xref: /linux/kernel/exit.c (revision ccea15f45eb0ab12d658f88b5d4be005cb2bb1a7)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/posix-timers.h>
33 #include <linux/cn_proc.h>
34 #include <linux/mutex.h>
35 #include <linux/futex.h>
36 #include <linux/compat.h>
37 
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
42 
43 extern void sem_exit (void);
44 extern struct task_struct *child_reaper;
45 
46 int getrusage(struct task_struct *, int, struct rusage __user *);
47 
48 static void exit_mm(struct task_struct * tsk);
49 
50 static void __unhash_process(struct task_struct *p)
51 {
52 	nr_threads--;
53 	detach_pid(p, PIDTYPE_PID);
54 	if (thread_group_leader(p)) {
55 		detach_pid(p, PIDTYPE_PGID);
56 		detach_pid(p, PIDTYPE_SID);
57 
58 		list_del_init(&p->tasks);
59 		__get_cpu_var(process_counts)--;
60 	}
61 	list_del_rcu(&p->thread_group);
62 	remove_parent(p);
63 }
64 
65 /*
66  * This function expects the tasklist_lock write-locked.
67  */
68 static void __exit_signal(struct task_struct *tsk)
69 {
70 	struct signal_struct *sig = tsk->signal;
71 	struct sighand_struct *sighand;
72 
73 	BUG_ON(!sig);
74 	BUG_ON(!atomic_read(&sig->count));
75 
76 	rcu_read_lock();
77 	sighand = rcu_dereference(tsk->sighand);
78 	spin_lock(&sighand->siglock);
79 
80 	posix_cpu_timers_exit(tsk);
81 	if (atomic_dec_and_test(&sig->count))
82 		posix_cpu_timers_exit_group(tsk);
83 	else {
84 		/*
85 		 * If there is any task waiting for the group exit
86 		 * then notify it:
87 		 */
88 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
89 			wake_up_process(sig->group_exit_task);
90 			sig->group_exit_task = NULL;
91 		}
92 		if (tsk == sig->curr_target)
93 			sig->curr_target = next_thread(tsk);
94 		/*
95 		 * Accumulate here the counters for all threads but the
96 		 * group leader as they die, so they can be added into
97 		 * the process-wide totals when those are taken.
98 		 * The group leader stays around as a zombie as long
99 		 * as there are other threads.  When it gets reaped,
100 		 * the exit.c code will add its counts into these totals.
101 		 * We won't ever get here for the group leader, since it
102 		 * will have been the last reference on the signal_struct.
103 		 */
104 		sig->utime = cputime_add(sig->utime, tsk->utime);
105 		sig->stime = cputime_add(sig->stime, tsk->stime);
106 		sig->min_flt += tsk->min_flt;
107 		sig->maj_flt += tsk->maj_flt;
108 		sig->nvcsw += tsk->nvcsw;
109 		sig->nivcsw += tsk->nivcsw;
110 		sig->sched_time += tsk->sched_time;
111 		sig = NULL; /* Marker for below. */
112 	}
113 
114 	__unhash_process(tsk);
115 
116 	tsk->signal = NULL;
117 	tsk->sighand = NULL;
118 	spin_unlock(&sighand->siglock);
119 	rcu_read_unlock();
120 
121 	__cleanup_sighand(sighand);
122 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
123 	flush_sigqueue(&tsk->pending);
124 	if (sig) {
125 		flush_sigqueue(&sig->shared_pending);
126 		__cleanup_signal(sig);
127 	}
128 }
129 
130 static void delayed_put_task_struct(struct rcu_head *rhp)
131 {
132 	put_task_struct(container_of(rhp, struct task_struct, rcu));
133 }
134 
135 void release_task(struct task_struct * p)
136 {
137 	int zap_leader;
138 	task_t *leader;
139 	struct dentry *proc_dentry;
140 
141 repeat:
142 	atomic_dec(&p->user->processes);
143 	spin_lock(&p->proc_lock);
144 	proc_dentry = proc_pid_unhash(p);
145 	write_lock_irq(&tasklist_lock);
146 	ptrace_unlink(p);
147 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
148 	__exit_signal(p);
149 
150 	/*
151 	 * If we are the last non-leader member of the thread
152 	 * group, and the leader is zombie, then notify the
153 	 * group leader's parent process. (if it wants notification.)
154 	 */
155 	zap_leader = 0;
156 	leader = p->group_leader;
157 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
158 		BUG_ON(leader->exit_signal == -1);
159 		do_notify_parent(leader, leader->exit_signal);
160 		/*
161 		 * If we were the last child thread and the leader has
162 		 * exited already, and the leader's parent ignores SIGCHLD,
163 		 * then we are the one who should release the leader.
164 		 *
165 		 * do_notify_parent() will have marked it self-reaping in
166 		 * that case.
167 		 */
168 		zap_leader = (leader->exit_signal == -1);
169 	}
170 
171 	sched_exit(p);
172 	write_unlock_irq(&tasklist_lock);
173 	spin_unlock(&p->proc_lock);
174 	proc_pid_flush(proc_dentry);
175 	release_thread(p);
176 	call_rcu(&p->rcu, delayed_put_task_struct);
177 
178 	p = leader;
179 	if (unlikely(zap_leader))
180 		goto repeat;
181 }
182 
183 /*
184  * This checks not only the pgrp, but falls back on the pid if no
185  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
186  * without this...
187  */
188 int session_of_pgrp(int pgrp)
189 {
190 	struct task_struct *p;
191 	int sid = -1;
192 
193 	read_lock(&tasklist_lock);
194 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
195 		if (p->signal->session > 0) {
196 			sid = p->signal->session;
197 			goto out;
198 		}
199 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
200 	p = find_task_by_pid(pgrp);
201 	if (p)
202 		sid = p->signal->session;
203 out:
204 	read_unlock(&tasklist_lock);
205 
206 	return sid;
207 }
208 
209 /*
210  * Determine if a process group is "orphaned", according to the POSIX
211  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
212  * by terminal-generated stop signals.  Newly orphaned process groups are
213  * to receive a SIGHUP and a SIGCONT.
214  *
215  * "I ask you, have you ever known what it is to be an orphan?"
216  */
217 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
218 {
219 	struct task_struct *p;
220 	int ret = 1;
221 
222 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
223 		if (p == ignored_task
224 				|| p->exit_state
225 				|| p->real_parent->pid == 1)
226 			continue;
227 		if (process_group(p->real_parent) != pgrp
228 			    && p->real_parent->signal->session == p->signal->session) {
229 			ret = 0;
230 			break;
231 		}
232 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
233 	return ret;	/* (sighing) "Often!" */
234 }
235 
236 int is_orphaned_pgrp(int pgrp)
237 {
238 	int retval;
239 
240 	read_lock(&tasklist_lock);
241 	retval = will_become_orphaned_pgrp(pgrp, NULL);
242 	read_unlock(&tasklist_lock);
243 
244 	return retval;
245 }
246 
247 static int has_stopped_jobs(int pgrp)
248 {
249 	int retval = 0;
250 	struct task_struct *p;
251 
252 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
253 		if (p->state != TASK_STOPPED)
254 			continue;
255 
256 		/* If p is stopped by a debugger on a signal that won't
257 		   stop it, then don't count p as stopped.  This isn't
258 		   perfect but it's a good approximation.  */
259 		if (unlikely (p->ptrace)
260 		    && p->exit_code != SIGSTOP
261 		    && p->exit_code != SIGTSTP
262 		    && p->exit_code != SIGTTOU
263 		    && p->exit_code != SIGTTIN)
264 			continue;
265 
266 		retval = 1;
267 		break;
268 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
269 	return retval;
270 }
271 
272 /**
273  * reparent_to_init - Reparent the calling kernel thread to the init task.
274  *
275  * If a kernel thread is launched as a result of a system call, or if
276  * it ever exits, it should generally reparent itself to init so that
277  * it is correctly cleaned up on exit.
278  *
279  * The various task state such as scheduling policy and priority may have
280  * been inherited from a user process, so we reset them to sane values here.
281  *
282  * NOTE that reparent_to_init() gives the caller full capabilities.
283  */
284 static void reparent_to_init(void)
285 {
286 	write_lock_irq(&tasklist_lock);
287 
288 	ptrace_unlink(current);
289 	/* Reparent to init */
290 	remove_parent(current);
291 	current->parent = child_reaper;
292 	current->real_parent = child_reaper;
293 	add_parent(current);
294 
295 	/* Set the exit signal to SIGCHLD so we signal init on exit */
296 	current->exit_signal = SIGCHLD;
297 
298 	if ((current->policy == SCHED_NORMAL ||
299 			current->policy == SCHED_BATCH)
300 				&& (task_nice(current) < 0))
301 		set_user_nice(current, 0);
302 	/* cpus_allowed? */
303 	/* rt_priority? */
304 	/* signals? */
305 	security_task_reparent_to_init(current);
306 	memcpy(current->signal->rlim, init_task.signal->rlim,
307 	       sizeof(current->signal->rlim));
308 	atomic_inc(&(INIT_USER->__count));
309 	write_unlock_irq(&tasklist_lock);
310 	switch_uid(INIT_USER);
311 }
312 
313 void __set_special_pids(pid_t session, pid_t pgrp)
314 {
315 	struct task_struct *curr = current->group_leader;
316 
317 	if (curr->signal->session != session) {
318 		detach_pid(curr, PIDTYPE_SID);
319 		curr->signal->session = session;
320 		attach_pid(curr, PIDTYPE_SID, session);
321 	}
322 	if (process_group(curr) != pgrp) {
323 		detach_pid(curr, PIDTYPE_PGID);
324 		curr->signal->pgrp = pgrp;
325 		attach_pid(curr, PIDTYPE_PGID, pgrp);
326 	}
327 }
328 
329 void set_special_pids(pid_t session, pid_t pgrp)
330 {
331 	write_lock_irq(&tasklist_lock);
332 	__set_special_pids(session, pgrp);
333 	write_unlock_irq(&tasklist_lock);
334 }
335 
336 /*
337  * Let kernel threads use this to say that they
338  * allow a certain signal (since daemonize() will
339  * have disabled all of them by default).
340  */
341 int allow_signal(int sig)
342 {
343 	if (!valid_signal(sig) || sig < 1)
344 		return -EINVAL;
345 
346 	spin_lock_irq(&current->sighand->siglock);
347 	sigdelset(&current->blocked, sig);
348 	if (!current->mm) {
349 		/* Kernel threads handle their own signals.
350 		   Let the signal code know it'll be handled, so
351 		   that they don't get converted to SIGKILL or
352 		   just silently dropped */
353 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
354 	}
355 	recalc_sigpending();
356 	spin_unlock_irq(&current->sighand->siglock);
357 	return 0;
358 }
359 
360 EXPORT_SYMBOL(allow_signal);
361 
362 int disallow_signal(int sig)
363 {
364 	if (!valid_signal(sig) || sig < 1)
365 		return -EINVAL;
366 
367 	spin_lock_irq(&current->sighand->siglock);
368 	sigaddset(&current->blocked, sig);
369 	recalc_sigpending();
370 	spin_unlock_irq(&current->sighand->siglock);
371 	return 0;
372 }
373 
374 EXPORT_SYMBOL(disallow_signal);
375 
376 /*
377  *	Put all the gunge required to become a kernel thread without
378  *	attached user resources in one place where it belongs.
379  */
380 
381 void daemonize(const char *name, ...)
382 {
383 	va_list args;
384 	struct fs_struct *fs;
385 	sigset_t blocked;
386 
387 	va_start(args, name);
388 	vsnprintf(current->comm, sizeof(current->comm), name, args);
389 	va_end(args);
390 
391 	/*
392 	 * If we were started as result of loading a module, close all of the
393 	 * user space pages.  We don't need them, and if we didn't close them
394 	 * they would be locked into memory.
395 	 */
396 	exit_mm(current);
397 
398 	set_special_pids(1, 1);
399 	mutex_lock(&tty_mutex);
400 	current->signal->tty = NULL;
401 	mutex_unlock(&tty_mutex);
402 
403 	/* Block and flush all signals */
404 	sigfillset(&blocked);
405 	sigprocmask(SIG_BLOCK, &blocked, NULL);
406 	flush_signals(current);
407 
408 	/* Become as one with the init task */
409 
410 	exit_fs(current);	/* current->fs->count--; */
411 	fs = init_task.fs;
412 	current->fs = fs;
413 	atomic_inc(&fs->count);
414 	exit_namespace(current);
415 	current->namespace = init_task.namespace;
416 	get_namespace(current->namespace);
417  	exit_files(current);
418 	current->files = init_task.files;
419 	atomic_inc(&current->files->count);
420 
421 	reparent_to_init();
422 }
423 
424 EXPORT_SYMBOL(daemonize);
425 
426 static void close_files(struct files_struct * files)
427 {
428 	int i, j;
429 	struct fdtable *fdt;
430 
431 	j = 0;
432 
433 	/*
434 	 * It is safe to dereference the fd table without RCU or
435 	 * ->file_lock because this is the last reference to the
436 	 * files structure.
437 	 */
438 	fdt = files_fdtable(files);
439 	for (;;) {
440 		unsigned long set;
441 		i = j * __NFDBITS;
442 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
443 			break;
444 		set = fdt->open_fds->fds_bits[j++];
445 		while (set) {
446 			if (set & 1) {
447 				struct file * file = xchg(&fdt->fd[i], NULL);
448 				if (file)
449 					filp_close(file, files);
450 			}
451 			i++;
452 			set >>= 1;
453 		}
454 	}
455 }
456 
457 struct files_struct *get_files_struct(struct task_struct *task)
458 {
459 	struct files_struct *files;
460 
461 	task_lock(task);
462 	files = task->files;
463 	if (files)
464 		atomic_inc(&files->count);
465 	task_unlock(task);
466 
467 	return files;
468 }
469 
470 void fastcall put_files_struct(struct files_struct *files)
471 {
472 	struct fdtable *fdt;
473 
474 	if (atomic_dec_and_test(&files->count)) {
475 		close_files(files);
476 		/*
477 		 * Free the fd and fdset arrays if we expanded them.
478 		 * If the fdtable was embedded, pass files for freeing
479 		 * at the end of the RCU grace period. Otherwise,
480 		 * you can free files immediately.
481 		 */
482 		fdt = files_fdtable(files);
483 		if (fdt == &files->fdtab)
484 			fdt->free_files = files;
485 		else
486 			kmem_cache_free(files_cachep, files);
487 		free_fdtable(fdt);
488 	}
489 }
490 
491 EXPORT_SYMBOL(put_files_struct);
492 
493 static inline void __exit_files(struct task_struct *tsk)
494 {
495 	struct files_struct * files = tsk->files;
496 
497 	if (files) {
498 		task_lock(tsk);
499 		tsk->files = NULL;
500 		task_unlock(tsk);
501 		put_files_struct(files);
502 	}
503 }
504 
505 void exit_files(struct task_struct *tsk)
506 {
507 	__exit_files(tsk);
508 }
509 
510 static inline void __put_fs_struct(struct fs_struct *fs)
511 {
512 	/* No need to hold fs->lock if we are killing it */
513 	if (atomic_dec_and_test(&fs->count)) {
514 		dput(fs->root);
515 		mntput(fs->rootmnt);
516 		dput(fs->pwd);
517 		mntput(fs->pwdmnt);
518 		if (fs->altroot) {
519 			dput(fs->altroot);
520 			mntput(fs->altrootmnt);
521 		}
522 		kmem_cache_free(fs_cachep, fs);
523 	}
524 }
525 
526 void put_fs_struct(struct fs_struct *fs)
527 {
528 	__put_fs_struct(fs);
529 }
530 
531 static inline void __exit_fs(struct task_struct *tsk)
532 {
533 	struct fs_struct * fs = tsk->fs;
534 
535 	if (fs) {
536 		task_lock(tsk);
537 		tsk->fs = NULL;
538 		task_unlock(tsk);
539 		__put_fs_struct(fs);
540 	}
541 }
542 
543 void exit_fs(struct task_struct *tsk)
544 {
545 	__exit_fs(tsk);
546 }
547 
548 EXPORT_SYMBOL_GPL(exit_fs);
549 
550 /*
551  * Turn us into a lazy TLB process if we
552  * aren't already..
553  */
554 static void exit_mm(struct task_struct * tsk)
555 {
556 	struct mm_struct *mm = tsk->mm;
557 
558 	mm_release(tsk, mm);
559 	if (!mm)
560 		return;
561 	/*
562 	 * Serialize with any possible pending coredump.
563 	 * We must hold mmap_sem around checking core_waiters
564 	 * and clearing tsk->mm.  The core-inducing thread
565 	 * will increment core_waiters for each thread in the
566 	 * group with ->mm != NULL.
567 	 */
568 	down_read(&mm->mmap_sem);
569 	if (mm->core_waiters) {
570 		up_read(&mm->mmap_sem);
571 		down_write(&mm->mmap_sem);
572 		if (!--mm->core_waiters)
573 			complete(mm->core_startup_done);
574 		up_write(&mm->mmap_sem);
575 
576 		wait_for_completion(&mm->core_done);
577 		down_read(&mm->mmap_sem);
578 	}
579 	atomic_inc(&mm->mm_count);
580 	if (mm != tsk->active_mm) BUG();
581 	/* more a memory barrier than a real lock */
582 	task_lock(tsk);
583 	tsk->mm = NULL;
584 	up_read(&mm->mmap_sem);
585 	enter_lazy_tlb(mm, current);
586 	task_unlock(tsk);
587 	mmput(mm);
588 }
589 
590 static inline void choose_new_parent(task_t *p, task_t *reaper)
591 {
592 	/*
593 	 * Make sure we're not reparenting to ourselves and that
594 	 * the parent is not a zombie.
595 	 */
596 	BUG_ON(p == reaper || reaper->exit_state);
597 	p->real_parent = reaper;
598 }
599 
600 static void reparent_thread(task_t *p, task_t *father, int traced)
601 {
602 	/* We don't want people slaying init.  */
603 	if (p->exit_signal != -1)
604 		p->exit_signal = SIGCHLD;
605 
606 	if (p->pdeath_signal)
607 		/* We already hold the tasklist_lock here.  */
608 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
609 
610 	/* Move the child from its dying parent to the new one.  */
611 	if (unlikely(traced)) {
612 		/* Preserve ptrace links if someone else is tracing this child.  */
613 		list_del_init(&p->ptrace_list);
614 		if (p->parent != p->real_parent)
615 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
616 	} else {
617 		/* If this child is being traced, then we're the one tracing it
618 		 * anyway, so let go of it.
619 		 */
620 		p->ptrace = 0;
621 		remove_parent(p);
622 		p->parent = p->real_parent;
623 		add_parent(p);
624 
625 		/* If we'd notified the old parent about this child's death,
626 		 * also notify the new parent.
627 		 */
628 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
629 		    thread_group_empty(p))
630 			do_notify_parent(p, p->exit_signal);
631 		else if (p->state == TASK_TRACED) {
632 			/*
633 			 * If it was at a trace stop, turn it into
634 			 * a normal stop since it's no longer being
635 			 * traced.
636 			 */
637 			ptrace_untrace(p);
638 		}
639 	}
640 
641 	/*
642 	 * process group orphan check
643 	 * Case ii: Our child is in a different pgrp
644 	 * than we are, and it was the only connection
645 	 * outside, so the child pgrp is now orphaned.
646 	 */
647 	if ((process_group(p) != process_group(father)) &&
648 	    (p->signal->session == father->signal->session)) {
649 		int pgrp = process_group(p);
650 
651 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
652 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
653 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
654 		}
655 	}
656 }
657 
658 /*
659  * When we die, we re-parent all our children.
660  * Try to give them to another thread in our thread
661  * group, and if no such member exists, give it to
662  * the global child reaper process (ie "init")
663  */
664 static void forget_original_parent(struct task_struct * father,
665 					  struct list_head *to_release)
666 {
667 	struct task_struct *p, *reaper = father;
668 	struct list_head *_p, *_n;
669 
670 	do {
671 		reaper = next_thread(reaper);
672 		if (reaper == father) {
673 			reaper = child_reaper;
674 			break;
675 		}
676 	} while (reaper->exit_state);
677 
678 	/*
679 	 * There are only two places where our children can be:
680 	 *
681 	 * - in our child list
682 	 * - in our ptraced child list
683 	 *
684 	 * Search them and reparent children.
685 	 */
686 	list_for_each_safe(_p, _n, &father->children) {
687 		int ptrace;
688 		p = list_entry(_p,struct task_struct,sibling);
689 
690 		ptrace = p->ptrace;
691 
692 		/* if father isn't the real parent, then ptrace must be enabled */
693 		BUG_ON(father != p->real_parent && !ptrace);
694 
695 		if (father == p->real_parent) {
696 			/* reparent with a reaper, real father it's us */
697 			choose_new_parent(p, reaper);
698 			reparent_thread(p, father, 0);
699 		} else {
700 			/* reparent ptraced task to its real parent */
701 			__ptrace_unlink (p);
702 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
703 			    thread_group_empty(p))
704 				do_notify_parent(p, p->exit_signal);
705 		}
706 
707 		/*
708 		 * if the ptraced child is a zombie with exit_signal == -1
709 		 * we must collect it before we exit, or it will remain
710 		 * zombie forever since we prevented it from self-reap itself
711 		 * while it was being traced by us, to be able to see it in wait4.
712 		 */
713 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
714 			list_add(&p->ptrace_list, to_release);
715 	}
716 	list_for_each_safe(_p, _n, &father->ptrace_children) {
717 		p = list_entry(_p,struct task_struct,ptrace_list);
718 		choose_new_parent(p, reaper);
719 		reparent_thread(p, father, 1);
720 	}
721 }
722 
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk)
728 {
729 	int state;
730 	struct task_struct *t;
731 	struct list_head ptrace_dead, *_p, *_n;
732 
733 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
734 	    && !thread_group_empty(tsk)) {
735 		/*
736 		 * This occurs when there was a race between our exit
737 		 * syscall and a group signal choosing us as the one to
738 		 * wake up.  It could be that we are the only thread
739 		 * alerted to check for pending signals, but another thread
740 		 * should be woken now to take the signal since we will not.
741 		 * Now we'll wake all the threads in the group just to make
742 		 * sure someone gets all the pending signals.
743 		 */
744 		read_lock(&tasklist_lock);
745 		spin_lock_irq(&tsk->sighand->siglock);
746 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
747 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
748 				recalc_sigpending_tsk(t);
749 				if (signal_pending(t))
750 					signal_wake_up(t, 0);
751 			}
752 		spin_unlock_irq(&tsk->sighand->siglock);
753 		read_unlock(&tasklist_lock);
754 	}
755 
756 	write_lock_irq(&tasklist_lock);
757 
758 	/*
759 	 * This does two things:
760 	 *
761   	 * A.  Make init inherit all the child processes
762 	 * B.  Check to see if any process groups have become orphaned
763 	 *	as a result of our exiting, and if they have any stopped
764 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
765 	 */
766 
767 	INIT_LIST_HEAD(&ptrace_dead);
768 	forget_original_parent(tsk, &ptrace_dead);
769 	BUG_ON(!list_empty(&tsk->children));
770 	BUG_ON(!list_empty(&tsk->ptrace_children));
771 
772 	/*
773 	 * Check to see if any process groups have become orphaned
774 	 * as a result of our exiting, and if they have any stopped
775 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
776 	 *
777 	 * Case i: Our father is in a different pgrp than we are
778 	 * and we were the only connection outside, so our pgrp
779 	 * is about to become orphaned.
780 	 */
781 
782 	t = tsk->real_parent;
783 
784 	if ((process_group(t) != process_group(tsk)) &&
785 	    (t->signal->session == tsk->signal->session) &&
786 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
787 	    has_stopped_jobs(process_group(tsk))) {
788 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
789 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
790 	}
791 
792 	/* Let father know we died
793 	 *
794 	 * Thread signals are configurable, but you aren't going to use
795 	 * that to send signals to arbitary processes.
796 	 * That stops right now.
797 	 *
798 	 * If the parent exec id doesn't match the exec id we saved
799 	 * when we started then we know the parent has changed security
800 	 * domain.
801 	 *
802 	 * If our self_exec id doesn't match our parent_exec_id then
803 	 * we have changed execution domain as these two values started
804 	 * the same after a fork.
805 	 *
806 	 */
807 
808 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
809 	    ( tsk->parent_exec_id != t->self_exec_id  ||
810 	      tsk->self_exec_id != tsk->parent_exec_id)
811 	    && !capable(CAP_KILL))
812 		tsk->exit_signal = SIGCHLD;
813 
814 
815 	/* If something other than our normal parent is ptracing us, then
816 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
817 	 * only has special meaning to our real parent.
818 	 */
819 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
820 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
821 		do_notify_parent(tsk, signal);
822 	} else if (tsk->ptrace) {
823 		do_notify_parent(tsk, SIGCHLD);
824 	}
825 
826 	state = EXIT_ZOMBIE;
827 	if (tsk->exit_signal == -1 &&
828 	    (likely(tsk->ptrace == 0) ||
829 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
830 		state = EXIT_DEAD;
831 	tsk->exit_state = state;
832 
833 	write_unlock_irq(&tasklist_lock);
834 
835 	list_for_each_safe(_p, _n, &ptrace_dead) {
836 		list_del_init(_p);
837 		t = list_entry(_p,struct task_struct,ptrace_list);
838 		release_task(t);
839 	}
840 
841 	/* If the process is dead, release it - nobody will wait for it */
842 	if (state == EXIT_DEAD)
843 		release_task(tsk);
844 }
845 
846 fastcall NORET_TYPE void do_exit(long code)
847 {
848 	struct task_struct *tsk = current;
849 	int group_dead;
850 
851 	profile_task_exit(tsk);
852 
853 	WARN_ON(atomic_read(&tsk->fs_excl));
854 
855 	if (unlikely(in_interrupt()))
856 		panic("Aiee, killing interrupt handler!");
857 	if (unlikely(!tsk->pid))
858 		panic("Attempted to kill the idle task!");
859 	if (unlikely(tsk == child_reaper))
860 		panic("Attempted to kill init!");
861 
862 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
863 		current->ptrace_message = code;
864 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
865 	}
866 
867 	/*
868 	 * We're taking recursive faults here in do_exit. Safest is to just
869 	 * leave this task alone and wait for reboot.
870 	 */
871 	if (unlikely(tsk->flags & PF_EXITING)) {
872 		printk(KERN_ALERT
873 			"Fixing recursive fault but reboot is needed!\n");
874 		if (tsk->io_context)
875 			exit_io_context();
876 		set_current_state(TASK_UNINTERRUPTIBLE);
877 		schedule();
878 	}
879 
880 	tsk->flags |= PF_EXITING;
881 
882 	/*
883 	 * Make sure we don't try to process any timer firings
884 	 * while we are already exiting.
885 	 */
886  	tsk->it_virt_expires = cputime_zero;
887  	tsk->it_prof_expires = cputime_zero;
888 	tsk->it_sched_expires = 0;
889 
890 	if (unlikely(in_atomic()))
891 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
892 				current->comm, current->pid,
893 				preempt_count());
894 
895 	acct_update_integrals(tsk);
896 	if (tsk->mm) {
897 		update_hiwater_rss(tsk->mm);
898 		update_hiwater_vm(tsk->mm);
899 	}
900 	group_dead = atomic_dec_and_test(&tsk->signal->live);
901 	if (group_dead) {
902  		hrtimer_cancel(&tsk->signal->real_timer);
903 		exit_itimers(tsk->signal);
904 		acct_process(code);
905 	}
906 	if (unlikely(tsk->robust_list))
907 		exit_robust_list(tsk);
908 #ifdef CONFIG_COMPAT
909 	if (unlikely(tsk->compat_robust_list))
910 		compat_exit_robust_list(tsk);
911 #endif
912 	exit_mm(tsk);
913 
914 	exit_sem(tsk);
915 	__exit_files(tsk);
916 	__exit_fs(tsk);
917 	exit_namespace(tsk);
918 	exit_thread();
919 	cpuset_exit(tsk);
920 	exit_keys(tsk);
921 
922 	if (group_dead && tsk->signal->leader)
923 		disassociate_ctty(1);
924 
925 	module_put(task_thread_info(tsk)->exec_domain->module);
926 	if (tsk->binfmt)
927 		module_put(tsk->binfmt->module);
928 
929 	tsk->exit_code = code;
930 	proc_exit_connector(tsk);
931 	exit_notify(tsk);
932 #ifdef CONFIG_NUMA
933 	mpol_free(tsk->mempolicy);
934 	tsk->mempolicy = NULL;
935 #endif
936 	/*
937 	 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
938 	 */
939 	mutex_debug_check_no_locks_held(tsk);
940 
941 	if (tsk->io_context)
942 		exit_io_context();
943 
944 	/* PF_DEAD causes final put_task_struct after we schedule. */
945 	preempt_disable();
946 	BUG_ON(tsk->flags & PF_DEAD);
947 	tsk->flags |= PF_DEAD;
948 
949 	schedule();
950 	BUG();
951 	/* Avoid "noreturn function does return".  */
952 	for (;;) ;
953 }
954 
955 EXPORT_SYMBOL_GPL(do_exit);
956 
957 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
958 {
959 	if (comp)
960 		complete(comp);
961 
962 	do_exit(code);
963 }
964 
965 EXPORT_SYMBOL(complete_and_exit);
966 
967 asmlinkage long sys_exit(int error_code)
968 {
969 	do_exit((error_code&0xff)<<8);
970 }
971 
972 /*
973  * Take down every thread in the group.  This is called by fatal signals
974  * as well as by sys_exit_group (below).
975  */
976 NORET_TYPE void
977 do_group_exit(int exit_code)
978 {
979 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
980 
981 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
982 		exit_code = current->signal->group_exit_code;
983 	else if (!thread_group_empty(current)) {
984 		struct signal_struct *const sig = current->signal;
985 		struct sighand_struct *const sighand = current->sighand;
986 		spin_lock_irq(&sighand->siglock);
987 		if (sig->flags & SIGNAL_GROUP_EXIT)
988 			/* Another thread got here before we took the lock.  */
989 			exit_code = sig->group_exit_code;
990 		else {
991 			sig->group_exit_code = exit_code;
992 			zap_other_threads(current);
993 		}
994 		spin_unlock_irq(&sighand->siglock);
995 	}
996 
997 	do_exit(exit_code);
998 	/* NOTREACHED */
999 }
1000 
1001 /*
1002  * this kills every thread in the thread group. Note that any externally
1003  * wait4()-ing process will get the correct exit code - even if this
1004  * thread is not the thread group leader.
1005  */
1006 asmlinkage void sys_exit_group(int error_code)
1007 {
1008 	do_group_exit((error_code & 0xff) << 8);
1009 }
1010 
1011 static int eligible_child(pid_t pid, int options, task_t *p)
1012 {
1013 	if (pid > 0) {
1014 		if (p->pid != pid)
1015 			return 0;
1016 	} else if (!pid) {
1017 		if (process_group(p) != process_group(current))
1018 			return 0;
1019 	} else if (pid != -1) {
1020 		if (process_group(p) != -pid)
1021 			return 0;
1022 	}
1023 
1024 	/*
1025 	 * Do not consider detached threads that are
1026 	 * not ptraced:
1027 	 */
1028 	if (p->exit_signal == -1 && !p->ptrace)
1029 		return 0;
1030 
1031 	/* Wait for all children (clone and not) if __WALL is set;
1032 	 * otherwise, wait for clone children *only* if __WCLONE is
1033 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1034 	 * A "clone" child here is one that reports to its parent
1035 	 * using a signal other than SIGCHLD.) */
1036 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1037 	    && !(options & __WALL))
1038 		return 0;
1039 	/*
1040 	 * Do not consider thread group leaders that are
1041 	 * in a non-empty thread group:
1042 	 */
1043 	if (current->tgid != p->tgid && delay_group_leader(p))
1044 		return 2;
1045 
1046 	if (security_task_wait(p))
1047 		return 0;
1048 
1049 	return 1;
1050 }
1051 
1052 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1053 			       int why, int status,
1054 			       struct siginfo __user *infop,
1055 			       struct rusage __user *rusagep)
1056 {
1057 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1058 	put_task_struct(p);
1059 	if (!retval)
1060 		retval = put_user(SIGCHLD, &infop->si_signo);
1061 	if (!retval)
1062 		retval = put_user(0, &infop->si_errno);
1063 	if (!retval)
1064 		retval = put_user((short)why, &infop->si_code);
1065 	if (!retval)
1066 		retval = put_user(pid, &infop->si_pid);
1067 	if (!retval)
1068 		retval = put_user(uid, &infop->si_uid);
1069 	if (!retval)
1070 		retval = put_user(status, &infop->si_status);
1071 	if (!retval)
1072 		retval = pid;
1073 	return retval;
1074 }
1075 
1076 /*
1077  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1078  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1079  * the lock and this task is uninteresting.  If we return nonzero, we have
1080  * released the lock and the system call should return.
1081  */
1082 static int wait_task_zombie(task_t *p, int noreap,
1083 			    struct siginfo __user *infop,
1084 			    int __user *stat_addr, struct rusage __user *ru)
1085 {
1086 	unsigned long state;
1087 	int retval;
1088 	int status;
1089 
1090 	if (unlikely(noreap)) {
1091 		pid_t pid = p->pid;
1092 		uid_t uid = p->uid;
1093 		int exit_code = p->exit_code;
1094 		int why, status;
1095 
1096 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1097 			return 0;
1098 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1099 			return 0;
1100 		get_task_struct(p);
1101 		read_unlock(&tasklist_lock);
1102 		if ((exit_code & 0x7f) == 0) {
1103 			why = CLD_EXITED;
1104 			status = exit_code >> 8;
1105 		} else {
1106 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1107 			status = exit_code & 0x7f;
1108 		}
1109 		return wait_noreap_copyout(p, pid, uid, why,
1110 					   status, infop, ru);
1111 	}
1112 
1113 	/*
1114 	 * Try to move the task's state to DEAD
1115 	 * only one thread is allowed to do this:
1116 	 */
1117 	state = xchg(&p->exit_state, EXIT_DEAD);
1118 	if (state != EXIT_ZOMBIE) {
1119 		BUG_ON(state != EXIT_DEAD);
1120 		return 0;
1121 	}
1122 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1123 		/*
1124 		 * This can only happen in a race with a ptraced thread
1125 		 * dying on another processor.
1126 		 */
1127 		return 0;
1128 	}
1129 
1130 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1131 		struct signal_struct *psig;
1132 		struct signal_struct *sig;
1133 
1134 		/*
1135 		 * The resource counters for the group leader are in its
1136 		 * own task_struct.  Those for dead threads in the group
1137 		 * are in its signal_struct, as are those for the child
1138 		 * processes it has previously reaped.  All these
1139 		 * accumulate in the parent's signal_struct c* fields.
1140 		 *
1141 		 * We don't bother to take a lock here to protect these
1142 		 * p->signal fields, because they are only touched by
1143 		 * __exit_signal, which runs with tasklist_lock
1144 		 * write-locked anyway, and so is excluded here.  We do
1145 		 * need to protect the access to p->parent->signal fields,
1146 		 * as other threads in the parent group can be right
1147 		 * here reaping other children at the same time.
1148 		 */
1149 		spin_lock_irq(&p->parent->sighand->siglock);
1150 		psig = p->parent->signal;
1151 		sig = p->signal;
1152 		psig->cutime =
1153 			cputime_add(psig->cutime,
1154 			cputime_add(p->utime,
1155 			cputime_add(sig->utime,
1156 				    sig->cutime)));
1157 		psig->cstime =
1158 			cputime_add(psig->cstime,
1159 			cputime_add(p->stime,
1160 			cputime_add(sig->stime,
1161 				    sig->cstime)));
1162 		psig->cmin_flt +=
1163 			p->min_flt + sig->min_flt + sig->cmin_flt;
1164 		psig->cmaj_flt +=
1165 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1166 		psig->cnvcsw +=
1167 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1168 		psig->cnivcsw +=
1169 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1170 		spin_unlock_irq(&p->parent->sighand->siglock);
1171 	}
1172 
1173 	/*
1174 	 * Now we are sure this task is interesting, and no other
1175 	 * thread can reap it because we set its state to EXIT_DEAD.
1176 	 */
1177 	read_unlock(&tasklist_lock);
1178 
1179 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1180 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1181 		? p->signal->group_exit_code : p->exit_code;
1182 	if (!retval && stat_addr)
1183 		retval = put_user(status, stat_addr);
1184 	if (!retval && infop)
1185 		retval = put_user(SIGCHLD, &infop->si_signo);
1186 	if (!retval && infop)
1187 		retval = put_user(0, &infop->si_errno);
1188 	if (!retval && infop) {
1189 		int why;
1190 
1191 		if ((status & 0x7f) == 0) {
1192 			why = CLD_EXITED;
1193 			status >>= 8;
1194 		} else {
1195 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196 			status &= 0x7f;
1197 		}
1198 		retval = put_user((short)why, &infop->si_code);
1199 		if (!retval)
1200 			retval = put_user(status, &infop->si_status);
1201 	}
1202 	if (!retval && infop)
1203 		retval = put_user(p->pid, &infop->si_pid);
1204 	if (!retval && infop)
1205 		retval = put_user(p->uid, &infop->si_uid);
1206 	if (retval) {
1207 		// TODO: is this safe?
1208 		p->exit_state = EXIT_ZOMBIE;
1209 		return retval;
1210 	}
1211 	retval = p->pid;
1212 	if (p->real_parent != p->parent) {
1213 		write_lock_irq(&tasklist_lock);
1214 		/* Double-check with lock held.  */
1215 		if (p->real_parent != p->parent) {
1216 			__ptrace_unlink(p);
1217 			// TODO: is this safe?
1218 			p->exit_state = EXIT_ZOMBIE;
1219 			/*
1220 			 * If this is not a detached task, notify the parent.
1221 			 * If it's still not detached after that, don't release
1222 			 * it now.
1223 			 */
1224 			if (p->exit_signal != -1) {
1225 				do_notify_parent(p, p->exit_signal);
1226 				if (p->exit_signal != -1)
1227 					p = NULL;
1228 			}
1229 		}
1230 		write_unlock_irq(&tasklist_lock);
1231 	}
1232 	if (p != NULL)
1233 		release_task(p);
1234 	BUG_ON(!retval);
1235 	return retval;
1236 }
1237 
1238 /*
1239  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1240  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1241  * the lock and this task is uninteresting.  If we return nonzero, we have
1242  * released the lock and the system call should return.
1243  */
1244 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1245 			     struct siginfo __user *infop,
1246 			     int __user *stat_addr, struct rusage __user *ru)
1247 {
1248 	int retval, exit_code;
1249 
1250 	if (!p->exit_code)
1251 		return 0;
1252 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1253 	    p->signal && p->signal->group_stop_count > 0)
1254 		/*
1255 		 * A group stop is in progress and this is the group leader.
1256 		 * We won't report until all threads have stopped.
1257 		 */
1258 		return 0;
1259 
1260 	/*
1261 	 * Now we are pretty sure this task is interesting.
1262 	 * Make sure it doesn't get reaped out from under us while we
1263 	 * give up the lock and then examine it below.  We don't want to
1264 	 * keep holding onto the tasklist_lock while we call getrusage and
1265 	 * possibly take page faults for user memory.
1266 	 */
1267 	get_task_struct(p);
1268 	read_unlock(&tasklist_lock);
1269 
1270 	if (unlikely(noreap)) {
1271 		pid_t pid = p->pid;
1272 		uid_t uid = p->uid;
1273 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1274 
1275 		exit_code = p->exit_code;
1276 		if (unlikely(!exit_code) ||
1277 		    unlikely(p->state & TASK_TRACED))
1278 			goto bail_ref;
1279 		return wait_noreap_copyout(p, pid, uid,
1280 					   why, (exit_code << 8) | 0x7f,
1281 					   infop, ru);
1282 	}
1283 
1284 	write_lock_irq(&tasklist_lock);
1285 
1286 	/*
1287 	 * This uses xchg to be atomic with the thread resuming and setting
1288 	 * it.  It must also be done with the write lock held to prevent a
1289 	 * race with the EXIT_ZOMBIE case.
1290 	 */
1291 	exit_code = xchg(&p->exit_code, 0);
1292 	if (unlikely(p->exit_state)) {
1293 		/*
1294 		 * The task resumed and then died.  Let the next iteration
1295 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1296 		 * already be zero here if it resumed and did _exit(0).
1297 		 * The task itself is dead and won't touch exit_code again;
1298 		 * other processors in this function are locked out.
1299 		 */
1300 		p->exit_code = exit_code;
1301 		exit_code = 0;
1302 	}
1303 	if (unlikely(exit_code == 0)) {
1304 		/*
1305 		 * Another thread in this function got to it first, or it
1306 		 * resumed, or it resumed and then died.
1307 		 */
1308 		write_unlock_irq(&tasklist_lock);
1309 bail_ref:
1310 		put_task_struct(p);
1311 		/*
1312 		 * We are returning to the wait loop without having successfully
1313 		 * removed the process and having released the lock. We cannot
1314 		 * continue, since the "p" task pointer is potentially stale.
1315 		 *
1316 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1317 		 * beginning. Do _not_ re-acquire the lock.
1318 		 */
1319 		return -EAGAIN;
1320 	}
1321 
1322 	/* move to end of parent's list to avoid starvation */
1323 	remove_parent(p);
1324 	add_parent(p);
1325 
1326 	write_unlock_irq(&tasklist_lock);
1327 
1328 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1329 	if (!retval && stat_addr)
1330 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1331 	if (!retval && infop)
1332 		retval = put_user(SIGCHLD, &infop->si_signo);
1333 	if (!retval && infop)
1334 		retval = put_user(0, &infop->si_errno);
1335 	if (!retval && infop)
1336 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1337 					  ? CLD_TRAPPED : CLD_STOPPED),
1338 				  &infop->si_code);
1339 	if (!retval && infop)
1340 		retval = put_user(exit_code, &infop->si_status);
1341 	if (!retval && infop)
1342 		retval = put_user(p->pid, &infop->si_pid);
1343 	if (!retval && infop)
1344 		retval = put_user(p->uid, &infop->si_uid);
1345 	if (!retval)
1346 		retval = p->pid;
1347 	put_task_struct(p);
1348 
1349 	BUG_ON(!retval);
1350 	return retval;
1351 }
1352 
1353 /*
1354  * Handle do_wait work for one task in a live, non-stopped state.
1355  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1356  * the lock and this task is uninteresting.  If we return nonzero, we have
1357  * released the lock and the system call should return.
1358  */
1359 static int wait_task_continued(task_t *p, int noreap,
1360 			       struct siginfo __user *infop,
1361 			       int __user *stat_addr, struct rusage __user *ru)
1362 {
1363 	int retval;
1364 	pid_t pid;
1365 	uid_t uid;
1366 
1367 	if (unlikely(!p->signal))
1368 		return 0;
1369 
1370 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1371 		return 0;
1372 
1373 	spin_lock_irq(&p->sighand->siglock);
1374 	/* Re-check with the lock held.  */
1375 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1376 		spin_unlock_irq(&p->sighand->siglock);
1377 		return 0;
1378 	}
1379 	if (!noreap)
1380 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1381 	spin_unlock_irq(&p->sighand->siglock);
1382 
1383 	pid = p->pid;
1384 	uid = p->uid;
1385 	get_task_struct(p);
1386 	read_unlock(&tasklist_lock);
1387 
1388 	if (!infop) {
1389 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1390 		put_task_struct(p);
1391 		if (!retval && stat_addr)
1392 			retval = put_user(0xffff, stat_addr);
1393 		if (!retval)
1394 			retval = p->pid;
1395 	} else {
1396 		retval = wait_noreap_copyout(p, pid, uid,
1397 					     CLD_CONTINUED, SIGCONT,
1398 					     infop, ru);
1399 		BUG_ON(retval == 0);
1400 	}
1401 
1402 	return retval;
1403 }
1404 
1405 
1406 static inline int my_ptrace_child(struct task_struct *p)
1407 {
1408 	if (!(p->ptrace & PT_PTRACED))
1409 		return 0;
1410 	if (!(p->ptrace & PT_ATTACHED))
1411 		return 1;
1412 	/*
1413 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1414 	 * we are the attacher.  If we are the real parent, this is a race
1415 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1416 	 * which we have to switch the parent links, but has already set
1417 	 * the flags in p->ptrace.
1418 	 */
1419 	return (p->parent != p->real_parent);
1420 }
1421 
1422 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1423 		    int __user *stat_addr, struct rusage __user *ru)
1424 {
1425 	DECLARE_WAITQUEUE(wait, current);
1426 	struct task_struct *tsk;
1427 	int flag, retval;
1428 
1429 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1430 repeat:
1431 	/*
1432 	 * We will set this flag if we see any child that might later
1433 	 * match our criteria, even if we are not able to reap it yet.
1434 	 */
1435 	flag = 0;
1436 	current->state = TASK_INTERRUPTIBLE;
1437 	read_lock(&tasklist_lock);
1438 	tsk = current;
1439 	do {
1440 		struct task_struct *p;
1441 		struct list_head *_p;
1442 		int ret;
1443 
1444 		list_for_each(_p,&tsk->children) {
1445 			p = list_entry(_p,struct task_struct,sibling);
1446 
1447 			ret = eligible_child(pid, options, p);
1448 			if (!ret)
1449 				continue;
1450 
1451 			switch (p->state) {
1452 			case TASK_TRACED:
1453 				/*
1454 				 * When we hit the race with PTRACE_ATTACH,
1455 				 * we will not report this child.  But the
1456 				 * race means it has not yet been moved to
1457 				 * our ptrace_children list, so we need to
1458 				 * set the flag here to avoid a spurious ECHILD
1459 				 * when the race happens with the only child.
1460 				 */
1461 				flag = 1;
1462 				if (!my_ptrace_child(p))
1463 					continue;
1464 				/*FALLTHROUGH*/
1465 			case TASK_STOPPED:
1466 				/*
1467 				 * It's stopped now, so it might later
1468 				 * continue, exit, or stop again.
1469 				 */
1470 				flag = 1;
1471 				if (!(options & WUNTRACED) &&
1472 				    !my_ptrace_child(p))
1473 					continue;
1474 				retval = wait_task_stopped(p, ret == 2,
1475 							   (options & WNOWAIT),
1476 							   infop,
1477 							   stat_addr, ru);
1478 				if (retval == -EAGAIN)
1479 					goto repeat;
1480 				if (retval != 0) /* He released the lock.  */
1481 					goto end;
1482 				break;
1483 			default:
1484 			// case EXIT_DEAD:
1485 				if (p->exit_state == EXIT_DEAD)
1486 					continue;
1487 			// case EXIT_ZOMBIE:
1488 				if (p->exit_state == EXIT_ZOMBIE) {
1489 					/*
1490 					 * Eligible but we cannot release
1491 					 * it yet:
1492 					 */
1493 					if (ret == 2)
1494 						goto check_continued;
1495 					if (!likely(options & WEXITED))
1496 						continue;
1497 					retval = wait_task_zombie(
1498 						p, (options & WNOWAIT),
1499 						infop, stat_addr, ru);
1500 					/* He released the lock.  */
1501 					if (retval != 0)
1502 						goto end;
1503 					break;
1504 				}
1505 check_continued:
1506 				/*
1507 				 * It's running now, so it might later
1508 				 * exit, stop, or stop and then continue.
1509 				 */
1510 				flag = 1;
1511 				if (!unlikely(options & WCONTINUED))
1512 					continue;
1513 				retval = wait_task_continued(
1514 					p, (options & WNOWAIT),
1515 					infop, stat_addr, ru);
1516 				if (retval != 0) /* He released the lock.  */
1517 					goto end;
1518 				break;
1519 			}
1520 		}
1521 		if (!flag) {
1522 			list_for_each(_p, &tsk->ptrace_children) {
1523 				p = list_entry(_p, struct task_struct,
1524 						ptrace_list);
1525 				if (!eligible_child(pid, options, p))
1526 					continue;
1527 				flag = 1;
1528 				break;
1529 			}
1530 		}
1531 		if (options & __WNOTHREAD)
1532 			break;
1533 		tsk = next_thread(tsk);
1534 		if (tsk->signal != current->signal)
1535 			BUG();
1536 	} while (tsk != current);
1537 
1538 	read_unlock(&tasklist_lock);
1539 	if (flag) {
1540 		retval = 0;
1541 		if (options & WNOHANG)
1542 			goto end;
1543 		retval = -ERESTARTSYS;
1544 		if (signal_pending(current))
1545 			goto end;
1546 		schedule();
1547 		goto repeat;
1548 	}
1549 	retval = -ECHILD;
1550 end:
1551 	current->state = TASK_RUNNING;
1552 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1553 	if (infop) {
1554 		if (retval > 0)
1555 		retval = 0;
1556 		else {
1557 			/*
1558 			 * For a WNOHANG return, clear out all the fields
1559 			 * we would set so the user can easily tell the
1560 			 * difference.
1561 			 */
1562 			if (!retval)
1563 				retval = put_user(0, &infop->si_signo);
1564 			if (!retval)
1565 				retval = put_user(0, &infop->si_errno);
1566 			if (!retval)
1567 				retval = put_user(0, &infop->si_code);
1568 			if (!retval)
1569 				retval = put_user(0, &infop->si_pid);
1570 			if (!retval)
1571 				retval = put_user(0, &infop->si_uid);
1572 			if (!retval)
1573 				retval = put_user(0, &infop->si_status);
1574 		}
1575 	}
1576 	return retval;
1577 }
1578 
1579 asmlinkage long sys_waitid(int which, pid_t pid,
1580 			   struct siginfo __user *infop, int options,
1581 			   struct rusage __user *ru)
1582 {
1583 	long ret;
1584 
1585 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1586 		return -EINVAL;
1587 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1588 		return -EINVAL;
1589 
1590 	switch (which) {
1591 	case P_ALL:
1592 		pid = -1;
1593 		break;
1594 	case P_PID:
1595 		if (pid <= 0)
1596 			return -EINVAL;
1597 		break;
1598 	case P_PGID:
1599 		if (pid <= 0)
1600 			return -EINVAL;
1601 		pid = -pid;
1602 		break;
1603 	default:
1604 		return -EINVAL;
1605 	}
1606 
1607 	ret = do_wait(pid, options, infop, NULL, ru);
1608 
1609 	/* avoid REGPARM breakage on x86: */
1610 	prevent_tail_call(ret);
1611 	return ret;
1612 }
1613 
1614 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1615 			  int options, struct rusage __user *ru)
1616 {
1617 	long ret;
1618 
1619 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1620 			__WNOTHREAD|__WCLONE|__WALL))
1621 		return -EINVAL;
1622 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1623 
1624 	/* avoid REGPARM breakage on x86: */
1625 	prevent_tail_call(ret);
1626 	return ret;
1627 }
1628 
1629 #ifdef __ARCH_WANT_SYS_WAITPID
1630 
1631 /*
1632  * sys_waitpid() remains for compatibility. waitpid() should be
1633  * implemented by calling sys_wait4() from libc.a.
1634  */
1635 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1636 {
1637 	return sys_wait4(pid, stat_addr, options, NULL);
1638 }
1639 
1640 #endif
1641