1 /* Kernel thread helper functions. 2 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 3 * 4 * Creation is done via kthreadd, so that we get a clean environment 5 * even if we're invoked from userspace (think modprobe, hotplug cpu, 6 * etc.). 7 */ 8 #include <linux/sched.h> 9 #include <linux/kthread.h> 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/cpuset.h> 13 #include <linux/unistd.h> 14 #include <linux/file.h> 15 #include <linux/export.h> 16 #include <linux/mutex.h> 17 #include <linux/slab.h> 18 #include <linux/freezer.h> 19 #include <linux/ptrace.h> 20 #include <linux/uaccess.h> 21 #include <trace/events/sched.h> 22 23 static DEFINE_SPINLOCK(kthread_create_lock); 24 static LIST_HEAD(kthread_create_list); 25 struct task_struct *kthreadd_task; 26 27 struct kthread_create_info 28 { 29 /* Information passed to kthread() from kthreadd. */ 30 int (*threadfn)(void *data); 31 void *data; 32 int node; 33 34 /* Result passed back to kthread_create() from kthreadd. */ 35 struct task_struct *result; 36 struct completion *done; 37 38 struct list_head list; 39 }; 40 41 struct kthread { 42 unsigned long flags; 43 unsigned int cpu; 44 void *data; 45 struct completion parked; 46 struct completion exited; 47 }; 48 49 enum KTHREAD_BITS { 50 KTHREAD_IS_PER_CPU = 0, 51 KTHREAD_SHOULD_STOP, 52 KTHREAD_SHOULD_PARK, 53 KTHREAD_IS_PARKED, 54 }; 55 56 #define __to_kthread(vfork) \ 57 container_of(vfork, struct kthread, exited) 58 59 static inline struct kthread *to_kthread(struct task_struct *k) 60 { 61 return __to_kthread(k->vfork_done); 62 } 63 64 static struct kthread *to_live_kthread(struct task_struct *k) 65 { 66 struct completion *vfork = ACCESS_ONCE(k->vfork_done); 67 if (likely(vfork) && try_get_task_stack(k)) 68 return __to_kthread(vfork); 69 return NULL; 70 } 71 72 /** 73 * kthread_should_stop - should this kthread return now? 74 * 75 * When someone calls kthread_stop() on your kthread, it will be woken 76 * and this will return true. You should then return, and your return 77 * value will be passed through to kthread_stop(). 78 */ 79 bool kthread_should_stop(void) 80 { 81 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 82 } 83 EXPORT_SYMBOL(kthread_should_stop); 84 85 /** 86 * kthread_should_park - should this kthread park now? 87 * 88 * When someone calls kthread_park() on your kthread, it will be woken 89 * and this will return true. You should then do the necessary 90 * cleanup and call kthread_parkme() 91 * 92 * Similar to kthread_should_stop(), but this keeps the thread alive 93 * and in a park position. kthread_unpark() "restarts" the thread and 94 * calls the thread function again. 95 */ 96 bool kthread_should_park(void) 97 { 98 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags); 99 } 100 EXPORT_SYMBOL_GPL(kthread_should_park); 101 102 /** 103 * kthread_freezable_should_stop - should this freezable kthread return now? 104 * @was_frozen: optional out parameter, indicates whether %current was frozen 105 * 106 * kthread_should_stop() for freezable kthreads, which will enter 107 * refrigerator if necessary. This function is safe from kthread_stop() / 108 * freezer deadlock and freezable kthreads should use this function instead 109 * of calling try_to_freeze() directly. 110 */ 111 bool kthread_freezable_should_stop(bool *was_frozen) 112 { 113 bool frozen = false; 114 115 might_sleep(); 116 117 if (unlikely(freezing(current))) 118 frozen = __refrigerator(true); 119 120 if (was_frozen) 121 *was_frozen = frozen; 122 123 return kthread_should_stop(); 124 } 125 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 126 127 /** 128 * kthread_data - return data value specified on kthread creation 129 * @task: kthread task in question 130 * 131 * Return the data value specified when kthread @task was created. 132 * The caller is responsible for ensuring the validity of @task when 133 * calling this function. 134 */ 135 void *kthread_data(struct task_struct *task) 136 { 137 return to_kthread(task)->data; 138 } 139 140 /** 141 * probe_kthread_data - speculative version of kthread_data() 142 * @task: possible kthread task in question 143 * 144 * @task could be a kthread task. Return the data value specified when it 145 * was created if accessible. If @task isn't a kthread task or its data is 146 * inaccessible for any reason, %NULL is returned. This function requires 147 * that @task itself is safe to dereference. 148 */ 149 void *probe_kthread_data(struct task_struct *task) 150 { 151 struct kthread *kthread = to_kthread(task); 152 void *data = NULL; 153 154 probe_kernel_read(&data, &kthread->data, sizeof(data)); 155 return data; 156 } 157 158 static void __kthread_parkme(struct kthread *self) 159 { 160 __set_current_state(TASK_PARKED); 161 while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) { 162 if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags)) 163 complete(&self->parked); 164 schedule(); 165 __set_current_state(TASK_PARKED); 166 } 167 clear_bit(KTHREAD_IS_PARKED, &self->flags); 168 __set_current_state(TASK_RUNNING); 169 } 170 171 void kthread_parkme(void) 172 { 173 __kthread_parkme(to_kthread(current)); 174 } 175 EXPORT_SYMBOL_GPL(kthread_parkme); 176 177 static int kthread(void *_create) 178 { 179 /* Copy data: it's on kthread's stack */ 180 struct kthread_create_info *create = _create; 181 int (*threadfn)(void *data) = create->threadfn; 182 void *data = create->data; 183 struct completion *done; 184 struct kthread self; 185 int ret; 186 187 self.flags = 0; 188 self.data = data; 189 init_completion(&self.exited); 190 init_completion(&self.parked); 191 current->vfork_done = &self.exited; 192 193 /* If user was SIGKILLed, I release the structure. */ 194 done = xchg(&create->done, NULL); 195 if (!done) { 196 kfree(create); 197 do_exit(-EINTR); 198 } 199 /* OK, tell user we're spawned, wait for stop or wakeup */ 200 __set_current_state(TASK_UNINTERRUPTIBLE); 201 create->result = current; 202 complete(done); 203 schedule(); 204 205 ret = -EINTR; 206 207 if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) { 208 __kthread_parkme(&self); 209 ret = threadfn(data); 210 } 211 /* we can't just return, we must preserve "self" on stack */ 212 do_exit(ret); 213 } 214 215 /* called from do_fork() to get node information for about to be created task */ 216 int tsk_fork_get_node(struct task_struct *tsk) 217 { 218 #ifdef CONFIG_NUMA 219 if (tsk == kthreadd_task) 220 return tsk->pref_node_fork; 221 #endif 222 return NUMA_NO_NODE; 223 } 224 225 static void create_kthread(struct kthread_create_info *create) 226 { 227 int pid; 228 229 #ifdef CONFIG_NUMA 230 current->pref_node_fork = create->node; 231 #endif 232 /* We want our own signal handler (we take no signals by default). */ 233 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); 234 if (pid < 0) { 235 /* If user was SIGKILLed, I release the structure. */ 236 struct completion *done = xchg(&create->done, NULL); 237 238 if (!done) { 239 kfree(create); 240 return; 241 } 242 create->result = ERR_PTR(pid); 243 complete(done); 244 } 245 } 246 247 /** 248 * kthread_create_on_node - create a kthread. 249 * @threadfn: the function to run until signal_pending(current). 250 * @data: data ptr for @threadfn. 251 * @node: task and thread structures for the thread are allocated on this node 252 * @namefmt: printf-style name for the thread. 253 * 254 * Description: This helper function creates and names a kernel 255 * thread. The thread will be stopped: use wake_up_process() to start 256 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 257 * is affine to all CPUs. 258 * 259 * If thread is going to be bound on a particular cpu, give its node 260 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 261 * When woken, the thread will run @threadfn() with @data as its 262 * argument. @threadfn() can either call do_exit() directly if it is a 263 * standalone thread for which no one will call kthread_stop(), or 264 * return when 'kthread_should_stop()' is true (which means 265 * kthread_stop() has been called). The return value should be zero 266 * or a negative error number; it will be passed to kthread_stop(). 267 * 268 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 269 */ 270 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 271 void *data, int node, 272 const char namefmt[], 273 ...) 274 { 275 DECLARE_COMPLETION_ONSTACK(done); 276 struct task_struct *task; 277 struct kthread_create_info *create = kmalloc(sizeof(*create), 278 GFP_KERNEL); 279 280 if (!create) 281 return ERR_PTR(-ENOMEM); 282 create->threadfn = threadfn; 283 create->data = data; 284 create->node = node; 285 create->done = &done; 286 287 spin_lock(&kthread_create_lock); 288 list_add_tail(&create->list, &kthread_create_list); 289 spin_unlock(&kthread_create_lock); 290 291 wake_up_process(kthreadd_task); 292 /* 293 * Wait for completion in killable state, for I might be chosen by 294 * the OOM killer while kthreadd is trying to allocate memory for 295 * new kernel thread. 296 */ 297 if (unlikely(wait_for_completion_killable(&done))) { 298 /* 299 * If I was SIGKILLed before kthreadd (or new kernel thread) 300 * calls complete(), leave the cleanup of this structure to 301 * that thread. 302 */ 303 if (xchg(&create->done, NULL)) 304 return ERR_PTR(-EINTR); 305 /* 306 * kthreadd (or new kernel thread) will call complete() 307 * shortly. 308 */ 309 wait_for_completion(&done); 310 } 311 task = create->result; 312 if (!IS_ERR(task)) { 313 static const struct sched_param param = { .sched_priority = 0 }; 314 va_list args; 315 316 va_start(args, namefmt); 317 vsnprintf(task->comm, sizeof(task->comm), namefmt, args); 318 va_end(args); 319 /* 320 * root may have changed our (kthreadd's) priority or CPU mask. 321 * The kernel thread should not inherit these properties. 322 */ 323 sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m); 324 set_cpus_allowed_ptr(task, cpu_all_mask); 325 } 326 kfree(create); 327 return task; 328 } 329 EXPORT_SYMBOL(kthread_create_on_node); 330 331 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state) 332 { 333 unsigned long flags; 334 335 if (!wait_task_inactive(p, state)) { 336 WARN_ON(1); 337 return; 338 } 339 340 /* It's safe because the task is inactive. */ 341 raw_spin_lock_irqsave(&p->pi_lock, flags); 342 do_set_cpus_allowed(p, mask); 343 p->flags |= PF_NO_SETAFFINITY; 344 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 345 } 346 347 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state) 348 { 349 __kthread_bind_mask(p, cpumask_of(cpu), state); 350 } 351 352 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 353 { 354 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 355 } 356 357 /** 358 * kthread_bind - bind a just-created kthread to a cpu. 359 * @p: thread created by kthread_create(). 360 * @cpu: cpu (might not be online, must be possible) for @k to run on. 361 * 362 * Description: This function is equivalent to set_cpus_allowed(), 363 * except that @cpu doesn't need to be online, and the thread must be 364 * stopped (i.e., just returned from kthread_create()). 365 */ 366 void kthread_bind(struct task_struct *p, unsigned int cpu) 367 { 368 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 369 } 370 EXPORT_SYMBOL(kthread_bind); 371 372 /** 373 * kthread_create_on_cpu - Create a cpu bound kthread 374 * @threadfn: the function to run until signal_pending(current). 375 * @data: data ptr for @threadfn. 376 * @cpu: The cpu on which the thread should be bound, 377 * @namefmt: printf-style name for the thread. Format is restricted 378 * to "name.*%u". Code fills in cpu number. 379 * 380 * Description: This helper function creates and names a kernel thread 381 * The thread will be woken and put into park mode. 382 */ 383 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 384 void *data, unsigned int cpu, 385 const char *namefmt) 386 { 387 struct task_struct *p; 388 389 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 390 cpu); 391 if (IS_ERR(p)) 392 return p; 393 set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags); 394 to_kthread(p)->cpu = cpu; 395 /* Park the thread to get it out of TASK_UNINTERRUPTIBLE state */ 396 kthread_park(p); 397 return p; 398 } 399 400 static void __kthread_unpark(struct task_struct *k, struct kthread *kthread) 401 { 402 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 403 /* 404 * We clear the IS_PARKED bit here as we don't wait 405 * until the task has left the park code. So if we'd 406 * park before that happens we'd see the IS_PARKED bit 407 * which might be about to be cleared. 408 */ 409 if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) { 410 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 411 __kthread_bind(k, kthread->cpu, TASK_PARKED); 412 wake_up_state(k, TASK_PARKED); 413 } 414 } 415 416 /** 417 * kthread_unpark - unpark a thread created by kthread_create(). 418 * @k: thread created by kthread_create(). 419 * 420 * Sets kthread_should_park() for @k to return false, wakes it, and 421 * waits for it to return. If the thread is marked percpu then its 422 * bound to the cpu again. 423 */ 424 void kthread_unpark(struct task_struct *k) 425 { 426 struct kthread *kthread = to_live_kthread(k); 427 428 if (kthread) { 429 __kthread_unpark(k, kthread); 430 put_task_stack(k); 431 } 432 } 433 EXPORT_SYMBOL_GPL(kthread_unpark); 434 435 /** 436 * kthread_park - park a thread created by kthread_create(). 437 * @k: thread created by kthread_create(). 438 * 439 * Sets kthread_should_park() for @k to return true, wakes it, and 440 * waits for it to return. This can also be called after kthread_create() 441 * instead of calling wake_up_process(): the thread will park without 442 * calling threadfn(). 443 * 444 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 445 * If called by the kthread itself just the park bit is set. 446 */ 447 int kthread_park(struct task_struct *k) 448 { 449 struct kthread *kthread = to_live_kthread(k); 450 int ret = -ENOSYS; 451 452 if (kthread) { 453 if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) { 454 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 455 if (k != current) { 456 wake_up_process(k); 457 wait_for_completion(&kthread->parked); 458 } 459 } 460 put_task_stack(k); 461 ret = 0; 462 } 463 return ret; 464 } 465 EXPORT_SYMBOL_GPL(kthread_park); 466 467 /** 468 * kthread_stop - stop a thread created by kthread_create(). 469 * @k: thread created by kthread_create(). 470 * 471 * Sets kthread_should_stop() for @k to return true, wakes it, and 472 * waits for it to exit. This can also be called after kthread_create() 473 * instead of calling wake_up_process(): the thread will exit without 474 * calling threadfn(). 475 * 476 * If threadfn() may call do_exit() itself, the caller must ensure 477 * task_struct can't go away. 478 * 479 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 480 * was never called. 481 */ 482 int kthread_stop(struct task_struct *k) 483 { 484 struct kthread *kthread; 485 int ret; 486 487 trace_sched_kthread_stop(k); 488 489 get_task_struct(k); 490 kthread = to_live_kthread(k); 491 if (kthread) { 492 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 493 __kthread_unpark(k, kthread); 494 wake_up_process(k); 495 wait_for_completion(&kthread->exited); 496 put_task_stack(k); 497 } 498 ret = k->exit_code; 499 put_task_struct(k); 500 501 trace_sched_kthread_stop_ret(ret); 502 return ret; 503 } 504 EXPORT_SYMBOL(kthread_stop); 505 506 int kthreadd(void *unused) 507 { 508 struct task_struct *tsk = current; 509 510 /* Setup a clean context for our children to inherit. */ 511 set_task_comm(tsk, "kthreadd"); 512 ignore_signals(tsk); 513 set_cpus_allowed_ptr(tsk, cpu_all_mask); 514 set_mems_allowed(node_states[N_MEMORY]); 515 516 current->flags |= PF_NOFREEZE; 517 518 for (;;) { 519 set_current_state(TASK_INTERRUPTIBLE); 520 if (list_empty(&kthread_create_list)) 521 schedule(); 522 __set_current_state(TASK_RUNNING); 523 524 spin_lock(&kthread_create_lock); 525 while (!list_empty(&kthread_create_list)) { 526 struct kthread_create_info *create; 527 528 create = list_entry(kthread_create_list.next, 529 struct kthread_create_info, list); 530 list_del_init(&create->list); 531 spin_unlock(&kthread_create_lock); 532 533 create_kthread(create); 534 535 spin_lock(&kthread_create_lock); 536 } 537 spin_unlock(&kthread_create_lock); 538 } 539 540 return 0; 541 } 542 543 void __init_kthread_worker(struct kthread_worker *worker, 544 const char *name, 545 struct lock_class_key *key) 546 { 547 spin_lock_init(&worker->lock); 548 lockdep_set_class_and_name(&worker->lock, key, name); 549 INIT_LIST_HEAD(&worker->work_list); 550 worker->task = NULL; 551 } 552 EXPORT_SYMBOL_GPL(__init_kthread_worker); 553 554 /** 555 * kthread_worker_fn - kthread function to process kthread_worker 556 * @worker_ptr: pointer to initialized kthread_worker 557 * 558 * This function can be used as @threadfn to kthread_create() or 559 * kthread_run() with @worker_ptr argument pointing to an initialized 560 * kthread_worker. The started kthread will process work_list until 561 * the it is stopped with kthread_stop(). A kthread can also call 562 * this function directly after extra initialization. 563 * 564 * Different kthreads can be used for the same kthread_worker as long 565 * as there's only one kthread attached to it at any given time. A 566 * kthread_worker without an attached kthread simply collects queued 567 * kthread_works. 568 */ 569 int kthread_worker_fn(void *worker_ptr) 570 { 571 struct kthread_worker *worker = worker_ptr; 572 struct kthread_work *work; 573 574 WARN_ON(worker->task); 575 worker->task = current; 576 repeat: 577 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 578 579 if (kthread_should_stop()) { 580 __set_current_state(TASK_RUNNING); 581 spin_lock_irq(&worker->lock); 582 worker->task = NULL; 583 spin_unlock_irq(&worker->lock); 584 return 0; 585 } 586 587 work = NULL; 588 spin_lock_irq(&worker->lock); 589 if (!list_empty(&worker->work_list)) { 590 work = list_first_entry(&worker->work_list, 591 struct kthread_work, node); 592 list_del_init(&work->node); 593 } 594 worker->current_work = work; 595 spin_unlock_irq(&worker->lock); 596 597 if (work) { 598 __set_current_state(TASK_RUNNING); 599 work->func(work); 600 } else if (!freezing(current)) 601 schedule(); 602 603 try_to_freeze(); 604 goto repeat; 605 } 606 EXPORT_SYMBOL_GPL(kthread_worker_fn); 607 608 /* insert @work before @pos in @worker */ 609 static void insert_kthread_work(struct kthread_worker *worker, 610 struct kthread_work *work, 611 struct list_head *pos) 612 { 613 lockdep_assert_held(&worker->lock); 614 615 list_add_tail(&work->node, pos); 616 work->worker = worker; 617 if (!worker->current_work && likely(worker->task)) 618 wake_up_process(worker->task); 619 } 620 621 /** 622 * queue_kthread_work - queue a kthread_work 623 * @worker: target kthread_worker 624 * @work: kthread_work to queue 625 * 626 * Queue @work to work processor @task for async execution. @task 627 * must have been created with kthread_worker_create(). Returns %true 628 * if @work was successfully queued, %false if it was already pending. 629 */ 630 bool queue_kthread_work(struct kthread_worker *worker, 631 struct kthread_work *work) 632 { 633 bool ret = false; 634 unsigned long flags; 635 636 spin_lock_irqsave(&worker->lock, flags); 637 if (list_empty(&work->node)) { 638 insert_kthread_work(worker, work, &worker->work_list); 639 ret = true; 640 } 641 spin_unlock_irqrestore(&worker->lock, flags); 642 return ret; 643 } 644 EXPORT_SYMBOL_GPL(queue_kthread_work); 645 646 struct kthread_flush_work { 647 struct kthread_work work; 648 struct completion done; 649 }; 650 651 static void kthread_flush_work_fn(struct kthread_work *work) 652 { 653 struct kthread_flush_work *fwork = 654 container_of(work, struct kthread_flush_work, work); 655 complete(&fwork->done); 656 } 657 658 /** 659 * flush_kthread_work - flush a kthread_work 660 * @work: work to flush 661 * 662 * If @work is queued or executing, wait for it to finish execution. 663 */ 664 void flush_kthread_work(struct kthread_work *work) 665 { 666 struct kthread_flush_work fwork = { 667 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 668 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 669 }; 670 struct kthread_worker *worker; 671 bool noop = false; 672 673 retry: 674 worker = work->worker; 675 if (!worker) 676 return; 677 678 spin_lock_irq(&worker->lock); 679 if (work->worker != worker) { 680 spin_unlock_irq(&worker->lock); 681 goto retry; 682 } 683 684 if (!list_empty(&work->node)) 685 insert_kthread_work(worker, &fwork.work, work->node.next); 686 else if (worker->current_work == work) 687 insert_kthread_work(worker, &fwork.work, worker->work_list.next); 688 else 689 noop = true; 690 691 spin_unlock_irq(&worker->lock); 692 693 if (!noop) 694 wait_for_completion(&fwork.done); 695 } 696 EXPORT_SYMBOL_GPL(flush_kthread_work); 697 698 /** 699 * flush_kthread_worker - flush all current works on a kthread_worker 700 * @worker: worker to flush 701 * 702 * Wait until all currently executing or pending works on @worker are 703 * finished. 704 */ 705 void flush_kthread_worker(struct kthread_worker *worker) 706 { 707 struct kthread_flush_work fwork = { 708 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 709 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 710 }; 711 712 queue_kthread_work(worker, &fwork.work); 713 wait_for_completion(&fwork.done); 714 } 715 EXPORT_SYMBOL_GPL(flush_kthread_worker); 716