1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/kstack_erase.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 #include <linux/unwind_deferred.h> 109 #include <linux/pgalloc.h> 110 #include <linux/uaccess.h> 111 112 #include <asm/mmu_context.h> 113 #include <asm/cacheflush.h> 114 #include <asm/tlbflush.h> 115 116 /* For dup_mmap(). */ 117 #include "../mm/internal.h" 118 119 #include <trace/events/sched.h> 120 121 #define CREATE_TRACE_POINTS 122 #include <trace/events/task.h> 123 124 #include <kunit/visibility.h> 125 126 /* 127 * Minimum number of threads to boot the kernel 128 */ 129 #define MIN_THREADS 20 130 131 /* 132 * Maximum number of threads 133 */ 134 #define MAX_THREADS FUTEX_TID_MASK 135 136 /* 137 * Protected counters by write_lock_irq(&tasklist_lock) 138 */ 139 unsigned long total_forks; /* Handle normal Linux uptimes. */ 140 int nr_threads; /* The idle threads do not count.. */ 141 142 static int max_threads; /* tunable limit on nr_threads */ 143 144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 145 146 static const char * const resident_page_types[] = { 147 NAMED_ARRAY_INDEX(MM_FILEPAGES), 148 NAMED_ARRAY_INDEX(MM_ANONPAGES), 149 NAMED_ARRAY_INDEX(MM_SWAPENTS), 150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 151 }; 152 153 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 154 155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 156 157 #ifdef CONFIG_PROVE_RCU 158 int lockdep_tasklist_lock_is_held(void) 159 { 160 return lockdep_is_held(&tasklist_lock); 161 } 162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 163 #endif /* #ifdef CONFIG_PROVE_RCU */ 164 165 int nr_processes(void) 166 { 167 int cpu; 168 int total = 0; 169 170 for_each_possible_cpu(cpu) 171 total += per_cpu(process_counts, cpu); 172 173 return total; 174 } 175 176 void __weak arch_release_task_struct(struct task_struct *tsk) 177 { 178 } 179 180 static struct kmem_cache *task_struct_cachep; 181 182 static inline struct task_struct *alloc_task_struct_node(int node) 183 { 184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 185 } 186 187 static inline void free_task_struct(struct task_struct *tsk) 188 { 189 kmem_cache_free(task_struct_cachep, tsk); 190 } 191 192 #ifdef CONFIG_VMAP_STACK 193 /* 194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 195 * flush. Try to minimize the number of calls by caching stacks. 196 */ 197 #define NR_CACHED_STACKS 2 198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 199 /* 200 * Allocated stacks are cached and later reused by new threads, so memcg 201 * accounting is performed by the code assigning/releasing stacks to tasks. 202 * We need a zeroed memory without __GFP_ACCOUNT. 203 */ 204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO) 205 206 struct vm_stack { 207 struct rcu_head rcu; 208 struct vm_struct *stack_vm_area; 209 }; 210 211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area) 212 { 213 unsigned int i; 214 215 for (i = 0; i < NR_CACHED_STACKS; i++) { 216 struct vm_struct *tmp = NULL; 217 218 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area)) 219 return true; 220 } 221 return false; 222 } 223 224 static void thread_stack_free_rcu(struct rcu_head *rh) 225 { 226 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 227 struct vm_struct *vm_area = vm_stack->stack_vm_area; 228 229 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 230 return; 231 232 vfree(vm_area->addr); 233 } 234 235 static void thread_stack_delayed_free(struct task_struct *tsk) 236 { 237 struct vm_stack *vm_stack = tsk->stack; 238 239 vm_stack->stack_vm_area = tsk->stack_vm_area; 240 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 241 } 242 243 static int free_vm_stack_cache(unsigned int cpu) 244 { 245 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu); 246 int i; 247 248 for (i = 0; i < NR_CACHED_STACKS; i++) { 249 struct vm_struct *vm_area = cached_vm_stack_areas[i]; 250 251 if (!vm_area) 252 continue; 253 254 vfree(vm_area->addr); 255 cached_vm_stack_areas[i] = NULL; 256 } 257 258 return 0; 259 } 260 261 static int memcg_charge_kernel_stack(struct vm_struct *vm_area) 262 { 263 int i; 264 int ret; 265 int nr_charged = 0; 266 267 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE); 268 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 270 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0); 271 if (ret) 272 goto err; 273 nr_charged++; 274 } 275 return 0; 276 err: 277 for (i = 0; i < nr_charged; i++) 278 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 279 return ret; 280 } 281 282 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 283 { 284 struct vm_struct *vm_area; 285 void *stack; 286 int i; 287 288 for (i = 0; i < NR_CACHED_STACKS; i++) { 289 vm_area = this_cpu_xchg(cached_stacks[i], NULL); 290 if (!vm_area) 291 continue; 292 293 if (memcg_charge_kernel_stack(vm_area)) { 294 vfree(vm_area->addr); 295 return -ENOMEM; 296 } 297 298 /* Reset stack metadata. */ 299 kasan_unpoison_range(vm_area->addr, THREAD_SIZE); 300 301 stack = kasan_reset_tag(vm_area->addr); 302 303 /* Clear stale pointers from reused stack. */ 304 memset(stack, 0, THREAD_SIZE); 305 306 tsk->stack_vm_area = vm_area; 307 tsk->stack = stack; 308 return 0; 309 } 310 311 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 312 GFP_VMAP_STACK, 313 node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm_area = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm_area)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm_area; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 #else /* !CONFIG_VMAP_STACK */ 343 344 /* 345 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 346 * kmemcache based allocator. 347 */ 348 #if THREAD_SIZE >= PAGE_SIZE 349 350 static void thread_stack_free_rcu(struct rcu_head *rh) 351 { 352 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 353 } 354 355 static void thread_stack_delayed_free(struct task_struct *tsk) 356 { 357 struct rcu_head *rh = tsk->stack; 358 359 call_rcu(rh, thread_stack_free_rcu); 360 } 361 362 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 363 { 364 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 365 THREAD_SIZE_ORDER); 366 367 if (likely(page)) { 368 tsk->stack = kasan_reset_tag(page_address(page)); 369 return 0; 370 } 371 return -ENOMEM; 372 } 373 374 static void free_thread_stack(struct task_struct *tsk) 375 { 376 thread_stack_delayed_free(tsk); 377 tsk->stack = NULL; 378 } 379 380 #else /* !(THREAD_SIZE >= PAGE_SIZE) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 #endif /* THREAD_SIZE >= PAGE_SIZE */ 420 #endif /* CONFIG_VMAP_STACK */ 421 422 /* SLAB cache for signal_struct structures (tsk->signal) */ 423 static struct kmem_cache *signal_cachep; 424 425 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 426 struct kmem_cache *sighand_cachep; 427 428 /* SLAB cache for files_struct structures (tsk->files) */ 429 struct kmem_cache *files_cachep; 430 431 /* SLAB cache for fs_struct structures (tsk->fs) */ 432 struct kmem_cache *fs_cachep; 433 434 /* SLAB cache for mm_struct structures (tsk->mm) */ 435 static struct kmem_cache *mm_cachep; 436 437 static void account_kernel_stack(struct task_struct *tsk, int account) 438 { 439 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 440 struct vm_struct *vm_area = task_stack_vm_area(tsk); 441 int i; 442 443 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 444 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB, 445 account * (PAGE_SIZE / 1024)); 446 } else { 447 void *stack = task_stack_page(tsk); 448 449 /* All stack pages are in the same node. */ 450 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 451 account * (THREAD_SIZE / 1024)); 452 } 453 } 454 455 void exit_task_stack_account(struct task_struct *tsk) 456 { 457 account_kernel_stack(tsk, -1); 458 459 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 460 struct vm_struct *vm_area; 461 int i; 462 463 vm_area = task_stack_vm_area(tsk); 464 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 465 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 466 } 467 } 468 469 static void release_task_stack(struct task_struct *tsk) 470 { 471 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 472 return; /* Better to leak the stack than to free prematurely */ 473 474 free_thread_stack(tsk); 475 } 476 477 #ifdef CONFIG_THREAD_INFO_IN_TASK 478 void put_task_stack(struct task_struct *tsk) 479 { 480 if (refcount_dec_and_test(&tsk->stack_refcount)) 481 release_task_stack(tsk); 482 } 483 #endif 484 485 void free_task(struct task_struct *tsk) 486 { 487 #ifdef CONFIG_SECCOMP 488 WARN_ON_ONCE(tsk->seccomp.filter); 489 #endif 490 release_user_cpus_ptr(tsk); 491 scs_release(tsk); 492 493 #ifndef CONFIG_THREAD_INFO_IN_TASK 494 /* 495 * The task is finally done with both the stack and thread_info, 496 * so free both. 497 */ 498 release_task_stack(tsk); 499 #else 500 /* 501 * If the task had a separate stack allocation, it should be gone 502 * by now. 503 */ 504 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 505 #endif 506 rt_mutex_debug_task_free(tsk); 507 ftrace_graph_exit_task(tsk); 508 arch_release_task_struct(tsk); 509 if (tsk->flags & PF_KTHREAD) 510 free_kthread_struct(tsk); 511 bpf_task_storage_free(tsk); 512 free_task_struct(tsk); 513 } 514 EXPORT_SYMBOL(free_task); 515 516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 517 { 518 struct file *exe_file; 519 520 exe_file = get_mm_exe_file(oldmm); 521 RCU_INIT_POINTER(mm->exe_file, exe_file); 522 /* 523 * We depend on the oldmm having properly denied write access to the 524 * exe_file already. 525 */ 526 if (exe_file && exe_file_deny_write_access(exe_file)) 527 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 528 } 529 530 #ifdef CONFIG_MMU 531 static inline int mm_alloc_pgd(struct mm_struct *mm) 532 { 533 mm->pgd = pgd_alloc(mm); 534 if (unlikely(!mm->pgd)) 535 return -ENOMEM; 536 return 0; 537 } 538 539 static inline void mm_free_pgd(struct mm_struct *mm) 540 { 541 pgd_free(mm, mm->pgd); 542 } 543 #else 544 #define mm_alloc_pgd(mm) (0) 545 #define mm_free_pgd(mm) 546 #endif /* CONFIG_MMU */ 547 548 #ifdef CONFIG_MM_ID 549 static DEFINE_IDA(mm_ida); 550 551 static inline int mm_alloc_id(struct mm_struct *mm) 552 { 553 int ret; 554 555 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 556 if (ret < 0) 557 return ret; 558 mm->mm_id = ret; 559 return 0; 560 } 561 562 static inline void mm_free_id(struct mm_struct *mm) 563 { 564 const mm_id_t id = mm->mm_id; 565 566 mm->mm_id = MM_ID_DUMMY; 567 if (id == MM_ID_DUMMY) 568 return; 569 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 570 return; 571 ida_free(&mm_ida, id); 572 } 573 #else /* !CONFIG_MM_ID */ 574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 575 static inline void mm_free_id(struct mm_struct *mm) {} 576 #endif /* CONFIG_MM_ID */ 577 578 static void check_mm(struct mm_struct *mm) 579 { 580 int i; 581 582 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 583 "Please make sure 'struct resident_page_types[]' is updated as well"); 584 585 for (i = 0; i < NR_MM_COUNTERS; i++) { 586 long x = percpu_counter_sum(&mm->rss_stat[i]); 587 588 if (unlikely(x)) { 589 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n", 590 mm, resident_page_types[i], x, 591 current->comm, 592 task_pid_nr(current)); 593 } 594 } 595 596 if (mm_pgtables_bytes(mm)) 597 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 598 mm_pgtables_bytes(mm)); 599 600 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 601 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 602 #endif 603 } 604 605 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 606 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 607 608 static void do_check_lazy_tlb(void *arg) 609 { 610 struct mm_struct *mm = arg; 611 612 WARN_ON_ONCE(current->active_mm == mm); 613 } 614 615 static void do_shoot_lazy_tlb(void *arg) 616 { 617 struct mm_struct *mm = arg; 618 619 if (current->active_mm == mm) { 620 WARN_ON_ONCE(current->mm); 621 current->active_mm = &init_mm; 622 switch_mm(mm, &init_mm, current); 623 } 624 } 625 626 static void cleanup_lazy_tlbs(struct mm_struct *mm) 627 { 628 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 629 /* 630 * In this case, lazy tlb mms are refounted and would not reach 631 * __mmdrop until all CPUs have switched away and mmdrop()ed. 632 */ 633 return; 634 } 635 636 /* 637 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 638 * requires lazy mm users to switch to another mm when the refcount 639 * drops to zero, before the mm is freed. This requires IPIs here to 640 * switch kernel threads to init_mm. 641 * 642 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 643 * switch with the final userspace teardown TLB flush which leaves the 644 * mm lazy on this CPU but no others, reducing the need for additional 645 * IPIs here. There are cases where a final IPI is still required here, 646 * such as the final mmdrop being performed on a different CPU than the 647 * one exiting, or kernel threads using the mm when userspace exits. 648 * 649 * IPI overheads have not found to be expensive, but they could be 650 * reduced in a number of possible ways, for example (roughly 651 * increasing order of complexity): 652 * - The last lazy reference created by exit_mm() could instead switch 653 * to init_mm, however it's probable this will run on the same CPU 654 * immediately afterwards, so this may not reduce IPIs much. 655 * - A batch of mms requiring IPIs could be gathered and freed at once. 656 * - CPUs store active_mm where it can be remotely checked without a 657 * lock, to filter out false-positives in the cpumask. 658 * - After mm_users or mm_count reaches zero, switching away from the 659 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 660 * with some batching or delaying of the final IPIs. 661 * - A delayed freeing and RCU-like quiescing sequence based on mm 662 * switching to avoid IPIs completely. 663 */ 664 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 665 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 666 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 667 } 668 669 /* 670 * Called when the last reference to the mm 671 * is dropped: either by a lazy thread or by 672 * mmput. Free the page directory and the mm. 673 */ 674 void __mmdrop(struct mm_struct *mm) 675 { 676 BUG_ON(mm == &init_mm); 677 WARN_ON_ONCE(mm == current->mm); 678 679 /* Ensure no CPUs are using this as their lazy tlb mm */ 680 cleanup_lazy_tlbs(mm); 681 682 WARN_ON_ONCE(mm == current->active_mm); 683 mm_free_pgd(mm); 684 mm_free_id(mm); 685 destroy_context(mm); 686 mmu_notifier_subscriptions_destroy(mm); 687 check_mm(mm); 688 put_user_ns(mm->user_ns); 689 mm_pasid_drop(mm); 690 mm_destroy_cid(mm); 691 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 692 693 free_mm(mm); 694 } 695 EXPORT_SYMBOL_GPL(__mmdrop); 696 697 static void mmdrop_async_fn(struct work_struct *work) 698 { 699 struct mm_struct *mm; 700 701 mm = container_of(work, struct mm_struct, async_put_work); 702 __mmdrop(mm); 703 } 704 705 static void mmdrop_async(struct mm_struct *mm) 706 { 707 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 708 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 709 schedule_work(&mm->async_put_work); 710 } 711 } 712 713 static inline void free_signal_struct(struct signal_struct *sig) 714 { 715 taskstats_tgid_free(sig); 716 sched_autogroup_exit(sig); 717 /* 718 * __mmdrop is not safe to call from softirq context on x86 due to 719 * pgd_dtor so postpone it to the async context 720 */ 721 if (sig->oom_mm) 722 mmdrop_async(sig->oom_mm); 723 kmem_cache_free(signal_cachep, sig); 724 } 725 726 static inline void put_signal_struct(struct signal_struct *sig) 727 { 728 if (refcount_dec_and_test(&sig->sigcnt)) 729 free_signal_struct(sig); 730 } 731 732 void __put_task_struct(struct task_struct *tsk) 733 { 734 WARN_ON(!tsk->exit_state); 735 WARN_ON(refcount_read(&tsk->usage)); 736 WARN_ON(tsk == current); 737 738 unwind_task_free(tsk); 739 io_uring_free(tsk); 740 cgroup_task_free(tsk); 741 task_numa_free(tsk, true); 742 security_task_free(tsk); 743 exit_creds(tsk); 744 delayacct_tsk_free(tsk); 745 put_signal_struct(tsk->signal); 746 sched_core_free(tsk); 747 free_task(tsk); 748 } 749 EXPORT_SYMBOL_GPL(__put_task_struct); 750 751 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 752 { 753 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 754 755 __put_task_struct(task); 756 } 757 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 758 759 void __init __weak arch_task_cache_init(void) { } 760 761 /* 762 * set_max_threads 763 */ 764 static void __init set_max_threads(unsigned int max_threads_suggested) 765 { 766 u64 threads; 767 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 768 769 /* 770 * The number of threads shall be limited such that the thread 771 * structures may only consume a small part of the available memory. 772 */ 773 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 774 threads = MAX_THREADS; 775 else 776 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 777 (u64) THREAD_SIZE * 8UL); 778 779 if (threads > max_threads_suggested) 780 threads = max_threads_suggested; 781 782 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 783 } 784 785 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 786 /* Initialized by the architecture: */ 787 int arch_task_struct_size __read_mostly; 788 #endif 789 790 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 791 { 792 /* Fetch thread_struct whitelist for the architecture. */ 793 arch_thread_struct_whitelist(offset, size); 794 795 /* 796 * Handle zero-sized whitelist or empty thread_struct, otherwise 797 * adjust offset to position of thread_struct in task_struct. 798 */ 799 if (unlikely(*size == 0)) 800 *offset = 0; 801 else 802 *offset += offsetof(struct task_struct, thread); 803 } 804 805 void __init fork_init(void) 806 { 807 int i; 808 #ifndef ARCH_MIN_TASKALIGN 809 #define ARCH_MIN_TASKALIGN 0 810 #endif 811 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 812 unsigned long useroffset, usersize; 813 814 /* create a slab on which task_structs can be allocated */ 815 task_struct_whitelist(&useroffset, &usersize); 816 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 817 arch_task_struct_size, align, 818 SLAB_PANIC|SLAB_ACCOUNT, 819 useroffset, usersize, NULL); 820 821 /* do the arch specific task caches init */ 822 arch_task_cache_init(); 823 824 set_max_threads(MAX_THREADS); 825 826 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 827 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 828 init_task.signal->rlim[RLIMIT_SIGPENDING] = 829 init_task.signal->rlim[RLIMIT_NPROC]; 830 831 for (i = 0; i < UCOUNT_COUNTS; i++) 832 init_user_ns.ucount_max[i] = max_threads/2; 833 834 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 835 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 836 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 837 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 838 839 #ifdef CONFIG_VMAP_STACK 840 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 841 NULL, free_vm_stack_cache); 842 #endif 843 844 scs_init(); 845 846 lockdep_init_task(&init_task); 847 uprobes_init(); 848 } 849 850 int __weak arch_dup_task_struct(struct task_struct *dst, 851 struct task_struct *src) 852 { 853 *dst = *src; 854 return 0; 855 } 856 857 void set_task_stack_end_magic(struct task_struct *tsk) 858 { 859 unsigned long *stackend; 860 861 stackend = end_of_stack(tsk); 862 *stackend = STACK_END_MAGIC; /* for overflow detection */ 863 } 864 865 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 866 { 867 struct task_struct *tsk; 868 int err; 869 870 if (node == NUMA_NO_NODE) 871 node = tsk_fork_get_node(orig); 872 tsk = alloc_task_struct_node(node); 873 if (!tsk) 874 return NULL; 875 876 err = arch_dup_task_struct(tsk, orig); 877 if (err) 878 goto free_tsk; 879 880 err = alloc_thread_stack_node(tsk, node); 881 if (err) 882 goto free_tsk; 883 884 #ifdef CONFIG_THREAD_INFO_IN_TASK 885 refcount_set(&tsk->stack_refcount, 1); 886 #endif 887 account_kernel_stack(tsk, 1); 888 889 err = scs_prepare(tsk, node); 890 if (err) 891 goto free_stack; 892 893 #ifdef CONFIG_SECCOMP 894 /* 895 * We must handle setting up seccomp filters once we're under 896 * the sighand lock in case orig has changed between now and 897 * then. Until then, filter must be NULL to avoid messing up 898 * the usage counts on the error path calling free_task. 899 */ 900 tsk->seccomp.filter = NULL; 901 #endif 902 903 setup_thread_stack(tsk, orig); 904 clear_user_return_notifier(tsk); 905 clear_tsk_need_resched(tsk); 906 set_task_stack_end_magic(tsk); 907 clear_syscall_work_syscall_user_dispatch(tsk); 908 909 #ifdef CONFIG_STACKPROTECTOR 910 tsk->stack_canary = get_random_canary(); 911 #endif 912 if (orig->cpus_ptr == &orig->cpus_mask) 913 tsk->cpus_ptr = &tsk->cpus_mask; 914 dup_user_cpus_ptr(tsk, orig, node); 915 916 /* 917 * One for the user space visible state that goes away when reaped. 918 * One for the scheduler. 919 */ 920 refcount_set(&tsk->rcu_users, 2); 921 /* One for the rcu users */ 922 refcount_set(&tsk->usage, 1); 923 #ifdef CONFIG_BLK_DEV_IO_TRACE 924 tsk->btrace_seq = 0; 925 #endif 926 tsk->splice_pipe = NULL; 927 tsk->task_frag.page = NULL; 928 tsk->wake_q.next = NULL; 929 tsk->worker_private = NULL; 930 931 kcov_task_init(tsk); 932 kmsan_task_create(tsk); 933 kmap_local_fork(tsk); 934 935 #ifdef CONFIG_FAULT_INJECTION 936 tsk->fail_nth = 0; 937 #endif 938 939 #ifdef CONFIG_BLK_CGROUP 940 tsk->throttle_disk = NULL; 941 tsk->use_memdelay = 0; 942 #endif 943 944 #ifdef CONFIG_ARCH_HAS_CPU_PASID 945 tsk->pasid_activated = 0; 946 #endif 947 948 #ifdef CONFIG_MEMCG 949 tsk->active_memcg = NULL; 950 #endif 951 952 #ifdef CONFIG_X86_BUS_LOCK_DETECT 953 tsk->reported_split_lock = 0; 954 #endif 955 956 #ifdef CONFIG_SCHED_MM_CID 957 tsk->mm_cid.cid = MM_CID_UNSET; 958 tsk->mm_cid.active = 0; 959 #endif 960 return tsk; 961 962 free_stack: 963 exit_task_stack_account(tsk); 964 free_thread_stack(tsk); 965 free_tsk: 966 free_task_struct(tsk); 967 return NULL; 968 } 969 970 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 971 972 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 973 974 static int __init coredump_filter_setup(char *s) 975 { 976 default_dump_filter = 977 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 978 MMF_DUMP_FILTER_MASK; 979 return 1; 980 } 981 982 __setup("coredump_filter=", coredump_filter_setup); 983 984 #include <linux/init_task.h> 985 986 static void mm_init_aio(struct mm_struct *mm) 987 { 988 #ifdef CONFIG_AIO 989 spin_lock_init(&mm->ioctx_lock); 990 mm->ioctx_table = NULL; 991 #endif 992 } 993 994 static __always_inline void mm_clear_owner(struct mm_struct *mm, 995 struct task_struct *p) 996 { 997 #ifdef CONFIG_MEMCG 998 if (mm->owner == p) 999 WRITE_ONCE(mm->owner, NULL); 1000 #endif 1001 } 1002 1003 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1004 { 1005 #ifdef CONFIG_MEMCG 1006 mm->owner = p; 1007 #endif 1008 } 1009 1010 static void mm_init_uprobes_state(struct mm_struct *mm) 1011 { 1012 #ifdef CONFIG_UPROBES 1013 mm->uprobes_state.xol_area = NULL; 1014 arch_uprobe_init_state(mm); 1015 #endif 1016 } 1017 1018 static void mmap_init_lock(struct mm_struct *mm) 1019 { 1020 init_rwsem(&mm->mmap_lock); 1021 mm_lock_seqcount_init(mm); 1022 #ifdef CONFIG_PER_VMA_LOCK 1023 rcuwait_init(&mm->vma_writer_wait); 1024 #endif 1025 } 1026 1027 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1028 struct user_namespace *user_ns) 1029 { 1030 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1031 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1032 atomic_set(&mm->mm_users, 1); 1033 atomic_set(&mm->mm_count, 1); 1034 seqcount_init(&mm->write_protect_seq); 1035 mmap_init_lock(mm); 1036 INIT_LIST_HEAD(&mm->mmlist); 1037 mm_pgtables_bytes_init(mm); 1038 mm->map_count = 0; 1039 mm->locked_vm = 0; 1040 atomic64_set(&mm->pinned_vm, 0); 1041 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1042 spin_lock_init(&mm->page_table_lock); 1043 spin_lock_init(&mm->arg_lock); 1044 mm_init_cpumask(mm); 1045 mm_init_aio(mm); 1046 mm_init_owner(mm, p); 1047 mm_pasid_init(mm); 1048 RCU_INIT_POINTER(mm->exe_file, NULL); 1049 mmu_notifier_subscriptions_init(mm); 1050 init_tlb_flush_pending(mm); 1051 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1052 mm->pmd_huge_pte = NULL; 1053 #endif 1054 mm_init_uprobes_state(mm); 1055 hugetlb_count_init(mm); 1056 1057 mm_flags_clear_all(mm); 1058 if (current->mm) { 1059 unsigned long flags = __mm_flags_get_word(current->mm); 1060 1061 __mm_flags_overwrite_word(mm, mmf_init_legacy_flags(flags)); 1062 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1063 } else { 1064 __mm_flags_overwrite_word(mm, default_dump_filter); 1065 mm->def_flags = 0; 1066 } 1067 1068 if (futex_mm_init(mm)) 1069 goto fail_mm_init; 1070 1071 if (mm_alloc_pgd(mm)) 1072 goto fail_nopgd; 1073 1074 if (mm_alloc_id(mm)) 1075 goto fail_noid; 1076 1077 if (init_new_context(p, mm)) 1078 goto fail_nocontext; 1079 1080 if (mm_alloc_cid(mm, p)) 1081 goto fail_cid; 1082 1083 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1084 NR_MM_COUNTERS)) 1085 goto fail_pcpu; 1086 1087 mm->user_ns = get_user_ns(user_ns); 1088 lru_gen_init_mm(mm); 1089 return mm; 1090 1091 fail_pcpu: 1092 mm_destroy_cid(mm); 1093 fail_cid: 1094 destroy_context(mm); 1095 fail_nocontext: 1096 mm_free_id(mm); 1097 fail_noid: 1098 mm_free_pgd(mm); 1099 fail_nopgd: 1100 futex_hash_free(mm); 1101 fail_mm_init: 1102 free_mm(mm); 1103 return NULL; 1104 } 1105 1106 /* 1107 * Allocate and initialize an mm_struct. 1108 */ 1109 struct mm_struct *mm_alloc(void) 1110 { 1111 struct mm_struct *mm; 1112 1113 mm = allocate_mm(); 1114 if (!mm) 1115 return NULL; 1116 1117 memset(mm, 0, sizeof(*mm)); 1118 return mm_init(mm, current, current_user_ns()); 1119 } 1120 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1121 1122 static inline void __mmput(struct mm_struct *mm) 1123 { 1124 VM_BUG_ON(atomic_read(&mm->mm_users)); 1125 1126 uprobe_clear_state(mm); 1127 exit_aio(mm); 1128 ksm_exit(mm); 1129 khugepaged_exit(mm); /* must run before exit_mmap */ 1130 exit_mmap(mm); 1131 mm_put_huge_zero_folio(mm); 1132 set_mm_exe_file(mm, NULL); 1133 if (!list_empty(&mm->mmlist)) { 1134 spin_lock(&mmlist_lock); 1135 list_del(&mm->mmlist); 1136 spin_unlock(&mmlist_lock); 1137 } 1138 if (mm->binfmt) 1139 module_put(mm->binfmt->module); 1140 lru_gen_del_mm(mm); 1141 futex_hash_free(mm); 1142 mmdrop(mm); 1143 } 1144 1145 /* 1146 * Decrement the use count and release all resources for an mm. 1147 */ 1148 void mmput(struct mm_struct *mm) 1149 { 1150 might_sleep(); 1151 1152 if (atomic_dec_and_test(&mm->mm_users)) 1153 __mmput(mm); 1154 } 1155 EXPORT_SYMBOL_GPL(mmput); 1156 1157 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH) 1158 static void mmput_async_fn(struct work_struct *work) 1159 { 1160 struct mm_struct *mm = container_of(work, struct mm_struct, 1161 async_put_work); 1162 1163 __mmput(mm); 1164 } 1165 1166 void mmput_async(struct mm_struct *mm) 1167 { 1168 if (atomic_dec_and_test(&mm->mm_users)) { 1169 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1170 schedule_work(&mm->async_put_work); 1171 } 1172 } 1173 EXPORT_SYMBOL_GPL(mmput_async); 1174 #endif 1175 1176 /** 1177 * set_mm_exe_file - change a reference to the mm's executable file 1178 * @mm: The mm to change. 1179 * @new_exe_file: The new file to use. 1180 * 1181 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1182 * 1183 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1184 * invocations: in mmput() nobody alive left, in execve it happens before 1185 * the new mm is made visible to anyone. 1186 * 1187 * Can only fail if new_exe_file != NULL. 1188 */ 1189 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1190 { 1191 struct file *old_exe_file; 1192 1193 /* 1194 * It is safe to dereference the exe_file without RCU as 1195 * this function is only called if nobody else can access 1196 * this mm -- see comment above for justification. 1197 */ 1198 old_exe_file = rcu_dereference_raw(mm->exe_file); 1199 1200 if (new_exe_file) { 1201 /* 1202 * We expect the caller (i.e., sys_execve) to already denied 1203 * write access, so this is unlikely to fail. 1204 */ 1205 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1206 return -EACCES; 1207 get_file(new_exe_file); 1208 } 1209 rcu_assign_pointer(mm->exe_file, new_exe_file); 1210 if (old_exe_file) { 1211 exe_file_allow_write_access(old_exe_file); 1212 fput(old_exe_file); 1213 } 1214 return 0; 1215 } 1216 1217 /** 1218 * replace_mm_exe_file - replace a reference to the mm's executable file 1219 * @mm: The mm to change. 1220 * @new_exe_file: The new file to use. 1221 * 1222 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1223 * 1224 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1225 */ 1226 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1227 { 1228 struct vm_area_struct *vma; 1229 struct file *old_exe_file; 1230 int ret = 0; 1231 1232 /* Forbid mm->exe_file change if old file still mapped. */ 1233 old_exe_file = get_mm_exe_file(mm); 1234 if (old_exe_file) { 1235 VMA_ITERATOR(vmi, mm, 0); 1236 mmap_read_lock(mm); 1237 for_each_vma(vmi, vma) { 1238 if (!vma->vm_file) 1239 continue; 1240 if (path_equal(&vma->vm_file->f_path, 1241 &old_exe_file->f_path)) { 1242 ret = -EBUSY; 1243 break; 1244 } 1245 } 1246 mmap_read_unlock(mm); 1247 fput(old_exe_file); 1248 if (ret) 1249 return ret; 1250 } 1251 1252 ret = exe_file_deny_write_access(new_exe_file); 1253 if (ret) 1254 return -EACCES; 1255 get_file(new_exe_file); 1256 1257 /* set the new file */ 1258 mmap_write_lock(mm); 1259 old_exe_file = rcu_dereference_raw(mm->exe_file); 1260 rcu_assign_pointer(mm->exe_file, new_exe_file); 1261 mmap_write_unlock(mm); 1262 1263 if (old_exe_file) { 1264 exe_file_allow_write_access(old_exe_file); 1265 fput(old_exe_file); 1266 } 1267 return 0; 1268 } 1269 1270 /** 1271 * get_mm_exe_file - acquire a reference to the mm's executable file 1272 * @mm: The mm of interest. 1273 * 1274 * Returns %NULL if mm has no associated executable file. 1275 * User must release file via fput(). 1276 */ 1277 struct file *get_mm_exe_file(struct mm_struct *mm) 1278 { 1279 struct file *exe_file; 1280 1281 rcu_read_lock(); 1282 exe_file = get_file_rcu(&mm->exe_file); 1283 rcu_read_unlock(); 1284 return exe_file; 1285 } 1286 1287 /** 1288 * get_task_exe_file - acquire a reference to the task's executable file 1289 * @task: The task. 1290 * 1291 * Returns %NULL if task's mm (if any) has no associated executable file or 1292 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1293 * User must release file via fput(). 1294 */ 1295 struct file *get_task_exe_file(struct task_struct *task) 1296 { 1297 struct file *exe_file = NULL; 1298 struct mm_struct *mm; 1299 1300 if (task->flags & PF_KTHREAD) 1301 return NULL; 1302 1303 task_lock(task); 1304 mm = task->mm; 1305 if (mm) 1306 exe_file = get_mm_exe_file(mm); 1307 task_unlock(task); 1308 return exe_file; 1309 } 1310 1311 /** 1312 * get_task_mm - acquire a reference to the task's mm 1313 * @task: The task. 1314 * 1315 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1316 * this kernel workthread has transiently adopted a user mm with use_mm, 1317 * to do its AIO) is not set and if so returns a reference to it, after 1318 * bumping up the use count. User must release the mm via mmput() 1319 * after use. Typically used by /proc and ptrace. 1320 */ 1321 struct mm_struct *get_task_mm(struct task_struct *task) 1322 { 1323 struct mm_struct *mm; 1324 1325 if (task->flags & PF_KTHREAD) 1326 return NULL; 1327 1328 task_lock(task); 1329 mm = task->mm; 1330 if (mm) 1331 mmget(mm); 1332 task_unlock(task); 1333 return mm; 1334 } 1335 EXPORT_SYMBOL_GPL(get_task_mm); 1336 1337 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) 1338 { 1339 if (mm == current->mm) 1340 return true; 1341 if (ptrace_may_access(task, mode)) 1342 return true; 1343 if ((mode & PTRACE_MODE_READ) && perfmon_capable()) 1344 return true; 1345 return false; 1346 } 1347 1348 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1349 { 1350 struct mm_struct *mm; 1351 int err; 1352 1353 err = down_read_killable(&task->signal->exec_update_lock); 1354 if (err) 1355 return ERR_PTR(err); 1356 1357 mm = get_task_mm(task); 1358 if (!mm) { 1359 mm = ERR_PTR(-ESRCH); 1360 } else if (!may_access_mm(mm, task, mode)) { 1361 mmput(mm); 1362 mm = ERR_PTR(-EACCES); 1363 } 1364 up_read(&task->signal->exec_update_lock); 1365 1366 return mm; 1367 } 1368 1369 static void complete_vfork_done(struct task_struct *tsk) 1370 { 1371 struct completion *vfork; 1372 1373 task_lock(tsk); 1374 vfork = tsk->vfork_done; 1375 if (likely(vfork)) { 1376 tsk->vfork_done = NULL; 1377 complete(vfork); 1378 } 1379 task_unlock(tsk); 1380 } 1381 1382 static int wait_for_vfork_done(struct task_struct *child, 1383 struct completion *vfork) 1384 { 1385 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1386 int killed; 1387 1388 cgroup_enter_frozen(); 1389 killed = wait_for_completion_state(vfork, state); 1390 cgroup_leave_frozen(false); 1391 1392 if (killed) { 1393 task_lock(child); 1394 child->vfork_done = NULL; 1395 task_unlock(child); 1396 } 1397 1398 put_task_struct(child); 1399 return killed; 1400 } 1401 1402 /* Please note the differences between mmput and mm_release. 1403 * mmput is called whenever we stop holding onto a mm_struct, 1404 * error success whatever. 1405 * 1406 * mm_release is called after a mm_struct has been removed 1407 * from the current process. 1408 * 1409 * This difference is important for error handling, when we 1410 * only half set up a mm_struct for a new process and need to restore 1411 * the old one. Because we mmput the new mm_struct before 1412 * restoring the old one. . . 1413 * Eric Biederman 10 January 1998 1414 */ 1415 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1416 { 1417 uprobe_free_utask(tsk); 1418 1419 /* Get rid of any cached register state */ 1420 deactivate_mm(tsk, mm); 1421 1422 /* 1423 * Signal userspace if we're not exiting with a core dump 1424 * because we want to leave the value intact for debugging 1425 * purposes. 1426 */ 1427 if (tsk->clear_child_tid) { 1428 if (atomic_read(&mm->mm_users) > 1) { 1429 /* 1430 * We don't check the error code - if userspace has 1431 * not set up a proper pointer then tough luck. 1432 */ 1433 put_user(0, tsk->clear_child_tid); 1434 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1435 1, NULL, NULL, 0, 0); 1436 } 1437 tsk->clear_child_tid = NULL; 1438 } 1439 1440 /* 1441 * All done, finally we can wake up parent and return this mm to him. 1442 * Also kthread_stop() uses this completion for synchronization. 1443 */ 1444 if (tsk->vfork_done) 1445 complete_vfork_done(tsk); 1446 } 1447 1448 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1449 { 1450 futex_exit_release(tsk); 1451 mm_release(tsk, mm); 1452 } 1453 1454 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1455 { 1456 futex_exec_release(tsk); 1457 mm_release(tsk, mm); 1458 } 1459 1460 /** 1461 * dup_mm() - duplicates an existing mm structure 1462 * @tsk: the task_struct with which the new mm will be associated. 1463 * @oldmm: the mm to duplicate. 1464 * 1465 * Allocates a new mm structure and duplicates the provided @oldmm structure 1466 * content into it. 1467 * 1468 * Return: the duplicated mm or NULL on failure. 1469 */ 1470 static struct mm_struct *dup_mm(struct task_struct *tsk, 1471 struct mm_struct *oldmm) 1472 { 1473 struct mm_struct *mm; 1474 int err; 1475 1476 mm = allocate_mm(); 1477 if (!mm) 1478 goto fail_nomem; 1479 1480 memcpy(mm, oldmm, sizeof(*mm)); 1481 1482 if (!mm_init(mm, tsk, mm->user_ns)) 1483 goto fail_nomem; 1484 1485 uprobe_start_dup_mmap(); 1486 err = dup_mmap(mm, oldmm); 1487 if (err) 1488 goto free_pt; 1489 uprobe_end_dup_mmap(); 1490 1491 mm->hiwater_rss = get_mm_rss(mm); 1492 mm->hiwater_vm = mm->total_vm; 1493 1494 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1495 goto free_pt; 1496 1497 return mm; 1498 1499 free_pt: 1500 /* don't put binfmt in mmput, we haven't got module yet */ 1501 mm->binfmt = NULL; 1502 mm_init_owner(mm, NULL); 1503 mmput(mm); 1504 if (err) 1505 uprobe_end_dup_mmap(); 1506 1507 fail_nomem: 1508 return NULL; 1509 } 1510 1511 static int copy_mm(u64 clone_flags, struct task_struct *tsk) 1512 { 1513 struct mm_struct *mm, *oldmm; 1514 1515 tsk->min_flt = tsk->maj_flt = 0; 1516 tsk->nvcsw = tsk->nivcsw = 0; 1517 #ifdef CONFIG_DETECT_HUNG_TASK 1518 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1519 tsk->last_switch_time = 0; 1520 #endif 1521 1522 tsk->mm = NULL; 1523 tsk->active_mm = NULL; 1524 1525 /* 1526 * Are we cloning a kernel thread? 1527 * 1528 * We need to steal a active VM for that.. 1529 */ 1530 oldmm = current->mm; 1531 if (!oldmm) 1532 return 0; 1533 1534 if (clone_flags & CLONE_VM) { 1535 mmget(oldmm); 1536 mm = oldmm; 1537 } else { 1538 mm = dup_mm(tsk, current->mm); 1539 if (!mm) 1540 return -ENOMEM; 1541 } 1542 1543 tsk->mm = mm; 1544 tsk->active_mm = mm; 1545 sched_mm_cid_fork(tsk); 1546 return 0; 1547 } 1548 1549 static int copy_fs(u64 clone_flags, struct task_struct *tsk) 1550 { 1551 struct fs_struct *fs = current->fs; 1552 if (clone_flags & CLONE_FS) { 1553 /* tsk->fs is already what we want */ 1554 read_seqlock_excl(&fs->seq); 1555 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1556 if (fs->in_exec) { 1557 read_sequnlock_excl(&fs->seq); 1558 return -EAGAIN; 1559 } 1560 fs->users++; 1561 read_sequnlock_excl(&fs->seq); 1562 return 0; 1563 } 1564 tsk->fs = copy_fs_struct(fs); 1565 if (!tsk->fs) 1566 return -ENOMEM; 1567 return 0; 1568 } 1569 1570 static int copy_files(u64 clone_flags, struct task_struct *tsk, 1571 int no_files) 1572 { 1573 struct files_struct *oldf, *newf; 1574 1575 /* 1576 * A background process may not have any files ... 1577 */ 1578 oldf = current->files; 1579 if (!oldf) 1580 return 0; 1581 1582 if (no_files) { 1583 tsk->files = NULL; 1584 return 0; 1585 } 1586 1587 if (clone_flags & CLONE_FILES) { 1588 atomic_inc(&oldf->count); 1589 return 0; 1590 } 1591 1592 newf = dup_fd(oldf, NULL); 1593 if (IS_ERR(newf)) 1594 return PTR_ERR(newf); 1595 1596 tsk->files = newf; 1597 return 0; 1598 } 1599 1600 static int copy_sighand(u64 clone_flags, struct task_struct *tsk) 1601 { 1602 struct sighand_struct *sig; 1603 1604 if (clone_flags & CLONE_SIGHAND) { 1605 refcount_inc(¤t->sighand->count); 1606 return 0; 1607 } 1608 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1609 RCU_INIT_POINTER(tsk->sighand, sig); 1610 if (!sig) 1611 return -ENOMEM; 1612 1613 refcount_set(&sig->count, 1); 1614 spin_lock_irq(¤t->sighand->siglock); 1615 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1616 spin_unlock_irq(¤t->sighand->siglock); 1617 1618 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1619 if (clone_flags & CLONE_CLEAR_SIGHAND) 1620 flush_signal_handlers(tsk, 0); 1621 1622 return 0; 1623 } 1624 1625 void __cleanup_sighand(struct sighand_struct *sighand) 1626 { 1627 if (refcount_dec_and_test(&sighand->count)) { 1628 signalfd_cleanup(sighand); 1629 /* 1630 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1631 * without an RCU grace period, see __lock_task_sighand(). 1632 */ 1633 kmem_cache_free(sighand_cachep, sighand); 1634 } 1635 } 1636 1637 /* 1638 * Initialize POSIX timer handling for a thread group. 1639 */ 1640 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1641 { 1642 struct posix_cputimers *pct = &sig->posix_cputimers; 1643 unsigned long cpu_limit; 1644 1645 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1646 posix_cputimers_group_init(pct, cpu_limit); 1647 } 1648 1649 static int copy_signal(u64 clone_flags, struct task_struct *tsk) 1650 { 1651 struct signal_struct *sig; 1652 1653 if (clone_flags & CLONE_THREAD) 1654 return 0; 1655 1656 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1657 tsk->signal = sig; 1658 if (!sig) 1659 return -ENOMEM; 1660 1661 sig->nr_threads = 1; 1662 sig->quick_threads = 1; 1663 atomic_set(&sig->live, 1); 1664 refcount_set(&sig->sigcnt, 1); 1665 1666 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1667 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1668 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1669 1670 init_waitqueue_head(&sig->wait_chldexit); 1671 sig->curr_target = tsk; 1672 init_sigpending(&sig->shared_pending); 1673 INIT_HLIST_HEAD(&sig->multiprocess); 1674 seqlock_init(&sig->stats_lock); 1675 prev_cputime_init(&sig->prev_cputime); 1676 1677 #ifdef CONFIG_POSIX_TIMERS 1678 INIT_HLIST_HEAD(&sig->posix_timers); 1679 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1680 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1681 #endif 1682 1683 task_lock(current->group_leader); 1684 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1685 task_unlock(current->group_leader); 1686 1687 posix_cpu_timers_init_group(sig); 1688 1689 tty_audit_fork(sig); 1690 sched_autogroup_fork(sig); 1691 1692 #ifdef CONFIG_CGROUPS 1693 init_rwsem(&sig->cgroup_threadgroup_rwsem); 1694 #endif 1695 1696 sig->oom_score_adj = current->signal->oom_score_adj; 1697 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1698 1699 mutex_init(&sig->cred_guard_mutex); 1700 init_rwsem(&sig->exec_update_lock); 1701 1702 return 0; 1703 } 1704 1705 static void copy_seccomp(struct task_struct *p) 1706 { 1707 #ifdef CONFIG_SECCOMP 1708 /* 1709 * Must be called with sighand->lock held, which is common to 1710 * all threads in the group. Holding cred_guard_mutex is not 1711 * needed because this new task is not yet running and cannot 1712 * be racing exec. 1713 */ 1714 assert_spin_locked(¤t->sighand->siglock); 1715 1716 /* Ref-count the new filter user, and assign it. */ 1717 get_seccomp_filter(current); 1718 p->seccomp = current->seccomp; 1719 1720 /* 1721 * Explicitly enable no_new_privs here in case it got set 1722 * between the task_struct being duplicated and holding the 1723 * sighand lock. The seccomp state and nnp must be in sync. 1724 */ 1725 if (task_no_new_privs(current)) 1726 task_set_no_new_privs(p); 1727 1728 /* 1729 * If the parent gained a seccomp mode after copying thread 1730 * flags and between before we held the sighand lock, we have 1731 * to manually enable the seccomp thread flag here. 1732 */ 1733 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1734 set_task_syscall_work(p, SECCOMP); 1735 #endif 1736 } 1737 1738 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1739 { 1740 current->clear_child_tid = tidptr; 1741 1742 return task_pid_vnr(current); 1743 } 1744 1745 static void rt_mutex_init_task(struct task_struct *p) 1746 { 1747 raw_spin_lock_init(&p->pi_lock); 1748 #ifdef CONFIG_RT_MUTEXES 1749 p->pi_waiters = RB_ROOT_CACHED; 1750 p->pi_top_task = NULL; 1751 p->pi_blocked_on = NULL; 1752 #endif 1753 } 1754 1755 static inline void init_task_pid_links(struct task_struct *task) 1756 { 1757 enum pid_type type; 1758 1759 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1760 INIT_HLIST_NODE(&task->pid_links[type]); 1761 } 1762 1763 static inline void 1764 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1765 { 1766 if (type == PIDTYPE_PID) 1767 task->thread_pid = pid; 1768 else 1769 task->signal->pids[type] = pid; 1770 } 1771 1772 static inline void rcu_copy_process(struct task_struct *p) 1773 { 1774 #ifdef CONFIG_PREEMPT_RCU 1775 p->rcu_read_lock_nesting = 0; 1776 p->rcu_read_unlock_special.s = 0; 1777 p->rcu_blocked_node = NULL; 1778 INIT_LIST_HEAD(&p->rcu_node_entry); 1779 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1780 #ifdef CONFIG_TASKS_RCU 1781 p->rcu_tasks_holdout = false; 1782 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1783 p->rcu_tasks_idle_cpu = -1; 1784 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1785 #endif /* #ifdef CONFIG_TASKS_RCU */ 1786 #ifdef CONFIG_TASKS_TRACE_RCU 1787 p->trc_reader_nesting = 0; 1788 p->trc_reader_special.s = 0; 1789 INIT_LIST_HEAD(&p->trc_holdout_list); 1790 INIT_LIST_HEAD(&p->trc_blkd_node); 1791 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1792 } 1793 1794 /** 1795 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1796 * @pid: the struct pid for which to create a pidfd 1797 * @flags: flags of the new @pidfd 1798 * @ret_file: return the new pidfs file 1799 * 1800 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1801 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1802 * 1803 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 1804 * task identified by @pid must be a thread-group leader. 1805 * 1806 * If this function returns successfully the caller is responsible to either 1807 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1808 * order to install the pidfd into its file descriptor table or they must use 1809 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1810 * respectively. 1811 * 1812 * This function is useful when a pidfd must already be reserved but there 1813 * might still be points of failure afterwards and the caller wants to ensure 1814 * that no pidfd is leaked into its file descriptor table. 1815 * 1816 * Return: On success, a reserved pidfd is returned from the function and a new 1817 * pidfd file is returned in the last argument to the function. On 1818 * error, a negative error code is returned from the function and the 1819 * last argument remains unchanged. 1820 */ 1821 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file) 1822 { 1823 struct file *pidfs_file; 1824 1825 /* 1826 * PIDFD_STALE is only allowed to be passed if the caller knows 1827 * that @pid is already registered in pidfs and thus 1828 * PIDFD_INFO_EXIT information is guaranteed to be available. 1829 */ 1830 if (!(flags & PIDFD_STALE)) { 1831 /* 1832 * While holding the pidfd waitqueue lock removing the 1833 * task linkage for the thread-group leader pid 1834 * (PIDTYPE_TGID) isn't possible. Thus, if there's still 1835 * task linkage for PIDTYPE_PID not having thread-group 1836 * leader linkage for the pid means it wasn't a 1837 * thread-group leader in the first place. 1838 */ 1839 guard(spinlock_irq)(&pid->wait_pidfd.lock); 1840 1841 /* Task has already been reaped. */ 1842 if (!pid_has_task(pid, PIDTYPE_PID)) 1843 return -ESRCH; 1844 /* 1845 * If this struct pid isn't used as a thread-group 1846 * leader but the caller requested to create a 1847 * thread-group leader pidfd then report ENOENT. 1848 */ 1849 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID)) 1850 return -ENOENT; 1851 } 1852 1853 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 1854 if (pidfd < 0) 1855 return pidfd; 1856 1857 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR); 1858 if (IS_ERR(pidfs_file)) 1859 return PTR_ERR(pidfs_file); 1860 1861 *ret_file = pidfs_file; 1862 return take_fd(pidfd); 1863 } 1864 1865 static void __delayed_free_task(struct rcu_head *rhp) 1866 { 1867 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1868 1869 free_task(tsk); 1870 } 1871 1872 static __always_inline void delayed_free_task(struct task_struct *tsk) 1873 { 1874 if (IS_ENABLED(CONFIG_MEMCG)) 1875 call_rcu(&tsk->rcu, __delayed_free_task); 1876 else 1877 free_task(tsk); 1878 } 1879 1880 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1881 { 1882 /* Skip if kernel thread */ 1883 if (!tsk->mm) 1884 return; 1885 1886 /* Skip if spawning a thread or using vfork */ 1887 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1888 return; 1889 1890 /* We need to synchronize with __set_oom_adj */ 1891 mutex_lock(&oom_adj_mutex); 1892 mm_flags_set(MMF_MULTIPROCESS, tsk->mm); 1893 /* Update the values in case they were changed after copy_signal */ 1894 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1895 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1896 mutex_unlock(&oom_adj_mutex); 1897 } 1898 1899 #ifdef CONFIG_RV 1900 static void rv_task_fork(struct task_struct *p) 1901 { 1902 memset(&p->rv, 0, sizeof(p->rv)); 1903 } 1904 #else 1905 #define rv_task_fork(p) do {} while (0) 1906 #endif 1907 1908 static bool need_futex_hash_allocate_default(u64 clone_flags) 1909 { 1910 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM)) 1911 return false; 1912 return true; 1913 } 1914 1915 /* 1916 * This creates a new process as a copy of the old one, 1917 * but does not actually start it yet. 1918 * 1919 * It copies the registers, and all the appropriate 1920 * parts of the process environment (as per the clone 1921 * flags). The actual kick-off is left to the caller. 1922 */ 1923 __latent_entropy struct task_struct *copy_process( 1924 struct pid *pid, 1925 int trace, 1926 int node, 1927 struct kernel_clone_args *args) 1928 { 1929 int pidfd = -1, retval; 1930 struct task_struct *p; 1931 struct multiprocess_signals delayed; 1932 struct file *pidfile = NULL; 1933 const u64 clone_flags = args->flags; 1934 struct nsproxy *nsp = current->nsproxy; 1935 1936 /* 1937 * Don't allow sharing the root directory with processes in a different 1938 * namespace 1939 */ 1940 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1941 return ERR_PTR(-EINVAL); 1942 1943 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1944 return ERR_PTR(-EINVAL); 1945 1946 /* 1947 * Thread groups must share signals as well, and detached threads 1948 * can only be started up within the thread group. 1949 */ 1950 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1951 return ERR_PTR(-EINVAL); 1952 1953 /* 1954 * Shared signal handlers imply shared VM. By way of the above, 1955 * thread groups also imply shared VM. Blocking this case allows 1956 * for various simplifications in other code. 1957 */ 1958 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1959 return ERR_PTR(-EINVAL); 1960 1961 /* 1962 * Siblings of global init remain as zombies on exit since they are 1963 * not reaped by their parent (swapper). To solve this and to avoid 1964 * multi-rooted process trees, prevent global and container-inits 1965 * from creating siblings. 1966 */ 1967 if ((clone_flags & CLONE_PARENT) && 1968 current->signal->flags & SIGNAL_UNKILLABLE) 1969 return ERR_PTR(-EINVAL); 1970 1971 /* 1972 * If the new process will be in a different pid or user namespace 1973 * do not allow it to share a thread group with the forking task. 1974 */ 1975 if (clone_flags & CLONE_THREAD) { 1976 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1977 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1978 return ERR_PTR(-EINVAL); 1979 } 1980 1981 if (clone_flags & CLONE_PIDFD) { 1982 /* 1983 * - CLONE_DETACHED is blocked so that we can potentially 1984 * reuse it later for CLONE_PIDFD. 1985 */ 1986 if (clone_flags & CLONE_DETACHED) 1987 return ERR_PTR(-EINVAL); 1988 } 1989 1990 /* 1991 * Force any signals received before this point to be delivered 1992 * before the fork happens. Collect up signals sent to multiple 1993 * processes that happen during the fork and delay them so that 1994 * they appear to happen after the fork. 1995 */ 1996 sigemptyset(&delayed.signal); 1997 INIT_HLIST_NODE(&delayed.node); 1998 1999 spin_lock_irq(¤t->sighand->siglock); 2000 if (!(clone_flags & CLONE_THREAD)) 2001 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2002 recalc_sigpending(); 2003 spin_unlock_irq(¤t->sighand->siglock); 2004 retval = -ERESTARTNOINTR; 2005 if (task_sigpending(current)) 2006 goto fork_out; 2007 2008 retval = -ENOMEM; 2009 p = dup_task_struct(current, node); 2010 if (!p) 2011 goto fork_out; 2012 p->flags &= ~PF_KTHREAD; 2013 if (args->kthread) 2014 p->flags |= PF_KTHREAD; 2015 if (args->user_worker) { 2016 /* 2017 * Mark us a user worker, and block any signal that isn't 2018 * fatal or STOP 2019 */ 2020 p->flags |= PF_USER_WORKER; 2021 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2022 } 2023 if (args->io_thread) 2024 p->flags |= PF_IO_WORKER; 2025 2026 if (args->name) 2027 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2028 2029 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2030 /* 2031 * Clear TID on mm_release()? 2032 */ 2033 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2034 2035 ftrace_graph_init_task(p); 2036 2037 rt_mutex_init_task(p); 2038 2039 lockdep_assert_irqs_enabled(); 2040 #ifdef CONFIG_PROVE_LOCKING 2041 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2042 #endif 2043 retval = copy_creds(p, clone_flags); 2044 if (retval < 0) 2045 goto bad_fork_free; 2046 2047 retval = -EAGAIN; 2048 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2049 if (p->real_cred->user != INIT_USER && 2050 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2051 goto bad_fork_cleanup_count; 2052 } 2053 current->flags &= ~PF_NPROC_EXCEEDED; 2054 2055 /* 2056 * If multiple threads are within copy_process(), then this check 2057 * triggers too late. This doesn't hurt, the check is only there 2058 * to stop root fork bombs. 2059 */ 2060 retval = -EAGAIN; 2061 if (data_race(nr_threads >= max_threads)) 2062 goto bad_fork_cleanup_count; 2063 2064 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2065 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2066 p->flags |= PF_FORKNOEXEC; 2067 INIT_LIST_HEAD(&p->children); 2068 INIT_LIST_HEAD(&p->sibling); 2069 rcu_copy_process(p); 2070 p->vfork_done = NULL; 2071 spin_lock_init(&p->alloc_lock); 2072 2073 init_sigpending(&p->pending); 2074 2075 p->utime = p->stime = p->gtime = 0; 2076 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2077 p->utimescaled = p->stimescaled = 0; 2078 #endif 2079 prev_cputime_init(&p->prev_cputime); 2080 2081 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2082 seqcount_init(&p->vtime.seqcount); 2083 p->vtime.starttime = 0; 2084 p->vtime.state = VTIME_INACTIVE; 2085 #endif 2086 2087 #ifdef CONFIG_IO_URING 2088 p->io_uring = NULL; 2089 #endif 2090 2091 p->default_timer_slack_ns = current->timer_slack_ns; 2092 2093 #ifdef CONFIG_PSI 2094 p->psi_flags = 0; 2095 #endif 2096 2097 task_io_accounting_init(&p->ioac); 2098 acct_clear_integrals(p); 2099 2100 posix_cputimers_init(&p->posix_cputimers); 2101 tick_dep_init_task(p); 2102 2103 p->io_context = NULL; 2104 audit_set_context(p, NULL); 2105 cgroup_fork(p); 2106 if (args->kthread) { 2107 if (!set_kthread_struct(p)) 2108 goto bad_fork_cleanup_delayacct; 2109 } 2110 #ifdef CONFIG_NUMA 2111 p->mempolicy = mpol_dup(p->mempolicy); 2112 if (IS_ERR(p->mempolicy)) { 2113 retval = PTR_ERR(p->mempolicy); 2114 p->mempolicy = NULL; 2115 goto bad_fork_cleanup_delayacct; 2116 } 2117 #endif 2118 #ifdef CONFIG_CPUSETS 2119 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2120 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2121 #endif 2122 #ifdef CONFIG_TRACE_IRQFLAGS 2123 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2124 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2125 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2126 p->softirqs_enabled = 1; 2127 p->softirq_context = 0; 2128 #endif 2129 2130 p->pagefault_disabled = 0; 2131 2132 lockdep_init_task(p); 2133 2134 p->blocked_on = NULL; /* not blocked yet */ 2135 2136 #ifdef CONFIG_BCACHE 2137 p->sequential_io = 0; 2138 p->sequential_io_avg = 0; 2139 #endif 2140 #ifdef CONFIG_BPF_SYSCALL 2141 RCU_INIT_POINTER(p->bpf_storage, NULL); 2142 p->bpf_ctx = NULL; 2143 #endif 2144 2145 unwind_task_init(p); 2146 2147 /* Perform scheduler related setup. Assign this task to a CPU. */ 2148 retval = sched_fork(clone_flags, p); 2149 if (retval) 2150 goto bad_fork_cleanup_policy; 2151 2152 retval = perf_event_init_task(p, clone_flags); 2153 if (retval) 2154 goto bad_fork_sched_cancel_fork; 2155 retval = audit_alloc(p); 2156 if (retval) 2157 goto bad_fork_cleanup_perf; 2158 /* copy all the process information */ 2159 shm_init_task(p); 2160 retval = security_task_alloc(p, clone_flags); 2161 if (retval) 2162 goto bad_fork_cleanup_audit; 2163 retval = copy_semundo(clone_flags, p); 2164 if (retval) 2165 goto bad_fork_cleanup_security; 2166 retval = copy_files(clone_flags, p, args->no_files); 2167 if (retval) 2168 goto bad_fork_cleanup_semundo; 2169 retval = copy_fs(clone_flags, p); 2170 if (retval) 2171 goto bad_fork_cleanup_files; 2172 retval = copy_sighand(clone_flags, p); 2173 if (retval) 2174 goto bad_fork_cleanup_fs; 2175 retval = copy_signal(clone_flags, p); 2176 if (retval) 2177 goto bad_fork_cleanup_sighand; 2178 retval = copy_mm(clone_flags, p); 2179 if (retval) 2180 goto bad_fork_cleanup_signal; 2181 retval = copy_namespaces(clone_flags, p); 2182 if (retval) 2183 goto bad_fork_cleanup_mm; 2184 retval = copy_io(clone_flags, p); 2185 if (retval) 2186 goto bad_fork_cleanup_namespaces; 2187 retval = copy_thread(p, args); 2188 if (retval) 2189 goto bad_fork_cleanup_io; 2190 2191 stackleak_task_init(p); 2192 2193 if (pid != &init_struct_pid) { 2194 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2195 args->set_tid_size); 2196 if (IS_ERR(pid)) { 2197 retval = PTR_ERR(pid); 2198 goto bad_fork_cleanup_thread; 2199 } 2200 } 2201 2202 /* 2203 * This has to happen after we've potentially unshared the file 2204 * descriptor table (so that the pidfd doesn't leak into the child 2205 * if the fd table isn't shared). 2206 */ 2207 if (clone_flags & CLONE_PIDFD) { 2208 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2209 2210 /* 2211 * Note that no task has been attached to @pid yet indicate 2212 * that via CLONE_PIDFD. 2213 */ 2214 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile); 2215 if (retval < 0) 2216 goto bad_fork_free_pid; 2217 pidfd = retval; 2218 2219 retval = put_user(pidfd, args->pidfd); 2220 if (retval) 2221 goto bad_fork_put_pidfd; 2222 } 2223 2224 #ifdef CONFIG_BLOCK 2225 p->plug = NULL; 2226 #endif 2227 futex_init_task(p); 2228 2229 /* 2230 * sigaltstack should be cleared when sharing the same VM 2231 */ 2232 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2233 sas_ss_reset(p); 2234 2235 /* 2236 * Syscall tracing and stepping should be turned off in the 2237 * child regardless of CLONE_PTRACE. 2238 */ 2239 user_disable_single_step(p); 2240 clear_task_syscall_work(p, SYSCALL_TRACE); 2241 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2242 clear_task_syscall_work(p, SYSCALL_EMU); 2243 #endif 2244 clear_tsk_latency_tracing(p); 2245 2246 /* ok, now we should be set up.. */ 2247 p->pid = pid_nr(pid); 2248 if (clone_flags & CLONE_THREAD) { 2249 p->group_leader = current->group_leader; 2250 p->tgid = current->tgid; 2251 } else { 2252 p->group_leader = p; 2253 p->tgid = p->pid; 2254 } 2255 2256 p->nr_dirtied = 0; 2257 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2258 p->dirty_paused_when = 0; 2259 2260 p->pdeath_signal = 0; 2261 p->task_works = NULL; 2262 clear_posix_cputimers_work(p); 2263 2264 #ifdef CONFIG_KRETPROBES 2265 p->kretprobe_instances.first = NULL; 2266 #endif 2267 #ifdef CONFIG_RETHOOK 2268 p->rethooks.first = NULL; 2269 #endif 2270 2271 /* 2272 * Ensure that the cgroup subsystem policies allow the new process to be 2273 * forked. It should be noted that the new process's css_set can be changed 2274 * between here and cgroup_post_fork() if an organisation operation is in 2275 * progress. 2276 */ 2277 retval = cgroup_can_fork(p, args); 2278 if (retval) 2279 goto bad_fork_put_pidfd; 2280 2281 /* 2282 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2283 * the new task on the correct runqueue. All this *before* the task 2284 * becomes visible. 2285 * 2286 * This isn't part of ->can_fork() because while the re-cloning is 2287 * cgroup specific, it unconditionally needs to place the task on a 2288 * runqueue. 2289 */ 2290 retval = sched_cgroup_fork(p, args); 2291 if (retval) 2292 goto bad_fork_cancel_cgroup; 2293 2294 /* 2295 * Allocate a default futex hash for the user process once the first 2296 * thread spawns. 2297 */ 2298 if (need_futex_hash_allocate_default(clone_flags)) { 2299 retval = futex_hash_allocate_default(); 2300 if (retval) 2301 goto bad_fork_cancel_cgroup; 2302 /* 2303 * If we fail beyond this point we don't free the allocated 2304 * futex hash map. We assume that another thread will be created 2305 * and makes use of it. The hash map will be freed once the main 2306 * thread terminates. 2307 */ 2308 } 2309 /* 2310 * From this point on we must avoid any synchronous user-space 2311 * communication until we take the tasklist-lock. In particular, we do 2312 * not want user-space to be able to predict the process start-time by 2313 * stalling fork(2) after we recorded the start_time but before it is 2314 * visible to the system. 2315 */ 2316 2317 p->start_time = ktime_get_ns(); 2318 p->start_boottime = ktime_get_boottime_ns(); 2319 2320 /* 2321 * Make it visible to the rest of the system, but dont wake it up yet. 2322 * Need tasklist lock for parent etc handling! 2323 */ 2324 write_lock_irq(&tasklist_lock); 2325 2326 /* CLONE_PARENT re-uses the old parent */ 2327 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2328 p->real_parent = current->real_parent; 2329 p->parent_exec_id = current->parent_exec_id; 2330 if (clone_flags & CLONE_THREAD) 2331 p->exit_signal = -1; 2332 else 2333 p->exit_signal = current->group_leader->exit_signal; 2334 } else { 2335 p->real_parent = current; 2336 p->parent_exec_id = current->self_exec_id; 2337 p->exit_signal = args->exit_signal; 2338 } 2339 2340 klp_copy_process(p); 2341 2342 sched_core_fork(p); 2343 2344 spin_lock(¤t->sighand->siglock); 2345 2346 rv_task_fork(p); 2347 2348 rseq_fork(p, clone_flags); 2349 2350 /* Don't start children in a dying pid namespace */ 2351 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2352 retval = -ENOMEM; 2353 goto bad_fork_core_free; 2354 } 2355 2356 /* Let kill terminate clone/fork in the middle */ 2357 if (fatal_signal_pending(current)) { 2358 retval = -EINTR; 2359 goto bad_fork_core_free; 2360 } 2361 2362 /* No more failure paths after this point. */ 2363 2364 /* 2365 * Copy seccomp details explicitly here, in case they were changed 2366 * before holding sighand lock. 2367 */ 2368 copy_seccomp(p); 2369 2370 init_task_pid_links(p); 2371 if (likely(p->pid)) { 2372 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2373 2374 init_task_pid(p, PIDTYPE_PID, pid); 2375 if (thread_group_leader(p)) { 2376 init_task_pid(p, PIDTYPE_TGID, pid); 2377 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2378 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2379 2380 if (is_child_reaper(pid)) { 2381 ns_of_pid(pid)->child_reaper = p; 2382 p->signal->flags |= SIGNAL_UNKILLABLE; 2383 } 2384 p->signal->shared_pending.signal = delayed.signal; 2385 p->signal->tty = tty_kref_get(current->signal->tty); 2386 /* 2387 * Inherit has_child_subreaper flag under the same 2388 * tasklist_lock with adding child to the process tree 2389 * for propagate_has_child_subreaper optimization. 2390 */ 2391 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2392 p->real_parent->signal->is_child_subreaper; 2393 list_add_tail(&p->sibling, &p->real_parent->children); 2394 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2395 attach_pid(p, PIDTYPE_TGID); 2396 attach_pid(p, PIDTYPE_PGID); 2397 attach_pid(p, PIDTYPE_SID); 2398 __this_cpu_inc(process_counts); 2399 } else { 2400 current->signal->nr_threads++; 2401 current->signal->quick_threads++; 2402 atomic_inc(¤t->signal->live); 2403 refcount_inc(¤t->signal->sigcnt); 2404 task_join_group_stop(p); 2405 list_add_tail_rcu(&p->thread_node, 2406 &p->signal->thread_head); 2407 } 2408 attach_pid(p, PIDTYPE_PID); 2409 nr_threads++; 2410 } 2411 total_forks++; 2412 hlist_del_init(&delayed.node); 2413 spin_unlock(¤t->sighand->siglock); 2414 syscall_tracepoint_update(p); 2415 write_unlock_irq(&tasklist_lock); 2416 2417 if (pidfile) 2418 fd_install(pidfd, pidfile); 2419 2420 proc_fork_connector(p); 2421 sched_post_fork(p); 2422 cgroup_post_fork(p, args); 2423 perf_event_fork(p); 2424 2425 trace_task_newtask(p, clone_flags); 2426 uprobe_copy_process(p, clone_flags); 2427 user_events_fork(p, clone_flags); 2428 2429 copy_oom_score_adj(clone_flags, p); 2430 2431 return p; 2432 2433 bad_fork_core_free: 2434 sched_core_free(p); 2435 spin_unlock(¤t->sighand->siglock); 2436 write_unlock_irq(&tasklist_lock); 2437 bad_fork_cancel_cgroup: 2438 cgroup_cancel_fork(p, args); 2439 bad_fork_put_pidfd: 2440 if (clone_flags & CLONE_PIDFD) { 2441 fput(pidfile); 2442 put_unused_fd(pidfd); 2443 } 2444 bad_fork_free_pid: 2445 if (pid != &init_struct_pid) 2446 free_pid(pid); 2447 bad_fork_cleanup_thread: 2448 exit_thread(p); 2449 bad_fork_cleanup_io: 2450 if (p->io_context) 2451 exit_io_context(p); 2452 bad_fork_cleanup_namespaces: 2453 exit_nsproxy_namespaces(p); 2454 bad_fork_cleanup_mm: 2455 if (p->mm) { 2456 sched_mm_cid_exit(p); 2457 mm_clear_owner(p->mm, p); 2458 mmput(p->mm); 2459 } 2460 bad_fork_cleanup_signal: 2461 if (!(clone_flags & CLONE_THREAD)) 2462 free_signal_struct(p->signal); 2463 bad_fork_cleanup_sighand: 2464 __cleanup_sighand(p->sighand); 2465 bad_fork_cleanup_fs: 2466 exit_fs(p); /* blocking */ 2467 bad_fork_cleanup_files: 2468 exit_files(p); /* blocking */ 2469 bad_fork_cleanup_semundo: 2470 exit_sem(p); 2471 bad_fork_cleanup_security: 2472 security_task_free(p); 2473 bad_fork_cleanup_audit: 2474 audit_free(p); 2475 bad_fork_cleanup_perf: 2476 perf_event_free_task(p); 2477 bad_fork_sched_cancel_fork: 2478 sched_cancel_fork(p); 2479 bad_fork_cleanup_policy: 2480 lockdep_free_task(p); 2481 #ifdef CONFIG_NUMA 2482 mpol_put(p->mempolicy); 2483 #endif 2484 bad_fork_cleanup_delayacct: 2485 delayacct_tsk_free(p); 2486 bad_fork_cleanup_count: 2487 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2488 exit_cred_namespaces(p); 2489 exit_creds(p); 2490 bad_fork_free: 2491 WRITE_ONCE(p->__state, TASK_DEAD); 2492 exit_task_stack_account(p); 2493 put_task_stack(p); 2494 delayed_free_task(p); 2495 fork_out: 2496 spin_lock_irq(¤t->sighand->siglock); 2497 hlist_del_init(&delayed.node); 2498 spin_unlock_irq(¤t->sighand->siglock); 2499 return ERR_PTR(retval); 2500 } 2501 2502 static inline void init_idle_pids(struct task_struct *idle) 2503 { 2504 enum pid_type type; 2505 2506 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2507 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2508 init_task_pid(idle, type, &init_struct_pid); 2509 } 2510 } 2511 2512 static int idle_dummy(void *dummy) 2513 { 2514 /* This function is never called */ 2515 return 0; 2516 } 2517 2518 struct task_struct * __init fork_idle(int cpu) 2519 { 2520 struct task_struct *task; 2521 struct kernel_clone_args args = { 2522 .flags = CLONE_VM, 2523 .fn = &idle_dummy, 2524 .fn_arg = NULL, 2525 .kthread = 1, 2526 .idle = 1, 2527 }; 2528 2529 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2530 if (!IS_ERR(task)) { 2531 init_idle_pids(task); 2532 init_idle(task, cpu); 2533 } 2534 2535 return task; 2536 } 2537 2538 /* 2539 * This is like kernel_clone(), but shaved down and tailored to just 2540 * creating io_uring workers. It returns a created task, or an error pointer. 2541 * The returned task is inactive, and the caller must fire it up through 2542 * wake_up_new_task(p). All signals are blocked in the created task. 2543 */ 2544 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2545 { 2546 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2547 CLONE_IO|CLONE_VM|CLONE_UNTRACED; 2548 struct kernel_clone_args args = { 2549 .flags = flags, 2550 .fn = fn, 2551 .fn_arg = arg, 2552 .io_thread = 1, 2553 .user_worker = 1, 2554 }; 2555 2556 return copy_process(NULL, 0, node, &args); 2557 } 2558 2559 /* 2560 * Ok, this is the main fork-routine. 2561 * 2562 * It copies the process, and if successful kick-starts 2563 * it and waits for it to finish using the VM if required. 2564 * 2565 * args->exit_signal is expected to be checked for sanity by the caller. 2566 */ 2567 pid_t kernel_clone(struct kernel_clone_args *args) 2568 { 2569 u64 clone_flags = args->flags; 2570 struct completion vfork; 2571 struct pid *pid; 2572 struct task_struct *p; 2573 int trace = 0; 2574 pid_t nr; 2575 2576 /* 2577 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2578 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2579 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2580 * field in struct clone_args and it still doesn't make sense to have 2581 * them both point at the same memory location. Performing this check 2582 * here has the advantage that we don't need to have a separate helper 2583 * to check for legacy clone(). 2584 */ 2585 if ((clone_flags & CLONE_PIDFD) && 2586 (clone_flags & CLONE_PARENT_SETTID) && 2587 (args->pidfd == args->parent_tid)) 2588 return -EINVAL; 2589 2590 /* 2591 * Determine whether and which event to report to ptracer. When 2592 * called from kernel_thread or CLONE_UNTRACED is explicitly 2593 * requested, no event is reported; otherwise, report if the event 2594 * for the type of forking is enabled. 2595 */ 2596 if (!(clone_flags & CLONE_UNTRACED)) { 2597 if (clone_flags & CLONE_VFORK) 2598 trace = PTRACE_EVENT_VFORK; 2599 else if (args->exit_signal != SIGCHLD) 2600 trace = PTRACE_EVENT_CLONE; 2601 else 2602 trace = PTRACE_EVENT_FORK; 2603 2604 if (likely(!ptrace_event_enabled(current, trace))) 2605 trace = 0; 2606 } 2607 2608 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2609 add_latent_entropy(); 2610 2611 if (IS_ERR(p)) 2612 return PTR_ERR(p); 2613 2614 /* 2615 * Do this prior waking up the new thread - the thread pointer 2616 * might get invalid after that point, if the thread exits quickly. 2617 */ 2618 trace_sched_process_fork(current, p); 2619 2620 pid = get_task_pid(p, PIDTYPE_PID); 2621 nr = pid_vnr(pid); 2622 2623 if (clone_flags & CLONE_PARENT_SETTID) 2624 put_user(nr, args->parent_tid); 2625 2626 if (clone_flags & CLONE_VFORK) { 2627 p->vfork_done = &vfork; 2628 init_completion(&vfork); 2629 get_task_struct(p); 2630 } 2631 2632 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2633 /* lock the task to synchronize with memcg migration */ 2634 task_lock(p); 2635 lru_gen_add_mm(p->mm); 2636 task_unlock(p); 2637 } 2638 2639 wake_up_new_task(p); 2640 2641 /* forking complete and child started to run, tell ptracer */ 2642 if (unlikely(trace)) 2643 ptrace_event_pid(trace, pid); 2644 2645 if (clone_flags & CLONE_VFORK) { 2646 if (!wait_for_vfork_done(p, &vfork)) 2647 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2648 } 2649 2650 put_pid(pid); 2651 return nr; 2652 } 2653 2654 /* 2655 * Create a kernel thread. 2656 */ 2657 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2658 unsigned long flags) 2659 { 2660 struct kernel_clone_args args = { 2661 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2662 .exit_signal = (flags & CSIGNAL), 2663 .fn = fn, 2664 .fn_arg = arg, 2665 .name = name, 2666 .kthread = 1, 2667 }; 2668 2669 return kernel_clone(&args); 2670 } 2671 2672 /* 2673 * Create a user mode thread. 2674 */ 2675 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2676 { 2677 struct kernel_clone_args args = { 2678 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2679 .exit_signal = (flags & CSIGNAL), 2680 .fn = fn, 2681 .fn_arg = arg, 2682 }; 2683 2684 return kernel_clone(&args); 2685 } 2686 2687 #ifdef __ARCH_WANT_SYS_FORK 2688 SYSCALL_DEFINE0(fork) 2689 { 2690 #ifdef CONFIG_MMU 2691 struct kernel_clone_args args = { 2692 .exit_signal = SIGCHLD, 2693 }; 2694 2695 return kernel_clone(&args); 2696 #else 2697 /* can not support in nommu mode */ 2698 return -EINVAL; 2699 #endif 2700 } 2701 #endif 2702 2703 #ifdef __ARCH_WANT_SYS_VFORK 2704 SYSCALL_DEFINE0(vfork) 2705 { 2706 struct kernel_clone_args args = { 2707 .flags = CLONE_VFORK | CLONE_VM, 2708 .exit_signal = SIGCHLD, 2709 }; 2710 2711 return kernel_clone(&args); 2712 } 2713 #endif 2714 2715 #ifdef __ARCH_WANT_SYS_CLONE 2716 #ifdef CONFIG_CLONE_BACKWARDS 2717 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2718 int __user *, parent_tidptr, 2719 unsigned long, tls, 2720 int __user *, child_tidptr) 2721 #elif defined(CONFIG_CLONE_BACKWARDS2) 2722 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2723 int __user *, parent_tidptr, 2724 int __user *, child_tidptr, 2725 unsigned long, tls) 2726 #elif defined(CONFIG_CLONE_BACKWARDS3) 2727 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2728 int, stack_size, 2729 int __user *, parent_tidptr, 2730 int __user *, child_tidptr, 2731 unsigned long, tls) 2732 #else 2733 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2734 int __user *, parent_tidptr, 2735 int __user *, child_tidptr, 2736 unsigned long, tls) 2737 #endif 2738 { 2739 struct kernel_clone_args args = { 2740 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2741 .pidfd = parent_tidptr, 2742 .child_tid = child_tidptr, 2743 .parent_tid = parent_tidptr, 2744 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2745 .stack = newsp, 2746 .tls = tls, 2747 }; 2748 2749 return kernel_clone(&args); 2750 } 2751 #endif 2752 2753 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2754 struct clone_args __user *uargs, 2755 size_t usize) 2756 { 2757 int err; 2758 struct clone_args args; 2759 pid_t *kset_tid = kargs->set_tid; 2760 2761 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2762 CLONE_ARGS_SIZE_VER0); 2763 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2764 CLONE_ARGS_SIZE_VER1); 2765 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2766 CLONE_ARGS_SIZE_VER2); 2767 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2768 2769 if (unlikely(usize > PAGE_SIZE)) 2770 return -E2BIG; 2771 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2772 return -EINVAL; 2773 2774 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2775 if (err) 2776 return err; 2777 2778 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2779 return -EINVAL; 2780 2781 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2782 return -EINVAL; 2783 2784 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2785 return -EINVAL; 2786 2787 /* 2788 * Verify that higher 32bits of exit_signal are unset and that 2789 * it is a valid signal 2790 */ 2791 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2792 !valid_signal(args.exit_signal))) 2793 return -EINVAL; 2794 2795 if ((args.flags & CLONE_INTO_CGROUP) && 2796 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2797 return -EINVAL; 2798 2799 *kargs = (struct kernel_clone_args){ 2800 .flags = args.flags, 2801 .pidfd = u64_to_user_ptr(args.pidfd), 2802 .child_tid = u64_to_user_ptr(args.child_tid), 2803 .parent_tid = u64_to_user_ptr(args.parent_tid), 2804 .exit_signal = args.exit_signal, 2805 .stack = args.stack, 2806 .stack_size = args.stack_size, 2807 .tls = args.tls, 2808 .set_tid_size = args.set_tid_size, 2809 .cgroup = args.cgroup, 2810 }; 2811 2812 if (args.set_tid && 2813 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2814 (kargs->set_tid_size * sizeof(pid_t)))) 2815 return -EFAULT; 2816 2817 kargs->set_tid = kset_tid; 2818 2819 return 0; 2820 } 2821 2822 /** 2823 * clone3_stack_valid - check and prepare stack 2824 * @kargs: kernel clone args 2825 * 2826 * Verify that the stack arguments userspace gave us are sane. 2827 * In addition, set the stack direction for userspace since it's easy for us to 2828 * determine. 2829 */ 2830 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2831 { 2832 if (kargs->stack == 0) { 2833 if (kargs->stack_size > 0) 2834 return false; 2835 } else { 2836 if (kargs->stack_size == 0) 2837 return false; 2838 2839 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2840 return false; 2841 2842 #if !defined(CONFIG_STACK_GROWSUP) 2843 kargs->stack += kargs->stack_size; 2844 #endif 2845 } 2846 2847 return true; 2848 } 2849 2850 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2851 { 2852 /* Verify that no unknown flags are passed along. */ 2853 if (kargs->flags & 2854 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2855 return false; 2856 2857 /* 2858 * - make the CLONE_DETACHED bit reusable for clone3 2859 * - make the CSIGNAL bits reusable for clone3 2860 */ 2861 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2862 return false; 2863 2864 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2865 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2866 return false; 2867 2868 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2869 kargs->exit_signal) 2870 return false; 2871 2872 if (!clone3_stack_valid(kargs)) 2873 return false; 2874 2875 return true; 2876 } 2877 2878 /** 2879 * sys_clone3 - create a new process with specific properties 2880 * @uargs: argument structure 2881 * @size: size of @uargs 2882 * 2883 * clone3() is the extensible successor to clone()/clone2(). 2884 * It takes a struct as argument that is versioned by its size. 2885 * 2886 * Return: On success, a positive PID for the child process. 2887 * On error, a negative errno number. 2888 */ 2889 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2890 { 2891 int err; 2892 2893 struct kernel_clone_args kargs; 2894 pid_t set_tid[MAX_PID_NS_LEVEL]; 2895 2896 #ifdef __ARCH_BROKEN_SYS_CLONE3 2897 #warning clone3() entry point is missing, please fix 2898 return -ENOSYS; 2899 #endif 2900 2901 kargs.set_tid = set_tid; 2902 2903 err = copy_clone_args_from_user(&kargs, uargs, size); 2904 if (err) 2905 return err; 2906 2907 if (!clone3_args_valid(&kargs)) 2908 return -EINVAL; 2909 2910 return kernel_clone(&kargs); 2911 } 2912 2913 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2914 { 2915 struct task_struct *leader, *parent, *child; 2916 int res; 2917 2918 read_lock(&tasklist_lock); 2919 leader = top = top->group_leader; 2920 down: 2921 for_each_thread(leader, parent) { 2922 list_for_each_entry(child, &parent->children, sibling) { 2923 res = visitor(child, data); 2924 if (res) { 2925 if (res < 0) 2926 goto out; 2927 leader = child; 2928 goto down; 2929 } 2930 up: 2931 ; 2932 } 2933 } 2934 2935 if (leader != top) { 2936 child = leader; 2937 parent = child->real_parent; 2938 leader = parent->group_leader; 2939 goto up; 2940 } 2941 out: 2942 read_unlock(&tasklist_lock); 2943 } 2944 2945 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2946 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2947 #endif 2948 2949 static void sighand_ctor(void *data) 2950 { 2951 struct sighand_struct *sighand = data; 2952 2953 spin_lock_init(&sighand->siglock); 2954 init_waitqueue_head(&sighand->signalfd_wqh); 2955 } 2956 2957 void __init mm_cache_init(void) 2958 { 2959 unsigned int mm_size; 2960 2961 /* 2962 * The mm_cpumask is located at the end of mm_struct, and is 2963 * dynamically sized based on the maximum CPU number this system 2964 * can have, taking hotplug into account (nr_cpu_ids). 2965 */ 2966 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 2967 2968 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2969 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2970 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2971 offsetof(struct mm_struct, saved_auxv), 2972 sizeof_field(struct mm_struct, saved_auxv), 2973 NULL); 2974 } 2975 2976 void __init proc_caches_init(void) 2977 { 2978 sighand_cachep = kmem_cache_create("sighand_cache", 2979 sizeof(struct sighand_struct), 0, 2980 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2981 SLAB_ACCOUNT, sighand_ctor); 2982 signal_cachep = kmem_cache_create("signal_cache", 2983 sizeof(struct signal_struct), 0, 2984 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2985 NULL); 2986 files_cachep = kmem_cache_create("files_cache", 2987 sizeof(struct files_struct), 0, 2988 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2989 NULL); 2990 fs_cachep = kmem_cache_create("fs_cache", 2991 sizeof(struct fs_struct), 0, 2992 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2993 NULL); 2994 mmap_init(); 2995 nsproxy_cache_init(); 2996 } 2997 2998 /* 2999 * Check constraints on flags passed to the unshare system call. 3000 */ 3001 static int check_unshare_flags(unsigned long unshare_flags) 3002 { 3003 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3004 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3005 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3006 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3007 CLONE_NEWTIME)) 3008 return -EINVAL; 3009 /* 3010 * Not implemented, but pretend it works if there is nothing 3011 * to unshare. Note that unsharing the address space or the 3012 * signal handlers also need to unshare the signal queues (aka 3013 * CLONE_THREAD). 3014 */ 3015 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3016 if (!thread_group_empty(current)) 3017 return -EINVAL; 3018 } 3019 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3020 if (refcount_read(¤t->sighand->count) > 1) 3021 return -EINVAL; 3022 } 3023 if (unshare_flags & CLONE_VM) { 3024 if (!current_is_single_threaded()) 3025 return -EINVAL; 3026 } 3027 3028 return 0; 3029 } 3030 3031 /* 3032 * Unshare the filesystem structure if it is being shared 3033 */ 3034 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3035 { 3036 struct fs_struct *fs = current->fs; 3037 3038 if (!(unshare_flags & CLONE_FS) || !fs) 3039 return 0; 3040 3041 /* don't need lock here; in the worst case we'll do useless copy */ 3042 if (fs->users == 1) 3043 return 0; 3044 3045 *new_fsp = copy_fs_struct(fs); 3046 if (!*new_fsp) 3047 return -ENOMEM; 3048 3049 return 0; 3050 } 3051 3052 /* 3053 * Unshare file descriptor table if it is being shared 3054 */ 3055 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3056 { 3057 struct files_struct *fd = current->files; 3058 3059 if ((unshare_flags & CLONE_FILES) && 3060 (fd && atomic_read(&fd->count) > 1)) { 3061 fd = dup_fd(fd, NULL); 3062 if (IS_ERR(fd)) 3063 return PTR_ERR(fd); 3064 *new_fdp = fd; 3065 } 3066 3067 return 0; 3068 } 3069 3070 /* 3071 * unshare allows a process to 'unshare' part of the process 3072 * context which was originally shared using clone. copy_* 3073 * functions used by kernel_clone() cannot be used here directly 3074 * because they modify an inactive task_struct that is being 3075 * constructed. Here we are modifying the current, active, 3076 * task_struct. 3077 */ 3078 int ksys_unshare(unsigned long unshare_flags) 3079 { 3080 struct fs_struct *fs, *new_fs = NULL; 3081 struct files_struct *new_fd = NULL; 3082 struct cred *new_cred = NULL; 3083 struct nsproxy *new_nsproxy = NULL; 3084 int do_sysvsem = 0; 3085 int err; 3086 3087 /* 3088 * If unsharing a user namespace must also unshare the thread group 3089 * and unshare the filesystem root and working directories. 3090 */ 3091 if (unshare_flags & CLONE_NEWUSER) 3092 unshare_flags |= CLONE_THREAD | CLONE_FS; 3093 /* 3094 * If unsharing vm, must also unshare signal handlers. 3095 */ 3096 if (unshare_flags & CLONE_VM) 3097 unshare_flags |= CLONE_SIGHAND; 3098 /* 3099 * If unsharing a signal handlers, must also unshare the signal queues. 3100 */ 3101 if (unshare_flags & CLONE_SIGHAND) 3102 unshare_flags |= CLONE_THREAD; 3103 /* 3104 * If unsharing namespace, must also unshare filesystem information. 3105 */ 3106 if (unshare_flags & CLONE_NEWNS) 3107 unshare_flags |= CLONE_FS; 3108 3109 err = check_unshare_flags(unshare_flags); 3110 if (err) 3111 goto bad_unshare_out; 3112 /* 3113 * CLONE_NEWIPC must also detach from the undolist: after switching 3114 * to a new ipc namespace, the semaphore arrays from the old 3115 * namespace are unreachable. 3116 */ 3117 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3118 do_sysvsem = 1; 3119 err = unshare_fs(unshare_flags, &new_fs); 3120 if (err) 3121 goto bad_unshare_out; 3122 err = unshare_fd(unshare_flags, &new_fd); 3123 if (err) 3124 goto bad_unshare_cleanup_fs; 3125 err = unshare_userns(unshare_flags, &new_cred); 3126 if (err) 3127 goto bad_unshare_cleanup_fd; 3128 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3129 new_cred, new_fs); 3130 if (err) 3131 goto bad_unshare_cleanup_cred; 3132 3133 if (new_cred) { 3134 err = set_cred_ucounts(new_cred); 3135 if (err) 3136 goto bad_unshare_cleanup_cred; 3137 } 3138 3139 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3140 if (do_sysvsem) { 3141 /* 3142 * CLONE_SYSVSEM is equivalent to sys_exit(). 3143 */ 3144 exit_sem(current); 3145 } 3146 if (unshare_flags & CLONE_NEWIPC) { 3147 /* Orphan segments in old ns (see sem above). */ 3148 exit_shm(current); 3149 shm_init_task(current); 3150 } 3151 3152 if (new_nsproxy) 3153 switch_task_namespaces(current, new_nsproxy); 3154 3155 task_lock(current); 3156 3157 if (new_fs) { 3158 fs = current->fs; 3159 read_seqlock_excl(&fs->seq); 3160 current->fs = new_fs; 3161 if (--fs->users) 3162 new_fs = NULL; 3163 else 3164 new_fs = fs; 3165 read_sequnlock_excl(&fs->seq); 3166 } 3167 3168 if (new_fd) 3169 swap(current->files, new_fd); 3170 3171 task_unlock(current); 3172 3173 if (new_cred) { 3174 /* Install the new user namespace */ 3175 commit_creds(new_cred); 3176 new_cred = NULL; 3177 } 3178 } 3179 3180 perf_event_namespaces(current); 3181 3182 bad_unshare_cleanup_cred: 3183 if (new_cred) 3184 put_cred(new_cred); 3185 bad_unshare_cleanup_fd: 3186 if (new_fd) 3187 put_files_struct(new_fd); 3188 3189 bad_unshare_cleanup_fs: 3190 if (new_fs) 3191 free_fs_struct(new_fs); 3192 3193 bad_unshare_out: 3194 return err; 3195 } 3196 3197 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3198 { 3199 return ksys_unshare(unshare_flags); 3200 } 3201 3202 /* 3203 * Helper to unshare the files of the current task. 3204 * We don't want to expose copy_files internals to 3205 * the exec layer of the kernel. 3206 */ 3207 3208 int unshare_files(void) 3209 { 3210 struct task_struct *task = current; 3211 struct files_struct *old, *copy = NULL; 3212 int error; 3213 3214 error = unshare_fd(CLONE_FILES, ©); 3215 if (error || !copy) 3216 return error; 3217 3218 old = task->files; 3219 task_lock(task); 3220 task->files = copy; 3221 task_unlock(task); 3222 put_files_struct(old); 3223 return 0; 3224 } 3225 3226 static int sysctl_max_threads(const struct ctl_table *table, int write, 3227 void *buffer, size_t *lenp, loff_t *ppos) 3228 { 3229 struct ctl_table t; 3230 int ret; 3231 int threads = max_threads; 3232 int min = 1; 3233 int max = MAX_THREADS; 3234 3235 t = *table; 3236 t.data = &threads; 3237 t.extra1 = &min; 3238 t.extra2 = &max; 3239 3240 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3241 if (ret || !write) 3242 return ret; 3243 3244 max_threads = threads; 3245 3246 return 0; 3247 } 3248 3249 static const struct ctl_table fork_sysctl_table[] = { 3250 { 3251 .procname = "threads-max", 3252 .data = NULL, 3253 .maxlen = sizeof(int), 3254 .mode = 0644, 3255 .proc_handler = sysctl_max_threads, 3256 }, 3257 }; 3258 3259 static int __init init_fork_sysctl(void) 3260 { 3261 register_sysctl_init("kernel", fork_sysctl_table); 3262 return 0; 3263 } 3264 3265 subsys_initcall(init_fork_sysctl); 3266