xref: /linux/kernel/fork.c (revision 43235168793cb1d766ccd015c219068e0547c511)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 	struct vm_area_struct *vma;
457 
458 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 	if (vma)
460 		vma_init(vma, mm);
461 	return vma;
462 }
463 
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467 
468 	if (new) {
469 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 		/*
472 		 * orig->shared.rb may be modified concurrently, but the clone
473 		 * will be reinitialized.
474 		 */
475 		data_race(memcpy(new, orig, sizeof(*new)));
476 		INIT_LIST_HEAD(&new->anon_vma_chain);
477 		dup_anon_vma_name(orig, new);
478 	}
479 	return new;
480 }
481 
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 	free_anon_vma_name(vma);
485 	kmem_cache_free(vm_area_cachep, vma);
486 }
487 
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 		struct vm_struct *vm = task_stack_vm_area(tsk);
492 		int i;
493 
494 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 					      account * (PAGE_SIZE / 1024));
497 	} else {
498 		void *stack = task_stack_page(tsk);
499 
500 		/* All stack pages are in the same node. */
501 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 				      account * (THREAD_SIZE / 1024));
503 	}
504 }
505 
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 	account_kernel_stack(tsk, -1);
509 
510 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 		struct vm_struct *vm;
512 		int i;
513 
514 		vm = task_stack_vm_area(tsk);
515 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 			memcg_kmem_uncharge_page(vm->pages[i], 0);
517 	}
518 }
519 
520 static void release_task_stack(struct task_struct *tsk)
521 {
522 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 		return;  /* Better to leak the stack than to free prematurely */
524 
525 	free_thread_stack(tsk);
526 }
527 
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531 	if (refcount_dec_and_test(&tsk->stack_refcount))
532 		release_task_stack(tsk);
533 }
534 #endif
535 
536 void free_task(struct task_struct *tsk)
537 {
538 #ifdef CONFIG_SECCOMP
539 	WARN_ON_ONCE(tsk->seccomp.filter);
540 #endif
541 	release_user_cpus_ptr(tsk);
542 	scs_release(tsk);
543 
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
545 	/*
546 	 * The task is finally done with both the stack and thread_info,
547 	 * so free both.
548 	 */
549 	release_task_stack(tsk);
550 #else
551 	/*
552 	 * If the task had a separate stack allocation, it should be gone
553 	 * by now.
554 	 */
555 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 #endif
557 	rt_mutex_debug_task_free(tsk);
558 	ftrace_graph_exit_task(tsk);
559 	arch_release_task_struct(tsk);
560 	if (tsk->flags & PF_KTHREAD)
561 		free_kthread_struct(tsk);
562 	free_task_struct(tsk);
563 }
564 EXPORT_SYMBOL(free_task);
565 
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 {
568 	struct file *exe_file;
569 
570 	exe_file = get_mm_exe_file(oldmm);
571 	RCU_INIT_POINTER(mm->exe_file, exe_file);
572 	/*
573 	 * We depend on the oldmm having properly denied write access to the
574 	 * exe_file already.
575 	 */
576 	if (exe_file && deny_write_access(exe_file))
577 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
578 }
579 
580 #ifdef CONFIG_MMU
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 					struct mm_struct *oldmm)
583 {
584 	struct vm_area_struct *mpnt, *tmp;
585 	int retval;
586 	unsigned long charge = 0;
587 	LIST_HEAD(uf);
588 	VMA_ITERATOR(old_vmi, oldmm, 0);
589 	VMA_ITERATOR(vmi, mm, 0);
590 
591 	uprobe_start_dup_mmap();
592 	if (mmap_write_lock_killable(oldmm)) {
593 		retval = -EINTR;
594 		goto fail_uprobe_end;
595 	}
596 	flush_cache_dup_mm(oldmm);
597 	uprobe_dup_mmap(oldmm, mm);
598 	/*
599 	 * Not linked in yet - no deadlock potential:
600 	 */
601 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
602 
603 	/* No ordering required: file already has been exposed. */
604 	dup_mm_exe_file(mm, oldmm);
605 
606 	mm->total_vm = oldmm->total_vm;
607 	mm->data_vm = oldmm->data_vm;
608 	mm->exec_vm = oldmm->exec_vm;
609 	mm->stack_vm = oldmm->stack_vm;
610 
611 	retval = ksm_fork(mm, oldmm);
612 	if (retval)
613 		goto out;
614 	khugepaged_fork(mm, oldmm);
615 
616 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
617 	if (retval)
618 		goto out;
619 
620 	for_each_vma(old_vmi, mpnt) {
621 		struct file *file;
622 
623 		if (mpnt->vm_flags & VM_DONTCOPY) {
624 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625 			continue;
626 		}
627 		charge = 0;
628 		/*
629 		 * Don't duplicate many vmas if we've been oom-killed (for
630 		 * example)
631 		 */
632 		if (fatal_signal_pending(current)) {
633 			retval = -EINTR;
634 			goto loop_out;
635 		}
636 		if (mpnt->vm_flags & VM_ACCOUNT) {
637 			unsigned long len = vma_pages(mpnt);
638 
639 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640 				goto fail_nomem;
641 			charge = len;
642 		}
643 		tmp = vm_area_dup(mpnt);
644 		if (!tmp)
645 			goto fail_nomem;
646 		retval = vma_dup_policy(mpnt, tmp);
647 		if (retval)
648 			goto fail_nomem_policy;
649 		tmp->vm_mm = mm;
650 		retval = dup_userfaultfd(tmp, &uf);
651 		if (retval)
652 			goto fail_nomem_anon_vma_fork;
653 		if (tmp->vm_flags & VM_WIPEONFORK) {
654 			/*
655 			 * VM_WIPEONFORK gets a clean slate in the child.
656 			 * Don't prepare anon_vma until fault since we don't
657 			 * copy page for current vma.
658 			 */
659 			tmp->anon_vma = NULL;
660 		} else if (anon_vma_fork(tmp, mpnt))
661 			goto fail_nomem_anon_vma_fork;
662 		vm_flags_clear(tmp, VM_LOCKED_MASK);
663 		file = tmp->vm_file;
664 		if (file) {
665 			struct address_space *mapping = file->f_mapping;
666 
667 			get_file(file);
668 			i_mmap_lock_write(mapping);
669 			if (tmp->vm_flags & VM_SHARED)
670 				mapping_allow_writable(mapping);
671 			flush_dcache_mmap_lock(mapping);
672 			/* insert tmp into the share list, just after mpnt */
673 			vma_interval_tree_insert_after(tmp, mpnt,
674 					&mapping->i_mmap);
675 			flush_dcache_mmap_unlock(mapping);
676 			i_mmap_unlock_write(mapping);
677 		}
678 
679 		/*
680 		 * Copy/update hugetlb private vma information.
681 		 */
682 		if (is_vm_hugetlb_page(tmp))
683 			hugetlb_dup_vma_private(tmp);
684 
685 		/* Link the vma into the MT */
686 		if (vma_iter_bulk_store(&vmi, tmp))
687 			goto fail_nomem_vmi_store;
688 
689 		mm->map_count++;
690 		if (!(tmp->vm_flags & VM_WIPEONFORK))
691 			retval = copy_page_range(tmp, mpnt);
692 
693 		if (tmp->vm_ops && tmp->vm_ops->open)
694 			tmp->vm_ops->open(tmp);
695 
696 		if (retval)
697 			goto loop_out;
698 	}
699 	/* a new mm has just been created */
700 	retval = arch_dup_mmap(oldmm, mm);
701 loop_out:
702 	vma_iter_free(&vmi);
703 out:
704 	mmap_write_unlock(mm);
705 	flush_tlb_mm(oldmm);
706 	mmap_write_unlock(oldmm);
707 	dup_userfaultfd_complete(&uf);
708 fail_uprobe_end:
709 	uprobe_end_dup_mmap();
710 	return retval;
711 
712 fail_nomem_vmi_store:
713 	unlink_anon_vmas(tmp);
714 fail_nomem_anon_vma_fork:
715 	mpol_put(vma_policy(tmp));
716 fail_nomem_policy:
717 	vm_area_free(tmp);
718 fail_nomem:
719 	retval = -ENOMEM;
720 	vm_unacct_memory(charge);
721 	goto loop_out;
722 }
723 
724 static inline int mm_alloc_pgd(struct mm_struct *mm)
725 {
726 	mm->pgd = pgd_alloc(mm);
727 	if (unlikely(!mm->pgd))
728 		return -ENOMEM;
729 	return 0;
730 }
731 
732 static inline void mm_free_pgd(struct mm_struct *mm)
733 {
734 	pgd_free(mm, mm->pgd);
735 }
736 #else
737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
738 {
739 	mmap_write_lock(oldmm);
740 	dup_mm_exe_file(mm, oldmm);
741 	mmap_write_unlock(oldmm);
742 	return 0;
743 }
744 #define mm_alloc_pgd(mm)	(0)
745 #define mm_free_pgd(mm)
746 #endif /* CONFIG_MMU */
747 
748 static void check_mm(struct mm_struct *mm)
749 {
750 	int i;
751 
752 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
753 			 "Please make sure 'struct resident_page_types[]' is updated as well");
754 
755 	for (i = 0; i < NR_MM_COUNTERS; i++) {
756 		long x = percpu_counter_sum(&mm->rss_stat[i]);
757 
758 		if (unlikely(x))
759 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
760 				 mm, resident_page_types[i], x);
761 	}
762 
763 	if (mm_pgtables_bytes(mm))
764 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
765 				mm_pgtables_bytes(mm));
766 
767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
768 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
769 #endif
770 }
771 
772 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
773 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
774 
775 /*
776  * Called when the last reference to the mm
777  * is dropped: either by a lazy thread or by
778  * mmput. Free the page directory and the mm.
779  */
780 void __mmdrop(struct mm_struct *mm)
781 {
782 	int i;
783 
784 	BUG_ON(mm == &init_mm);
785 	WARN_ON_ONCE(mm == current->mm);
786 	WARN_ON_ONCE(mm == current->active_mm);
787 	mm_free_pgd(mm);
788 	destroy_context(mm);
789 	mmu_notifier_subscriptions_destroy(mm);
790 	check_mm(mm);
791 	put_user_ns(mm->user_ns);
792 	mm_pasid_drop(mm);
793 
794 	for (i = 0; i < NR_MM_COUNTERS; i++)
795 		percpu_counter_destroy(&mm->rss_stat[i]);
796 	free_mm(mm);
797 }
798 EXPORT_SYMBOL_GPL(__mmdrop);
799 
800 static void mmdrop_async_fn(struct work_struct *work)
801 {
802 	struct mm_struct *mm;
803 
804 	mm = container_of(work, struct mm_struct, async_put_work);
805 	__mmdrop(mm);
806 }
807 
808 static void mmdrop_async(struct mm_struct *mm)
809 {
810 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
811 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
812 		schedule_work(&mm->async_put_work);
813 	}
814 }
815 
816 static inline void free_signal_struct(struct signal_struct *sig)
817 {
818 	taskstats_tgid_free(sig);
819 	sched_autogroup_exit(sig);
820 	/*
821 	 * __mmdrop is not safe to call from softirq context on x86 due to
822 	 * pgd_dtor so postpone it to the async context
823 	 */
824 	if (sig->oom_mm)
825 		mmdrop_async(sig->oom_mm);
826 	kmem_cache_free(signal_cachep, sig);
827 }
828 
829 static inline void put_signal_struct(struct signal_struct *sig)
830 {
831 	if (refcount_dec_and_test(&sig->sigcnt))
832 		free_signal_struct(sig);
833 }
834 
835 void __put_task_struct(struct task_struct *tsk)
836 {
837 	WARN_ON(!tsk->exit_state);
838 	WARN_ON(refcount_read(&tsk->usage));
839 	WARN_ON(tsk == current);
840 
841 	io_uring_free(tsk);
842 	cgroup_free(tsk);
843 	task_numa_free(tsk, true);
844 	security_task_free(tsk);
845 	bpf_task_storage_free(tsk);
846 	exit_creds(tsk);
847 	delayacct_tsk_free(tsk);
848 	put_signal_struct(tsk->signal);
849 	sched_core_free(tsk);
850 	free_task(tsk);
851 }
852 EXPORT_SYMBOL_GPL(__put_task_struct);
853 
854 void __init __weak arch_task_cache_init(void) { }
855 
856 /*
857  * set_max_threads
858  */
859 static void set_max_threads(unsigned int max_threads_suggested)
860 {
861 	u64 threads;
862 	unsigned long nr_pages = totalram_pages();
863 
864 	/*
865 	 * The number of threads shall be limited such that the thread
866 	 * structures may only consume a small part of the available memory.
867 	 */
868 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
869 		threads = MAX_THREADS;
870 	else
871 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
872 				    (u64) THREAD_SIZE * 8UL);
873 
874 	if (threads > max_threads_suggested)
875 		threads = max_threads_suggested;
876 
877 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
878 }
879 
880 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
881 /* Initialized by the architecture: */
882 int arch_task_struct_size __read_mostly;
883 #endif
884 
885 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
886 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
887 {
888 	/* Fetch thread_struct whitelist for the architecture. */
889 	arch_thread_struct_whitelist(offset, size);
890 
891 	/*
892 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
893 	 * adjust offset to position of thread_struct in task_struct.
894 	 */
895 	if (unlikely(*size == 0))
896 		*offset = 0;
897 	else
898 		*offset += offsetof(struct task_struct, thread);
899 }
900 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
901 
902 void __init fork_init(void)
903 {
904 	int i;
905 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
906 #ifndef ARCH_MIN_TASKALIGN
907 #define ARCH_MIN_TASKALIGN	0
908 #endif
909 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
910 	unsigned long useroffset, usersize;
911 
912 	/* create a slab on which task_structs can be allocated */
913 	task_struct_whitelist(&useroffset, &usersize);
914 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
915 			arch_task_struct_size, align,
916 			SLAB_PANIC|SLAB_ACCOUNT,
917 			useroffset, usersize, NULL);
918 #endif
919 
920 	/* do the arch specific task caches init */
921 	arch_task_cache_init();
922 
923 	set_max_threads(MAX_THREADS);
924 
925 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
926 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
927 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
928 		init_task.signal->rlim[RLIMIT_NPROC];
929 
930 	for (i = 0; i < UCOUNT_COUNTS; i++)
931 		init_user_ns.ucount_max[i] = max_threads/2;
932 
933 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
934 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
935 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
936 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
937 
938 #ifdef CONFIG_VMAP_STACK
939 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
940 			  NULL, free_vm_stack_cache);
941 #endif
942 
943 	scs_init();
944 
945 	lockdep_init_task(&init_task);
946 	uprobes_init();
947 }
948 
949 int __weak arch_dup_task_struct(struct task_struct *dst,
950 					       struct task_struct *src)
951 {
952 	*dst = *src;
953 	return 0;
954 }
955 
956 void set_task_stack_end_magic(struct task_struct *tsk)
957 {
958 	unsigned long *stackend;
959 
960 	stackend = end_of_stack(tsk);
961 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
962 }
963 
964 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
965 {
966 	struct task_struct *tsk;
967 	int err;
968 
969 	if (node == NUMA_NO_NODE)
970 		node = tsk_fork_get_node(orig);
971 	tsk = alloc_task_struct_node(node);
972 	if (!tsk)
973 		return NULL;
974 
975 	err = arch_dup_task_struct(tsk, orig);
976 	if (err)
977 		goto free_tsk;
978 
979 	err = alloc_thread_stack_node(tsk, node);
980 	if (err)
981 		goto free_tsk;
982 
983 #ifdef CONFIG_THREAD_INFO_IN_TASK
984 	refcount_set(&tsk->stack_refcount, 1);
985 #endif
986 	account_kernel_stack(tsk, 1);
987 
988 	err = scs_prepare(tsk, node);
989 	if (err)
990 		goto free_stack;
991 
992 #ifdef CONFIG_SECCOMP
993 	/*
994 	 * We must handle setting up seccomp filters once we're under
995 	 * the sighand lock in case orig has changed between now and
996 	 * then. Until then, filter must be NULL to avoid messing up
997 	 * the usage counts on the error path calling free_task.
998 	 */
999 	tsk->seccomp.filter = NULL;
1000 #endif
1001 
1002 	setup_thread_stack(tsk, orig);
1003 	clear_user_return_notifier(tsk);
1004 	clear_tsk_need_resched(tsk);
1005 	set_task_stack_end_magic(tsk);
1006 	clear_syscall_work_syscall_user_dispatch(tsk);
1007 
1008 #ifdef CONFIG_STACKPROTECTOR
1009 	tsk->stack_canary = get_random_canary();
1010 #endif
1011 	if (orig->cpus_ptr == &orig->cpus_mask)
1012 		tsk->cpus_ptr = &tsk->cpus_mask;
1013 	dup_user_cpus_ptr(tsk, orig, node);
1014 
1015 	/*
1016 	 * One for the user space visible state that goes away when reaped.
1017 	 * One for the scheduler.
1018 	 */
1019 	refcount_set(&tsk->rcu_users, 2);
1020 	/* One for the rcu users */
1021 	refcount_set(&tsk->usage, 1);
1022 #ifdef CONFIG_BLK_DEV_IO_TRACE
1023 	tsk->btrace_seq = 0;
1024 #endif
1025 	tsk->splice_pipe = NULL;
1026 	tsk->task_frag.page = NULL;
1027 	tsk->wake_q.next = NULL;
1028 	tsk->worker_private = NULL;
1029 
1030 	kcov_task_init(tsk);
1031 	kmsan_task_create(tsk);
1032 	kmap_local_fork(tsk);
1033 
1034 #ifdef CONFIG_FAULT_INJECTION
1035 	tsk->fail_nth = 0;
1036 #endif
1037 
1038 #ifdef CONFIG_BLK_CGROUP
1039 	tsk->throttle_disk = NULL;
1040 	tsk->use_memdelay = 0;
1041 #endif
1042 
1043 #ifdef CONFIG_IOMMU_SVA
1044 	tsk->pasid_activated = 0;
1045 #endif
1046 
1047 #ifdef CONFIG_MEMCG
1048 	tsk->active_memcg = NULL;
1049 #endif
1050 
1051 #ifdef CONFIG_CPU_SUP_INTEL
1052 	tsk->reported_split_lock = 0;
1053 #endif
1054 
1055 #ifdef CONFIG_SCHED_MM_CID
1056 	tsk->mm_cid = -1;
1057 	tsk->mm_cid_active = 0;
1058 #endif
1059 	return tsk;
1060 
1061 free_stack:
1062 	exit_task_stack_account(tsk);
1063 	free_thread_stack(tsk);
1064 free_tsk:
1065 	free_task_struct(tsk);
1066 	return NULL;
1067 }
1068 
1069 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1070 
1071 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1072 
1073 static int __init coredump_filter_setup(char *s)
1074 {
1075 	default_dump_filter =
1076 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1077 		MMF_DUMP_FILTER_MASK;
1078 	return 1;
1079 }
1080 
1081 __setup("coredump_filter=", coredump_filter_setup);
1082 
1083 #include <linux/init_task.h>
1084 
1085 static void mm_init_aio(struct mm_struct *mm)
1086 {
1087 #ifdef CONFIG_AIO
1088 	spin_lock_init(&mm->ioctx_lock);
1089 	mm->ioctx_table = NULL;
1090 #endif
1091 }
1092 
1093 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1094 					   struct task_struct *p)
1095 {
1096 #ifdef CONFIG_MEMCG
1097 	if (mm->owner == p)
1098 		WRITE_ONCE(mm->owner, NULL);
1099 #endif
1100 }
1101 
1102 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1103 {
1104 #ifdef CONFIG_MEMCG
1105 	mm->owner = p;
1106 #endif
1107 }
1108 
1109 static void mm_init_uprobes_state(struct mm_struct *mm)
1110 {
1111 #ifdef CONFIG_UPROBES
1112 	mm->uprobes_state.xol_area = NULL;
1113 #endif
1114 }
1115 
1116 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1117 	struct user_namespace *user_ns)
1118 {
1119 	int i;
1120 
1121 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1122 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1123 	atomic_set(&mm->mm_users, 1);
1124 	atomic_set(&mm->mm_count, 1);
1125 	seqcount_init(&mm->write_protect_seq);
1126 	mmap_init_lock(mm);
1127 	INIT_LIST_HEAD(&mm->mmlist);
1128 	mm_pgtables_bytes_init(mm);
1129 	mm->map_count = 0;
1130 	mm->locked_vm = 0;
1131 	atomic64_set(&mm->pinned_vm, 0);
1132 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1133 	spin_lock_init(&mm->page_table_lock);
1134 	spin_lock_init(&mm->arg_lock);
1135 	mm_init_cpumask(mm);
1136 	mm_init_aio(mm);
1137 	mm_init_owner(mm, p);
1138 	mm_pasid_init(mm);
1139 	RCU_INIT_POINTER(mm->exe_file, NULL);
1140 	mmu_notifier_subscriptions_init(mm);
1141 	init_tlb_flush_pending(mm);
1142 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1143 	mm->pmd_huge_pte = NULL;
1144 #endif
1145 	mm_init_uprobes_state(mm);
1146 	hugetlb_count_init(mm);
1147 
1148 	if (current->mm) {
1149 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1150 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1151 	} else {
1152 		mm->flags = default_dump_filter;
1153 		mm->def_flags = 0;
1154 	}
1155 
1156 	if (mm_alloc_pgd(mm))
1157 		goto fail_nopgd;
1158 
1159 	if (init_new_context(p, mm))
1160 		goto fail_nocontext;
1161 
1162 	for (i = 0; i < NR_MM_COUNTERS; i++)
1163 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1164 			goto fail_pcpu;
1165 
1166 	mm->user_ns = get_user_ns(user_ns);
1167 	lru_gen_init_mm(mm);
1168 	mm_init_cid(mm);
1169 	return mm;
1170 
1171 fail_pcpu:
1172 	while (i > 0)
1173 		percpu_counter_destroy(&mm->rss_stat[--i]);
1174 fail_nocontext:
1175 	mm_free_pgd(mm);
1176 fail_nopgd:
1177 	free_mm(mm);
1178 	return NULL;
1179 }
1180 
1181 /*
1182  * Allocate and initialize an mm_struct.
1183  */
1184 struct mm_struct *mm_alloc(void)
1185 {
1186 	struct mm_struct *mm;
1187 
1188 	mm = allocate_mm();
1189 	if (!mm)
1190 		return NULL;
1191 
1192 	memset(mm, 0, sizeof(*mm));
1193 	return mm_init(mm, current, current_user_ns());
1194 }
1195 
1196 static inline void __mmput(struct mm_struct *mm)
1197 {
1198 	VM_BUG_ON(atomic_read(&mm->mm_users));
1199 
1200 	uprobe_clear_state(mm);
1201 	exit_aio(mm);
1202 	ksm_exit(mm);
1203 	khugepaged_exit(mm); /* must run before exit_mmap */
1204 	exit_mmap(mm);
1205 	mm_put_huge_zero_page(mm);
1206 	set_mm_exe_file(mm, NULL);
1207 	if (!list_empty(&mm->mmlist)) {
1208 		spin_lock(&mmlist_lock);
1209 		list_del(&mm->mmlist);
1210 		spin_unlock(&mmlist_lock);
1211 	}
1212 	if (mm->binfmt)
1213 		module_put(mm->binfmt->module);
1214 	lru_gen_del_mm(mm);
1215 	mmdrop(mm);
1216 }
1217 
1218 /*
1219  * Decrement the use count and release all resources for an mm.
1220  */
1221 void mmput(struct mm_struct *mm)
1222 {
1223 	might_sleep();
1224 
1225 	if (atomic_dec_and_test(&mm->mm_users))
1226 		__mmput(mm);
1227 }
1228 EXPORT_SYMBOL_GPL(mmput);
1229 
1230 #ifdef CONFIG_MMU
1231 static void mmput_async_fn(struct work_struct *work)
1232 {
1233 	struct mm_struct *mm = container_of(work, struct mm_struct,
1234 					    async_put_work);
1235 
1236 	__mmput(mm);
1237 }
1238 
1239 void mmput_async(struct mm_struct *mm)
1240 {
1241 	if (atomic_dec_and_test(&mm->mm_users)) {
1242 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1243 		schedule_work(&mm->async_put_work);
1244 	}
1245 }
1246 EXPORT_SYMBOL_GPL(mmput_async);
1247 #endif
1248 
1249 /**
1250  * set_mm_exe_file - change a reference to the mm's executable file
1251  *
1252  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1253  *
1254  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1255  * invocations: in mmput() nobody alive left, in execve task is single
1256  * threaded.
1257  *
1258  * Can only fail if new_exe_file != NULL.
1259  */
1260 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1261 {
1262 	struct file *old_exe_file;
1263 
1264 	/*
1265 	 * It is safe to dereference the exe_file without RCU as
1266 	 * this function is only called if nobody else can access
1267 	 * this mm -- see comment above for justification.
1268 	 */
1269 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1270 
1271 	if (new_exe_file) {
1272 		/*
1273 		 * We expect the caller (i.e., sys_execve) to already denied
1274 		 * write access, so this is unlikely to fail.
1275 		 */
1276 		if (unlikely(deny_write_access(new_exe_file)))
1277 			return -EACCES;
1278 		get_file(new_exe_file);
1279 	}
1280 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1281 	if (old_exe_file) {
1282 		allow_write_access(old_exe_file);
1283 		fput(old_exe_file);
1284 	}
1285 	return 0;
1286 }
1287 
1288 /**
1289  * replace_mm_exe_file - replace a reference to the mm's executable file
1290  *
1291  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1292  * dealing with concurrent invocation and without grabbing the mmap lock in
1293  * write mode.
1294  *
1295  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1296  */
1297 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1298 {
1299 	struct vm_area_struct *vma;
1300 	struct file *old_exe_file;
1301 	int ret = 0;
1302 
1303 	/* Forbid mm->exe_file change if old file still mapped. */
1304 	old_exe_file = get_mm_exe_file(mm);
1305 	if (old_exe_file) {
1306 		VMA_ITERATOR(vmi, mm, 0);
1307 		mmap_read_lock(mm);
1308 		for_each_vma(vmi, vma) {
1309 			if (!vma->vm_file)
1310 				continue;
1311 			if (path_equal(&vma->vm_file->f_path,
1312 				       &old_exe_file->f_path)) {
1313 				ret = -EBUSY;
1314 				break;
1315 			}
1316 		}
1317 		mmap_read_unlock(mm);
1318 		fput(old_exe_file);
1319 		if (ret)
1320 			return ret;
1321 	}
1322 
1323 	/* set the new file, lockless */
1324 	ret = deny_write_access(new_exe_file);
1325 	if (ret)
1326 		return -EACCES;
1327 	get_file(new_exe_file);
1328 
1329 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1330 	if (old_exe_file) {
1331 		/*
1332 		 * Don't race with dup_mmap() getting the file and disallowing
1333 		 * write access while someone might open the file writable.
1334 		 */
1335 		mmap_read_lock(mm);
1336 		allow_write_access(old_exe_file);
1337 		fput(old_exe_file);
1338 		mmap_read_unlock(mm);
1339 	}
1340 	return 0;
1341 }
1342 
1343 /**
1344  * get_mm_exe_file - acquire a reference to the mm's executable file
1345  *
1346  * Returns %NULL if mm has no associated executable file.
1347  * User must release file via fput().
1348  */
1349 struct file *get_mm_exe_file(struct mm_struct *mm)
1350 {
1351 	struct file *exe_file;
1352 
1353 	rcu_read_lock();
1354 	exe_file = rcu_dereference(mm->exe_file);
1355 	if (exe_file && !get_file_rcu(exe_file))
1356 		exe_file = NULL;
1357 	rcu_read_unlock();
1358 	return exe_file;
1359 }
1360 
1361 /**
1362  * get_task_exe_file - acquire a reference to the task's executable file
1363  *
1364  * Returns %NULL if task's mm (if any) has no associated executable file or
1365  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1366  * User must release file via fput().
1367  */
1368 struct file *get_task_exe_file(struct task_struct *task)
1369 {
1370 	struct file *exe_file = NULL;
1371 	struct mm_struct *mm;
1372 
1373 	task_lock(task);
1374 	mm = task->mm;
1375 	if (mm) {
1376 		if (!(task->flags & PF_KTHREAD))
1377 			exe_file = get_mm_exe_file(mm);
1378 	}
1379 	task_unlock(task);
1380 	return exe_file;
1381 }
1382 
1383 /**
1384  * get_task_mm - acquire a reference to the task's mm
1385  *
1386  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1387  * this kernel workthread has transiently adopted a user mm with use_mm,
1388  * to do its AIO) is not set and if so returns a reference to it, after
1389  * bumping up the use count.  User must release the mm via mmput()
1390  * after use.  Typically used by /proc and ptrace.
1391  */
1392 struct mm_struct *get_task_mm(struct task_struct *task)
1393 {
1394 	struct mm_struct *mm;
1395 
1396 	task_lock(task);
1397 	mm = task->mm;
1398 	if (mm) {
1399 		if (task->flags & PF_KTHREAD)
1400 			mm = NULL;
1401 		else
1402 			mmget(mm);
1403 	}
1404 	task_unlock(task);
1405 	return mm;
1406 }
1407 EXPORT_SYMBOL_GPL(get_task_mm);
1408 
1409 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1410 {
1411 	struct mm_struct *mm;
1412 	int err;
1413 
1414 	err =  down_read_killable(&task->signal->exec_update_lock);
1415 	if (err)
1416 		return ERR_PTR(err);
1417 
1418 	mm = get_task_mm(task);
1419 	if (mm && mm != current->mm &&
1420 			!ptrace_may_access(task, mode)) {
1421 		mmput(mm);
1422 		mm = ERR_PTR(-EACCES);
1423 	}
1424 	up_read(&task->signal->exec_update_lock);
1425 
1426 	return mm;
1427 }
1428 
1429 static void complete_vfork_done(struct task_struct *tsk)
1430 {
1431 	struct completion *vfork;
1432 
1433 	task_lock(tsk);
1434 	vfork = tsk->vfork_done;
1435 	if (likely(vfork)) {
1436 		tsk->vfork_done = NULL;
1437 		complete(vfork);
1438 	}
1439 	task_unlock(tsk);
1440 }
1441 
1442 static int wait_for_vfork_done(struct task_struct *child,
1443 				struct completion *vfork)
1444 {
1445 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1446 	int killed;
1447 
1448 	cgroup_enter_frozen();
1449 	killed = wait_for_completion_state(vfork, state);
1450 	cgroup_leave_frozen(false);
1451 
1452 	if (killed) {
1453 		task_lock(child);
1454 		child->vfork_done = NULL;
1455 		task_unlock(child);
1456 	}
1457 
1458 	put_task_struct(child);
1459 	return killed;
1460 }
1461 
1462 /* Please note the differences between mmput and mm_release.
1463  * mmput is called whenever we stop holding onto a mm_struct,
1464  * error success whatever.
1465  *
1466  * mm_release is called after a mm_struct has been removed
1467  * from the current process.
1468  *
1469  * This difference is important for error handling, when we
1470  * only half set up a mm_struct for a new process and need to restore
1471  * the old one.  Because we mmput the new mm_struct before
1472  * restoring the old one. . .
1473  * Eric Biederman 10 January 1998
1474  */
1475 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1476 {
1477 	uprobe_free_utask(tsk);
1478 
1479 	/* Get rid of any cached register state */
1480 	deactivate_mm(tsk, mm);
1481 
1482 	/*
1483 	 * Signal userspace if we're not exiting with a core dump
1484 	 * because we want to leave the value intact for debugging
1485 	 * purposes.
1486 	 */
1487 	if (tsk->clear_child_tid) {
1488 		if (atomic_read(&mm->mm_users) > 1) {
1489 			/*
1490 			 * We don't check the error code - if userspace has
1491 			 * not set up a proper pointer then tough luck.
1492 			 */
1493 			put_user(0, tsk->clear_child_tid);
1494 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1495 					1, NULL, NULL, 0, 0);
1496 		}
1497 		tsk->clear_child_tid = NULL;
1498 	}
1499 
1500 	/*
1501 	 * All done, finally we can wake up parent and return this mm to him.
1502 	 * Also kthread_stop() uses this completion for synchronization.
1503 	 */
1504 	if (tsk->vfork_done)
1505 		complete_vfork_done(tsk);
1506 }
1507 
1508 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1509 {
1510 	futex_exit_release(tsk);
1511 	mm_release(tsk, mm);
1512 }
1513 
1514 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1515 {
1516 	futex_exec_release(tsk);
1517 	mm_release(tsk, mm);
1518 }
1519 
1520 /**
1521  * dup_mm() - duplicates an existing mm structure
1522  * @tsk: the task_struct with which the new mm will be associated.
1523  * @oldmm: the mm to duplicate.
1524  *
1525  * Allocates a new mm structure and duplicates the provided @oldmm structure
1526  * content into it.
1527  *
1528  * Return: the duplicated mm or NULL on failure.
1529  */
1530 static struct mm_struct *dup_mm(struct task_struct *tsk,
1531 				struct mm_struct *oldmm)
1532 {
1533 	struct mm_struct *mm;
1534 	int err;
1535 
1536 	mm = allocate_mm();
1537 	if (!mm)
1538 		goto fail_nomem;
1539 
1540 	memcpy(mm, oldmm, sizeof(*mm));
1541 
1542 	if (!mm_init(mm, tsk, mm->user_ns))
1543 		goto fail_nomem;
1544 
1545 	err = dup_mmap(mm, oldmm);
1546 	if (err)
1547 		goto free_pt;
1548 
1549 	mm->hiwater_rss = get_mm_rss(mm);
1550 	mm->hiwater_vm = mm->total_vm;
1551 
1552 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1553 		goto free_pt;
1554 
1555 	return mm;
1556 
1557 free_pt:
1558 	/* don't put binfmt in mmput, we haven't got module yet */
1559 	mm->binfmt = NULL;
1560 	mm_init_owner(mm, NULL);
1561 	mmput(mm);
1562 
1563 fail_nomem:
1564 	return NULL;
1565 }
1566 
1567 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1568 {
1569 	struct mm_struct *mm, *oldmm;
1570 
1571 	tsk->min_flt = tsk->maj_flt = 0;
1572 	tsk->nvcsw = tsk->nivcsw = 0;
1573 #ifdef CONFIG_DETECT_HUNG_TASK
1574 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1575 	tsk->last_switch_time = 0;
1576 #endif
1577 
1578 	tsk->mm = NULL;
1579 	tsk->active_mm = NULL;
1580 
1581 	/*
1582 	 * Are we cloning a kernel thread?
1583 	 *
1584 	 * We need to steal a active VM for that..
1585 	 */
1586 	oldmm = current->mm;
1587 	if (!oldmm)
1588 		return 0;
1589 
1590 	if (clone_flags & CLONE_VM) {
1591 		mmget(oldmm);
1592 		mm = oldmm;
1593 	} else {
1594 		mm = dup_mm(tsk, current->mm);
1595 		if (!mm)
1596 			return -ENOMEM;
1597 	}
1598 
1599 	tsk->mm = mm;
1600 	tsk->active_mm = mm;
1601 	sched_mm_cid_fork(tsk);
1602 	return 0;
1603 }
1604 
1605 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1606 {
1607 	struct fs_struct *fs = current->fs;
1608 	if (clone_flags & CLONE_FS) {
1609 		/* tsk->fs is already what we want */
1610 		spin_lock(&fs->lock);
1611 		if (fs->in_exec) {
1612 			spin_unlock(&fs->lock);
1613 			return -EAGAIN;
1614 		}
1615 		fs->users++;
1616 		spin_unlock(&fs->lock);
1617 		return 0;
1618 	}
1619 	tsk->fs = copy_fs_struct(fs);
1620 	if (!tsk->fs)
1621 		return -ENOMEM;
1622 	return 0;
1623 }
1624 
1625 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1626 {
1627 	struct files_struct *oldf, *newf;
1628 	int error = 0;
1629 
1630 	/*
1631 	 * A background process may not have any files ...
1632 	 */
1633 	oldf = current->files;
1634 	if (!oldf)
1635 		goto out;
1636 
1637 	if (clone_flags & CLONE_FILES) {
1638 		atomic_inc(&oldf->count);
1639 		goto out;
1640 	}
1641 
1642 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1643 	if (!newf)
1644 		goto out;
1645 
1646 	tsk->files = newf;
1647 	error = 0;
1648 out:
1649 	return error;
1650 }
1651 
1652 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1653 {
1654 	struct sighand_struct *sig;
1655 
1656 	if (clone_flags & CLONE_SIGHAND) {
1657 		refcount_inc(&current->sighand->count);
1658 		return 0;
1659 	}
1660 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1661 	RCU_INIT_POINTER(tsk->sighand, sig);
1662 	if (!sig)
1663 		return -ENOMEM;
1664 
1665 	refcount_set(&sig->count, 1);
1666 	spin_lock_irq(&current->sighand->siglock);
1667 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1668 	spin_unlock_irq(&current->sighand->siglock);
1669 
1670 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1671 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1672 		flush_signal_handlers(tsk, 0);
1673 
1674 	return 0;
1675 }
1676 
1677 void __cleanup_sighand(struct sighand_struct *sighand)
1678 {
1679 	if (refcount_dec_and_test(&sighand->count)) {
1680 		signalfd_cleanup(sighand);
1681 		/*
1682 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1683 		 * without an RCU grace period, see __lock_task_sighand().
1684 		 */
1685 		kmem_cache_free(sighand_cachep, sighand);
1686 	}
1687 }
1688 
1689 /*
1690  * Initialize POSIX timer handling for a thread group.
1691  */
1692 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1693 {
1694 	struct posix_cputimers *pct = &sig->posix_cputimers;
1695 	unsigned long cpu_limit;
1696 
1697 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1698 	posix_cputimers_group_init(pct, cpu_limit);
1699 }
1700 
1701 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1702 {
1703 	struct signal_struct *sig;
1704 
1705 	if (clone_flags & CLONE_THREAD)
1706 		return 0;
1707 
1708 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1709 	tsk->signal = sig;
1710 	if (!sig)
1711 		return -ENOMEM;
1712 
1713 	sig->nr_threads = 1;
1714 	sig->quick_threads = 1;
1715 	atomic_set(&sig->live, 1);
1716 	refcount_set(&sig->sigcnt, 1);
1717 
1718 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1719 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1720 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1721 
1722 	init_waitqueue_head(&sig->wait_chldexit);
1723 	sig->curr_target = tsk;
1724 	init_sigpending(&sig->shared_pending);
1725 	INIT_HLIST_HEAD(&sig->multiprocess);
1726 	seqlock_init(&sig->stats_lock);
1727 	prev_cputime_init(&sig->prev_cputime);
1728 
1729 #ifdef CONFIG_POSIX_TIMERS
1730 	INIT_LIST_HEAD(&sig->posix_timers);
1731 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1732 	sig->real_timer.function = it_real_fn;
1733 #endif
1734 
1735 	task_lock(current->group_leader);
1736 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1737 	task_unlock(current->group_leader);
1738 
1739 	posix_cpu_timers_init_group(sig);
1740 
1741 	tty_audit_fork(sig);
1742 	sched_autogroup_fork(sig);
1743 
1744 	sig->oom_score_adj = current->signal->oom_score_adj;
1745 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1746 
1747 	mutex_init(&sig->cred_guard_mutex);
1748 	init_rwsem(&sig->exec_update_lock);
1749 
1750 	return 0;
1751 }
1752 
1753 static void copy_seccomp(struct task_struct *p)
1754 {
1755 #ifdef CONFIG_SECCOMP
1756 	/*
1757 	 * Must be called with sighand->lock held, which is common to
1758 	 * all threads in the group. Holding cred_guard_mutex is not
1759 	 * needed because this new task is not yet running and cannot
1760 	 * be racing exec.
1761 	 */
1762 	assert_spin_locked(&current->sighand->siglock);
1763 
1764 	/* Ref-count the new filter user, and assign it. */
1765 	get_seccomp_filter(current);
1766 	p->seccomp = current->seccomp;
1767 
1768 	/*
1769 	 * Explicitly enable no_new_privs here in case it got set
1770 	 * between the task_struct being duplicated and holding the
1771 	 * sighand lock. The seccomp state and nnp must be in sync.
1772 	 */
1773 	if (task_no_new_privs(current))
1774 		task_set_no_new_privs(p);
1775 
1776 	/*
1777 	 * If the parent gained a seccomp mode after copying thread
1778 	 * flags and between before we held the sighand lock, we have
1779 	 * to manually enable the seccomp thread flag here.
1780 	 */
1781 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1782 		set_task_syscall_work(p, SECCOMP);
1783 #endif
1784 }
1785 
1786 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1787 {
1788 	current->clear_child_tid = tidptr;
1789 
1790 	return task_pid_vnr(current);
1791 }
1792 
1793 static void rt_mutex_init_task(struct task_struct *p)
1794 {
1795 	raw_spin_lock_init(&p->pi_lock);
1796 #ifdef CONFIG_RT_MUTEXES
1797 	p->pi_waiters = RB_ROOT_CACHED;
1798 	p->pi_top_task = NULL;
1799 	p->pi_blocked_on = NULL;
1800 #endif
1801 }
1802 
1803 static inline void init_task_pid_links(struct task_struct *task)
1804 {
1805 	enum pid_type type;
1806 
1807 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1808 		INIT_HLIST_NODE(&task->pid_links[type]);
1809 }
1810 
1811 static inline void
1812 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1813 {
1814 	if (type == PIDTYPE_PID)
1815 		task->thread_pid = pid;
1816 	else
1817 		task->signal->pids[type] = pid;
1818 }
1819 
1820 static inline void rcu_copy_process(struct task_struct *p)
1821 {
1822 #ifdef CONFIG_PREEMPT_RCU
1823 	p->rcu_read_lock_nesting = 0;
1824 	p->rcu_read_unlock_special.s = 0;
1825 	p->rcu_blocked_node = NULL;
1826 	INIT_LIST_HEAD(&p->rcu_node_entry);
1827 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1828 #ifdef CONFIG_TASKS_RCU
1829 	p->rcu_tasks_holdout = false;
1830 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1831 	p->rcu_tasks_idle_cpu = -1;
1832 #endif /* #ifdef CONFIG_TASKS_RCU */
1833 #ifdef CONFIG_TASKS_TRACE_RCU
1834 	p->trc_reader_nesting = 0;
1835 	p->trc_reader_special.s = 0;
1836 	INIT_LIST_HEAD(&p->trc_holdout_list);
1837 	INIT_LIST_HEAD(&p->trc_blkd_node);
1838 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1839 }
1840 
1841 struct pid *pidfd_pid(const struct file *file)
1842 {
1843 	if (file->f_op == &pidfd_fops)
1844 		return file->private_data;
1845 
1846 	return ERR_PTR(-EBADF);
1847 }
1848 
1849 static int pidfd_release(struct inode *inode, struct file *file)
1850 {
1851 	struct pid *pid = file->private_data;
1852 
1853 	file->private_data = NULL;
1854 	put_pid(pid);
1855 	return 0;
1856 }
1857 
1858 #ifdef CONFIG_PROC_FS
1859 /**
1860  * pidfd_show_fdinfo - print information about a pidfd
1861  * @m: proc fdinfo file
1862  * @f: file referencing a pidfd
1863  *
1864  * Pid:
1865  * This function will print the pid that a given pidfd refers to in the
1866  * pid namespace of the procfs instance.
1867  * If the pid namespace of the process is not a descendant of the pid
1868  * namespace of the procfs instance 0 will be shown as its pid. This is
1869  * similar to calling getppid() on a process whose parent is outside of
1870  * its pid namespace.
1871  *
1872  * NSpid:
1873  * If pid namespaces are supported then this function will also print
1874  * the pid of a given pidfd refers to for all descendant pid namespaces
1875  * starting from the current pid namespace of the instance, i.e. the
1876  * Pid field and the first entry in the NSpid field will be identical.
1877  * If the pid namespace of the process is not a descendant of the pid
1878  * namespace of the procfs instance 0 will be shown as its first NSpid
1879  * entry and no others will be shown.
1880  * Note that this differs from the Pid and NSpid fields in
1881  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1882  * the  pid namespace of the procfs instance. The difference becomes
1883  * obvious when sending around a pidfd between pid namespaces from a
1884  * different branch of the tree, i.e. where no ancestral relation is
1885  * present between the pid namespaces:
1886  * - create two new pid namespaces ns1 and ns2 in the initial pid
1887  *   namespace (also take care to create new mount namespaces in the
1888  *   new pid namespace and mount procfs)
1889  * - create a process with a pidfd in ns1
1890  * - send pidfd from ns1 to ns2
1891  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1892  *   have exactly one entry, which is 0
1893  */
1894 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1895 {
1896 	struct pid *pid = f->private_data;
1897 	struct pid_namespace *ns;
1898 	pid_t nr = -1;
1899 
1900 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1901 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1902 		nr = pid_nr_ns(pid, ns);
1903 	}
1904 
1905 	seq_put_decimal_ll(m, "Pid:\t", nr);
1906 
1907 #ifdef CONFIG_PID_NS
1908 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1909 	if (nr > 0) {
1910 		int i;
1911 
1912 		/* If nr is non-zero it means that 'pid' is valid and that
1913 		 * ns, i.e. the pid namespace associated with the procfs
1914 		 * instance, is in the pid namespace hierarchy of pid.
1915 		 * Start at one below the already printed level.
1916 		 */
1917 		for (i = ns->level + 1; i <= pid->level; i++)
1918 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1919 	}
1920 #endif
1921 	seq_putc(m, '\n');
1922 }
1923 #endif
1924 
1925 /*
1926  * Poll support for process exit notification.
1927  */
1928 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1929 {
1930 	struct pid *pid = file->private_data;
1931 	__poll_t poll_flags = 0;
1932 
1933 	poll_wait(file, &pid->wait_pidfd, pts);
1934 
1935 	/*
1936 	 * Inform pollers only when the whole thread group exits.
1937 	 * If the thread group leader exits before all other threads in the
1938 	 * group, then poll(2) should block, similar to the wait(2) family.
1939 	 */
1940 	if (thread_group_exited(pid))
1941 		poll_flags = EPOLLIN | EPOLLRDNORM;
1942 
1943 	return poll_flags;
1944 }
1945 
1946 const struct file_operations pidfd_fops = {
1947 	.release = pidfd_release,
1948 	.poll = pidfd_poll,
1949 #ifdef CONFIG_PROC_FS
1950 	.show_fdinfo = pidfd_show_fdinfo,
1951 #endif
1952 };
1953 
1954 static void __delayed_free_task(struct rcu_head *rhp)
1955 {
1956 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1957 
1958 	free_task(tsk);
1959 }
1960 
1961 static __always_inline void delayed_free_task(struct task_struct *tsk)
1962 {
1963 	if (IS_ENABLED(CONFIG_MEMCG))
1964 		call_rcu(&tsk->rcu, __delayed_free_task);
1965 	else
1966 		free_task(tsk);
1967 }
1968 
1969 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1970 {
1971 	/* Skip if kernel thread */
1972 	if (!tsk->mm)
1973 		return;
1974 
1975 	/* Skip if spawning a thread or using vfork */
1976 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1977 		return;
1978 
1979 	/* We need to synchronize with __set_oom_adj */
1980 	mutex_lock(&oom_adj_mutex);
1981 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1982 	/* Update the values in case they were changed after copy_signal */
1983 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1984 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1985 	mutex_unlock(&oom_adj_mutex);
1986 }
1987 
1988 #ifdef CONFIG_RV
1989 static void rv_task_fork(struct task_struct *p)
1990 {
1991 	int i;
1992 
1993 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1994 		p->rv[i].da_mon.monitoring = false;
1995 }
1996 #else
1997 #define rv_task_fork(p) do {} while (0)
1998 #endif
1999 
2000 /*
2001  * This creates a new process as a copy of the old one,
2002  * but does not actually start it yet.
2003  *
2004  * It copies the registers, and all the appropriate
2005  * parts of the process environment (as per the clone
2006  * flags). The actual kick-off is left to the caller.
2007  */
2008 static __latent_entropy struct task_struct *copy_process(
2009 					struct pid *pid,
2010 					int trace,
2011 					int node,
2012 					struct kernel_clone_args *args)
2013 {
2014 	int pidfd = -1, retval;
2015 	struct task_struct *p;
2016 	struct multiprocess_signals delayed;
2017 	struct file *pidfile = NULL;
2018 	const u64 clone_flags = args->flags;
2019 	struct nsproxy *nsp = current->nsproxy;
2020 
2021 	/*
2022 	 * Don't allow sharing the root directory with processes in a different
2023 	 * namespace
2024 	 */
2025 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2026 		return ERR_PTR(-EINVAL);
2027 
2028 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2029 		return ERR_PTR(-EINVAL);
2030 
2031 	/*
2032 	 * Thread groups must share signals as well, and detached threads
2033 	 * can only be started up within the thread group.
2034 	 */
2035 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2036 		return ERR_PTR(-EINVAL);
2037 
2038 	/*
2039 	 * Shared signal handlers imply shared VM. By way of the above,
2040 	 * thread groups also imply shared VM. Blocking this case allows
2041 	 * for various simplifications in other code.
2042 	 */
2043 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2044 		return ERR_PTR(-EINVAL);
2045 
2046 	/*
2047 	 * Siblings of global init remain as zombies on exit since they are
2048 	 * not reaped by their parent (swapper). To solve this and to avoid
2049 	 * multi-rooted process trees, prevent global and container-inits
2050 	 * from creating siblings.
2051 	 */
2052 	if ((clone_flags & CLONE_PARENT) &&
2053 				current->signal->flags & SIGNAL_UNKILLABLE)
2054 		return ERR_PTR(-EINVAL);
2055 
2056 	/*
2057 	 * If the new process will be in a different pid or user namespace
2058 	 * do not allow it to share a thread group with the forking task.
2059 	 */
2060 	if (clone_flags & CLONE_THREAD) {
2061 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2062 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2063 			return ERR_PTR(-EINVAL);
2064 	}
2065 
2066 	if (clone_flags & CLONE_PIDFD) {
2067 		/*
2068 		 * - CLONE_DETACHED is blocked so that we can potentially
2069 		 *   reuse it later for CLONE_PIDFD.
2070 		 * - CLONE_THREAD is blocked until someone really needs it.
2071 		 */
2072 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2073 			return ERR_PTR(-EINVAL);
2074 	}
2075 
2076 	/*
2077 	 * Force any signals received before this point to be delivered
2078 	 * before the fork happens.  Collect up signals sent to multiple
2079 	 * processes that happen during the fork and delay them so that
2080 	 * they appear to happen after the fork.
2081 	 */
2082 	sigemptyset(&delayed.signal);
2083 	INIT_HLIST_NODE(&delayed.node);
2084 
2085 	spin_lock_irq(&current->sighand->siglock);
2086 	if (!(clone_flags & CLONE_THREAD))
2087 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2088 	recalc_sigpending();
2089 	spin_unlock_irq(&current->sighand->siglock);
2090 	retval = -ERESTARTNOINTR;
2091 	if (task_sigpending(current))
2092 		goto fork_out;
2093 
2094 	retval = -ENOMEM;
2095 	p = dup_task_struct(current, node);
2096 	if (!p)
2097 		goto fork_out;
2098 	p->flags &= ~PF_KTHREAD;
2099 	if (args->kthread)
2100 		p->flags |= PF_KTHREAD;
2101 	if (args->io_thread) {
2102 		/*
2103 		 * Mark us an IO worker, and block any signal that isn't
2104 		 * fatal or STOP
2105 		 */
2106 		p->flags |= PF_IO_WORKER;
2107 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2108 	}
2109 
2110 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2111 	/*
2112 	 * Clear TID on mm_release()?
2113 	 */
2114 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2115 
2116 	ftrace_graph_init_task(p);
2117 
2118 	rt_mutex_init_task(p);
2119 
2120 	lockdep_assert_irqs_enabled();
2121 #ifdef CONFIG_PROVE_LOCKING
2122 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2123 #endif
2124 	retval = copy_creds(p, clone_flags);
2125 	if (retval < 0)
2126 		goto bad_fork_free;
2127 
2128 	retval = -EAGAIN;
2129 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2130 		if (p->real_cred->user != INIT_USER &&
2131 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2132 			goto bad_fork_cleanup_count;
2133 	}
2134 	current->flags &= ~PF_NPROC_EXCEEDED;
2135 
2136 	/*
2137 	 * If multiple threads are within copy_process(), then this check
2138 	 * triggers too late. This doesn't hurt, the check is only there
2139 	 * to stop root fork bombs.
2140 	 */
2141 	retval = -EAGAIN;
2142 	if (data_race(nr_threads >= max_threads))
2143 		goto bad_fork_cleanup_count;
2144 
2145 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2146 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2147 	p->flags |= PF_FORKNOEXEC;
2148 	INIT_LIST_HEAD(&p->children);
2149 	INIT_LIST_HEAD(&p->sibling);
2150 	rcu_copy_process(p);
2151 	p->vfork_done = NULL;
2152 	spin_lock_init(&p->alloc_lock);
2153 
2154 	init_sigpending(&p->pending);
2155 
2156 	p->utime = p->stime = p->gtime = 0;
2157 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2158 	p->utimescaled = p->stimescaled = 0;
2159 #endif
2160 	prev_cputime_init(&p->prev_cputime);
2161 
2162 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2163 	seqcount_init(&p->vtime.seqcount);
2164 	p->vtime.starttime = 0;
2165 	p->vtime.state = VTIME_INACTIVE;
2166 #endif
2167 
2168 #ifdef CONFIG_IO_URING
2169 	p->io_uring = NULL;
2170 #endif
2171 
2172 #if defined(SPLIT_RSS_COUNTING)
2173 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2174 #endif
2175 
2176 	p->default_timer_slack_ns = current->timer_slack_ns;
2177 
2178 #ifdef CONFIG_PSI
2179 	p->psi_flags = 0;
2180 #endif
2181 
2182 	task_io_accounting_init(&p->ioac);
2183 	acct_clear_integrals(p);
2184 
2185 	posix_cputimers_init(&p->posix_cputimers);
2186 
2187 	p->io_context = NULL;
2188 	audit_set_context(p, NULL);
2189 	cgroup_fork(p);
2190 	if (args->kthread) {
2191 		if (!set_kthread_struct(p))
2192 			goto bad_fork_cleanup_delayacct;
2193 	}
2194 #ifdef CONFIG_NUMA
2195 	p->mempolicy = mpol_dup(p->mempolicy);
2196 	if (IS_ERR(p->mempolicy)) {
2197 		retval = PTR_ERR(p->mempolicy);
2198 		p->mempolicy = NULL;
2199 		goto bad_fork_cleanup_delayacct;
2200 	}
2201 #endif
2202 #ifdef CONFIG_CPUSETS
2203 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2204 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2205 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2206 #endif
2207 #ifdef CONFIG_TRACE_IRQFLAGS
2208 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2209 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2210 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2211 	p->softirqs_enabled		= 1;
2212 	p->softirq_context		= 0;
2213 #endif
2214 
2215 	p->pagefault_disabled = 0;
2216 
2217 #ifdef CONFIG_LOCKDEP
2218 	lockdep_init_task(p);
2219 #endif
2220 
2221 #ifdef CONFIG_DEBUG_MUTEXES
2222 	p->blocked_on = NULL; /* not blocked yet */
2223 #endif
2224 #ifdef CONFIG_BCACHE
2225 	p->sequential_io	= 0;
2226 	p->sequential_io_avg	= 0;
2227 #endif
2228 #ifdef CONFIG_BPF_SYSCALL
2229 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2230 	p->bpf_ctx = NULL;
2231 #endif
2232 
2233 	/* Perform scheduler related setup. Assign this task to a CPU. */
2234 	retval = sched_fork(clone_flags, p);
2235 	if (retval)
2236 		goto bad_fork_cleanup_policy;
2237 
2238 	retval = perf_event_init_task(p, clone_flags);
2239 	if (retval)
2240 		goto bad_fork_cleanup_policy;
2241 	retval = audit_alloc(p);
2242 	if (retval)
2243 		goto bad_fork_cleanup_perf;
2244 	/* copy all the process information */
2245 	shm_init_task(p);
2246 	retval = security_task_alloc(p, clone_flags);
2247 	if (retval)
2248 		goto bad_fork_cleanup_audit;
2249 	retval = copy_semundo(clone_flags, p);
2250 	if (retval)
2251 		goto bad_fork_cleanup_security;
2252 	retval = copy_files(clone_flags, p);
2253 	if (retval)
2254 		goto bad_fork_cleanup_semundo;
2255 	retval = copy_fs(clone_flags, p);
2256 	if (retval)
2257 		goto bad_fork_cleanup_files;
2258 	retval = copy_sighand(clone_flags, p);
2259 	if (retval)
2260 		goto bad_fork_cleanup_fs;
2261 	retval = copy_signal(clone_flags, p);
2262 	if (retval)
2263 		goto bad_fork_cleanup_sighand;
2264 	retval = copy_mm(clone_flags, p);
2265 	if (retval)
2266 		goto bad_fork_cleanup_signal;
2267 	retval = copy_namespaces(clone_flags, p);
2268 	if (retval)
2269 		goto bad_fork_cleanup_mm;
2270 	retval = copy_io(clone_flags, p);
2271 	if (retval)
2272 		goto bad_fork_cleanup_namespaces;
2273 	retval = copy_thread(p, args);
2274 	if (retval)
2275 		goto bad_fork_cleanup_io;
2276 
2277 	stackleak_task_init(p);
2278 
2279 	if (pid != &init_struct_pid) {
2280 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2281 				args->set_tid_size);
2282 		if (IS_ERR(pid)) {
2283 			retval = PTR_ERR(pid);
2284 			goto bad_fork_cleanup_thread;
2285 		}
2286 	}
2287 
2288 	/*
2289 	 * This has to happen after we've potentially unshared the file
2290 	 * descriptor table (so that the pidfd doesn't leak into the child
2291 	 * if the fd table isn't shared).
2292 	 */
2293 	if (clone_flags & CLONE_PIDFD) {
2294 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2295 		if (retval < 0)
2296 			goto bad_fork_free_pid;
2297 
2298 		pidfd = retval;
2299 
2300 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2301 					      O_RDWR | O_CLOEXEC);
2302 		if (IS_ERR(pidfile)) {
2303 			put_unused_fd(pidfd);
2304 			retval = PTR_ERR(pidfile);
2305 			goto bad_fork_free_pid;
2306 		}
2307 		get_pid(pid);	/* held by pidfile now */
2308 
2309 		retval = put_user(pidfd, args->pidfd);
2310 		if (retval)
2311 			goto bad_fork_put_pidfd;
2312 	}
2313 
2314 #ifdef CONFIG_BLOCK
2315 	p->plug = NULL;
2316 #endif
2317 	futex_init_task(p);
2318 
2319 	/*
2320 	 * sigaltstack should be cleared when sharing the same VM
2321 	 */
2322 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2323 		sas_ss_reset(p);
2324 
2325 	/*
2326 	 * Syscall tracing and stepping should be turned off in the
2327 	 * child regardless of CLONE_PTRACE.
2328 	 */
2329 	user_disable_single_step(p);
2330 	clear_task_syscall_work(p, SYSCALL_TRACE);
2331 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2332 	clear_task_syscall_work(p, SYSCALL_EMU);
2333 #endif
2334 	clear_tsk_latency_tracing(p);
2335 
2336 	/* ok, now we should be set up.. */
2337 	p->pid = pid_nr(pid);
2338 	if (clone_flags & CLONE_THREAD) {
2339 		p->group_leader = current->group_leader;
2340 		p->tgid = current->tgid;
2341 	} else {
2342 		p->group_leader = p;
2343 		p->tgid = p->pid;
2344 	}
2345 
2346 	p->nr_dirtied = 0;
2347 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2348 	p->dirty_paused_when = 0;
2349 
2350 	p->pdeath_signal = 0;
2351 	INIT_LIST_HEAD(&p->thread_group);
2352 	p->task_works = NULL;
2353 	clear_posix_cputimers_work(p);
2354 
2355 #ifdef CONFIG_KRETPROBES
2356 	p->kretprobe_instances.first = NULL;
2357 #endif
2358 #ifdef CONFIG_RETHOOK
2359 	p->rethooks.first = NULL;
2360 #endif
2361 
2362 	/*
2363 	 * Ensure that the cgroup subsystem policies allow the new process to be
2364 	 * forked. It should be noted that the new process's css_set can be changed
2365 	 * between here and cgroup_post_fork() if an organisation operation is in
2366 	 * progress.
2367 	 */
2368 	retval = cgroup_can_fork(p, args);
2369 	if (retval)
2370 		goto bad_fork_put_pidfd;
2371 
2372 	/*
2373 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2374 	 * the new task on the correct runqueue. All this *before* the task
2375 	 * becomes visible.
2376 	 *
2377 	 * This isn't part of ->can_fork() because while the re-cloning is
2378 	 * cgroup specific, it unconditionally needs to place the task on a
2379 	 * runqueue.
2380 	 */
2381 	sched_cgroup_fork(p, args);
2382 
2383 	/*
2384 	 * From this point on we must avoid any synchronous user-space
2385 	 * communication until we take the tasklist-lock. In particular, we do
2386 	 * not want user-space to be able to predict the process start-time by
2387 	 * stalling fork(2) after we recorded the start_time but before it is
2388 	 * visible to the system.
2389 	 */
2390 
2391 	p->start_time = ktime_get_ns();
2392 	p->start_boottime = ktime_get_boottime_ns();
2393 
2394 	/*
2395 	 * Make it visible to the rest of the system, but dont wake it up yet.
2396 	 * Need tasklist lock for parent etc handling!
2397 	 */
2398 	write_lock_irq(&tasklist_lock);
2399 
2400 	/* CLONE_PARENT re-uses the old parent */
2401 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2402 		p->real_parent = current->real_parent;
2403 		p->parent_exec_id = current->parent_exec_id;
2404 		if (clone_flags & CLONE_THREAD)
2405 			p->exit_signal = -1;
2406 		else
2407 			p->exit_signal = current->group_leader->exit_signal;
2408 	} else {
2409 		p->real_parent = current;
2410 		p->parent_exec_id = current->self_exec_id;
2411 		p->exit_signal = args->exit_signal;
2412 	}
2413 
2414 	klp_copy_process(p);
2415 
2416 	sched_core_fork(p);
2417 
2418 	spin_lock(&current->sighand->siglock);
2419 
2420 	rv_task_fork(p);
2421 
2422 	rseq_fork(p, clone_flags);
2423 
2424 	/* Don't start children in a dying pid namespace */
2425 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2426 		retval = -ENOMEM;
2427 		goto bad_fork_cancel_cgroup;
2428 	}
2429 
2430 	/* Let kill terminate clone/fork in the middle */
2431 	if (fatal_signal_pending(current)) {
2432 		retval = -EINTR;
2433 		goto bad_fork_cancel_cgroup;
2434 	}
2435 
2436 	/* No more failure paths after this point. */
2437 
2438 	/*
2439 	 * Copy seccomp details explicitly here, in case they were changed
2440 	 * before holding sighand lock.
2441 	 */
2442 	copy_seccomp(p);
2443 
2444 	init_task_pid_links(p);
2445 	if (likely(p->pid)) {
2446 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2447 
2448 		init_task_pid(p, PIDTYPE_PID, pid);
2449 		if (thread_group_leader(p)) {
2450 			init_task_pid(p, PIDTYPE_TGID, pid);
2451 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2452 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2453 
2454 			if (is_child_reaper(pid)) {
2455 				ns_of_pid(pid)->child_reaper = p;
2456 				p->signal->flags |= SIGNAL_UNKILLABLE;
2457 			}
2458 			p->signal->shared_pending.signal = delayed.signal;
2459 			p->signal->tty = tty_kref_get(current->signal->tty);
2460 			/*
2461 			 * Inherit has_child_subreaper flag under the same
2462 			 * tasklist_lock with adding child to the process tree
2463 			 * for propagate_has_child_subreaper optimization.
2464 			 */
2465 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2466 							 p->real_parent->signal->is_child_subreaper;
2467 			list_add_tail(&p->sibling, &p->real_parent->children);
2468 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2469 			attach_pid(p, PIDTYPE_TGID);
2470 			attach_pid(p, PIDTYPE_PGID);
2471 			attach_pid(p, PIDTYPE_SID);
2472 			__this_cpu_inc(process_counts);
2473 		} else {
2474 			current->signal->nr_threads++;
2475 			current->signal->quick_threads++;
2476 			atomic_inc(&current->signal->live);
2477 			refcount_inc(&current->signal->sigcnt);
2478 			task_join_group_stop(p);
2479 			list_add_tail_rcu(&p->thread_group,
2480 					  &p->group_leader->thread_group);
2481 			list_add_tail_rcu(&p->thread_node,
2482 					  &p->signal->thread_head);
2483 		}
2484 		attach_pid(p, PIDTYPE_PID);
2485 		nr_threads++;
2486 	}
2487 	total_forks++;
2488 	hlist_del_init(&delayed.node);
2489 	spin_unlock(&current->sighand->siglock);
2490 	syscall_tracepoint_update(p);
2491 	write_unlock_irq(&tasklist_lock);
2492 
2493 	if (pidfile)
2494 		fd_install(pidfd, pidfile);
2495 
2496 	proc_fork_connector(p);
2497 	sched_post_fork(p);
2498 	cgroup_post_fork(p, args);
2499 	perf_event_fork(p);
2500 
2501 	trace_task_newtask(p, clone_flags);
2502 	uprobe_copy_process(p, clone_flags);
2503 
2504 	copy_oom_score_adj(clone_flags, p);
2505 
2506 	return p;
2507 
2508 bad_fork_cancel_cgroup:
2509 	sched_core_free(p);
2510 	spin_unlock(&current->sighand->siglock);
2511 	write_unlock_irq(&tasklist_lock);
2512 	cgroup_cancel_fork(p, args);
2513 bad_fork_put_pidfd:
2514 	if (clone_flags & CLONE_PIDFD) {
2515 		fput(pidfile);
2516 		put_unused_fd(pidfd);
2517 	}
2518 bad_fork_free_pid:
2519 	if (pid != &init_struct_pid)
2520 		free_pid(pid);
2521 bad_fork_cleanup_thread:
2522 	exit_thread(p);
2523 bad_fork_cleanup_io:
2524 	if (p->io_context)
2525 		exit_io_context(p);
2526 bad_fork_cleanup_namespaces:
2527 	exit_task_namespaces(p);
2528 bad_fork_cleanup_mm:
2529 	if (p->mm) {
2530 		mm_clear_owner(p->mm, p);
2531 		mmput(p->mm);
2532 	}
2533 bad_fork_cleanup_signal:
2534 	if (!(clone_flags & CLONE_THREAD))
2535 		free_signal_struct(p->signal);
2536 bad_fork_cleanup_sighand:
2537 	__cleanup_sighand(p->sighand);
2538 bad_fork_cleanup_fs:
2539 	exit_fs(p); /* blocking */
2540 bad_fork_cleanup_files:
2541 	exit_files(p); /* blocking */
2542 bad_fork_cleanup_semundo:
2543 	exit_sem(p);
2544 bad_fork_cleanup_security:
2545 	security_task_free(p);
2546 bad_fork_cleanup_audit:
2547 	audit_free(p);
2548 bad_fork_cleanup_perf:
2549 	perf_event_free_task(p);
2550 bad_fork_cleanup_policy:
2551 	lockdep_free_task(p);
2552 #ifdef CONFIG_NUMA
2553 	mpol_put(p->mempolicy);
2554 #endif
2555 bad_fork_cleanup_delayacct:
2556 	delayacct_tsk_free(p);
2557 bad_fork_cleanup_count:
2558 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2559 	exit_creds(p);
2560 bad_fork_free:
2561 	WRITE_ONCE(p->__state, TASK_DEAD);
2562 	exit_task_stack_account(p);
2563 	put_task_stack(p);
2564 	delayed_free_task(p);
2565 fork_out:
2566 	spin_lock_irq(&current->sighand->siglock);
2567 	hlist_del_init(&delayed.node);
2568 	spin_unlock_irq(&current->sighand->siglock);
2569 	return ERR_PTR(retval);
2570 }
2571 
2572 static inline void init_idle_pids(struct task_struct *idle)
2573 {
2574 	enum pid_type type;
2575 
2576 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2577 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2578 		init_task_pid(idle, type, &init_struct_pid);
2579 	}
2580 }
2581 
2582 static int idle_dummy(void *dummy)
2583 {
2584 	/* This function is never called */
2585 	return 0;
2586 }
2587 
2588 struct task_struct * __init fork_idle(int cpu)
2589 {
2590 	struct task_struct *task;
2591 	struct kernel_clone_args args = {
2592 		.flags		= CLONE_VM,
2593 		.fn		= &idle_dummy,
2594 		.fn_arg		= NULL,
2595 		.kthread	= 1,
2596 		.idle		= 1,
2597 	};
2598 
2599 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2600 	if (!IS_ERR(task)) {
2601 		init_idle_pids(task);
2602 		init_idle(task, cpu);
2603 	}
2604 
2605 	return task;
2606 }
2607 
2608 /*
2609  * This is like kernel_clone(), but shaved down and tailored to just
2610  * creating io_uring workers. It returns a created task, or an error pointer.
2611  * The returned task is inactive, and the caller must fire it up through
2612  * wake_up_new_task(p). All signals are blocked in the created task.
2613  */
2614 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2615 {
2616 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2617 				CLONE_IO;
2618 	struct kernel_clone_args args = {
2619 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2620 				    CLONE_UNTRACED) & ~CSIGNAL),
2621 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2622 		.fn		= fn,
2623 		.fn_arg		= arg,
2624 		.io_thread	= 1,
2625 	};
2626 
2627 	return copy_process(NULL, 0, node, &args);
2628 }
2629 
2630 /*
2631  *  Ok, this is the main fork-routine.
2632  *
2633  * It copies the process, and if successful kick-starts
2634  * it and waits for it to finish using the VM if required.
2635  *
2636  * args->exit_signal is expected to be checked for sanity by the caller.
2637  */
2638 pid_t kernel_clone(struct kernel_clone_args *args)
2639 {
2640 	u64 clone_flags = args->flags;
2641 	struct completion vfork;
2642 	struct pid *pid;
2643 	struct task_struct *p;
2644 	int trace = 0;
2645 	pid_t nr;
2646 
2647 	/*
2648 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2649 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2650 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2651 	 * field in struct clone_args and it still doesn't make sense to have
2652 	 * them both point at the same memory location. Performing this check
2653 	 * here has the advantage that we don't need to have a separate helper
2654 	 * to check for legacy clone().
2655 	 */
2656 	if ((args->flags & CLONE_PIDFD) &&
2657 	    (args->flags & CLONE_PARENT_SETTID) &&
2658 	    (args->pidfd == args->parent_tid))
2659 		return -EINVAL;
2660 
2661 	/*
2662 	 * Determine whether and which event to report to ptracer.  When
2663 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2664 	 * requested, no event is reported; otherwise, report if the event
2665 	 * for the type of forking is enabled.
2666 	 */
2667 	if (!(clone_flags & CLONE_UNTRACED)) {
2668 		if (clone_flags & CLONE_VFORK)
2669 			trace = PTRACE_EVENT_VFORK;
2670 		else if (args->exit_signal != SIGCHLD)
2671 			trace = PTRACE_EVENT_CLONE;
2672 		else
2673 			trace = PTRACE_EVENT_FORK;
2674 
2675 		if (likely(!ptrace_event_enabled(current, trace)))
2676 			trace = 0;
2677 	}
2678 
2679 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2680 	add_latent_entropy();
2681 
2682 	if (IS_ERR(p))
2683 		return PTR_ERR(p);
2684 
2685 	/*
2686 	 * Do this prior waking up the new thread - the thread pointer
2687 	 * might get invalid after that point, if the thread exits quickly.
2688 	 */
2689 	trace_sched_process_fork(current, p);
2690 
2691 	pid = get_task_pid(p, PIDTYPE_PID);
2692 	nr = pid_vnr(pid);
2693 
2694 	if (clone_flags & CLONE_PARENT_SETTID)
2695 		put_user(nr, args->parent_tid);
2696 
2697 	if (clone_flags & CLONE_VFORK) {
2698 		p->vfork_done = &vfork;
2699 		init_completion(&vfork);
2700 		get_task_struct(p);
2701 	}
2702 
2703 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2704 		/* lock the task to synchronize with memcg migration */
2705 		task_lock(p);
2706 		lru_gen_add_mm(p->mm);
2707 		task_unlock(p);
2708 	}
2709 
2710 	wake_up_new_task(p);
2711 
2712 	/* forking complete and child started to run, tell ptracer */
2713 	if (unlikely(trace))
2714 		ptrace_event_pid(trace, pid);
2715 
2716 	if (clone_flags & CLONE_VFORK) {
2717 		if (!wait_for_vfork_done(p, &vfork))
2718 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2719 	}
2720 
2721 	put_pid(pid);
2722 	return nr;
2723 }
2724 
2725 /*
2726  * Create a kernel thread.
2727  */
2728 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2729 {
2730 	struct kernel_clone_args args = {
2731 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2732 				    CLONE_UNTRACED) & ~CSIGNAL),
2733 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2734 		.fn		= fn,
2735 		.fn_arg		= arg,
2736 		.kthread	= 1,
2737 	};
2738 
2739 	return kernel_clone(&args);
2740 }
2741 
2742 /*
2743  * Create a user mode thread.
2744  */
2745 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2746 {
2747 	struct kernel_clone_args args = {
2748 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2749 				    CLONE_UNTRACED) & ~CSIGNAL),
2750 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2751 		.fn		= fn,
2752 		.fn_arg		= arg,
2753 	};
2754 
2755 	return kernel_clone(&args);
2756 }
2757 
2758 #ifdef __ARCH_WANT_SYS_FORK
2759 SYSCALL_DEFINE0(fork)
2760 {
2761 #ifdef CONFIG_MMU
2762 	struct kernel_clone_args args = {
2763 		.exit_signal = SIGCHLD,
2764 	};
2765 
2766 	return kernel_clone(&args);
2767 #else
2768 	/* can not support in nommu mode */
2769 	return -EINVAL;
2770 #endif
2771 }
2772 #endif
2773 
2774 #ifdef __ARCH_WANT_SYS_VFORK
2775 SYSCALL_DEFINE0(vfork)
2776 {
2777 	struct kernel_clone_args args = {
2778 		.flags		= CLONE_VFORK | CLONE_VM,
2779 		.exit_signal	= SIGCHLD,
2780 	};
2781 
2782 	return kernel_clone(&args);
2783 }
2784 #endif
2785 
2786 #ifdef __ARCH_WANT_SYS_CLONE
2787 #ifdef CONFIG_CLONE_BACKWARDS
2788 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2789 		 int __user *, parent_tidptr,
2790 		 unsigned long, tls,
2791 		 int __user *, child_tidptr)
2792 #elif defined(CONFIG_CLONE_BACKWARDS2)
2793 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2794 		 int __user *, parent_tidptr,
2795 		 int __user *, child_tidptr,
2796 		 unsigned long, tls)
2797 #elif defined(CONFIG_CLONE_BACKWARDS3)
2798 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2799 		int, stack_size,
2800 		int __user *, parent_tidptr,
2801 		int __user *, child_tidptr,
2802 		unsigned long, tls)
2803 #else
2804 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2805 		 int __user *, parent_tidptr,
2806 		 int __user *, child_tidptr,
2807 		 unsigned long, tls)
2808 #endif
2809 {
2810 	struct kernel_clone_args args = {
2811 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2812 		.pidfd		= parent_tidptr,
2813 		.child_tid	= child_tidptr,
2814 		.parent_tid	= parent_tidptr,
2815 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2816 		.stack		= newsp,
2817 		.tls		= tls,
2818 	};
2819 
2820 	return kernel_clone(&args);
2821 }
2822 #endif
2823 
2824 #ifdef __ARCH_WANT_SYS_CLONE3
2825 
2826 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2827 					      struct clone_args __user *uargs,
2828 					      size_t usize)
2829 {
2830 	int err;
2831 	struct clone_args args;
2832 	pid_t *kset_tid = kargs->set_tid;
2833 
2834 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2835 		     CLONE_ARGS_SIZE_VER0);
2836 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2837 		     CLONE_ARGS_SIZE_VER1);
2838 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2839 		     CLONE_ARGS_SIZE_VER2);
2840 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2841 
2842 	if (unlikely(usize > PAGE_SIZE))
2843 		return -E2BIG;
2844 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2845 		return -EINVAL;
2846 
2847 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2848 	if (err)
2849 		return err;
2850 
2851 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2852 		return -EINVAL;
2853 
2854 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2855 		return -EINVAL;
2856 
2857 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2858 		return -EINVAL;
2859 
2860 	/*
2861 	 * Verify that higher 32bits of exit_signal are unset and that
2862 	 * it is a valid signal
2863 	 */
2864 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2865 		     !valid_signal(args.exit_signal)))
2866 		return -EINVAL;
2867 
2868 	if ((args.flags & CLONE_INTO_CGROUP) &&
2869 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2870 		return -EINVAL;
2871 
2872 	*kargs = (struct kernel_clone_args){
2873 		.flags		= args.flags,
2874 		.pidfd		= u64_to_user_ptr(args.pidfd),
2875 		.child_tid	= u64_to_user_ptr(args.child_tid),
2876 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2877 		.exit_signal	= args.exit_signal,
2878 		.stack		= args.stack,
2879 		.stack_size	= args.stack_size,
2880 		.tls		= args.tls,
2881 		.set_tid_size	= args.set_tid_size,
2882 		.cgroup		= args.cgroup,
2883 	};
2884 
2885 	if (args.set_tid &&
2886 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2887 			(kargs->set_tid_size * sizeof(pid_t))))
2888 		return -EFAULT;
2889 
2890 	kargs->set_tid = kset_tid;
2891 
2892 	return 0;
2893 }
2894 
2895 /**
2896  * clone3_stack_valid - check and prepare stack
2897  * @kargs: kernel clone args
2898  *
2899  * Verify that the stack arguments userspace gave us are sane.
2900  * In addition, set the stack direction for userspace since it's easy for us to
2901  * determine.
2902  */
2903 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2904 {
2905 	if (kargs->stack == 0) {
2906 		if (kargs->stack_size > 0)
2907 			return false;
2908 	} else {
2909 		if (kargs->stack_size == 0)
2910 			return false;
2911 
2912 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2913 			return false;
2914 
2915 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2916 		kargs->stack += kargs->stack_size;
2917 #endif
2918 	}
2919 
2920 	return true;
2921 }
2922 
2923 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2924 {
2925 	/* Verify that no unknown flags are passed along. */
2926 	if (kargs->flags &
2927 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2928 		return false;
2929 
2930 	/*
2931 	 * - make the CLONE_DETACHED bit reusable for clone3
2932 	 * - make the CSIGNAL bits reusable for clone3
2933 	 */
2934 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2935 		return false;
2936 
2937 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2938 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2939 		return false;
2940 
2941 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2942 	    kargs->exit_signal)
2943 		return false;
2944 
2945 	if (!clone3_stack_valid(kargs))
2946 		return false;
2947 
2948 	return true;
2949 }
2950 
2951 /**
2952  * clone3 - create a new process with specific properties
2953  * @uargs: argument structure
2954  * @size:  size of @uargs
2955  *
2956  * clone3() is the extensible successor to clone()/clone2().
2957  * It takes a struct as argument that is versioned by its size.
2958  *
2959  * Return: On success, a positive PID for the child process.
2960  *         On error, a negative errno number.
2961  */
2962 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2963 {
2964 	int err;
2965 
2966 	struct kernel_clone_args kargs;
2967 	pid_t set_tid[MAX_PID_NS_LEVEL];
2968 
2969 	kargs.set_tid = set_tid;
2970 
2971 	err = copy_clone_args_from_user(&kargs, uargs, size);
2972 	if (err)
2973 		return err;
2974 
2975 	if (!clone3_args_valid(&kargs))
2976 		return -EINVAL;
2977 
2978 	return kernel_clone(&kargs);
2979 }
2980 #endif
2981 
2982 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2983 {
2984 	struct task_struct *leader, *parent, *child;
2985 	int res;
2986 
2987 	read_lock(&tasklist_lock);
2988 	leader = top = top->group_leader;
2989 down:
2990 	for_each_thread(leader, parent) {
2991 		list_for_each_entry(child, &parent->children, sibling) {
2992 			res = visitor(child, data);
2993 			if (res) {
2994 				if (res < 0)
2995 					goto out;
2996 				leader = child;
2997 				goto down;
2998 			}
2999 up:
3000 			;
3001 		}
3002 	}
3003 
3004 	if (leader != top) {
3005 		child = leader;
3006 		parent = child->real_parent;
3007 		leader = parent->group_leader;
3008 		goto up;
3009 	}
3010 out:
3011 	read_unlock(&tasklist_lock);
3012 }
3013 
3014 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3015 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3016 #endif
3017 
3018 static void sighand_ctor(void *data)
3019 {
3020 	struct sighand_struct *sighand = data;
3021 
3022 	spin_lock_init(&sighand->siglock);
3023 	init_waitqueue_head(&sighand->signalfd_wqh);
3024 }
3025 
3026 void __init mm_cache_init(void)
3027 {
3028 	unsigned int mm_size;
3029 
3030 	/*
3031 	 * The mm_cpumask is located at the end of mm_struct, and is
3032 	 * dynamically sized based on the maximum CPU number this system
3033 	 * can have, taking hotplug into account (nr_cpu_ids).
3034 	 */
3035 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3036 
3037 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3038 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3039 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3040 			offsetof(struct mm_struct, saved_auxv),
3041 			sizeof_field(struct mm_struct, saved_auxv),
3042 			NULL);
3043 }
3044 
3045 void __init proc_caches_init(void)
3046 {
3047 	sighand_cachep = kmem_cache_create("sighand_cache",
3048 			sizeof(struct sighand_struct), 0,
3049 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3050 			SLAB_ACCOUNT, sighand_ctor);
3051 	signal_cachep = kmem_cache_create("signal_cache",
3052 			sizeof(struct signal_struct), 0,
3053 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3054 			NULL);
3055 	files_cachep = kmem_cache_create("files_cache",
3056 			sizeof(struct files_struct), 0,
3057 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3058 			NULL);
3059 	fs_cachep = kmem_cache_create("fs_cache",
3060 			sizeof(struct fs_struct), 0,
3061 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3062 			NULL);
3063 
3064 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3065 	mmap_init();
3066 	nsproxy_cache_init();
3067 }
3068 
3069 /*
3070  * Check constraints on flags passed to the unshare system call.
3071  */
3072 static int check_unshare_flags(unsigned long unshare_flags)
3073 {
3074 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3075 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3076 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3077 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3078 				CLONE_NEWTIME))
3079 		return -EINVAL;
3080 	/*
3081 	 * Not implemented, but pretend it works if there is nothing
3082 	 * to unshare.  Note that unsharing the address space or the
3083 	 * signal handlers also need to unshare the signal queues (aka
3084 	 * CLONE_THREAD).
3085 	 */
3086 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3087 		if (!thread_group_empty(current))
3088 			return -EINVAL;
3089 	}
3090 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3091 		if (refcount_read(&current->sighand->count) > 1)
3092 			return -EINVAL;
3093 	}
3094 	if (unshare_flags & CLONE_VM) {
3095 		if (!current_is_single_threaded())
3096 			return -EINVAL;
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 /*
3103  * Unshare the filesystem structure if it is being shared
3104  */
3105 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3106 {
3107 	struct fs_struct *fs = current->fs;
3108 
3109 	if (!(unshare_flags & CLONE_FS) || !fs)
3110 		return 0;
3111 
3112 	/* don't need lock here; in the worst case we'll do useless copy */
3113 	if (fs->users == 1)
3114 		return 0;
3115 
3116 	*new_fsp = copy_fs_struct(fs);
3117 	if (!*new_fsp)
3118 		return -ENOMEM;
3119 
3120 	return 0;
3121 }
3122 
3123 /*
3124  * Unshare file descriptor table if it is being shared
3125  */
3126 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3127 	       struct files_struct **new_fdp)
3128 {
3129 	struct files_struct *fd = current->files;
3130 	int error = 0;
3131 
3132 	if ((unshare_flags & CLONE_FILES) &&
3133 	    (fd && atomic_read(&fd->count) > 1)) {
3134 		*new_fdp = dup_fd(fd, max_fds, &error);
3135 		if (!*new_fdp)
3136 			return error;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * unshare allows a process to 'unshare' part of the process
3144  * context which was originally shared using clone.  copy_*
3145  * functions used by kernel_clone() cannot be used here directly
3146  * because they modify an inactive task_struct that is being
3147  * constructed. Here we are modifying the current, active,
3148  * task_struct.
3149  */
3150 int ksys_unshare(unsigned long unshare_flags)
3151 {
3152 	struct fs_struct *fs, *new_fs = NULL;
3153 	struct files_struct *new_fd = NULL;
3154 	struct cred *new_cred = NULL;
3155 	struct nsproxy *new_nsproxy = NULL;
3156 	int do_sysvsem = 0;
3157 	int err;
3158 
3159 	/*
3160 	 * If unsharing a user namespace must also unshare the thread group
3161 	 * and unshare the filesystem root and working directories.
3162 	 */
3163 	if (unshare_flags & CLONE_NEWUSER)
3164 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3165 	/*
3166 	 * If unsharing vm, must also unshare signal handlers.
3167 	 */
3168 	if (unshare_flags & CLONE_VM)
3169 		unshare_flags |= CLONE_SIGHAND;
3170 	/*
3171 	 * If unsharing a signal handlers, must also unshare the signal queues.
3172 	 */
3173 	if (unshare_flags & CLONE_SIGHAND)
3174 		unshare_flags |= CLONE_THREAD;
3175 	/*
3176 	 * If unsharing namespace, must also unshare filesystem information.
3177 	 */
3178 	if (unshare_flags & CLONE_NEWNS)
3179 		unshare_flags |= CLONE_FS;
3180 
3181 	err = check_unshare_flags(unshare_flags);
3182 	if (err)
3183 		goto bad_unshare_out;
3184 	/*
3185 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3186 	 * to a new ipc namespace, the semaphore arrays from the old
3187 	 * namespace are unreachable.
3188 	 */
3189 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3190 		do_sysvsem = 1;
3191 	err = unshare_fs(unshare_flags, &new_fs);
3192 	if (err)
3193 		goto bad_unshare_out;
3194 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3195 	if (err)
3196 		goto bad_unshare_cleanup_fs;
3197 	err = unshare_userns(unshare_flags, &new_cred);
3198 	if (err)
3199 		goto bad_unshare_cleanup_fd;
3200 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3201 					 new_cred, new_fs);
3202 	if (err)
3203 		goto bad_unshare_cleanup_cred;
3204 
3205 	if (new_cred) {
3206 		err = set_cred_ucounts(new_cred);
3207 		if (err)
3208 			goto bad_unshare_cleanup_cred;
3209 	}
3210 
3211 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3212 		if (do_sysvsem) {
3213 			/*
3214 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3215 			 */
3216 			exit_sem(current);
3217 		}
3218 		if (unshare_flags & CLONE_NEWIPC) {
3219 			/* Orphan segments in old ns (see sem above). */
3220 			exit_shm(current);
3221 			shm_init_task(current);
3222 		}
3223 
3224 		if (new_nsproxy)
3225 			switch_task_namespaces(current, new_nsproxy);
3226 
3227 		task_lock(current);
3228 
3229 		if (new_fs) {
3230 			fs = current->fs;
3231 			spin_lock(&fs->lock);
3232 			current->fs = new_fs;
3233 			if (--fs->users)
3234 				new_fs = NULL;
3235 			else
3236 				new_fs = fs;
3237 			spin_unlock(&fs->lock);
3238 		}
3239 
3240 		if (new_fd)
3241 			swap(current->files, new_fd);
3242 
3243 		task_unlock(current);
3244 
3245 		if (new_cred) {
3246 			/* Install the new user namespace */
3247 			commit_creds(new_cred);
3248 			new_cred = NULL;
3249 		}
3250 	}
3251 
3252 	perf_event_namespaces(current);
3253 
3254 bad_unshare_cleanup_cred:
3255 	if (new_cred)
3256 		put_cred(new_cred);
3257 bad_unshare_cleanup_fd:
3258 	if (new_fd)
3259 		put_files_struct(new_fd);
3260 
3261 bad_unshare_cleanup_fs:
3262 	if (new_fs)
3263 		free_fs_struct(new_fs);
3264 
3265 bad_unshare_out:
3266 	return err;
3267 }
3268 
3269 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3270 {
3271 	return ksys_unshare(unshare_flags);
3272 }
3273 
3274 /*
3275  *	Helper to unshare the files of the current task.
3276  *	We don't want to expose copy_files internals to
3277  *	the exec layer of the kernel.
3278  */
3279 
3280 int unshare_files(void)
3281 {
3282 	struct task_struct *task = current;
3283 	struct files_struct *old, *copy = NULL;
3284 	int error;
3285 
3286 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3287 	if (error || !copy)
3288 		return error;
3289 
3290 	old = task->files;
3291 	task_lock(task);
3292 	task->files = copy;
3293 	task_unlock(task);
3294 	put_files_struct(old);
3295 	return 0;
3296 }
3297 
3298 int sysctl_max_threads(struct ctl_table *table, int write,
3299 		       void *buffer, size_t *lenp, loff_t *ppos)
3300 {
3301 	struct ctl_table t;
3302 	int ret;
3303 	int threads = max_threads;
3304 	int min = 1;
3305 	int max = MAX_THREADS;
3306 
3307 	t = *table;
3308 	t.data = &threads;
3309 	t.extra1 = &min;
3310 	t.extra2 = &max;
3311 
3312 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3313 	if (ret || !write)
3314 		return ret;
3315 
3316 	max_threads = threads;
3317 
3318 	return 0;
3319 }
3320