xref: /linux/kernel/printk/printk.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/rculist.h>
42 #include <linux/poll.h>
43 #include <linux/irq_work.h>
44 #include <linux/ctype.h>
45 #include <linux/uio.h>
46 #include <linux/sched/clock.h>
47 #include <linux/sched/debug.h>
48 #include <linux/sched/task_stack.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/sections.h>
52 
53 #include <trace/events/initcall.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/printk.h>
56 
57 #include "console_cmdline.h"
58 #include "braille.h"
59 #include "internal.h"
60 
61 int console_printk[4] = {
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
63 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
64 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
65 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
66 };
67 
68 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
69 EXPORT_SYMBOL(ignore_console_lock_warning);
70 
71 /*
72  * Low level drivers may need that to know if they can schedule in
73  * their unblank() callback or not. So let's export it.
74  */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77 
78 /*
79  * console_sem protects the console_drivers list, and also
80  * provides serialisation for access to the entire console
81  * driver system.
82  */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86 
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 	.name = "console_lock"
90 };
91 #endif
92 
93 enum devkmsg_log_bits {
94 	__DEVKMSG_LOG_BIT_ON = 0,
95 	__DEVKMSG_LOG_BIT_OFF,
96 	__DEVKMSG_LOG_BIT_LOCK,
97 };
98 
99 enum devkmsg_log_masks {
100 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
101 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
102 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
103 };
104 
105 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
106 #define DEVKMSG_LOG_MASK_DEFAULT	0
107 
108 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
109 
110 static int __control_devkmsg(char *str)
111 {
112 	if (!str)
113 		return -EINVAL;
114 
115 	if (!strncmp(str, "on", 2)) {
116 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
117 		return 2;
118 	} else if (!strncmp(str, "off", 3)) {
119 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
120 		return 3;
121 	} else if (!strncmp(str, "ratelimit", 9)) {
122 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
123 		return 9;
124 	}
125 	return -EINVAL;
126 }
127 
128 static int __init control_devkmsg(char *str)
129 {
130 	if (__control_devkmsg(str) < 0)
131 		return 1;
132 
133 	/*
134 	 * Set sysctl string accordingly:
135 	 */
136 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
137 		strcpy(devkmsg_log_str, "on");
138 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
139 		strcpy(devkmsg_log_str, "off");
140 	/* else "ratelimit" which is set by default. */
141 
142 	/*
143 	 * Sysctl cannot change it anymore. The kernel command line setting of
144 	 * this parameter is to force the setting to be permanent throughout the
145 	 * runtime of the system. This is a precation measure against userspace
146 	 * trying to be a smarta** and attempting to change it up on us.
147 	 */
148 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
149 
150 	return 0;
151 }
152 __setup("printk.devkmsg=", control_devkmsg);
153 
154 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
155 
156 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
157 			      void __user *buffer, size_t *lenp, loff_t *ppos)
158 {
159 	char old_str[DEVKMSG_STR_MAX_SIZE];
160 	unsigned int old;
161 	int err;
162 
163 	if (write) {
164 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
165 			return -EINVAL;
166 
167 		old = devkmsg_log;
168 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
169 	}
170 
171 	err = proc_dostring(table, write, buffer, lenp, ppos);
172 	if (err)
173 		return err;
174 
175 	if (write) {
176 		err = __control_devkmsg(devkmsg_log_str);
177 
178 		/*
179 		 * Do not accept an unknown string OR a known string with
180 		 * trailing crap...
181 		 */
182 		if (err < 0 || (err + 1 != *lenp)) {
183 
184 			/* ... and restore old setting. */
185 			devkmsg_log = old;
186 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
187 
188 			return -EINVAL;
189 		}
190 	}
191 
192 	return 0;
193 }
194 
195 /*
196  * Number of registered extended console drivers.
197  *
198  * If extended consoles are present, in-kernel cont reassembly is disabled
199  * and each fragment is stored as a separate log entry with proper
200  * continuation flag so that every emitted message has full metadata.  This
201  * doesn't change the result for regular consoles or /proc/kmsg.  For
202  * /dev/kmsg, as long as the reader concatenates messages according to
203  * consecutive continuation flags, the end result should be the same too.
204  */
205 static int nr_ext_console_drivers;
206 
207 /*
208  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
209  * macros instead of functions so that _RET_IP_ contains useful information.
210  */
211 #define down_console_sem() do { \
212 	down(&console_sem);\
213 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
214 } while (0)
215 
216 static int __down_trylock_console_sem(unsigned long ip)
217 {
218 	int lock_failed;
219 	unsigned long flags;
220 
221 	/*
222 	 * Here and in __up_console_sem() we need to be in safe mode,
223 	 * because spindump/WARN/etc from under console ->lock will
224 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
225 	 */
226 	printk_safe_enter_irqsave(flags);
227 	lock_failed = down_trylock(&console_sem);
228 	printk_safe_exit_irqrestore(flags);
229 
230 	if (lock_failed)
231 		return 1;
232 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
233 	return 0;
234 }
235 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
236 
237 static void __up_console_sem(unsigned long ip)
238 {
239 	unsigned long flags;
240 
241 	mutex_release(&console_lock_dep_map, 1, ip);
242 
243 	printk_safe_enter_irqsave(flags);
244 	up(&console_sem);
245 	printk_safe_exit_irqrestore(flags);
246 }
247 #define up_console_sem() __up_console_sem(_RET_IP_)
248 
249 /*
250  * This is used for debugging the mess that is the VT code by
251  * keeping track if we have the console semaphore held. It's
252  * definitely not the perfect debug tool (we don't know if _WE_
253  * hold it and are racing, but it helps tracking those weird code
254  * paths in the console code where we end up in places I want
255  * locked without the console sempahore held).
256  */
257 static int console_locked, console_suspended;
258 
259 /*
260  * If exclusive_console is non-NULL then only this console is to be printed to.
261  */
262 static struct console *exclusive_console;
263 
264 /*
265  *	Array of consoles built from command line options (console=)
266  */
267 
268 #define MAX_CMDLINECONSOLES 8
269 
270 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
271 
272 static int preferred_console = -1;
273 int console_set_on_cmdline;
274 EXPORT_SYMBOL(console_set_on_cmdline);
275 
276 /* Flag: console code may call schedule() */
277 static int console_may_schedule;
278 
279 enum con_msg_format_flags {
280 	MSG_FORMAT_DEFAULT	= 0,
281 	MSG_FORMAT_SYSLOG	= (1 << 0),
282 };
283 
284 static int console_msg_format = MSG_FORMAT_DEFAULT;
285 
286 /*
287  * The printk log buffer consists of a chain of concatenated variable
288  * length records. Every record starts with a record header, containing
289  * the overall length of the record.
290  *
291  * The heads to the first and last entry in the buffer, as well as the
292  * sequence numbers of these entries are maintained when messages are
293  * stored.
294  *
295  * If the heads indicate available messages, the length in the header
296  * tells the start next message. A length == 0 for the next message
297  * indicates a wrap-around to the beginning of the buffer.
298  *
299  * Every record carries the monotonic timestamp in microseconds, as well as
300  * the standard userspace syslog level and syslog facility. The usual
301  * kernel messages use LOG_KERN; userspace-injected messages always carry
302  * a matching syslog facility, by default LOG_USER. The origin of every
303  * message can be reliably determined that way.
304  *
305  * The human readable log message directly follows the message header. The
306  * length of the message text is stored in the header, the stored message
307  * is not terminated.
308  *
309  * Optionally, a message can carry a dictionary of properties (key/value pairs),
310  * to provide userspace with a machine-readable message context.
311  *
312  * Examples for well-defined, commonly used property names are:
313  *   DEVICE=b12:8               device identifier
314  *                                b12:8         block dev_t
315  *                                c127:3        char dev_t
316  *                                n8            netdev ifindex
317  *                                +sound:card0  subsystem:devname
318  *   SUBSYSTEM=pci              driver-core subsystem name
319  *
320  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
321  * follows directly after a '=' character. Every property is terminated by
322  * a '\0' character. The last property is not terminated.
323  *
324  * Example of a message structure:
325  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
326  *   0008  34 00                        record is 52 bytes long
327  *   000a        0b 00                  text is 11 bytes long
328  *   000c              1f 00            dictionary is 23 bytes long
329  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
330  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
331  *         69 6e 65                     "ine"
332  *   001b           44 45 56 49 43      "DEVIC"
333  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
334  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
335  *         67                           "g"
336  *   0032     00 00 00                  padding to next message header
337  *
338  * The 'struct printk_log' buffer header must never be directly exported to
339  * userspace, it is a kernel-private implementation detail that might
340  * need to be changed in the future, when the requirements change.
341  *
342  * /dev/kmsg exports the structured data in the following line format:
343  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344  *
345  * Users of the export format should ignore possible additional values
346  * separated by ',', and find the message after the ';' character.
347  *
348  * The optional key/value pairs are attached as continuation lines starting
349  * with a space character and terminated by a newline. All possible
350  * non-prinatable characters are escaped in the "\xff" notation.
351  */
352 
353 enum log_flags {
354 	LOG_NEWLINE	= 2,	/* text ended with a newline */
355 	LOG_PREFIX	= 4,	/* text started with a prefix */
356 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
357 };
358 
359 struct printk_log {
360 	u64 ts_nsec;		/* timestamp in nanoseconds */
361 	u16 len;		/* length of entire record */
362 	u16 text_len;		/* length of text buffer */
363 	u16 dict_len;		/* length of dictionary buffer */
364 	u8 facility;		/* syslog facility */
365 	u8 flags:5;		/* internal record flags */
366 	u8 level:3;		/* syslog level */
367 }
368 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
369 __packed __aligned(4)
370 #endif
371 ;
372 
373 /*
374  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
375  * within the scheduler's rq lock. It must be released before calling
376  * console_unlock() or anything else that might wake up a process.
377  */
378 DEFINE_RAW_SPINLOCK(logbuf_lock);
379 
380 /*
381  * Helper macros to lock/unlock logbuf_lock and switch between
382  * printk-safe/unsafe modes.
383  */
384 #define logbuf_lock_irq()				\
385 	do {						\
386 		printk_safe_enter_irq();		\
387 		raw_spin_lock(&logbuf_lock);		\
388 	} while (0)
389 
390 #define logbuf_unlock_irq()				\
391 	do {						\
392 		raw_spin_unlock(&logbuf_lock);		\
393 		printk_safe_exit_irq();			\
394 	} while (0)
395 
396 #define logbuf_lock_irqsave(flags)			\
397 	do {						\
398 		printk_safe_enter_irqsave(flags);	\
399 		raw_spin_lock(&logbuf_lock);		\
400 	} while (0)
401 
402 #define logbuf_unlock_irqrestore(flags)		\
403 	do {						\
404 		raw_spin_unlock(&logbuf_lock);		\
405 		printk_safe_exit_irqrestore(flags);	\
406 	} while (0)
407 
408 #ifdef CONFIG_PRINTK
409 DECLARE_WAIT_QUEUE_HEAD(log_wait);
410 /* the next printk record to read by syslog(READ) or /proc/kmsg */
411 static u64 syslog_seq;
412 static u32 syslog_idx;
413 static size_t syslog_partial;
414 
415 /* index and sequence number of the first record stored in the buffer */
416 static u64 log_first_seq;
417 static u32 log_first_idx;
418 
419 /* index and sequence number of the next record to store in the buffer */
420 static u64 log_next_seq;
421 static u32 log_next_idx;
422 
423 /* the next printk record to write to the console */
424 static u64 console_seq;
425 static u32 console_idx;
426 
427 /* the next printk record to read after the last 'clear' command */
428 static u64 clear_seq;
429 static u32 clear_idx;
430 
431 #define PREFIX_MAX		32
432 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
433 
434 #define LOG_LEVEL(v)		((v) & 0x07)
435 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
436 
437 /* record buffer */
438 #define LOG_ALIGN __alignof__(struct printk_log)
439 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
440 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
441 static char *log_buf = __log_buf;
442 static u32 log_buf_len = __LOG_BUF_LEN;
443 
444 /* Return log buffer address */
445 char *log_buf_addr_get(void)
446 {
447 	return log_buf;
448 }
449 
450 /* Return log buffer size */
451 u32 log_buf_len_get(void)
452 {
453 	return log_buf_len;
454 }
455 
456 /* human readable text of the record */
457 static char *log_text(const struct printk_log *msg)
458 {
459 	return (char *)msg + sizeof(struct printk_log);
460 }
461 
462 /* optional key/value pair dictionary attached to the record */
463 static char *log_dict(const struct printk_log *msg)
464 {
465 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
466 }
467 
468 /* get record by index; idx must point to valid msg */
469 static struct printk_log *log_from_idx(u32 idx)
470 {
471 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
472 
473 	/*
474 	 * A length == 0 record is the end of buffer marker. Wrap around and
475 	 * read the message at the start of the buffer.
476 	 */
477 	if (!msg->len)
478 		return (struct printk_log *)log_buf;
479 	return msg;
480 }
481 
482 /* get next record; idx must point to valid msg */
483 static u32 log_next(u32 idx)
484 {
485 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
486 
487 	/* length == 0 indicates the end of the buffer; wrap */
488 	/*
489 	 * A length == 0 record is the end of buffer marker. Wrap around and
490 	 * read the message at the start of the buffer as *this* one, and
491 	 * return the one after that.
492 	 */
493 	if (!msg->len) {
494 		msg = (struct printk_log *)log_buf;
495 		return msg->len;
496 	}
497 	return idx + msg->len;
498 }
499 
500 /*
501  * Check whether there is enough free space for the given message.
502  *
503  * The same values of first_idx and next_idx mean that the buffer
504  * is either empty or full.
505  *
506  * If the buffer is empty, we must respect the position of the indexes.
507  * They cannot be reset to the beginning of the buffer.
508  */
509 static int logbuf_has_space(u32 msg_size, bool empty)
510 {
511 	u32 free;
512 
513 	if (log_next_idx > log_first_idx || empty)
514 		free = max(log_buf_len - log_next_idx, log_first_idx);
515 	else
516 		free = log_first_idx - log_next_idx;
517 
518 	/*
519 	 * We need space also for an empty header that signalizes wrapping
520 	 * of the buffer.
521 	 */
522 	return free >= msg_size + sizeof(struct printk_log);
523 }
524 
525 static int log_make_free_space(u32 msg_size)
526 {
527 	while (log_first_seq < log_next_seq &&
528 	       !logbuf_has_space(msg_size, false)) {
529 		/* drop old messages until we have enough contiguous space */
530 		log_first_idx = log_next(log_first_idx);
531 		log_first_seq++;
532 	}
533 
534 	if (clear_seq < log_first_seq) {
535 		clear_seq = log_first_seq;
536 		clear_idx = log_first_idx;
537 	}
538 
539 	/* sequence numbers are equal, so the log buffer is empty */
540 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
541 		return 0;
542 
543 	return -ENOMEM;
544 }
545 
546 /* compute the message size including the padding bytes */
547 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
548 {
549 	u32 size;
550 
551 	size = sizeof(struct printk_log) + text_len + dict_len;
552 	*pad_len = (-size) & (LOG_ALIGN - 1);
553 	size += *pad_len;
554 
555 	return size;
556 }
557 
558 /*
559  * Define how much of the log buffer we could take at maximum. The value
560  * must be greater than two. Note that only half of the buffer is available
561  * when the index points to the middle.
562  */
563 #define MAX_LOG_TAKE_PART 4
564 static const char trunc_msg[] = "<truncated>";
565 
566 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
567 			u16 *dict_len, u32 *pad_len)
568 {
569 	/*
570 	 * The message should not take the whole buffer. Otherwise, it might
571 	 * get removed too soon.
572 	 */
573 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
574 	if (*text_len > max_text_len)
575 		*text_len = max_text_len;
576 	/* enable the warning message */
577 	*trunc_msg_len = strlen(trunc_msg);
578 	/* disable the "dict" completely */
579 	*dict_len = 0;
580 	/* compute the size again, count also the warning message */
581 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
582 }
583 
584 /* insert record into the buffer, discard old ones, update heads */
585 static int log_store(int facility, int level,
586 		     enum log_flags flags, u64 ts_nsec,
587 		     const char *dict, u16 dict_len,
588 		     const char *text, u16 text_len)
589 {
590 	struct printk_log *msg;
591 	u32 size, pad_len;
592 	u16 trunc_msg_len = 0;
593 
594 	/* number of '\0' padding bytes to next message */
595 	size = msg_used_size(text_len, dict_len, &pad_len);
596 
597 	if (log_make_free_space(size)) {
598 		/* truncate the message if it is too long for empty buffer */
599 		size = truncate_msg(&text_len, &trunc_msg_len,
600 				    &dict_len, &pad_len);
601 		/* survive when the log buffer is too small for trunc_msg */
602 		if (log_make_free_space(size))
603 			return 0;
604 	}
605 
606 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
607 		/*
608 		 * This message + an additional empty header does not fit
609 		 * at the end of the buffer. Add an empty header with len == 0
610 		 * to signify a wrap around.
611 		 */
612 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
613 		log_next_idx = 0;
614 	}
615 
616 	/* fill message */
617 	msg = (struct printk_log *)(log_buf + log_next_idx);
618 	memcpy(log_text(msg), text, text_len);
619 	msg->text_len = text_len;
620 	if (trunc_msg_len) {
621 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
622 		msg->text_len += trunc_msg_len;
623 	}
624 	memcpy(log_dict(msg), dict, dict_len);
625 	msg->dict_len = dict_len;
626 	msg->facility = facility;
627 	msg->level = level & 7;
628 	msg->flags = flags & 0x1f;
629 	if (ts_nsec > 0)
630 		msg->ts_nsec = ts_nsec;
631 	else
632 		msg->ts_nsec = local_clock();
633 	memset(log_dict(msg) + dict_len, 0, pad_len);
634 	msg->len = size;
635 
636 	/* insert message */
637 	log_next_idx += msg->len;
638 	log_next_seq++;
639 
640 	return msg->text_len;
641 }
642 
643 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
644 
645 static int syslog_action_restricted(int type)
646 {
647 	if (dmesg_restrict)
648 		return 1;
649 	/*
650 	 * Unless restricted, we allow "read all" and "get buffer size"
651 	 * for everybody.
652 	 */
653 	return type != SYSLOG_ACTION_READ_ALL &&
654 	       type != SYSLOG_ACTION_SIZE_BUFFER;
655 }
656 
657 static int check_syslog_permissions(int type, int source)
658 {
659 	/*
660 	 * If this is from /proc/kmsg and we've already opened it, then we've
661 	 * already done the capabilities checks at open time.
662 	 */
663 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
664 		goto ok;
665 
666 	if (syslog_action_restricted(type)) {
667 		if (capable(CAP_SYSLOG))
668 			goto ok;
669 		/*
670 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
671 		 * a warning.
672 		 */
673 		if (capable(CAP_SYS_ADMIN)) {
674 			pr_warn_once("%s (%d): Attempt to access syslog with "
675 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
676 				     "(deprecated).\n",
677 				 current->comm, task_pid_nr(current));
678 			goto ok;
679 		}
680 		return -EPERM;
681 	}
682 ok:
683 	return security_syslog(type);
684 }
685 
686 static void append_char(char **pp, char *e, char c)
687 {
688 	if (*pp < e)
689 		*(*pp)++ = c;
690 }
691 
692 static ssize_t msg_print_ext_header(char *buf, size_t size,
693 				    struct printk_log *msg, u64 seq)
694 {
695 	u64 ts_usec = msg->ts_nsec;
696 
697 	do_div(ts_usec, 1000);
698 
699 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
700 		       (msg->facility << 3) | msg->level, seq, ts_usec,
701 		       msg->flags & LOG_CONT ? 'c' : '-');
702 }
703 
704 static ssize_t msg_print_ext_body(char *buf, size_t size,
705 				  char *dict, size_t dict_len,
706 				  char *text, size_t text_len)
707 {
708 	char *p = buf, *e = buf + size;
709 	size_t i;
710 
711 	/* escape non-printable characters */
712 	for (i = 0; i < text_len; i++) {
713 		unsigned char c = text[i];
714 
715 		if (c < ' ' || c >= 127 || c == '\\')
716 			p += scnprintf(p, e - p, "\\x%02x", c);
717 		else
718 			append_char(&p, e, c);
719 	}
720 	append_char(&p, e, '\n');
721 
722 	if (dict_len) {
723 		bool line = true;
724 
725 		for (i = 0; i < dict_len; i++) {
726 			unsigned char c = dict[i];
727 
728 			if (line) {
729 				append_char(&p, e, ' ');
730 				line = false;
731 			}
732 
733 			if (c == '\0') {
734 				append_char(&p, e, '\n');
735 				line = true;
736 				continue;
737 			}
738 
739 			if (c < ' ' || c >= 127 || c == '\\') {
740 				p += scnprintf(p, e - p, "\\x%02x", c);
741 				continue;
742 			}
743 
744 			append_char(&p, e, c);
745 		}
746 		append_char(&p, e, '\n');
747 	}
748 
749 	return p - buf;
750 }
751 
752 /* /dev/kmsg - userspace message inject/listen interface */
753 struct devkmsg_user {
754 	u64 seq;
755 	u32 idx;
756 	struct ratelimit_state rs;
757 	struct mutex lock;
758 	char buf[CONSOLE_EXT_LOG_MAX];
759 };
760 
761 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
762 {
763 	char *buf, *line;
764 	int level = default_message_loglevel;
765 	int facility = 1;	/* LOG_USER */
766 	struct file *file = iocb->ki_filp;
767 	struct devkmsg_user *user = file->private_data;
768 	size_t len = iov_iter_count(from);
769 	ssize_t ret = len;
770 
771 	if (!user || len > LOG_LINE_MAX)
772 		return -EINVAL;
773 
774 	/* Ignore when user logging is disabled. */
775 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
776 		return len;
777 
778 	/* Ratelimit when not explicitly enabled. */
779 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
780 		if (!___ratelimit(&user->rs, current->comm))
781 			return ret;
782 	}
783 
784 	buf = kmalloc(len+1, GFP_KERNEL);
785 	if (buf == NULL)
786 		return -ENOMEM;
787 
788 	buf[len] = '\0';
789 	if (!copy_from_iter_full(buf, len, from)) {
790 		kfree(buf);
791 		return -EFAULT;
792 	}
793 
794 	/*
795 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
796 	 * the decimal value represents 32bit, the lower 3 bit are the log
797 	 * level, the rest are the log facility.
798 	 *
799 	 * If no prefix or no userspace facility is specified, we
800 	 * enforce LOG_USER, to be able to reliably distinguish
801 	 * kernel-generated messages from userspace-injected ones.
802 	 */
803 	line = buf;
804 	if (line[0] == '<') {
805 		char *endp = NULL;
806 		unsigned int u;
807 
808 		u = simple_strtoul(line + 1, &endp, 10);
809 		if (endp && endp[0] == '>') {
810 			level = LOG_LEVEL(u);
811 			if (LOG_FACILITY(u) != 0)
812 				facility = LOG_FACILITY(u);
813 			endp++;
814 			len -= endp - line;
815 			line = endp;
816 		}
817 	}
818 
819 	printk_emit(facility, level, NULL, 0, "%s", line);
820 	kfree(buf);
821 	return ret;
822 }
823 
824 static ssize_t devkmsg_read(struct file *file, char __user *buf,
825 			    size_t count, loff_t *ppos)
826 {
827 	struct devkmsg_user *user = file->private_data;
828 	struct printk_log *msg;
829 	size_t len;
830 	ssize_t ret;
831 
832 	if (!user)
833 		return -EBADF;
834 
835 	ret = mutex_lock_interruptible(&user->lock);
836 	if (ret)
837 		return ret;
838 
839 	logbuf_lock_irq();
840 	while (user->seq == log_next_seq) {
841 		if (file->f_flags & O_NONBLOCK) {
842 			ret = -EAGAIN;
843 			logbuf_unlock_irq();
844 			goto out;
845 		}
846 
847 		logbuf_unlock_irq();
848 		ret = wait_event_interruptible(log_wait,
849 					       user->seq != log_next_seq);
850 		if (ret)
851 			goto out;
852 		logbuf_lock_irq();
853 	}
854 
855 	if (user->seq < log_first_seq) {
856 		/* our last seen message is gone, return error and reset */
857 		user->idx = log_first_idx;
858 		user->seq = log_first_seq;
859 		ret = -EPIPE;
860 		logbuf_unlock_irq();
861 		goto out;
862 	}
863 
864 	msg = log_from_idx(user->idx);
865 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
866 				   msg, user->seq);
867 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
868 				  log_dict(msg), msg->dict_len,
869 				  log_text(msg), msg->text_len);
870 
871 	user->idx = log_next(user->idx);
872 	user->seq++;
873 	logbuf_unlock_irq();
874 
875 	if (len > count) {
876 		ret = -EINVAL;
877 		goto out;
878 	}
879 
880 	if (copy_to_user(buf, user->buf, len)) {
881 		ret = -EFAULT;
882 		goto out;
883 	}
884 	ret = len;
885 out:
886 	mutex_unlock(&user->lock);
887 	return ret;
888 }
889 
890 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
891 {
892 	struct devkmsg_user *user = file->private_data;
893 	loff_t ret = 0;
894 
895 	if (!user)
896 		return -EBADF;
897 	if (offset)
898 		return -ESPIPE;
899 
900 	logbuf_lock_irq();
901 	switch (whence) {
902 	case SEEK_SET:
903 		/* the first record */
904 		user->idx = log_first_idx;
905 		user->seq = log_first_seq;
906 		break;
907 	case SEEK_DATA:
908 		/*
909 		 * The first record after the last SYSLOG_ACTION_CLEAR,
910 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
911 		 * changes no global state, and does not clear anything.
912 		 */
913 		user->idx = clear_idx;
914 		user->seq = clear_seq;
915 		break;
916 	case SEEK_END:
917 		/* after the last record */
918 		user->idx = log_next_idx;
919 		user->seq = log_next_seq;
920 		break;
921 	default:
922 		ret = -EINVAL;
923 	}
924 	logbuf_unlock_irq();
925 	return ret;
926 }
927 
928 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
929 {
930 	struct devkmsg_user *user = file->private_data;
931 	__poll_t ret = 0;
932 
933 	if (!user)
934 		return EPOLLERR|EPOLLNVAL;
935 
936 	poll_wait(file, &log_wait, wait);
937 
938 	logbuf_lock_irq();
939 	if (user->seq < log_next_seq) {
940 		/* return error when data has vanished underneath us */
941 		if (user->seq < log_first_seq)
942 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
943 		else
944 			ret = EPOLLIN|EPOLLRDNORM;
945 	}
946 	logbuf_unlock_irq();
947 
948 	return ret;
949 }
950 
951 static int devkmsg_open(struct inode *inode, struct file *file)
952 {
953 	struct devkmsg_user *user;
954 	int err;
955 
956 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
957 		return -EPERM;
958 
959 	/* write-only does not need any file context */
960 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
961 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
962 					       SYSLOG_FROM_READER);
963 		if (err)
964 			return err;
965 	}
966 
967 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
968 	if (!user)
969 		return -ENOMEM;
970 
971 	ratelimit_default_init(&user->rs);
972 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
973 
974 	mutex_init(&user->lock);
975 
976 	logbuf_lock_irq();
977 	user->idx = log_first_idx;
978 	user->seq = log_first_seq;
979 	logbuf_unlock_irq();
980 
981 	file->private_data = user;
982 	return 0;
983 }
984 
985 static int devkmsg_release(struct inode *inode, struct file *file)
986 {
987 	struct devkmsg_user *user = file->private_data;
988 
989 	if (!user)
990 		return 0;
991 
992 	ratelimit_state_exit(&user->rs);
993 
994 	mutex_destroy(&user->lock);
995 	kfree(user);
996 	return 0;
997 }
998 
999 const struct file_operations kmsg_fops = {
1000 	.open = devkmsg_open,
1001 	.read = devkmsg_read,
1002 	.write_iter = devkmsg_write,
1003 	.llseek = devkmsg_llseek,
1004 	.poll = devkmsg_poll,
1005 	.release = devkmsg_release,
1006 };
1007 
1008 #ifdef CONFIG_CRASH_CORE
1009 /*
1010  * This appends the listed symbols to /proc/vmcore
1011  *
1012  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1013  * obtain access to symbols that are otherwise very difficult to locate.  These
1014  * symbols are specifically used so that utilities can access and extract the
1015  * dmesg log from a vmcore file after a crash.
1016  */
1017 void log_buf_vmcoreinfo_setup(void)
1018 {
1019 	VMCOREINFO_SYMBOL(log_buf);
1020 	VMCOREINFO_SYMBOL(log_buf_len);
1021 	VMCOREINFO_SYMBOL(log_first_idx);
1022 	VMCOREINFO_SYMBOL(clear_idx);
1023 	VMCOREINFO_SYMBOL(log_next_idx);
1024 	/*
1025 	 * Export struct printk_log size and field offsets. User space tools can
1026 	 * parse it and detect any changes to structure down the line.
1027 	 */
1028 	VMCOREINFO_STRUCT_SIZE(printk_log);
1029 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1030 	VMCOREINFO_OFFSET(printk_log, len);
1031 	VMCOREINFO_OFFSET(printk_log, text_len);
1032 	VMCOREINFO_OFFSET(printk_log, dict_len);
1033 }
1034 #endif
1035 
1036 /* requested log_buf_len from kernel cmdline */
1037 static unsigned long __initdata new_log_buf_len;
1038 
1039 /* we practice scaling the ring buffer by powers of 2 */
1040 static void __init log_buf_len_update(unsigned size)
1041 {
1042 	if (size)
1043 		size = roundup_pow_of_two(size);
1044 	if (size > log_buf_len)
1045 		new_log_buf_len = size;
1046 }
1047 
1048 /* save requested log_buf_len since it's too early to process it */
1049 static int __init log_buf_len_setup(char *str)
1050 {
1051 	unsigned size = memparse(str, &str);
1052 
1053 	log_buf_len_update(size);
1054 
1055 	return 0;
1056 }
1057 early_param("log_buf_len", log_buf_len_setup);
1058 
1059 #ifdef CONFIG_SMP
1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1061 
1062 static void __init log_buf_add_cpu(void)
1063 {
1064 	unsigned int cpu_extra;
1065 
1066 	/*
1067 	 * archs should set up cpu_possible_bits properly with
1068 	 * set_cpu_possible() after setup_arch() but just in
1069 	 * case lets ensure this is valid.
1070 	 */
1071 	if (num_possible_cpus() == 1)
1072 		return;
1073 
1074 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1075 
1076 	/* by default this will only continue through for large > 64 CPUs */
1077 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1078 		return;
1079 
1080 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1081 		__LOG_CPU_MAX_BUF_LEN);
1082 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1083 		cpu_extra);
1084 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1085 
1086 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1087 }
1088 #else /* !CONFIG_SMP */
1089 static inline void log_buf_add_cpu(void) {}
1090 #endif /* CONFIG_SMP */
1091 
1092 void __init setup_log_buf(int early)
1093 {
1094 	unsigned long flags;
1095 	char *new_log_buf;
1096 	int free;
1097 
1098 	if (log_buf != __log_buf)
1099 		return;
1100 
1101 	if (!early && !new_log_buf_len)
1102 		log_buf_add_cpu();
1103 
1104 	if (!new_log_buf_len)
1105 		return;
1106 
1107 	if (early) {
1108 		new_log_buf =
1109 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1110 	} else {
1111 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1112 							  LOG_ALIGN);
1113 	}
1114 
1115 	if (unlikely(!new_log_buf)) {
1116 		pr_err("log_buf_len: %ld bytes not available\n",
1117 			new_log_buf_len);
1118 		return;
1119 	}
1120 
1121 	logbuf_lock_irqsave(flags);
1122 	log_buf_len = new_log_buf_len;
1123 	log_buf = new_log_buf;
1124 	new_log_buf_len = 0;
1125 	free = __LOG_BUF_LEN - log_next_idx;
1126 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1127 	logbuf_unlock_irqrestore(flags);
1128 
1129 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1130 	pr_info("early log buf free: %d(%d%%)\n",
1131 		free, (free * 100) / __LOG_BUF_LEN);
1132 }
1133 
1134 static bool __read_mostly ignore_loglevel;
1135 
1136 static int __init ignore_loglevel_setup(char *str)
1137 {
1138 	ignore_loglevel = true;
1139 	pr_info("debug: ignoring loglevel setting.\n");
1140 
1141 	return 0;
1142 }
1143 
1144 early_param("ignore_loglevel", ignore_loglevel_setup);
1145 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1146 MODULE_PARM_DESC(ignore_loglevel,
1147 		 "ignore loglevel setting (prints all kernel messages to the console)");
1148 
1149 static bool suppress_message_printing(int level)
1150 {
1151 	return (level >= console_loglevel && !ignore_loglevel);
1152 }
1153 
1154 #ifdef CONFIG_BOOT_PRINTK_DELAY
1155 
1156 static int boot_delay; /* msecs delay after each printk during bootup */
1157 static unsigned long long loops_per_msec;	/* based on boot_delay */
1158 
1159 static int __init boot_delay_setup(char *str)
1160 {
1161 	unsigned long lpj;
1162 
1163 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1164 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1165 
1166 	get_option(&str, &boot_delay);
1167 	if (boot_delay > 10 * 1000)
1168 		boot_delay = 0;
1169 
1170 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1171 		"HZ: %d, loops_per_msec: %llu\n",
1172 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1173 	return 0;
1174 }
1175 early_param("boot_delay", boot_delay_setup);
1176 
1177 static void boot_delay_msec(int level)
1178 {
1179 	unsigned long long k;
1180 	unsigned long timeout;
1181 
1182 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1183 		|| suppress_message_printing(level)) {
1184 		return;
1185 	}
1186 
1187 	k = (unsigned long long)loops_per_msec * boot_delay;
1188 
1189 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1190 	while (k) {
1191 		k--;
1192 		cpu_relax();
1193 		/*
1194 		 * use (volatile) jiffies to prevent
1195 		 * compiler reduction; loop termination via jiffies
1196 		 * is secondary and may or may not happen.
1197 		 */
1198 		if (time_after(jiffies, timeout))
1199 			break;
1200 		touch_nmi_watchdog();
1201 	}
1202 }
1203 #else
1204 static inline void boot_delay_msec(int level)
1205 {
1206 }
1207 #endif
1208 
1209 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1210 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1211 
1212 static size_t print_time(u64 ts, char *buf)
1213 {
1214 	unsigned long rem_nsec;
1215 
1216 	if (!printk_time)
1217 		return 0;
1218 
1219 	rem_nsec = do_div(ts, 1000000000);
1220 
1221 	if (!buf)
1222 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1223 
1224 	return sprintf(buf, "[%5lu.%06lu] ",
1225 		       (unsigned long)ts, rem_nsec / 1000);
1226 }
1227 
1228 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1229 {
1230 	size_t len = 0;
1231 	unsigned int prefix = (msg->facility << 3) | msg->level;
1232 
1233 	if (syslog) {
1234 		if (buf) {
1235 			len += sprintf(buf, "<%u>", prefix);
1236 		} else {
1237 			len += 3;
1238 			if (prefix > 999)
1239 				len += 3;
1240 			else if (prefix > 99)
1241 				len += 2;
1242 			else if (prefix > 9)
1243 				len++;
1244 		}
1245 	}
1246 
1247 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1248 	return len;
1249 }
1250 
1251 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1252 {
1253 	const char *text = log_text(msg);
1254 	size_t text_size = msg->text_len;
1255 	size_t len = 0;
1256 
1257 	do {
1258 		const char *next = memchr(text, '\n', text_size);
1259 		size_t text_len;
1260 
1261 		if (next) {
1262 			text_len = next - text;
1263 			next++;
1264 			text_size -= next - text;
1265 		} else {
1266 			text_len = text_size;
1267 		}
1268 
1269 		if (buf) {
1270 			if (print_prefix(msg, syslog, NULL) +
1271 			    text_len + 1 >= size - len)
1272 				break;
1273 
1274 			len += print_prefix(msg, syslog, buf + len);
1275 			memcpy(buf + len, text, text_len);
1276 			len += text_len;
1277 			buf[len++] = '\n';
1278 		} else {
1279 			/* SYSLOG_ACTION_* buffer size only calculation */
1280 			len += print_prefix(msg, syslog, NULL);
1281 			len += text_len;
1282 			len++;
1283 		}
1284 
1285 		text = next;
1286 	} while (text);
1287 
1288 	return len;
1289 }
1290 
1291 static int syslog_print(char __user *buf, int size)
1292 {
1293 	char *text;
1294 	struct printk_log *msg;
1295 	int len = 0;
1296 
1297 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1298 	if (!text)
1299 		return -ENOMEM;
1300 
1301 	while (size > 0) {
1302 		size_t n;
1303 		size_t skip;
1304 
1305 		logbuf_lock_irq();
1306 		if (syslog_seq < log_first_seq) {
1307 			/* messages are gone, move to first one */
1308 			syslog_seq = log_first_seq;
1309 			syslog_idx = log_first_idx;
1310 			syslog_partial = 0;
1311 		}
1312 		if (syslog_seq == log_next_seq) {
1313 			logbuf_unlock_irq();
1314 			break;
1315 		}
1316 
1317 		skip = syslog_partial;
1318 		msg = log_from_idx(syslog_idx);
1319 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1320 		if (n - syslog_partial <= size) {
1321 			/* message fits into buffer, move forward */
1322 			syslog_idx = log_next(syslog_idx);
1323 			syslog_seq++;
1324 			n -= syslog_partial;
1325 			syslog_partial = 0;
1326 		} else if (!len){
1327 			/* partial read(), remember position */
1328 			n = size;
1329 			syslog_partial += n;
1330 		} else
1331 			n = 0;
1332 		logbuf_unlock_irq();
1333 
1334 		if (!n)
1335 			break;
1336 
1337 		if (copy_to_user(buf, text + skip, n)) {
1338 			if (!len)
1339 				len = -EFAULT;
1340 			break;
1341 		}
1342 
1343 		len += n;
1344 		size -= n;
1345 		buf += n;
1346 	}
1347 
1348 	kfree(text);
1349 	return len;
1350 }
1351 
1352 static int syslog_print_all(char __user *buf, int size, bool clear)
1353 {
1354 	char *text;
1355 	int len = 0;
1356 	u64 next_seq;
1357 	u64 seq;
1358 	u32 idx;
1359 
1360 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1361 	if (!text)
1362 		return -ENOMEM;
1363 
1364 	logbuf_lock_irq();
1365 	/*
1366 	 * Find first record that fits, including all following records,
1367 	 * into the user-provided buffer for this dump.
1368 	 */
1369 	seq = clear_seq;
1370 	idx = clear_idx;
1371 	while (seq < log_next_seq) {
1372 		struct printk_log *msg = log_from_idx(idx);
1373 
1374 		len += msg_print_text(msg, true, NULL, 0);
1375 		idx = log_next(idx);
1376 		seq++;
1377 	}
1378 
1379 	/* move first record forward until length fits into the buffer */
1380 	seq = clear_seq;
1381 	idx = clear_idx;
1382 	while (len > size && seq < log_next_seq) {
1383 		struct printk_log *msg = log_from_idx(idx);
1384 
1385 		len -= msg_print_text(msg, true, NULL, 0);
1386 		idx = log_next(idx);
1387 		seq++;
1388 	}
1389 
1390 	/* last message fitting into this dump */
1391 	next_seq = log_next_seq;
1392 
1393 	len = 0;
1394 	while (len >= 0 && seq < next_seq) {
1395 		struct printk_log *msg = log_from_idx(idx);
1396 		int textlen;
1397 
1398 		textlen = msg_print_text(msg, true, text,
1399 					 LOG_LINE_MAX + PREFIX_MAX);
1400 		if (textlen < 0) {
1401 			len = textlen;
1402 			break;
1403 		}
1404 		idx = log_next(idx);
1405 		seq++;
1406 
1407 		logbuf_unlock_irq();
1408 		if (copy_to_user(buf + len, text, textlen))
1409 			len = -EFAULT;
1410 		else
1411 			len += textlen;
1412 		logbuf_lock_irq();
1413 
1414 		if (seq < log_first_seq) {
1415 			/* messages are gone, move to next one */
1416 			seq = log_first_seq;
1417 			idx = log_first_idx;
1418 		}
1419 	}
1420 
1421 	if (clear) {
1422 		clear_seq = log_next_seq;
1423 		clear_idx = log_next_idx;
1424 	}
1425 	logbuf_unlock_irq();
1426 
1427 	kfree(text);
1428 	return len;
1429 }
1430 
1431 static void syslog_clear(void)
1432 {
1433 	logbuf_lock_irq();
1434 	clear_seq = log_next_seq;
1435 	clear_idx = log_next_idx;
1436 	logbuf_unlock_irq();
1437 }
1438 
1439 int do_syslog(int type, char __user *buf, int len, int source)
1440 {
1441 	bool clear = false;
1442 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1443 	int error;
1444 
1445 	error = check_syslog_permissions(type, source);
1446 	if (error)
1447 		return error;
1448 
1449 	switch (type) {
1450 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1451 		break;
1452 	case SYSLOG_ACTION_OPEN:	/* Open log */
1453 		break;
1454 	case SYSLOG_ACTION_READ:	/* Read from log */
1455 		if (!buf || len < 0)
1456 			return -EINVAL;
1457 		if (!len)
1458 			return 0;
1459 		if (!access_ok(VERIFY_WRITE, buf, len))
1460 			return -EFAULT;
1461 		error = wait_event_interruptible(log_wait,
1462 						 syslog_seq != log_next_seq);
1463 		if (error)
1464 			return error;
1465 		error = syslog_print(buf, len);
1466 		break;
1467 	/* Read/clear last kernel messages */
1468 	case SYSLOG_ACTION_READ_CLEAR:
1469 		clear = true;
1470 		/* FALL THRU */
1471 	/* Read last kernel messages */
1472 	case SYSLOG_ACTION_READ_ALL:
1473 		if (!buf || len < 0)
1474 			return -EINVAL;
1475 		if (!len)
1476 			return 0;
1477 		if (!access_ok(VERIFY_WRITE, buf, len))
1478 			return -EFAULT;
1479 		error = syslog_print_all(buf, len, clear);
1480 		break;
1481 	/* Clear ring buffer */
1482 	case SYSLOG_ACTION_CLEAR:
1483 		syslog_clear();
1484 		break;
1485 	/* Disable logging to console */
1486 	case SYSLOG_ACTION_CONSOLE_OFF:
1487 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1488 			saved_console_loglevel = console_loglevel;
1489 		console_loglevel = minimum_console_loglevel;
1490 		break;
1491 	/* Enable logging to console */
1492 	case SYSLOG_ACTION_CONSOLE_ON:
1493 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1494 			console_loglevel = saved_console_loglevel;
1495 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1496 		}
1497 		break;
1498 	/* Set level of messages printed to console */
1499 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1500 		if (len < 1 || len > 8)
1501 			return -EINVAL;
1502 		if (len < minimum_console_loglevel)
1503 			len = minimum_console_loglevel;
1504 		console_loglevel = len;
1505 		/* Implicitly re-enable logging to console */
1506 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1507 		break;
1508 	/* Number of chars in the log buffer */
1509 	case SYSLOG_ACTION_SIZE_UNREAD:
1510 		logbuf_lock_irq();
1511 		if (syslog_seq < log_first_seq) {
1512 			/* messages are gone, move to first one */
1513 			syslog_seq = log_first_seq;
1514 			syslog_idx = log_first_idx;
1515 			syslog_partial = 0;
1516 		}
1517 		if (source == SYSLOG_FROM_PROC) {
1518 			/*
1519 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1520 			 * for pending data, not the size; return the count of
1521 			 * records, not the length.
1522 			 */
1523 			error = log_next_seq - syslog_seq;
1524 		} else {
1525 			u64 seq = syslog_seq;
1526 			u32 idx = syslog_idx;
1527 
1528 			while (seq < log_next_seq) {
1529 				struct printk_log *msg = log_from_idx(idx);
1530 
1531 				error += msg_print_text(msg, true, NULL, 0);
1532 				idx = log_next(idx);
1533 				seq++;
1534 			}
1535 			error -= syslog_partial;
1536 		}
1537 		logbuf_unlock_irq();
1538 		break;
1539 	/* Size of the log buffer */
1540 	case SYSLOG_ACTION_SIZE_BUFFER:
1541 		error = log_buf_len;
1542 		break;
1543 	default:
1544 		error = -EINVAL;
1545 		break;
1546 	}
1547 
1548 	return error;
1549 }
1550 
1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1552 {
1553 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1554 }
1555 
1556 /*
1557  * Special console_lock variants that help to reduce the risk of soft-lockups.
1558  * They allow to pass console_lock to another printk() call using a busy wait.
1559  */
1560 
1561 #ifdef CONFIG_LOCKDEP
1562 static struct lockdep_map console_owner_dep_map = {
1563 	.name = "console_owner"
1564 };
1565 #endif
1566 
1567 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1568 static struct task_struct *console_owner;
1569 static bool console_waiter;
1570 
1571 /**
1572  * console_lock_spinning_enable - mark beginning of code where another
1573  *	thread might safely busy wait
1574  *
1575  * This basically converts console_lock into a spinlock. This marks
1576  * the section where the console_lock owner can not sleep, because
1577  * there may be a waiter spinning (like a spinlock). Also it must be
1578  * ready to hand over the lock at the end of the section.
1579  */
1580 static void console_lock_spinning_enable(void)
1581 {
1582 	raw_spin_lock(&console_owner_lock);
1583 	console_owner = current;
1584 	raw_spin_unlock(&console_owner_lock);
1585 
1586 	/* The waiter may spin on us after setting console_owner */
1587 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1588 }
1589 
1590 /**
1591  * console_lock_spinning_disable_and_check - mark end of code where another
1592  *	thread was able to busy wait and check if there is a waiter
1593  *
1594  * This is called at the end of the section where spinning is allowed.
1595  * It has two functions. First, it is a signal that it is no longer
1596  * safe to start busy waiting for the lock. Second, it checks if
1597  * there is a busy waiter and passes the lock rights to her.
1598  *
1599  * Important: Callers lose the lock if there was a busy waiter.
1600  *	They must not touch items synchronized by console_lock
1601  *	in this case.
1602  *
1603  * Return: 1 if the lock rights were passed, 0 otherwise.
1604  */
1605 static int console_lock_spinning_disable_and_check(void)
1606 {
1607 	int waiter;
1608 
1609 	raw_spin_lock(&console_owner_lock);
1610 	waiter = READ_ONCE(console_waiter);
1611 	console_owner = NULL;
1612 	raw_spin_unlock(&console_owner_lock);
1613 
1614 	if (!waiter) {
1615 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1616 		return 0;
1617 	}
1618 
1619 	/* The waiter is now free to continue */
1620 	WRITE_ONCE(console_waiter, false);
1621 
1622 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1623 
1624 	/*
1625 	 * Hand off console_lock to waiter. The waiter will perform
1626 	 * the up(). After this, the waiter is the console_lock owner.
1627 	 */
1628 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1629 	return 1;
1630 }
1631 
1632 /**
1633  * console_trylock_spinning - try to get console_lock by busy waiting
1634  *
1635  * This allows to busy wait for the console_lock when the current
1636  * owner is running in specially marked sections. It means that
1637  * the current owner is running and cannot reschedule until it
1638  * is ready to lose the lock.
1639  *
1640  * Return: 1 if we got the lock, 0 othrewise
1641  */
1642 static int console_trylock_spinning(void)
1643 {
1644 	struct task_struct *owner = NULL;
1645 	bool waiter;
1646 	bool spin = false;
1647 	unsigned long flags;
1648 
1649 	if (console_trylock())
1650 		return 1;
1651 
1652 	printk_safe_enter_irqsave(flags);
1653 
1654 	raw_spin_lock(&console_owner_lock);
1655 	owner = READ_ONCE(console_owner);
1656 	waiter = READ_ONCE(console_waiter);
1657 	if (!waiter && owner && owner != current) {
1658 		WRITE_ONCE(console_waiter, true);
1659 		spin = true;
1660 	}
1661 	raw_spin_unlock(&console_owner_lock);
1662 
1663 	/*
1664 	 * If there is an active printk() writing to the
1665 	 * consoles, instead of having it write our data too,
1666 	 * see if we can offload that load from the active
1667 	 * printer, and do some printing ourselves.
1668 	 * Go into a spin only if there isn't already a waiter
1669 	 * spinning, and there is an active printer, and
1670 	 * that active printer isn't us (recursive printk?).
1671 	 */
1672 	if (!spin) {
1673 		printk_safe_exit_irqrestore(flags);
1674 		return 0;
1675 	}
1676 
1677 	/* We spin waiting for the owner to release us */
1678 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1679 	/* Owner will clear console_waiter on hand off */
1680 	while (READ_ONCE(console_waiter))
1681 		cpu_relax();
1682 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1683 
1684 	printk_safe_exit_irqrestore(flags);
1685 	/*
1686 	 * The owner passed the console lock to us.
1687 	 * Since we did not spin on console lock, annotate
1688 	 * this as a trylock. Otherwise lockdep will
1689 	 * complain.
1690 	 */
1691 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1692 
1693 	return 1;
1694 }
1695 
1696 /*
1697  * Call the console drivers, asking them to write out
1698  * log_buf[start] to log_buf[end - 1].
1699  * The console_lock must be held.
1700  */
1701 static void call_console_drivers(const char *ext_text, size_t ext_len,
1702 				 const char *text, size_t len)
1703 {
1704 	struct console *con;
1705 
1706 	trace_console_rcuidle(text, len);
1707 
1708 	if (!console_drivers)
1709 		return;
1710 
1711 	for_each_console(con) {
1712 		if (exclusive_console && con != exclusive_console)
1713 			continue;
1714 		if (!(con->flags & CON_ENABLED))
1715 			continue;
1716 		if (!con->write)
1717 			continue;
1718 		if (!cpu_online(smp_processor_id()) &&
1719 		    !(con->flags & CON_ANYTIME))
1720 			continue;
1721 		if (con->flags & CON_EXTENDED)
1722 			con->write(con, ext_text, ext_len);
1723 		else
1724 			con->write(con, text, len);
1725 	}
1726 }
1727 
1728 int printk_delay_msec __read_mostly;
1729 
1730 static inline void printk_delay(void)
1731 {
1732 	if (unlikely(printk_delay_msec)) {
1733 		int m = printk_delay_msec;
1734 
1735 		while (m--) {
1736 			mdelay(1);
1737 			touch_nmi_watchdog();
1738 		}
1739 	}
1740 }
1741 
1742 /*
1743  * Continuation lines are buffered, and not committed to the record buffer
1744  * until the line is complete, or a race forces it. The line fragments
1745  * though, are printed immediately to the consoles to ensure everything has
1746  * reached the console in case of a kernel crash.
1747  */
1748 static struct cont {
1749 	char buf[LOG_LINE_MAX];
1750 	size_t len;			/* length == 0 means unused buffer */
1751 	struct task_struct *owner;	/* task of first print*/
1752 	u64 ts_nsec;			/* time of first print */
1753 	u8 level;			/* log level of first message */
1754 	u8 facility;			/* log facility of first message */
1755 	enum log_flags flags;		/* prefix, newline flags */
1756 } cont;
1757 
1758 static void cont_flush(void)
1759 {
1760 	if (cont.len == 0)
1761 		return;
1762 
1763 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1764 		  NULL, 0, cont.buf, cont.len);
1765 	cont.len = 0;
1766 }
1767 
1768 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1769 {
1770 	/*
1771 	 * If ext consoles are present, flush and skip in-kernel
1772 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1773 	 * the line gets too long, split it up in separate records.
1774 	 */
1775 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1776 		cont_flush();
1777 		return false;
1778 	}
1779 
1780 	if (!cont.len) {
1781 		cont.facility = facility;
1782 		cont.level = level;
1783 		cont.owner = current;
1784 		cont.ts_nsec = local_clock();
1785 		cont.flags = flags;
1786 	}
1787 
1788 	memcpy(cont.buf + cont.len, text, len);
1789 	cont.len += len;
1790 
1791 	// The original flags come from the first line,
1792 	// but later continuations can add a newline.
1793 	if (flags & LOG_NEWLINE) {
1794 		cont.flags |= LOG_NEWLINE;
1795 		cont_flush();
1796 	}
1797 
1798 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1799 		cont_flush();
1800 
1801 	return true;
1802 }
1803 
1804 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1805 {
1806 	/*
1807 	 * If an earlier line was buffered, and we're a continuation
1808 	 * write from the same process, try to add it to the buffer.
1809 	 */
1810 	if (cont.len) {
1811 		if (cont.owner == current && (lflags & LOG_CONT)) {
1812 			if (cont_add(facility, level, lflags, text, text_len))
1813 				return text_len;
1814 		}
1815 		/* Otherwise, make sure it's flushed */
1816 		cont_flush();
1817 	}
1818 
1819 	/* Skip empty continuation lines that couldn't be added - they just flush */
1820 	if (!text_len && (lflags & LOG_CONT))
1821 		return 0;
1822 
1823 	/* If it doesn't end in a newline, try to buffer the current line */
1824 	if (!(lflags & LOG_NEWLINE)) {
1825 		if (cont_add(facility, level, lflags, text, text_len))
1826 			return text_len;
1827 	}
1828 
1829 	/* Store it in the record log */
1830 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1831 }
1832 
1833 /* Must be called under logbuf_lock. */
1834 int vprintk_store(int facility, int level,
1835 		  const char *dict, size_t dictlen,
1836 		  const char *fmt, va_list args)
1837 {
1838 	static char textbuf[LOG_LINE_MAX];
1839 	char *text = textbuf;
1840 	size_t text_len;
1841 	enum log_flags lflags = 0;
1842 
1843 	/*
1844 	 * The printf needs to come first; we need the syslog
1845 	 * prefix which might be passed-in as a parameter.
1846 	 */
1847 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1848 
1849 	/* mark and strip a trailing newline */
1850 	if (text_len && text[text_len-1] == '\n') {
1851 		text_len--;
1852 		lflags |= LOG_NEWLINE;
1853 	}
1854 
1855 	/* strip kernel syslog prefix and extract log level or control flags */
1856 	if (facility == 0) {
1857 		int kern_level;
1858 
1859 		while ((kern_level = printk_get_level(text)) != 0) {
1860 			switch (kern_level) {
1861 			case '0' ... '7':
1862 				if (level == LOGLEVEL_DEFAULT)
1863 					level = kern_level - '0';
1864 				/* fallthrough */
1865 			case 'd':	/* KERN_DEFAULT */
1866 				lflags |= LOG_PREFIX;
1867 				break;
1868 			case 'c':	/* KERN_CONT */
1869 				lflags |= LOG_CONT;
1870 			}
1871 
1872 			text_len -= 2;
1873 			text += 2;
1874 		}
1875 	}
1876 
1877 	if (level == LOGLEVEL_DEFAULT)
1878 		level = default_message_loglevel;
1879 
1880 	if (dict)
1881 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1882 
1883 	return log_output(facility, level, lflags,
1884 			  dict, dictlen, text, text_len);
1885 }
1886 
1887 asmlinkage int vprintk_emit(int facility, int level,
1888 			    const char *dict, size_t dictlen,
1889 			    const char *fmt, va_list args)
1890 {
1891 	int printed_len;
1892 	bool in_sched = false;
1893 	unsigned long flags;
1894 
1895 	if (level == LOGLEVEL_SCHED) {
1896 		level = LOGLEVEL_DEFAULT;
1897 		in_sched = true;
1898 	}
1899 
1900 	boot_delay_msec(level);
1901 	printk_delay();
1902 
1903 	/* This stops the holder of console_sem just where we want him */
1904 	logbuf_lock_irqsave(flags);
1905 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1906 	logbuf_unlock_irqrestore(flags);
1907 
1908 	/* If called from the scheduler, we can not call up(). */
1909 	if (!in_sched) {
1910 		/*
1911 		 * Disable preemption to avoid being preempted while holding
1912 		 * console_sem which would prevent anyone from printing to
1913 		 * console
1914 		 */
1915 		preempt_disable();
1916 		/*
1917 		 * Try to acquire and then immediately release the console
1918 		 * semaphore.  The release will print out buffers and wake up
1919 		 * /dev/kmsg and syslog() users.
1920 		 */
1921 		if (console_trylock_spinning())
1922 			console_unlock();
1923 		preempt_enable();
1924 	}
1925 
1926 	wake_up_klogd();
1927 	return printed_len;
1928 }
1929 EXPORT_SYMBOL(vprintk_emit);
1930 
1931 asmlinkage int vprintk(const char *fmt, va_list args)
1932 {
1933 	return vprintk_func(fmt, args);
1934 }
1935 EXPORT_SYMBOL(vprintk);
1936 
1937 asmlinkage int printk_emit(int facility, int level,
1938 			   const char *dict, size_t dictlen,
1939 			   const char *fmt, ...)
1940 {
1941 	va_list args;
1942 	int r;
1943 
1944 	va_start(args, fmt);
1945 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1946 	va_end(args);
1947 
1948 	return r;
1949 }
1950 EXPORT_SYMBOL(printk_emit);
1951 
1952 int vprintk_default(const char *fmt, va_list args)
1953 {
1954 	int r;
1955 
1956 #ifdef CONFIG_KGDB_KDB
1957 	/* Allow to pass printk() to kdb but avoid a recursion. */
1958 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1959 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1960 		return r;
1961 	}
1962 #endif
1963 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1964 
1965 	return r;
1966 }
1967 EXPORT_SYMBOL_GPL(vprintk_default);
1968 
1969 /**
1970  * printk - print a kernel message
1971  * @fmt: format string
1972  *
1973  * This is printk(). It can be called from any context. We want it to work.
1974  *
1975  * We try to grab the console_lock. If we succeed, it's easy - we log the
1976  * output and call the console drivers.  If we fail to get the semaphore, we
1977  * place the output into the log buffer and return. The current holder of
1978  * the console_sem will notice the new output in console_unlock(); and will
1979  * send it to the consoles before releasing the lock.
1980  *
1981  * One effect of this deferred printing is that code which calls printk() and
1982  * then changes console_loglevel may break. This is because console_loglevel
1983  * is inspected when the actual printing occurs.
1984  *
1985  * See also:
1986  * printf(3)
1987  *
1988  * See the vsnprintf() documentation for format string extensions over C99.
1989  */
1990 asmlinkage __visible int printk(const char *fmt, ...)
1991 {
1992 	va_list args;
1993 	int r;
1994 
1995 	va_start(args, fmt);
1996 	r = vprintk_func(fmt, args);
1997 	va_end(args);
1998 
1999 	return r;
2000 }
2001 EXPORT_SYMBOL(printk);
2002 
2003 #else /* CONFIG_PRINTK */
2004 
2005 #define LOG_LINE_MAX		0
2006 #define PREFIX_MAX		0
2007 
2008 static u64 syslog_seq;
2009 static u32 syslog_idx;
2010 static u64 console_seq;
2011 static u32 console_idx;
2012 static u64 log_first_seq;
2013 static u32 log_first_idx;
2014 static u64 log_next_seq;
2015 static char *log_text(const struct printk_log *msg) { return NULL; }
2016 static char *log_dict(const struct printk_log *msg) { return NULL; }
2017 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2018 static u32 log_next(u32 idx) { return 0; }
2019 static ssize_t msg_print_ext_header(char *buf, size_t size,
2020 				    struct printk_log *msg,
2021 				    u64 seq) { return 0; }
2022 static ssize_t msg_print_ext_body(char *buf, size_t size,
2023 				  char *dict, size_t dict_len,
2024 				  char *text, size_t text_len) { return 0; }
2025 static void console_lock_spinning_enable(void) { }
2026 static int console_lock_spinning_disable_and_check(void) { return 0; }
2027 static void call_console_drivers(const char *ext_text, size_t ext_len,
2028 				 const char *text, size_t len) {}
2029 static size_t msg_print_text(const struct printk_log *msg,
2030 			     bool syslog, char *buf, size_t size) { return 0; }
2031 static bool suppress_message_printing(int level) { return false; }
2032 
2033 #endif /* CONFIG_PRINTK */
2034 
2035 #ifdef CONFIG_EARLY_PRINTK
2036 struct console *early_console;
2037 
2038 asmlinkage __visible void early_printk(const char *fmt, ...)
2039 {
2040 	va_list ap;
2041 	char buf[512];
2042 	int n;
2043 
2044 	if (!early_console)
2045 		return;
2046 
2047 	va_start(ap, fmt);
2048 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2049 	va_end(ap);
2050 
2051 	early_console->write(early_console, buf, n);
2052 }
2053 #endif
2054 
2055 static int __add_preferred_console(char *name, int idx, char *options,
2056 				   char *brl_options)
2057 {
2058 	struct console_cmdline *c;
2059 	int i;
2060 
2061 	/*
2062 	 *	See if this tty is not yet registered, and
2063 	 *	if we have a slot free.
2064 	 */
2065 	for (i = 0, c = console_cmdline;
2066 	     i < MAX_CMDLINECONSOLES && c->name[0];
2067 	     i++, c++) {
2068 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2069 			if (!brl_options)
2070 				preferred_console = i;
2071 			return 0;
2072 		}
2073 	}
2074 	if (i == MAX_CMDLINECONSOLES)
2075 		return -E2BIG;
2076 	if (!brl_options)
2077 		preferred_console = i;
2078 	strlcpy(c->name, name, sizeof(c->name));
2079 	c->options = options;
2080 	braille_set_options(c, brl_options);
2081 
2082 	c->index = idx;
2083 	return 0;
2084 }
2085 
2086 static int __init console_msg_format_setup(char *str)
2087 {
2088 	if (!strcmp(str, "syslog"))
2089 		console_msg_format = MSG_FORMAT_SYSLOG;
2090 	if (!strcmp(str, "default"))
2091 		console_msg_format = MSG_FORMAT_DEFAULT;
2092 	return 1;
2093 }
2094 __setup("console_msg_format=", console_msg_format_setup);
2095 
2096 /*
2097  * Set up a console.  Called via do_early_param() in init/main.c
2098  * for each "console=" parameter in the boot command line.
2099  */
2100 static int __init console_setup(char *str)
2101 {
2102 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2103 	char *s, *options, *brl_options = NULL;
2104 	int idx;
2105 
2106 	if (_braille_console_setup(&str, &brl_options))
2107 		return 1;
2108 
2109 	/*
2110 	 * Decode str into name, index, options.
2111 	 */
2112 	if (str[0] >= '0' && str[0] <= '9') {
2113 		strcpy(buf, "ttyS");
2114 		strncpy(buf + 4, str, sizeof(buf) - 5);
2115 	} else {
2116 		strncpy(buf, str, sizeof(buf) - 1);
2117 	}
2118 	buf[sizeof(buf) - 1] = 0;
2119 	options = strchr(str, ',');
2120 	if (options)
2121 		*(options++) = 0;
2122 #ifdef __sparc__
2123 	if (!strcmp(str, "ttya"))
2124 		strcpy(buf, "ttyS0");
2125 	if (!strcmp(str, "ttyb"))
2126 		strcpy(buf, "ttyS1");
2127 #endif
2128 	for (s = buf; *s; s++)
2129 		if (isdigit(*s) || *s == ',')
2130 			break;
2131 	idx = simple_strtoul(s, NULL, 10);
2132 	*s = 0;
2133 
2134 	__add_preferred_console(buf, idx, options, brl_options);
2135 	console_set_on_cmdline = 1;
2136 	return 1;
2137 }
2138 __setup("console=", console_setup);
2139 
2140 /**
2141  * add_preferred_console - add a device to the list of preferred consoles.
2142  * @name: device name
2143  * @idx: device index
2144  * @options: options for this console
2145  *
2146  * The last preferred console added will be used for kernel messages
2147  * and stdin/out/err for init.  Normally this is used by console_setup
2148  * above to handle user-supplied console arguments; however it can also
2149  * be used by arch-specific code either to override the user or more
2150  * commonly to provide a default console (ie from PROM variables) when
2151  * the user has not supplied one.
2152  */
2153 int add_preferred_console(char *name, int idx, char *options)
2154 {
2155 	return __add_preferred_console(name, idx, options, NULL);
2156 }
2157 
2158 bool console_suspend_enabled = true;
2159 EXPORT_SYMBOL(console_suspend_enabled);
2160 
2161 static int __init console_suspend_disable(char *str)
2162 {
2163 	console_suspend_enabled = false;
2164 	return 1;
2165 }
2166 __setup("no_console_suspend", console_suspend_disable);
2167 module_param_named(console_suspend, console_suspend_enabled,
2168 		bool, S_IRUGO | S_IWUSR);
2169 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2170 	" and hibernate operations");
2171 
2172 /**
2173  * suspend_console - suspend the console subsystem
2174  *
2175  * This disables printk() while we go into suspend states
2176  */
2177 void suspend_console(void)
2178 {
2179 	if (!console_suspend_enabled)
2180 		return;
2181 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2182 	console_lock();
2183 	console_suspended = 1;
2184 	up_console_sem();
2185 }
2186 
2187 void resume_console(void)
2188 {
2189 	if (!console_suspend_enabled)
2190 		return;
2191 	down_console_sem();
2192 	console_suspended = 0;
2193 	console_unlock();
2194 }
2195 
2196 /**
2197  * console_cpu_notify - print deferred console messages after CPU hotplug
2198  * @cpu: unused
2199  *
2200  * If printk() is called from a CPU that is not online yet, the messages
2201  * will be printed on the console only if there are CON_ANYTIME consoles.
2202  * This function is called when a new CPU comes online (or fails to come
2203  * up) or goes offline.
2204  */
2205 static int console_cpu_notify(unsigned int cpu)
2206 {
2207 	if (!cpuhp_tasks_frozen) {
2208 		/* If trylock fails, someone else is doing the printing */
2209 		if (console_trylock())
2210 			console_unlock();
2211 	}
2212 	return 0;
2213 }
2214 
2215 /**
2216  * console_lock - lock the console system for exclusive use.
2217  *
2218  * Acquires a lock which guarantees that the caller has
2219  * exclusive access to the console system and the console_drivers list.
2220  *
2221  * Can sleep, returns nothing.
2222  */
2223 void console_lock(void)
2224 {
2225 	might_sleep();
2226 
2227 	down_console_sem();
2228 	if (console_suspended)
2229 		return;
2230 	console_locked = 1;
2231 	console_may_schedule = 1;
2232 }
2233 EXPORT_SYMBOL(console_lock);
2234 
2235 /**
2236  * console_trylock - try to lock the console system for exclusive use.
2237  *
2238  * Try to acquire a lock which guarantees that the caller has exclusive
2239  * access to the console system and the console_drivers list.
2240  *
2241  * returns 1 on success, and 0 on failure to acquire the lock.
2242  */
2243 int console_trylock(void)
2244 {
2245 	if (down_trylock_console_sem())
2246 		return 0;
2247 	if (console_suspended) {
2248 		up_console_sem();
2249 		return 0;
2250 	}
2251 	console_locked = 1;
2252 	console_may_schedule = 0;
2253 	return 1;
2254 }
2255 EXPORT_SYMBOL(console_trylock);
2256 
2257 int is_console_locked(void)
2258 {
2259 	return console_locked;
2260 }
2261 EXPORT_SYMBOL(is_console_locked);
2262 
2263 /*
2264  * Check if we have any console that is capable of printing while cpu is
2265  * booting or shutting down. Requires console_sem.
2266  */
2267 static int have_callable_console(void)
2268 {
2269 	struct console *con;
2270 
2271 	for_each_console(con)
2272 		if ((con->flags & CON_ENABLED) &&
2273 				(con->flags & CON_ANYTIME))
2274 			return 1;
2275 
2276 	return 0;
2277 }
2278 
2279 /*
2280  * Can we actually use the console at this time on this cpu?
2281  *
2282  * Console drivers may assume that per-cpu resources have been allocated. So
2283  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2284  * call them until this CPU is officially up.
2285  */
2286 static inline int can_use_console(void)
2287 {
2288 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2289 }
2290 
2291 /**
2292  * console_unlock - unlock the console system
2293  *
2294  * Releases the console_lock which the caller holds on the console system
2295  * and the console driver list.
2296  *
2297  * While the console_lock was held, console output may have been buffered
2298  * by printk().  If this is the case, console_unlock(); emits
2299  * the output prior to releasing the lock.
2300  *
2301  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2302  *
2303  * console_unlock(); may be called from any context.
2304  */
2305 void console_unlock(void)
2306 {
2307 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2308 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2309 	unsigned long flags;
2310 	bool do_cond_resched, retry;
2311 
2312 	if (console_suspended) {
2313 		up_console_sem();
2314 		return;
2315 	}
2316 
2317 	/*
2318 	 * Console drivers are called with interrupts disabled, so
2319 	 * @console_may_schedule should be cleared before; however, we may
2320 	 * end up dumping a lot of lines, for example, if called from
2321 	 * console registration path, and should invoke cond_resched()
2322 	 * between lines if allowable.  Not doing so can cause a very long
2323 	 * scheduling stall on a slow console leading to RCU stall and
2324 	 * softlockup warnings which exacerbate the issue with more
2325 	 * messages practically incapacitating the system.
2326 	 *
2327 	 * console_trylock() is not able to detect the preemptive
2328 	 * context reliably. Therefore the value must be stored before
2329 	 * and cleared after the the "again" goto label.
2330 	 */
2331 	do_cond_resched = console_may_schedule;
2332 again:
2333 	console_may_schedule = 0;
2334 
2335 	/*
2336 	 * We released the console_sem lock, so we need to recheck if
2337 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2338 	 * console.
2339 	 */
2340 	if (!can_use_console()) {
2341 		console_locked = 0;
2342 		up_console_sem();
2343 		return;
2344 	}
2345 
2346 	for (;;) {
2347 		struct printk_log *msg;
2348 		size_t ext_len = 0;
2349 		size_t len;
2350 
2351 		printk_safe_enter_irqsave(flags);
2352 		raw_spin_lock(&logbuf_lock);
2353 		if (console_seq < log_first_seq) {
2354 			len = sprintf(text, "** %u printk messages dropped **\n",
2355 				      (unsigned)(log_first_seq - console_seq));
2356 
2357 			/* messages are gone, move to first one */
2358 			console_seq = log_first_seq;
2359 			console_idx = log_first_idx;
2360 		} else {
2361 			len = 0;
2362 		}
2363 skip:
2364 		if (console_seq == log_next_seq)
2365 			break;
2366 
2367 		msg = log_from_idx(console_idx);
2368 		if (suppress_message_printing(msg->level)) {
2369 			/*
2370 			 * Skip record we have buffered and already printed
2371 			 * directly to the console when we received it, and
2372 			 * record that has level above the console loglevel.
2373 			 */
2374 			console_idx = log_next(console_idx);
2375 			console_seq++;
2376 			goto skip;
2377 		}
2378 
2379 		len += msg_print_text(msg,
2380 				console_msg_format & MSG_FORMAT_SYSLOG,
2381 				text + len,
2382 				sizeof(text) - len);
2383 		if (nr_ext_console_drivers) {
2384 			ext_len = msg_print_ext_header(ext_text,
2385 						sizeof(ext_text),
2386 						msg, console_seq);
2387 			ext_len += msg_print_ext_body(ext_text + ext_len,
2388 						sizeof(ext_text) - ext_len,
2389 						log_dict(msg), msg->dict_len,
2390 						log_text(msg), msg->text_len);
2391 		}
2392 		console_idx = log_next(console_idx);
2393 		console_seq++;
2394 		raw_spin_unlock(&logbuf_lock);
2395 
2396 		/*
2397 		 * While actively printing out messages, if another printk()
2398 		 * were to occur on another CPU, it may wait for this one to
2399 		 * finish. This task can not be preempted if there is a
2400 		 * waiter waiting to take over.
2401 		 */
2402 		console_lock_spinning_enable();
2403 
2404 		stop_critical_timings();	/* don't trace print latency */
2405 		call_console_drivers(ext_text, ext_len, text, len);
2406 		start_critical_timings();
2407 
2408 		if (console_lock_spinning_disable_and_check()) {
2409 			printk_safe_exit_irqrestore(flags);
2410 			return;
2411 		}
2412 
2413 		printk_safe_exit_irqrestore(flags);
2414 
2415 		if (do_cond_resched)
2416 			cond_resched();
2417 	}
2418 
2419 	console_locked = 0;
2420 
2421 	/* Release the exclusive_console once it is used */
2422 	if (unlikely(exclusive_console))
2423 		exclusive_console = NULL;
2424 
2425 	raw_spin_unlock(&logbuf_lock);
2426 
2427 	up_console_sem();
2428 
2429 	/*
2430 	 * Someone could have filled up the buffer again, so re-check if there's
2431 	 * something to flush. In case we cannot trylock the console_sem again,
2432 	 * there's a new owner and the console_unlock() from them will do the
2433 	 * flush, no worries.
2434 	 */
2435 	raw_spin_lock(&logbuf_lock);
2436 	retry = console_seq != log_next_seq;
2437 	raw_spin_unlock(&logbuf_lock);
2438 	printk_safe_exit_irqrestore(flags);
2439 
2440 	if (retry && console_trylock())
2441 		goto again;
2442 }
2443 EXPORT_SYMBOL(console_unlock);
2444 
2445 /**
2446  * console_conditional_schedule - yield the CPU if required
2447  *
2448  * If the console code is currently allowed to sleep, and
2449  * if this CPU should yield the CPU to another task, do
2450  * so here.
2451  *
2452  * Must be called within console_lock();.
2453  */
2454 void __sched console_conditional_schedule(void)
2455 {
2456 	if (console_may_schedule)
2457 		cond_resched();
2458 }
2459 EXPORT_SYMBOL(console_conditional_schedule);
2460 
2461 void console_unblank(void)
2462 {
2463 	struct console *c;
2464 
2465 	/*
2466 	 * console_unblank can no longer be called in interrupt context unless
2467 	 * oops_in_progress is set to 1..
2468 	 */
2469 	if (oops_in_progress) {
2470 		if (down_trylock_console_sem() != 0)
2471 			return;
2472 	} else
2473 		console_lock();
2474 
2475 	console_locked = 1;
2476 	console_may_schedule = 0;
2477 	for_each_console(c)
2478 		if ((c->flags & CON_ENABLED) && c->unblank)
2479 			c->unblank();
2480 	console_unlock();
2481 }
2482 
2483 /**
2484  * console_flush_on_panic - flush console content on panic
2485  *
2486  * Immediately output all pending messages no matter what.
2487  */
2488 void console_flush_on_panic(void)
2489 {
2490 	/*
2491 	 * If someone else is holding the console lock, trylock will fail
2492 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2493 	 * that messages are flushed out.  As this can be called from any
2494 	 * context and we don't want to get preempted while flushing,
2495 	 * ensure may_schedule is cleared.
2496 	 */
2497 	console_trylock();
2498 	console_may_schedule = 0;
2499 	console_unlock();
2500 }
2501 
2502 /*
2503  * Return the console tty driver structure and its associated index
2504  */
2505 struct tty_driver *console_device(int *index)
2506 {
2507 	struct console *c;
2508 	struct tty_driver *driver = NULL;
2509 
2510 	console_lock();
2511 	for_each_console(c) {
2512 		if (!c->device)
2513 			continue;
2514 		driver = c->device(c, index);
2515 		if (driver)
2516 			break;
2517 	}
2518 	console_unlock();
2519 	return driver;
2520 }
2521 
2522 /*
2523  * Prevent further output on the passed console device so that (for example)
2524  * serial drivers can disable console output before suspending a port, and can
2525  * re-enable output afterwards.
2526  */
2527 void console_stop(struct console *console)
2528 {
2529 	console_lock();
2530 	console->flags &= ~CON_ENABLED;
2531 	console_unlock();
2532 }
2533 EXPORT_SYMBOL(console_stop);
2534 
2535 void console_start(struct console *console)
2536 {
2537 	console_lock();
2538 	console->flags |= CON_ENABLED;
2539 	console_unlock();
2540 }
2541 EXPORT_SYMBOL(console_start);
2542 
2543 static int __read_mostly keep_bootcon;
2544 
2545 static int __init keep_bootcon_setup(char *str)
2546 {
2547 	keep_bootcon = 1;
2548 	pr_info("debug: skip boot console de-registration.\n");
2549 
2550 	return 0;
2551 }
2552 
2553 early_param("keep_bootcon", keep_bootcon_setup);
2554 
2555 /*
2556  * The console driver calls this routine during kernel initialization
2557  * to register the console printing procedure with printk() and to
2558  * print any messages that were printed by the kernel before the
2559  * console driver was initialized.
2560  *
2561  * This can happen pretty early during the boot process (because of
2562  * early_printk) - sometimes before setup_arch() completes - be careful
2563  * of what kernel features are used - they may not be initialised yet.
2564  *
2565  * There are two types of consoles - bootconsoles (early_printk) and
2566  * "real" consoles (everything which is not a bootconsole) which are
2567  * handled differently.
2568  *  - Any number of bootconsoles can be registered at any time.
2569  *  - As soon as a "real" console is registered, all bootconsoles
2570  *    will be unregistered automatically.
2571  *  - Once a "real" console is registered, any attempt to register a
2572  *    bootconsoles will be rejected
2573  */
2574 void register_console(struct console *newcon)
2575 {
2576 	int i;
2577 	unsigned long flags;
2578 	struct console *bcon = NULL;
2579 	struct console_cmdline *c;
2580 	static bool has_preferred;
2581 
2582 	if (console_drivers)
2583 		for_each_console(bcon)
2584 			if (WARN(bcon == newcon,
2585 					"console '%s%d' already registered\n",
2586 					bcon->name, bcon->index))
2587 				return;
2588 
2589 	/*
2590 	 * before we register a new CON_BOOT console, make sure we don't
2591 	 * already have a valid console
2592 	 */
2593 	if (console_drivers && newcon->flags & CON_BOOT) {
2594 		/* find the last or real console */
2595 		for_each_console(bcon) {
2596 			if (!(bcon->flags & CON_BOOT)) {
2597 				pr_info("Too late to register bootconsole %s%d\n",
2598 					newcon->name, newcon->index);
2599 				return;
2600 			}
2601 		}
2602 	}
2603 
2604 	if (console_drivers && console_drivers->flags & CON_BOOT)
2605 		bcon = console_drivers;
2606 
2607 	if (!has_preferred || bcon || !console_drivers)
2608 		has_preferred = preferred_console >= 0;
2609 
2610 	/*
2611 	 *	See if we want to use this console driver. If we
2612 	 *	didn't select a console we take the first one
2613 	 *	that registers here.
2614 	 */
2615 	if (!has_preferred) {
2616 		if (newcon->index < 0)
2617 			newcon->index = 0;
2618 		if (newcon->setup == NULL ||
2619 		    newcon->setup(newcon, NULL) == 0) {
2620 			newcon->flags |= CON_ENABLED;
2621 			if (newcon->device) {
2622 				newcon->flags |= CON_CONSDEV;
2623 				has_preferred = true;
2624 			}
2625 		}
2626 	}
2627 
2628 	/*
2629 	 *	See if this console matches one we selected on
2630 	 *	the command line.
2631 	 */
2632 	for (i = 0, c = console_cmdline;
2633 	     i < MAX_CMDLINECONSOLES && c->name[0];
2634 	     i++, c++) {
2635 		if (!newcon->match ||
2636 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2637 			/* default matching */
2638 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2639 			if (strcmp(c->name, newcon->name) != 0)
2640 				continue;
2641 			if (newcon->index >= 0 &&
2642 			    newcon->index != c->index)
2643 				continue;
2644 			if (newcon->index < 0)
2645 				newcon->index = c->index;
2646 
2647 			if (_braille_register_console(newcon, c))
2648 				return;
2649 
2650 			if (newcon->setup &&
2651 			    newcon->setup(newcon, c->options) != 0)
2652 				break;
2653 		}
2654 
2655 		newcon->flags |= CON_ENABLED;
2656 		if (i == preferred_console) {
2657 			newcon->flags |= CON_CONSDEV;
2658 			has_preferred = true;
2659 		}
2660 		break;
2661 	}
2662 
2663 	if (!(newcon->flags & CON_ENABLED))
2664 		return;
2665 
2666 	/*
2667 	 * If we have a bootconsole, and are switching to a real console,
2668 	 * don't print everything out again, since when the boot console, and
2669 	 * the real console are the same physical device, it's annoying to
2670 	 * see the beginning boot messages twice
2671 	 */
2672 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2673 		newcon->flags &= ~CON_PRINTBUFFER;
2674 
2675 	/*
2676 	 *	Put this console in the list - keep the
2677 	 *	preferred driver at the head of the list.
2678 	 */
2679 	console_lock();
2680 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2681 		newcon->next = console_drivers;
2682 		console_drivers = newcon;
2683 		if (newcon->next)
2684 			newcon->next->flags &= ~CON_CONSDEV;
2685 	} else {
2686 		newcon->next = console_drivers->next;
2687 		console_drivers->next = newcon;
2688 	}
2689 
2690 	if (newcon->flags & CON_EXTENDED)
2691 		if (!nr_ext_console_drivers++)
2692 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2693 
2694 	if (newcon->flags & CON_PRINTBUFFER) {
2695 		/*
2696 		 * console_unlock(); will print out the buffered messages
2697 		 * for us.
2698 		 */
2699 		logbuf_lock_irqsave(flags);
2700 		console_seq = syslog_seq;
2701 		console_idx = syslog_idx;
2702 		logbuf_unlock_irqrestore(flags);
2703 		/*
2704 		 * We're about to replay the log buffer.  Only do this to the
2705 		 * just-registered console to avoid excessive message spam to
2706 		 * the already-registered consoles.
2707 		 */
2708 		exclusive_console = newcon;
2709 	}
2710 	console_unlock();
2711 	console_sysfs_notify();
2712 
2713 	/*
2714 	 * By unregistering the bootconsoles after we enable the real console
2715 	 * we get the "console xxx enabled" message on all the consoles -
2716 	 * boot consoles, real consoles, etc - this is to ensure that end
2717 	 * users know there might be something in the kernel's log buffer that
2718 	 * went to the bootconsole (that they do not see on the real console)
2719 	 */
2720 	pr_info("%sconsole [%s%d] enabled\n",
2721 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2722 		newcon->name, newcon->index);
2723 	if (bcon &&
2724 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2725 	    !keep_bootcon) {
2726 		/* We need to iterate through all boot consoles, to make
2727 		 * sure we print everything out, before we unregister them.
2728 		 */
2729 		for_each_console(bcon)
2730 			if (bcon->flags & CON_BOOT)
2731 				unregister_console(bcon);
2732 	}
2733 }
2734 EXPORT_SYMBOL(register_console);
2735 
2736 int unregister_console(struct console *console)
2737 {
2738         struct console *a, *b;
2739 	int res;
2740 
2741 	pr_info("%sconsole [%s%d] disabled\n",
2742 		(console->flags & CON_BOOT) ? "boot" : "" ,
2743 		console->name, console->index);
2744 
2745 	res = _braille_unregister_console(console);
2746 	if (res)
2747 		return res;
2748 
2749 	res = 1;
2750 	console_lock();
2751 	if (console_drivers == console) {
2752 		console_drivers=console->next;
2753 		res = 0;
2754 	} else if (console_drivers) {
2755 		for (a=console_drivers->next, b=console_drivers ;
2756 		     a; b=a, a=b->next) {
2757 			if (a == console) {
2758 				b->next = a->next;
2759 				res = 0;
2760 				break;
2761 			}
2762 		}
2763 	}
2764 
2765 	if (!res && (console->flags & CON_EXTENDED))
2766 		nr_ext_console_drivers--;
2767 
2768 	/*
2769 	 * If this isn't the last console and it has CON_CONSDEV set, we
2770 	 * need to set it on the next preferred console.
2771 	 */
2772 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2773 		console_drivers->flags |= CON_CONSDEV;
2774 
2775 	console->flags &= ~CON_ENABLED;
2776 	console_unlock();
2777 	console_sysfs_notify();
2778 	return res;
2779 }
2780 EXPORT_SYMBOL(unregister_console);
2781 
2782 /*
2783  * Initialize the console device. This is called *early*, so
2784  * we can't necessarily depend on lots of kernel help here.
2785  * Just do some early initializations, and do the complex setup
2786  * later.
2787  */
2788 void __init console_init(void)
2789 {
2790 	int ret;
2791 	initcall_t call;
2792 	initcall_entry_t *ce;
2793 
2794 	/* Setup the default TTY line discipline. */
2795 	n_tty_init();
2796 
2797 	/*
2798 	 * set up the console device so that later boot sequences can
2799 	 * inform about problems etc..
2800 	 */
2801 	ce = __con_initcall_start;
2802 	trace_initcall_level("console");
2803 	while (ce < __con_initcall_end) {
2804 		call = initcall_from_entry(ce);
2805 		trace_initcall_start(call);
2806 		ret = call();
2807 		trace_initcall_finish(call, ret);
2808 		ce++;
2809 	}
2810 }
2811 
2812 /*
2813  * Some boot consoles access data that is in the init section and which will
2814  * be discarded after the initcalls have been run. To make sure that no code
2815  * will access this data, unregister the boot consoles in a late initcall.
2816  *
2817  * If for some reason, such as deferred probe or the driver being a loadable
2818  * module, the real console hasn't registered yet at this point, there will
2819  * be a brief interval in which no messages are logged to the console, which
2820  * makes it difficult to diagnose problems that occur during this time.
2821  *
2822  * To mitigate this problem somewhat, only unregister consoles whose memory
2823  * intersects with the init section. Note that all other boot consoles will
2824  * get unregistred when the real preferred console is registered.
2825  */
2826 static int __init printk_late_init(void)
2827 {
2828 	struct console *con;
2829 	int ret;
2830 
2831 	for_each_console(con) {
2832 		if (!(con->flags & CON_BOOT))
2833 			continue;
2834 
2835 		/* Check addresses that might be used for enabled consoles. */
2836 		if (init_section_intersects(con, sizeof(*con)) ||
2837 		    init_section_contains(con->write, 0) ||
2838 		    init_section_contains(con->read, 0) ||
2839 		    init_section_contains(con->device, 0) ||
2840 		    init_section_contains(con->unblank, 0) ||
2841 		    init_section_contains(con->data, 0)) {
2842 			/*
2843 			 * Please, consider moving the reported consoles out
2844 			 * of the init section.
2845 			 */
2846 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2847 				con->name, con->index);
2848 			unregister_console(con);
2849 		}
2850 	}
2851 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2852 					console_cpu_notify);
2853 	WARN_ON(ret < 0);
2854 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2855 					console_cpu_notify, NULL);
2856 	WARN_ON(ret < 0);
2857 	return 0;
2858 }
2859 late_initcall(printk_late_init);
2860 
2861 #if defined CONFIG_PRINTK
2862 /*
2863  * Delayed printk version, for scheduler-internal messages:
2864  */
2865 #define PRINTK_PENDING_WAKEUP	0x01
2866 #define PRINTK_PENDING_OUTPUT	0x02
2867 
2868 static DEFINE_PER_CPU(int, printk_pending);
2869 
2870 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2871 {
2872 	int pending = __this_cpu_xchg(printk_pending, 0);
2873 
2874 	if (pending & PRINTK_PENDING_OUTPUT) {
2875 		/* If trylock fails, someone else is doing the printing */
2876 		if (console_trylock())
2877 			console_unlock();
2878 	}
2879 
2880 	if (pending & PRINTK_PENDING_WAKEUP)
2881 		wake_up_interruptible(&log_wait);
2882 }
2883 
2884 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2885 	.func = wake_up_klogd_work_func,
2886 	.flags = IRQ_WORK_LAZY,
2887 };
2888 
2889 void wake_up_klogd(void)
2890 {
2891 	preempt_disable();
2892 	if (waitqueue_active(&log_wait)) {
2893 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2894 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2895 	}
2896 	preempt_enable();
2897 }
2898 
2899 void defer_console_output(void)
2900 {
2901 	preempt_disable();
2902 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2903 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2904 	preempt_enable();
2905 }
2906 
2907 int vprintk_deferred(const char *fmt, va_list args)
2908 {
2909 	int r;
2910 
2911 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2912 	defer_console_output();
2913 
2914 	return r;
2915 }
2916 
2917 int printk_deferred(const char *fmt, ...)
2918 {
2919 	va_list args;
2920 	int r;
2921 
2922 	va_start(args, fmt);
2923 	r = vprintk_deferred(fmt, args);
2924 	va_end(args);
2925 
2926 	return r;
2927 }
2928 
2929 /*
2930  * printk rate limiting, lifted from the networking subsystem.
2931  *
2932  * This enforces a rate limit: not more than 10 kernel messages
2933  * every 5s to make a denial-of-service attack impossible.
2934  */
2935 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2936 
2937 int __printk_ratelimit(const char *func)
2938 {
2939 	return ___ratelimit(&printk_ratelimit_state, func);
2940 }
2941 EXPORT_SYMBOL(__printk_ratelimit);
2942 
2943 /**
2944  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2945  * @caller_jiffies: pointer to caller's state
2946  * @interval_msecs: minimum interval between prints
2947  *
2948  * printk_timed_ratelimit() returns true if more than @interval_msecs
2949  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2950  * returned true.
2951  */
2952 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2953 			unsigned int interval_msecs)
2954 {
2955 	unsigned long elapsed = jiffies - *caller_jiffies;
2956 
2957 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2958 		return false;
2959 
2960 	*caller_jiffies = jiffies;
2961 	return true;
2962 }
2963 EXPORT_SYMBOL(printk_timed_ratelimit);
2964 
2965 static DEFINE_SPINLOCK(dump_list_lock);
2966 static LIST_HEAD(dump_list);
2967 
2968 /**
2969  * kmsg_dump_register - register a kernel log dumper.
2970  * @dumper: pointer to the kmsg_dumper structure
2971  *
2972  * Adds a kernel log dumper to the system. The dump callback in the
2973  * structure will be called when the kernel oopses or panics and must be
2974  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2975  */
2976 int kmsg_dump_register(struct kmsg_dumper *dumper)
2977 {
2978 	unsigned long flags;
2979 	int err = -EBUSY;
2980 
2981 	/* The dump callback needs to be set */
2982 	if (!dumper->dump)
2983 		return -EINVAL;
2984 
2985 	spin_lock_irqsave(&dump_list_lock, flags);
2986 	/* Don't allow registering multiple times */
2987 	if (!dumper->registered) {
2988 		dumper->registered = 1;
2989 		list_add_tail_rcu(&dumper->list, &dump_list);
2990 		err = 0;
2991 	}
2992 	spin_unlock_irqrestore(&dump_list_lock, flags);
2993 
2994 	return err;
2995 }
2996 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2997 
2998 /**
2999  * kmsg_dump_unregister - unregister a kmsg dumper.
3000  * @dumper: pointer to the kmsg_dumper structure
3001  *
3002  * Removes a dump device from the system. Returns zero on success and
3003  * %-EINVAL otherwise.
3004  */
3005 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3006 {
3007 	unsigned long flags;
3008 	int err = -EINVAL;
3009 
3010 	spin_lock_irqsave(&dump_list_lock, flags);
3011 	if (dumper->registered) {
3012 		dumper->registered = 0;
3013 		list_del_rcu(&dumper->list);
3014 		err = 0;
3015 	}
3016 	spin_unlock_irqrestore(&dump_list_lock, flags);
3017 	synchronize_rcu();
3018 
3019 	return err;
3020 }
3021 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3022 
3023 static bool always_kmsg_dump;
3024 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3025 
3026 /**
3027  * kmsg_dump - dump kernel log to kernel message dumpers.
3028  * @reason: the reason (oops, panic etc) for dumping
3029  *
3030  * Call each of the registered dumper's dump() callback, which can
3031  * retrieve the kmsg records with kmsg_dump_get_line() or
3032  * kmsg_dump_get_buffer().
3033  */
3034 void kmsg_dump(enum kmsg_dump_reason reason)
3035 {
3036 	struct kmsg_dumper *dumper;
3037 	unsigned long flags;
3038 
3039 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3040 		return;
3041 
3042 	rcu_read_lock();
3043 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3044 		if (dumper->max_reason && reason > dumper->max_reason)
3045 			continue;
3046 
3047 		/* initialize iterator with data about the stored records */
3048 		dumper->active = true;
3049 
3050 		logbuf_lock_irqsave(flags);
3051 		dumper->cur_seq = clear_seq;
3052 		dumper->cur_idx = clear_idx;
3053 		dumper->next_seq = log_next_seq;
3054 		dumper->next_idx = log_next_idx;
3055 		logbuf_unlock_irqrestore(flags);
3056 
3057 		/* invoke dumper which will iterate over records */
3058 		dumper->dump(dumper, reason);
3059 
3060 		/* reset iterator */
3061 		dumper->active = false;
3062 	}
3063 	rcu_read_unlock();
3064 }
3065 
3066 /**
3067  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3068  * @dumper: registered kmsg dumper
3069  * @syslog: include the "<4>" prefixes
3070  * @line: buffer to copy the line to
3071  * @size: maximum size of the buffer
3072  * @len: length of line placed into buffer
3073  *
3074  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3075  * record, and copy one record into the provided buffer.
3076  *
3077  * Consecutive calls will return the next available record moving
3078  * towards the end of the buffer with the youngest messages.
3079  *
3080  * A return value of FALSE indicates that there are no more records to
3081  * read.
3082  *
3083  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3084  */
3085 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3086 			       char *line, size_t size, size_t *len)
3087 {
3088 	struct printk_log *msg;
3089 	size_t l = 0;
3090 	bool ret = false;
3091 
3092 	if (!dumper->active)
3093 		goto out;
3094 
3095 	if (dumper->cur_seq < log_first_seq) {
3096 		/* messages are gone, move to first available one */
3097 		dumper->cur_seq = log_first_seq;
3098 		dumper->cur_idx = log_first_idx;
3099 	}
3100 
3101 	/* last entry */
3102 	if (dumper->cur_seq >= log_next_seq)
3103 		goto out;
3104 
3105 	msg = log_from_idx(dumper->cur_idx);
3106 	l = msg_print_text(msg, syslog, line, size);
3107 
3108 	dumper->cur_idx = log_next(dumper->cur_idx);
3109 	dumper->cur_seq++;
3110 	ret = true;
3111 out:
3112 	if (len)
3113 		*len = l;
3114 	return ret;
3115 }
3116 
3117 /**
3118  * kmsg_dump_get_line - retrieve one kmsg log line
3119  * @dumper: registered kmsg dumper
3120  * @syslog: include the "<4>" prefixes
3121  * @line: buffer to copy the line to
3122  * @size: maximum size of the buffer
3123  * @len: length of line placed into buffer
3124  *
3125  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3126  * record, and copy one record into the provided buffer.
3127  *
3128  * Consecutive calls will return the next available record moving
3129  * towards the end of the buffer with the youngest messages.
3130  *
3131  * A return value of FALSE indicates that there are no more records to
3132  * read.
3133  */
3134 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3135 			char *line, size_t size, size_t *len)
3136 {
3137 	unsigned long flags;
3138 	bool ret;
3139 
3140 	logbuf_lock_irqsave(flags);
3141 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3142 	logbuf_unlock_irqrestore(flags);
3143 
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3147 
3148 /**
3149  * kmsg_dump_get_buffer - copy kmsg log lines
3150  * @dumper: registered kmsg dumper
3151  * @syslog: include the "<4>" prefixes
3152  * @buf: buffer to copy the line to
3153  * @size: maximum size of the buffer
3154  * @len: length of line placed into buffer
3155  *
3156  * Start at the end of the kmsg buffer and fill the provided buffer
3157  * with as many of the the *youngest* kmsg records that fit into it.
3158  * If the buffer is large enough, all available kmsg records will be
3159  * copied with a single call.
3160  *
3161  * Consecutive calls will fill the buffer with the next block of
3162  * available older records, not including the earlier retrieved ones.
3163  *
3164  * A return value of FALSE indicates that there are no more records to
3165  * read.
3166  */
3167 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3168 			  char *buf, size_t size, size_t *len)
3169 {
3170 	unsigned long flags;
3171 	u64 seq;
3172 	u32 idx;
3173 	u64 next_seq;
3174 	u32 next_idx;
3175 	size_t l = 0;
3176 	bool ret = false;
3177 
3178 	if (!dumper->active)
3179 		goto out;
3180 
3181 	logbuf_lock_irqsave(flags);
3182 	if (dumper->cur_seq < log_first_seq) {
3183 		/* messages are gone, move to first available one */
3184 		dumper->cur_seq = log_first_seq;
3185 		dumper->cur_idx = log_first_idx;
3186 	}
3187 
3188 	/* last entry */
3189 	if (dumper->cur_seq >= dumper->next_seq) {
3190 		logbuf_unlock_irqrestore(flags);
3191 		goto out;
3192 	}
3193 
3194 	/* calculate length of entire buffer */
3195 	seq = dumper->cur_seq;
3196 	idx = dumper->cur_idx;
3197 	while (seq < dumper->next_seq) {
3198 		struct printk_log *msg = log_from_idx(idx);
3199 
3200 		l += msg_print_text(msg, true, NULL, 0);
3201 		idx = log_next(idx);
3202 		seq++;
3203 	}
3204 
3205 	/* move first record forward until length fits into the buffer */
3206 	seq = dumper->cur_seq;
3207 	idx = dumper->cur_idx;
3208 	while (l > size && seq < dumper->next_seq) {
3209 		struct printk_log *msg = log_from_idx(idx);
3210 
3211 		l -= msg_print_text(msg, true, NULL, 0);
3212 		idx = log_next(idx);
3213 		seq++;
3214 	}
3215 
3216 	/* last message in next interation */
3217 	next_seq = seq;
3218 	next_idx = idx;
3219 
3220 	l = 0;
3221 	while (seq < dumper->next_seq) {
3222 		struct printk_log *msg = log_from_idx(idx);
3223 
3224 		l += msg_print_text(msg, syslog, buf + l, size - l);
3225 		idx = log_next(idx);
3226 		seq++;
3227 	}
3228 
3229 	dumper->next_seq = next_seq;
3230 	dumper->next_idx = next_idx;
3231 	ret = true;
3232 	logbuf_unlock_irqrestore(flags);
3233 out:
3234 	if (len)
3235 		*len = l;
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3239 
3240 /**
3241  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3242  * @dumper: registered kmsg dumper
3243  *
3244  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3245  * kmsg_dump_get_buffer() can be called again and used multiple
3246  * times within the same dumper.dump() callback.
3247  *
3248  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3249  */
3250 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3251 {
3252 	dumper->cur_seq = clear_seq;
3253 	dumper->cur_idx = clear_idx;
3254 	dumper->next_seq = log_next_seq;
3255 	dumper->next_idx = log_next_idx;
3256 }
3257 
3258 /**
3259  * kmsg_dump_rewind - reset the interator
3260  * @dumper: registered kmsg dumper
3261  *
3262  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3263  * kmsg_dump_get_buffer() can be called again and used multiple
3264  * times within the same dumper.dump() callback.
3265  */
3266 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3267 {
3268 	unsigned long flags;
3269 
3270 	logbuf_lock_irqsave(flags);
3271 	kmsg_dump_rewind_nolock(dumper);
3272 	logbuf_unlock_irqrestore(flags);
3273 }
3274 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3275 
3276 #endif
3277