur; 4117 } 4118 } 4119 } 4120 4121 /* 4122 * Helper function for rcu_init() that initializes one rcu_state structure. 4123 */ 4124 static void __init rcu_init_one(struct rcu_state *rsp) 4125 { 4126 static const char * const buf[] = RCU_NODE_NAME_INIT; 4127 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4128 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4129 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4130 static u8 fl_mask = 0x1; 4131 4132 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */ 4133 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4134 int cpustride = 1; 4135 int i; 4136 int j; 4137 struct rcu_node *rnp; 4138 4139 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4140 4141 /* Silence gcc 4.8 false positive about array index out of range. */ 4142 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4143 panic("rcu_init_one: rcu_num_lvls out of range"); 4144 4145 /* Initialize the level-tracking arrays. */ 4146 4147 for (i = 0; i < rcu_num_lvls; i++) 4148 levelcnt[i] = num_rcu_lvl[i]; 4149 for (i = 1; i < rcu_num_lvls; i++) 4150 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1]; 4151 rcu_init_levelspread(levelspread, levelcnt); 4152 rsp->flavor_mask = fl_mask; 4153 fl_mask <<= 1; 4154 4155 /* Initialize the elements themselves, starting from the leaves. */ 4156 4157 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4158 cpustride *= levelspread[i]; 4159 rnp = rsp->level[i]; 4160 for (j = 0; j < levelcnt[i]; j++, rnp++) { 4161 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4162 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4163 &rcu_node_class[i], buf[i]); 4164 raw_spin_lock_init(&rnp->fqslock); 4165 lockdep_set_class_and_name(&rnp->fqslock, 4166 &rcu_fqs_class[i], fqs[i]); 4167 rnp->gpnum = rsp->gpnum; 4168 rnp->completed = rsp->completed; 4169 rnp->qsmask = 0; 4170 rnp->qsmaskinit = 0; 4171 rnp->grplo = j * cpustride; 4172 rnp->grphi = (j + 1) * cpustride - 1; 4173 if (rnp->grphi >= nr_cpu_ids) 4174 rnp->grphi = nr_cpu_ids - 1; 4175 if (i == 0) { 4176 rnp->grpnum = 0; 4177 rnp->grpmask = 0; 4178 rnp->parent = NULL; 4179 } else { 4180 rnp->grpnum = j % levelspread[i - 1]; 4181 rnp->grpmask = 1UL << rnp->grpnum; 4182 rnp->parent = rsp->level[i - 1] + 4183 j / levelspread[i - 1]; 4184 } 4185 rnp->level = i; 4186 INIT_LIST_HEAD(&rnp->blkd_tasks); 4187 rcu_init_one_nocb(rnp); 4188 init_waitqueue_head(&rnp->exp_wq[0]); 4189 init_waitqueue_head(&rnp->exp_wq[1]); 4190 init_waitqueue_head(&rnp->exp_wq[2]); 4191 init_waitqueue_head(&rnp->exp_wq[3]); 4192 spin_lock_init(&rnp->exp_lock); 4193 } 4194 } 4195 4196 init_swait_queue_head(&rsp->gp_wq); 4197 init_swait_queue_head(&rsp->expedited_wq); 4198 rnp = rsp->level[rcu_num_lvls - 1]; 4199 for_each_possible_cpu(i) { 4200 while (i > rnp->grphi) 4201 rnp++; 4202 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4203 rcu_boot_init_percpu_data(i, rsp); 4204 } 4205 list_add(&rsp->flavors, &rcu_struct_flavors); 4206 } 4207 4208 /* 4209 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4210 * replace the definitions in tree.h because those are needed to size 4211 * the ->node array in the rcu_state structure. 4212 */ 4213 static void __init rcu_init_geometry(void) 4214 { 4215 ulong d; 4216 int i; 4217 int rcu_capacity[RCU_NUM_LVLS]; 4218 4219 /* 4220 * Initialize any unspecified boot parameters. 4221 * The default values of jiffies_till_first_fqs and 4222 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4223 * value, which is a function of HZ, then adding one for each 4224 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4225 */ 4226 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4227 if (jiffies_till_first_fqs == ULONG_MAX) 4228 jiffies_till_first_fqs = d; 4229 if (jiffies_till_next_fqs == ULONG_MAX) 4230 jiffies_till_next_fqs = d; 4231 4232 /* If the compile-time values are accurate, just leave. */ 4233 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4234 nr_cpu_ids == NR_CPUS) 4235 return; 4236 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4237 rcu_fanout_leaf, nr_cpu_ids); 4238 4239 /* 4240 * The boot-time rcu_fanout_leaf parameter must be at least two 4241 * and cannot exceed the number of bits in the rcu_node masks. 4242 * Complain and fall back to the compile-time values if this 4243 * limit is exceeded. 4244 */ 4245 if (rcu_fanout_leaf < 2 || 4246 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4247 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4248 WARN_ON(1); 4249 return; 4250 } 4251 4252 /* 4253 * Compute number of nodes that can be handled an rcu_node tree 4254 * with the given number of levels. 4255 */ 4256 rcu_capacity[0] = rcu_fanout_leaf; 4257 for (i = 1; i < RCU_NUM_LVLS; i++) 4258 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4259 4260 /* 4261 * The tree must be able to accommodate the configured number of CPUs. 4262 * If this limit is exceeded, fall back to the compile-time values. 4263 */ 4264 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4265 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4266 WARN_ON(1); 4267 return; 4268 } 4269 4270 /* Calculate the number of levels in the tree. */ 4271 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4272 } 4273 rcu_num_lvls = i + 1; 4274 4275 /* Calculate the number of rcu_nodes at each level of the tree. */ 4276 for (i = 0; i < rcu_num_lvls; i++) { 4277 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4278 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4279 } 4280 4281 /* Calculate the total number of rcu_node structures. */ 4282 rcu_num_nodes = 0; 4283 for (i = 0; i < rcu_num_lvls; i++) 4284 rcu_num_nodes += num_rcu_lvl[i]; 4285 } 4286 4287 /* 4288 * Dump out the structure of the rcu_node combining tree associated 4289 * with the rcu_state structure referenced by rsp. 4290 */ 4291 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4292 { 4293 int level = 0; 4294 struct rcu_node *rnp; 4295 4296 pr_info("rcu_node tree layout dump\n"); 4297 pr_info(" "); 4298 rcu_for_each_node_breadth_first(rsp, rnp) { 4299 if (rnp->level != level) { 4300 pr_cont("\n"); 4301 pr_info(" "); 4302 level = rnp->level; 4303 } 4304 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4305 } 4306 pr_cont("\n"); 4307 } 4308 4309 void __init rcu_init(void) 4310 { 4311 int cpu; 4312 4313 rcu_early_boot_tests(); 4314 4315 rcu_bootup_announce(); 4316 rcu_init_geometry(); 4317 rcu_init_one(&rcu_bh_state); 4318 rcu_init_one(&rcu_sched_state); 4319 if (dump_tree) 4320 rcu_dump_rcu_node_tree(&rcu_sched_state); 4321 __rcu_init_preempt(); 4322 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4323 4324 /* 4325 * We don't need protection against CPU-hotplug here because 4326 * this is called early in boot, before either interrupts 4327 * or the scheduler are operational. 4328 */ 4329 pm_notifier(rcu_pm_notify, 0); 4330 for_each_online_cpu(cpu) { 4331 rcutree_prepare_cpu(cpu); 4332 rcu_cpu_starting(cpu); 4333 } 4334 } 4335 4336 #include "tree_exp.h" 4337 #include "tree_plugin.h" 4338