xref: /linux/kernel/rcu/rcu.h (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  * Read-Copy Update definitions shared among RCU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2011
19  *
20  * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
21  */
22 
23 #ifndef __LINUX_RCU_H
24 #define __LINUX_RCU_H
25 
26 #include <trace/events/rcu.h>
27 #ifdef CONFIG_RCU_TRACE
28 #define RCU_TRACE(stmt) stmt
29 #else /* #ifdef CONFIG_RCU_TRACE */
30 #define RCU_TRACE(stmt)
31 #endif /* #else #ifdef CONFIG_RCU_TRACE */
32 
33 /* Offset to allow for unmatched rcu_irq_{enter,exit}(). */
34 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
35 
36 
37 /*
38  * Grace-period counter management.
39  */
40 
41 #define RCU_SEQ_CTR_SHIFT	2
42 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
43 
44 /*
45  * Return the counter portion of a sequence number previously returned
46  * by rcu_seq_snap() or rcu_seq_current().
47  */
48 static inline unsigned long rcu_seq_ctr(unsigned long s)
49 {
50 	return s >> RCU_SEQ_CTR_SHIFT;
51 }
52 
53 /*
54  * Return the state portion of a sequence number previously returned
55  * by rcu_seq_snap() or rcu_seq_current().
56  */
57 static inline int rcu_seq_state(unsigned long s)
58 {
59 	return s & RCU_SEQ_STATE_MASK;
60 }
61 
62 /*
63  * Set the state portion of the pointed-to sequence number.
64  * The caller is responsible for preventing conflicting updates.
65  */
66 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
67 {
68 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
69 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
70 }
71 
72 /* Adjust sequence number for start of update-side operation. */
73 static inline void rcu_seq_start(unsigned long *sp)
74 {
75 	WRITE_ONCE(*sp, *sp + 1);
76 	smp_mb(); /* Ensure update-side operation after counter increment. */
77 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
78 }
79 
80 /* Compute the end-of-grace-period value for the specified sequence number. */
81 static inline unsigned long rcu_seq_endval(unsigned long *sp)
82 {
83 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
84 }
85 
86 /* Adjust sequence number for end of update-side operation. */
87 static inline void rcu_seq_end(unsigned long *sp)
88 {
89 	smp_mb(); /* Ensure update-side operation before counter increment. */
90 	WARN_ON_ONCE(!rcu_seq_state(*sp));
91 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
92 }
93 
94 /*
95  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
96  *
97  * This function returns the earliest value of the grace-period sequence number
98  * that will indicate that a full grace period has elapsed since the current
99  * time.  Once the grace-period sequence number has reached this value, it will
100  * be safe to invoke all callbacks that have been registered prior to the
101  * current time. This value is the current grace-period number plus two to the
102  * power of the number of low-order bits reserved for state, then rounded up to
103  * the next value in which the state bits are all zero.
104  */
105 static inline unsigned long rcu_seq_snap(unsigned long *sp)
106 {
107 	unsigned long s;
108 
109 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
110 	smp_mb(); /* Above access must not bleed into critical section. */
111 	return s;
112 }
113 
114 /* Return the current value the update side's sequence number, no ordering. */
115 static inline unsigned long rcu_seq_current(unsigned long *sp)
116 {
117 	return READ_ONCE(*sp);
118 }
119 
120 /*
121  * Given a snapshot from rcu_seq_snap(), determine whether or not the
122  * corresponding update-side operation has started.
123  */
124 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
125 {
126 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
127 }
128 
129 /*
130  * Given a snapshot from rcu_seq_snap(), determine whether or not a
131  * full update-side operation has occurred.
132  */
133 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
134 {
135 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
136 }
137 
138 /*
139  * Has a grace period completed since the time the old gp_seq was collected?
140  */
141 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
142 {
143 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
144 }
145 
146 /*
147  * Has a grace period started since the time the old gp_seq was collected?
148  */
149 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
150 {
151 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
152 			    new);
153 }
154 
155 /*
156  * Roughly how many full grace periods have elapsed between the collection
157  * of the two specified grace periods?
158  */
159 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
160 {
161 	unsigned long rnd_diff;
162 
163 	if (old == new)
164 		return 0;
165 	/*
166 	 * Compute the number of grace periods (still shifted up), plus
167 	 * one if either of new and old is not an exact grace period.
168 	 */
169 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
170 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
171 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
172 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
173 		return 1; /* Definitely no grace period has elapsed. */
174 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
175 }
176 
177 /*
178  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
179  * by call_rcu() and rcu callback execution, and are therefore not part of the
180  * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
181  */
182 
183 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
184 # define STATE_RCU_HEAD_READY	0
185 # define STATE_RCU_HEAD_QUEUED	1
186 
187 extern struct debug_obj_descr rcuhead_debug_descr;
188 
189 static inline int debug_rcu_head_queue(struct rcu_head *head)
190 {
191 	int r1;
192 
193 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
194 	debug_object_active_state(head, &rcuhead_debug_descr,
195 				  STATE_RCU_HEAD_READY,
196 				  STATE_RCU_HEAD_QUEUED);
197 	return r1;
198 }
199 
200 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
201 {
202 	debug_object_active_state(head, &rcuhead_debug_descr,
203 				  STATE_RCU_HEAD_QUEUED,
204 				  STATE_RCU_HEAD_READY);
205 	debug_object_deactivate(head, &rcuhead_debug_descr);
206 }
207 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
208 static inline int debug_rcu_head_queue(struct rcu_head *head)
209 {
210 	return 0;
211 }
212 
213 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
214 {
215 }
216 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
217 
218 void kfree(const void *);
219 
220 /*
221  * Reclaim the specified callback, either by invoking it (non-lazy case)
222  * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
223  */
224 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
225 {
226 	unsigned long offset = (unsigned long)head->func;
227 
228 	rcu_lock_acquire(&rcu_callback_map);
229 	if (__is_kfree_rcu_offset(offset)) {
230 		RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
231 		kfree((void *)head - offset);
232 		rcu_lock_release(&rcu_callback_map);
233 		return true;
234 	} else {
235 		RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
236 		head->func(head);
237 		rcu_lock_release(&rcu_callback_map);
238 		return false;
239 	}
240 }
241 
242 #ifdef CONFIG_RCU_STALL_COMMON
243 
244 extern int rcu_cpu_stall_suppress;
245 int rcu_jiffies_till_stall_check(void);
246 
247 #define rcu_ftrace_dump_stall_suppress() \
248 do { \
249 	if (!rcu_cpu_stall_suppress) \
250 		rcu_cpu_stall_suppress = 3; \
251 } while (0)
252 
253 #define rcu_ftrace_dump_stall_unsuppress() \
254 do { \
255 	if (rcu_cpu_stall_suppress == 3) \
256 		rcu_cpu_stall_suppress = 0; \
257 } while (0)
258 
259 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
260 #define rcu_ftrace_dump_stall_suppress()
261 #define rcu_ftrace_dump_stall_unsuppress()
262 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
263 
264 /*
265  * Strings used in tracepoints need to be exported via the
266  * tracing system such that tools like perf and trace-cmd can
267  * translate the string address pointers to actual text.
268  */
269 #define TPS(x)  tracepoint_string(x)
270 
271 /*
272  * Dump the ftrace buffer, but only one time per callsite per boot.
273  */
274 #define rcu_ftrace_dump(oops_dump_mode) \
275 do { \
276 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
277 	\
278 	if (!atomic_read(&___rfd_beenhere) && \
279 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
280 		tracing_off(); \
281 		rcu_ftrace_dump_stall_suppress(); \
282 		ftrace_dump(oops_dump_mode); \
283 		rcu_ftrace_dump_stall_unsuppress(); \
284 	} \
285 } while (0)
286 
287 void rcu_early_boot_tests(void);
288 void rcu_test_sync_prims(void);
289 
290 /*
291  * This function really isn't for public consumption, but RCU is special in
292  * that context switches can allow the state machine to make progress.
293  */
294 extern void resched_cpu(int cpu);
295 
296 #if defined(SRCU) || !defined(TINY_RCU)
297 
298 #include <linux/rcu_node_tree.h>
299 
300 extern int rcu_num_lvls;
301 extern int num_rcu_lvl[];
302 extern int rcu_num_nodes;
303 static bool rcu_fanout_exact;
304 static int rcu_fanout_leaf;
305 
306 /*
307  * Compute the per-level fanout, either using the exact fanout specified
308  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
309  */
310 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
311 {
312 	int i;
313 
314 	if (rcu_fanout_exact) {
315 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
316 		for (i = rcu_num_lvls - 2; i >= 0; i--)
317 			levelspread[i] = RCU_FANOUT;
318 	} else {
319 		int ccur;
320 		int cprv;
321 
322 		cprv = nr_cpu_ids;
323 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
324 			ccur = levelcnt[i];
325 			levelspread[i] = (cprv + ccur - 1) / ccur;
326 			cprv = ccur;
327 		}
328 	}
329 }
330 
331 /* Returns first leaf rcu_node of the specified RCU flavor. */
332 #define rcu_first_leaf_node(rsp) ((rsp)->level[rcu_num_lvls - 1])
333 
334 /* Is this rcu_node a leaf? */
335 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
336 
337 /* Is this rcu_node the last leaf? */
338 #define rcu_is_last_leaf_node(rsp, rnp) ((rnp) == &(rsp)->node[rcu_num_nodes - 1])
339 
340 /*
341  * Do a full breadth-first scan of the rcu_node structures for the
342  * specified rcu_state structure.
343  */
344 #define rcu_for_each_node_breadth_first(rsp, rnp) \
345 	for ((rnp) = &(rsp)->node[0]; \
346 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
347 
348 /*
349  * Do a breadth-first scan of the non-leaf rcu_node structures for the
350  * specified rcu_state structure.  Note that if there is a singleton
351  * rcu_node tree with but one rcu_node structure, this loop is a no-op.
352  */
353 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
354 	for ((rnp) = &(rsp)->node[0]; !rcu_is_leaf_node(rsp, rnp); (rnp)++)
355 
356 /*
357  * Scan the leaves of the rcu_node hierarchy for the specified rcu_state
358  * structure.  Note that if there is a singleton rcu_node tree with but
359  * one rcu_node structure, this loop -will- visit the rcu_node structure.
360  * It is still a leaf node, even if it is also the root node.
361  */
362 #define rcu_for_each_leaf_node(rsp, rnp) \
363 	for ((rnp) = rcu_first_leaf_node(rsp); \
364 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
365 
366 /*
367  * Iterate over all possible CPUs in a leaf RCU node.
368  */
369 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
370 	for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
371 	     (cpu) <= rnp->grphi; \
372 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
373 
374 /*
375  * Iterate over all CPUs in a leaf RCU node's specified mask.
376  */
377 #define rcu_find_next_bit(rnp, cpu, mask) \
378 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
379 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
380 	for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
381 	     (cpu) <= rnp->grphi; \
382 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
383 
384 /*
385  * Wrappers for the rcu_node::lock acquire and release.
386  *
387  * Because the rcu_nodes form a tree, the tree traversal locking will observe
388  * different lock values, this in turn means that an UNLOCK of one level
389  * followed by a LOCK of another level does not imply a full memory barrier;
390  * and most importantly transitivity is lost.
391  *
392  * In order to restore full ordering between tree levels, augment the regular
393  * lock acquire functions with smp_mb__after_unlock_lock().
394  *
395  * As ->lock of struct rcu_node is a __private field, therefore one should use
396  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
397  */
398 #define raw_spin_lock_rcu_node(p)					\
399 do {									\
400 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
401 	smp_mb__after_unlock_lock();					\
402 } while (0)
403 
404 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
405 
406 #define raw_spin_lock_irq_rcu_node(p)					\
407 do {									\
408 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
409 	smp_mb__after_unlock_lock();					\
410 } while (0)
411 
412 #define raw_spin_unlock_irq_rcu_node(p)					\
413 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
414 
415 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
416 do {									\
417 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
418 	smp_mb__after_unlock_lock();					\
419 } while (0)
420 
421 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
422 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
423 
424 #define raw_spin_trylock_rcu_node(p)					\
425 ({									\
426 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
427 									\
428 	if (___locked)							\
429 		smp_mb__after_unlock_lock();				\
430 	___locked;							\
431 })
432 
433 #define raw_lockdep_assert_held_rcu_node(p)				\
434 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
435 
436 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
437 
438 #ifdef CONFIG_TINY_RCU
439 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
440 static inline bool rcu_gp_is_normal(void) { return true; }
441 static inline bool rcu_gp_is_expedited(void) { return false; }
442 static inline void rcu_expedite_gp(void) { }
443 static inline void rcu_unexpedite_gp(void) { }
444 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
445 #else /* #ifdef CONFIG_TINY_RCU */
446 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
447 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
448 void rcu_expedite_gp(void);
449 void rcu_unexpedite_gp(void);
450 void rcupdate_announce_bootup_oddness(void);
451 void rcu_request_urgent_qs_task(struct task_struct *t);
452 #endif /* #else #ifdef CONFIG_TINY_RCU */
453 
454 #define RCU_SCHEDULER_INACTIVE	0
455 #define RCU_SCHEDULER_INIT	1
456 #define RCU_SCHEDULER_RUNNING	2
457 
458 enum rcutorture_type {
459 	RCU_FLAVOR,
460 	RCU_BH_FLAVOR,
461 	RCU_SCHED_FLAVOR,
462 	RCU_TASKS_FLAVOR,
463 	SRCU_FLAVOR,
464 	INVALID_RCU_FLAVOR
465 };
466 
467 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
468 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
469 			    unsigned long *gp_seq);
470 void rcutorture_record_progress(unsigned long vernum);
471 void do_trace_rcu_torture_read(const char *rcutorturename,
472 			       struct rcu_head *rhp,
473 			       unsigned long secs,
474 			       unsigned long c_old,
475 			       unsigned long c);
476 #else
477 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
478 					  int *flags, unsigned long *gp_seq)
479 {
480 	*flags = 0;
481 	*gp_seq = 0;
482 }
483 static inline void rcutorture_record_progress(unsigned long vernum) { }
484 #ifdef CONFIG_RCU_TRACE
485 void do_trace_rcu_torture_read(const char *rcutorturename,
486 			       struct rcu_head *rhp,
487 			       unsigned long secs,
488 			       unsigned long c_old,
489 			       unsigned long c);
490 #else
491 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
492 	do { } while (0)
493 #endif
494 #endif
495 
496 #ifdef CONFIG_TINY_SRCU
497 
498 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
499 					   struct srcu_struct *sp, int *flags,
500 					   unsigned long *gp_seq)
501 {
502 	if (test_type != SRCU_FLAVOR)
503 		return;
504 	*flags = 0;
505 	*gp_seq = sp->srcu_idx;
506 }
507 
508 #elif defined(CONFIG_TREE_SRCU)
509 
510 void srcutorture_get_gp_data(enum rcutorture_type test_type,
511 			     struct srcu_struct *sp, int *flags,
512 			     unsigned long *gp_seq);
513 
514 #endif
515 
516 #ifdef CONFIG_TINY_RCU
517 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
518 static inline unsigned long rcu_bh_get_gp_seq(void) { return 0; }
519 static inline unsigned long rcu_sched_get_gp_seq(void) { return 0; }
520 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
521 static inline unsigned long rcu_exp_batches_completed_sched(void) { return 0; }
522 static inline unsigned long
523 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
524 static inline void rcu_force_quiescent_state(void) { }
525 static inline void rcu_bh_force_quiescent_state(void) { }
526 static inline void rcu_sched_force_quiescent_state(void) { }
527 static inline void show_rcu_gp_kthreads(void) { }
528 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
529 #else /* #ifdef CONFIG_TINY_RCU */
530 unsigned long rcu_get_gp_seq(void);
531 unsigned long rcu_bh_get_gp_seq(void);
532 unsigned long rcu_sched_get_gp_seq(void);
533 unsigned long rcu_exp_batches_completed(void);
534 unsigned long rcu_exp_batches_completed_sched(void);
535 unsigned long srcu_batches_completed(struct srcu_struct *sp);
536 void show_rcu_gp_kthreads(void);
537 int rcu_get_gp_kthreads_prio(void);
538 void rcu_force_quiescent_state(void);
539 void rcu_bh_force_quiescent_state(void);
540 void rcu_sched_force_quiescent_state(void);
541 extern struct workqueue_struct *rcu_gp_wq;
542 extern struct workqueue_struct *rcu_par_gp_wq;
543 #endif /* #else #ifdef CONFIG_TINY_RCU */
544 
545 #ifdef CONFIG_RCU_NOCB_CPU
546 bool rcu_is_nocb_cpu(int cpu);
547 #else
548 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
549 #endif
550 
551 #endif /* __LINUX_RCU_H */
552