xref: /linux/kernel/fork.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 
163 #ifdef CONFIG_VMAP_STACK
164 /*
165  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166  * flush.  Try to minimize the number of calls by caching stacks.
167  */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171 
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 	void *stack;
176 	int i;
177 
178 	local_irq_disable();
179 	for (i = 0; i < NR_CACHED_STACKS; i++) {
180 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181 
182 		if (!s)
183 			continue;
184 		this_cpu_write(cached_stacks[i], NULL);
185 
186 		tsk->stack_vm_area = s;
187 		local_irq_enable();
188 		return s->addr;
189 	}
190 	local_irq_enable();
191 
192 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 				     VMALLOC_START, VMALLOC_END,
194 				     THREADINFO_GFP | __GFP_HIGHMEM,
195 				     PAGE_KERNEL,
196 				     0, node, __builtin_return_address(0));
197 
198 	/*
199 	 * We can't call find_vm_area() in interrupt context, and
200 	 * free_thread_stack() can be called in interrupt context,
201 	 * so cache the vm_struct.
202 	 */
203 	if (stack)
204 		tsk->stack_vm_area = find_vm_area(stack);
205 	return stack;
206 #else
207 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 					     THREAD_SIZE_ORDER);
209 
210 	return page ? page_address(page) : NULL;
211 #endif
212 }
213 
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	if (task_stack_vm_area(tsk)) {
218 		unsigned long flags;
219 		int i;
220 
221 		local_irq_save(flags);
222 		for (i = 0; i < NR_CACHED_STACKS; i++) {
223 			if (this_cpu_read(cached_stacks[i]))
224 				continue;
225 
226 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 			local_irq_restore(flags);
228 			return;
229 		}
230 		local_irq_restore(flags);
231 
232 		vfree(tsk->stack);
233 		return;
234 	}
235 #endif
236 
237 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241 
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 						  int node)
244 {
245 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247 
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 	kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252 
253 void thread_stack_cache_init(void)
254 {
255 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 					      THREAD_SIZE, 0, NULL);
257 	BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261 
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264 
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267 
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270 
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273 
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276 
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279 
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 	void *stack = task_stack_page(tsk);
283 	struct vm_struct *vm = task_stack_vm_area(tsk);
284 
285 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286 
287 	if (vm) {
288 		int i;
289 
290 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291 
292 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 			mod_zone_page_state(page_zone(vm->pages[i]),
294 					    NR_KERNEL_STACK_KB,
295 					    PAGE_SIZE / 1024 * account);
296 		}
297 
298 		/* All stack pages belong to the same memcg. */
299 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 					    account * (THREAD_SIZE / 1024));
301 	} else {
302 		/*
303 		 * All stack pages are in the same zone and belong to the
304 		 * same memcg.
305 		 */
306 		struct page *first_page = virt_to_page(stack);
307 
308 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 				    THREAD_SIZE / 1024 * account);
310 
311 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 					    account * (THREAD_SIZE / 1024));
313 	}
314 }
315 
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 	account_kernel_stack(tsk, -1);
319 	arch_release_thread_stack(tsk->stack);
320 	free_thread_stack(tsk);
321 	tsk->stack = NULL;
322 #ifdef CONFIG_VMAP_STACK
323 	tsk->stack_vm_area = NULL;
324 #endif
325 }
326 
327 #ifdef CONFIG_THREAD_INFO_IN_TASK
328 void put_task_stack(struct task_struct *tsk)
329 {
330 	if (atomic_dec_and_test(&tsk->stack_refcount))
331 		release_task_stack(tsk);
332 }
333 #endif
334 
335 void free_task(struct task_struct *tsk)
336 {
337 #ifndef CONFIG_THREAD_INFO_IN_TASK
338 	/*
339 	 * The task is finally done with both the stack and thread_info,
340 	 * so free both.
341 	 */
342 	release_task_stack(tsk);
343 #else
344 	/*
345 	 * If the task had a separate stack allocation, it should be gone
346 	 * by now.
347 	 */
348 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
349 #endif
350 	rt_mutex_debug_task_free(tsk);
351 	ftrace_graph_exit_task(tsk);
352 	put_seccomp_filter(tsk);
353 	arch_release_task_struct(tsk);
354 	free_task_struct(tsk);
355 }
356 EXPORT_SYMBOL(free_task);
357 
358 static inline void free_signal_struct(struct signal_struct *sig)
359 {
360 	taskstats_tgid_free(sig);
361 	sched_autogroup_exit(sig);
362 	kmem_cache_free(signal_cachep, sig);
363 }
364 
365 static inline void put_signal_struct(struct signal_struct *sig)
366 {
367 	if (atomic_dec_and_test(&sig->sigcnt))
368 		free_signal_struct(sig);
369 }
370 
371 void __put_task_struct(struct task_struct *tsk)
372 {
373 	WARN_ON(!tsk->exit_state);
374 	WARN_ON(atomic_read(&tsk->usage));
375 	WARN_ON(tsk == current);
376 
377 	cgroup_free(tsk);
378 	task_numa_free(tsk);
379 	security_task_free(tsk);
380 	exit_creds(tsk);
381 	delayacct_tsk_free(tsk);
382 	put_signal_struct(tsk->signal);
383 
384 	if (!profile_handoff_task(tsk))
385 		free_task(tsk);
386 }
387 EXPORT_SYMBOL_GPL(__put_task_struct);
388 
389 void __init __weak arch_task_cache_init(void) { }
390 
391 /*
392  * set_max_threads
393  */
394 static void set_max_threads(unsigned int max_threads_suggested)
395 {
396 	u64 threads;
397 
398 	/*
399 	 * The number of threads shall be limited such that the thread
400 	 * structures may only consume a small part of the available memory.
401 	 */
402 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
403 		threads = MAX_THREADS;
404 	else
405 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
406 				    (u64) THREAD_SIZE * 8UL);
407 
408 	if (threads > max_threads_suggested)
409 		threads = max_threads_suggested;
410 
411 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
412 }
413 
414 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
415 /* Initialized by the architecture: */
416 int arch_task_struct_size __read_mostly;
417 #endif
418 
419 void __init fork_init(void)
420 {
421 	int i;
422 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
423 #ifndef ARCH_MIN_TASKALIGN
424 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
425 #endif
426 	/* create a slab on which task_structs can be allocated */
427 	task_struct_cachep = kmem_cache_create("task_struct",
428 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
429 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
430 #endif
431 
432 	/* do the arch specific task caches init */
433 	arch_task_cache_init();
434 
435 	set_max_threads(MAX_THREADS);
436 
437 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
438 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
439 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
440 		init_task.signal->rlim[RLIMIT_NPROC];
441 
442 	for (i = 0; i < UCOUNT_COUNTS; i++) {
443 		init_user_ns.ucount_max[i] = max_threads/2;
444 	}
445 }
446 
447 int __weak arch_dup_task_struct(struct task_struct *dst,
448 					       struct task_struct *src)
449 {
450 	*dst = *src;
451 	return 0;
452 }
453 
454 void set_task_stack_end_magic(struct task_struct *tsk)
455 {
456 	unsigned long *stackend;
457 
458 	stackend = end_of_stack(tsk);
459 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
460 }
461 
462 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
463 {
464 	struct task_struct *tsk;
465 	unsigned long *stack;
466 	struct vm_struct *stack_vm_area;
467 	int err;
468 
469 	if (node == NUMA_NO_NODE)
470 		node = tsk_fork_get_node(orig);
471 	tsk = alloc_task_struct_node(node);
472 	if (!tsk)
473 		return NULL;
474 
475 	stack = alloc_thread_stack_node(tsk, node);
476 	if (!stack)
477 		goto free_tsk;
478 
479 	stack_vm_area = task_stack_vm_area(tsk);
480 
481 	err = arch_dup_task_struct(tsk, orig);
482 
483 	/*
484 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
485 	 * sure they're properly initialized before using any stack-related
486 	 * functions again.
487 	 */
488 	tsk->stack = stack;
489 #ifdef CONFIG_VMAP_STACK
490 	tsk->stack_vm_area = stack_vm_area;
491 #endif
492 #ifdef CONFIG_THREAD_INFO_IN_TASK
493 	atomic_set(&tsk->stack_refcount, 1);
494 #endif
495 
496 	if (err)
497 		goto free_stack;
498 
499 #ifdef CONFIG_SECCOMP
500 	/*
501 	 * We must handle setting up seccomp filters once we're under
502 	 * the sighand lock in case orig has changed between now and
503 	 * then. Until then, filter must be NULL to avoid messing up
504 	 * the usage counts on the error path calling free_task.
505 	 */
506 	tsk->seccomp.filter = NULL;
507 #endif
508 
509 	setup_thread_stack(tsk, orig);
510 	clear_user_return_notifier(tsk);
511 	clear_tsk_need_resched(tsk);
512 	set_task_stack_end_magic(tsk);
513 
514 #ifdef CONFIG_CC_STACKPROTECTOR
515 	tsk->stack_canary = get_random_int();
516 #endif
517 
518 	/*
519 	 * One for us, one for whoever does the "release_task()" (usually
520 	 * parent)
521 	 */
522 	atomic_set(&tsk->usage, 2);
523 #ifdef CONFIG_BLK_DEV_IO_TRACE
524 	tsk->btrace_seq = 0;
525 #endif
526 	tsk->splice_pipe = NULL;
527 	tsk->task_frag.page = NULL;
528 	tsk->wake_q.next = NULL;
529 
530 	account_kernel_stack(tsk, 1);
531 
532 	kcov_task_init(tsk);
533 
534 	return tsk;
535 
536 free_stack:
537 	free_thread_stack(tsk);
538 free_tsk:
539 	free_task_struct(tsk);
540 	return NULL;
541 }
542 
543 #ifdef CONFIG_MMU
544 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
545 {
546 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
547 	struct rb_node **rb_link, *rb_parent;
548 	int retval;
549 	unsigned long charge;
550 
551 	uprobe_start_dup_mmap();
552 	if (down_write_killable(&oldmm->mmap_sem)) {
553 		retval = -EINTR;
554 		goto fail_uprobe_end;
555 	}
556 	flush_cache_dup_mm(oldmm);
557 	uprobe_dup_mmap(oldmm, mm);
558 	/*
559 	 * Not linked in yet - no deadlock potential:
560 	 */
561 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
562 
563 	/* No ordering required: file already has been exposed. */
564 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
565 
566 	mm->total_vm = oldmm->total_vm;
567 	mm->data_vm = oldmm->data_vm;
568 	mm->exec_vm = oldmm->exec_vm;
569 	mm->stack_vm = oldmm->stack_vm;
570 
571 	rb_link = &mm->mm_rb.rb_node;
572 	rb_parent = NULL;
573 	pprev = &mm->mmap;
574 	retval = ksm_fork(mm, oldmm);
575 	if (retval)
576 		goto out;
577 	retval = khugepaged_fork(mm, oldmm);
578 	if (retval)
579 		goto out;
580 
581 	prev = NULL;
582 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
583 		struct file *file;
584 
585 		if (mpnt->vm_flags & VM_DONTCOPY) {
586 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
587 			continue;
588 		}
589 		charge = 0;
590 		if (mpnt->vm_flags & VM_ACCOUNT) {
591 			unsigned long len = vma_pages(mpnt);
592 
593 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
594 				goto fail_nomem;
595 			charge = len;
596 		}
597 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
598 		if (!tmp)
599 			goto fail_nomem;
600 		*tmp = *mpnt;
601 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
602 		retval = vma_dup_policy(mpnt, tmp);
603 		if (retval)
604 			goto fail_nomem_policy;
605 		tmp->vm_mm = mm;
606 		if (anon_vma_fork(tmp, mpnt))
607 			goto fail_nomem_anon_vma_fork;
608 		tmp->vm_flags &=
609 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
610 		tmp->vm_next = tmp->vm_prev = NULL;
611 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
612 		file = tmp->vm_file;
613 		if (file) {
614 			struct inode *inode = file_inode(file);
615 			struct address_space *mapping = file->f_mapping;
616 
617 			get_file(file);
618 			if (tmp->vm_flags & VM_DENYWRITE)
619 				atomic_dec(&inode->i_writecount);
620 			i_mmap_lock_write(mapping);
621 			if (tmp->vm_flags & VM_SHARED)
622 				atomic_inc(&mapping->i_mmap_writable);
623 			flush_dcache_mmap_lock(mapping);
624 			/* insert tmp into the share list, just after mpnt */
625 			vma_interval_tree_insert_after(tmp, mpnt,
626 					&mapping->i_mmap);
627 			flush_dcache_mmap_unlock(mapping);
628 			i_mmap_unlock_write(mapping);
629 		}
630 
631 		/*
632 		 * Clear hugetlb-related page reserves for children. This only
633 		 * affects MAP_PRIVATE mappings. Faults generated by the child
634 		 * are not guaranteed to succeed, even if read-only
635 		 */
636 		if (is_vm_hugetlb_page(tmp))
637 			reset_vma_resv_huge_pages(tmp);
638 
639 		/*
640 		 * Link in the new vma and copy the page table entries.
641 		 */
642 		*pprev = tmp;
643 		pprev = &tmp->vm_next;
644 		tmp->vm_prev = prev;
645 		prev = tmp;
646 
647 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
648 		rb_link = &tmp->vm_rb.rb_right;
649 		rb_parent = &tmp->vm_rb;
650 
651 		mm->map_count++;
652 		retval = copy_page_range(mm, oldmm, mpnt);
653 
654 		if (tmp->vm_ops && tmp->vm_ops->open)
655 			tmp->vm_ops->open(tmp);
656 
657 		if (retval)
658 			goto out;
659 	}
660 	/* a new mm has just been created */
661 	arch_dup_mmap(oldmm, mm);
662 	retval = 0;
663 out:
664 	up_write(&mm->mmap_sem);
665 	flush_tlb_mm(oldmm);
666 	up_write(&oldmm->mmap_sem);
667 fail_uprobe_end:
668 	uprobe_end_dup_mmap();
669 	return retval;
670 fail_nomem_anon_vma_fork:
671 	mpol_put(vma_policy(tmp));
672 fail_nomem_policy:
673 	kmem_cache_free(vm_area_cachep, tmp);
674 fail_nomem:
675 	retval = -ENOMEM;
676 	vm_unacct_memory(charge);
677 	goto out;
678 }
679 
680 static inline int mm_alloc_pgd(struct mm_struct *mm)
681 {
682 	mm->pgd = pgd_alloc(mm);
683 	if (unlikely(!mm->pgd))
684 		return -ENOMEM;
685 	return 0;
686 }
687 
688 static inline void mm_free_pgd(struct mm_struct *mm)
689 {
690 	pgd_free(mm, mm->pgd);
691 }
692 #else
693 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
694 {
695 	down_write(&oldmm->mmap_sem);
696 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
697 	up_write(&oldmm->mmap_sem);
698 	return 0;
699 }
700 #define mm_alloc_pgd(mm)	(0)
701 #define mm_free_pgd(mm)
702 #endif /* CONFIG_MMU */
703 
704 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
705 
706 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
707 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
708 
709 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
710 
711 static int __init coredump_filter_setup(char *s)
712 {
713 	default_dump_filter =
714 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
715 		MMF_DUMP_FILTER_MASK;
716 	return 1;
717 }
718 
719 __setup("coredump_filter=", coredump_filter_setup);
720 
721 #include <linux/init_task.h>
722 
723 static void mm_init_aio(struct mm_struct *mm)
724 {
725 #ifdef CONFIG_AIO
726 	spin_lock_init(&mm->ioctx_lock);
727 	mm->ioctx_table = NULL;
728 #endif
729 }
730 
731 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
732 {
733 #ifdef CONFIG_MEMCG
734 	mm->owner = p;
735 #endif
736 }
737 
738 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
739 {
740 	mm->mmap = NULL;
741 	mm->mm_rb = RB_ROOT;
742 	mm->vmacache_seqnum = 0;
743 	atomic_set(&mm->mm_users, 1);
744 	atomic_set(&mm->mm_count, 1);
745 	init_rwsem(&mm->mmap_sem);
746 	INIT_LIST_HEAD(&mm->mmlist);
747 	mm->core_state = NULL;
748 	atomic_long_set(&mm->nr_ptes, 0);
749 	mm_nr_pmds_init(mm);
750 	mm->map_count = 0;
751 	mm->locked_vm = 0;
752 	mm->pinned_vm = 0;
753 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
754 	spin_lock_init(&mm->page_table_lock);
755 	mm_init_cpumask(mm);
756 	mm_init_aio(mm);
757 	mm_init_owner(mm, p);
758 	mmu_notifier_mm_init(mm);
759 	clear_tlb_flush_pending(mm);
760 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
761 	mm->pmd_huge_pte = NULL;
762 #endif
763 
764 	if (current->mm) {
765 		mm->flags = current->mm->flags & MMF_INIT_MASK;
766 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
767 	} else {
768 		mm->flags = default_dump_filter;
769 		mm->def_flags = 0;
770 	}
771 
772 	if (mm_alloc_pgd(mm))
773 		goto fail_nopgd;
774 
775 	if (init_new_context(p, mm))
776 		goto fail_nocontext;
777 
778 	return mm;
779 
780 fail_nocontext:
781 	mm_free_pgd(mm);
782 fail_nopgd:
783 	free_mm(mm);
784 	return NULL;
785 }
786 
787 static void check_mm(struct mm_struct *mm)
788 {
789 	int i;
790 
791 	for (i = 0; i < NR_MM_COUNTERS; i++) {
792 		long x = atomic_long_read(&mm->rss_stat.count[i]);
793 
794 		if (unlikely(x))
795 			printk(KERN_ALERT "BUG: Bad rss-counter state "
796 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
797 	}
798 
799 	if (atomic_long_read(&mm->nr_ptes))
800 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
801 				atomic_long_read(&mm->nr_ptes));
802 	if (mm_nr_pmds(mm))
803 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
804 				mm_nr_pmds(mm));
805 
806 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
807 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
808 #endif
809 }
810 
811 /*
812  * Allocate and initialize an mm_struct.
813  */
814 struct mm_struct *mm_alloc(void)
815 {
816 	struct mm_struct *mm;
817 
818 	mm = allocate_mm();
819 	if (!mm)
820 		return NULL;
821 
822 	memset(mm, 0, sizeof(*mm));
823 	return mm_init(mm, current);
824 }
825 
826 /*
827  * Called when the last reference to the mm
828  * is dropped: either by a lazy thread or by
829  * mmput. Free the page directory and the mm.
830  */
831 void __mmdrop(struct mm_struct *mm)
832 {
833 	BUG_ON(mm == &init_mm);
834 	mm_free_pgd(mm);
835 	destroy_context(mm);
836 	mmu_notifier_mm_destroy(mm);
837 	check_mm(mm);
838 	free_mm(mm);
839 }
840 EXPORT_SYMBOL_GPL(__mmdrop);
841 
842 static inline void __mmput(struct mm_struct *mm)
843 {
844 	VM_BUG_ON(atomic_read(&mm->mm_users));
845 
846 	uprobe_clear_state(mm);
847 	exit_aio(mm);
848 	ksm_exit(mm);
849 	khugepaged_exit(mm); /* must run before exit_mmap */
850 	exit_mmap(mm);
851 	set_mm_exe_file(mm, NULL);
852 	if (!list_empty(&mm->mmlist)) {
853 		spin_lock(&mmlist_lock);
854 		list_del(&mm->mmlist);
855 		spin_unlock(&mmlist_lock);
856 	}
857 	if (mm->binfmt)
858 		module_put(mm->binfmt->module);
859 	mmdrop(mm);
860 }
861 
862 /*
863  * Decrement the use count and release all resources for an mm.
864  */
865 void mmput(struct mm_struct *mm)
866 {
867 	might_sleep();
868 
869 	if (atomic_dec_and_test(&mm->mm_users))
870 		__mmput(mm);
871 }
872 EXPORT_SYMBOL_GPL(mmput);
873 
874 #ifdef CONFIG_MMU
875 static void mmput_async_fn(struct work_struct *work)
876 {
877 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
878 	__mmput(mm);
879 }
880 
881 void mmput_async(struct mm_struct *mm)
882 {
883 	if (atomic_dec_and_test(&mm->mm_users)) {
884 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
885 		schedule_work(&mm->async_put_work);
886 	}
887 }
888 #endif
889 
890 /**
891  * set_mm_exe_file - change a reference to the mm's executable file
892  *
893  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
894  *
895  * Main users are mmput() and sys_execve(). Callers prevent concurrent
896  * invocations: in mmput() nobody alive left, in execve task is single
897  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
898  * mm->exe_file, but does so without using set_mm_exe_file() in order
899  * to do avoid the need for any locks.
900  */
901 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
902 {
903 	struct file *old_exe_file;
904 
905 	/*
906 	 * It is safe to dereference the exe_file without RCU as
907 	 * this function is only called if nobody else can access
908 	 * this mm -- see comment above for justification.
909 	 */
910 	old_exe_file = rcu_dereference_raw(mm->exe_file);
911 
912 	if (new_exe_file)
913 		get_file(new_exe_file);
914 	rcu_assign_pointer(mm->exe_file, new_exe_file);
915 	if (old_exe_file)
916 		fput(old_exe_file);
917 }
918 
919 /**
920  * get_mm_exe_file - acquire a reference to the mm's executable file
921  *
922  * Returns %NULL if mm has no associated executable file.
923  * User must release file via fput().
924  */
925 struct file *get_mm_exe_file(struct mm_struct *mm)
926 {
927 	struct file *exe_file;
928 
929 	rcu_read_lock();
930 	exe_file = rcu_dereference(mm->exe_file);
931 	if (exe_file && !get_file_rcu(exe_file))
932 		exe_file = NULL;
933 	rcu_read_unlock();
934 	return exe_file;
935 }
936 EXPORT_SYMBOL(get_mm_exe_file);
937 
938 /**
939  * get_task_exe_file - acquire a reference to the task's executable file
940  *
941  * Returns %NULL if task's mm (if any) has no associated executable file or
942  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
943  * User must release file via fput().
944  */
945 struct file *get_task_exe_file(struct task_struct *task)
946 {
947 	struct file *exe_file = NULL;
948 	struct mm_struct *mm;
949 
950 	task_lock(task);
951 	mm = task->mm;
952 	if (mm) {
953 		if (!(task->flags & PF_KTHREAD))
954 			exe_file = get_mm_exe_file(mm);
955 	}
956 	task_unlock(task);
957 	return exe_file;
958 }
959 EXPORT_SYMBOL(get_task_exe_file);
960 
961 /**
962  * get_task_mm - acquire a reference to the task's mm
963  *
964  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
965  * this kernel workthread has transiently adopted a user mm with use_mm,
966  * to do its AIO) is not set and if so returns a reference to it, after
967  * bumping up the use count.  User must release the mm via mmput()
968  * after use.  Typically used by /proc and ptrace.
969  */
970 struct mm_struct *get_task_mm(struct task_struct *task)
971 {
972 	struct mm_struct *mm;
973 
974 	task_lock(task);
975 	mm = task->mm;
976 	if (mm) {
977 		if (task->flags & PF_KTHREAD)
978 			mm = NULL;
979 		else
980 			atomic_inc(&mm->mm_users);
981 	}
982 	task_unlock(task);
983 	return mm;
984 }
985 EXPORT_SYMBOL_GPL(get_task_mm);
986 
987 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
988 {
989 	struct mm_struct *mm;
990 	int err;
991 
992 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
993 	if (err)
994 		return ERR_PTR(err);
995 
996 	mm = get_task_mm(task);
997 	if (mm && mm != current->mm &&
998 			!ptrace_may_access(task, mode)) {
999 		mmput(mm);
1000 		mm = ERR_PTR(-EACCES);
1001 	}
1002 	mutex_unlock(&task->signal->cred_guard_mutex);
1003 
1004 	return mm;
1005 }
1006 
1007 static void complete_vfork_done(struct task_struct *tsk)
1008 {
1009 	struct completion *vfork;
1010 
1011 	task_lock(tsk);
1012 	vfork = tsk->vfork_done;
1013 	if (likely(vfork)) {
1014 		tsk->vfork_done = NULL;
1015 		complete(vfork);
1016 	}
1017 	task_unlock(tsk);
1018 }
1019 
1020 static int wait_for_vfork_done(struct task_struct *child,
1021 				struct completion *vfork)
1022 {
1023 	int killed;
1024 
1025 	freezer_do_not_count();
1026 	killed = wait_for_completion_killable(vfork);
1027 	freezer_count();
1028 
1029 	if (killed) {
1030 		task_lock(child);
1031 		child->vfork_done = NULL;
1032 		task_unlock(child);
1033 	}
1034 
1035 	put_task_struct(child);
1036 	return killed;
1037 }
1038 
1039 /* Please note the differences between mmput and mm_release.
1040  * mmput is called whenever we stop holding onto a mm_struct,
1041  * error success whatever.
1042  *
1043  * mm_release is called after a mm_struct has been removed
1044  * from the current process.
1045  *
1046  * This difference is important for error handling, when we
1047  * only half set up a mm_struct for a new process and need to restore
1048  * the old one.  Because we mmput the new mm_struct before
1049  * restoring the old one. . .
1050  * Eric Biederman 10 January 1998
1051  */
1052 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1053 {
1054 	/* Get rid of any futexes when releasing the mm */
1055 #ifdef CONFIG_FUTEX
1056 	if (unlikely(tsk->robust_list)) {
1057 		exit_robust_list(tsk);
1058 		tsk->robust_list = NULL;
1059 	}
1060 #ifdef CONFIG_COMPAT
1061 	if (unlikely(tsk->compat_robust_list)) {
1062 		compat_exit_robust_list(tsk);
1063 		tsk->compat_robust_list = NULL;
1064 	}
1065 #endif
1066 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1067 		exit_pi_state_list(tsk);
1068 #endif
1069 
1070 	uprobe_free_utask(tsk);
1071 
1072 	/* Get rid of any cached register state */
1073 	deactivate_mm(tsk, mm);
1074 
1075 	/*
1076 	 * Signal userspace if we're not exiting with a core dump
1077 	 * because we want to leave the value intact for debugging
1078 	 * purposes.
1079 	 */
1080 	if (tsk->clear_child_tid) {
1081 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1082 		    atomic_read(&mm->mm_users) > 1) {
1083 			/*
1084 			 * We don't check the error code - if userspace has
1085 			 * not set up a proper pointer then tough luck.
1086 			 */
1087 			put_user(0, tsk->clear_child_tid);
1088 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1089 					1, NULL, NULL, 0);
1090 		}
1091 		tsk->clear_child_tid = NULL;
1092 	}
1093 
1094 	/*
1095 	 * All done, finally we can wake up parent and return this mm to him.
1096 	 * Also kthread_stop() uses this completion for synchronization.
1097 	 */
1098 	if (tsk->vfork_done)
1099 		complete_vfork_done(tsk);
1100 }
1101 
1102 /*
1103  * Allocate a new mm structure and copy contents from the
1104  * mm structure of the passed in task structure.
1105  */
1106 static struct mm_struct *dup_mm(struct task_struct *tsk)
1107 {
1108 	struct mm_struct *mm, *oldmm = current->mm;
1109 	int err;
1110 
1111 	mm = allocate_mm();
1112 	if (!mm)
1113 		goto fail_nomem;
1114 
1115 	memcpy(mm, oldmm, sizeof(*mm));
1116 
1117 	if (!mm_init(mm, tsk))
1118 		goto fail_nomem;
1119 
1120 	err = dup_mmap(mm, oldmm);
1121 	if (err)
1122 		goto free_pt;
1123 
1124 	mm->hiwater_rss = get_mm_rss(mm);
1125 	mm->hiwater_vm = mm->total_vm;
1126 
1127 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1128 		goto free_pt;
1129 
1130 	return mm;
1131 
1132 free_pt:
1133 	/* don't put binfmt in mmput, we haven't got module yet */
1134 	mm->binfmt = NULL;
1135 	mmput(mm);
1136 
1137 fail_nomem:
1138 	return NULL;
1139 }
1140 
1141 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1142 {
1143 	struct mm_struct *mm, *oldmm;
1144 	int retval;
1145 
1146 	tsk->min_flt = tsk->maj_flt = 0;
1147 	tsk->nvcsw = tsk->nivcsw = 0;
1148 #ifdef CONFIG_DETECT_HUNG_TASK
1149 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1150 #endif
1151 
1152 	tsk->mm = NULL;
1153 	tsk->active_mm = NULL;
1154 
1155 	/*
1156 	 * Are we cloning a kernel thread?
1157 	 *
1158 	 * We need to steal a active VM for that..
1159 	 */
1160 	oldmm = current->mm;
1161 	if (!oldmm)
1162 		return 0;
1163 
1164 	/* initialize the new vmacache entries */
1165 	vmacache_flush(tsk);
1166 
1167 	if (clone_flags & CLONE_VM) {
1168 		atomic_inc(&oldmm->mm_users);
1169 		mm = oldmm;
1170 		goto good_mm;
1171 	}
1172 
1173 	retval = -ENOMEM;
1174 	mm = dup_mm(tsk);
1175 	if (!mm)
1176 		goto fail_nomem;
1177 
1178 good_mm:
1179 	tsk->mm = mm;
1180 	tsk->active_mm = mm;
1181 	return 0;
1182 
1183 fail_nomem:
1184 	return retval;
1185 }
1186 
1187 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1188 {
1189 	struct fs_struct *fs = current->fs;
1190 	if (clone_flags & CLONE_FS) {
1191 		/* tsk->fs is already what we want */
1192 		spin_lock(&fs->lock);
1193 		if (fs->in_exec) {
1194 			spin_unlock(&fs->lock);
1195 			return -EAGAIN;
1196 		}
1197 		fs->users++;
1198 		spin_unlock(&fs->lock);
1199 		return 0;
1200 	}
1201 	tsk->fs = copy_fs_struct(fs);
1202 	if (!tsk->fs)
1203 		return -ENOMEM;
1204 	return 0;
1205 }
1206 
1207 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1208 {
1209 	struct files_struct *oldf, *newf;
1210 	int error = 0;
1211 
1212 	/*
1213 	 * A background process may not have any files ...
1214 	 */
1215 	oldf = current->files;
1216 	if (!oldf)
1217 		goto out;
1218 
1219 	if (clone_flags & CLONE_FILES) {
1220 		atomic_inc(&oldf->count);
1221 		goto out;
1222 	}
1223 
1224 	newf = dup_fd(oldf, &error);
1225 	if (!newf)
1226 		goto out;
1227 
1228 	tsk->files = newf;
1229 	error = 0;
1230 out:
1231 	return error;
1232 }
1233 
1234 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1235 {
1236 #ifdef CONFIG_BLOCK
1237 	struct io_context *ioc = current->io_context;
1238 	struct io_context *new_ioc;
1239 
1240 	if (!ioc)
1241 		return 0;
1242 	/*
1243 	 * Share io context with parent, if CLONE_IO is set
1244 	 */
1245 	if (clone_flags & CLONE_IO) {
1246 		ioc_task_link(ioc);
1247 		tsk->io_context = ioc;
1248 	} else if (ioprio_valid(ioc->ioprio)) {
1249 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1250 		if (unlikely(!new_ioc))
1251 			return -ENOMEM;
1252 
1253 		new_ioc->ioprio = ioc->ioprio;
1254 		put_io_context(new_ioc);
1255 	}
1256 #endif
1257 	return 0;
1258 }
1259 
1260 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1261 {
1262 	struct sighand_struct *sig;
1263 
1264 	if (clone_flags & CLONE_SIGHAND) {
1265 		atomic_inc(&current->sighand->count);
1266 		return 0;
1267 	}
1268 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1269 	rcu_assign_pointer(tsk->sighand, sig);
1270 	if (!sig)
1271 		return -ENOMEM;
1272 
1273 	atomic_set(&sig->count, 1);
1274 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1275 	return 0;
1276 }
1277 
1278 void __cleanup_sighand(struct sighand_struct *sighand)
1279 {
1280 	if (atomic_dec_and_test(&sighand->count)) {
1281 		signalfd_cleanup(sighand);
1282 		/*
1283 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1284 		 * without an RCU grace period, see __lock_task_sighand().
1285 		 */
1286 		kmem_cache_free(sighand_cachep, sighand);
1287 	}
1288 }
1289 
1290 /*
1291  * Initialize POSIX timer handling for a thread group.
1292  */
1293 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1294 {
1295 	unsigned long cpu_limit;
1296 
1297 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1298 	if (cpu_limit != RLIM_INFINITY) {
1299 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1300 		sig->cputimer.running = true;
1301 	}
1302 
1303 	/* The timer lists. */
1304 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1305 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1306 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1307 }
1308 
1309 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1310 {
1311 	struct signal_struct *sig;
1312 
1313 	if (clone_flags & CLONE_THREAD)
1314 		return 0;
1315 
1316 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1317 	tsk->signal = sig;
1318 	if (!sig)
1319 		return -ENOMEM;
1320 
1321 	sig->nr_threads = 1;
1322 	atomic_set(&sig->live, 1);
1323 	atomic_set(&sig->sigcnt, 1);
1324 
1325 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1326 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1327 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1328 
1329 	init_waitqueue_head(&sig->wait_chldexit);
1330 	sig->curr_target = tsk;
1331 	init_sigpending(&sig->shared_pending);
1332 	INIT_LIST_HEAD(&sig->posix_timers);
1333 	seqlock_init(&sig->stats_lock);
1334 	prev_cputime_init(&sig->prev_cputime);
1335 
1336 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1337 	sig->real_timer.function = it_real_fn;
1338 
1339 	task_lock(current->group_leader);
1340 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1341 	task_unlock(current->group_leader);
1342 
1343 	posix_cpu_timers_init_group(sig);
1344 
1345 	tty_audit_fork(sig);
1346 	sched_autogroup_fork(sig);
1347 
1348 	sig->oom_score_adj = current->signal->oom_score_adj;
1349 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1350 
1351 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1352 				   current->signal->is_child_subreaper;
1353 
1354 	mutex_init(&sig->cred_guard_mutex);
1355 
1356 	return 0;
1357 }
1358 
1359 static void copy_seccomp(struct task_struct *p)
1360 {
1361 #ifdef CONFIG_SECCOMP
1362 	/*
1363 	 * Must be called with sighand->lock held, which is common to
1364 	 * all threads in the group. Holding cred_guard_mutex is not
1365 	 * needed because this new task is not yet running and cannot
1366 	 * be racing exec.
1367 	 */
1368 	assert_spin_locked(&current->sighand->siglock);
1369 
1370 	/* Ref-count the new filter user, and assign it. */
1371 	get_seccomp_filter(current);
1372 	p->seccomp = current->seccomp;
1373 
1374 	/*
1375 	 * Explicitly enable no_new_privs here in case it got set
1376 	 * between the task_struct being duplicated and holding the
1377 	 * sighand lock. The seccomp state and nnp must be in sync.
1378 	 */
1379 	if (task_no_new_privs(current))
1380 		task_set_no_new_privs(p);
1381 
1382 	/*
1383 	 * If the parent gained a seccomp mode after copying thread
1384 	 * flags and between before we held the sighand lock, we have
1385 	 * to manually enable the seccomp thread flag here.
1386 	 */
1387 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1388 		set_tsk_thread_flag(p, TIF_SECCOMP);
1389 #endif
1390 }
1391 
1392 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1393 {
1394 	current->clear_child_tid = tidptr;
1395 
1396 	return task_pid_vnr(current);
1397 }
1398 
1399 static void rt_mutex_init_task(struct task_struct *p)
1400 {
1401 	raw_spin_lock_init(&p->pi_lock);
1402 #ifdef CONFIG_RT_MUTEXES
1403 	p->pi_waiters = RB_ROOT;
1404 	p->pi_waiters_leftmost = NULL;
1405 	p->pi_blocked_on = NULL;
1406 #endif
1407 }
1408 
1409 /*
1410  * Initialize POSIX timer handling for a single task.
1411  */
1412 static void posix_cpu_timers_init(struct task_struct *tsk)
1413 {
1414 	tsk->cputime_expires.prof_exp = 0;
1415 	tsk->cputime_expires.virt_exp = 0;
1416 	tsk->cputime_expires.sched_exp = 0;
1417 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1418 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1419 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1420 }
1421 
1422 static inline void
1423 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1424 {
1425 	 task->pids[type].pid = pid;
1426 }
1427 
1428 /*
1429  * This creates a new process as a copy of the old one,
1430  * but does not actually start it yet.
1431  *
1432  * It copies the registers, and all the appropriate
1433  * parts of the process environment (as per the clone
1434  * flags). The actual kick-off is left to the caller.
1435  */
1436 static struct task_struct *copy_process(unsigned long clone_flags,
1437 					unsigned long stack_start,
1438 					unsigned long stack_size,
1439 					int __user *child_tidptr,
1440 					struct pid *pid,
1441 					int trace,
1442 					unsigned long tls,
1443 					int node)
1444 {
1445 	int retval;
1446 	struct task_struct *p;
1447 
1448 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1449 		return ERR_PTR(-EINVAL);
1450 
1451 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1452 		return ERR_PTR(-EINVAL);
1453 
1454 	/*
1455 	 * Thread groups must share signals as well, and detached threads
1456 	 * can only be started up within the thread group.
1457 	 */
1458 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1459 		return ERR_PTR(-EINVAL);
1460 
1461 	/*
1462 	 * Shared signal handlers imply shared VM. By way of the above,
1463 	 * thread groups also imply shared VM. Blocking this case allows
1464 	 * for various simplifications in other code.
1465 	 */
1466 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1467 		return ERR_PTR(-EINVAL);
1468 
1469 	/*
1470 	 * Siblings of global init remain as zombies on exit since they are
1471 	 * not reaped by their parent (swapper). To solve this and to avoid
1472 	 * multi-rooted process trees, prevent global and container-inits
1473 	 * from creating siblings.
1474 	 */
1475 	if ((clone_flags & CLONE_PARENT) &&
1476 				current->signal->flags & SIGNAL_UNKILLABLE)
1477 		return ERR_PTR(-EINVAL);
1478 
1479 	/*
1480 	 * If the new process will be in a different pid or user namespace
1481 	 * do not allow it to share a thread group with the forking task.
1482 	 */
1483 	if (clone_flags & CLONE_THREAD) {
1484 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1485 		    (task_active_pid_ns(current) !=
1486 				current->nsproxy->pid_ns_for_children))
1487 			return ERR_PTR(-EINVAL);
1488 	}
1489 
1490 	retval = security_task_create(clone_flags);
1491 	if (retval)
1492 		goto fork_out;
1493 
1494 	retval = -ENOMEM;
1495 	p = dup_task_struct(current, node);
1496 	if (!p)
1497 		goto fork_out;
1498 
1499 	ftrace_graph_init_task(p);
1500 
1501 	rt_mutex_init_task(p);
1502 
1503 #ifdef CONFIG_PROVE_LOCKING
1504 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1505 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1506 #endif
1507 	retval = -EAGAIN;
1508 	if (atomic_read(&p->real_cred->user->processes) >=
1509 			task_rlimit(p, RLIMIT_NPROC)) {
1510 		if (p->real_cred->user != INIT_USER &&
1511 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1512 			goto bad_fork_free;
1513 	}
1514 	current->flags &= ~PF_NPROC_EXCEEDED;
1515 
1516 	retval = copy_creds(p, clone_flags);
1517 	if (retval < 0)
1518 		goto bad_fork_free;
1519 
1520 	/*
1521 	 * If multiple threads are within copy_process(), then this check
1522 	 * triggers too late. This doesn't hurt, the check is only there
1523 	 * to stop root fork bombs.
1524 	 */
1525 	retval = -EAGAIN;
1526 	if (nr_threads >= max_threads)
1527 		goto bad_fork_cleanup_count;
1528 
1529 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1530 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1531 	p->flags |= PF_FORKNOEXEC;
1532 	INIT_LIST_HEAD(&p->children);
1533 	INIT_LIST_HEAD(&p->sibling);
1534 	rcu_copy_process(p);
1535 	p->vfork_done = NULL;
1536 	spin_lock_init(&p->alloc_lock);
1537 
1538 	init_sigpending(&p->pending);
1539 
1540 	p->utime = p->stime = p->gtime = 0;
1541 	p->utimescaled = p->stimescaled = 0;
1542 	prev_cputime_init(&p->prev_cputime);
1543 
1544 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1545 	seqcount_init(&p->vtime_seqcount);
1546 	p->vtime_snap = 0;
1547 	p->vtime_snap_whence = VTIME_INACTIVE;
1548 #endif
1549 
1550 #if defined(SPLIT_RSS_COUNTING)
1551 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1552 #endif
1553 
1554 	p->default_timer_slack_ns = current->timer_slack_ns;
1555 
1556 	task_io_accounting_init(&p->ioac);
1557 	acct_clear_integrals(p);
1558 
1559 	posix_cpu_timers_init(p);
1560 
1561 	p->start_time = ktime_get_ns();
1562 	p->real_start_time = ktime_get_boot_ns();
1563 	p->io_context = NULL;
1564 	p->audit_context = NULL;
1565 	cgroup_fork(p);
1566 #ifdef CONFIG_NUMA
1567 	p->mempolicy = mpol_dup(p->mempolicy);
1568 	if (IS_ERR(p->mempolicy)) {
1569 		retval = PTR_ERR(p->mempolicy);
1570 		p->mempolicy = NULL;
1571 		goto bad_fork_cleanup_threadgroup_lock;
1572 	}
1573 #endif
1574 #ifdef CONFIG_CPUSETS
1575 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1576 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1577 	seqcount_init(&p->mems_allowed_seq);
1578 #endif
1579 #ifdef CONFIG_TRACE_IRQFLAGS
1580 	p->irq_events = 0;
1581 	p->hardirqs_enabled = 0;
1582 	p->hardirq_enable_ip = 0;
1583 	p->hardirq_enable_event = 0;
1584 	p->hardirq_disable_ip = _THIS_IP_;
1585 	p->hardirq_disable_event = 0;
1586 	p->softirqs_enabled = 1;
1587 	p->softirq_enable_ip = _THIS_IP_;
1588 	p->softirq_enable_event = 0;
1589 	p->softirq_disable_ip = 0;
1590 	p->softirq_disable_event = 0;
1591 	p->hardirq_context = 0;
1592 	p->softirq_context = 0;
1593 #endif
1594 
1595 	p->pagefault_disabled = 0;
1596 
1597 #ifdef CONFIG_LOCKDEP
1598 	p->lockdep_depth = 0; /* no locks held yet */
1599 	p->curr_chain_key = 0;
1600 	p->lockdep_recursion = 0;
1601 #endif
1602 
1603 #ifdef CONFIG_DEBUG_MUTEXES
1604 	p->blocked_on = NULL; /* not blocked yet */
1605 #endif
1606 #ifdef CONFIG_BCACHE
1607 	p->sequential_io	= 0;
1608 	p->sequential_io_avg	= 0;
1609 #endif
1610 
1611 	/* Perform scheduler related setup. Assign this task to a CPU. */
1612 	retval = sched_fork(clone_flags, p);
1613 	if (retval)
1614 		goto bad_fork_cleanup_policy;
1615 
1616 	retval = perf_event_init_task(p);
1617 	if (retval)
1618 		goto bad_fork_cleanup_policy;
1619 	retval = audit_alloc(p);
1620 	if (retval)
1621 		goto bad_fork_cleanup_perf;
1622 	/* copy all the process information */
1623 	shm_init_task(p);
1624 	retval = copy_semundo(clone_flags, p);
1625 	if (retval)
1626 		goto bad_fork_cleanup_audit;
1627 	retval = copy_files(clone_flags, p);
1628 	if (retval)
1629 		goto bad_fork_cleanup_semundo;
1630 	retval = copy_fs(clone_flags, p);
1631 	if (retval)
1632 		goto bad_fork_cleanup_files;
1633 	retval = copy_sighand(clone_flags, p);
1634 	if (retval)
1635 		goto bad_fork_cleanup_fs;
1636 	retval = copy_signal(clone_flags, p);
1637 	if (retval)
1638 		goto bad_fork_cleanup_sighand;
1639 	retval = copy_mm(clone_flags, p);
1640 	if (retval)
1641 		goto bad_fork_cleanup_signal;
1642 	retval = copy_namespaces(clone_flags, p);
1643 	if (retval)
1644 		goto bad_fork_cleanup_mm;
1645 	retval = copy_io(clone_flags, p);
1646 	if (retval)
1647 		goto bad_fork_cleanup_namespaces;
1648 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1649 	if (retval)
1650 		goto bad_fork_cleanup_io;
1651 
1652 	if (pid != &init_struct_pid) {
1653 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1654 		if (IS_ERR(pid)) {
1655 			retval = PTR_ERR(pid);
1656 			goto bad_fork_cleanup_thread;
1657 		}
1658 	}
1659 
1660 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1661 	/*
1662 	 * Clear TID on mm_release()?
1663 	 */
1664 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1665 #ifdef CONFIG_BLOCK
1666 	p->plug = NULL;
1667 #endif
1668 #ifdef CONFIG_FUTEX
1669 	p->robust_list = NULL;
1670 #ifdef CONFIG_COMPAT
1671 	p->compat_robust_list = NULL;
1672 #endif
1673 	INIT_LIST_HEAD(&p->pi_state_list);
1674 	p->pi_state_cache = NULL;
1675 #endif
1676 	/*
1677 	 * sigaltstack should be cleared when sharing the same VM
1678 	 */
1679 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1680 		sas_ss_reset(p);
1681 
1682 	/*
1683 	 * Syscall tracing and stepping should be turned off in the
1684 	 * child regardless of CLONE_PTRACE.
1685 	 */
1686 	user_disable_single_step(p);
1687 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1688 #ifdef TIF_SYSCALL_EMU
1689 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1690 #endif
1691 	clear_all_latency_tracing(p);
1692 
1693 	/* ok, now we should be set up.. */
1694 	p->pid = pid_nr(pid);
1695 	if (clone_flags & CLONE_THREAD) {
1696 		p->exit_signal = -1;
1697 		p->group_leader = current->group_leader;
1698 		p->tgid = current->tgid;
1699 	} else {
1700 		if (clone_flags & CLONE_PARENT)
1701 			p->exit_signal = current->group_leader->exit_signal;
1702 		else
1703 			p->exit_signal = (clone_flags & CSIGNAL);
1704 		p->group_leader = p;
1705 		p->tgid = p->pid;
1706 	}
1707 
1708 	p->nr_dirtied = 0;
1709 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1710 	p->dirty_paused_when = 0;
1711 
1712 	p->pdeath_signal = 0;
1713 	INIT_LIST_HEAD(&p->thread_group);
1714 	p->task_works = NULL;
1715 
1716 	threadgroup_change_begin(current);
1717 	/*
1718 	 * Ensure that the cgroup subsystem policies allow the new process to be
1719 	 * forked. It should be noted the the new process's css_set can be changed
1720 	 * between here and cgroup_post_fork() if an organisation operation is in
1721 	 * progress.
1722 	 */
1723 	retval = cgroup_can_fork(p);
1724 	if (retval)
1725 		goto bad_fork_free_pid;
1726 
1727 	/*
1728 	 * Make it visible to the rest of the system, but dont wake it up yet.
1729 	 * Need tasklist lock for parent etc handling!
1730 	 */
1731 	write_lock_irq(&tasklist_lock);
1732 
1733 	/* CLONE_PARENT re-uses the old parent */
1734 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1735 		p->real_parent = current->real_parent;
1736 		p->parent_exec_id = current->parent_exec_id;
1737 	} else {
1738 		p->real_parent = current;
1739 		p->parent_exec_id = current->self_exec_id;
1740 	}
1741 
1742 	spin_lock(&current->sighand->siglock);
1743 
1744 	/*
1745 	 * Copy seccomp details explicitly here, in case they were changed
1746 	 * before holding sighand lock.
1747 	 */
1748 	copy_seccomp(p);
1749 
1750 	/*
1751 	 * Process group and session signals need to be delivered to just the
1752 	 * parent before the fork or both the parent and the child after the
1753 	 * fork. Restart if a signal comes in before we add the new process to
1754 	 * it's process group.
1755 	 * A fatal signal pending means that current will exit, so the new
1756 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1757 	*/
1758 	recalc_sigpending();
1759 	if (signal_pending(current)) {
1760 		spin_unlock(&current->sighand->siglock);
1761 		write_unlock_irq(&tasklist_lock);
1762 		retval = -ERESTARTNOINTR;
1763 		goto bad_fork_cancel_cgroup;
1764 	}
1765 
1766 	if (likely(p->pid)) {
1767 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1768 
1769 		init_task_pid(p, PIDTYPE_PID, pid);
1770 		if (thread_group_leader(p)) {
1771 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1772 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1773 
1774 			if (is_child_reaper(pid)) {
1775 				ns_of_pid(pid)->child_reaper = p;
1776 				p->signal->flags |= SIGNAL_UNKILLABLE;
1777 			}
1778 
1779 			p->signal->leader_pid = pid;
1780 			p->signal->tty = tty_kref_get(current->signal->tty);
1781 			list_add_tail(&p->sibling, &p->real_parent->children);
1782 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1783 			attach_pid(p, PIDTYPE_PGID);
1784 			attach_pid(p, PIDTYPE_SID);
1785 			__this_cpu_inc(process_counts);
1786 		} else {
1787 			current->signal->nr_threads++;
1788 			atomic_inc(&current->signal->live);
1789 			atomic_inc(&current->signal->sigcnt);
1790 			list_add_tail_rcu(&p->thread_group,
1791 					  &p->group_leader->thread_group);
1792 			list_add_tail_rcu(&p->thread_node,
1793 					  &p->signal->thread_head);
1794 		}
1795 		attach_pid(p, PIDTYPE_PID);
1796 		nr_threads++;
1797 	}
1798 
1799 	total_forks++;
1800 	spin_unlock(&current->sighand->siglock);
1801 	syscall_tracepoint_update(p);
1802 	write_unlock_irq(&tasklist_lock);
1803 
1804 	proc_fork_connector(p);
1805 	cgroup_post_fork(p);
1806 	threadgroup_change_end(current);
1807 	perf_event_fork(p);
1808 
1809 	trace_task_newtask(p, clone_flags);
1810 	uprobe_copy_process(p, clone_flags);
1811 
1812 	return p;
1813 
1814 bad_fork_cancel_cgroup:
1815 	cgroup_cancel_fork(p);
1816 bad_fork_free_pid:
1817 	threadgroup_change_end(current);
1818 	if (pid != &init_struct_pid)
1819 		free_pid(pid);
1820 bad_fork_cleanup_thread:
1821 	exit_thread(p);
1822 bad_fork_cleanup_io:
1823 	if (p->io_context)
1824 		exit_io_context(p);
1825 bad_fork_cleanup_namespaces:
1826 	exit_task_namespaces(p);
1827 bad_fork_cleanup_mm:
1828 	if (p->mm)
1829 		mmput(p->mm);
1830 bad_fork_cleanup_signal:
1831 	if (!(clone_flags & CLONE_THREAD))
1832 		free_signal_struct(p->signal);
1833 bad_fork_cleanup_sighand:
1834 	__cleanup_sighand(p->sighand);
1835 bad_fork_cleanup_fs:
1836 	exit_fs(p); /* blocking */
1837 bad_fork_cleanup_files:
1838 	exit_files(p); /* blocking */
1839 bad_fork_cleanup_semundo:
1840 	exit_sem(p);
1841 bad_fork_cleanup_audit:
1842 	audit_free(p);
1843 bad_fork_cleanup_perf:
1844 	perf_event_free_task(p);
1845 bad_fork_cleanup_policy:
1846 #ifdef CONFIG_NUMA
1847 	mpol_put(p->mempolicy);
1848 bad_fork_cleanup_threadgroup_lock:
1849 #endif
1850 	delayacct_tsk_free(p);
1851 bad_fork_cleanup_count:
1852 	atomic_dec(&p->cred->user->processes);
1853 	exit_creds(p);
1854 bad_fork_free:
1855 	put_task_stack(p);
1856 	free_task(p);
1857 fork_out:
1858 	return ERR_PTR(retval);
1859 }
1860 
1861 static inline void init_idle_pids(struct pid_link *links)
1862 {
1863 	enum pid_type type;
1864 
1865 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1866 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1867 		links[type].pid = &init_struct_pid;
1868 	}
1869 }
1870 
1871 struct task_struct *fork_idle(int cpu)
1872 {
1873 	struct task_struct *task;
1874 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1875 			    cpu_to_node(cpu));
1876 	if (!IS_ERR(task)) {
1877 		init_idle_pids(task->pids);
1878 		init_idle(task, cpu);
1879 	}
1880 
1881 	return task;
1882 }
1883 
1884 /*
1885  *  Ok, this is the main fork-routine.
1886  *
1887  * It copies the process, and if successful kick-starts
1888  * it and waits for it to finish using the VM if required.
1889  */
1890 long _do_fork(unsigned long clone_flags,
1891 	      unsigned long stack_start,
1892 	      unsigned long stack_size,
1893 	      int __user *parent_tidptr,
1894 	      int __user *child_tidptr,
1895 	      unsigned long tls)
1896 {
1897 	struct task_struct *p;
1898 	int trace = 0;
1899 	long nr;
1900 
1901 	/*
1902 	 * Determine whether and which event to report to ptracer.  When
1903 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1904 	 * requested, no event is reported; otherwise, report if the event
1905 	 * for the type of forking is enabled.
1906 	 */
1907 	if (!(clone_flags & CLONE_UNTRACED)) {
1908 		if (clone_flags & CLONE_VFORK)
1909 			trace = PTRACE_EVENT_VFORK;
1910 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1911 			trace = PTRACE_EVENT_CLONE;
1912 		else
1913 			trace = PTRACE_EVENT_FORK;
1914 
1915 		if (likely(!ptrace_event_enabled(current, trace)))
1916 			trace = 0;
1917 	}
1918 
1919 	p = copy_process(clone_flags, stack_start, stack_size,
1920 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1921 	/*
1922 	 * Do this prior waking up the new thread - the thread pointer
1923 	 * might get invalid after that point, if the thread exits quickly.
1924 	 */
1925 	if (!IS_ERR(p)) {
1926 		struct completion vfork;
1927 		struct pid *pid;
1928 
1929 		trace_sched_process_fork(current, p);
1930 
1931 		pid = get_task_pid(p, PIDTYPE_PID);
1932 		nr = pid_vnr(pid);
1933 
1934 		if (clone_flags & CLONE_PARENT_SETTID)
1935 			put_user(nr, parent_tidptr);
1936 
1937 		if (clone_flags & CLONE_VFORK) {
1938 			p->vfork_done = &vfork;
1939 			init_completion(&vfork);
1940 			get_task_struct(p);
1941 		}
1942 
1943 		wake_up_new_task(p);
1944 
1945 		/* forking complete and child started to run, tell ptracer */
1946 		if (unlikely(trace))
1947 			ptrace_event_pid(trace, pid);
1948 
1949 		if (clone_flags & CLONE_VFORK) {
1950 			if (!wait_for_vfork_done(p, &vfork))
1951 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1952 		}
1953 
1954 		put_pid(pid);
1955 	} else {
1956 		nr = PTR_ERR(p);
1957 	}
1958 	return nr;
1959 }
1960 
1961 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1962 /* For compatibility with architectures that call do_fork directly rather than
1963  * using the syscall entry points below. */
1964 long do_fork(unsigned long clone_flags,
1965 	      unsigned long stack_start,
1966 	      unsigned long stack_size,
1967 	      int __user *parent_tidptr,
1968 	      int __user *child_tidptr)
1969 {
1970 	return _do_fork(clone_flags, stack_start, stack_size,
1971 			parent_tidptr, child_tidptr, 0);
1972 }
1973 #endif
1974 
1975 /*
1976  * Create a kernel thread.
1977  */
1978 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1979 {
1980 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1981 		(unsigned long)arg, NULL, NULL, 0);
1982 }
1983 
1984 #ifdef __ARCH_WANT_SYS_FORK
1985 SYSCALL_DEFINE0(fork)
1986 {
1987 #ifdef CONFIG_MMU
1988 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1989 #else
1990 	/* can not support in nommu mode */
1991 	return -EINVAL;
1992 #endif
1993 }
1994 #endif
1995 
1996 #ifdef __ARCH_WANT_SYS_VFORK
1997 SYSCALL_DEFINE0(vfork)
1998 {
1999 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2000 			0, NULL, NULL, 0);
2001 }
2002 #endif
2003 
2004 #ifdef __ARCH_WANT_SYS_CLONE
2005 #ifdef CONFIG_CLONE_BACKWARDS
2006 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2007 		 int __user *, parent_tidptr,
2008 		 unsigned long, tls,
2009 		 int __user *, child_tidptr)
2010 #elif defined(CONFIG_CLONE_BACKWARDS2)
2011 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2012 		 int __user *, parent_tidptr,
2013 		 int __user *, child_tidptr,
2014 		 unsigned long, tls)
2015 #elif defined(CONFIG_CLONE_BACKWARDS3)
2016 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2017 		int, stack_size,
2018 		int __user *, parent_tidptr,
2019 		int __user *, child_tidptr,
2020 		unsigned long, tls)
2021 #else
2022 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2023 		 int __user *, parent_tidptr,
2024 		 int __user *, child_tidptr,
2025 		 unsigned long, tls)
2026 #endif
2027 {
2028 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2029 }
2030 #endif
2031 
2032 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2033 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2034 #endif
2035 
2036 static void sighand_ctor(void *data)
2037 {
2038 	struct sighand_struct *sighand = data;
2039 
2040 	spin_lock_init(&sighand->siglock);
2041 	init_waitqueue_head(&sighand->signalfd_wqh);
2042 }
2043 
2044 void __init proc_caches_init(void)
2045 {
2046 	sighand_cachep = kmem_cache_create("sighand_cache",
2047 			sizeof(struct sighand_struct), 0,
2048 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2049 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2050 	signal_cachep = kmem_cache_create("signal_cache",
2051 			sizeof(struct signal_struct), 0,
2052 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2053 			NULL);
2054 	files_cachep = kmem_cache_create("files_cache",
2055 			sizeof(struct files_struct), 0,
2056 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2057 			NULL);
2058 	fs_cachep = kmem_cache_create("fs_cache",
2059 			sizeof(struct fs_struct), 0,
2060 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2061 			NULL);
2062 	/*
2063 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2064 	 * whole struct cpumask for the OFFSTACK case. We could change
2065 	 * this to *only* allocate as much of it as required by the
2066 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2067 	 * is at the end of the structure, exactly for that reason.
2068 	 */
2069 	mm_cachep = kmem_cache_create("mm_struct",
2070 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2071 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2072 			NULL);
2073 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2074 	mmap_init();
2075 	nsproxy_cache_init();
2076 }
2077 
2078 /*
2079  * Check constraints on flags passed to the unshare system call.
2080  */
2081 static int check_unshare_flags(unsigned long unshare_flags)
2082 {
2083 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2084 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2085 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2086 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2087 		return -EINVAL;
2088 	/*
2089 	 * Not implemented, but pretend it works if there is nothing
2090 	 * to unshare.  Note that unsharing the address space or the
2091 	 * signal handlers also need to unshare the signal queues (aka
2092 	 * CLONE_THREAD).
2093 	 */
2094 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2095 		if (!thread_group_empty(current))
2096 			return -EINVAL;
2097 	}
2098 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2099 		if (atomic_read(&current->sighand->count) > 1)
2100 			return -EINVAL;
2101 	}
2102 	if (unshare_flags & CLONE_VM) {
2103 		if (!current_is_single_threaded())
2104 			return -EINVAL;
2105 	}
2106 
2107 	return 0;
2108 }
2109 
2110 /*
2111  * Unshare the filesystem structure if it is being shared
2112  */
2113 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2114 {
2115 	struct fs_struct *fs = current->fs;
2116 
2117 	if (!(unshare_flags & CLONE_FS) || !fs)
2118 		return 0;
2119 
2120 	/* don't need lock here; in the worst case we'll do useless copy */
2121 	if (fs->users == 1)
2122 		return 0;
2123 
2124 	*new_fsp = copy_fs_struct(fs);
2125 	if (!*new_fsp)
2126 		return -ENOMEM;
2127 
2128 	return 0;
2129 }
2130 
2131 /*
2132  * Unshare file descriptor table if it is being shared
2133  */
2134 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2135 {
2136 	struct files_struct *fd = current->files;
2137 	int error = 0;
2138 
2139 	if ((unshare_flags & CLONE_FILES) &&
2140 	    (fd && atomic_read(&fd->count) > 1)) {
2141 		*new_fdp = dup_fd(fd, &error);
2142 		if (!*new_fdp)
2143 			return error;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 /*
2150  * unshare allows a process to 'unshare' part of the process
2151  * context which was originally shared using clone.  copy_*
2152  * functions used by do_fork() cannot be used here directly
2153  * because they modify an inactive task_struct that is being
2154  * constructed. Here we are modifying the current, active,
2155  * task_struct.
2156  */
2157 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2158 {
2159 	struct fs_struct *fs, *new_fs = NULL;
2160 	struct files_struct *fd, *new_fd = NULL;
2161 	struct cred *new_cred = NULL;
2162 	struct nsproxy *new_nsproxy = NULL;
2163 	int do_sysvsem = 0;
2164 	int err;
2165 
2166 	/*
2167 	 * If unsharing a user namespace must also unshare the thread group
2168 	 * and unshare the filesystem root and working directories.
2169 	 */
2170 	if (unshare_flags & CLONE_NEWUSER)
2171 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2172 	/*
2173 	 * If unsharing vm, must also unshare signal handlers.
2174 	 */
2175 	if (unshare_flags & CLONE_VM)
2176 		unshare_flags |= CLONE_SIGHAND;
2177 	/*
2178 	 * If unsharing a signal handlers, must also unshare the signal queues.
2179 	 */
2180 	if (unshare_flags & CLONE_SIGHAND)
2181 		unshare_flags |= CLONE_THREAD;
2182 	/*
2183 	 * If unsharing namespace, must also unshare filesystem information.
2184 	 */
2185 	if (unshare_flags & CLONE_NEWNS)
2186 		unshare_flags |= CLONE_FS;
2187 
2188 	err = check_unshare_flags(unshare_flags);
2189 	if (err)
2190 		goto bad_unshare_out;
2191 	/*
2192 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2193 	 * to a new ipc namespace, the semaphore arrays from the old
2194 	 * namespace are unreachable.
2195 	 */
2196 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2197 		do_sysvsem = 1;
2198 	err = unshare_fs(unshare_flags, &new_fs);
2199 	if (err)
2200 		goto bad_unshare_out;
2201 	err = unshare_fd(unshare_flags, &new_fd);
2202 	if (err)
2203 		goto bad_unshare_cleanup_fs;
2204 	err = unshare_userns(unshare_flags, &new_cred);
2205 	if (err)
2206 		goto bad_unshare_cleanup_fd;
2207 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2208 					 new_cred, new_fs);
2209 	if (err)
2210 		goto bad_unshare_cleanup_cred;
2211 
2212 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2213 		if (do_sysvsem) {
2214 			/*
2215 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2216 			 */
2217 			exit_sem(current);
2218 		}
2219 		if (unshare_flags & CLONE_NEWIPC) {
2220 			/* Orphan segments in old ns (see sem above). */
2221 			exit_shm(current);
2222 			shm_init_task(current);
2223 		}
2224 
2225 		if (new_nsproxy)
2226 			switch_task_namespaces(current, new_nsproxy);
2227 
2228 		task_lock(current);
2229 
2230 		if (new_fs) {
2231 			fs = current->fs;
2232 			spin_lock(&fs->lock);
2233 			current->fs = new_fs;
2234 			if (--fs->users)
2235 				new_fs = NULL;
2236 			else
2237 				new_fs = fs;
2238 			spin_unlock(&fs->lock);
2239 		}
2240 
2241 		if (new_fd) {
2242 			fd = current->files;
2243 			current->files = new_fd;
2244 			new_fd = fd;
2245 		}
2246 
2247 		task_unlock(current);
2248 
2249 		if (new_cred) {
2250 			/* Install the new user namespace */
2251 			commit_creds(new_cred);
2252 			new_cred = NULL;
2253 		}
2254 	}
2255 
2256 bad_unshare_cleanup_cred:
2257 	if (new_cred)
2258 		put_cred(new_cred);
2259 bad_unshare_cleanup_fd:
2260 	if (new_fd)
2261 		put_files_struct(new_fd);
2262 
2263 bad_unshare_cleanup_fs:
2264 	if (new_fs)
2265 		free_fs_struct(new_fs);
2266 
2267 bad_unshare_out:
2268 	return err;
2269 }
2270 
2271 /*
2272  *	Helper to unshare the files of the current task.
2273  *	We don't want to expose copy_files internals to
2274  *	the exec layer of the kernel.
2275  */
2276 
2277 int unshare_files(struct files_struct **displaced)
2278 {
2279 	struct task_struct *task = current;
2280 	struct files_struct *copy = NULL;
2281 	int error;
2282 
2283 	error = unshare_fd(CLONE_FILES, &copy);
2284 	if (error || !copy) {
2285 		*displaced = NULL;
2286 		return error;
2287 	}
2288 	*displaced = task->files;
2289 	task_lock(task);
2290 	task->files = copy;
2291 	task_unlock(task);
2292 	return 0;
2293 }
2294 
2295 int sysctl_max_threads(struct ctl_table *table, int write,
2296 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2297 {
2298 	struct ctl_table t;
2299 	int ret;
2300 	int threads = max_threads;
2301 	int min = MIN_THREADS;
2302 	int max = MAX_THREADS;
2303 
2304 	t = *table;
2305 	t.data = &threads;
2306 	t.extra1 = &min;
2307 	t.extra2 = &max;
2308 
2309 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2310 	if (ret || !write)
2311 		return ret;
2312 
2313 	set_max_threads(threads);
2314 
2315 	return 0;
2316 }
2317