xref: /linux/kernel/fork.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85 
86 #include <trace/events/sched.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90 
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95 
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100 
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;	/* Handle normal Linux uptimes. */
105 int nr_threads;			/* The idle threads do not count.. */
106 
107 int max_threads;		/* tunable limit on nr_threads */
108 
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110 
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112 
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 	return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120 
121 int nr_processes(void)
122 {
123 	int cpu;
124 	int total = 0;
125 
126 	for_each_possible_cpu(cpu)
127 		total += per_cpu(process_counts, cpu);
128 
129 	return total;
130 }
131 
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135 
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138 
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143 
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 	kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149 
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155 
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 						  int node)
163 {
164 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 						  THREAD_SIZE_ORDER);
166 
167 	return page ? page_address(page) : NULL;
168 }
169 
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176 
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 						  int node)
179 {
180 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182 
183 static void free_thread_info(struct thread_info *ti)
184 {
185 	kmem_cache_free(thread_info_cache, ti);
186 }
187 
188 void thread_info_cache_init(void)
189 {
190 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 					      THREAD_SIZE, 0, NULL);
192 	BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196 
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199 
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202 
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205 
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208 
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211 
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214 
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 	struct zone *zone = page_zone(virt_to_page(ti));
218 
219 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221 
222 void free_task(struct task_struct *tsk)
223 {
224 	account_kernel_stack(tsk->stack, -1);
225 	arch_release_thread_info(tsk->stack);
226 	free_thread_info(tsk->stack);
227 	rt_mutex_debug_task_free(tsk);
228 	ftrace_graph_exit_task(tsk);
229 	put_seccomp_filter(tsk);
230 	arch_release_task_struct(tsk);
231 	free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234 
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 	taskstats_tgid_free(sig);
238 	sched_autogroup_exit(sig);
239 	kmem_cache_free(signal_cachep, sig);
240 }
241 
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 	if (atomic_dec_and_test(&sig->sigcnt))
245 		free_signal_struct(sig);
246 }
247 
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 	WARN_ON(!tsk->exit_state);
251 	WARN_ON(atomic_read(&tsk->usage));
252 	WARN_ON(tsk == current);
253 
254 	task_numa_free(tsk);
255 	security_task_free(tsk);
256 	exit_creds(tsk);
257 	delayacct_tsk_free(tsk);
258 	put_signal_struct(tsk->signal);
259 
260 	if (!profile_handoff_task(tsk))
261 		free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264 
265 void __init __weak arch_task_cache_init(void) { }
266 
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 	u64 threads;
273 
274 	/*
275 	 * The number of threads shall be limited such that the thread
276 	 * structures may only consume a small part of the available memory.
277 	 */
278 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 		threads = MAX_THREADS;
280 	else
281 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 				    (u64) THREAD_SIZE * 8UL);
283 
284 	if (threads > max_threads_suggested)
285 		threads = max_threads_suggested;
286 
287 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289 
290 void __init fork_init(void)
291 {
292 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
293 #ifndef ARCH_MIN_TASKALIGN
294 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
295 #endif
296 	/* create a slab on which task_structs can be allocated */
297 	task_struct_cachep =
298 		kmem_cache_create("task_struct", sizeof(struct task_struct),
299 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
300 #endif
301 
302 	/* do the arch specific task caches init */
303 	arch_task_cache_init();
304 
305 	set_max_threads(MAX_THREADS);
306 
307 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
308 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
309 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
310 		init_task.signal->rlim[RLIMIT_NPROC];
311 }
312 
313 int __weak arch_dup_task_struct(struct task_struct *dst,
314 					       struct task_struct *src)
315 {
316 	*dst = *src;
317 	return 0;
318 }
319 
320 void set_task_stack_end_magic(struct task_struct *tsk)
321 {
322 	unsigned long *stackend;
323 
324 	stackend = end_of_stack(tsk);
325 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
326 }
327 
328 static struct task_struct *dup_task_struct(struct task_struct *orig)
329 {
330 	struct task_struct *tsk;
331 	struct thread_info *ti;
332 	int node = tsk_fork_get_node(orig);
333 	int err;
334 
335 	tsk = alloc_task_struct_node(node);
336 	if (!tsk)
337 		return NULL;
338 
339 	ti = alloc_thread_info_node(tsk, node);
340 	if (!ti)
341 		goto free_tsk;
342 
343 	err = arch_dup_task_struct(tsk, orig);
344 	if (err)
345 		goto free_ti;
346 
347 	tsk->stack = ti;
348 #ifdef CONFIG_SECCOMP
349 	/*
350 	 * We must handle setting up seccomp filters once we're under
351 	 * the sighand lock in case orig has changed between now and
352 	 * then. Until then, filter must be NULL to avoid messing up
353 	 * the usage counts on the error path calling free_task.
354 	 */
355 	tsk->seccomp.filter = NULL;
356 #endif
357 
358 	setup_thread_stack(tsk, orig);
359 	clear_user_return_notifier(tsk);
360 	clear_tsk_need_resched(tsk);
361 	set_task_stack_end_magic(tsk);
362 
363 #ifdef CONFIG_CC_STACKPROTECTOR
364 	tsk->stack_canary = get_random_int();
365 #endif
366 
367 	/*
368 	 * One for us, one for whoever does the "release_task()" (usually
369 	 * parent)
370 	 */
371 	atomic_set(&tsk->usage, 2);
372 #ifdef CONFIG_BLK_DEV_IO_TRACE
373 	tsk->btrace_seq = 0;
374 #endif
375 	tsk->splice_pipe = NULL;
376 	tsk->task_frag.page = NULL;
377 
378 	account_kernel_stack(ti, 1);
379 
380 	return tsk;
381 
382 free_ti:
383 	free_thread_info(ti);
384 free_tsk:
385 	free_task_struct(tsk);
386 	return NULL;
387 }
388 
389 #ifdef CONFIG_MMU
390 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
391 {
392 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
393 	struct rb_node **rb_link, *rb_parent;
394 	int retval;
395 	unsigned long charge;
396 
397 	uprobe_start_dup_mmap();
398 	down_write(&oldmm->mmap_sem);
399 	flush_cache_dup_mm(oldmm);
400 	uprobe_dup_mmap(oldmm, mm);
401 	/*
402 	 * Not linked in yet - no deadlock potential:
403 	 */
404 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
405 
406 	/* No ordering required: file already has been exposed. */
407 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
408 
409 	mm->total_vm = oldmm->total_vm;
410 	mm->shared_vm = oldmm->shared_vm;
411 	mm->exec_vm = oldmm->exec_vm;
412 	mm->stack_vm = oldmm->stack_vm;
413 
414 	rb_link = &mm->mm_rb.rb_node;
415 	rb_parent = NULL;
416 	pprev = &mm->mmap;
417 	retval = ksm_fork(mm, oldmm);
418 	if (retval)
419 		goto out;
420 	retval = khugepaged_fork(mm, oldmm);
421 	if (retval)
422 		goto out;
423 
424 	prev = NULL;
425 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
426 		struct file *file;
427 
428 		if (mpnt->vm_flags & VM_DONTCOPY) {
429 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
430 							-vma_pages(mpnt));
431 			continue;
432 		}
433 		charge = 0;
434 		if (mpnt->vm_flags & VM_ACCOUNT) {
435 			unsigned long len = vma_pages(mpnt);
436 
437 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
438 				goto fail_nomem;
439 			charge = len;
440 		}
441 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
442 		if (!tmp)
443 			goto fail_nomem;
444 		*tmp = *mpnt;
445 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
446 		retval = vma_dup_policy(mpnt, tmp);
447 		if (retval)
448 			goto fail_nomem_policy;
449 		tmp->vm_mm = mm;
450 		if (anon_vma_fork(tmp, mpnt))
451 			goto fail_nomem_anon_vma_fork;
452 		tmp->vm_flags &= ~VM_LOCKED;
453 		tmp->vm_next = tmp->vm_prev = NULL;
454 		file = tmp->vm_file;
455 		if (file) {
456 			struct inode *inode = file_inode(file);
457 			struct address_space *mapping = file->f_mapping;
458 
459 			get_file(file);
460 			if (tmp->vm_flags & VM_DENYWRITE)
461 				atomic_dec(&inode->i_writecount);
462 			i_mmap_lock_write(mapping);
463 			if (tmp->vm_flags & VM_SHARED)
464 				atomic_inc(&mapping->i_mmap_writable);
465 			flush_dcache_mmap_lock(mapping);
466 			/* insert tmp into the share list, just after mpnt */
467 			vma_interval_tree_insert_after(tmp, mpnt,
468 					&mapping->i_mmap);
469 			flush_dcache_mmap_unlock(mapping);
470 			i_mmap_unlock_write(mapping);
471 		}
472 
473 		/*
474 		 * Clear hugetlb-related page reserves for children. This only
475 		 * affects MAP_PRIVATE mappings. Faults generated by the child
476 		 * are not guaranteed to succeed, even if read-only
477 		 */
478 		if (is_vm_hugetlb_page(tmp))
479 			reset_vma_resv_huge_pages(tmp);
480 
481 		/*
482 		 * Link in the new vma and copy the page table entries.
483 		 */
484 		*pprev = tmp;
485 		pprev = &tmp->vm_next;
486 		tmp->vm_prev = prev;
487 		prev = tmp;
488 
489 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
490 		rb_link = &tmp->vm_rb.rb_right;
491 		rb_parent = &tmp->vm_rb;
492 
493 		mm->map_count++;
494 		retval = copy_page_range(mm, oldmm, mpnt);
495 
496 		if (tmp->vm_ops && tmp->vm_ops->open)
497 			tmp->vm_ops->open(tmp);
498 
499 		if (retval)
500 			goto out;
501 	}
502 	/* a new mm has just been created */
503 	arch_dup_mmap(oldmm, mm);
504 	retval = 0;
505 out:
506 	up_write(&mm->mmap_sem);
507 	flush_tlb_mm(oldmm);
508 	up_write(&oldmm->mmap_sem);
509 	uprobe_end_dup_mmap();
510 	return retval;
511 fail_nomem_anon_vma_fork:
512 	mpol_put(vma_policy(tmp));
513 fail_nomem_policy:
514 	kmem_cache_free(vm_area_cachep, tmp);
515 fail_nomem:
516 	retval = -ENOMEM;
517 	vm_unacct_memory(charge);
518 	goto out;
519 }
520 
521 static inline int mm_alloc_pgd(struct mm_struct *mm)
522 {
523 	mm->pgd = pgd_alloc(mm);
524 	if (unlikely(!mm->pgd))
525 		return -ENOMEM;
526 	return 0;
527 }
528 
529 static inline void mm_free_pgd(struct mm_struct *mm)
530 {
531 	pgd_free(mm, mm->pgd);
532 }
533 #else
534 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
535 {
536 	down_write(&oldmm->mmap_sem);
537 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
538 	up_write(&oldmm->mmap_sem);
539 	return 0;
540 }
541 #define mm_alloc_pgd(mm)	(0)
542 #define mm_free_pgd(mm)
543 #endif /* CONFIG_MMU */
544 
545 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
546 
547 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
548 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
549 
550 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
551 
552 static int __init coredump_filter_setup(char *s)
553 {
554 	default_dump_filter =
555 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
556 		MMF_DUMP_FILTER_MASK;
557 	return 1;
558 }
559 
560 __setup("coredump_filter=", coredump_filter_setup);
561 
562 #include <linux/init_task.h>
563 
564 static void mm_init_aio(struct mm_struct *mm)
565 {
566 #ifdef CONFIG_AIO
567 	spin_lock_init(&mm->ioctx_lock);
568 	mm->ioctx_table = NULL;
569 #endif
570 }
571 
572 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
573 {
574 #ifdef CONFIG_MEMCG
575 	mm->owner = p;
576 #endif
577 }
578 
579 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
580 {
581 	mm->mmap = NULL;
582 	mm->mm_rb = RB_ROOT;
583 	mm->vmacache_seqnum = 0;
584 	atomic_set(&mm->mm_users, 1);
585 	atomic_set(&mm->mm_count, 1);
586 	init_rwsem(&mm->mmap_sem);
587 	INIT_LIST_HEAD(&mm->mmlist);
588 	mm->core_state = NULL;
589 	atomic_long_set(&mm->nr_ptes, 0);
590 	mm_nr_pmds_init(mm);
591 	mm->map_count = 0;
592 	mm->locked_vm = 0;
593 	mm->pinned_vm = 0;
594 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
595 	spin_lock_init(&mm->page_table_lock);
596 	mm_init_cpumask(mm);
597 	mm_init_aio(mm);
598 	mm_init_owner(mm, p);
599 	mmu_notifier_mm_init(mm);
600 	clear_tlb_flush_pending(mm);
601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
602 	mm->pmd_huge_pte = NULL;
603 #endif
604 
605 	if (current->mm) {
606 		mm->flags = current->mm->flags & MMF_INIT_MASK;
607 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
608 	} else {
609 		mm->flags = default_dump_filter;
610 		mm->def_flags = 0;
611 	}
612 
613 	if (mm_alloc_pgd(mm))
614 		goto fail_nopgd;
615 
616 	if (init_new_context(p, mm))
617 		goto fail_nocontext;
618 
619 	return mm;
620 
621 fail_nocontext:
622 	mm_free_pgd(mm);
623 fail_nopgd:
624 	free_mm(mm);
625 	return NULL;
626 }
627 
628 static void check_mm(struct mm_struct *mm)
629 {
630 	int i;
631 
632 	for (i = 0; i < NR_MM_COUNTERS; i++) {
633 		long x = atomic_long_read(&mm->rss_stat.count[i]);
634 
635 		if (unlikely(x))
636 			printk(KERN_ALERT "BUG: Bad rss-counter state "
637 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
638 	}
639 
640 	if (atomic_long_read(&mm->nr_ptes))
641 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
642 				atomic_long_read(&mm->nr_ptes));
643 	if (mm_nr_pmds(mm))
644 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
645 				mm_nr_pmds(mm));
646 
647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
648 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
649 #endif
650 }
651 
652 /*
653  * Allocate and initialize an mm_struct.
654  */
655 struct mm_struct *mm_alloc(void)
656 {
657 	struct mm_struct *mm;
658 
659 	mm = allocate_mm();
660 	if (!mm)
661 		return NULL;
662 
663 	memset(mm, 0, sizeof(*mm));
664 	return mm_init(mm, current);
665 }
666 
667 /*
668  * Called when the last reference to the mm
669  * is dropped: either by a lazy thread or by
670  * mmput. Free the page directory and the mm.
671  */
672 void __mmdrop(struct mm_struct *mm)
673 {
674 	BUG_ON(mm == &init_mm);
675 	mm_free_pgd(mm);
676 	destroy_context(mm);
677 	mmu_notifier_mm_destroy(mm);
678 	check_mm(mm);
679 	free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682 
683 /*
684  * Decrement the use count and release all resources for an mm.
685  */
686 void mmput(struct mm_struct *mm)
687 {
688 	might_sleep();
689 
690 	if (atomic_dec_and_test(&mm->mm_users)) {
691 		uprobe_clear_state(mm);
692 		exit_aio(mm);
693 		ksm_exit(mm);
694 		khugepaged_exit(mm); /* must run before exit_mmap */
695 		exit_mmap(mm);
696 		set_mm_exe_file(mm, NULL);
697 		if (!list_empty(&mm->mmlist)) {
698 			spin_lock(&mmlist_lock);
699 			list_del(&mm->mmlist);
700 			spin_unlock(&mmlist_lock);
701 		}
702 		if (mm->binfmt)
703 			module_put(mm->binfmt->module);
704 		mmdrop(mm);
705 	}
706 }
707 EXPORT_SYMBOL_GPL(mmput);
708 
709 /**
710  * set_mm_exe_file - change a reference to the mm's executable file
711  *
712  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
713  *
714  * Main users are mmput() and sys_execve(). Callers prevent concurrent
715  * invocations: in mmput() nobody alive left, in execve task is single
716  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
717  * mm->exe_file, but does so without using set_mm_exe_file() in order
718  * to do avoid the need for any locks.
719  */
720 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
721 {
722 	struct file *old_exe_file;
723 
724 	/*
725 	 * It is safe to dereference the exe_file without RCU as
726 	 * this function is only called if nobody else can access
727 	 * this mm -- see comment above for justification.
728 	 */
729 	old_exe_file = rcu_dereference_raw(mm->exe_file);
730 
731 	if (new_exe_file)
732 		get_file(new_exe_file);
733 	rcu_assign_pointer(mm->exe_file, new_exe_file);
734 	if (old_exe_file)
735 		fput(old_exe_file);
736 }
737 
738 /**
739  * get_mm_exe_file - acquire a reference to the mm's executable file
740  *
741  * Returns %NULL if mm has no associated executable file.
742  * User must release file via fput().
743  */
744 struct file *get_mm_exe_file(struct mm_struct *mm)
745 {
746 	struct file *exe_file;
747 
748 	rcu_read_lock();
749 	exe_file = rcu_dereference(mm->exe_file);
750 	if (exe_file && !get_file_rcu(exe_file))
751 		exe_file = NULL;
752 	rcu_read_unlock();
753 	return exe_file;
754 }
755 
756 /**
757  * get_task_mm - acquire a reference to the task's mm
758  *
759  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
760  * this kernel workthread has transiently adopted a user mm with use_mm,
761  * to do its AIO) is not set and if so returns a reference to it, after
762  * bumping up the use count.  User must release the mm via mmput()
763  * after use.  Typically used by /proc and ptrace.
764  */
765 struct mm_struct *get_task_mm(struct task_struct *task)
766 {
767 	struct mm_struct *mm;
768 
769 	task_lock(task);
770 	mm = task->mm;
771 	if (mm) {
772 		if (task->flags & PF_KTHREAD)
773 			mm = NULL;
774 		else
775 			atomic_inc(&mm->mm_users);
776 	}
777 	task_unlock(task);
778 	return mm;
779 }
780 EXPORT_SYMBOL_GPL(get_task_mm);
781 
782 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
783 {
784 	struct mm_struct *mm;
785 	int err;
786 
787 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
788 	if (err)
789 		return ERR_PTR(err);
790 
791 	mm = get_task_mm(task);
792 	if (mm && mm != current->mm &&
793 			!ptrace_may_access(task, mode)) {
794 		mmput(mm);
795 		mm = ERR_PTR(-EACCES);
796 	}
797 	mutex_unlock(&task->signal->cred_guard_mutex);
798 
799 	return mm;
800 }
801 
802 static void complete_vfork_done(struct task_struct *tsk)
803 {
804 	struct completion *vfork;
805 
806 	task_lock(tsk);
807 	vfork = tsk->vfork_done;
808 	if (likely(vfork)) {
809 		tsk->vfork_done = NULL;
810 		complete(vfork);
811 	}
812 	task_unlock(tsk);
813 }
814 
815 static int wait_for_vfork_done(struct task_struct *child,
816 				struct completion *vfork)
817 {
818 	int killed;
819 
820 	freezer_do_not_count();
821 	killed = wait_for_completion_killable(vfork);
822 	freezer_count();
823 
824 	if (killed) {
825 		task_lock(child);
826 		child->vfork_done = NULL;
827 		task_unlock(child);
828 	}
829 
830 	put_task_struct(child);
831 	return killed;
832 }
833 
834 /* Please note the differences between mmput and mm_release.
835  * mmput is called whenever we stop holding onto a mm_struct,
836  * error success whatever.
837  *
838  * mm_release is called after a mm_struct has been removed
839  * from the current process.
840  *
841  * This difference is important for error handling, when we
842  * only half set up a mm_struct for a new process and need to restore
843  * the old one.  Because we mmput the new mm_struct before
844  * restoring the old one. . .
845  * Eric Biederman 10 January 1998
846  */
847 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
848 {
849 	/* Get rid of any futexes when releasing the mm */
850 #ifdef CONFIG_FUTEX
851 	if (unlikely(tsk->robust_list)) {
852 		exit_robust_list(tsk);
853 		tsk->robust_list = NULL;
854 	}
855 #ifdef CONFIG_COMPAT
856 	if (unlikely(tsk->compat_robust_list)) {
857 		compat_exit_robust_list(tsk);
858 		tsk->compat_robust_list = NULL;
859 	}
860 #endif
861 	if (unlikely(!list_empty(&tsk->pi_state_list)))
862 		exit_pi_state_list(tsk);
863 #endif
864 
865 	uprobe_free_utask(tsk);
866 
867 	/* Get rid of any cached register state */
868 	deactivate_mm(tsk, mm);
869 
870 	/*
871 	 * If we're exiting normally, clear a user-space tid field if
872 	 * requested.  We leave this alone when dying by signal, to leave
873 	 * the value intact in a core dump, and to save the unnecessary
874 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
875 	 * Userland only wants this done for a sys_exit.
876 	 */
877 	if (tsk->clear_child_tid) {
878 		if (!(tsk->flags & PF_SIGNALED) &&
879 		    atomic_read(&mm->mm_users) > 1) {
880 			/*
881 			 * We don't check the error code - if userspace has
882 			 * not set up a proper pointer then tough luck.
883 			 */
884 			put_user(0, tsk->clear_child_tid);
885 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
886 					1, NULL, NULL, 0);
887 		}
888 		tsk->clear_child_tid = NULL;
889 	}
890 
891 	/*
892 	 * All done, finally we can wake up parent and return this mm to him.
893 	 * Also kthread_stop() uses this completion for synchronization.
894 	 */
895 	if (tsk->vfork_done)
896 		complete_vfork_done(tsk);
897 }
898 
899 /*
900  * Allocate a new mm structure and copy contents from the
901  * mm structure of the passed in task structure.
902  */
903 static struct mm_struct *dup_mm(struct task_struct *tsk)
904 {
905 	struct mm_struct *mm, *oldmm = current->mm;
906 	int err;
907 
908 	mm = allocate_mm();
909 	if (!mm)
910 		goto fail_nomem;
911 
912 	memcpy(mm, oldmm, sizeof(*mm));
913 
914 	if (!mm_init(mm, tsk))
915 		goto fail_nomem;
916 
917 	err = dup_mmap(mm, oldmm);
918 	if (err)
919 		goto free_pt;
920 
921 	mm->hiwater_rss = get_mm_rss(mm);
922 	mm->hiwater_vm = mm->total_vm;
923 
924 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
925 		goto free_pt;
926 
927 	return mm;
928 
929 free_pt:
930 	/* don't put binfmt in mmput, we haven't got module yet */
931 	mm->binfmt = NULL;
932 	mmput(mm);
933 
934 fail_nomem:
935 	return NULL;
936 }
937 
938 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
939 {
940 	struct mm_struct *mm, *oldmm;
941 	int retval;
942 
943 	tsk->min_flt = tsk->maj_flt = 0;
944 	tsk->nvcsw = tsk->nivcsw = 0;
945 #ifdef CONFIG_DETECT_HUNG_TASK
946 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
947 #endif
948 
949 	tsk->mm = NULL;
950 	tsk->active_mm = NULL;
951 
952 	/*
953 	 * Are we cloning a kernel thread?
954 	 *
955 	 * We need to steal a active VM for that..
956 	 */
957 	oldmm = current->mm;
958 	if (!oldmm)
959 		return 0;
960 
961 	/* initialize the new vmacache entries */
962 	vmacache_flush(tsk);
963 
964 	if (clone_flags & CLONE_VM) {
965 		atomic_inc(&oldmm->mm_users);
966 		mm = oldmm;
967 		goto good_mm;
968 	}
969 
970 	retval = -ENOMEM;
971 	mm = dup_mm(tsk);
972 	if (!mm)
973 		goto fail_nomem;
974 
975 good_mm:
976 	tsk->mm = mm;
977 	tsk->active_mm = mm;
978 	return 0;
979 
980 fail_nomem:
981 	return retval;
982 }
983 
984 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
985 {
986 	struct fs_struct *fs = current->fs;
987 	if (clone_flags & CLONE_FS) {
988 		/* tsk->fs is already what we want */
989 		spin_lock(&fs->lock);
990 		if (fs->in_exec) {
991 			spin_unlock(&fs->lock);
992 			return -EAGAIN;
993 		}
994 		fs->users++;
995 		spin_unlock(&fs->lock);
996 		return 0;
997 	}
998 	tsk->fs = copy_fs_struct(fs);
999 	if (!tsk->fs)
1000 		return -ENOMEM;
1001 	return 0;
1002 }
1003 
1004 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1005 {
1006 	struct files_struct *oldf, *newf;
1007 	int error = 0;
1008 
1009 	/*
1010 	 * A background process may not have any files ...
1011 	 */
1012 	oldf = current->files;
1013 	if (!oldf)
1014 		goto out;
1015 
1016 	if (clone_flags & CLONE_FILES) {
1017 		atomic_inc(&oldf->count);
1018 		goto out;
1019 	}
1020 
1021 	newf = dup_fd(oldf, &error);
1022 	if (!newf)
1023 		goto out;
1024 
1025 	tsk->files = newf;
1026 	error = 0;
1027 out:
1028 	return error;
1029 }
1030 
1031 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1032 {
1033 #ifdef CONFIG_BLOCK
1034 	struct io_context *ioc = current->io_context;
1035 	struct io_context *new_ioc;
1036 
1037 	if (!ioc)
1038 		return 0;
1039 	/*
1040 	 * Share io context with parent, if CLONE_IO is set
1041 	 */
1042 	if (clone_flags & CLONE_IO) {
1043 		ioc_task_link(ioc);
1044 		tsk->io_context = ioc;
1045 	} else if (ioprio_valid(ioc->ioprio)) {
1046 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1047 		if (unlikely(!new_ioc))
1048 			return -ENOMEM;
1049 
1050 		new_ioc->ioprio = ioc->ioprio;
1051 		put_io_context(new_ioc);
1052 	}
1053 #endif
1054 	return 0;
1055 }
1056 
1057 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1058 {
1059 	struct sighand_struct *sig;
1060 
1061 	if (clone_flags & CLONE_SIGHAND) {
1062 		atomic_inc(&current->sighand->count);
1063 		return 0;
1064 	}
1065 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1066 	rcu_assign_pointer(tsk->sighand, sig);
1067 	if (!sig)
1068 		return -ENOMEM;
1069 	atomic_set(&sig->count, 1);
1070 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1071 	return 0;
1072 }
1073 
1074 void __cleanup_sighand(struct sighand_struct *sighand)
1075 {
1076 	if (atomic_dec_and_test(&sighand->count)) {
1077 		signalfd_cleanup(sighand);
1078 		/*
1079 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1080 		 * without an RCU grace period, see __lock_task_sighand().
1081 		 */
1082 		kmem_cache_free(sighand_cachep, sighand);
1083 	}
1084 }
1085 
1086 /*
1087  * Initialize POSIX timer handling for a thread group.
1088  */
1089 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1090 {
1091 	unsigned long cpu_limit;
1092 
1093 	/* Thread group counters. */
1094 	thread_group_cputime_init(sig);
1095 
1096 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1097 	if (cpu_limit != RLIM_INFINITY) {
1098 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1099 		sig->cputimer.running = 1;
1100 	}
1101 
1102 	/* The timer lists. */
1103 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1104 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1105 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1106 }
1107 
1108 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1109 {
1110 	struct signal_struct *sig;
1111 
1112 	if (clone_flags & CLONE_THREAD)
1113 		return 0;
1114 
1115 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1116 	tsk->signal = sig;
1117 	if (!sig)
1118 		return -ENOMEM;
1119 
1120 	sig->nr_threads = 1;
1121 	atomic_set(&sig->live, 1);
1122 	atomic_set(&sig->sigcnt, 1);
1123 
1124 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1125 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1126 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1127 
1128 	init_waitqueue_head(&sig->wait_chldexit);
1129 	sig->curr_target = tsk;
1130 	init_sigpending(&sig->shared_pending);
1131 	INIT_LIST_HEAD(&sig->posix_timers);
1132 	seqlock_init(&sig->stats_lock);
1133 
1134 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 	sig->real_timer.function = it_real_fn;
1136 
1137 	task_lock(current->group_leader);
1138 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1139 	task_unlock(current->group_leader);
1140 
1141 	posix_cpu_timers_init_group(sig);
1142 
1143 	tty_audit_fork(sig);
1144 	sched_autogroup_fork(sig);
1145 
1146 #ifdef CONFIG_CGROUPS
1147 	init_rwsem(&sig->group_rwsem);
1148 #endif
1149 
1150 	sig->oom_score_adj = current->signal->oom_score_adj;
1151 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1152 
1153 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1154 				   current->signal->is_child_subreaper;
1155 
1156 	mutex_init(&sig->cred_guard_mutex);
1157 
1158 	return 0;
1159 }
1160 
1161 static void copy_seccomp(struct task_struct *p)
1162 {
1163 #ifdef CONFIG_SECCOMP
1164 	/*
1165 	 * Must be called with sighand->lock held, which is common to
1166 	 * all threads in the group. Holding cred_guard_mutex is not
1167 	 * needed because this new task is not yet running and cannot
1168 	 * be racing exec.
1169 	 */
1170 	assert_spin_locked(&current->sighand->siglock);
1171 
1172 	/* Ref-count the new filter user, and assign it. */
1173 	get_seccomp_filter(current);
1174 	p->seccomp = current->seccomp;
1175 
1176 	/*
1177 	 * Explicitly enable no_new_privs here in case it got set
1178 	 * between the task_struct being duplicated and holding the
1179 	 * sighand lock. The seccomp state and nnp must be in sync.
1180 	 */
1181 	if (task_no_new_privs(current))
1182 		task_set_no_new_privs(p);
1183 
1184 	/*
1185 	 * If the parent gained a seccomp mode after copying thread
1186 	 * flags and between before we held the sighand lock, we have
1187 	 * to manually enable the seccomp thread flag here.
1188 	 */
1189 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1190 		set_tsk_thread_flag(p, TIF_SECCOMP);
1191 #endif
1192 }
1193 
1194 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1195 {
1196 	current->clear_child_tid = tidptr;
1197 
1198 	return task_pid_vnr(current);
1199 }
1200 
1201 static void rt_mutex_init_task(struct task_struct *p)
1202 {
1203 	raw_spin_lock_init(&p->pi_lock);
1204 #ifdef CONFIG_RT_MUTEXES
1205 	p->pi_waiters = RB_ROOT;
1206 	p->pi_waiters_leftmost = NULL;
1207 	p->pi_blocked_on = NULL;
1208 #endif
1209 }
1210 
1211 /*
1212  * Initialize POSIX timer handling for a single task.
1213  */
1214 static void posix_cpu_timers_init(struct task_struct *tsk)
1215 {
1216 	tsk->cputime_expires.prof_exp = 0;
1217 	tsk->cputime_expires.virt_exp = 0;
1218 	tsk->cputime_expires.sched_exp = 0;
1219 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1220 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1221 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1222 }
1223 
1224 static inline void
1225 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1226 {
1227 	 task->pids[type].pid = pid;
1228 }
1229 
1230 /*
1231  * This creates a new process as a copy of the old one,
1232  * but does not actually start it yet.
1233  *
1234  * It copies the registers, and all the appropriate
1235  * parts of the process environment (as per the clone
1236  * flags). The actual kick-off is left to the caller.
1237  */
1238 static struct task_struct *copy_process(unsigned long clone_flags,
1239 					unsigned long stack_start,
1240 					unsigned long stack_size,
1241 					int __user *child_tidptr,
1242 					struct pid *pid,
1243 					int trace)
1244 {
1245 	int retval;
1246 	struct task_struct *p;
1247 
1248 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1249 		return ERR_PTR(-EINVAL);
1250 
1251 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1252 		return ERR_PTR(-EINVAL);
1253 
1254 	/*
1255 	 * Thread groups must share signals as well, and detached threads
1256 	 * can only be started up within the thread group.
1257 	 */
1258 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1259 		return ERR_PTR(-EINVAL);
1260 
1261 	/*
1262 	 * Shared signal handlers imply shared VM. By way of the above,
1263 	 * thread groups also imply shared VM. Blocking this case allows
1264 	 * for various simplifications in other code.
1265 	 */
1266 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1267 		return ERR_PTR(-EINVAL);
1268 
1269 	/*
1270 	 * Siblings of global init remain as zombies on exit since they are
1271 	 * not reaped by their parent (swapper). To solve this and to avoid
1272 	 * multi-rooted process trees, prevent global and container-inits
1273 	 * from creating siblings.
1274 	 */
1275 	if ((clone_flags & CLONE_PARENT) &&
1276 				current->signal->flags & SIGNAL_UNKILLABLE)
1277 		return ERR_PTR(-EINVAL);
1278 
1279 	/*
1280 	 * If the new process will be in a different pid or user namespace
1281 	 * do not allow it to share a thread group or signal handlers or
1282 	 * parent with the forking task.
1283 	 */
1284 	if (clone_flags & CLONE_SIGHAND) {
1285 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1286 		    (task_active_pid_ns(current) !=
1287 				current->nsproxy->pid_ns_for_children))
1288 			return ERR_PTR(-EINVAL);
1289 	}
1290 
1291 	retval = security_task_create(clone_flags);
1292 	if (retval)
1293 		goto fork_out;
1294 
1295 	retval = -ENOMEM;
1296 	p = dup_task_struct(current);
1297 	if (!p)
1298 		goto fork_out;
1299 
1300 	ftrace_graph_init_task(p);
1301 
1302 	rt_mutex_init_task(p);
1303 
1304 #ifdef CONFIG_PROVE_LOCKING
1305 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1306 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1307 #endif
1308 	retval = -EAGAIN;
1309 	if (atomic_read(&p->real_cred->user->processes) >=
1310 			task_rlimit(p, RLIMIT_NPROC)) {
1311 		if (p->real_cred->user != INIT_USER &&
1312 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1313 			goto bad_fork_free;
1314 	}
1315 	current->flags &= ~PF_NPROC_EXCEEDED;
1316 
1317 	retval = copy_creds(p, clone_flags);
1318 	if (retval < 0)
1319 		goto bad_fork_free;
1320 
1321 	/*
1322 	 * If multiple threads are within copy_process(), then this check
1323 	 * triggers too late. This doesn't hurt, the check is only there
1324 	 * to stop root fork bombs.
1325 	 */
1326 	retval = -EAGAIN;
1327 	if (nr_threads >= max_threads)
1328 		goto bad_fork_cleanup_count;
1329 
1330 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1331 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1332 	p->flags |= PF_FORKNOEXEC;
1333 	INIT_LIST_HEAD(&p->children);
1334 	INIT_LIST_HEAD(&p->sibling);
1335 	rcu_copy_process(p);
1336 	p->vfork_done = NULL;
1337 	spin_lock_init(&p->alloc_lock);
1338 
1339 	init_sigpending(&p->pending);
1340 
1341 	p->utime = p->stime = p->gtime = 0;
1342 	p->utimescaled = p->stimescaled = 0;
1343 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1344 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1345 #endif
1346 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1347 	seqlock_init(&p->vtime_seqlock);
1348 	p->vtime_snap = 0;
1349 	p->vtime_snap_whence = VTIME_SLEEPING;
1350 #endif
1351 
1352 #if defined(SPLIT_RSS_COUNTING)
1353 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1354 #endif
1355 
1356 	p->default_timer_slack_ns = current->timer_slack_ns;
1357 
1358 	task_io_accounting_init(&p->ioac);
1359 	acct_clear_integrals(p);
1360 
1361 	posix_cpu_timers_init(p);
1362 
1363 	p->start_time = ktime_get_ns();
1364 	p->real_start_time = ktime_get_boot_ns();
1365 	p->io_context = NULL;
1366 	p->audit_context = NULL;
1367 	if (clone_flags & CLONE_THREAD)
1368 		threadgroup_change_begin(current);
1369 	cgroup_fork(p);
1370 #ifdef CONFIG_NUMA
1371 	p->mempolicy = mpol_dup(p->mempolicy);
1372 	if (IS_ERR(p->mempolicy)) {
1373 		retval = PTR_ERR(p->mempolicy);
1374 		p->mempolicy = NULL;
1375 		goto bad_fork_cleanup_threadgroup_lock;
1376 	}
1377 #endif
1378 #ifdef CONFIG_CPUSETS
1379 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1380 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1381 	seqcount_init(&p->mems_allowed_seq);
1382 #endif
1383 #ifdef CONFIG_TRACE_IRQFLAGS
1384 	p->irq_events = 0;
1385 	p->hardirqs_enabled = 0;
1386 	p->hardirq_enable_ip = 0;
1387 	p->hardirq_enable_event = 0;
1388 	p->hardirq_disable_ip = _THIS_IP_;
1389 	p->hardirq_disable_event = 0;
1390 	p->softirqs_enabled = 1;
1391 	p->softirq_enable_ip = _THIS_IP_;
1392 	p->softirq_enable_event = 0;
1393 	p->softirq_disable_ip = 0;
1394 	p->softirq_disable_event = 0;
1395 	p->hardirq_context = 0;
1396 	p->softirq_context = 0;
1397 #endif
1398 #ifdef CONFIG_LOCKDEP
1399 	p->lockdep_depth = 0; /* no locks held yet */
1400 	p->curr_chain_key = 0;
1401 	p->lockdep_recursion = 0;
1402 #endif
1403 
1404 #ifdef CONFIG_DEBUG_MUTEXES
1405 	p->blocked_on = NULL; /* not blocked yet */
1406 #endif
1407 #ifdef CONFIG_BCACHE
1408 	p->sequential_io	= 0;
1409 	p->sequential_io_avg	= 0;
1410 #endif
1411 
1412 	/* Perform scheduler related setup. Assign this task to a CPU. */
1413 	retval = sched_fork(clone_flags, p);
1414 	if (retval)
1415 		goto bad_fork_cleanup_policy;
1416 
1417 	retval = perf_event_init_task(p);
1418 	if (retval)
1419 		goto bad_fork_cleanup_policy;
1420 	retval = audit_alloc(p);
1421 	if (retval)
1422 		goto bad_fork_cleanup_perf;
1423 	/* copy all the process information */
1424 	shm_init_task(p);
1425 	retval = copy_semundo(clone_flags, p);
1426 	if (retval)
1427 		goto bad_fork_cleanup_audit;
1428 	retval = copy_files(clone_flags, p);
1429 	if (retval)
1430 		goto bad_fork_cleanup_semundo;
1431 	retval = copy_fs(clone_flags, p);
1432 	if (retval)
1433 		goto bad_fork_cleanup_files;
1434 	retval = copy_sighand(clone_flags, p);
1435 	if (retval)
1436 		goto bad_fork_cleanup_fs;
1437 	retval = copy_signal(clone_flags, p);
1438 	if (retval)
1439 		goto bad_fork_cleanup_sighand;
1440 	retval = copy_mm(clone_flags, p);
1441 	if (retval)
1442 		goto bad_fork_cleanup_signal;
1443 	retval = copy_namespaces(clone_flags, p);
1444 	if (retval)
1445 		goto bad_fork_cleanup_mm;
1446 	retval = copy_io(clone_flags, p);
1447 	if (retval)
1448 		goto bad_fork_cleanup_namespaces;
1449 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1450 	if (retval)
1451 		goto bad_fork_cleanup_io;
1452 
1453 	if (pid != &init_struct_pid) {
1454 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1455 		if (IS_ERR(pid)) {
1456 			retval = PTR_ERR(pid);
1457 			goto bad_fork_cleanup_io;
1458 		}
1459 	}
1460 
1461 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1462 	/*
1463 	 * Clear TID on mm_release()?
1464 	 */
1465 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1466 #ifdef CONFIG_BLOCK
1467 	p->plug = NULL;
1468 #endif
1469 #ifdef CONFIG_FUTEX
1470 	p->robust_list = NULL;
1471 #ifdef CONFIG_COMPAT
1472 	p->compat_robust_list = NULL;
1473 #endif
1474 	INIT_LIST_HEAD(&p->pi_state_list);
1475 	p->pi_state_cache = NULL;
1476 #endif
1477 	/*
1478 	 * sigaltstack should be cleared when sharing the same VM
1479 	 */
1480 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1481 		p->sas_ss_sp = p->sas_ss_size = 0;
1482 
1483 	/*
1484 	 * Syscall tracing and stepping should be turned off in the
1485 	 * child regardless of CLONE_PTRACE.
1486 	 */
1487 	user_disable_single_step(p);
1488 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1489 #ifdef TIF_SYSCALL_EMU
1490 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1491 #endif
1492 	clear_all_latency_tracing(p);
1493 
1494 	/* ok, now we should be set up.. */
1495 	p->pid = pid_nr(pid);
1496 	if (clone_flags & CLONE_THREAD) {
1497 		p->exit_signal = -1;
1498 		p->group_leader = current->group_leader;
1499 		p->tgid = current->tgid;
1500 	} else {
1501 		if (clone_flags & CLONE_PARENT)
1502 			p->exit_signal = current->group_leader->exit_signal;
1503 		else
1504 			p->exit_signal = (clone_flags & CSIGNAL);
1505 		p->group_leader = p;
1506 		p->tgid = p->pid;
1507 	}
1508 
1509 	p->nr_dirtied = 0;
1510 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1511 	p->dirty_paused_when = 0;
1512 
1513 	p->pdeath_signal = 0;
1514 	INIT_LIST_HEAD(&p->thread_group);
1515 	p->task_works = NULL;
1516 
1517 	/*
1518 	 * Make it visible to the rest of the system, but dont wake it up yet.
1519 	 * Need tasklist lock for parent etc handling!
1520 	 */
1521 	write_lock_irq(&tasklist_lock);
1522 
1523 	/* CLONE_PARENT re-uses the old parent */
1524 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1525 		p->real_parent = current->real_parent;
1526 		p->parent_exec_id = current->parent_exec_id;
1527 	} else {
1528 		p->real_parent = current;
1529 		p->parent_exec_id = current->self_exec_id;
1530 	}
1531 
1532 	spin_lock(&current->sighand->siglock);
1533 
1534 	/*
1535 	 * Copy seccomp details explicitly here, in case they were changed
1536 	 * before holding sighand lock.
1537 	 */
1538 	copy_seccomp(p);
1539 
1540 	/*
1541 	 * Process group and session signals need to be delivered to just the
1542 	 * parent before the fork or both the parent and the child after the
1543 	 * fork. Restart if a signal comes in before we add the new process to
1544 	 * it's process group.
1545 	 * A fatal signal pending means that current will exit, so the new
1546 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1547 	*/
1548 	recalc_sigpending();
1549 	if (signal_pending(current)) {
1550 		spin_unlock(&current->sighand->siglock);
1551 		write_unlock_irq(&tasklist_lock);
1552 		retval = -ERESTARTNOINTR;
1553 		goto bad_fork_free_pid;
1554 	}
1555 
1556 	if (likely(p->pid)) {
1557 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1558 
1559 		init_task_pid(p, PIDTYPE_PID, pid);
1560 		if (thread_group_leader(p)) {
1561 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1562 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1563 
1564 			if (is_child_reaper(pid)) {
1565 				ns_of_pid(pid)->child_reaper = p;
1566 				p->signal->flags |= SIGNAL_UNKILLABLE;
1567 			}
1568 
1569 			p->signal->leader_pid = pid;
1570 			p->signal->tty = tty_kref_get(current->signal->tty);
1571 			list_add_tail(&p->sibling, &p->real_parent->children);
1572 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1573 			attach_pid(p, PIDTYPE_PGID);
1574 			attach_pid(p, PIDTYPE_SID);
1575 			__this_cpu_inc(process_counts);
1576 		} else {
1577 			current->signal->nr_threads++;
1578 			atomic_inc(&current->signal->live);
1579 			atomic_inc(&current->signal->sigcnt);
1580 			list_add_tail_rcu(&p->thread_group,
1581 					  &p->group_leader->thread_group);
1582 			list_add_tail_rcu(&p->thread_node,
1583 					  &p->signal->thread_head);
1584 		}
1585 		attach_pid(p, PIDTYPE_PID);
1586 		nr_threads++;
1587 	}
1588 
1589 	total_forks++;
1590 	spin_unlock(&current->sighand->siglock);
1591 	syscall_tracepoint_update(p);
1592 	write_unlock_irq(&tasklist_lock);
1593 
1594 	proc_fork_connector(p);
1595 	cgroup_post_fork(p);
1596 	if (clone_flags & CLONE_THREAD)
1597 		threadgroup_change_end(current);
1598 	perf_event_fork(p);
1599 
1600 	trace_task_newtask(p, clone_flags);
1601 	uprobe_copy_process(p, clone_flags);
1602 
1603 	return p;
1604 
1605 bad_fork_free_pid:
1606 	if (pid != &init_struct_pid)
1607 		free_pid(pid);
1608 bad_fork_cleanup_io:
1609 	if (p->io_context)
1610 		exit_io_context(p);
1611 bad_fork_cleanup_namespaces:
1612 	exit_task_namespaces(p);
1613 bad_fork_cleanup_mm:
1614 	if (p->mm)
1615 		mmput(p->mm);
1616 bad_fork_cleanup_signal:
1617 	if (!(clone_flags & CLONE_THREAD))
1618 		free_signal_struct(p->signal);
1619 bad_fork_cleanup_sighand:
1620 	__cleanup_sighand(p->sighand);
1621 bad_fork_cleanup_fs:
1622 	exit_fs(p); /* blocking */
1623 bad_fork_cleanup_files:
1624 	exit_files(p); /* blocking */
1625 bad_fork_cleanup_semundo:
1626 	exit_sem(p);
1627 bad_fork_cleanup_audit:
1628 	audit_free(p);
1629 bad_fork_cleanup_perf:
1630 	perf_event_free_task(p);
1631 bad_fork_cleanup_policy:
1632 #ifdef CONFIG_NUMA
1633 	mpol_put(p->mempolicy);
1634 bad_fork_cleanup_threadgroup_lock:
1635 #endif
1636 	if (clone_flags & CLONE_THREAD)
1637 		threadgroup_change_end(current);
1638 	delayacct_tsk_free(p);
1639 bad_fork_cleanup_count:
1640 	atomic_dec(&p->cred->user->processes);
1641 	exit_creds(p);
1642 bad_fork_free:
1643 	free_task(p);
1644 fork_out:
1645 	return ERR_PTR(retval);
1646 }
1647 
1648 static inline void init_idle_pids(struct pid_link *links)
1649 {
1650 	enum pid_type type;
1651 
1652 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1653 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1654 		links[type].pid = &init_struct_pid;
1655 	}
1656 }
1657 
1658 struct task_struct *fork_idle(int cpu)
1659 {
1660 	struct task_struct *task;
1661 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1662 	if (!IS_ERR(task)) {
1663 		init_idle_pids(task->pids);
1664 		init_idle(task, cpu);
1665 	}
1666 
1667 	return task;
1668 }
1669 
1670 /*
1671  *  Ok, this is the main fork-routine.
1672  *
1673  * It copies the process, and if successful kick-starts
1674  * it and waits for it to finish using the VM if required.
1675  */
1676 long do_fork(unsigned long clone_flags,
1677 	      unsigned long stack_start,
1678 	      unsigned long stack_size,
1679 	      int __user *parent_tidptr,
1680 	      int __user *child_tidptr)
1681 {
1682 	struct task_struct *p;
1683 	int trace = 0;
1684 	long nr;
1685 
1686 	/*
1687 	 * Determine whether and which event to report to ptracer.  When
1688 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1689 	 * requested, no event is reported; otherwise, report if the event
1690 	 * for the type of forking is enabled.
1691 	 */
1692 	if (!(clone_flags & CLONE_UNTRACED)) {
1693 		if (clone_flags & CLONE_VFORK)
1694 			trace = PTRACE_EVENT_VFORK;
1695 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1696 			trace = PTRACE_EVENT_CLONE;
1697 		else
1698 			trace = PTRACE_EVENT_FORK;
1699 
1700 		if (likely(!ptrace_event_enabled(current, trace)))
1701 			trace = 0;
1702 	}
1703 
1704 	p = copy_process(clone_flags, stack_start, stack_size,
1705 			 child_tidptr, NULL, trace);
1706 	/*
1707 	 * Do this prior waking up the new thread - the thread pointer
1708 	 * might get invalid after that point, if the thread exits quickly.
1709 	 */
1710 	if (!IS_ERR(p)) {
1711 		struct completion vfork;
1712 		struct pid *pid;
1713 
1714 		trace_sched_process_fork(current, p);
1715 
1716 		pid = get_task_pid(p, PIDTYPE_PID);
1717 		nr = pid_vnr(pid);
1718 
1719 		if (clone_flags & CLONE_PARENT_SETTID)
1720 			put_user(nr, parent_tidptr);
1721 
1722 		if (clone_flags & CLONE_VFORK) {
1723 			p->vfork_done = &vfork;
1724 			init_completion(&vfork);
1725 			get_task_struct(p);
1726 		}
1727 
1728 		wake_up_new_task(p);
1729 
1730 		/* forking complete and child started to run, tell ptracer */
1731 		if (unlikely(trace))
1732 			ptrace_event_pid(trace, pid);
1733 
1734 		if (clone_flags & CLONE_VFORK) {
1735 			if (!wait_for_vfork_done(p, &vfork))
1736 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1737 		}
1738 
1739 		put_pid(pid);
1740 	} else {
1741 		nr = PTR_ERR(p);
1742 	}
1743 	return nr;
1744 }
1745 
1746 /*
1747  * Create a kernel thread.
1748  */
1749 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1750 {
1751 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1752 		(unsigned long)arg, NULL, NULL);
1753 }
1754 
1755 #ifdef __ARCH_WANT_SYS_FORK
1756 SYSCALL_DEFINE0(fork)
1757 {
1758 #ifdef CONFIG_MMU
1759 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1760 #else
1761 	/* can not support in nommu mode */
1762 	return -EINVAL;
1763 #endif
1764 }
1765 #endif
1766 
1767 #ifdef __ARCH_WANT_SYS_VFORK
1768 SYSCALL_DEFINE0(vfork)
1769 {
1770 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1771 			0, NULL, NULL);
1772 }
1773 #endif
1774 
1775 #ifdef __ARCH_WANT_SYS_CLONE
1776 #ifdef CONFIG_CLONE_BACKWARDS
1777 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1778 		 int __user *, parent_tidptr,
1779 		 int, tls_val,
1780 		 int __user *, child_tidptr)
1781 #elif defined(CONFIG_CLONE_BACKWARDS2)
1782 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1783 		 int __user *, parent_tidptr,
1784 		 int __user *, child_tidptr,
1785 		 int, tls_val)
1786 #elif defined(CONFIG_CLONE_BACKWARDS3)
1787 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1788 		int, stack_size,
1789 		int __user *, parent_tidptr,
1790 		int __user *, child_tidptr,
1791 		int, tls_val)
1792 #else
1793 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1794 		 int __user *, parent_tidptr,
1795 		 int __user *, child_tidptr,
1796 		 int, tls_val)
1797 #endif
1798 {
1799 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1800 }
1801 #endif
1802 
1803 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1804 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1805 #endif
1806 
1807 static void sighand_ctor(void *data)
1808 {
1809 	struct sighand_struct *sighand = data;
1810 
1811 	spin_lock_init(&sighand->siglock);
1812 	init_waitqueue_head(&sighand->signalfd_wqh);
1813 }
1814 
1815 void __init proc_caches_init(void)
1816 {
1817 	sighand_cachep = kmem_cache_create("sighand_cache",
1818 			sizeof(struct sighand_struct), 0,
1819 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1820 			SLAB_NOTRACK, sighand_ctor);
1821 	signal_cachep = kmem_cache_create("signal_cache",
1822 			sizeof(struct signal_struct), 0,
1823 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1824 	files_cachep = kmem_cache_create("files_cache",
1825 			sizeof(struct files_struct), 0,
1826 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1827 	fs_cachep = kmem_cache_create("fs_cache",
1828 			sizeof(struct fs_struct), 0,
1829 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1830 	/*
1831 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1832 	 * whole struct cpumask for the OFFSTACK case. We could change
1833 	 * this to *only* allocate as much of it as required by the
1834 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1835 	 * is at the end of the structure, exactly for that reason.
1836 	 */
1837 	mm_cachep = kmem_cache_create("mm_struct",
1838 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1839 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1840 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1841 	mmap_init();
1842 	nsproxy_cache_init();
1843 }
1844 
1845 /*
1846  * Check constraints on flags passed to the unshare system call.
1847  */
1848 static int check_unshare_flags(unsigned long unshare_flags)
1849 {
1850 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1851 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1852 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1853 				CLONE_NEWUSER|CLONE_NEWPID))
1854 		return -EINVAL;
1855 	/*
1856 	 * Not implemented, but pretend it works if there is nothing to
1857 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1858 	 * needs to unshare vm.
1859 	 */
1860 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1861 		/* FIXME: get_task_mm() increments ->mm_users */
1862 		if (atomic_read(&current->mm->mm_users) > 1)
1863 			return -EINVAL;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 /*
1870  * Unshare the filesystem structure if it is being shared
1871  */
1872 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1873 {
1874 	struct fs_struct *fs = current->fs;
1875 
1876 	if (!(unshare_flags & CLONE_FS) || !fs)
1877 		return 0;
1878 
1879 	/* don't need lock here; in the worst case we'll do useless copy */
1880 	if (fs->users == 1)
1881 		return 0;
1882 
1883 	*new_fsp = copy_fs_struct(fs);
1884 	if (!*new_fsp)
1885 		return -ENOMEM;
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * Unshare file descriptor table if it is being shared
1892  */
1893 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1894 {
1895 	struct files_struct *fd = current->files;
1896 	int error = 0;
1897 
1898 	if ((unshare_flags & CLONE_FILES) &&
1899 	    (fd && atomic_read(&fd->count) > 1)) {
1900 		*new_fdp = dup_fd(fd, &error);
1901 		if (!*new_fdp)
1902 			return error;
1903 	}
1904 
1905 	return 0;
1906 }
1907 
1908 /*
1909  * unshare allows a process to 'unshare' part of the process
1910  * context which was originally shared using clone.  copy_*
1911  * functions used by do_fork() cannot be used here directly
1912  * because they modify an inactive task_struct that is being
1913  * constructed. Here we are modifying the current, active,
1914  * task_struct.
1915  */
1916 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1917 {
1918 	struct fs_struct *fs, *new_fs = NULL;
1919 	struct files_struct *fd, *new_fd = NULL;
1920 	struct cred *new_cred = NULL;
1921 	struct nsproxy *new_nsproxy = NULL;
1922 	int do_sysvsem = 0;
1923 	int err;
1924 
1925 	/*
1926 	 * If unsharing a user namespace must also unshare the thread.
1927 	 */
1928 	if (unshare_flags & CLONE_NEWUSER)
1929 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1930 	/*
1931 	 * If unsharing a thread from a thread group, must also unshare vm.
1932 	 */
1933 	if (unshare_flags & CLONE_THREAD)
1934 		unshare_flags |= CLONE_VM;
1935 	/*
1936 	 * If unsharing vm, must also unshare signal handlers.
1937 	 */
1938 	if (unshare_flags & CLONE_VM)
1939 		unshare_flags |= CLONE_SIGHAND;
1940 	/*
1941 	 * If unsharing namespace, must also unshare filesystem information.
1942 	 */
1943 	if (unshare_flags & CLONE_NEWNS)
1944 		unshare_flags |= CLONE_FS;
1945 
1946 	err = check_unshare_flags(unshare_flags);
1947 	if (err)
1948 		goto bad_unshare_out;
1949 	/*
1950 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1951 	 * to a new ipc namespace, the semaphore arrays from the old
1952 	 * namespace are unreachable.
1953 	 */
1954 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1955 		do_sysvsem = 1;
1956 	err = unshare_fs(unshare_flags, &new_fs);
1957 	if (err)
1958 		goto bad_unshare_out;
1959 	err = unshare_fd(unshare_flags, &new_fd);
1960 	if (err)
1961 		goto bad_unshare_cleanup_fs;
1962 	err = unshare_userns(unshare_flags, &new_cred);
1963 	if (err)
1964 		goto bad_unshare_cleanup_fd;
1965 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1966 					 new_cred, new_fs);
1967 	if (err)
1968 		goto bad_unshare_cleanup_cred;
1969 
1970 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1971 		if (do_sysvsem) {
1972 			/*
1973 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1974 			 */
1975 			exit_sem(current);
1976 		}
1977 		if (unshare_flags & CLONE_NEWIPC) {
1978 			/* Orphan segments in old ns (see sem above). */
1979 			exit_shm(current);
1980 			shm_init_task(current);
1981 		}
1982 
1983 		if (new_nsproxy)
1984 			switch_task_namespaces(current, new_nsproxy);
1985 
1986 		task_lock(current);
1987 
1988 		if (new_fs) {
1989 			fs = current->fs;
1990 			spin_lock(&fs->lock);
1991 			current->fs = new_fs;
1992 			if (--fs->users)
1993 				new_fs = NULL;
1994 			else
1995 				new_fs = fs;
1996 			spin_unlock(&fs->lock);
1997 		}
1998 
1999 		if (new_fd) {
2000 			fd = current->files;
2001 			current->files = new_fd;
2002 			new_fd = fd;
2003 		}
2004 
2005 		task_unlock(current);
2006 
2007 		if (new_cred) {
2008 			/* Install the new user namespace */
2009 			commit_creds(new_cred);
2010 			new_cred = NULL;
2011 		}
2012 	}
2013 
2014 bad_unshare_cleanup_cred:
2015 	if (new_cred)
2016 		put_cred(new_cred);
2017 bad_unshare_cleanup_fd:
2018 	if (new_fd)
2019 		put_files_struct(new_fd);
2020 
2021 bad_unshare_cleanup_fs:
2022 	if (new_fs)
2023 		free_fs_struct(new_fs);
2024 
2025 bad_unshare_out:
2026 	return err;
2027 }
2028 
2029 /*
2030  *	Helper to unshare the files of the current task.
2031  *	We don't want to expose copy_files internals to
2032  *	the exec layer of the kernel.
2033  */
2034 
2035 int unshare_files(struct files_struct **displaced)
2036 {
2037 	struct task_struct *task = current;
2038 	struct files_struct *copy = NULL;
2039 	int error;
2040 
2041 	error = unshare_fd(CLONE_FILES, &copy);
2042 	if (error || !copy) {
2043 		*displaced = NULL;
2044 		return error;
2045 	}
2046 	*displaced = task->files;
2047 	task_lock(task);
2048 	task->files = copy;
2049 	task_unlock(task);
2050 	return 0;
2051 }
2052 
2053 int sysctl_max_threads(struct ctl_table *table, int write,
2054 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2055 {
2056 	struct ctl_table t;
2057 	int ret;
2058 	int threads = max_threads;
2059 	int min = MIN_THREADS;
2060 	int max = MAX_THREADS;
2061 
2062 	t = *table;
2063 	t.data = &threads;
2064 	t.extra1 = &min;
2065 	t.extra2 = &max;
2066 
2067 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2068 	if (ret || !write)
2069 		return ret;
2070 
2071 	set_max_threads(threads);
2072 
2073 	return 0;
2074 }
2075