xref: /linux/kernel/fork.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 
54 /*
55  * Protected counters by write_lock_irq(&tasklist_lock)
56  */
57 unsigned long total_forks;	/* Handle normal Linux uptimes. */
58 int nr_threads; 		/* The idle threads do not count.. */
59 
60 int max_threads;		/* tunable limit on nr_threads */
61 
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
63 
64  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
65 
66 EXPORT_SYMBOL(tasklist_lock);
67 
68 int nr_processes(void)
69 {
70 	int cpu;
71 	int total = 0;
72 
73 	for_each_online_cpu(cpu)
74 		total += per_cpu(process_counts, cpu);
75 
76 	return total;
77 }
78 
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
84 
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 kmem_cache_t *signal_cachep;
87 
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
90 
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
93 
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
96 
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
99 
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
102 
103 void free_task(struct task_struct *tsk)
104 {
105 	free_thread_info(tsk->thread_info);
106 	free_task_struct(tsk);
107 }
108 EXPORT_SYMBOL(free_task);
109 
110 void __put_task_struct(struct task_struct *tsk)
111 {
112 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
113 	WARN_ON(atomic_read(&tsk->usage));
114 	WARN_ON(tsk == current);
115 
116 	if (unlikely(tsk->audit_context))
117 		audit_free(tsk);
118 	security_task_free(tsk);
119 	free_uid(tsk->user);
120 	put_group_info(tsk->group_info);
121 
122 	if (!profile_handoff_task(tsk))
123 		free_task(tsk);
124 }
125 
126 void __init fork_init(unsigned long mempages)
127 {
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
131 #endif
132 	/* create a slab on which task_structs can be allocated */
133 	task_struct_cachep =
134 		kmem_cache_create("task_struct", sizeof(struct task_struct),
135 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
137 
138 	/*
139 	 * The default maximum number of threads is set to a safe
140 	 * value: the thread structures can take up at most half
141 	 * of memory.
142 	 */
143 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144 
145 	/*
146 	 * we need to allow at least 20 threads to boot a system
147 	 */
148 	if(max_threads < 20)
149 		max_threads = 20;
150 
151 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 		init_task.signal->rlim[RLIMIT_NPROC];
155 }
156 
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
158 {
159 	struct task_struct *tsk;
160 	struct thread_info *ti;
161 
162 	prepare_to_copy(orig);
163 
164 	tsk = alloc_task_struct();
165 	if (!tsk)
166 		return NULL;
167 
168 	ti = alloc_thread_info(tsk);
169 	if (!ti) {
170 		free_task_struct(tsk);
171 		return NULL;
172 	}
173 
174 	*tsk = *orig;
175 	tsk->thread_info = ti;
176 	setup_thread_stack(tsk, orig);
177 
178 	/* One for us, one for whoever does the "release_task()" (usually parent) */
179 	atomic_set(&tsk->usage,2);
180 	atomic_set(&tsk->fs_excl, 0);
181 	return tsk;
182 }
183 
184 #ifdef CONFIG_MMU
185 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
186 {
187 	struct vm_area_struct *mpnt, *tmp, **pprev;
188 	struct rb_node **rb_link, *rb_parent;
189 	int retval;
190 	unsigned long charge;
191 	struct mempolicy *pol;
192 
193 	down_write(&oldmm->mmap_sem);
194 	flush_cache_mm(oldmm);
195 	down_write(&mm->mmap_sem);
196 
197 	mm->locked_vm = 0;
198 	mm->mmap = NULL;
199 	mm->mmap_cache = NULL;
200 	mm->free_area_cache = oldmm->mmap_base;
201 	mm->cached_hole_size = ~0UL;
202 	mm->map_count = 0;
203 	cpus_clear(mm->cpu_vm_mask);
204 	mm->mm_rb = RB_ROOT;
205 	rb_link = &mm->mm_rb.rb_node;
206 	rb_parent = NULL;
207 	pprev = &mm->mmap;
208 
209 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
210 		struct file *file;
211 
212 		if (mpnt->vm_flags & VM_DONTCOPY) {
213 			long pages = vma_pages(mpnt);
214 			mm->total_vm -= pages;
215 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
216 								-pages);
217 			continue;
218 		}
219 		charge = 0;
220 		if (mpnt->vm_flags & VM_ACCOUNT) {
221 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
222 			if (security_vm_enough_memory(len))
223 				goto fail_nomem;
224 			charge = len;
225 		}
226 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
227 		if (!tmp)
228 			goto fail_nomem;
229 		*tmp = *mpnt;
230 		pol = mpol_copy(vma_policy(mpnt));
231 		retval = PTR_ERR(pol);
232 		if (IS_ERR(pol))
233 			goto fail_nomem_policy;
234 		vma_set_policy(tmp, pol);
235 		tmp->vm_flags &= ~VM_LOCKED;
236 		tmp->vm_mm = mm;
237 		tmp->vm_next = NULL;
238 		anon_vma_link(tmp);
239 		file = tmp->vm_file;
240 		if (file) {
241 			struct inode *inode = file->f_dentry->d_inode;
242 			get_file(file);
243 			if (tmp->vm_flags & VM_DENYWRITE)
244 				atomic_dec(&inode->i_writecount);
245 
246 			/* insert tmp into the share list, just after mpnt */
247 			spin_lock(&file->f_mapping->i_mmap_lock);
248 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
249 			flush_dcache_mmap_lock(file->f_mapping);
250 			vma_prio_tree_add(tmp, mpnt);
251 			flush_dcache_mmap_unlock(file->f_mapping);
252 			spin_unlock(&file->f_mapping->i_mmap_lock);
253 		}
254 
255 		/*
256 		 * Link in the new vma and copy the page table entries.
257 		 */
258 		*pprev = tmp;
259 		pprev = &tmp->vm_next;
260 
261 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
262 		rb_link = &tmp->vm_rb.rb_right;
263 		rb_parent = &tmp->vm_rb;
264 
265 		mm->map_count++;
266 		retval = copy_page_range(mm, oldmm, mpnt);
267 
268 		if (tmp->vm_ops && tmp->vm_ops->open)
269 			tmp->vm_ops->open(tmp);
270 
271 		if (retval)
272 			goto out;
273 	}
274 	retval = 0;
275 out:
276 	up_write(&mm->mmap_sem);
277 	flush_tlb_mm(oldmm);
278 	up_write(&oldmm->mmap_sem);
279 	return retval;
280 fail_nomem_policy:
281 	kmem_cache_free(vm_area_cachep, tmp);
282 fail_nomem:
283 	retval = -ENOMEM;
284 	vm_unacct_memory(charge);
285 	goto out;
286 }
287 
288 static inline int mm_alloc_pgd(struct mm_struct * mm)
289 {
290 	mm->pgd = pgd_alloc(mm);
291 	if (unlikely(!mm->pgd))
292 		return -ENOMEM;
293 	return 0;
294 }
295 
296 static inline void mm_free_pgd(struct mm_struct * mm)
297 {
298 	pgd_free(mm->pgd);
299 }
300 #else
301 #define dup_mmap(mm, oldmm)	(0)
302 #define mm_alloc_pgd(mm)	(0)
303 #define mm_free_pgd(mm)
304 #endif /* CONFIG_MMU */
305 
306  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
307 
308 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
309 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
310 
311 #include <linux/init_task.h>
312 
313 static struct mm_struct * mm_init(struct mm_struct * mm)
314 {
315 	atomic_set(&mm->mm_users, 1);
316 	atomic_set(&mm->mm_count, 1);
317 	init_rwsem(&mm->mmap_sem);
318 	INIT_LIST_HEAD(&mm->mmlist);
319 	mm->core_waiters = 0;
320 	mm->nr_ptes = 0;
321 	set_mm_counter(mm, file_rss, 0);
322 	set_mm_counter(mm, anon_rss, 0);
323 	spin_lock_init(&mm->page_table_lock);
324 	rwlock_init(&mm->ioctx_list_lock);
325 	mm->ioctx_list = NULL;
326 	mm->free_area_cache = TASK_UNMAPPED_BASE;
327 	mm->cached_hole_size = ~0UL;
328 
329 	if (likely(!mm_alloc_pgd(mm))) {
330 		mm->def_flags = 0;
331 		return mm;
332 	}
333 	free_mm(mm);
334 	return NULL;
335 }
336 
337 /*
338  * Allocate and initialize an mm_struct.
339  */
340 struct mm_struct * mm_alloc(void)
341 {
342 	struct mm_struct * mm;
343 
344 	mm = allocate_mm();
345 	if (mm) {
346 		memset(mm, 0, sizeof(*mm));
347 		mm = mm_init(mm);
348 	}
349 	return mm;
350 }
351 
352 /*
353  * Called when the last reference to the mm
354  * is dropped: either by a lazy thread or by
355  * mmput. Free the page directory and the mm.
356  */
357 void fastcall __mmdrop(struct mm_struct *mm)
358 {
359 	BUG_ON(mm == &init_mm);
360 	mm_free_pgd(mm);
361 	destroy_context(mm);
362 	free_mm(mm);
363 }
364 
365 /*
366  * Decrement the use count and release all resources for an mm.
367  */
368 void mmput(struct mm_struct *mm)
369 {
370 	if (atomic_dec_and_test(&mm->mm_users)) {
371 		exit_aio(mm);
372 		exit_mmap(mm);
373 		if (!list_empty(&mm->mmlist)) {
374 			spin_lock(&mmlist_lock);
375 			list_del(&mm->mmlist);
376 			spin_unlock(&mmlist_lock);
377 		}
378 		put_swap_token(mm);
379 		mmdrop(mm);
380 	}
381 }
382 EXPORT_SYMBOL_GPL(mmput);
383 
384 /**
385  * get_task_mm - acquire a reference to the task's mm
386  *
387  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
388  * this kernel workthread has transiently adopted a user mm with use_mm,
389  * to do its AIO) is not set and if so returns a reference to it, after
390  * bumping up the use count.  User must release the mm via mmput()
391  * after use.  Typically used by /proc and ptrace.
392  */
393 struct mm_struct *get_task_mm(struct task_struct *task)
394 {
395 	struct mm_struct *mm;
396 
397 	task_lock(task);
398 	mm = task->mm;
399 	if (mm) {
400 		if (task->flags & PF_BORROWED_MM)
401 			mm = NULL;
402 		else
403 			atomic_inc(&mm->mm_users);
404 	}
405 	task_unlock(task);
406 	return mm;
407 }
408 EXPORT_SYMBOL_GPL(get_task_mm);
409 
410 /* Please note the differences between mmput and mm_release.
411  * mmput is called whenever we stop holding onto a mm_struct,
412  * error success whatever.
413  *
414  * mm_release is called after a mm_struct has been removed
415  * from the current process.
416  *
417  * This difference is important for error handling, when we
418  * only half set up a mm_struct for a new process and need to restore
419  * the old one.  Because we mmput the new mm_struct before
420  * restoring the old one. . .
421  * Eric Biederman 10 January 1998
422  */
423 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
424 {
425 	struct completion *vfork_done = tsk->vfork_done;
426 
427 	/* Get rid of any cached register state */
428 	deactivate_mm(tsk, mm);
429 
430 	/* notify parent sleeping on vfork() */
431 	if (vfork_done) {
432 		tsk->vfork_done = NULL;
433 		complete(vfork_done);
434 	}
435 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
436 		u32 __user * tidptr = tsk->clear_child_tid;
437 		tsk->clear_child_tid = NULL;
438 
439 		/*
440 		 * We don't check the error code - if userspace has
441 		 * not set up a proper pointer then tough luck.
442 		 */
443 		put_user(0, tidptr);
444 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
445 	}
446 }
447 
448 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
449 {
450 	struct mm_struct * mm, *oldmm;
451 	int retval;
452 
453 	tsk->min_flt = tsk->maj_flt = 0;
454 	tsk->nvcsw = tsk->nivcsw = 0;
455 
456 	tsk->mm = NULL;
457 	tsk->active_mm = NULL;
458 
459 	/*
460 	 * Are we cloning a kernel thread?
461 	 *
462 	 * We need to steal a active VM for that..
463 	 */
464 	oldmm = current->mm;
465 	if (!oldmm)
466 		return 0;
467 
468 	if (clone_flags & CLONE_VM) {
469 		atomic_inc(&oldmm->mm_users);
470 		mm = oldmm;
471 		goto good_mm;
472 	}
473 
474 	retval = -ENOMEM;
475 	mm = allocate_mm();
476 	if (!mm)
477 		goto fail_nomem;
478 
479 	/* Copy the current MM stuff.. */
480 	memcpy(mm, oldmm, sizeof(*mm));
481 	if (!mm_init(mm))
482 		goto fail_nomem;
483 
484 	if (init_new_context(tsk,mm))
485 		goto fail_nocontext;
486 
487 	retval = dup_mmap(mm, oldmm);
488 	if (retval)
489 		goto free_pt;
490 
491 	mm->hiwater_rss = get_mm_rss(mm);
492 	mm->hiwater_vm = mm->total_vm;
493 
494 good_mm:
495 	tsk->mm = mm;
496 	tsk->active_mm = mm;
497 	return 0;
498 
499 free_pt:
500 	mmput(mm);
501 fail_nomem:
502 	return retval;
503 
504 fail_nocontext:
505 	/*
506 	 * If init_new_context() failed, we cannot use mmput() to free the mm
507 	 * because it calls destroy_context()
508 	 */
509 	mm_free_pgd(mm);
510 	free_mm(mm);
511 	return retval;
512 }
513 
514 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
515 {
516 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
517 	/* We don't need to lock fs - think why ;-) */
518 	if (fs) {
519 		atomic_set(&fs->count, 1);
520 		rwlock_init(&fs->lock);
521 		fs->umask = old->umask;
522 		read_lock(&old->lock);
523 		fs->rootmnt = mntget(old->rootmnt);
524 		fs->root = dget(old->root);
525 		fs->pwdmnt = mntget(old->pwdmnt);
526 		fs->pwd = dget(old->pwd);
527 		if (old->altroot) {
528 			fs->altrootmnt = mntget(old->altrootmnt);
529 			fs->altroot = dget(old->altroot);
530 		} else {
531 			fs->altrootmnt = NULL;
532 			fs->altroot = NULL;
533 		}
534 		read_unlock(&old->lock);
535 	}
536 	return fs;
537 }
538 
539 struct fs_struct *copy_fs_struct(struct fs_struct *old)
540 {
541 	return __copy_fs_struct(old);
542 }
543 
544 EXPORT_SYMBOL_GPL(copy_fs_struct);
545 
546 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
547 {
548 	if (clone_flags & CLONE_FS) {
549 		atomic_inc(&current->fs->count);
550 		return 0;
551 	}
552 	tsk->fs = __copy_fs_struct(current->fs);
553 	if (!tsk->fs)
554 		return -ENOMEM;
555 	return 0;
556 }
557 
558 static int count_open_files(struct fdtable *fdt)
559 {
560 	int size = fdt->max_fdset;
561 	int i;
562 
563 	/* Find the last open fd */
564 	for (i = size/(8*sizeof(long)); i > 0; ) {
565 		if (fdt->open_fds->fds_bits[--i])
566 			break;
567 	}
568 	i = (i+1) * 8 * sizeof(long);
569 	return i;
570 }
571 
572 static struct files_struct *alloc_files(void)
573 {
574 	struct files_struct *newf;
575 	struct fdtable *fdt;
576 
577 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
578 	if (!newf)
579 		goto out;
580 
581 	atomic_set(&newf->count, 1);
582 
583 	spin_lock_init(&newf->file_lock);
584 	fdt = &newf->fdtab;
585 	fdt->next_fd = 0;
586 	fdt->max_fds = NR_OPEN_DEFAULT;
587 	fdt->max_fdset = __FD_SETSIZE;
588 	fdt->close_on_exec = &newf->close_on_exec_init;
589 	fdt->open_fds = &newf->open_fds_init;
590 	fdt->fd = &newf->fd_array[0];
591 	INIT_RCU_HEAD(&fdt->rcu);
592 	fdt->free_files = NULL;
593 	fdt->next = NULL;
594 	rcu_assign_pointer(newf->fdt, fdt);
595 out:
596 	return newf;
597 }
598 
599 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
600 {
601 	struct files_struct *oldf, *newf;
602 	struct file **old_fds, **new_fds;
603 	int open_files, size, i, error = 0, expand;
604 	struct fdtable *old_fdt, *new_fdt;
605 
606 	/*
607 	 * A background process may not have any files ...
608 	 */
609 	oldf = current->files;
610 	if (!oldf)
611 		goto out;
612 
613 	if (clone_flags & CLONE_FILES) {
614 		atomic_inc(&oldf->count);
615 		goto out;
616 	}
617 
618 	/*
619 	 * Note: we may be using current for both targets (See exec.c)
620 	 * This works because we cache current->files (old) as oldf. Don't
621 	 * break this.
622 	 */
623 	tsk->files = NULL;
624 	error = -ENOMEM;
625 	newf = alloc_files();
626 	if (!newf)
627 		goto out;
628 
629 	spin_lock(&oldf->file_lock);
630 	old_fdt = files_fdtable(oldf);
631 	new_fdt = files_fdtable(newf);
632 	size = old_fdt->max_fdset;
633 	open_files = count_open_files(old_fdt);
634 	expand = 0;
635 
636 	/*
637 	 * Check whether we need to allocate a larger fd array or fd set.
638 	 * Note: we're not a clone task, so the open count won't  change.
639 	 */
640 	if (open_files > new_fdt->max_fdset) {
641 		new_fdt->max_fdset = 0;
642 		expand = 1;
643 	}
644 	if (open_files > new_fdt->max_fds) {
645 		new_fdt->max_fds = 0;
646 		expand = 1;
647 	}
648 
649 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
650 	if (expand) {
651 		spin_unlock(&oldf->file_lock);
652 		spin_lock(&newf->file_lock);
653 		error = expand_files(newf, open_files-1);
654 		spin_unlock(&newf->file_lock);
655 		if (error < 0)
656 			goto out_release;
657 		new_fdt = files_fdtable(newf);
658 		/*
659 		 * Reacquire the oldf lock and a pointer to its fd table
660 		 * who knows it may have a new bigger fd table. We need
661 		 * the latest pointer.
662 		 */
663 		spin_lock(&oldf->file_lock);
664 		old_fdt = files_fdtable(oldf);
665 	}
666 
667 	old_fds = old_fdt->fd;
668 	new_fds = new_fdt->fd;
669 
670 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
671 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
672 
673 	for (i = open_files; i != 0; i--) {
674 		struct file *f = *old_fds++;
675 		if (f) {
676 			get_file(f);
677 		} else {
678 			/*
679 			 * The fd may be claimed in the fd bitmap but not yet
680 			 * instantiated in the files array if a sibling thread
681 			 * is partway through open().  So make sure that this
682 			 * fd is available to the new process.
683 			 */
684 			FD_CLR(open_files - i, new_fdt->open_fds);
685 		}
686 		rcu_assign_pointer(*new_fds++, f);
687 	}
688 	spin_unlock(&oldf->file_lock);
689 
690 	/* compute the remainder to be cleared */
691 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
692 
693 	/* This is long word aligned thus could use a optimized version */
694 	memset(new_fds, 0, size);
695 
696 	if (new_fdt->max_fdset > open_files) {
697 		int left = (new_fdt->max_fdset-open_files)/8;
698 		int start = open_files / (8 * sizeof(unsigned long));
699 
700 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
701 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
702 	}
703 
704 	tsk->files = newf;
705 	error = 0;
706 out:
707 	return error;
708 
709 out_release:
710 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
711 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
712 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
713 	kmem_cache_free(files_cachep, newf);
714 	goto out;
715 }
716 
717 /*
718  *	Helper to unshare the files of the current task.
719  *	We don't want to expose copy_files internals to
720  *	the exec layer of the kernel.
721  */
722 
723 int unshare_files(void)
724 {
725 	struct files_struct *files  = current->files;
726 	int rc;
727 
728 	if(!files)
729 		BUG();
730 
731 	/* This can race but the race causes us to copy when we don't
732 	   need to and drop the copy */
733 	if(atomic_read(&files->count) == 1)
734 	{
735 		atomic_inc(&files->count);
736 		return 0;
737 	}
738 	rc = copy_files(0, current);
739 	if(rc)
740 		current->files = files;
741 	return rc;
742 }
743 
744 EXPORT_SYMBOL(unshare_files);
745 
746 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
747 {
748 	struct sighand_struct *sig;
749 
750 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
751 		atomic_inc(&current->sighand->count);
752 		return 0;
753 	}
754 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
755 	tsk->sighand = sig;
756 	if (!sig)
757 		return -ENOMEM;
758 	spin_lock_init(&sig->siglock);
759 	atomic_set(&sig->count, 1);
760 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
761 	return 0;
762 }
763 
764 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
765 {
766 	struct signal_struct *sig;
767 	int ret;
768 
769 	if (clone_flags & CLONE_THREAD) {
770 		atomic_inc(&current->signal->count);
771 		atomic_inc(&current->signal->live);
772 		return 0;
773 	}
774 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
775 	tsk->signal = sig;
776 	if (!sig)
777 		return -ENOMEM;
778 
779 	ret = copy_thread_group_keys(tsk);
780 	if (ret < 0) {
781 		kmem_cache_free(signal_cachep, sig);
782 		return ret;
783 	}
784 
785 	atomic_set(&sig->count, 1);
786 	atomic_set(&sig->live, 1);
787 	init_waitqueue_head(&sig->wait_chldexit);
788 	sig->flags = 0;
789 	sig->group_exit_code = 0;
790 	sig->group_exit_task = NULL;
791 	sig->group_stop_count = 0;
792 	sig->curr_target = NULL;
793 	init_sigpending(&sig->shared_pending);
794 	INIT_LIST_HEAD(&sig->posix_timers);
795 
796 	sig->it_real_value = sig->it_real_incr = 0;
797 	sig->real_timer.function = it_real_fn;
798 	sig->real_timer.data = (unsigned long) tsk;
799 	init_timer(&sig->real_timer);
800 
801 	sig->it_virt_expires = cputime_zero;
802 	sig->it_virt_incr = cputime_zero;
803 	sig->it_prof_expires = cputime_zero;
804 	sig->it_prof_incr = cputime_zero;
805 
806 	sig->tty = current->signal->tty;
807 	sig->pgrp = process_group(current);
808 	sig->session = current->signal->session;
809 	sig->leader = 0;	/* session leadership doesn't inherit */
810 	sig->tty_old_pgrp = 0;
811 
812 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
813 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
814 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
815 	sig->sched_time = 0;
816 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
817 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
818 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
819 
820 	task_lock(current->group_leader);
821 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
822 	task_unlock(current->group_leader);
823 
824 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
825 		/*
826 		 * New sole thread in the process gets an expiry time
827 		 * of the whole CPU time limit.
828 		 */
829 		tsk->it_prof_expires =
830 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
831 	}
832 
833 	return 0;
834 }
835 
836 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
837 {
838 	unsigned long new_flags = p->flags;
839 
840 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
841 	new_flags |= PF_FORKNOEXEC;
842 	if (!(clone_flags & CLONE_PTRACE))
843 		p->ptrace = 0;
844 	p->flags = new_flags;
845 }
846 
847 asmlinkage long sys_set_tid_address(int __user *tidptr)
848 {
849 	current->clear_child_tid = tidptr;
850 
851 	return current->pid;
852 }
853 
854 /*
855  * This creates a new process as a copy of the old one,
856  * but does not actually start it yet.
857  *
858  * It copies the registers, and all the appropriate
859  * parts of the process environment (as per the clone
860  * flags). The actual kick-off is left to the caller.
861  */
862 static task_t *copy_process(unsigned long clone_flags,
863 				 unsigned long stack_start,
864 				 struct pt_regs *regs,
865 				 unsigned long stack_size,
866 				 int __user *parent_tidptr,
867 				 int __user *child_tidptr,
868 				 int pid)
869 {
870 	int retval;
871 	struct task_struct *p = NULL;
872 
873 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
874 		return ERR_PTR(-EINVAL);
875 
876 	/*
877 	 * Thread groups must share signals as well, and detached threads
878 	 * can only be started up within the thread group.
879 	 */
880 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
881 		return ERR_PTR(-EINVAL);
882 
883 	/*
884 	 * Shared signal handlers imply shared VM. By way of the above,
885 	 * thread groups also imply shared VM. Blocking this case allows
886 	 * for various simplifications in other code.
887 	 */
888 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
889 		return ERR_PTR(-EINVAL);
890 
891 	retval = security_task_create(clone_flags);
892 	if (retval)
893 		goto fork_out;
894 
895 	retval = -ENOMEM;
896 	p = dup_task_struct(current);
897 	if (!p)
898 		goto fork_out;
899 
900 	retval = -EAGAIN;
901 	if (atomic_read(&p->user->processes) >=
902 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
903 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
904 				p->user != &root_user)
905 			goto bad_fork_free;
906 	}
907 
908 	atomic_inc(&p->user->__count);
909 	atomic_inc(&p->user->processes);
910 	get_group_info(p->group_info);
911 
912 	/*
913 	 * If multiple threads are within copy_process(), then this check
914 	 * triggers too late. This doesn't hurt, the check is only there
915 	 * to stop root fork bombs.
916 	 */
917 	if (nr_threads >= max_threads)
918 		goto bad_fork_cleanup_count;
919 
920 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
921 		goto bad_fork_cleanup_count;
922 
923 	if (p->binfmt && !try_module_get(p->binfmt->module))
924 		goto bad_fork_cleanup_put_domain;
925 
926 	p->did_exec = 0;
927 	copy_flags(clone_flags, p);
928 	p->pid = pid;
929 	retval = -EFAULT;
930 	if (clone_flags & CLONE_PARENT_SETTID)
931 		if (put_user(p->pid, parent_tidptr))
932 			goto bad_fork_cleanup;
933 
934 	p->proc_dentry = NULL;
935 
936 	INIT_LIST_HEAD(&p->children);
937 	INIT_LIST_HEAD(&p->sibling);
938 	p->vfork_done = NULL;
939 	spin_lock_init(&p->alloc_lock);
940 	spin_lock_init(&p->proc_lock);
941 
942 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
943 	init_sigpending(&p->pending);
944 
945 	p->utime = cputime_zero;
946 	p->stime = cputime_zero;
947  	p->sched_time = 0;
948 	p->rchar = 0;		/* I/O counter: bytes read */
949 	p->wchar = 0;		/* I/O counter: bytes written */
950 	p->syscr = 0;		/* I/O counter: read syscalls */
951 	p->syscw = 0;		/* I/O counter: write syscalls */
952 	acct_clear_integrals(p);
953 
954  	p->it_virt_expires = cputime_zero;
955 	p->it_prof_expires = cputime_zero;
956  	p->it_sched_expires = 0;
957  	INIT_LIST_HEAD(&p->cpu_timers[0]);
958  	INIT_LIST_HEAD(&p->cpu_timers[1]);
959  	INIT_LIST_HEAD(&p->cpu_timers[2]);
960 
961 	p->lock_depth = -1;		/* -1 = no lock */
962 	do_posix_clock_monotonic_gettime(&p->start_time);
963 	p->security = NULL;
964 	p->io_context = NULL;
965 	p->io_wait = NULL;
966 	p->audit_context = NULL;
967 #ifdef CONFIG_NUMA
968  	p->mempolicy = mpol_copy(p->mempolicy);
969  	if (IS_ERR(p->mempolicy)) {
970  		retval = PTR_ERR(p->mempolicy);
971  		p->mempolicy = NULL;
972  		goto bad_fork_cleanup;
973  	}
974 #endif
975 
976 	p->tgid = p->pid;
977 	if (clone_flags & CLONE_THREAD)
978 		p->tgid = current->tgid;
979 
980 	if ((retval = security_task_alloc(p)))
981 		goto bad_fork_cleanup_policy;
982 	if ((retval = audit_alloc(p)))
983 		goto bad_fork_cleanup_security;
984 	/* copy all the process information */
985 	if ((retval = copy_semundo(clone_flags, p)))
986 		goto bad_fork_cleanup_audit;
987 	if ((retval = copy_files(clone_flags, p)))
988 		goto bad_fork_cleanup_semundo;
989 	if ((retval = copy_fs(clone_flags, p)))
990 		goto bad_fork_cleanup_files;
991 	if ((retval = copy_sighand(clone_flags, p)))
992 		goto bad_fork_cleanup_fs;
993 	if ((retval = copy_signal(clone_flags, p)))
994 		goto bad_fork_cleanup_sighand;
995 	if ((retval = copy_mm(clone_flags, p)))
996 		goto bad_fork_cleanup_signal;
997 	if ((retval = copy_keys(clone_flags, p)))
998 		goto bad_fork_cleanup_mm;
999 	if ((retval = copy_namespace(clone_flags, p)))
1000 		goto bad_fork_cleanup_keys;
1001 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1002 	if (retval)
1003 		goto bad_fork_cleanup_namespace;
1004 
1005 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1006 	/*
1007 	 * Clear TID on mm_release()?
1008 	 */
1009 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1010 
1011 	/*
1012 	 * Syscall tracing should be turned off in the child regardless
1013 	 * of CLONE_PTRACE.
1014 	 */
1015 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1016 #ifdef TIF_SYSCALL_EMU
1017 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1018 #endif
1019 
1020 	/* Our parent execution domain becomes current domain
1021 	   These must match for thread signalling to apply */
1022 
1023 	p->parent_exec_id = p->self_exec_id;
1024 
1025 	/* ok, now we should be set up.. */
1026 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1027 	p->pdeath_signal = 0;
1028 	p->exit_state = 0;
1029 
1030 	/*
1031 	 * Ok, make it visible to the rest of the system.
1032 	 * We dont wake it up yet.
1033 	 */
1034 	p->group_leader = p;
1035 	INIT_LIST_HEAD(&p->ptrace_children);
1036 	INIT_LIST_HEAD(&p->ptrace_list);
1037 
1038 	/* Perform scheduler related setup. Assign this task to a CPU. */
1039 	sched_fork(p, clone_flags);
1040 
1041 	/* Need tasklist lock for parent etc handling! */
1042 	write_lock_irq(&tasklist_lock);
1043 
1044 	/*
1045 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1046 	 * not be changed, nor will its assigned CPU.
1047 	 *
1048 	 * The cpus_allowed mask of the parent may have changed after it was
1049 	 * copied first time - so re-copy it here, then check the child's CPU
1050 	 * to ensure it is on a valid CPU (and if not, just force it back to
1051 	 * parent's CPU). This avoids alot of nasty races.
1052 	 */
1053 	p->cpus_allowed = current->cpus_allowed;
1054 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1055 			!cpu_online(task_cpu(p))))
1056 		set_task_cpu(p, smp_processor_id());
1057 
1058 	/*
1059 	 * Check for pending SIGKILL! The new thread should not be allowed
1060 	 * to slip out of an OOM kill. (or normal SIGKILL.)
1061 	 */
1062 	if (sigismember(&current->pending.signal, SIGKILL)) {
1063 		write_unlock_irq(&tasklist_lock);
1064 		retval = -EINTR;
1065 		goto bad_fork_cleanup_namespace;
1066 	}
1067 
1068 	/* CLONE_PARENT re-uses the old parent */
1069 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1070 		p->real_parent = current->real_parent;
1071 	else
1072 		p->real_parent = current;
1073 	p->parent = p->real_parent;
1074 
1075 	if (clone_flags & CLONE_THREAD) {
1076 		spin_lock(&current->sighand->siglock);
1077 		/*
1078 		 * Important: if an exit-all has been started then
1079 		 * do not create this new thread - the whole thread
1080 		 * group is supposed to exit anyway.
1081 		 */
1082 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1083 			spin_unlock(&current->sighand->siglock);
1084 			write_unlock_irq(&tasklist_lock);
1085 			retval = -EAGAIN;
1086 			goto bad_fork_cleanup_namespace;
1087 		}
1088 		p->group_leader = current->group_leader;
1089 
1090 		if (current->signal->group_stop_count > 0) {
1091 			/*
1092 			 * There is an all-stop in progress for the group.
1093 			 * We ourselves will stop as soon as we check signals.
1094 			 * Make the new thread part of that group stop too.
1095 			 */
1096 			current->signal->group_stop_count++;
1097 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1098 		}
1099 
1100 		if (!cputime_eq(current->signal->it_virt_expires,
1101 				cputime_zero) ||
1102 		    !cputime_eq(current->signal->it_prof_expires,
1103 				cputime_zero) ||
1104 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1105 		    !list_empty(&current->signal->cpu_timers[0]) ||
1106 		    !list_empty(&current->signal->cpu_timers[1]) ||
1107 		    !list_empty(&current->signal->cpu_timers[2])) {
1108 			/*
1109 			 * Have child wake up on its first tick to check
1110 			 * for process CPU timers.
1111 			 */
1112 			p->it_prof_expires = jiffies_to_cputime(1);
1113 		}
1114 
1115 		spin_unlock(&current->sighand->siglock);
1116 	}
1117 
1118 	/*
1119 	 * inherit ioprio
1120 	 */
1121 	p->ioprio = current->ioprio;
1122 
1123 	SET_LINKS(p);
1124 	if (unlikely(p->ptrace & PT_PTRACED))
1125 		__ptrace_link(p, current->parent);
1126 
1127 	attach_pid(p, PIDTYPE_PID, p->pid);
1128 	attach_pid(p, PIDTYPE_TGID, p->tgid);
1129 	if (thread_group_leader(p)) {
1130 		attach_pid(p, PIDTYPE_PGID, process_group(p));
1131 		attach_pid(p, PIDTYPE_SID, p->signal->session);
1132 		if (p->pid)
1133 			__get_cpu_var(process_counts)++;
1134 	}
1135 
1136 	if (!current->signal->tty && p->signal->tty)
1137 		p->signal->tty = NULL;
1138 
1139 	nr_threads++;
1140 	total_forks++;
1141 	write_unlock_irq(&tasklist_lock);
1142 	proc_fork_connector(p);
1143 	cpuset_fork(p);
1144 	retval = 0;
1145 
1146 fork_out:
1147 	if (retval)
1148 		return ERR_PTR(retval);
1149 	return p;
1150 
1151 bad_fork_cleanup_namespace:
1152 	exit_namespace(p);
1153 bad_fork_cleanup_keys:
1154 	exit_keys(p);
1155 bad_fork_cleanup_mm:
1156 	if (p->mm)
1157 		mmput(p->mm);
1158 bad_fork_cleanup_signal:
1159 	exit_signal(p);
1160 bad_fork_cleanup_sighand:
1161 	exit_sighand(p);
1162 bad_fork_cleanup_fs:
1163 	exit_fs(p); /* blocking */
1164 bad_fork_cleanup_files:
1165 	exit_files(p); /* blocking */
1166 bad_fork_cleanup_semundo:
1167 	exit_sem(p);
1168 bad_fork_cleanup_audit:
1169 	audit_free(p);
1170 bad_fork_cleanup_security:
1171 	security_task_free(p);
1172 bad_fork_cleanup_policy:
1173 #ifdef CONFIG_NUMA
1174 	mpol_free(p->mempolicy);
1175 #endif
1176 bad_fork_cleanup:
1177 	if (p->binfmt)
1178 		module_put(p->binfmt->module);
1179 bad_fork_cleanup_put_domain:
1180 	module_put(task_thread_info(p)->exec_domain->module);
1181 bad_fork_cleanup_count:
1182 	put_group_info(p->group_info);
1183 	atomic_dec(&p->user->processes);
1184 	free_uid(p->user);
1185 bad_fork_free:
1186 	free_task(p);
1187 	goto fork_out;
1188 }
1189 
1190 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1191 {
1192 	memset(regs, 0, sizeof(struct pt_regs));
1193 	return regs;
1194 }
1195 
1196 task_t * __devinit fork_idle(int cpu)
1197 {
1198 	task_t *task;
1199 	struct pt_regs regs;
1200 
1201 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1202 	if (!task)
1203 		return ERR_PTR(-ENOMEM);
1204 	init_idle(task, cpu);
1205 	unhash_process(task);
1206 	return task;
1207 }
1208 
1209 static inline int fork_traceflag (unsigned clone_flags)
1210 {
1211 	if (clone_flags & CLONE_UNTRACED)
1212 		return 0;
1213 	else if (clone_flags & CLONE_VFORK) {
1214 		if (current->ptrace & PT_TRACE_VFORK)
1215 			return PTRACE_EVENT_VFORK;
1216 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1217 		if (current->ptrace & PT_TRACE_CLONE)
1218 			return PTRACE_EVENT_CLONE;
1219 	} else if (current->ptrace & PT_TRACE_FORK)
1220 		return PTRACE_EVENT_FORK;
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  *  Ok, this is the main fork-routine.
1227  *
1228  * It copies the process, and if successful kick-starts
1229  * it and waits for it to finish using the VM if required.
1230  */
1231 long do_fork(unsigned long clone_flags,
1232 	      unsigned long stack_start,
1233 	      struct pt_regs *regs,
1234 	      unsigned long stack_size,
1235 	      int __user *parent_tidptr,
1236 	      int __user *child_tidptr)
1237 {
1238 	struct task_struct *p;
1239 	int trace = 0;
1240 	long pid = alloc_pidmap();
1241 
1242 	if (pid < 0)
1243 		return -EAGAIN;
1244 	if (unlikely(current->ptrace)) {
1245 		trace = fork_traceflag (clone_flags);
1246 		if (trace)
1247 			clone_flags |= CLONE_PTRACE;
1248 	}
1249 
1250 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1251 	/*
1252 	 * Do this prior waking up the new thread - the thread pointer
1253 	 * might get invalid after that point, if the thread exits quickly.
1254 	 */
1255 	if (!IS_ERR(p)) {
1256 		struct completion vfork;
1257 
1258 		if (clone_flags & CLONE_VFORK) {
1259 			p->vfork_done = &vfork;
1260 			init_completion(&vfork);
1261 		}
1262 
1263 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1264 			/*
1265 			 * We'll start up with an immediate SIGSTOP.
1266 			 */
1267 			sigaddset(&p->pending.signal, SIGSTOP);
1268 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1269 		}
1270 
1271 		if (!(clone_flags & CLONE_STOPPED))
1272 			wake_up_new_task(p, clone_flags);
1273 		else
1274 			p->state = TASK_STOPPED;
1275 
1276 		if (unlikely (trace)) {
1277 			current->ptrace_message = pid;
1278 			ptrace_notify ((trace << 8) | SIGTRAP);
1279 		}
1280 
1281 		if (clone_flags & CLONE_VFORK) {
1282 			wait_for_completion(&vfork);
1283 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1284 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1285 		}
1286 	} else {
1287 		free_pidmap(pid);
1288 		pid = PTR_ERR(p);
1289 	}
1290 	return pid;
1291 }
1292 
1293 void __init proc_caches_init(void)
1294 {
1295 	sighand_cachep = kmem_cache_create("sighand_cache",
1296 			sizeof(struct sighand_struct), 0,
1297 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1298 	signal_cachep = kmem_cache_create("signal_cache",
1299 			sizeof(struct signal_struct), 0,
1300 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1301 	files_cachep = kmem_cache_create("files_cache",
1302 			sizeof(struct files_struct), 0,
1303 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1304 	fs_cachep = kmem_cache_create("fs_cache",
1305 			sizeof(struct fs_struct), 0,
1306 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1307 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1308 			sizeof(struct vm_area_struct), 0,
1309 			SLAB_PANIC, NULL, NULL);
1310 	mm_cachep = kmem_cache_create("mm_struct",
1311 			sizeof(struct mm_struct), 0,
1312 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1313 }
1314