xref: /linux/kernel/rcu/tree.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
58 
59 #include "tree.h"
60 #include "rcu.h"
61 
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "rcutree."
66 
67 /* Data structures. */
68 
69 /*
70  * In order to export the rcu_state name to the tracing tools, it
71  * needs to be added in the __tracepoint_string section.
72  * This requires defining a separate variable tp_<sname>_varname
73  * that points to the string being used, and this will allow
74  * the tracing userspace tools to be able to decipher the string
75  * address to the matching string.
76  */
77 #ifdef CONFIG_TRACING
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
82 #else
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
85 #endif
86 
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 	.level = { &sname##_state.node[0] }, \
92 	.rda = &sname##_data, \
93 	.call = cr, \
94 	.gp_state = RCU_GP_IDLE, \
95 	.gpnum = 0UL - 300UL, \
96 	.completed = 0UL - 300UL, \
97 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 	.orphan_donetail = &sname##_state.orphan_donelist, \
100 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 	.name = RCU_STATE_NAME(sname), \
102 	.abbr = sabbr, \
103 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 			       struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 
167 /* rcuc/rcub kthread realtime priority */
168 #ifdef CONFIG_RCU_KTHREAD_PRIO
169 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 module_param(kthread_prio, int, 0644);
174 
175 /* Delay in jiffies for grace-period initialization delays, debug only. */
176 
177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
179 module_param(gp_preinit_delay, int, 0644);
180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 static const int gp_preinit_delay;
182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 
184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186 module_param(gp_init_delay, int, 0644);
187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 static const int gp_init_delay;
189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 
191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
193 module_param(gp_cleanup_delay, int, 0644);
194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 static const int gp_cleanup_delay;
196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197 
198 /*
199  * Number of grace periods between delays, normalized by the duration of
200  * the delay.  The longer the the delay, the more the grace periods between
201  * each delay.  The reason for this normalization is that it means that,
202  * for non-zero delays, the overall slowdown of grace periods is constant
203  * regardless of the duration of the delay.  This arrangement balances
204  * the need for long delays to increase some race probabilities with the
205  * need for fast grace periods to increase other race probabilities.
206  */
207 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
208 
209 /*
210  * Track the rcutorture test sequence number and the update version
211  * number within a given test.  The rcutorture_testseq is incremented
212  * on every rcutorture module load and unload, so has an odd value
213  * when a test is running.  The rcutorture_vernum is set to zero
214  * when rcutorture starts and is incremented on each rcutorture update.
215  * These variables enable correlating rcutorture output with the
216  * RCU tracing information.
217  */
218 unsigned long rcutorture_testseq;
219 unsigned long rcutorture_vernum;
220 
221 /*
222  * Compute the mask of online CPUs for the specified rcu_node structure.
223  * This will not be stable unless the rcu_node structure's ->lock is
224  * held, but the bit corresponding to the current CPU will be stable
225  * in most contexts.
226  */
227 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228 {
229 	return READ_ONCE(rnp->qsmaskinitnext);
230 }
231 
232 /*
233  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
234  * permit this function to be invoked without holding the root rcu_node
235  * structure's ->lock, but of course results can be subject to change.
236  */
237 static int rcu_gp_in_progress(struct rcu_state *rsp)
238 {
239 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
240 }
241 
242 /*
243  * Note a quiescent state.  Because we do not need to know
244  * how many quiescent states passed, just if there was at least
245  * one since the start of the grace period, this just sets a flag.
246  * The caller must have disabled preemption.
247  */
248 void rcu_sched_qs(void)
249 {
250 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
251 		return;
252 	trace_rcu_grace_period(TPS("rcu_sched"),
253 			       __this_cpu_read(rcu_sched_data.gpnum),
254 			       TPS("cpuqs"));
255 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 		return;
258 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
259 	rcu_report_exp_rdp(&rcu_sched_state,
260 			   this_cpu_ptr(&rcu_sched_data), true);
261 }
262 
263 void rcu_bh_qs(void)
264 {
265 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 		trace_rcu_grace_period(TPS("rcu_bh"),
267 				       __this_cpu_read(rcu_bh_data.gpnum),
268 				       TPS("cpuqs"));
269 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
270 	}
271 }
272 
273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
274 
275 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 	.dynticks = ATOMIC_INIT(1),
278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 	.dynticks_idle = ATOMIC_INIT(1),
281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
282 };
283 
284 /*
285  * Record entry into an extended quiescent state.  This is only to be
286  * called when not already in an extended quiescent state.
287  */
288 static void rcu_dynticks_eqs_enter(void)
289 {
290 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
291 	int special;
292 
293 	/*
294 	 * CPUs seeing atomic_inc_return() must see prior RCU read-side
295 	 * critical sections, and we also must force ordering with the
296 	 * next idle sojourn.
297 	 */
298 	special = atomic_inc_return(&rdtp->dynticks);
299 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1);
300 }
301 
302 /*
303  * Record exit from an extended quiescent state.  This is only to be
304  * called from an extended quiescent state.
305  */
306 static void rcu_dynticks_eqs_exit(void)
307 {
308 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
309 	int special;
310 
311 	/*
312 	 * CPUs seeing atomic_inc_return() must see prior idle sojourns,
313 	 * and we also must force ordering with the next RCU read-side
314 	 * critical section.
315 	 */
316 	special = atomic_inc_return(&rdtp->dynticks);
317 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1));
318 }
319 
320 /*
321  * Reset the current CPU's ->dynticks counter to indicate that the
322  * newly onlined CPU is no longer in an extended quiescent state.
323  * This will either leave the counter unchanged, or increment it
324  * to the next non-quiescent value.
325  *
326  * The non-atomic test/increment sequence works because the upper bits
327  * of the ->dynticks counter are manipulated only by the corresponding CPU,
328  * or when the corresponding CPU is offline.
329  */
330 static void rcu_dynticks_eqs_online(void)
331 {
332 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
333 
334 	if (atomic_read(&rdtp->dynticks) & 0x1)
335 		return;
336 	atomic_add(0x1, &rdtp->dynticks);
337 }
338 
339 /*
340  * Is the current CPU in an extended quiescent state?
341  *
342  * No ordering, as we are sampling CPU-local information.
343  */
344 bool rcu_dynticks_curr_cpu_in_eqs(void)
345 {
346 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347 
348 	return !(atomic_read(&rdtp->dynticks) & 0x1);
349 }
350 
351 /*
352  * Snapshot the ->dynticks counter with full ordering so as to allow
353  * stable comparison of this counter with past and future snapshots.
354  */
355 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
356 {
357 	int snap = atomic_add_return(0, &rdtp->dynticks);
358 
359 	return snap;
360 }
361 
362 /*
363  * Return true if the snapshot returned from rcu_dynticks_snap()
364  * indicates that RCU is in an extended quiescent state.
365  */
366 static bool rcu_dynticks_in_eqs(int snap)
367 {
368 	return !(snap & 0x1);
369 }
370 
371 /*
372  * Return true if the CPU corresponding to the specified rcu_dynticks
373  * structure has spent some time in an extended quiescent state since
374  * rcu_dynticks_snap() returned the specified snapshot.
375  */
376 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
377 {
378 	return snap != rcu_dynticks_snap(rdtp);
379 }
380 
381 /*
382  * Do a double-increment of the ->dynticks counter to emulate a
383  * momentary idle-CPU quiescent state.
384  */
385 static void rcu_dynticks_momentary_idle(void)
386 {
387 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
388 	int special = atomic_add_return(2, &rdtp->dynticks);
389 
390 	/* It is illegal to call this from idle state. */
391 	WARN_ON_ONCE(!(special & 0x1));
392 }
393 
394 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
395 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
396 
397 /*
398  * Let the RCU core know that this CPU has gone through the scheduler,
399  * which is a quiescent state.  This is called when the need for a
400  * quiescent state is urgent, so we burn an atomic operation and full
401  * memory barriers to let the RCU core know about it, regardless of what
402  * this CPU might (or might not) do in the near future.
403  *
404  * We inform the RCU core by emulating a zero-duration dyntick-idle
405  * period, which we in turn do by incrementing the ->dynticks counter
406  * by two.
407  *
408  * The caller must have disabled interrupts.
409  */
410 static void rcu_momentary_dyntick_idle(void)
411 {
412 	struct rcu_data *rdp;
413 	int resched_mask;
414 	struct rcu_state *rsp;
415 
416 	/*
417 	 * Yes, we can lose flag-setting operations.  This is OK, because
418 	 * the flag will be set again after some delay.
419 	 */
420 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
421 	raw_cpu_write(rcu_sched_qs_mask, 0);
422 
423 	/* Find the flavor that needs a quiescent state. */
424 	for_each_rcu_flavor(rsp) {
425 		rdp = raw_cpu_ptr(rsp->rda);
426 		if (!(resched_mask & rsp->flavor_mask))
427 			continue;
428 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
429 		if (READ_ONCE(rdp->mynode->completed) !=
430 		    READ_ONCE(rdp->cond_resched_completed))
431 			continue;
432 
433 		/*
434 		 * Pretend to be momentarily idle for the quiescent state.
435 		 * This allows the grace-period kthread to record the
436 		 * quiescent state, with no need for this CPU to do anything
437 		 * further.
438 		 */
439 		rcu_dynticks_momentary_idle();
440 		break;
441 	}
442 }
443 
444 /*
445  * Note a context switch.  This is a quiescent state for RCU-sched,
446  * and requires special handling for preemptible RCU.
447  * The caller must have disabled interrupts.
448  */
449 void rcu_note_context_switch(void)
450 {
451 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
452 	trace_rcu_utilization(TPS("Start context switch"));
453 	rcu_sched_qs();
454 	rcu_preempt_note_context_switch();
455 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
456 		rcu_momentary_dyntick_idle();
457 	trace_rcu_utilization(TPS("End context switch"));
458 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
459 }
460 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
461 
462 /*
463  * Register a quiescent state for all RCU flavors.  If there is an
464  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
465  * dyntick-idle quiescent state visible to other CPUs (but only for those
466  * RCU flavors in desperate need of a quiescent state, which will normally
467  * be none of them).  Either way, do a lightweight quiescent state for
468  * all RCU flavors.
469  *
470  * The barrier() calls are redundant in the common case when this is
471  * called externally, but just in case this is called from within this
472  * file.
473  *
474  */
475 void rcu_all_qs(void)
476 {
477 	unsigned long flags;
478 
479 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
480 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
481 		local_irq_save(flags);
482 		rcu_momentary_dyntick_idle();
483 		local_irq_restore(flags);
484 	}
485 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
486 		/*
487 		 * Yes, we just checked a per-CPU variable with preemption
488 		 * enabled, so we might be migrated to some other CPU at
489 		 * this point.  That is OK because in that case, the
490 		 * migration will supply the needed quiescent state.
491 		 * We might end up needlessly disabling preemption and
492 		 * invoking rcu_sched_qs() on the destination CPU, but
493 		 * the probability and cost are both quite low, so this
494 		 * should not be a problem in practice.
495 		 */
496 		preempt_disable();
497 		rcu_sched_qs();
498 		preempt_enable();
499 	}
500 	this_cpu_inc(rcu_qs_ctr);
501 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
502 }
503 EXPORT_SYMBOL_GPL(rcu_all_qs);
504 
505 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
506 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
507 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
508 
509 module_param(blimit, long, 0444);
510 module_param(qhimark, long, 0444);
511 module_param(qlowmark, long, 0444);
512 
513 static ulong jiffies_till_first_fqs = ULONG_MAX;
514 static ulong jiffies_till_next_fqs = ULONG_MAX;
515 static bool rcu_kick_kthreads;
516 
517 module_param(jiffies_till_first_fqs, ulong, 0644);
518 module_param(jiffies_till_next_fqs, ulong, 0644);
519 module_param(rcu_kick_kthreads, bool, 0644);
520 
521 /*
522  * How long the grace period must be before we start recruiting
523  * quiescent-state help from rcu_note_context_switch().
524  */
525 static ulong jiffies_till_sched_qs = HZ / 20;
526 module_param(jiffies_till_sched_qs, ulong, 0644);
527 
528 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
529 				  struct rcu_data *rdp);
530 static void force_qs_rnp(struct rcu_state *rsp,
531 			 int (*f)(struct rcu_data *rsp, bool *isidle,
532 				  unsigned long *maxj),
533 			 bool *isidle, unsigned long *maxj);
534 static void force_quiescent_state(struct rcu_state *rsp);
535 static int rcu_pending(void);
536 
537 /*
538  * Return the number of RCU batches started thus far for debug & stats.
539  */
540 unsigned long rcu_batches_started(void)
541 {
542 	return rcu_state_p->gpnum;
543 }
544 EXPORT_SYMBOL_GPL(rcu_batches_started);
545 
546 /*
547  * Return the number of RCU-sched batches started thus far for debug & stats.
548  */
549 unsigned long rcu_batches_started_sched(void)
550 {
551 	return rcu_sched_state.gpnum;
552 }
553 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
554 
555 /*
556  * Return the number of RCU BH batches started thus far for debug & stats.
557  */
558 unsigned long rcu_batches_started_bh(void)
559 {
560 	return rcu_bh_state.gpnum;
561 }
562 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
563 
564 /*
565  * Return the number of RCU batches completed thus far for debug & stats.
566  */
567 unsigned long rcu_batches_completed(void)
568 {
569 	return rcu_state_p->completed;
570 }
571 EXPORT_SYMBOL_GPL(rcu_batches_completed);
572 
573 /*
574  * Return the number of RCU-sched batches completed thus far for debug & stats.
575  */
576 unsigned long rcu_batches_completed_sched(void)
577 {
578 	return rcu_sched_state.completed;
579 }
580 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
581 
582 /*
583  * Return the number of RCU BH batches completed thus far for debug & stats.
584  */
585 unsigned long rcu_batches_completed_bh(void)
586 {
587 	return rcu_bh_state.completed;
588 }
589 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
590 
591 /*
592  * Return the number of RCU expedited batches completed thus far for
593  * debug & stats.  Odd numbers mean that a batch is in progress, even
594  * numbers mean idle.  The value returned will thus be roughly double
595  * the cumulative batches since boot.
596  */
597 unsigned long rcu_exp_batches_completed(void)
598 {
599 	return rcu_state_p->expedited_sequence;
600 }
601 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
602 
603 /*
604  * Return the number of RCU-sched expedited batches completed thus far
605  * for debug & stats.  Similar to rcu_exp_batches_completed().
606  */
607 unsigned long rcu_exp_batches_completed_sched(void)
608 {
609 	return rcu_sched_state.expedited_sequence;
610 }
611 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
612 
613 /*
614  * Force a quiescent state.
615  */
616 void rcu_force_quiescent_state(void)
617 {
618 	force_quiescent_state(rcu_state_p);
619 }
620 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
621 
622 /*
623  * Force a quiescent state for RCU BH.
624  */
625 void rcu_bh_force_quiescent_state(void)
626 {
627 	force_quiescent_state(&rcu_bh_state);
628 }
629 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
630 
631 /*
632  * Force a quiescent state for RCU-sched.
633  */
634 void rcu_sched_force_quiescent_state(void)
635 {
636 	force_quiescent_state(&rcu_sched_state);
637 }
638 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
639 
640 /*
641  * Show the state of the grace-period kthreads.
642  */
643 void show_rcu_gp_kthreads(void)
644 {
645 	struct rcu_state *rsp;
646 
647 	for_each_rcu_flavor(rsp) {
648 		pr_info("%s: wait state: %d ->state: %#lx\n",
649 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
650 		/* sched_show_task(rsp->gp_kthread); */
651 	}
652 }
653 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
654 
655 /*
656  * Record the number of times rcutorture tests have been initiated and
657  * terminated.  This information allows the debugfs tracing stats to be
658  * correlated to the rcutorture messages, even when the rcutorture module
659  * is being repeatedly loaded and unloaded.  In other words, we cannot
660  * store this state in rcutorture itself.
661  */
662 void rcutorture_record_test_transition(void)
663 {
664 	rcutorture_testseq++;
665 	rcutorture_vernum = 0;
666 }
667 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
668 
669 /*
670  * Send along grace-period-related data for rcutorture diagnostics.
671  */
672 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
673 			    unsigned long *gpnum, unsigned long *completed)
674 {
675 	struct rcu_state *rsp = NULL;
676 
677 	switch (test_type) {
678 	case RCU_FLAVOR:
679 		rsp = rcu_state_p;
680 		break;
681 	case RCU_BH_FLAVOR:
682 		rsp = &rcu_bh_state;
683 		break;
684 	case RCU_SCHED_FLAVOR:
685 		rsp = &rcu_sched_state;
686 		break;
687 	default:
688 		break;
689 	}
690 	if (rsp != NULL) {
691 		*flags = READ_ONCE(rsp->gp_flags);
692 		*gpnum = READ_ONCE(rsp->gpnum);
693 		*completed = READ_ONCE(rsp->completed);
694 		return;
695 	}
696 	*flags = 0;
697 	*gpnum = 0;
698 	*completed = 0;
699 }
700 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
701 
702 /*
703  * Record the number of writer passes through the current rcutorture test.
704  * This is also used to correlate debugfs tracing stats with the rcutorture
705  * messages.
706  */
707 void rcutorture_record_progress(unsigned long vernum)
708 {
709 	rcutorture_vernum++;
710 }
711 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
712 
713 /*
714  * Does the CPU have callbacks ready to be invoked?
715  */
716 static int
717 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
718 {
719 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
720 	       rdp->nxttail[RCU_NEXT_TAIL] != NULL;
721 }
722 
723 /*
724  * Return the root node of the specified rcu_state structure.
725  */
726 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
727 {
728 	return &rsp->node[0];
729 }
730 
731 /*
732  * Is there any need for future grace periods?
733  * Interrupts must be disabled.  If the caller does not hold the root
734  * rnp_node structure's ->lock, the results are advisory only.
735  */
736 static int rcu_future_needs_gp(struct rcu_state *rsp)
737 {
738 	struct rcu_node *rnp = rcu_get_root(rsp);
739 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
740 	int *fp = &rnp->need_future_gp[idx];
741 
742 	return READ_ONCE(*fp);
743 }
744 
745 /*
746  * Does the current CPU require a not-yet-started grace period?
747  * The caller must have disabled interrupts to prevent races with
748  * normal callback registry.
749  */
750 static bool
751 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
752 {
753 	int i;
754 
755 	if (rcu_gp_in_progress(rsp))
756 		return false;  /* No, a grace period is already in progress. */
757 	if (rcu_future_needs_gp(rsp))
758 		return true;  /* Yes, a no-CBs CPU needs one. */
759 	if (!rdp->nxttail[RCU_NEXT_TAIL])
760 		return false;  /* No, this is a no-CBs (or offline) CPU. */
761 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
762 		return true;  /* Yes, CPU has newly registered callbacks. */
763 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
764 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
765 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
766 				 rdp->nxtcompleted[i]))
767 			return true;  /* Yes, CBs for future grace period. */
768 	return false; /* No grace period needed. */
769 }
770 
771 /*
772  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
773  *
774  * If the new value of the ->dynticks_nesting counter now is zero,
775  * we really have entered idle, and must do the appropriate accounting.
776  * The caller must have disabled interrupts.
777  */
778 static void rcu_eqs_enter_common(long long oldval, bool user)
779 {
780 	struct rcu_state *rsp;
781 	struct rcu_data *rdp;
782 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
783 
784 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
785 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
786 	    !user && !is_idle_task(current)) {
787 		struct task_struct *idle __maybe_unused =
788 			idle_task(smp_processor_id());
789 
790 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
791 		rcu_ftrace_dump(DUMP_ORIG);
792 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
793 			  current->pid, current->comm,
794 			  idle->pid, idle->comm); /* must be idle task! */
795 	}
796 	for_each_rcu_flavor(rsp) {
797 		rdp = this_cpu_ptr(rsp->rda);
798 		do_nocb_deferred_wakeup(rdp);
799 	}
800 	rcu_prepare_for_idle();
801 	rcu_dynticks_eqs_enter();
802 	rcu_dynticks_task_enter();
803 
804 	/*
805 	 * It is illegal to enter an extended quiescent state while
806 	 * in an RCU read-side critical section.
807 	 */
808 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
809 			 "Illegal idle entry in RCU read-side critical section.");
810 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
811 			 "Illegal idle entry in RCU-bh read-side critical section.");
812 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
813 			 "Illegal idle entry in RCU-sched read-side critical section.");
814 }
815 
816 /*
817  * Enter an RCU extended quiescent state, which can be either the
818  * idle loop or adaptive-tickless usermode execution.
819  */
820 static void rcu_eqs_enter(bool user)
821 {
822 	long long oldval;
823 	struct rcu_dynticks *rdtp;
824 
825 	rdtp = this_cpu_ptr(&rcu_dynticks);
826 	oldval = rdtp->dynticks_nesting;
827 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
828 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
829 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
830 		rdtp->dynticks_nesting = 0;
831 		rcu_eqs_enter_common(oldval, user);
832 	} else {
833 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
834 	}
835 }
836 
837 /**
838  * rcu_idle_enter - inform RCU that current CPU is entering idle
839  *
840  * Enter idle mode, in other words, -leave- the mode in which RCU
841  * read-side critical sections can occur.  (Though RCU read-side
842  * critical sections can occur in irq handlers in idle, a possibility
843  * handled by irq_enter() and irq_exit().)
844  *
845  * We crowbar the ->dynticks_nesting field to zero to allow for
846  * the possibility of usermode upcalls having messed up our count
847  * of interrupt nesting level during the prior busy period.
848  */
849 void rcu_idle_enter(void)
850 {
851 	unsigned long flags;
852 
853 	local_irq_save(flags);
854 	rcu_eqs_enter(false);
855 	rcu_sysidle_enter(0);
856 	local_irq_restore(flags);
857 }
858 EXPORT_SYMBOL_GPL(rcu_idle_enter);
859 
860 #ifdef CONFIG_NO_HZ_FULL
861 /**
862  * rcu_user_enter - inform RCU that we are resuming userspace.
863  *
864  * Enter RCU idle mode right before resuming userspace.  No use of RCU
865  * is permitted between this call and rcu_user_exit(). This way the
866  * CPU doesn't need to maintain the tick for RCU maintenance purposes
867  * when the CPU runs in userspace.
868  */
869 void rcu_user_enter(void)
870 {
871 	rcu_eqs_enter(1);
872 }
873 #endif /* CONFIG_NO_HZ_FULL */
874 
875 /**
876  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
877  *
878  * Exit from an interrupt handler, which might possibly result in entering
879  * idle mode, in other words, leaving the mode in which read-side critical
880  * sections can occur.  The caller must have disabled interrupts.
881  *
882  * This code assumes that the idle loop never does anything that might
883  * result in unbalanced calls to irq_enter() and irq_exit().  If your
884  * architecture violates this assumption, RCU will give you what you
885  * deserve, good and hard.  But very infrequently and irreproducibly.
886  *
887  * Use things like work queues to work around this limitation.
888  *
889  * You have been warned.
890  */
891 void rcu_irq_exit(void)
892 {
893 	long long oldval;
894 	struct rcu_dynticks *rdtp;
895 
896 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
897 	rdtp = this_cpu_ptr(&rcu_dynticks);
898 	oldval = rdtp->dynticks_nesting;
899 	rdtp->dynticks_nesting--;
900 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
901 		     rdtp->dynticks_nesting < 0);
902 	if (rdtp->dynticks_nesting)
903 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
904 	else
905 		rcu_eqs_enter_common(oldval, true);
906 	rcu_sysidle_enter(1);
907 }
908 
909 /*
910  * Wrapper for rcu_irq_exit() where interrupts are enabled.
911  */
912 void rcu_irq_exit_irqson(void)
913 {
914 	unsigned long flags;
915 
916 	local_irq_save(flags);
917 	rcu_irq_exit();
918 	local_irq_restore(flags);
919 }
920 
921 /*
922  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
923  *
924  * If the new value of the ->dynticks_nesting counter was previously zero,
925  * we really have exited idle, and must do the appropriate accounting.
926  * The caller must have disabled interrupts.
927  */
928 static void rcu_eqs_exit_common(long long oldval, int user)
929 {
930 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
931 
932 	rcu_dynticks_task_exit();
933 	rcu_dynticks_eqs_exit();
934 	rcu_cleanup_after_idle();
935 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
936 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
937 	    !user && !is_idle_task(current)) {
938 		struct task_struct *idle __maybe_unused =
939 			idle_task(smp_processor_id());
940 
941 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
942 				  oldval, rdtp->dynticks_nesting);
943 		rcu_ftrace_dump(DUMP_ORIG);
944 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
945 			  current->pid, current->comm,
946 			  idle->pid, idle->comm); /* must be idle task! */
947 	}
948 }
949 
950 /*
951  * Exit an RCU extended quiescent state, which can be either the
952  * idle loop or adaptive-tickless usermode execution.
953  */
954 static void rcu_eqs_exit(bool user)
955 {
956 	struct rcu_dynticks *rdtp;
957 	long long oldval;
958 
959 	rdtp = this_cpu_ptr(&rcu_dynticks);
960 	oldval = rdtp->dynticks_nesting;
961 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
962 	if (oldval & DYNTICK_TASK_NEST_MASK) {
963 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
964 	} else {
965 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
966 		rcu_eqs_exit_common(oldval, user);
967 	}
968 }
969 
970 /**
971  * rcu_idle_exit - inform RCU that current CPU is leaving idle
972  *
973  * Exit idle mode, in other words, -enter- the mode in which RCU
974  * read-side critical sections can occur.
975  *
976  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
977  * allow for the possibility of usermode upcalls messing up our count
978  * of interrupt nesting level during the busy period that is just
979  * now starting.
980  */
981 void rcu_idle_exit(void)
982 {
983 	unsigned long flags;
984 
985 	local_irq_save(flags);
986 	rcu_eqs_exit(false);
987 	rcu_sysidle_exit(0);
988 	local_irq_restore(flags);
989 }
990 EXPORT_SYMBOL_GPL(rcu_idle_exit);
991 
992 #ifdef CONFIG_NO_HZ_FULL
993 /**
994  * rcu_user_exit - inform RCU that we are exiting userspace.
995  *
996  * Exit RCU idle mode while entering the kernel because it can
997  * run a RCU read side critical section anytime.
998  */
999 void rcu_user_exit(void)
1000 {
1001 	rcu_eqs_exit(1);
1002 }
1003 #endif /* CONFIG_NO_HZ_FULL */
1004 
1005 /**
1006  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1007  *
1008  * Enter an interrupt handler, which might possibly result in exiting
1009  * idle mode, in other words, entering the mode in which read-side critical
1010  * sections can occur.  The caller must have disabled interrupts.
1011  *
1012  * Note that the Linux kernel is fully capable of entering an interrupt
1013  * handler that it never exits, for example when doing upcalls to
1014  * user mode!  This code assumes that the idle loop never does upcalls to
1015  * user mode.  If your architecture does do upcalls from the idle loop (or
1016  * does anything else that results in unbalanced calls to the irq_enter()
1017  * and irq_exit() functions), RCU will give you what you deserve, good
1018  * and hard.  But very infrequently and irreproducibly.
1019  *
1020  * Use things like work queues to work around this limitation.
1021  *
1022  * You have been warned.
1023  */
1024 void rcu_irq_enter(void)
1025 {
1026 	struct rcu_dynticks *rdtp;
1027 	long long oldval;
1028 
1029 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1030 	rdtp = this_cpu_ptr(&rcu_dynticks);
1031 	oldval = rdtp->dynticks_nesting;
1032 	rdtp->dynticks_nesting++;
1033 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1034 		     rdtp->dynticks_nesting == 0);
1035 	if (oldval)
1036 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1037 	else
1038 		rcu_eqs_exit_common(oldval, true);
1039 	rcu_sysidle_exit(1);
1040 }
1041 
1042 /*
1043  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1044  */
1045 void rcu_irq_enter_irqson(void)
1046 {
1047 	unsigned long flags;
1048 
1049 	local_irq_save(flags);
1050 	rcu_irq_enter();
1051 	local_irq_restore(flags);
1052 }
1053 
1054 /**
1055  * rcu_nmi_enter - inform RCU of entry to NMI context
1056  *
1057  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1058  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1059  * that the CPU is active.  This implementation permits nested NMIs, as
1060  * long as the nesting level does not overflow an int.  (You will probably
1061  * run out of stack space first.)
1062  */
1063 void rcu_nmi_enter(void)
1064 {
1065 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1066 	int incby = 2;
1067 
1068 	/* Complain about underflow. */
1069 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1070 
1071 	/*
1072 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1073 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1074 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1075 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1076 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1077 	 * period (observation due to Andy Lutomirski).
1078 	 */
1079 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1080 		rcu_dynticks_eqs_exit();
1081 		incby = 1;
1082 	}
1083 	rdtp->dynticks_nmi_nesting += incby;
1084 	barrier();
1085 }
1086 
1087 /**
1088  * rcu_nmi_exit - inform RCU of exit from NMI context
1089  *
1090  * If we are returning from the outermost NMI handler that interrupted an
1091  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1092  * to let the RCU grace-period handling know that the CPU is back to
1093  * being RCU-idle.
1094  */
1095 void rcu_nmi_exit(void)
1096 {
1097 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1098 
1099 	/*
1100 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1101 	 * (We are exiting an NMI handler, so RCU better be paying attention
1102 	 * to us!)
1103 	 */
1104 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1105 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1106 
1107 	/*
1108 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1109 	 * leave it in non-RCU-idle state.
1110 	 */
1111 	if (rdtp->dynticks_nmi_nesting != 1) {
1112 		rdtp->dynticks_nmi_nesting -= 2;
1113 		return;
1114 	}
1115 
1116 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1117 	rdtp->dynticks_nmi_nesting = 0;
1118 	rcu_dynticks_eqs_enter();
1119 }
1120 
1121 /**
1122  * __rcu_is_watching - are RCU read-side critical sections safe?
1123  *
1124  * Return true if RCU is watching the running CPU, which means that
1125  * this CPU can safely enter RCU read-side critical sections.  Unlike
1126  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1127  * least disabled preemption.
1128  */
1129 bool notrace __rcu_is_watching(void)
1130 {
1131 	return !rcu_dynticks_curr_cpu_in_eqs();
1132 }
1133 
1134 /**
1135  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1136  *
1137  * If the current CPU is in its idle loop and is neither in an interrupt
1138  * or NMI handler, return true.
1139  */
1140 bool notrace rcu_is_watching(void)
1141 {
1142 	bool ret;
1143 
1144 	preempt_disable_notrace();
1145 	ret = __rcu_is_watching();
1146 	preempt_enable_notrace();
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(rcu_is_watching);
1150 
1151 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1152 
1153 /*
1154  * Is the current CPU online?  Disable preemption to avoid false positives
1155  * that could otherwise happen due to the current CPU number being sampled,
1156  * this task being preempted, its old CPU being taken offline, resuming
1157  * on some other CPU, then determining that its old CPU is now offline.
1158  * It is OK to use RCU on an offline processor during initial boot, hence
1159  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1160  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1161  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1162  * offline to continue to use RCU for one jiffy after marking itself
1163  * offline in the cpu_online_mask.  This leniency is necessary given the
1164  * non-atomic nature of the online and offline processing, for example,
1165  * the fact that a CPU enters the scheduler after completing the teardown
1166  * of the CPU.
1167  *
1168  * This is also why RCU internally marks CPUs online during in the
1169  * preparation phase and offline after the CPU has been taken down.
1170  *
1171  * Disable checking if in an NMI handler because we cannot safely report
1172  * errors from NMI handlers anyway.
1173  */
1174 bool rcu_lockdep_current_cpu_online(void)
1175 {
1176 	struct rcu_data *rdp;
1177 	struct rcu_node *rnp;
1178 	bool ret;
1179 
1180 	if (in_nmi())
1181 		return true;
1182 	preempt_disable();
1183 	rdp = this_cpu_ptr(&rcu_sched_data);
1184 	rnp = rdp->mynode;
1185 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1186 	      !rcu_scheduler_fully_active;
1187 	preempt_enable();
1188 	return ret;
1189 }
1190 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1191 
1192 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1193 
1194 /**
1195  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1196  *
1197  * If the current CPU is idle or running at a first-level (not nested)
1198  * interrupt from idle, return true.  The caller must have at least
1199  * disabled preemption.
1200  */
1201 static int rcu_is_cpu_rrupt_from_idle(void)
1202 {
1203 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1204 }
1205 
1206 /*
1207  * Snapshot the specified CPU's dynticks counter so that we can later
1208  * credit them with an implicit quiescent state.  Return 1 if this CPU
1209  * is in dynticks idle mode, which is an extended quiescent state.
1210  */
1211 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1212 					 bool *isidle, unsigned long *maxj)
1213 {
1214 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1215 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1216 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1217 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1218 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1219 				 rdp->mynode->gpnum))
1220 			WRITE_ONCE(rdp->gpwrap, true);
1221 		return 1;
1222 	}
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Return true if the specified CPU has passed through a quiescent
1228  * state by virtue of being in or having passed through an dynticks
1229  * idle state since the last call to dyntick_save_progress_counter()
1230  * for this same CPU, or by virtue of having been offline.
1231  */
1232 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1233 				    bool *isidle, unsigned long *maxj)
1234 {
1235 	unsigned long jtsq;
1236 	int *rcrmp;
1237 	unsigned long rjtsc;
1238 	struct rcu_node *rnp;
1239 
1240 	/*
1241 	 * If the CPU passed through or entered a dynticks idle phase with
1242 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1243 	 * already acknowledged the request to pass through a quiescent
1244 	 * state.  Either way, that CPU cannot possibly be in an RCU
1245 	 * read-side critical section that started before the beginning
1246 	 * of the current RCU grace period.
1247 	 */
1248 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1249 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1250 		rdp->dynticks_fqs++;
1251 		return 1;
1252 	}
1253 
1254 	/* Compute and saturate jiffies_till_sched_qs. */
1255 	jtsq = jiffies_till_sched_qs;
1256 	rjtsc = rcu_jiffies_till_stall_check();
1257 	if (jtsq > rjtsc / 2) {
1258 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1259 		jtsq = rjtsc / 2;
1260 	} else if (jtsq < 1) {
1261 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1262 		jtsq = 1;
1263 	}
1264 
1265 	/*
1266 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1267 	 * beginning of the grace period?  For this to be the case,
1268 	 * the CPU has to have noticed the current grace period.  This
1269 	 * might not be the case for nohz_full CPUs looping in the kernel.
1270 	 */
1271 	rnp = rdp->mynode;
1272 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1273 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
1274 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1275 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1276 		return 1;
1277 	}
1278 
1279 	/* Check for the CPU being offline. */
1280 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1281 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1282 		rdp->offline_fqs++;
1283 		return 1;
1284 	}
1285 
1286 	/*
1287 	 * A CPU running for an extended time within the kernel can
1288 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1289 	 * even context-switching back and forth between a pair of
1290 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1291 	 * So if the grace period is old enough, make the CPU pay attention.
1292 	 * Note that the unsynchronized assignments to the per-CPU
1293 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1294 	 * bits can be lost, but they will be set again on the next
1295 	 * force-quiescent-state pass.  So lost bit sets do not result
1296 	 * in incorrect behavior, merely in a grace period lasting
1297 	 * a few jiffies longer than it might otherwise.  Because
1298 	 * there are at most four threads involved, and because the
1299 	 * updates are only once every few jiffies, the probability of
1300 	 * lossage (and thus of slight grace-period extension) is
1301 	 * quite low.
1302 	 *
1303 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1304 	 * is set too high, we override with half of the RCU CPU stall
1305 	 * warning delay.
1306 	 */
1307 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1308 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1309 	    time_after(jiffies, rdp->rsp->jiffies_resched)) {
1310 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1311 			WRITE_ONCE(rdp->cond_resched_completed,
1312 				   READ_ONCE(rdp->mynode->completed));
1313 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1314 			WRITE_ONCE(*rcrmp,
1315 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1316 		}
1317 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1318 	}
1319 
1320 	/*
1321 	 * If more than halfway to RCU CPU stall-warning time, do
1322 	 * a resched_cpu() to try to loosen things up a bit.
1323 	 */
1324 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1325 		resched_cpu(rdp->cpu);
1326 
1327 	return 0;
1328 }
1329 
1330 static void record_gp_stall_check_time(struct rcu_state *rsp)
1331 {
1332 	unsigned long j = jiffies;
1333 	unsigned long j1;
1334 
1335 	rsp->gp_start = j;
1336 	smp_wmb(); /* Record start time before stall time. */
1337 	j1 = rcu_jiffies_till_stall_check();
1338 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1339 	rsp->jiffies_resched = j + j1 / 2;
1340 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1341 }
1342 
1343 /*
1344  * Convert a ->gp_state value to a character string.
1345  */
1346 static const char *gp_state_getname(short gs)
1347 {
1348 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1349 		return "???";
1350 	return gp_state_names[gs];
1351 }
1352 
1353 /*
1354  * Complain about starvation of grace-period kthread.
1355  */
1356 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1357 {
1358 	unsigned long gpa;
1359 	unsigned long j;
1360 
1361 	j = jiffies;
1362 	gpa = READ_ONCE(rsp->gp_activity);
1363 	if (j - gpa > 2 * HZ) {
1364 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1365 		       rsp->name, j - gpa,
1366 		       rsp->gpnum, rsp->completed,
1367 		       rsp->gp_flags,
1368 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1369 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1370 		if (rsp->gp_kthread) {
1371 			sched_show_task(rsp->gp_kthread);
1372 			wake_up_process(rsp->gp_kthread);
1373 		}
1374 	}
1375 }
1376 
1377 /*
1378  * Dump stacks of all tasks running on stalled CPUs.  First try using
1379  * NMIs, but fall back to manual remote stack tracing on architectures
1380  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1381  * traces are more accurate because they are printed by the target CPU.
1382  */
1383 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1384 {
1385 	int cpu;
1386 	unsigned long flags;
1387 	struct rcu_node *rnp;
1388 
1389 	rcu_for_each_leaf_node(rsp, rnp) {
1390 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1391 		for_each_leaf_node_possible_cpu(rnp, cpu)
1392 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1393 				if (!trigger_single_cpu_backtrace(cpu))
1394 					dump_cpu_task(cpu);
1395 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1396 	}
1397 }
1398 
1399 /*
1400  * If too much time has passed in the current grace period, and if
1401  * so configured, go kick the relevant kthreads.
1402  */
1403 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1404 {
1405 	unsigned long j;
1406 
1407 	if (!rcu_kick_kthreads)
1408 		return;
1409 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1410 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1411 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1412 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1413 		rcu_ftrace_dump(DUMP_ALL);
1414 		wake_up_process(rsp->gp_kthread);
1415 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1416 	}
1417 }
1418 
1419 static inline void panic_on_rcu_stall(void)
1420 {
1421 	if (sysctl_panic_on_rcu_stall)
1422 		panic("RCU Stall\n");
1423 }
1424 
1425 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1426 {
1427 	int cpu;
1428 	long delta;
1429 	unsigned long flags;
1430 	unsigned long gpa;
1431 	unsigned long j;
1432 	int ndetected = 0;
1433 	struct rcu_node *rnp = rcu_get_root(rsp);
1434 	long totqlen = 0;
1435 
1436 	/* Kick and suppress, if so configured. */
1437 	rcu_stall_kick_kthreads(rsp);
1438 	if (rcu_cpu_stall_suppress)
1439 		return;
1440 
1441 	/* Only let one CPU complain about others per time interval. */
1442 
1443 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1444 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1445 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1446 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1447 		return;
1448 	}
1449 	WRITE_ONCE(rsp->jiffies_stall,
1450 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1451 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1452 
1453 	/*
1454 	 * OK, time to rat on our buddy...
1455 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1456 	 * RCU CPU stall warnings.
1457 	 */
1458 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1459 	       rsp->name);
1460 	print_cpu_stall_info_begin();
1461 	rcu_for_each_leaf_node(rsp, rnp) {
1462 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1463 		ndetected += rcu_print_task_stall(rnp);
1464 		if (rnp->qsmask != 0) {
1465 			for_each_leaf_node_possible_cpu(rnp, cpu)
1466 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1467 					print_cpu_stall_info(rsp, cpu);
1468 					ndetected++;
1469 				}
1470 		}
1471 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1472 	}
1473 
1474 	print_cpu_stall_info_end();
1475 	for_each_possible_cpu(cpu)
1476 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1477 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1478 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1479 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1480 	if (ndetected) {
1481 		rcu_dump_cpu_stacks(rsp);
1482 
1483 		/* Complain about tasks blocking the grace period. */
1484 		rcu_print_detail_task_stall(rsp);
1485 	} else {
1486 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1487 		    READ_ONCE(rsp->completed) == gpnum) {
1488 			pr_err("INFO: Stall ended before state dump start\n");
1489 		} else {
1490 			j = jiffies;
1491 			gpa = READ_ONCE(rsp->gp_activity);
1492 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1493 			       rsp->name, j - gpa, j, gpa,
1494 			       jiffies_till_next_fqs,
1495 			       rcu_get_root(rsp)->qsmask);
1496 			/* In this case, the current CPU might be at fault. */
1497 			sched_show_task(current);
1498 		}
1499 	}
1500 
1501 	rcu_check_gp_kthread_starvation(rsp);
1502 
1503 	panic_on_rcu_stall();
1504 
1505 	force_quiescent_state(rsp);  /* Kick them all. */
1506 }
1507 
1508 static void print_cpu_stall(struct rcu_state *rsp)
1509 {
1510 	int cpu;
1511 	unsigned long flags;
1512 	struct rcu_node *rnp = rcu_get_root(rsp);
1513 	long totqlen = 0;
1514 
1515 	/* Kick and suppress, if so configured. */
1516 	rcu_stall_kick_kthreads(rsp);
1517 	if (rcu_cpu_stall_suppress)
1518 		return;
1519 
1520 	/*
1521 	 * OK, time to rat on ourselves...
1522 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1523 	 * RCU CPU stall warnings.
1524 	 */
1525 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1526 	print_cpu_stall_info_begin();
1527 	print_cpu_stall_info(rsp, smp_processor_id());
1528 	print_cpu_stall_info_end();
1529 	for_each_possible_cpu(cpu)
1530 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1531 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1532 		jiffies - rsp->gp_start,
1533 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1534 
1535 	rcu_check_gp_kthread_starvation(rsp);
1536 
1537 	rcu_dump_cpu_stacks(rsp);
1538 
1539 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1540 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1541 		WRITE_ONCE(rsp->jiffies_stall,
1542 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1543 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1544 
1545 	panic_on_rcu_stall();
1546 
1547 	/*
1548 	 * Attempt to revive the RCU machinery by forcing a context switch.
1549 	 *
1550 	 * A context switch would normally allow the RCU state machine to make
1551 	 * progress and it could be we're stuck in kernel space without context
1552 	 * switches for an entirely unreasonable amount of time.
1553 	 */
1554 	resched_cpu(smp_processor_id());
1555 }
1556 
1557 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1558 {
1559 	unsigned long completed;
1560 	unsigned long gpnum;
1561 	unsigned long gps;
1562 	unsigned long j;
1563 	unsigned long js;
1564 	struct rcu_node *rnp;
1565 
1566 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1567 	    !rcu_gp_in_progress(rsp))
1568 		return;
1569 	rcu_stall_kick_kthreads(rsp);
1570 	j = jiffies;
1571 
1572 	/*
1573 	 * Lots of memory barriers to reject false positives.
1574 	 *
1575 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1576 	 * then rsp->gp_start, and finally rsp->completed.  These values
1577 	 * are updated in the opposite order with memory barriers (or
1578 	 * equivalent) during grace-period initialization and cleanup.
1579 	 * Now, a false positive can occur if we get an new value of
1580 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1581 	 * the memory barriers, the only way that this can happen is if one
1582 	 * grace period ends and another starts between these two fetches.
1583 	 * Detect this by comparing rsp->completed with the previous fetch
1584 	 * from rsp->gpnum.
1585 	 *
1586 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1587 	 * and rsp->gp_start suffice to forestall false positives.
1588 	 */
1589 	gpnum = READ_ONCE(rsp->gpnum);
1590 	smp_rmb(); /* Pick up ->gpnum first... */
1591 	js = READ_ONCE(rsp->jiffies_stall);
1592 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1593 	gps = READ_ONCE(rsp->gp_start);
1594 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1595 	completed = READ_ONCE(rsp->completed);
1596 	if (ULONG_CMP_GE(completed, gpnum) ||
1597 	    ULONG_CMP_LT(j, js) ||
1598 	    ULONG_CMP_GE(gps, js))
1599 		return; /* No stall or GP completed since entering function. */
1600 	rnp = rdp->mynode;
1601 	if (rcu_gp_in_progress(rsp) &&
1602 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1603 
1604 		/* We haven't checked in, so go dump stack. */
1605 		print_cpu_stall(rsp);
1606 
1607 	} else if (rcu_gp_in_progress(rsp) &&
1608 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1609 
1610 		/* They had a few time units to dump stack, so complain. */
1611 		print_other_cpu_stall(rsp, gpnum);
1612 	}
1613 }
1614 
1615 /**
1616  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1617  *
1618  * Set the stall-warning timeout way off into the future, thus preventing
1619  * any RCU CPU stall-warning messages from appearing in the current set of
1620  * RCU grace periods.
1621  *
1622  * The caller must disable hard irqs.
1623  */
1624 void rcu_cpu_stall_reset(void)
1625 {
1626 	struct rcu_state *rsp;
1627 
1628 	for_each_rcu_flavor(rsp)
1629 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1630 }
1631 
1632 /*
1633  * Initialize the specified rcu_data structure's default callback list
1634  * to empty.  The default callback list is the one that is not used by
1635  * no-callbacks CPUs.
1636  */
1637 static void init_default_callback_list(struct rcu_data *rdp)
1638 {
1639 	int i;
1640 
1641 	rdp->nxtlist = NULL;
1642 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1643 		rdp->nxttail[i] = &rdp->nxtlist;
1644 }
1645 
1646 /*
1647  * Initialize the specified rcu_data structure's callback list to empty.
1648  */
1649 static void init_callback_list(struct rcu_data *rdp)
1650 {
1651 	if (init_nocb_callback_list(rdp))
1652 		return;
1653 	init_default_callback_list(rdp);
1654 }
1655 
1656 /*
1657  * Determine the value that ->completed will have at the end of the
1658  * next subsequent grace period.  This is used to tag callbacks so that
1659  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1660  * been dyntick-idle for an extended period with callbacks under the
1661  * influence of RCU_FAST_NO_HZ.
1662  *
1663  * The caller must hold rnp->lock with interrupts disabled.
1664  */
1665 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1666 				       struct rcu_node *rnp)
1667 {
1668 	/*
1669 	 * If RCU is idle, we just wait for the next grace period.
1670 	 * But we can only be sure that RCU is idle if we are looking
1671 	 * at the root rcu_node structure -- otherwise, a new grace
1672 	 * period might have started, but just not yet gotten around
1673 	 * to initializing the current non-root rcu_node structure.
1674 	 */
1675 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1676 		return rnp->completed + 1;
1677 
1678 	/*
1679 	 * Otherwise, wait for a possible partial grace period and
1680 	 * then the subsequent full grace period.
1681 	 */
1682 	return rnp->completed + 2;
1683 }
1684 
1685 /*
1686  * Trace-event helper function for rcu_start_future_gp() and
1687  * rcu_nocb_wait_gp().
1688  */
1689 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1690 				unsigned long c, const char *s)
1691 {
1692 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1693 				      rnp->completed, c, rnp->level,
1694 				      rnp->grplo, rnp->grphi, s);
1695 }
1696 
1697 /*
1698  * Start some future grace period, as needed to handle newly arrived
1699  * callbacks.  The required future grace periods are recorded in each
1700  * rcu_node structure's ->need_future_gp field.  Returns true if there
1701  * is reason to awaken the grace-period kthread.
1702  *
1703  * The caller must hold the specified rcu_node structure's ->lock.
1704  */
1705 static bool __maybe_unused
1706 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1707 		    unsigned long *c_out)
1708 {
1709 	unsigned long c;
1710 	int i;
1711 	bool ret = false;
1712 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1713 
1714 	/*
1715 	 * Pick up grace-period number for new callbacks.  If this
1716 	 * grace period is already marked as needed, return to the caller.
1717 	 */
1718 	c = rcu_cbs_completed(rdp->rsp, rnp);
1719 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1720 	if (rnp->need_future_gp[c & 0x1]) {
1721 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1722 		goto out;
1723 	}
1724 
1725 	/*
1726 	 * If either this rcu_node structure or the root rcu_node structure
1727 	 * believe that a grace period is in progress, then we must wait
1728 	 * for the one following, which is in "c".  Because our request
1729 	 * will be noticed at the end of the current grace period, we don't
1730 	 * need to explicitly start one.  We only do the lockless check
1731 	 * of rnp_root's fields if the current rcu_node structure thinks
1732 	 * there is no grace period in flight, and because we hold rnp->lock,
1733 	 * the only possible change is when rnp_root's two fields are
1734 	 * equal, in which case rnp_root->gpnum might be concurrently
1735 	 * incremented.  But that is OK, as it will just result in our
1736 	 * doing some extra useless work.
1737 	 */
1738 	if (rnp->gpnum != rnp->completed ||
1739 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1740 		rnp->need_future_gp[c & 0x1]++;
1741 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1742 		goto out;
1743 	}
1744 
1745 	/*
1746 	 * There might be no grace period in progress.  If we don't already
1747 	 * hold it, acquire the root rcu_node structure's lock in order to
1748 	 * start one (if needed).
1749 	 */
1750 	if (rnp != rnp_root)
1751 		raw_spin_lock_rcu_node(rnp_root);
1752 
1753 	/*
1754 	 * Get a new grace-period number.  If there really is no grace
1755 	 * period in progress, it will be smaller than the one we obtained
1756 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1757 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1758 	 */
1759 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1760 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1761 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1762 			rdp->nxtcompleted[i] = c;
1763 
1764 	/*
1765 	 * If the needed for the required grace period is already
1766 	 * recorded, trace and leave.
1767 	 */
1768 	if (rnp_root->need_future_gp[c & 0x1]) {
1769 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1770 		goto unlock_out;
1771 	}
1772 
1773 	/* Record the need for the future grace period. */
1774 	rnp_root->need_future_gp[c & 0x1]++;
1775 
1776 	/* If a grace period is not already in progress, start one. */
1777 	if (rnp_root->gpnum != rnp_root->completed) {
1778 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1779 	} else {
1780 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1781 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1782 	}
1783 unlock_out:
1784 	if (rnp != rnp_root)
1785 		raw_spin_unlock_rcu_node(rnp_root);
1786 out:
1787 	if (c_out != NULL)
1788 		*c_out = c;
1789 	return ret;
1790 }
1791 
1792 /*
1793  * Clean up any old requests for the just-ended grace period.  Also return
1794  * whether any additional grace periods have been requested.  Also invoke
1795  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1796  * waiting for this grace period to complete.
1797  */
1798 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1799 {
1800 	int c = rnp->completed;
1801 	int needmore;
1802 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1803 
1804 	rnp->need_future_gp[c & 0x1] = 0;
1805 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1806 	trace_rcu_future_gp(rnp, rdp, c,
1807 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1808 	return needmore;
1809 }
1810 
1811 /*
1812  * Awaken the grace-period kthread for the specified flavor of RCU.
1813  * Don't do a self-awaken, and don't bother awakening when there is
1814  * nothing for the grace-period kthread to do (as in several CPUs
1815  * raced to awaken, and we lost), and finally don't try to awaken
1816  * a kthread that has not yet been created.
1817  */
1818 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1819 {
1820 	if (current == rsp->gp_kthread ||
1821 	    !READ_ONCE(rsp->gp_flags) ||
1822 	    !rsp->gp_kthread)
1823 		return;
1824 	swake_up(&rsp->gp_wq);
1825 }
1826 
1827 /*
1828  * If there is room, assign a ->completed number to any callbacks on
1829  * this CPU that have not already been assigned.  Also accelerate any
1830  * callbacks that were previously assigned a ->completed number that has
1831  * since proven to be too conservative, which can happen if callbacks get
1832  * assigned a ->completed number while RCU is idle, but with reference to
1833  * a non-root rcu_node structure.  This function is idempotent, so it does
1834  * not hurt to call it repeatedly.  Returns an flag saying that we should
1835  * awaken the RCU grace-period kthread.
1836  *
1837  * The caller must hold rnp->lock with interrupts disabled.
1838  */
1839 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1840 			       struct rcu_data *rdp)
1841 {
1842 	unsigned long c;
1843 	int i;
1844 	bool ret;
1845 
1846 	/* If the CPU has no callbacks, nothing to do. */
1847 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1848 		return false;
1849 
1850 	/*
1851 	 * Starting from the sublist containing the callbacks most
1852 	 * recently assigned a ->completed number and working down, find the
1853 	 * first sublist that is not assignable to an upcoming grace period.
1854 	 * Such a sublist has something in it (first two tests) and has
1855 	 * a ->completed number assigned that will complete sooner than
1856 	 * the ->completed number for newly arrived callbacks (last test).
1857 	 *
1858 	 * The key point is that any later sublist can be assigned the
1859 	 * same ->completed number as the newly arrived callbacks, which
1860 	 * means that the callbacks in any of these later sublist can be
1861 	 * grouped into a single sublist, whether or not they have already
1862 	 * been assigned a ->completed number.
1863 	 */
1864 	c = rcu_cbs_completed(rsp, rnp);
1865 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1866 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1867 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1868 			break;
1869 
1870 	/*
1871 	 * If there are no sublist for unassigned callbacks, leave.
1872 	 * At the same time, advance "i" one sublist, so that "i" will
1873 	 * index into the sublist where all the remaining callbacks should
1874 	 * be grouped into.
1875 	 */
1876 	if (++i >= RCU_NEXT_TAIL)
1877 		return false;
1878 
1879 	/*
1880 	 * Assign all subsequent callbacks' ->completed number to the next
1881 	 * full grace period and group them all in the sublist initially
1882 	 * indexed by "i".
1883 	 */
1884 	for (; i <= RCU_NEXT_TAIL; i++) {
1885 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1886 		rdp->nxtcompleted[i] = c;
1887 	}
1888 	/* Record any needed additional grace periods. */
1889 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1890 
1891 	/* Trace depending on how much we were able to accelerate. */
1892 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1893 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1894 	else
1895 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1896 	return ret;
1897 }
1898 
1899 /*
1900  * Move any callbacks whose grace period has completed to the
1901  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1902  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1903  * sublist.  This function is idempotent, so it does not hurt to
1904  * invoke it repeatedly.  As long as it is not invoked -too- often...
1905  * Returns true if the RCU grace-period kthread needs to be awakened.
1906  *
1907  * The caller must hold rnp->lock with interrupts disabled.
1908  */
1909 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1910 			    struct rcu_data *rdp)
1911 {
1912 	int i, j;
1913 
1914 	/* If the CPU has no callbacks, nothing to do. */
1915 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1916 		return false;
1917 
1918 	/*
1919 	 * Find all callbacks whose ->completed numbers indicate that they
1920 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1921 	 */
1922 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1923 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1924 			break;
1925 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1926 	}
1927 	/* Clean up any sublist tail pointers that were misordered above. */
1928 	for (j = RCU_WAIT_TAIL; j < i; j++)
1929 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1930 
1931 	/* Copy down callbacks to fill in empty sublists. */
1932 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1933 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1934 			break;
1935 		rdp->nxttail[j] = rdp->nxttail[i];
1936 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1937 	}
1938 
1939 	/* Classify any remaining callbacks. */
1940 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1941 }
1942 
1943 /*
1944  * Update CPU-local rcu_data state to record the beginnings and ends of
1945  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1946  * structure corresponding to the current CPU, and must have irqs disabled.
1947  * Returns true if the grace-period kthread needs to be awakened.
1948  */
1949 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1950 			      struct rcu_data *rdp)
1951 {
1952 	bool ret;
1953 	bool need_gp;
1954 
1955 	/* Handle the ends of any preceding grace periods first. */
1956 	if (rdp->completed == rnp->completed &&
1957 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1958 
1959 		/* No grace period end, so just accelerate recent callbacks. */
1960 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1961 
1962 	} else {
1963 
1964 		/* Advance callbacks. */
1965 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1966 
1967 		/* Remember that we saw this grace-period completion. */
1968 		rdp->completed = rnp->completed;
1969 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1970 	}
1971 
1972 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1973 		/*
1974 		 * If the current grace period is waiting for this CPU,
1975 		 * set up to detect a quiescent state, otherwise don't
1976 		 * go looking for one.
1977 		 */
1978 		rdp->gpnum = rnp->gpnum;
1979 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1980 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1981 		rdp->cpu_no_qs.b.norm = need_gp;
1982 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1983 		rdp->core_needs_qs = need_gp;
1984 		zero_cpu_stall_ticks(rdp);
1985 		WRITE_ONCE(rdp->gpwrap, false);
1986 	}
1987 	return ret;
1988 }
1989 
1990 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1991 {
1992 	unsigned long flags;
1993 	bool needwake;
1994 	struct rcu_node *rnp;
1995 
1996 	local_irq_save(flags);
1997 	rnp = rdp->mynode;
1998 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1999 	     rdp->completed == READ_ONCE(rnp->completed) &&
2000 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2001 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2002 		local_irq_restore(flags);
2003 		return;
2004 	}
2005 	needwake = __note_gp_changes(rsp, rnp, rdp);
2006 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2007 	if (needwake)
2008 		rcu_gp_kthread_wake(rsp);
2009 }
2010 
2011 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2012 {
2013 	if (delay > 0 &&
2014 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2015 		schedule_timeout_uninterruptible(delay);
2016 }
2017 
2018 /*
2019  * Initialize a new grace period.  Return false if no grace period required.
2020  */
2021 static bool rcu_gp_init(struct rcu_state *rsp)
2022 {
2023 	unsigned long oldmask;
2024 	struct rcu_data *rdp;
2025 	struct rcu_node *rnp = rcu_get_root(rsp);
2026 
2027 	WRITE_ONCE(rsp->gp_activity, jiffies);
2028 	raw_spin_lock_irq_rcu_node(rnp);
2029 	if (!READ_ONCE(rsp->gp_flags)) {
2030 		/* Spurious wakeup, tell caller to go back to sleep.  */
2031 		raw_spin_unlock_irq_rcu_node(rnp);
2032 		return false;
2033 	}
2034 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2035 
2036 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2037 		/*
2038 		 * Grace period already in progress, don't start another.
2039 		 * Not supposed to be able to happen.
2040 		 */
2041 		raw_spin_unlock_irq_rcu_node(rnp);
2042 		return false;
2043 	}
2044 
2045 	/* Advance to a new grace period and initialize state. */
2046 	record_gp_stall_check_time(rsp);
2047 	/* Record GP times before starting GP, hence smp_store_release(). */
2048 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2049 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2050 	raw_spin_unlock_irq_rcu_node(rnp);
2051 
2052 	/*
2053 	 * Apply per-leaf buffered online and offline operations to the
2054 	 * rcu_node tree.  Note that this new grace period need not wait
2055 	 * for subsequent online CPUs, and that quiescent-state forcing
2056 	 * will handle subsequent offline CPUs.
2057 	 */
2058 	rcu_for_each_leaf_node(rsp, rnp) {
2059 		rcu_gp_slow(rsp, gp_preinit_delay);
2060 		raw_spin_lock_irq_rcu_node(rnp);
2061 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2062 		    !rnp->wait_blkd_tasks) {
2063 			/* Nothing to do on this leaf rcu_node structure. */
2064 			raw_spin_unlock_irq_rcu_node(rnp);
2065 			continue;
2066 		}
2067 
2068 		/* Record old state, apply changes to ->qsmaskinit field. */
2069 		oldmask = rnp->qsmaskinit;
2070 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2071 
2072 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2073 		if (!oldmask != !rnp->qsmaskinit) {
2074 			if (!oldmask) /* First online CPU for this rcu_node. */
2075 				rcu_init_new_rnp(rnp);
2076 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2077 				rnp->wait_blkd_tasks = true;
2078 			else /* Last offline CPU and can propagate. */
2079 				rcu_cleanup_dead_rnp(rnp);
2080 		}
2081 
2082 		/*
2083 		 * If all waited-on tasks from prior grace period are
2084 		 * done, and if all this rcu_node structure's CPUs are
2085 		 * still offline, propagate up the rcu_node tree and
2086 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2087 		 * rcu_node structure's CPUs has since come back online,
2088 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2089 		 * checks for this, so just call it unconditionally).
2090 		 */
2091 		if (rnp->wait_blkd_tasks &&
2092 		    (!rcu_preempt_has_tasks(rnp) ||
2093 		     rnp->qsmaskinit)) {
2094 			rnp->wait_blkd_tasks = false;
2095 			rcu_cleanup_dead_rnp(rnp);
2096 		}
2097 
2098 		raw_spin_unlock_irq_rcu_node(rnp);
2099 	}
2100 
2101 	/*
2102 	 * Set the quiescent-state-needed bits in all the rcu_node
2103 	 * structures for all currently online CPUs in breadth-first order,
2104 	 * starting from the root rcu_node structure, relying on the layout
2105 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2106 	 * will access only the leaves of the hierarchy, thus seeing that no
2107 	 * grace period is in progress, at least until the corresponding
2108 	 * leaf node has been initialized.
2109 	 *
2110 	 * The grace period cannot complete until the initialization
2111 	 * process finishes, because this kthread handles both.
2112 	 */
2113 	rcu_for_each_node_breadth_first(rsp, rnp) {
2114 		rcu_gp_slow(rsp, gp_init_delay);
2115 		raw_spin_lock_irq_rcu_node(rnp);
2116 		rdp = this_cpu_ptr(rsp->rda);
2117 		rcu_preempt_check_blocked_tasks(rnp);
2118 		rnp->qsmask = rnp->qsmaskinit;
2119 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2120 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2121 			WRITE_ONCE(rnp->completed, rsp->completed);
2122 		if (rnp == rdp->mynode)
2123 			(void)__note_gp_changes(rsp, rnp, rdp);
2124 		rcu_preempt_boost_start_gp(rnp);
2125 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2126 					    rnp->level, rnp->grplo,
2127 					    rnp->grphi, rnp->qsmask);
2128 		raw_spin_unlock_irq_rcu_node(rnp);
2129 		cond_resched_rcu_qs();
2130 		WRITE_ONCE(rsp->gp_activity, jiffies);
2131 	}
2132 
2133 	return true;
2134 }
2135 
2136 /*
2137  * Helper function for wait_event_interruptible_timeout() wakeup
2138  * at force-quiescent-state time.
2139  */
2140 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2141 {
2142 	struct rcu_node *rnp = rcu_get_root(rsp);
2143 
2144 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2145 	*gfp = READ_ONCE(rsp->gp_flags);
2146 	if (*gfp & RCU_GP_FLAG_FQS)
2147 		return true;
2148 
2149 	/* The current grace period has completed. */
2150 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2151 		return true;
2152 
2153 	return false;
2154 }
2155 
2156 /*
2157  * Do one round of quiescent-state forcing.
2158  */
2159 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2160 {
2161 	bool isidle = false;
2162 	unsigned long maxj;
2163 	struct rcu_node *rnp = rcu_get_root(rsp);
2164 
2165 	WRITE_ONCE(rsp->gp_activity, jiffies);
2166 	rsp->n_force_qs++;
2167 	if (first_time) {
2168 		/* Collect dyntick-idle snapshots. */
2169 		if (is_sysidle_rcu_state(rsp)) {
2170 			isidle = true;
2171 			maxj = jiffies - ULONG_MAX / 4;
2172 		}
2173 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2174 			     &isidle, &maxj);
2175 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2176 	} else {
2177 		/* Handle dyntick-idle and offline CPUs. */
2178 		isidle = true;
2179 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2180 	}
2181 	/* Clear flag to prevent immediate re-entry. */
2182 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2183 		raw_spin_lock_irq_rcu_node(rnp);
2184 		WRITE_ONCE(rsp->gp_flags,
2185 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2186 		raw_spin_unlock_irq_rcu_node(rnp);
2187 	}
2188 }
2189 
2190 /*
2191  * Clean up after the old grace period.
2192  */
2193 static void rcu_gp_cleanup(struct rcu_state *rsp)
2194 {
2195 	unsigned long gp_duration;
2196 	bool needgp = false;
2197 	int nocb = 0;
2198 	struct rcu_data *rdp;
2199 	struct rcu_node *rnp = rcu_get_root(rsp);
2200 	struct swait_queue_head *sq;
2201 
2202 	WRITE_ONCE(rsp->gp_activity, jiffies);
2203 	raw_spin_lock_irq_rcu_node(rnp);
2204 	gp_duration = jiffies - rsp->gp_start;
2205 	if (gp_duration > rsp->gp_max)
2206 		rsp->gp_max = gp_duration;
2207 
2208 	/*
2209 	 * We know the grace period is complete, but to everyone else
2210 	 * it appears to still be ongoing.  But it is also the case
2211 	 * that to everyone else it looks like there is nothing that
2212 	 * they can do to advance the grace period.  It is therefore
2213 	 * safe for us to drop the lock in order to mark the grace
2214 	 * period as completed in all of the rcu_node structures.
2215 	 */
2216 	raw_spin_unlock_irq_rcu_node(rnp);
2217 
2218 	/*
2219 	 * Propagate new ->completed value to rcu_node structures so
2220 	 * that other CPUs don't have to wait until the start of the next
2221 	 * grace period to process their callbacks.  This also avoids
2222 	 * some nasty RCU grace-period initialization races by forcing
2223 	 * the end of the current grace period to be completely recorded in
2224 	 * all of the rcu_node structures before the beginning of the next
2225 	 * grace period is recorded in any of the rcu_node structures.
2226 	 */
2227 	rcu_for_each_node_breadth_first(rsp, rnp) {
2228 		raw_spin_lock_irq_rcu_node(rnp);
2229 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2230 		WARN_ON_ONCE(rnp->qsmask);
2231 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2232 		rdp = this_cpu_ptr(rsp->rda);
2233 		if (rnp == rdp->mynode)
2234 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2235 		/* smp_mb() provided by prior unlock-lock pair. */
2236 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2237 		sq = rcu_nocb_gp_get(rnp);
2238 		raw_spin_unlock_irq_rcu_node(rnp);
2239 		rcu_nocb_gp_cleanup(sq);
2240 		cond_resched_rcu_qs();
2241 		WRITE_ONCE(rsp->gp_activity, jiffies);
2242 		rcu_gp_slow(rsp, gp_cleanup_delay);
2243 	}
2244 	rnp = rcu_get_root(rsp);
2245 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2246 	rcu_nocb_gp_set(rnp, nocb);
2247 
2248 	/* Declare grace period done. */
2249 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2250 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2251 	rsp->gp_state = RCU_GP_IDLE;
2252 	rdp = this_cpu_ptr(rsp->rda);
2253 	/* Advance CBs to reduce false positives below. */
2254 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2255 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2256 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2257 		trace_rcu_grace_period(rsp->name,
2258 				       READ_ONCE(rsp->gpnum),
2259 				       TPS("newreq"));
2260 	}
2261 	raw_spin_unlock_irq_rcu_node(rnp);
2262 }
2263 
2264 /*
2265  * Body of kthread that handles grace periods.
2266  */
2267 static int __noreturn rcu_gp_kthread(void *arg)
2268 {
2269 	bool first_gp_fqs;
2270 	int gf;
2271 	unsigned long j;
2272 	int ret;
2273 	struct rcu_state *rsp = arg;
2274 	struct rcu_node *rnp = rcu_get_root(rsp);
2275 
2276 	rcu_bind_gp_kthread();
2277 	for (;;) {
2278 
2279 		/* Handle grace-period start. */
2280 		for (;;) {
2281 			trace_rcu_grace_period(rsp->name,
2282 					       READ_ONCE(rsp->gpnum),
2283 					       TPS("reqwait"));
2284 			rsp->gp_state = RCU_GP_WAIT_GPS;
2285 			swait_event_interruptible(rsp->gp_wq,
2286 						 READ_ONCE(rsp->gp_flags) &
2287 						 RCU_GP_FLAG_INIT);
2288 			rsp->gp_state = RCU_GP_DONE_GPS;
2289 			/* Locking provides needed memory barrier. */
2290 			if (rcu_gp_init(rsp))
2291 				break;
2292 			cond_resched_rcu_qs();
2293 			WRITE_ONCE(rsp->gp_activity, jiffies);
2294 			WARN_ON(signal_pending(current));
2295 			trace_rcu_grace_period(rsp->name,
2296 					       READ_ONCE(rsp->gpnum),
2297 					       TPS("reqwaitsig"));
2298 		}
2299 
2300 		/* Handle quiescent-state forcing. */
2301 		first_gp_fqs = true;
2302 		j = jiffies_till_first_fqs;
2303 		if (j > HZ) {
2304 			j = HZ;
2305 			jiffies_till_first_fqs = HZ;
2306 		}
2307 		ret = 0;
2308 		for (;;) {
2309 			if (!ret) {
2310 				rsp->jiffies_force_qs = jiffies + j;
2311 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2312 					   jiffies + 3 * j);
2313 			}
2314 			trace_rcu_grace_period(rsp->name,
2315 					       READ_ONCE(rsp->gpnum),
2316 					       TPS("fqswait"));
2317 			rsp->gp_state = RCU_GP_WAIT_FQS;
2318 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2319 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2320 			rsp->gp_state = RCU_GP_DOING_FQS;
2321 			/* Locking provides needed memory barriers. */
2322 			/* If grace period done, leave loop. */
2323 			if (!READ_ONCE(rnp->qsmask) &&
2324 			    !rcu_preempt_blocked_readers_cgp(rnp))
2325 				break;
2326 			/* If time for quiescent-state forcing, do it. */
2327 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2328 			    (gf & RCU_GP_FLAG_FQS)) {
2329 				trace_rcu_grace_period(rsp->name,
2330 						       READ_ONCE(rsp->gpnum),
2331 						       TPS("fqsstart"));
2332 				rcu_gp_fqs(rsp, first_gp_fqs);
2333 				first_gp_fqs = false;
2334 				trace_rcu_grace_period(rsp->name,
2335 						       READ_ONCE(rsp->gpnum),
2336 						       TPS("fqsend"));
2337 				cond_resched_rcu_qs();
2338 				WRITE_ONCE(rsp->gp_activity, jiffies);
2339 				ret = 0; /* Force full wait till next FQS. */
2340 				j = jiffies_till_next_fqs;
2341 				if (j > HZ) {
2342 					j = HZ;
2343 					jiffies_till_next_fqs = HZ;
2344 				} else if (j < 1) {
2345 					j = 1;
2346 					jiffies_till_next_fqs = 1;
2347 				}
2348 			} else {
2349 				/* Deal with stray signal. */
2350 				cond_resched_rcu_qs();
2351 				WRITE_ONCE(rsp->gp_activity, jiffies);
2352 				WARN_ON(signal_pending(current));
2353 				trace_rcu_grace_period(rsp->name,
2354 						       READ_ONCE(rsp->gpnum),
2355 						       TPS("fqswaitsig"));
2356 				ret = 1; /* Keep old FQS timing. */
2357 				j = jiffies;
2358 				if (time_after(jiffies, rsp->jiffies_force_qs))
2359 					j = 1;
2360 				else
2361 					j = rsp->jiffies_force_qs - j;
2362 			}
2363 		}
2364 
2365 		/* Handle grace-period end. */
2366 		rsp->gp_state = RCU_GP_CLEANUP;
2367 		rcu_gp_cleanup(rsp);
2368 		rsp->gp_state = RCU_GP_CLEANED;
2369 	}
2370 }
2371 
2372 /*
2373  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2374  * in preparation for detecting the next grace period.  The caller must hold
2375  * the root node's ->lock and hard irqs must be disabled.
2376  *
2377  * Note that it is legal for a dying CPU (which is marked as offline) to
2378  * invoke this function.  This can happen when the dying CPU reports its
2379  * quiescent state.
2380  *
2381  * Returns true if the grace-period kthread must be awakened.
2382  */
2383 static bool
2384 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2385 		      struct rcu_data *rdp)
2386 {
2387 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2388 		/*
2389 		 * Either we have not yet spawned the grace-period
2390 		 * task, this CPU does not need another grace period,
2391 		 * or a grace period is already in progress.
2392 		 * Either way, don't start a new grace period.
2393 		 */
2394 		return false;
2395 	}
2396 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2397 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2398 			       TPS("newreq"));
2399 
2400 	/*
2401 	 * We can't do wakeups while holding the rnp->lock, as that
2402 	 * could cause possible deadlocks with the rq->lock. Defer
2403 	 * the wakeup to our caller.
2404 	 */
2405 	return true;
2406 }
2407 
2408 /*
2409  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2410  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2411  * is invoked indirectly from rcu_advance_cbs(), which would result in
2412  * endless recursion -- or would do so if it wasn't for the self-deadlock
2413  * that is encountered beforehand.
2414  *
2415  * Returns true if the grace-period kthread needs to be awakened.
2416  */
2417 static bool rcu_start_gp(struct rcu_state *rsp)
2418 {
2419 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2420 	struct rcu_node *rnp = rcu_get_root(rsp);
2421 	bool ret = false;
2422 
2423 	/*
2424 	 * If there is no grace period in progress right now, any
2425 	 * callbacks we have up to this point will be satisfied by the
2426 	 * next grace period.  Also, advancing the callbacks reduces the
2427 	 * probability of false positives from cpu_needs_another_gp()
2428 	 * resulting in pointless grace periods.  So, advance callbacks
2429 	 * then start the grace period!
2430 	 */
2431 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2432 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2433 	return ret;
2434 }
2435 
2436 /*
2437  * Report a full set of quiescent states to the specified rcu_state data
2438  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2439  * kthread if another grace period is required.  Whether we wake
2440  * the grace-period kthread or it awakens itself for the next round
2441  * of quiescent-state forcing, that kthread will clean up after the
2442  * just-completed grace period.  Note that the caller must hold rnp->lock,
2443  * which is released before return.
2444  */
2445 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2446 	__releases(rcu_get_root(rsp)->lock)
2447 {
2448 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2449 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2450 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2451 	rcu_gp_kthread_wake(rsp);
2452 }
2453 
2454 /*
2455  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2456  * Allows quiescent states for a group of CPUs to be reported at one go
2457  * to the specified rcu_node structure, though all the CPUs in the group
2458  * must be represented by the same rcu_node structure (which need not be a
2459  * leaf rcu_node structure, though it often will be).  The gps parameter
2460  * is the grace-period snapshot, which means that the quiescent states
2461  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2462  * must be held upon entry, and it is released before return.
2463  */
2464 static void
2465 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2466 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2467 	__releases(rnp->lock)
2468 {
2469 	unsigned long oldmask = 0;
2470 	struct rcu_node *rnp_c;
2471 
2472 	/* Walk up the rcu_node hierarchy. */
2473 	for (;;) {
2474 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2475 
2476 			/*
2477 			 * Our bit has already been cleared, or the
2478 			 * relevant grace period is already over, so done.
2479 			 */
2480 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2481 			return;
2482 		}
2483 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2484 		rnp->qsmask &= ~mask;
2485 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2486 						 mask, rnp->qsmask, rnp->level,
2487 						 rnp->grplo, rnp->grphi,
2488 						 !!rnp->gp_tasks);
2489 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2490 
2491 			/* Other bits still set at this level, so done. */
2492 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2493 			return;
2494 		}
2495 		mask = rnp->grpmask;
2496 		if (rnp->parent == NULL) {
2497 
2498 			/* No more levels.  Exit loop holding root lock. */
2499 
2500 			break;
2501 		}
2502 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2503 		rnp_c = rnp;
2504 		rnp = rnp->parent;
2505 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2506 		oldmask = rnp_c->qsmask;
2507 	}
2508 
2509 	/*
2510 	 * Get here if we are the last CPU to pass through a quiescent
2511 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2512 	 * to clean up and start the next grace period if one is needed.
2513 	 */
2514 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2515 }
2516 
2517 /*
2518  * Record a quiescent state for all tasks that were previously queued
2519  * on the specified rcu_node structure and that were blocking the current
2520  * RCU grace period.  The caller must hold the specified rnp->lock with
2521  * irqs disabled, and this lock is released upon return, but irqs remain
2522  * disabled.
2523  */
2524 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2525 				      struct rcu_node *rnp, unsigned long flags)
2526 	__releases(rnp->lock)
2527 {
2528 	unsigned long gps;
2529 	unsigned long mask;
2530 	struct rcu_node *rnp_p;
2531 
2532 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2533 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2534 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2535 		return;  /* Still need more quiescent states! */
2536 	}
2537 
2538 	rnp_p = rnp->parent;
2539 	if (rnp_p == NULL) {
2540 		/*
2541 		 * Only one rcu_node structure in the tree, so don't
2542 		 * try to report up to its nonexistent parent!
2543 		 */
2544 		rcu_report_qs_rsp(rsp, flags);
2545 		return;
2546 	}
2547 
2548 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2549 	gps = rnp->gpnum;
2550 	mask = rnp->grpmask;
2551 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2552 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2553 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2554 }
2555 
2556 /*
2557  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2558  * structure.  This must be called from the specified CPU.
2559  */
2560 static void
2561 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2562 {
2563 	unsigned long flags;
2564 	unsigned long mask;
2565 	bool needwake;
2566 	struct rcu_node *rnp;
2567 
2568 	rnp = rdp->mynode;
2569 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2570 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2571 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2572 
2573 		/*
2574 		 * The grace period in which this quiescent state was
2575 		 * recorded has ended, so don't report it upwards.
2576 		 * We will instead need a new quiescent state that lies
2577 		 * within the current grace period.
2578 		 */
2579 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2580 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2581 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2582 		return;
2583 	}
2584 	mask = rdp->grpmask;
2585 	if ((rnp->qsmask & mask) == 0) {
2586 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2587 	} else {
2588 		rdp->core_needs_qs = false;
2589 
2590 		/*
2591 		 * This GP can't end until cpu checks in, so all of our
2592 		 * callbacks can be processed during the next GP.
2593 		 */
2594 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2595 
2596 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2597 		/* ^^^ Released rnp->lock */
2598 		if (needwake)
2599 			rcu_gp_kthread_wake(rsp);
2600 	}
2601 }
2602 
2603 /*
2604  * Check to see if there is a new grace period of which this CPU
2605  * is not yet aware, and if so, set up local rcu_data state for it.
2606  * Otherwise, see if this CPU has just passed through its first
2607  * quiescent state for this grace period, and record that fact if so.
2608  */
2609 static void
2610 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2611 {
2612 	/* Check for grace-period ends and beginnings. */
2613 	note_gp_changes(rsp, rdp);
2614 
2615 	/*
2616 	 * Does this CPU still need to do its part for current grace period?
2617 	 * If no, return and let the other CPUs do their part as well.
2618 	 */
2619 	if (!rdp->core_needs_qs)
2620 		return;
2621 
2622 	/*
2623 	 * Was there a quiescent state since the beginning of the grace
2624 	 * period? If no, then exit and wait for the next call.
2625 	 */
2626 	if (rdp->cpu_no_qs.b.norm)
2627 		return;
2628 
2629 	/*
2630 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2631 	 * judge of that).
2632 	 */
2633 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2634 }
2635 
2636 /*
2637  * Send the specified CPU's RCU callbacks to the orphanage.  The
2638  * specified CPU must be offline, and the caller must hold the
2639  * ->orphan_lock.
2640  */
2641 static void
2642 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2643 			  struct rcu_node *rnp, struct rcu_data *rdp)
2644 {
2645 	/* No-CBs CPUs do not have orphanable callbacks. */
2646 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2647 		return;
2648 
2649 	/*
2650 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2651 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2652 	 * cannot be running now.  Thus no memory barrier is required.
2653 	 */
2654 	if (rdp->nxtlist != NULL) {
2655 		rsp->qlen_lazy += rdp->qlen_lazy;
2656 		rsp->qlen += rdp->qlen;
2657 		rdp->n_cbs_orphaned += rdp->qlen;
2658 		rdp->qlen_lazy = 0;
2659 		WRITE_ONCE(rdp->qlen, 0);
2660 	}
2661 
2662 	/*
2663 	 * Next, move those callbacks still needing a grace period to
2664 	 * the orphanage, where some other CPU will pick them up.
2665 	 * Some of the callbacks might have gone partway through a grace
2666 	 * period, but that is too bad.  They get to start over because we
2667 	 * cannot assume that grace periods are synchronized across CPUs.
2668 	 * We don't bother updating the ->nxttail[] array yet, instead
2669 	 * we just reset the whole thing later on.
2670 	 */
2671 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2672 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2673 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2674 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2675 	}
2676 
2677 	/*
2678 	 * Then move the ready-to-invoke callbacks to the orphanage,
2679 	 * where some other CPU will pick them up.  These will not be
2680 	 * required to pass though another grace period: They are done.
2681 	 */
2682 	if (rdp->nxtlist != NULL) {
2683 		*rsp->orphan_donetail = rdp->nxtlist;
2684 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2685 	}
2686 
2687 	/*
2688 	 * Finally, initialize the rcu_data structure's list to empty and
2689 	 * disallow further callbacks on this CPU.
2690 	 */
2691 	init_callback_list(rdp);
2692 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2693 }
2694 
2695 /*
2696  * Adopt the RCU callbacks from the specified rcu_state structure's
2697  * orphanage.  The caller must hold the ->orphan_lock.
2698  */
2699 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2700 {
2701 	int i;
2702 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2703 
2704 	/* No-CBs CPUs are handled specially. */
2705 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2706 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2707 		return;
2708 
2709 	/* Do the accounting first. */
2710 	rdp->qlen_lazy += rsp->qlen_lazy;
2711 	rdp->qlen += rsp->qlen;
2712 	rdp->n_cbs_adopted += rsp->qlen;
2713 	if (rsp->qlen_lazy != rsp->qlen)
2714 		rcu_idle_count_callbacks_posted();
2715 	rsp->qlen_lazy = 0;
2716 	rsp->qlen = 0;
2717 
2718 	/*
2719 	 * We do not need a memory barrier here because the only way we
2720 	 * can get here if there is an rcu_barrier() in flight is if
2721 	 * we are the task doing the rcu_barrier().
2722 	 */
2723 
2724 	/* First adopt the ready-to-invoke callbacks. */
2725 	if (rsp->orphan_donelist != NULL) {
2726 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2727 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2728 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2729 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2730 				rdp->nxttail[i] = rsp->orphan_donetail;
2731 		rsp->orphan_donelist = NULL;
2732 		rsp->orphan_donetail = &rsp->orphan_donelist;
2733 	}
2734 
2735 	/* And then adopt the callbacks that still need a grace period. */
2736 	if (rsp->orphan_nxtlist != NULL) {
2737 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2738 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2739 		rsp->orphan_nxtlist = NULL;
2740 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2741 	}
2742 }
2743 
2744 /*
2745  * Trace the fact that this CPU is going offline.
2746  */
2747 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2748 {
2749 	RCU_TRACE(unsigned long mask);
2750 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2751 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2752 
2753 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2754 		return;
2755 
2756 	RCU_TRACE(mask = rdp->grpmask);
2757 	trace_rcu_grace_period(rsp->name,
2758 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2759 			       TPS("cpuofl"));
2760 }
2761 
2762 /*
2763  * All CPUs for the specified rcu_node structure have gone offline,
2764  * and all tasks that were preempted within an RCU read-side critical
2765  * section while running on one of those CPUs have since exited their RCU
2766  * read-side critical section.  Some other CPU is reporting this fact with
2767  * the specified rcu_node structure's ->lock held and interrupts disabled.
2768  * This function therefore goes up the tree of rcu_node structures,
2769  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2770  * the leaf rcu_node structure's ->qsmaskinit field has already been
2771  * updated
2772  *
2773  * This function does check that the specified rcu_node structure has
2774  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2775  * prematurely.  That said, invoking it after the fact will cost you
2776  * a needless lock acquisition.  So once it has done its work, don't
2777  * invoke it again.
2778  */
2779 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2780 {
2781 	long mask;
2782 	struct rcu_node *rnp = rnp_leaf;
2783 
2784 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2785 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2786 		return;
2787 	for (;;) {
2788 		mask = rnp->grpmask;
2789 		rnp = rnp->parent;
2790 		if (!rnp)
2791 			break;
2792 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2793 		rnp->qsmaskinit &= ~mask;
2794 		rnp->qsmask &= ~mask;
2795 		if (rnp->qsmaskinit) {
2796 			raw_spin_unlock_rcu_node(rnp);
2797 			/* irqs remain disabled. */
2798 			return;
2799 		}
2800 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2801 	}
2802 }
2803 
2804 /*
2805  * The CPU has been completely removed, and some other CPU is reporting
2806  * this fact from process context.  Do the remainder of the cleanup,
2807  * including orphaning the outgoing CPU's RCU callbacks, and also
2808  * adopting them.  There can only be one CPU hotplug operation at a time,
2809  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2810  */
2811 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2812 {
2813 	unsigned long flags;
2814 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2815 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2816 
2817 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2818 		return;
2819 
2820 	/* Adjust any no-longer-needed kthreads. */
2821 	rcu_boost_kthread_setaffinity(rnp, -1);
2822 
2823 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2824 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2825 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2826 	rcu_adopt_orphan_cbs(rsp, flags);
2827 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2828 
2829 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2830 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2831 		  cpu, rdp->qlen, rdp->nxtlist);
2832 }
2833 
2834 /*
2835  * Invoke any RCU callbacks that have made it to the end of their grace
2836  * period.  Thottle as specified by rdp->blimit.
2837  */
2838 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2839 {
2840 	unsigned long flags;
2841 	struct rcu_head *next, *list, **tail;
2842 	long bl, count, count_lazy;
2843 	int i;
2844 
2845 	/* If no callbacks are ready, just return. */
2846 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2847 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2848 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2849 				    need_resched(), is_idle_task(current),
2850 				    rcu_is_callbacks_kthread());
2851 		return;
2852 	}
2853 
2854 	/*
2855 	 * Extract the list of ready callbacks, disabling to prevent
2856 	 * races with call_rcu() from interrupt handlers.
2857 	 */
2858 	local_irq_save(flags);
2859 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2860 	bl = rdp->blimit;
2861 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2862 	list = rdp->nxtlist;
2863 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2864 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2865 	tail = rdp->nxttail[RCU_DONE_TAIL];
2866 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2867 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2868 			rdp->nxttail[i] = &rdp->nxtlist;
2869 	local_irq_restore(flags);
2870 
2871 	/* Invoke callbacks. */
2872 	count = count_lazy = 0;
2873 	while (list) {
2874 		next = list->next;
2875 		prefetch(next);
2876 		debug_rcu_head_unqueue(list);
2877 		if (__rcu_reclaim(rsp->name, list))
2878 			count_lazy++;
2879 		list = next;
2880 		/* Stop only if limit reached and CPU has something to do. */
2881 		if (++count >= bl &&
2882 		    (need_resched() ||
2883 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2884 			break;
2885 	}
2886 
2887 	local_irq_save(flags);
2888 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2889 			    is_idle_task(current),
2890 			    rcu_is_callbacks_kthread());
2891 
2892 	/* Update count, and requeue any remaining callbacks. */
2893 	if (list != NULL) {
2894 		*tail = rdp->nxtlist;
2895 		rdp->nxtlist = list;
2896 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2897 			if (&rdp->nxtlist == rdp->nxttail[i])
2898 				rdp->nxttail[i] = tail;
2899 			else
2900 				break;
2901 	}
2902 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2903 	rdp->qlen_lazy -= count_lazy;
2904 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2905 	rdp->n_cbs_invoked += count;
2906 
2907 	/* Reinstate batch limit if we have worked down the excess. */
2908 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2909 		rdp->blimit = blimit;
2910 
2911 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2912 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2913 		rdp->qlen_last_fqs_check = 0;
2914 		rdp->n_force_qs_snap = rsp->n_force_qs;
2915 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2916 		rdp->qlen_last_fqs_check = rdp->qlen;
2917 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2918 
2919 	local_irq_restore(flags);
2920 
2921 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2922 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2923 		invoke_rcu_core();
2924 }
2925 
2926 /*
2927  * Check to see if this CPU is in a non-context-switch quiescent state
2928  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2929  * Also schedule RCU core processing.
2930  *
2931  * This function must be called from hardirq context.  It is normally
2932  * invoked from the scheduling-clock interrupt.
2933  */
2934 void rcu_check_callbacks(int user)
2935 {
2936 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2937 	increment_cpu_stall_ticks();
2938 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2939 
2940 		/*
2941 		 * Get here if this CPU took its interrupt from user
2942 		 * mode or from the idle loop, and if this is not a
2943 		 * nested interrupt.  In this case, the CPU is in
2944 		 * a quiescent state, so note it.
2945 		 *
2946 		 * No memory barrier is required here because both
2947 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2948 		 * variables that other CPUs neither access nor modify,
2949 		 * at least not while the corresponding CPU is online.
2950 		 */
2951 
2952 		rcu_sched_qs();
2953 		rcu_bh_qs();
2954 
2955 	} else if (!in_softirq()) {
2956 
2957 		/*
2958 		 * Get here if this CPU did not take its interrupt from
2959 		 * softirq, in other words, if it is not interrupting
2960 		 * a rcu_bh read-side critical section.  This is an _bh
2961 		 * critical section, so note it.
2962 		 */
2963 
2964 		rcu_bh_qs();
2965 	}
2966 	rcu_preempt_check_callbacks();
2967 	if (rcu_pending())
2968 		invoke_rcu_core();
2969 	if (user)
2970 		rcu_note_voluntary_context_switch(current);
2971 	trace_rcu_utilization(TPS("End scheduler-tick"));
2972 }
2973 
2974 /*
2975  * Scan the leaf rcu_node structures, processing dyntick state for any that
2976  * have not yet encountered a quiescent state, using the function specified.
2977  * Also initiate boosting for any threads blocked on the root rcu_node.
2978  *
2979  * The caller must have suppressed start of new grace periods.
2980  */
2981 static void force_qs_rnp(struct rcu_state *rsp,
2982 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2983 				  unsigned long *maxj),
2984 			 bool *isidle, unsigned long *maxj)
2985 {
2986 	int cpu;
2987 	unsigned long flags;
2988 	unsigned long mask;
2989 	struct rcu_node *rnp;
2990 
2991 	rcu_for_each_leaf_node(rsp, rnp) {
2992 		cond_resched_rcu_qs();
2993 		mask = 0;
2994 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2995 		if (rnp->qsmask == 0) {
2996 			if (rcu_state_p == &rcu_sched_state ||
2997 			    rsp != rcu_state_p ||
2998 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2999 				/*
3000 				 * No point in scanning bits because they
3001 				 * are all zero.  But we might need to
3002 				 * priority-boost blocked readers.
3003 				 */
3004 				rcu_initiate_boost(rnp, flags);
3005 				/* rcu_initiate_boost() releases rnp->lock */
3006 				continue;
3007 			}
3008 			if (rnp->parent &&
3009 			    (rnp->parent->qsmask & rnp->grpmask)) {
3010 				/*
3011 				 * Race between grace-period
3012 				 * initialization and task exiting RCU
3013 				 * read-side critical section: Report.
3014 				 */
3015 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
3016 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
3017 				continue;
3018 			}
3019 		}
3020 		for_each_leaf_node_possible_cpu(rnp, cpu) {
3021 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3022 			if ((rnp->qsmask & bit) != 0) {
3023 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
3024 					mask |= bit;
3025 			}
3026 		}
3027 		if (mask != 0) {
3028 			/* Idle/offline CPUs, report (releases rnp->lock. */
3029 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3030 		} else {
3031 			/* Nothing to do here, so just drop the lock. */
3032 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3033 		}
3034 	}
3035 }
3036 
3037 /*
3038  * Force quiescent states on reluctant CPUs, and also detect which
3039  * CPUs are in dyntick-idle mode.
3040  */
3041 static void force_quiescent_state(struct rcu_state *rsp)
3042 {
3043 	unsigned long flags;
3044 	bool ret;
3045 	struct rcu_node *rnp;
3046 	struct rcu_node *rnp_old = NULL;
3047 
3048 	/* Funnel through hierarchy to reduce memory contention. */
3049 	rnp = __this_cpu_read(rsp->rda->mynode);
3050 	for (; rnp != NULL; rnp = rnp->parent) {
3051 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3052 		      !raw_spin_trylock(&rnp->fqslock);
3053 		if (rnp_old != NULL)
3054 			raw_spin_unlock(&rnp_old->fqslock);
3055 		if (ret) {
3056 			rsp->n_force_qs_lh++;
3057 			return;
3058 		}
3059 		rnp_old = rnp;
3060 	}
3061 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3062 
3063 	/* Reached the root of the rcu_node tree, acquire lock. */
3064 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3065 	raw_spin_unlock(&rnp_old->fqslock);
3066 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3067 		rsp->n_force_qs_lh++;
3068 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3069 		return;  /* Someone beat us to it. */
3070 	}
3071 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
3072 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3073 	rcu_gp_kthread_wake(rsp);
3074 }
3075 
3076 /*
3077  * This does the RCU core processing work for the specified rcu_state
3078  * and rcu_data structures.  This may be called only from the CPU to
3079  * whom the rdp belongs.
3080  */
3081 static void
3082 __rcu_process_callbacks(struct rcu_state *rsp)
3083 {
3084 	unsigned long flags;
3085 	bool needwake;
3086 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3087 
3088 	WARN_ON_ONCE(rdp->beenonline == 0);
3089 
3090 	/* Update RCU state based on any recent quiescent states. */
3091 	rcu_check_quiescent_state(rsp, rdp);
3092 
3093 	/* Does this CPU require a not-yet-started grace period? */
3094 	local_irq_save(flags);
3095 	if (cpu_needs_another_gp(rsp, rdp)) {
3096 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3097 		needwake = rcu_start_gp(rsp);
3098 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3099 		if (needwake)
3100 			rcu_gp_kthread_wake(rsp);
3101 	} else {
3102 		local_irq_restore(flags);
3103 	}
3104 
3105 	/* If there are callbacks ready, invoke them. */
3106 	if (cpu_has_callbacks_ready_to_invoke(rdp))
3107 		invoke_rcu_callbacks(rsp, rdp);
3108 
3109 	/* Do any needed deferred wakeups of rcuo kthreads. */
3110 	do_nocb_deferred_wakeup(rdp);
3111 }
3112 
3113 /*
3114  * Do RCU core processing for the current CPU.
3115  */
3116 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3117 {
3118 	struct rcu_state *rsp;
3119 
3120 	if (cpu_is_offline(smp_processor_id()))
3121 		return;
3122 	trace_rcu_utilization(TPS("Start RCU core"));
3123 	for_each_rcu_flavor(rsp)
3124 		__rcu_process_callbacks(rsp);
3125 	trace_rcu_utilization(TPS("End RCU core"));
3126 }
3127 
3128 /*
3129  * Schedule RCU callback invocation.  If the specified type of RCU
3130  * does not support RCU priority boosting, just do a direct call,
3131  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3132  * are running on the current CPU with softirqs disabled, the
3133  * rcu_cpu_kthread_task cannot disappear out from under us.
3134  */
3135 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3136 {
3137 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3138 		return;
3139 	if (likely(!rsp->boost)) {
3140 		rcu_do_batch(rsp, rdp);
3141 		return;
3142 	}
3143 	invoke_rcu_callbacks_kthread();
3144 }
3145 
3146 static void invoke_rcu_core(void)
3147 {
3148 	if (cpu_online(smp_processor_id()))
3149 		raise_softirq(RCU_SOFTIRQ);
3150 }
3151 
3152 /*
3153  * Handle any core-RCU processing required by a call_rcu() invocation.
3154  */
3155 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3156 			    struct rcu_head *head, unsigned long flags)
3157 {
3158 	bool needwake;
3159 
3160 	/*
3161 	 * If called from an extended quiescent state, invoke the RCU
3162 	 * core in order to force a re-evaluation of RCU's idleness.
3163 	 */
3164 	if (!rcu_is_watching())
3165 		invoke_rcu_core();
3166 
3167 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3168 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3169 		return;
3170 
3171 	/*
3172 	 * Force the grace period if too many callbacks or too long waiting.
3173 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3174 	 * if some other CPU has recently done so.  Also, don't bother
3175 	 * invoking force_quiescent_state() if the newly enqueued callback
3176 	 * is the only one waiting for a grace period to complete.
3177 	 */
3178 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3179 
3180 		/* Are we ignoring a completed grace period? */
3181 		note_gp_changes(rsp, rdp);
3182 
3183 		/* Start a new grace period if one not already started. */
3184 		if (!rcu_gp_in_progress(rsp)) {
3185 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3186 
3187 			raw_spin_lock_rcu_node(rnp_root);
3188 			needwake = rcu_start_gp(rsp);
3189 			raw_spin_unlock_rcu_node(rnp_root);
3190 			if (needwake)
3191 				rcu_gp_kthread_wake(rsp);
3192 		} else {
3193 			/* Give the grace period a kick. */
3194 			rdp->blimit = LONG_MAX;
3195 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3196 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3197 				force_quiescent_state(rsp);
3198 			rdp->n_force_qs_snap = rsp->n_force_qs;
3199 			rdp->qlen_last_fqs_check = rdp->qlen;
3200 		}
3201 	}
3202 }
3203 
3204 /*
3205  * RCU callback function to leak a callback.
3206  */
3207 static void rcu_leak_callback(struct rcu_head *rhp)
3208 {
3209 }
3210 
3211 /*
3212  * Helper function for call_rcu() and friends.  The cpu argument will
3213  * normally be -1, indicating "currently running CPU".  It may specify
3214  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3215  * is expected to specify a CPU.
3216  */
3217 static void
3218 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3219 	   struct rcu_state *rsp, int cpu, bool lazy)
3220 {
3221 	unsigned long flags;
3222 	struct rcu_data *rdp;
3223 
3224 	/* Misaligned rcu_head! */
3225 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3226 
3227 	if (debug_rcu_head_queue(head)) {
3228 		/* Probable double call_rcu(), so leak the callback. */
3229 		WRITE_ONCE(head->func, rcu_leak_callback);
3230 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3231 		return;
3232 	}
3233 	head->func = func;
3234 	head->next = NULL;
3235 	local_irq_save(flags);
3236 	rdp = this_cpu_ptr(rsp->rda);
3237 
3238 	/* Add the callback to our list. */
3239 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3240 		int offline;
3241 
3242 		if (cpu != -1)
3243 			rdp = per_cpu_ptr(rsp->rda, cpu);
3244 		if (likely(rdp->mynode)) {
3245 			/* Post-boot, so this should be for a no-CBs CPU. */
3246 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3247 			WARN_ON_ONCE(offline);
3248 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3249 			local_irq_restore(flags);
3250 			return;
3251 		}
3252 		/*
3253 		 * Very early boot, before rcu_init().  Initialize if needed
3254 		 * and then drop through to queue the callback.
3255 		 */
3256 		BUG_ON(cpu != -1);
3257 		WARN_ON_ONCE(!rcu_is_watching());
3258 		if (!likely(rdp->nxtlist))
3259 			init_default_callback_list(rdp);
3260 	}
3261 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3262 	if (lazy)
3263 		rdp->qlen_lazy++;
3264 	else
3265 		rcu_idle_count_callbacks_posted();
3266 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3267 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3268 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3269 
3270 	if (__is_kfree_rcu_offset((unsigned long)func))
3271 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3272 					 rdp->qlen_lazy, rdp->qlen);
3273 	else
3274 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3275 
3276 	/* Go handle any RCU core processing required. */
3277 	__call_rcu_core(rsp, rdp, head, flags);
3278 	local_irq_restore(flags);
3279 }
3280 
3281 /*
3282  * Queue an RCU-sched callback for invocation after a grace period.
3283  */
3284 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3285 {
3286 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3287 }
3288 EXPORT_SYMBOL_GPL(call_rcu_sched);
3289 
3290 /*
3291  * Queue an RCU callback for invocation after a quicker grace period.
3292  */
3293 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3294 {
3295 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3296 }
3297 EXPORT_SYMBOL_GPL(call_rcu_bh);
3298 
3299 /*
3300  * Queue an RCU callback for lazy invocation after a grace period.
3301  * This will likely be later named something like "call_rcu_lazy()",
3302  * but this change will require some way of tagging the lazy RCU
3303  * callbacks in the list of pending callbacks. Until then, this
3304  * function may only be called from __kfree_rcu().
3305  */
3306 void kfree_call_rcu(struct rcu_head *head,
3307 		    rcu_callback_t func)
3308 {
3309 	__call_rcu(head, func, rcu_state_p, -1, 1);
3310 }
3311 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3312 
3313 /*
3314  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3315  * any blocking grace-period wait automatically implies a grace period
3316  * if there is only one CPU online at any point time during execution
3317  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3318  * occasionally incorrectly indicate that there are multiple CPUs online
3319  * when there was in fact only one the whole time, as this just adds
3320  * some overhead: RCU still operates correctly.
3321  */
3322 static inline int rcu_blocking_is_gp(void)
3323 {
3324 	int ret;
3325 
3326 	might_sleep();  /* Check for RCU read-side critical section. */
3327 	preempt_disable();
3328 	ret = num_online_cpus() <= 1;
3329 	preempt_enable();
3330 	return ret;
3331 }
3332 
3333 /**
3334  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3335  *
3336  * Control will return to the caller some time after a full rcu-sched
3337  * grace period has elapsed, in other words after all currently executing
3338  * rcu-sched read-side critical sections have completed.   These read-side
3339  * critical sections are delimited by rcu_read_lock_sched() and
3340  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3341  * local_irq_disable(), and so on may be used in place of
3342  * rcu_read_lock_sched().
3343  *
3344  * This means that all preempt_disable code sequences, including NMI and
3345  * non-threaded hardware-interrupt handlers, in progress on entry will
3346  * have completed before this primitive returns.  However, this does not
3347  * guarantee that softirq handlers will have completed, since in some
3348  * kernels, these handlers can run in process context, and can block.
3349  *
3350  * Note that this guarantee implies further memory-ordering guarantees.
3351  * On systems with more than one CPU, when synchronize_sched() returns,
3352  * each CPU is guaranteed to have executed a full memory barrier since the
3353  * end of its last RCU-sched read-side critical section whose beginning
3354  * preceded the call to synchronize_sched().  In addition, each CPU having
3355  * an RCU read-side critical section that extends beyond the return from
3356  * synchronize_sched() is guaranteed to have executed a full memory barrier
3357  * after the beginning of synchronize_sched() and before the beginning of
3358  * that RCU read-side critical section.  Note that these guarantees include
3359  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3360  * that are executing in the kernel.
3361  *
3362  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3363  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3364  * to have executed a full memory barrier during the execution of
3365  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3366  * again only if the system has more than one CPU).
3367  *
3368  * This primitive provides the guarantees made by the (now removed)
3369  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3370  * guarantees that rcu_read_lock() sections will have completed.
3371  * In "classic RCU", these two guarantees happen to be one and
3372  * the same, but can differ in realtime RCU implementations.
3373  */
3374 void synchronize_sched(void)
3375 {
3376 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3377 			 lock_is_held(&rcu_lock_map) ||
3378 			 lock_is_held(&rcu_sched_lock_map),
3379 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3380 	if (rcu_blocking_is_gp())
3381 		return;
3382 	if (rcu_gp_is_expedited())
3383 		synchronize_sched_expedited();
3384 	else
3385 		wait_rcu_gp(call_rcu_sched);
3386 }
3387 EXPORT_SYMBOL_GPL(synchronize_sched);
3388 
3389 /**
3390  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3391  *
3392  * Control will return to the caller some time after a full rcu_bh grace
3393  * period has elapsed, in other words after all currently executing rcu_bh
3394  * read-side critical sections have completed.  RCU read-side critical
3395  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3396  * and may be nested.
3397  *
3398  * See the description of synchronize_sched() for more detailed information
3399  * on memory ordering guarantees.
3400  */
3401 void synchronize_rcu_bh(void)
3402 {
3403 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3404 			 lock_is_held(&rcu_lock_map) ||
3405 			 lock_is_held(&rcu_sched_lock_map),
3406 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3407 	if (rcu_blocking_is_gp())
3408 		return;
3409 	if (rcu_gp_is_expedited())
3410 		synchronize_rcu_bh_expedited();
3411 	else
3412 		wait_rcu_gp(call_rcu_bh);
3413 }
3414 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3415 
3416 /**
3417  * get_state_synchronize_rcu - Snapshot current RCU state
3418  *
3419  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3420  * to determine whether or not a full grace period has elapsed in the
3421  * meantime.
3422  */
3423 unsigned long get_state_synchronize_rcu(void)
3424 {
3425 	/*
3426 	 * Any prior manipulation of RCU-protected data must happen
3427 	 * before the load from ->gpnum.
3428 	 */
3429 	smp_mb();  /* ^^^ */
3430 
3431 	/*
3432 	 * Make sure this load happens before the purportedly
3433 	 * time-consuming work between get_state_synchronize_rcu()
3434 	 * and cond_synchronize_rcu().
3435 	 */
3436 	return smp_load_acquire(&rcu_state_p->gpnum);
3437 }
3438 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3439 
3440 /**
3441  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3442  *
3443  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3444  *
3445  * If a full RCU grace period has elapsed since the earlier call to
3446  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3447  * synchronize_rcu() to wait for a full grace period.
3448  *
3449  * Yes, this function does not take counter wrap into account.  But
3450  * counter wrap is harmless.  If the counter wraps, we have waited for
3451  * more than 2 billion grace periods (and way more on a 64-bit system!),
3452  * so waiting for one additional grace period should be just fine.
3453  */
3454 void cond_synchronize_rcu(unsigned long oldstate)
3455 {
3456 	unsigned long newstate;
3457 
3458 	/*
3459 	 * Ensure that this load happens before any RCU-destructive
3460 	 * actions the caller might carry out after we return.
3461 	 */
3462 	newstate = smp_load_acquire(&rcu_state_p->completed);
3463 	if (ULONG_CMP_GE(oldstate, newstate))
3464 		synchronize_rcu();
3465 }
3466 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3467 
3468 /**
3469  * get_state_synchronize_sched - Snapshot current RCU-sched state
3470  *
3471  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3472  * to determine whether or not a full grace period has elapsed in the
3473  * meantime.
3474  */
3475 unsigned long get_state_synchronize_sched(void)
3476 {
3477 	/*
3478 	 * Any prior manipulation of RCU-protected data must happen
3479 	 * before the load from ->gpnum.
3480 	 */
3481 	smp_mb();  /* ^^^ */
3482 
3483 	/*
3484 	 * Make sure this load happens before the purportedly
3485 	 * time-consuming work between get_state_synchronize_sched()
3486 	 * and cond_synchronize_sched().
3487 	 */
3488 	return smp_load_acquire(&rcu_sched_state.gpnum);
3489 }
3490 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3491 
3492 /**
3493  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3494  *
3495  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3496  *
3497  * If a full RCU-sched grace period has elapsed since the earlier call to
3498  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3499  * synchronize_sched() to wait for a full grace period.
3500  *
3501  * Yes, this function does not take counter wrap into account.  But
3502  * counter wrap is harmless.  If the counter wraps, we have waited for
3503  * more than 2 billion grace periods (and way more on a 64-bit system!),
3504  * so waiting for one additional grace period should be just fine.
3505  */
3506 void cond_synchronize_sched(unsigned long oldstate)
3507 {
3508 	unsigned long newstate;
3509 
3510 	/*
3511 	 * Ensure that this load happens before any RCU-destructive
3512 	 * actions the caller might carry out after we return.
3513 	 */
3514 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3515 	if (ULONG_CMP_GE(oldstate, newstate))
3516 		synchronize_sched();
3517 }
3518 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3519 
3520 /* Adjust sequence number for start of update-side operation. */
3521 static void rcu_seq_start(unsigned long *sp)
3522 {
3523 	WRITE_ONCE(*sp, *sp + 1);
3524 	smp_mb(); /* Ensure update-side operation after counter increment. */
3525 	WARN_ON_ONCE(!(*sp & 0x1));
3526 }
3527 
3528 /* Adjust sequence number for end of update-side operation. */
3529 static void rcu_seq_end(unsigned long *sp)
3530 {
3531 	smp_mb(); /* Ensure update-side operation before counter increment. */
3532 	WRITE_ONCE(*sp, *sp + 1);
3533 	WARN_ON_ONCE(*sp & 0x1);
3534 }
3535 
3536 /* Take a snapshot of the update side's sequence number. */
3537 static unsigned long rcu_seq_snap(unsigned long *sp)
3538 {
3539 	unsigned long s;
3540 
3541 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3542 	smp_mb(); /* Above access must not bleed into critical section. */
3543 	return s;
3544 }
3545 
3546 /*
3547  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3548  * full update-side operation has occurred.
3549  */
3550 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3551 {
3552 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3553 }
3554 
3555 /*
3556  * Check to see if there is any immediate RCU-related work to be done
3557  * by the current CPU, for the specified type of RCU, returning 1 if so.
3558  * The checks are in order of increasing expense: checks that can be
3559  * carried out against CPU-local state are performed first.  However,
3560  * we must check for CPU stalls first, else we might not get a chance.
3561  */
3562 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3563 {
3564 	struct rcu_node *rnp = rdp->mynode;
3565 
3566 	rdp->n_rcu_pending++;
3567 
3568 	/* Check for CPU stalls, if enabled. */
3569 	check_cpu_stall(rsp, rdp);
3570 
3571 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3572 	if (rcu_nohz_full_cpu(rsp))
3573 		return 0;
3574 
3575 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3576 	if (rcu_scheduler_fully_active &&
3577 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3578 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3579 		rdp->n_rp_core_needs_qs++;
3580 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3581 		rdp->n_rp_report_qs++;
3582 		return 1;
3583 	}
3584 
3585 	/* Does this CPU have callbacks ready to invoke? */
3586 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3587 		rdp->n_rp_cb_ready++;
3588 		return 1;
3589 	}
3590 
3591 	/* Has RCU gone idle with this CPU needing another grace period? */
3592 	if (cpu_needs_another_gp(rsp, rdp)) {
3593 		rdp->n_rp_cpu_needs_gp++;
3594 		return 1;
3595 	}
3596 
3597 	/* Has another RCU grace period completed?  */
3598 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3599 		rdp->n_rp_gp_completed++;
3600 		return 1;
3601 	}
3602 
3603 	/* Has a new RCU grace period started? */
3604 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3605 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3606 		rdp->n_rp_gp_started++;
3607 		return 1;
3608 	}
3609 
3610 	/* Does this CPU need a deferred NOCB wakeup? */
3611 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3612 		rdp->n_rp_nocb_defer_wakeup++;
3613 		return 1;
3614 	}
3615 
3616 	/* nothing to do */
3617 	rdp->n_rp_need_nothing++;
3618 	return 0;
3619 }
3620 
3621 /*
3622  * Check to see if there is any immediate RCU-related work to be done
3623  * by the current CPU, returning 1 if so.  This function is part of the
3624  * RCU implementation; it is -not- an exported member of the RCU API.
3625  */
3626 static int rcu_pending(void)
3627 {
3628 	struct rcu_state *rsp;
3629 
3630 	for_each_rcu_flavor(rsp)
3631 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3632 			return 1;
3633 	return 0;
3634 }
3635 
3636 /*
3637  * Return true if the specified CPU has any callback.  If all_lazy is
3638  * non-NULL, store an indication of whether all callbacks are lazy.
3639  * (If there are no callbacks, all of them are deemed to be lazy.)
3640  */
3641 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3642 {
3643 	bool al = true;
3644 	bool hc = false;
3645 	struct rcu_data *rdp;
3646 	struct rcu_state *rsp;
3647 
3648 	for_each_rcu_flavor(rsp) {
3649 		rdp = this_cpu_ptr(rsp->rda);
3650 		if (!rdp->nxtlist)
3651 			continue;
3652 		hc = true;
3653 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3654 			al = false;
3655 			break;
3656 		}
3657 	}
3658 	if (all_lazy)
3659 		*all_lazy = al;
3660 	return hc;
3661 }
3662 
3663 /*
3664  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3665  * the compiler is expected to optimize this away.
3666  */
3667 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3668 			       int cpu, unsigned long done)
3669 {
3670 	trace_rcu_barrier(rsp->name, s, cpu,
3671 			  atomic_read(&rsp->barrier_cpu_count), done);
3672 }
3673 
3674 /*
3675  * RCU callback function for _rcu_barrier().  If we are last, wake
3676  * up the task executing _rcu_barrier().
3677  */
3678 static void rcu_barrier_callback(struct rcu_head *rhp)
3679 {
3680 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3681 	struct rcu_state *rsp = rdp->rsp;
3682 
3683 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3684 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3685 		complete(&rsp->barrier_completion);
3686 	} else {
3687 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3688 	}
3689 }
3690 
3691 /*
3692  * Called with preemption disabled, and from cross-cpu IRQ context.
3693  */
3694 static void rcu_barrier_func(void *type)
3695 {
3696 	struct rcu_state *rsp = type;
3697 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3698 
3699 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3700 	atomic_inc(&rsp->barrier_cpu_count);
3701 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3702 }
3703 
3704 /*
3705  * Orchestrate the specified type of RCU barrier, waiting for all
3706  * RCU callbacks of the specified type to complete.
3707  */
3708 static void _rcu_barrier(struct rcu_state *rsp)
3709 {
3710 	int cpu;
3711 	struct rcu_data *rdp;
3712 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3713 
3714 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3715 
3716 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3717 	mutex_lock(&rsp->barrier_mutex);
3718 
3719 	/* Did someone else do our work for us? */
3720 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3721 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3722 		smp_mb(); /* caller's subsequent code after above check. */
3723 		mutex_unlock(&rsp->barrier_mutex);
3724 		return;
3725 	}
3726 
3727 	/* Mark the start of the barrier operation. */
3728 	rcu_seq_start(&rsp->barrier_sequence);
3729 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3730 
3731 	/*
3732 	 * Initialize the count to one rather than to zero in order to
3733 	 * avoid a too-soon return to zero in case of a short grace period
3734 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3735 	 * to ensure that no offline CPU has callbacks queued.
3736 	 */
3737 	init_completion(&rsp->barrier_completion);
3738 	atomic_set(&rsp->barrier_cpu_count, 1);
3739 	get_online_cpus();
3740 
3741 	/*
3742 	 * Force each CPU with callbacks to register a new callback.
3743 	 * When that callback is invoked, we will know that all of the
3744 	 * corresponding CPU's preceding callbacks have been invoked.
3745 	 */
3746 	for_each_possible_cpu(cpu) {
3747 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3748 			continue;
3749 		rdp = per_cpu_ptr(rsp->rda, cpu);
3750 		if (rcu_is_nocb_cpu(cpu)) {
3751 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3752 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3753 						   rsp->barrier_sequence);
3754 			} else {
3755 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3756 						   rsp->barrier_sequence);
3757 				smp_mb__before_atomic();
3758 				atomic_inc(&rsp->barrier_cpu_count);
3759 				__call_rcu(&rdp->barrier_head,
3760 					   rcu_barrier_callback, rsp, cpu, 0);
3761 			}
3762 		} else if (READ_ONCE(rdp->qlen)) {
3763 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3764 					   rsp->barrier_sequence);
3765 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3766 		} else {
3767 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3768 					   rsp->barrier_sequence);
3769 		}
3770 	}
3771 	put_online_cpus();
3772 
3773 	/*
3774 	 * Now that we have an rcu_barrier_callback() callback on each
3775 	 * CPU, and thus each counted, remove the initial count.
3776 	 */
3777 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3778 		complete(&rsp->barrier_completion);
3779 
3780 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3781 	wait_for_completion(&rsp->barrier_completion);
3782 
3783 	/* Mark the end of the barrier operation. */
3784 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3785 	rcu_seq_end(&rsp->barrier_sequence);
3786 
3787 	/* Other rcu_barrier() invocations can now safely proceed. */
3788 	mutex_unlock(&rsp->barrier_mutex);
3789 }
3790 
3791 /**
3792  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3793  */
3794 void rcu_barrier_bh(void)
3795 {
3796 	_rcu_barrier(&rcu_bh_state);
3797 }
3798 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3799 
3800 /**
3801  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3802  */
3803 void rcu_barrier_sched(void)
3804 {
3805 	_rcu_barrier(&rcu_sched_state);
3806 }
3807 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3808 
3809 /*
3810  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3811  * first CPU in a given leaf rcu_node structure coming online.  The caller
3812  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3813  * disabled.
3814  */
3815 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3816 {
3817 	long mask;
3818 	struct rcu_node *rnp = rnp_leaf;
3819 
3820 	for (;;) {
3821 		mask = rnp->grpmask;
3822 		rnp = rnp->parent;
3823 		if (rnp == NULL)
3824 			return;
3825 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3826 		rnp->qsmaskinit |= mask;
3827 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3828 	}
3829 }
3830 
3831 /*
3832  * Do boot-time initialization of a CPU's per-CPU RCU data.
3833  */
3834 static void __init
3835 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3836 {
3837 	unsigned long flags;
3838 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3839 	struct rcu_node *rnp = rcu_get_root(rsp);
3840 
3841 	/* Set up local state, ensuring consistent view of global state. */
3842 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3843 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3844 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3845 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3846 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3847 	rdp->cpu = cpu;
3848 	rdp->rsp = rsp;
3849 	rcu_boot_init_nocb_percpu_data(rdp);
3850 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3851 }
3852 
3853 /*
3854  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3855  * offline event can be happening at a given time.  Note also that we
3856  * can accept some slop in the rsp->completed access due to the fact
3857  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3858  */
3859 static void
3860 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3861 {
3862 	unsigned long flags;
3863 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3864 	struct rcu_node *rnp = rcu_get_root(rsp);
3865 
3866 	/* Set up local state, ensuring consistent view of global state. */
3867 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3868 	rdp->qlen_last_fqs_check = 0;
3869 	rdp->n_force_qs_snap = rsp->n_force_qs;
3870 	rdp->blimit = blimit;
3871 	if (!rdp->nxtlist)
3872 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3873 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3874 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3875 	rcu_dynticks_eqs_online();
3876 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3877 
3878 	/*
3879 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3880 	 * propagation up the rcu_node tree will happen at the beginning
3881 	 * of the next grace period.
3882 	 */
3883 	rnp = rdp->mynode;
3884 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3885 	if (!rdp->beenonline)
3886 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3887 	rdp->beenonline = true;	 /* We have now been online. */
3888 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3889 	rdp->completed = rnp->completed;
3890 	rdp->cpu_no_qs.b.norm = true;
3891 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3892 	rdp->core_needs_qs = false;
3893 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3894 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3895 }
3896 
3897 int rcutree_prepare_cpu(unsigned int cpu)
3898 {
3899 	struct rcu_state *rsp;
3900 
3901 	for_each_rcu_flavor(rsp)
3902 		rcu_init_percpu_data(cpu, rsp);
3903 
3904 	rcu_prepare_kthreads(cpu);
3905 	rcu_spawn_all_nocb_kthreads(cpu);
3906 
3907 	return 0;
3908 }
3909 
3910 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3911 {
3912 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3913 
3914 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3915 }
3916 
3917 int rcutree_online_cpu(unsigned int cpu)
3918 {
3919 	sync_sched_exp_online_cleanup(cpu);
3920 	rcutree_affinity_setting(cpu, -1);
3921 	return 0;
3922 }
3923 
3924 int rcutree_offline_cpu(unsigned int cpu)
3925 {
3926 	rcutree_affinity_setting(cpu, cpu);
3927 	return 0;
3928 }
3929 
3930 
3931 int rcutree_dying_cpu(unsigned int cpu)
3932 {
3933 	struct rcu_state *rsp;
3934 
3935 	for_each_rcu_flavor(rsp)
3936 		rcu_cleanup_dying_cpu(rsp);
3937 	return 0;
3938 }
3939 
3940 int rcutree_dead_cpu(unsigned int cpu)
3941 {
3942 	struct rcu_state *rsp;
3943 
3944 	for_each_rcu_flavor(rsp) {
3945 		rcu_cleanup_dead_cpu(cpu, rsp);
3946 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3947 	}
3948 	return 0;
3949 }
3950 
3951 /*
3952  * Mark the specified CPU as being online so that subsequent grace periods
3953  * (both expedited and normal) will wait on it.  Note that this means that
3954  * incoming CPUs are not allowed to use RCU read-side critical sections
3955  * until this function is called.  Failing to observe this restriction
3956  * will result in lockdep splats.
3957  */
3958 void rcu_cpu_starting(unsigned int cpu)
3959 {
3960 	unsigned long flags;
3961 	unsigned long mask;
3962 	struct rcu_data *rdp;
3963 	struct rcu_node *rnp;
3964 	struct rcu_state *rsp;
3965 
3966 	for_each_rcu_flavor(rsp) {
3967 		rdp = per_cpu_ptr(rsp->rda, cpu);
3968 		rnp = rdp->mynode;
3969 		mask = rdp->grpmask;
3970 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971 		rnp->qsmaskinitnext |= mask;
3972 		rnp->expmaskinitnext |= mask;
3973 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3974 	}
3975 }
3976 
3977 #ifdef CONFIG_HOTPLUG_CPU
3978 /*
3979  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3980  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3981  * bit masks.
3982  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3983  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3984  * bit masks.
3985  */
3986 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3987 {
3988 	unsigned long flags;
3989 	unsigned long mask;
3990 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3991 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3992 
3993 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3994 	mask = rdp->grpmask;
3995 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3996 	rnp->qsmaskinitnext &= ~mask;
3997 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3998 }
3999 
4000 void rcu_report_dead(unsigned int cpu)
4001 {
4002 	struct rcu_state *rsp;
4003 
4004 	/* QS for any half-done expedited RCU-sched GP. */
4005 	preempt_disable();
4006 	rcu_report_exp_rdp(&rcu_sched_state,
4007 			   this_cpu_ptr(rcu_sched_state.rda), true);
4008 	preempt_enable();
4009 	for_each_rcu_flavor(rsp)
4010 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
4011 }
4012 #endif
4013 
4014 static int rcu_pm_notify(struct notifier_block *self,
4015 			 unsigned long action, void *hcpu)
4016 {
4017 	switch (action) {
4018 	case PM_HIBERNATION_PREPARE:
4019 	case PM_SUSPEND_PREPARE:
4020 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4021 			rcu_expedite_gp();
4022 		break;
4023 	case PM_POST_HIBERNATION:
4024 	case PM_POST_SUSPEND:
4025 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4026 			rcu_unexpedite_gp();
4027 		break;
4028 	default:
4029 		break;
4030 	}
4031 	return NOTIFY_OK;
4032 }
4033 
4034 /*
4035  * Spawn the kthreads that handle each RCU flavor's grace periods.
4036  */
4037 static int __init rcu_spawn_gp_kthread(void)
4038 {
4039 	unsigned long flags;
4040 	int kthread_prio_in = kthread_prio;
4041 	struct rcu_node *rnp;
4042 	struct rcu_state *rsp;
4043 	struct sched_param sp;
4044 	struct task_struct *t;
4045 
4046 	/* Force priority into range. */
4047 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4048 		kthread_prio = 1;
4049 	else if (kthread_prio < 0)
4050 		kthread_prio = 0;
4051 	else if (kthread_prio > 99)
4052 		kthread_prio = 99;
4053 	if (kthread_prio != kthread_prio_in)
4054 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4055 			 kthread_prio, kthread_prio_in);
4056 
4057 	rcu_scheduler_fully_active = 1;
4058 	for_each_rcu_flavor(rsp) {
4059 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4060 		BUG_ON(IS_ERR(t));
4061 		rnp = rcu_get_root(rsp);
4062 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4063 		rsp->gp_kthread = t;
4064 		if (kthread_prio) {
4065 			sp.sched_priority = kthread_prio;
4066 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4067 		}
4068 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4069 		wake_up_process(t);
4070 	}
4071 	rcu_spawn_nocb_kthreads();
4072 	rcu_spawn_boost_kthreads();
4073 	return 0;
4074 }
4075 early_initcall(rcu_spawn_gp_kthread);
4076 
4077 /*
4078  * This function is invoked towards the end of the scheduler's
4079  * initialization process.  Before this is called, the idle task might
4080  * contain synchronous grace-period primitives (during which time, this idle
4081  * task is booting the system, and such primitives are no-ops).  After this
4082  * function is called, any synchronous grace-period primitives are run as
4083  * expedited, with the requesting task driving the grace period forward.
4084  * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4085  * runtime RCU functionality.
4086  */
4087 void rcu_scheduler_starting(void)
4088 {
4089 	WARN_ON(num_online_cpus() != 1);
4090 	WARN_ON(nr_context_switches() > 0);
4091 	rcu_test_sync_prims();
4092 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4093 	rcu_test_sync_prims();
4094 }
4095 
4096 /*
4097  * Compute the per-level fanout, either using the exact fanout specified
4098  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4099  */
4100 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4101 {
4102 	int i;
4103 
4104 	if (rcu_fanout_exact) {
4105 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4106 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4107 			levelspread[i] = RCU_FANOUT;
4108 	} else {
4109 		int ccur;
4110 		int cprv;
4111 
4112 		cprv = nr_cpu_ids;
4113 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4114 			ccur = levelcnt[i];
4115 			levelspread[i] = (cprv + ccur - 1) / ccur;
4116 			cprv = ccur;
4117 		}
4118 	}
4119 }
4120 
4121 /*
4122  * Helper function for rcu_init() that initializes one rcu_state structure.
4123  */
4124 static void __init rcu_init_one(struct rcu_state *rsp)
4125 {
4126 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4127 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4128 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4129 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4130 	static u8 fl_mask = 0x1;
4131 
4132 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4133 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4134 	int cpustride = 1;
4135 	int i;
4136 	int j;
4137 	struct rcu_node *rnp;
4138 
4139 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4140 
4141 	/* Silence gcc 4.8 false positive about array index out of range. */
4142 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4143 		panic("rcu_init_one: rcu_num_lvls out of range");
4144 
4145 	/* Initialize the level-tracking arrays. */
4146 
4147 	for (i = 0; i < rcu_num_lvls; i++)
4148 		levelcnt[i] = num_rcu_lvl[i];
4149 	for (i = 1; i < rcu_num_lvls; i++)
4150 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4151 	rcu_init_levelspread(levelspread, levelcnt);
4152 	rsp->flavor_mask = fl_mask;
4153 	fl_mask <<= 1;
4154 
4155 	/* Initialize the elements themselves, starting from the leaves. */
4156 
4157 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4158 		cpustride *= levelspread[i];
4159 		rnp = rsp->level[i];
4160 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4161 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4162 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4163 						   &rcu_node_class[i], buf[i]);
4164 			raw_spin_lock_init(&rnp->fqslock);
4165 			lockdep_set_class_and_name(&rnp->fqslock,
4166 						   &rcu_fqs_class[i], fqs[i]);
4167 			rnp->gpnum = rsp->gpnum;
4168 			rnp->completed = rsp->completed;
4169 			rnp->qsmask = 0;
4170 			rnp->qsmaskinit = 0;
4171 			rnp->grplo = j * cpustride;
4172 			rnp->grphi = (j + 1) * cpustride - 1;
4173 			if (rnp->grphi >= nr_cpu_ids)
4174 				rnp->grphi = nr_cpu_ids - 1;
4175 			if (i == 0) {
4176 				rnp->grpnum = 0;
4177 				rnp->grpmask = 0;
4178 				rnp->parent = NULL;
4179 			} else {
4180 				rnp->grpnum = j % levelspread[i - 1];
4181 				rnp->grpmask = 1UL << rnp->grpnum;
4182 				rnp->parent = rsp->level[i - 1] +
4183 					      j / levelspread[i - 1];
4184 			}
4185 			rnp->level = i;
4186 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4187 			rcu_init_one_nocb(rnp);
4188 			init_waitqueue_head(&rnp->exp_wq[0]);
4189 			init_waitqueue_head(&rnp->exp_wq[1]);
4190 			init_waitqueue_head(&rnp->exp_wq[2]);
4191 			init_waitqueue_head(&rnp->exp_wq[3]);
4192 			spin_lock_init(&rnp->exp_lock);
4193 		}
4194 	}
4195 
4196 	init_swait_queue_head(&rsp->gp_wq);
4197 	init_swait_queue_head(&rsp->expedited_wq);
4198 	rnp = rsp->level[rcu_num_lvls - 1];
4199 	for_each_possible_cpu(i) {
4200 		while (i > rnp->grphi)
4201 			rnp++;
4202 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4203 		rcu_boot_init_percpu_data(i, rsp);
4204 	}
4205 	list_add(&rsp->flavors, &rcu_struct_flavors);
4206 }
4207 
4208 /*
4209  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4210  * replace the definitions in tree.h because those are needed to size
4211  * the ->node array in the rcu_state structure.
4212  */
4213 static void __init rcu_init_geometry(void)
4214 {
4215 	ulong d;
4216 	int i;
4217 	int rcu_capacity[RCU_NUM_LVLS];
4218 
4219 	/*
4220 	 * Initialize any unspecified boot parameters.
4221 	 * The default values of jiffies_till_first_fqs and
4222 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4223 	 * value, which is a function of HZ, then adding one for each
4224 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4225 	 */
4226 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4227 	if (jiffies_till_first_fqs == ULONG_MAX)
4228 		jiffies_till_first_fqs = d;
4229 	if (jiffies_till_next_fqs == ULONG_MAX)
4230 		jiffies_till_next_fqs = d;
4231 
4232 	/* If the compile-time values are accurate, just leave. */
4233 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4234 	    nr_cpu_ids == NR_CPUS)
4235 		return;
4236 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4237 		rcu_fanout_leaf, nr_cpu_ids);
4238 
4239 	/*
4240 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4241 	 * and cannot exceed the number of bits in the rcu_node masks.
4242 	 * Complain and fall back to the compile-time values if this
4243 	 * limit is exceeded.
4244 	 */
4245 	if (rcu_fanout_leaf < 2 ||
4246 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4247 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4248 		WARN_ON(1);
4249 		return;
4250 	}
4251 
4252 	/*
4253 	 * Compute number of nodes that can be handled an rcu_node tree
4254 	 * with the given number of levels.
4255 	 */
4256 	rcu_capacity[0] = rcu_fanout_leaf;
4257 	for (i = 1; i < RCU_NUM_LVLS; i++)
4258 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4259 
4260 	/*
4261 	 * The tree must be able to accommodate the configured number of CPUs.
4262 	 * If this limit is exceeded, fall back to the compile-time values.
4263 	 */
4264 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4265 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4266 		WARN_ON(1);
4267 		return;
4268 	}
4269 
4270 	/* Calculate the number of levels in the tree. */
4271 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4272 	}
4273 	rcu_num_lvls = i + 1;
4274 
4275 	/* Calculate the number of rcu_nodes at each level of the tree. */
4276 	for (i = 0; i < rcu_num_lvls; i++) {
4277 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4278 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4279 	}
4280 
4281 	/* Calculate the total number of rcu_node structures. */
4282 	rcu_num_nodes = 0;
4283 	for (i = 0; i < rcu_num_lvls; i++)
4284 		rcu_num_nodes += num_rcu_lvl[i];
4285 }
4286 
4287 /*
4288  * Dump out the structure of the rcu_node combining tree associated
4289  * with the rcu_state structure referenced by rsp.
4290  */
4291 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4292 {
4293 	int level = 0;
4294 	struct rcu_node *rnp;
4295 
4296 	pr_info("rcu_node tree layout dump\n");
4297 	pr_info(" ");
4298 	rcu_for_each_node_breadth_first(rsp, rnp) {
4299 		if (rnp->level != level) {
4300 			pr_cont("\n");
4301 			pr_info(" ");
4302 			level = rnp->level;
4303 		}
4304 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4305 	}
4306 	pr_cont("\n");
4307 }
4308 
4309 void __init rcu_init(void)
4310 {
4311 	int cpu;
4312 
4313 	rcu_early_boot_tests();
4314 
4315 	rcu_bootup_announce();
4316 	rcu_init_geometry();
4317 	rcu_init_one(&rcu_bh_state);
4318 	rcu_init_one(&rcu_sched_state);
4319 	if (dump_tree)
4320 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4321 	__rcu_init_preempt();
4322 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4323 
4324 	/*
4325 	 * We don't need protection against CPU-hotplug here because
4326 	 * this is called early in boot, before either interrupts
4327 	 * or the scheduler are operational.
4328 	 */
4329 	pm_notifier(rcu_pm_notify, 0);
4330 	for_each_online_cpu(cpu) {
4331 		rcutree_prepare_cpu(cpu);
4332 		rcu_cpu_starting(cpu);
4333 	}
4334 }
4335 
4336 #include "tree_exp.h"
4337 #include "tree_plugin.h"
4338