xref: /linux/kernel/exit.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/cpu.h>
18 #include <linux/acct.h>
19 #include <linux/tsacct_kern.h>
20 #include <linux/file.h>
21 #include <linux/fdtable.h>
22 #include <linux/freezer.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/pipe_fs_i.h>
42 #include <linux/audit.h> /* for audit_free() */
43 #include <linux/resource.h>
44 #include <linux/blkdev.h>
45 #include <linux/task_io_accounting_ops.h>
46 #include <linux/tracehook.h>
47 #include <linux/fs_struct.h>
48 #include <linux/init_task.h>
49 #include <linux/perf_event.h>
50 #include <trace/events/sched.h>
51 #include <linux/hw_breakpoint.h>
52 #include <linux/oom.h>
53 #include <linux/writeback.h>
54 #include <linux/shm.h>
55 #include <linux/kcov.h>
56 #include <linux/random.h>
57 #include <linux/rcuwait.h>
58 
59 #include <linux/uaccess.h>
60 #include <asm/unistd.h>
61 #include <asm/pgtable.h>
62 #include <asm/mmu_context.h>
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	u64 utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 #ifdef CONFIG_POSIX_TIMERS
96 	posix_cpu_timers_exit(tsk);
97 	if (group_dead) {
98 		posix_cpu_timers_exit_group(tsk);
99 	} else {
100 		/*
101 		 * This can only happen if the caller is de_thread().
102 		 * FIXME: this is the temporary hack, we should teach
103 		 * posix-cpu-timers to handle this case correctly.
104 		 */
105 		if (unlikely(has_group_leader_pid(tsk)))
106 			posix_cpu_timers_exit_group(tsk);
107 	}
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
176 
177 void release_task(struct task_struct *p)
178 {
179 	struct task_struct *leader;
180 	int zap_leader;
181 repeat:
182 	/* don't need to get the RCU readlock here - the process is dead and
183 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
184 	rcu_read_lock();
185 	atomic_dec(&__task_cred(p)->user->processes);
186 	rcu_read_unlock();
187 
188 	proc_flush_task(p);
189 
190 	write_lock_irq(&tasklist_lock);
191 	ptrace_release_task(p);
192 	__exit_signal(p);
193 
194 	/*
195 	 * If we are the last non-leader member of the thread
196 	 * group, and the leader is zombie, then notify the
197 	 * group leader's parent process. (if it wants notification.)
198 	 */
199 	zap_leader = 0;
200 	leader = p->group_leader;
201 	if (leader != p && thread_group_empty(leader)
202 			&& leader->exit_state == EXIT_ZOMBIE) {
203 		/*
204 		 * If we were the last child thread and the leader has
205 		 * exited already, and the leader's parent ignores SIGCHLD,
206 		 * then we are the one who should release the leader.
207 		 */
208 		zap_leader = do_notify_parent(leader, leader->exit_signal);
209 		if (zap_leader)
210 			leader->exit_state = EXIT_DEAD;
211 	}
212 
213 	write_unlock_irq(&tasklist_lock);
214 	release_thread(p);
215 	call_rcu(&p->rcu, delayed_put_task_struct);
216 
217 	p = leader;
218 	if (unlikely(zap_leader))
219 		goto repeat;
220 }
221 
222 /*
223  * Note that if this function returns a valid task_struct pointer (!NULL)
224  * task->usage must remain >0 for the duration of the RCU critical section.
225  */
226 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
227 {
228 	struct sighand_struct *sighand;
229 	struct task_struct *task;
230 
231 	/*
232 	 * We need to verify that release_task() was not called and thus
233 	 * delayed_put_task_struct() can't run and drop the last reference
234 	 * before rcu_read_unlock(). We check task->sighand != NULL,
235 	 * but we can read the already freed and reused memory.
236 	 */
237 retry:
238 	task = rcu_dereference(*ptask);
239 	if (!task)
240 		return NULL;
241 
242 	probe_kernel_address(&task->sighand, sighand);
243 
244 	/*
245 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
246 	 * was already freed we can not miss the preceding update of this
247 	 * pointer.
248 	 */
249 	smp_rmb();
250 	if (unlikely(task != READ_ONCE(*ptask)))
251 		goto retry;
252 
253 	/*
254 	 * We've re-checked that "task == *ptask", now we have two different
255 	 * cases:
256 	 *
257 	 * 1. This is actually the same task/task_struct. In this case
258 	 *    sighand != NULL tells us it is still alive.
259 	 *
260 	 * 2. This is another task which got the same memory for task_struct.
261 	 *    We can't know this of course, and we can not trust
262 	 *    sighand != NULL.
263 	 *
264 	 *    In this case we actually return a random value, but this is
265 	 *    correct.
266 	 *
267 	 *    If we return NULL - we can pretend that we actually noticed that
268 	 *    *ptask was updated when the previous task has exited. Or pretend
269 	 *    that probe_slab_address(&sighand) reads NULL.
270 	 *
271 	 *    If we return the new task (because sighand is not NULL for any
272 	 *    reason) - this is fine too. This (new) task can't go away before
273 	 *    another gp pass.
274 	 *
275 	 *    And note: We could even eliminate the false positive if re-read
276 	 *    task->sighand once again to avoid the falsely NULL. But this case
277 	 *    is very unlikely so we don't care.
278 	 */
279 	if (!sighand)
280 		return NULL;
281 
282 	return task;
283 }
284 
285 void rcuwait_wake_up(struct rcuwait *w)
286 {
287 	struct task_struct *task;
288 
289 	rcu_read_lock();
290 
291 	/*
292 	 * Order condition vs @task, such that everything prior to the load
293 	 * of @task is visible. This is the condition as to why the user called
294 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
295 	 * barrier (A) in rcuwait_wait_event().
296 	 *
297 	 *    WAIT                WAKE
298 	 *    [S] tsk = current	  [S] cond = true
299 	 *        MB (A)	      MB (B)
300 	 *    [L] cond		  [L] tsk
301 	 */
302 	smp_rmb(); /* (B) */
303 
304 	/*
305 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
306 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
307 	 */
308 	task = rcu_dereference(w->task);
309 	if (task)
310 		wake_up_process(task);
311 	rcu_read_unlock();
312 }
313 
314 struct task_struct *try_get_task_struct(struct task_struct **ptask)
315 {
316 	struct task_struct *task;
317 
318 	rcu_read_lock();
319 	task = task_rcu_dereference(ptask);
320 	if (task)
321 		get_task_struct(task);
322 	rcu_read_unlock();
323 
324 	return task;
325 }
326 
327 /*
328  * Determine if a process group is "orphaned", according to the POSIX
329  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
330  * by terminal-generated stop signals.  Newly orphaned process groups are
331  * to receive a SIGHUP and a SIGCONT.
332  *
333  * "I ask you, have you ever known what it is to be an orphan?"
334  */
335 static int will_become_orphaned_pgrp(struct pid *pgrp,
336 					struct task_struct *ignored_task)
337 {
338 	struct task_struct *p;
339 
340 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
341 		if ((p == ignored_task) ||
342 		    (p->exit_state && thread_group_empty(p)) ||
343 		    is_global_init(p->real_parent))
344 			continue;
345 
346 		if (task_pgrp(p->real_parent) != pgrp &&
347 		    task_session(p->real_parent) == task_session(p))
348 			return 0;
349 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
350 
351 	return 1;
352 }
353 
354 int is_current_pgrp_orphaned(void)
355 {
356 	int retval;
357 
358 	read_lock(&tasklist_lock);
359 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
360 	read_unlock(&tasklist_lock);
361 
362 	return retval;
363 }
364 
365 static bool has_stopped_jobs(struct pid *pgrp)
366 {
367 	struct task_struct *p;
368 
369 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
370 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
371 			return true;
372 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
373 
374 	return false;
375 }
376 
377 /*
378  * Check to see if any process groups have become orphaned as
379  * a result of our exiting, and if they have any stopped jobs,
380  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
381  */
382 static void
383 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
384 {
385 	struct pid *pgrp = task_pgrp(tsk);
386 	struct task_struct *ignored_task = tsk;
387 
388 	if (!parent)
389 		/* exit: our father is in a different pgrp than
390 		 * we are and we were the only connection outside.
391 		 */
392 		parent = tsk->real_parent;
393 	else
394 		/* reparent: our child is in a different pgrp than
395 		 * we are, and it was the only connection outside.
396 		 */
397 		ignored_task = NULL;
398 
399 	if (task_pgrp(parent) != pgrp &&
400 	    task_session(parent) == task_session(tsk) &&
401 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
402 	    has_stopped_jobs(pgrp)) {
403 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
404 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
405 	}
406 }
407 
408 #ifdef CONFIG_MEMCG
409 /*
410  * A task is exiting.   If it owned this mm, find a new owner for the mm.
411  */
412 void mm_update_next_owner(struct mm_struct *mm)
413 {
414 	struct task_struct *c, *g, *p = current;
415 
416 retry:
417 	/*
418 	 * If the exiting or execing task is not the owner, it's
419 	 * someone else's problem.
420 	 */
421 	if (mm->owner != p)
422 		return;
423 	/*
424 	 * The current owner is exiting/execing and there are no other
425 	 * candidates.  Do not leave the mm pointing to a possibly
426 	 * freed task structure.
427 	 */
428 	if (atomic_read(&mm->mm_users) <= 1) {
429 		mm->owner = NULL;
430 		return;
431 	}
432 
433 	read_lock(&tasklist_lock);
434 	/*
435 	 * Search in the children
436 	 */
437 	list_for_each_entry(c, &p->children, sibling) {
438 		if (c->mm == mm)
439 			goto assign_new_owner;
440 	}
441 
442 	/*
443 	 * Search in the siblings
444 	 */
445 	list_for_each_entry(c, &p->real_parent->children, sibling) {
446 		if (c->mm == mm)
447 			goto assign_new_owner;
448 	}
449 
450 	/*
451 	 * Search through everything else, we should not get here often.
452 	 */
453 	for_each_process(g) {
454 		if (g->flags & PF_KTHREAD)
455 			continue;
456 		for_each_thread(g, c) {
457 			if (c->mm == mm)
458 				goto assign_new_owner;
459 			if (c->mm)
460 				break;
461 		}
462 	}
463 	read_unlock(&tasklist_lock);
464 	/*
465 	 * We found no owner yet mm_users > 1: this implies that we are
466 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
467 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
468 	 */
469 	mm->owner = NULL;
470 	return;
471 
472 assign_new_owner:
473 	BUG_ON(c == p);
474 	get_task_struct(c);
475 	/*
476 	 * The task_lock protects c->mm from changing.
477 	 * We always want mm->owner->mm == mm
478 	 */
479 	task_lock(c);
480 	/*
481 	 * Delay read_unlock() till we have the task_lock()
482 	 * to ensure that c does not slip away underneath us
483 	 */
484 	read_unlock(&tasklist_lock);
485 	if (c->mm != mm) {
486 		task_unlock(c);
487 		put_task_struct(c);
488 		goto retry;
489 	}
490 	mm->owner = c;
491 	task_unlock(c);
492 	put_task_struct(c);
493 }
494 #endif /* CONFIG_MEMCG */
495 
496 /*
497  * Turn us into a lazy TLB process if we
498  * aren't already..
499  */
500 static void exit_mm(void)
501 {
502 	struct mm_struct *mm = current->mm;
503 	struct core_state *core_state;
504 
505 	mm_release(current, mm);
506 	if (!mm)
507 		return;
508 	sync_mm_rss(mm);
509 	/*
510 	 * Serialize with any possible pending coredump.
511 	 * We must hold mmap_sem around checking core_state
512 	 * and clearing tsk->mm.  The core-inducing thread
513 	 * will increment ->nr_threads for each thread in the
514 	 * group with ->mm != NULL.
515 	 */
516 	down_read(&mm->mmap_sem);
517 	core_state = mm->core_state;
518 	if (core_state) {
519 		struct core_thread self;
520 
521 		up_read(&mm->mmap_sem);
522 
523 		self.task = current;
524 		self.next = xchg(&core_state->dumper.next, &self);
525 		/*
526 		 * Implies mb(), the result of xchg() must be visible
527 		 * to core_state->dumper.
528 		 */
529 		if (atomic_dec_and_test(&core_state->nr_threads))
530 			complete(&core_state->startup);
531 
532 		for (;;) {
533 			set_current_state(TASK_UNINTERRUPTIBLE);
534 			if (!self.task) /* see coredump_finish() */
535 				break;
536 			freezable_schedule();
537 		}
538 		__set_current_state(TASK_RUNNING);
539 		down_read(&mm->mmap_sem);
540 	}
541 	atomic_inc(&mm->mm_count);
542 	BUG_ON(mm != current->active_mm);
543 	/* more a memory barrier than a real lock */
544 	task_lock(current);
545 	current->mm = NULL;
546 	up_read(&mm->mmap_sem);
547 	enter_lazy_tlb(mm, current);
548 	task_unlock(current);
549 	mm_update_next_owner(mm);
550 	mmput(mm);
551 	if (test_thread_flag(TIF_MEMDIE))
552 		exit_oom_victim();
553 }
554 
555 static struct task_struct *find_alive_thread(struct task_struct *p)
556 {
557 	struct task_struct *t;
558 
559 	for_each_thread(p, t) {
560 		if (!(t->flags & PF_EXITING))
561 			return t;
562 	}
563 	return NULL;
564 }
565 
566 static struct task_struct *find_child_reaper(struct task_struct *father)
567 	__releases(&tasklist_lock)
568 	__acquires(&tasklist_lock)
569 {
570 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
571 	struct task_struct *reaper = pid_ns->child_reaper;
572 
573 	if (likely(reaper != father))
574 		return reaper;
575 
576 	reaper = find_alive_thread(father);
577 	if (reaper) {
578 		pid_ns->child_reaper = reaper;
579 		return reaper;
580 	}
581 
582 	write_unlock_irq(&tasklist_lock);
583 	if (unlikely(pid_ns == &init_pid_ns)) {
584 		panic("Attempted to kill init! exitcode=0x%08x\n",
585 			father->signal->group_exit_code ?: father->exit_code);
586 	}
587 	zap_pid_ns_processes(pid_ns);
588 	write_lock_irq(&tasklist_lock);
589 
590 	return father;
591 }
592 
593 /*
594  * When we die, we re-parent all our children, and try to:
595  * 1. give them to another thread in our thread group, if such a member exists
596  * 2. give it to the first ancestor process which prctl'd itself as a
597  *    child_subreaper for its children (like a service manager)
598  * 3. give it to the init process (PID 1) in our pid namespace
599  */
600 static struct task_struct *find_new_reaper(struct task_struct *father,
601 					   struct task_struct *child_reaper)
602 {
603 	struct task_struct *thread, *reaper;
604 
605 	thread = find_alive_thread(father);
606 	if (thread)
607 		return thread;
608 
609 	if (father->signal->has_child_subreaper) {
610 		/*
611 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
612 		 * We start from father to ensure we can not look into another
613 		 * namespace, this is safe because all its threads are dead.
614 		 */
615 		for (reaper = father;
616 		     !same_thread_group(reaper, child_reaper);
617 		     reaper = reaper->real_parent) {
618 			/* call_usermodehelper() descendants need this check */
619 			if (reaper == &init_task)
620 				break;
621 			if (!reaper->signal->is_child_subreaper)
622 				continue;
623 			thread = find_alive_thread(reaper);
624 			if (thread)
625 				return thread;
626 		}
627 	}
628 
629 	return child_reaper;
630 }
631 
632 /*
633 * Any that need to be release_task'd are put on the @dead list.
634  */
635 static void reparent_leader(struct task_struct *father, struct task_struct *p,
636 				struct list_head *dead)
637 {
638 	if (unlikely(p->exit_state == EXIT_DEAD))
639 		return;
640 
641 	/* We don't want people slaying init. */
642 	p->exit_signal = SIGCHLD;
643 
644 	/* If it has exited notify the new parent about this child's death. */
645 	if (!p->ptrace &&
646 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
647 		if (do_notify_parent(p, p->exit_signal)) {
648 			p->exit_state = EXIT_DEAD;
649 			list_add(&p->ptrace_entry, dead);
650 		}
651 	}
652 
653 	kill_orphaned_pgrp(p, father);
654 }
655 
656 /*
657  * This does two things:
658  *
659  * A.  Make init inherit all the child processes
660  * B.  Check to see if any process groups have become orphaned
661  *	as a result of our exiting, and if they have any stopped
662  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
663  */
664 static void forget_original_parent(struct task_struct *father,
665 					struct list_head *dead)
666 {
667 	struct task_struct *p, *t, *reaper;
668 
669 	if (unlikely(!list_empty(&father->ptraced)))
670 		exit_ptrace(father, dead);
671 
672 	/* Can drop and reacquire tasklist_lock */
673 	reaper = find_child_reaper(father);
674 	if (list_empty(&father->children))
675 		return;
676 
677 	reaper = find_new_reaper(father, reaper);
678 	list_for_each_entry(p, &father->children, sibling) {
679 		for_each_thread(p, t) {
680 			t->real_parent = reaper;
681 			BUG_ON((!t->ptrace) != (t->parent == father));
682 			if (likely(!t->ptrace))
683 				t->parent = t->real_parent;
684 			if (t->pdeath_signal)
685 				group_send_sig_info(t->pdeath_signal,
686 						    SEND_SIG_NOINFO, t);
687 		}
688 		/*
689 		 * If this is a threaded reparent there is no need to
690 		 * notify anyone anything has happened.
691 		 */
692 		if (!same_thread_group(reaper, father))
693 			reparent_leader(father, p, dead);
694 	}
695 	list_splice_tail_init(&father->children, &reaper->children);
696 }
697 
698 /*
699  * Send signals to all our closest relatives so that they know
700  * to properly mourn us..
701  */
702 static void exit_notify(struct task_struct *tsk, int group_dead)
703 {
704 	bool autoreap;
705 	struct task_struct *p, *n;
706 	LIST_HEAD(dead);
707 
708 	write_lock_irq(&tasklist_lock);
709 	forget_original_parent(tsk, &dead);
710 
711 	if (group_dead)
712 		kill_orphaned_pgrp(tsk->group_leader, NULL);
713 
714 	if (unlikely(tsk->ptrace)) {
715 		int sig = thread_group_leader(tsk) &&
716 				thread_group_empty(tsk) &&
717 				!ptrace_reparented(tsk) ?
718 			tsk->exit_signal : SIGCHLD;
719 		autoreap = do_notify_parent(tsk, sig);
720 	} else if (thread_group_leader(tsk)) {
721 		autoreap = thread_group_empty(tsk) &&
722 			do_notify_parent(tsk, tsk->exit_signal);
723 	} else {
724 		autoreap = true;
725 	}
726 
727 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
728 	if (tsk->exit_state == EXIT_DEAD)
729 		list_add(&tsk->ptrace_entry, &dead);
730 
731 	/* mt-exec, de_thread() is waiting for group leader */
732 	if (unlikely(tsk->signal->notify_count < 0))
733 		wake_up_process(tsk->signal->group_exit_task);
734 	write_unlock_irq(&tasklist_lock);
735 
736 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
737 		list_del_init(&p->ptrace_entry);
738 		release_task(p);
739 	}
740 }
741 
742 #ifdef CONFIG_DEBUG_STACK_USAGE
743 static void check_stack_usage(void)
744 {
745 	static DEFINE_SPINLOCK(low_water_lock);
746 	static int lowest_to_date = THREAD_SIZE;
747 	unsigned long free;
748 
749 	free = stack_not_used(current);
750 
751 	if (free >= lowest_to_date)
752 		return;
753 
754 	spin_lock(&low_water_lock);
755 	if (free < lowest_to_date) {
756 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
757 			current->comm, task_pid_nr(current), free);
758 		lowest_to_date = free;
759 	}
760 	spin_unlock(&low_water_lock);
761 }
762 #else
763 static inline void check_stack_usage(void) {}
764 #endif
765 
766 void __noreturn do_exit(long code)
767 {
768 	struct task_struct *tsk = current;
769 	int group_dead;
770 	TASKS_RCU(int tasks_rcu_i);
771 
772 	profile_task_exit(tsk);
773 	kcov_task_exit(tsk);
774 
775 	WARN_ON(blk_needs_flush_plug(tsk));
776 
777 	if (unlikely(in_interrupt()))
778 		panic("Aiee, killing interrupt handler!");
779 	if (unlikely(!tsk->pid))
780 		panic("Attempted to kill the idle task!");
781 
782 	/*
783 	 * If do_exit is called because this processes oopsed, it's possible
784 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
785 	 * continuing. Amongst other possible reasons, this is to prevent
786 	 * mm_release()->clear_child_tid() from writing to a user-controlled
787 	 * kernel address.
788 	 */
789 	set_fs(USER_DS);
790 
791 	ptrace_event(PTRACE_EVENT_EXIT, code);
792 
793 	validate_creds_for_do_exit(tsk);
794 
795 	/*
796 	 * We're taking recursive faults here in do_exit. Safest is to just
797 	 * leave this task alone and wait for reboot.
798 	 */
799 	if (unlikely(tsk->flags & PF_EXITING)) {
800 		pr_alert("Fixing recursive fault but reboot is needed!\n");
801 		/*
802 		 * We can do this unlocked here. The futex code uses
803 		 * this flag just to verify whether the pi state
804 		 * cleanup has been done or not. In the worst case it
805 		 * loops once more. We pretend that the cleanup was
806 		 * done as there is no way to return. Either the
807 		 * OWNER_DIED bit is set by now or we push the blocked
808 		 * task into the wait for ever nirwana as well.
809 		 */
810 		tsk->flags |= PF_EXITPIDONE;
811 		set_current_state(TASK_UNINTERRUPTIBLE);
812 		schedule();
813 	}
814 
815 	exit_signals(tsk);  /* sets PF_EXITING */
816 	/*
817 	 * Ensure that all new tsk->pi_lock acquisitions must observe
818 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
819 	 */
820 	smp_mb();
821 	/*
822 	 * Ensure that we must observe the pi_state in exit_mm() ->
823 	 * mm_release() -> exit_pi_state_list().
824 	 */
825 	raw_spin_unlock_wait(&tsk->pi_lock);
826 
827 	if (unlikely(in_atomic())) {
828 		pr_info("note: %s[%d] exited with preempt_count %d\n",
829 			current->comm, task_pid_nr(current),
830 			preempt_count());
831 		preempt_count_set(PREEMPT_ENABLED);
832 	}
833 
834 	/* sync mm's RSS info before statistics gathering */
835 	if (tsk->mm)
836 		sync_mm_rss(tsk->mm);
837 	acct_update_integrals(tsk);
838 	group_dead = atomic_dec_and_test(&tsk->signal->live);
839 	if (group_dead) {
840 #ifdef CONFIG_POSIX_TIMERS
841 		hrtimer_cancel(&tsk->signal->real_timer);
842 		exit_itimers(tsk->signal);
843 #endif
844 		if (tsk->mm)
845 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
846 	}
847 	acct_collect(code, group_dead);
848 	if (group_dead)
849 		tty_audit_exit();
850 	audit_free(tsk);
851 
852 	tsk->exit_code = code;
853 	taskstats_exit(tsk, group_dead);
854 
855 	exit_mm();
856 
857 	if (group_dead)
858 		acct_process();
859 	trace_sched_process_exit(tsk);
860 
861 	exit_sem(tsk);
862 	exit_shm(tsk);
863 	exit_files(tsk);
864 	exit_fs(tsk);
865 	if (group_dead)
866 		disassociate_ctty(1);
867 	exit_task_namespaces(tsk);
868 	exit_task_work(tsk);
869 	exit_thread(tsk);
870 
871 	/*
872 	 * Flush inherited counters to the parent - before the parent
873 	 * gets woken up by child-exit notifications.
874 	 *
875 	 * because of cgroup mode, must be called before cgroup_exit()
876 	 */
877 	perf_event_exit_task(tsk);
878 
879 	sched_autogroup_exit_task(tsk);
880 	cgroup_exit(tsk);
881 
882 	/*
883 	 * FIXME: do that only when needed, using sched_exit tracepoint
884 	 */
885 	flush_ptrace_hw_breakpoint(tsk);
886 
887 	TASKS_RCU(preempt_disable());
888 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
889 	TASKS_RCU(preempt_enable());
890 	exit_notify(tsk, group_dead);
891 	proc_exit_connector(tsk);
892 	mpol_put_task_policy(tsk);
893 #ifdef CONFIG_FUTEX
894 	if (unlikely(current->pi_state_cache))
895 		kfree(current->pi_state_cache);
896 #endif
897 	/*
898 	 * Make sure we are holding no locks:
899 	 */
900 	debug_check_no_locks_held();
901 	/*
902 	 * We can do this unlocked here. The futex code uses this flag
903 	 * just to verify whether the pi state cleanup has been done
904 	 * or not. In the worst case it loops once more.
905 	 */
906 	tsk->flags |= PF_EXITPIDONE;
907 
908 	if (tsk->io_context)
909 		exit_io_context(tsk);
910 
911 	if (tsk->splice_pipe)
912 		free_pipe_info(tsk->splice_pipe);
913 
914 	if (tsk->task_frag.page)
915 		put_page(tsk->task_frag.page);
916 
917 	validate_creds_for_do_exit(tsk);
918 
919 	check_stack_usage();
920 	preempt_disable();
921 	if (tsk->nr_dirtied)
922 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
923 	exit_rcu();
924 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
925 
926 	do_task_dead();
927 }
928 EXPORT_SYMBOL_GPL(do_exit);
929 
930 void complete_and_exit(struct completion *comp, long code)
931 {
932 	if (comp)
933 		complete(comp);
934 
935 	do_exit(code);
936 }
937 EXPORT_SYMBOL(complete_and_exit);
938 
939 SYSCALL_DEFINE1(exit, int, error_code)
940 {
941 	do_exit((error_code&0xff)<<8);
942 }
943 
944 /*
945  * Take down every thread in the group.  This is called by fatal signals
946  * as well as by sys_exit_group (below).
947  */
948 void
949 do_group_exit(int exit_code)
950 {
951 	struct signal_struct *sig = current->signal;
952 
953 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
954 
955 	if (signal_group_exit(sig))
956 		exit_code = sig->group_exit_code;
957 	else if (!thread_group_empty(current)) {
958 		struct sighand_struct *const sighand = current->sighand;
959 
960 		spin_lock_irq(&sighand->siglock);
961 		if (signal_group_exit(sig))
962 			/* Another thread got here before we took the lock.  */
963 			exit_code = sig->group_exit_code;
964 		else {
965 			sig->group_exit_code = exit_code;
966 			sig->flags = SIGNAL_GROUP_EXIT;
967 			zap_other_threads(current);
968 		}
969 		spin_unlock_irq(&sighand->siglock);
970 	}
971 
972 	do_exit(exit_code);
973 	/* NOTREACHED */
974 }
975 
976 /*
977  * this kills every thread in the thread group. Note that any externally
978  * wait4()-ing process will get the correct exit code - even if this
979  * thread is not the thread group leader.
980  */
981 SYSCALL_DEFINE1(exit_group, int, error_code)
982 {
983 	do_group_exit((error_code & 0xff) << 8);
984 	/* NOTREACHED */
985 	return 0;
986 }
987 
988 struct wait_opts {
989 	enum pid_type		wo_type;
990 	int			wo_flags;
991 	struct pid		*wo_pid;
992 
993 	struct siginfo __user	*wo_info;
994 	int __user		*wo_stat;
995 	struct rusage __user	*wo_rusage;
996 
997 	wait_queue_t		child_wait;
998 	int			notask_error;
999 };
1000 
1001 static inline
1002 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1003 {
1004 	if (type != PIDTYPE_PID)
1005 		task = task->group_leader;
1006 	return task->pids[type].pid;
1007 }
1008 
1009 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1010 {
1011 	return	wo->wo_type == PIDTYPE_MAX ||
1012 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1013 }
1014 
1015 static int
1016 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1017 {
1018 	if (!eligible_pid(wo, p))
1019 		return 0;
1020 
1021 	/*
1022 	 * Wait for all children (clone and not) if __WALL is set or
1023 	 * if it is traced by us.
1024 	 */
1025 	if (ptrace || (wo->wo_flags & __WALL))
1026 		return 1;
1027 
1028 	/*
1029 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1030 	 * otherwise, wait for non-clone children *only*.
1031 	 *
1032 	 * Note: a "clone" child here is one that reports to its parent
1033 	 * using a signal other than SIGCHLD, or a non-leader thread which
1034 	 * we can only see if it is traced by us.
1035 	 */
1036 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1037 		return 0;
1038 
1039 	return 1;
1040 }
1041 
1042 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1043 				pid_t pid, uid_t uid, int why, int status)
1044 {
1045 	struct siginfo __user *infop;
1046 	int retval = wo->wo_rusage
1047 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1048 
1049 	put_task_struct(p);
1050 	infop = wo->wo_info;
1051 	if (infop) {
1052 		if (!retval)
1053 			retval = put_user(SIGCHLD, &infop->si_signo);
1054 		if (!retval)
1055 			retval = put_user(0, &infop->si_errno);
1056 		if (!retval)
1057 			retval = put_user((short)why, &infop->si_code);
1058 		if (!retval)
1059 			retval = put_user(pid, &infop->si_pid);
1060 		if (!retval)
1061 			retval = put_user(uid, &infop->si_uid);
1062 		if (!retval)
1063 			retval = put_user(status, &infop->si_status);
1064 	}
1065 	if (!retval)
1066 		retval = pid;
1067 	return retval;
1068 }
1069 
1070 /*
1071  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1072  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1073  * the lock and this task is uninteresting.  If we return nonzero, we have
1074  * released the lock and the system call should return.
1075  */
1076 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1077 {
1078 	int state, retval, status;
1079 	pid_t pid = task_pid_vnr(p);
1080 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1081 	struct siginfo __user *infop;
1082 
1083 	if (!likely(wo->wo_flags & WEXITED))
1084 		return 0;
1085 
1086 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1087 		int exit_code = p->exit_code;
1088 		int why;
1089 
1090 		get_task_struct(p);
1091 		read_unlock(&tasklist_lock);
1092 		sched_annotate_sleep();
1093 
1094 		if ((exit_code & 0x7f) == 0) {
1095 			why = CLD_EXITED;
1096 			status = exit_code >> 8;
1097 		} else {
1098 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1099 			status = exit_code & 0x7f;
1100 		}
1101 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1102 	}
1103 	/*
1104 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1105 	 */
1106 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1107 		EXIT_TRACE : EXIT_DEAD;
1108 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1109 		return 0;
1110 	/*
1111 	 * We own this thread, nobody else can reap it.
1112 	 */
1113 	read_unlock(&tasklist_lock);
1114 	sched_annotate_sleep();
1115 
1116 	/*
1117 	 * Check thread_group_leader() to exclude the traced sub-threads.
1118 	 */
1119 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1120 		struct signal_struct *sig = p->signal;
1121 		struct signal_struct *psig = current->signal;
1122 		unsigned long maxrss;
1123 		u64 tgutime, tgstime;
1124 
1125 		/*
1126 		 * The resource counters for the group leader are in its
1127 		 * own task_struct.  Those for dead threads in the group
1128 		 * are in its signal_struct, as are those for the child
1129 		 * processes it has previously reaped.  All these
1130 		 * accumulate in the parent's signal_struct c* fields.
1131 		 *
1132 		 * We don't bother to take a lock here to protect these
1133 		 * p->signal fields because the whole thread group is dead
1134 		 * and nobody can change them.
1135 		 *
1136 		 * psig->stats_lock also protects us from our sub-theads
1137 		 * which can reap other children at the same time. Until
1138 		 * we change k_getrusage()-like users to rely on this lock
1139 		 * we have to take ->siglock as well.
1140 		 *
1141 		 * We use thread_group_cputime_adjusted() to get times for
1142 		 * the thread group, which consolidates times for all threads
1143 		 * in the group including the group leader.
1144 		 */
1145 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1146 		spin_lock_irq(&current->sighand->siglock);
1147 		write_seqlock(&psig->stats_lock);
1148 		psig->cutime += tgutime + sig->cutime;
1149 		psig->cstime += tgstime + sig->cstime;
1150 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1151 		psig->cmin_flt +=
1152 			p->min_flt + sig->min_flt + sig->cmin_flt;
1153 		psig->cmaj_flt +=
1154 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1155 		psig->cnvcsw +=
1156 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1157 		psig->cnivcsw +=
1158 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1159 		psig->cinblock +=
1160 			task_io_get_inblock(p) +
1161 			sig->inblock + sig->cinblock;
1162 		psig->coublock +=
1163 			task_io_get_oublock(p) +
1164 			sig->oublock + sig->coublock;
1165 		maxrss = max(sig->maxrss, sig->cmaxrss);
1166 		if (psig->cmaxrss < maxrss)
1167 			psig->cmaxrss = maxrss;
1168 		task_io_accounting_add(&psig->ioac, &p->ioac);
1169 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1170 		write_sequnlock(&psig->stats_lock);
1171 		spin_unlock_irq(&current->sighand->siglock);
1172 	}
1173 
1174 	retval = wo->wo_rusage
1175 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1176 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1177 		? p->signal->group_exit_code : p->exit_code;
1178 	if (!retval && wo->wo_stat)
1179 		retval = put_user(status, wo->wo_stat);
1180 
1181 	infop = wo->wo_info;
1182 	if (!retval && infop)
1183 		retval = put_user(SIGCHLD, &infop->si_signo);
1184 	if (!retval && infop)
1185 		retval = put_user(0, &infop->si_errno);
1186 	if (!retval && infop) {
1187 		int why;
1188 
1189 		if ((status & 0x7f) == 0) {
1190 			why = CLD_EXITED;
1191 			status >>= 8;
1192 		} else {
1193 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1194 			status &= 0x7f;
1195 		}
1196 		retval = put_user((short)why, &infop->si_code);
1197 		if (!retval)
1198 			retval = put_user(status, &infop->si_status);
1199 	}
1200 	if (!retval && infop)
1201 		retval = put_user(pid, &infop->si_pid);
1202 	if (!retval && infop)
1203 		retval = put_user(uid, &infop->si_uid);
1204 	if (!retval)
1205 		retval = pid;
1206 
1207 	if (state == EXIT_TRACE) {
1208 		write_lock_irq(&tasklist_lock);
1209 		/* We dropped tasklist, ptracer could die and untrace */
1210 		ptrace_unlink(p);
1211 
1212 		/* If parent wants a zombie, don't release it now */
1213 		state = EXIT_ZOMBIE;
1214 		if (do_notify_parent(p, p->exit_signal))
1215 			state = EXIT_DEAD;
1216 		p->exit_state = state;
1217 		write_unlock_irq(&tasklist_lock);
1218 	}
1219 	if (state == EXIT_DEAD)
1220 		release_task(p);
1221 
1222 	return retval;
1223 }
1224 
1225 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1226 {
1227 	if (ptrace) {
1228 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1229 			return &p->exit_code;
1230 	} else {
1231 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1232 			return &p->signal->group_exit_code;
1233 	}
1234 	return NULL;
1235 }
1236 
1237 /**
1238  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1239  * @wo: wait options
1240  * @ptrace: is the wait for ptrace
1241  * @p: task to wait for
1242  *
1243  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1244  *
1245  * CONTEXT:
1246  * read_lock(&tasklist_lock), which is released if return value is
1247  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1248  *
1249  * RETURNS:
1250  * 0 if wait condition didn't exist and search for other wait conditions
1251  * should continue.  Non-zero return, -errno on failure and @p's pid on
1252  * success, implies that tasklist_lock is released and wait condition
1253  * search should terminate.
1254  */
1255 static int wait_task_stopped(struct wait_opts *wo,
1256 				int ptrace, struct task_struct *p)
1257 {
1258 	struct siginfo __user *infop;
1259 	int retval, exit_code, *p_code, why;
1260 	uid_t uid = 0; /* unneeded, required by compiler */
1261 	pid_t pid;
1262 
1263 	/*
1264 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1265 	 */
1266 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1267 		return 0;
1268 
1269 	if (!task_stopped_code(p, ptrace))
1270 		return 0;
1271 
1272 	exit_code = 0;
1273 	spin_lock_irq(&p->sighand->siglock);
1274 
1275 	p_code = task_stopped_code(p, ptrace);
1276 	if (unlikely(!p_code))
1277 		goto unlock_sig;
1278 
1279 	exit_code = *p_code;
1280 	if (!exit_code)
1281 		goto unlock_sig;
1282 
1283 	if (!unlikely(wo->wo_flags & WNOWAIT))
1284 		*p_code = 0;
1285 
1286 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1287 unlock_sig:
1288 	spin_unlock_irq(&p->sighand->siglock);
1289 	if (!exit_code)
1290 		return 0;
1291 
1292 	/*
1293 	 * Now we are pretty sure this task is interesting.
1294 	 * Make sure it doesn't get reaped out from under us while we
1295 	 * give up the lock and then examine it below.  We don't want to
1296 	 * keep holding onto the tasklist_lock while we call getrusage and
1297 	 * possibly take page faults for user memory.
1298 	 */
1299 	get_task_struct(p);
1300 	pid = task_pid_vnr(p);
1301 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1302 	read_unlock(&tasklist_lock);
1303 	sched_annotate_sleep();
1304 
1305 	if (unlikely(wo->wo_flags & WNOWAIT))
1306 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1307 
1308 	retval = wo->wo_rusage
1309 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1310 	if (!retval && wo->wo_stat)
1311 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1312 
1313 	infop = wo->wo_info;
1314 	if (!retval && infop)
1315 		retval = put_user(SIGCHLD, &infop->si_signo);
1316 	if (!retval && infop)
1317 		retval = put_user(0, &infop->si_errno);
1318 	if (!retval && infop)
1319 		retval = put_user((short)why, &infop->si_code);
1320 	if (!retval && infop)
1321 		retval = put_user(exit_code, &infop->si_status);
1322 	if (!retval && infop)
1323 		retval = put_user(pid, &infop->si_pid);
1324 	if (!retval && infop)
1325 		retval = put_user(uid, &infop->si_uid);
1326 	if (!retval)
1327 		retval = pid;
1328 	put_task_struct(p);
1329 
1330 	BUG_ON(!retval);
1331 	return retval;
1332 }
1333 
1334 /*
1335  * Handle do_wait work for one task in a live, non-stopped state.
1336  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1337  * the lock and this task is uninteresting.  If we return nonzero, we have
1338  * released the lock and the system call should return.
1339  */
1340 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1341 {
1342 	int retval;
1343 	pid_t pid;
1344 	uid_t uid;
1345 
1346 	if (!unlikely(wo->wo_flags & WCONTINUED))
1347 		return 0;
1348 
1349 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1350 		return 0;
1351 
1352 	spin_lock_irq(&p->sighand->siglock);
1353 	/* Re-check with the lock held.  */
1354 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1355 		spin_unlock_irq(&p->sighand->siglock);
1356 		return 0;
1357 	}
1358 	if (!unlikely(wo->wo_flags & WNOWAIT))
1359 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1360 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1361 	spin_unlock_irq(&p->sighand->siglock);
1362 
1363 	pid = task_pid_vnr(p);
1364 	get_task_struct(p);
1365 	read_unlock(&tasklist_lock);
1366 	sched_annotate_sleep();
1367 
1368 	if (!wo->wo_info) {
1369 		retval = wo->wo_rusage
1370 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1371 		put_task_struct(p);
1372 		if (!retval && wo->wo_stat)
1373 			retval = put_user(0xffff, wo->wo_stat);
1374 		if (!retval)
1375 			retval = pid;
1376 	} else {
1377 		retval = wait_noreap_copyout(wo, p, pid, uid,
1378 					     CLD_CONTINUED, SIGCONT);
1379 		BUG_ON(retval == 0);
1380 	}
1381 
1382 	return retval;
1383 }
1384 
1385 /*
1386  * Consider @p for a wait by @parent.
1387  *
1388  * -ECHILD should be in ->notask_error before the first call.
1389  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1390  * Returns zero if the search for a child should continue;
1391  * then ->notask_error is 0 if @p is an eligible child,
1392  * or still -ECHILD.
1393  */
1394 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1395 				struct task_struct *p)
1396 {
1397 	/*
1398 	 * We can race with wait_task_zombie() from another thread.
1399 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1400 	 * can't confuse the checks below.
1401 	 */
1402 	int exit_state = ACCESS_ONCE(p->exit_state);
1403 	int ret;
1404 
1405 	if (unlikely(exit_state == EXIT_DEAD))
1406 		return 0;
1407 
1408 	ret = eligible_child(wo, ptrace, p);
1409 	if (!ret)
1410 		return ret;
1411 
1412 	if (unlikely(exit_state == EXIT_TRACE)) {
1413 		/*
1414 		 * ptrace == 0 means we are the natural parent. In this case
1415 		 * we should clear notask_error, debugger will notify us.
1416 		 */
1417 		if (likely(!ptrace))
1418 			wo->notask_error = 0;
1419 		return 0;
1420 	}
1421 
1422 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1423 		/*
1424 		 * If it is traced by its real parent's group, just pretend
1425 		 * the caller is ptrace_do_wait() and reap this child if it
1426 		 * is zombie.
1427 		 *
1428 		 * This also hides group stop state from real parent; otherwise
1429 		 * a single stop can be reported twice as group and ptrace stop.
1430 		 * If a ptracer wants to distinguish these two events for its
1431 		 * own children it should create a separate process which takes
1432 		 * the role of real parent.
1433 		 */
1434 		if (!ptrace_reparented(p))
1435 			ptrace = 1;
1436 	}
1437 
1438 	/* slay zombie? */
1439 	if (exit_state == EXIT_ZOMBIE) {
1440 		/* we don't reap group leaders with subthreads */
1441 		if (!delay_group_leader(p)) {
1442 			/*
1443 			 * A zombie ptracee is only visible to its ptracer.
1444 			 * Notification and reaping will be cascaded to the
1445 			 * real parent when the ptracer detaches.
1446 			 */
1447 			if (unlikely(ptrace) || likely(!p->ptrace))
1448 				return wait_task_zombie(wo, p);
1449 		}
1450 
1451 		/*
1452 		 * Allow access to stopped/continued state via zombie by
1453 		 * falling through.  Clearing of notask_error is complex.
1454 		 *
1455 		 * When !@ptrace:
1456 		 *
1457 		 * If WEXITED is set, notask_error should naturally be
1458 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1459 		 * so, if there are live subthreads, there are events to
1460 		 * wait for.  If all subthreads are dead, it's still safe
1461 		 * to clear - this function will be called again in finite
1462 		 * amount time once all the subthreads are released and
1463 		 * will then return without clearing.
1464 		 *
1465 		 * When @ptrace:
1466 		 *
1467 		 * Stopped state is per-task and thus can't change once the
1468 		 * target task dies.  Only continued and exited can happen.
1469 		 * Clear notask_error if WCONTINUED | WEXITED.
1470 		 */
1471 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1472 			wo->notask_error = 0;
1473 	} else {
1474 		/*
1475 		 * @p is alive and it's gonna stop, continue or exit, so
1476 		 * there always is something to wait for.
1477 		 */
1478 		wo->notask_error = 0;
1479 	}
1480 
1481 	/*
1482 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1483 	 * is used and the two don't interact with each other.
1484 	 */
1485 	ret = wait_task_stopped(wo, ptrace, p);
1486 	if (ret)
1487 		return ret;
1488 
1489 	/*
1490 	 * Wait for continued.  There's only one continued state and the
1491 	 * ptracer can consume it which can confuse the real parent.  Don't
1492 	 * use WCONTINUED from ptracer.  You don't need or want it.
1493 	 */
1494 	return wait_task_continued(wo, p);
1495 }
1496 
1497 /*
1498  * Do the work of do_wait() for one thread in the group, @tsk.
1499  *
1500  * -ECHILD should be in ->notask_error before the first call.
1501  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1502  * Returns zero if the search for a child should continue; then
1503  * ->notask_error is 0 if there were any eligible children,
1504  * or still -ECHILD.
1505  */
1506 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1507 {
1508 	struct task_struct *p;
1509 
1510 	list_for_each_entry(p, &tsk->children, sibling) {
1511 		int ret = wait_consider_task(wo, 0, p);
1512 
1513 		if (ret)
1514 			return ret;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1521 {
1522 	struct task_struct *p;
1523 
1524 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1525 		int ret = wait_consider_task(wo, 1, p);
1526 
1527 		if (ret)
1528 			return ret;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1535 				int sync, void *key)
1536 {
1537 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1538 						child_wait);
1539 	struct task_struct *p = key;
1540 
1541 	if (!eligible_pid(wo, p))
1542 		return 0;
1543 
1544 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1545 		return 0;
1546 
1547 	return default_wake_function(wait, mode, sync, key);
1548 }
1549 
1550 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1551 {
1552 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1553 				TASK_INTERRUPTIBLE, 1, p);
1554 }
1555 
1556 static long do_wait(struct wait_opts *wo)
1557 {
1558 	struct task_struct *tsk;
1559 	int retval;
1560 
1561 	trace_sched_process_wait(wo->wo_pid);
1562 
1563 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1564 	wo->child_wait.private = current;
1565 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1566 repeat:
1567 	/*
1568 	 * If there is nothing that can match our criteria, just get out.
1569 	 * We will clear ->notask_error to zero if we see any child that
1570 	 * might later match our criteria, even if we are not able to reap
1571 	 * it yet.
1572 	 */
1573 	wo->notask_error = -ECHILD;
1574 	if ((wo->wo_type < PIDTYPE_MAX) &&
1575 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1576 		goto notask;
1577 
1578 	set_current_state(TASK_INTERRUPTIBLE);
1579 	read_lock(&tasklist_lock);
1580 	tsk = current;
1581 	do {
1582 		retval = do_wait_thread(wo, tsk);
1583 		if (retval)
1584 			goto end;
1585 
1586 		retval = ptrace_do_wait(wo, tsk);
1587 		if (retval)
1588 			goto end;
1589 
1590 		if (wo->wo_flags & __WNOTHREAD)
1591 			break;
1592 	} while_each_thread(current, tsk);
1593 	read_unlock(&tasklist_lock);
1594 
1595 notask:
1596 	retval = wo->notask_error;
1597 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1598 		retval = -ERESTARTSYS;
1599 		if (!signal_pending(current)) {
1600 			schedule();
1601 			goto repeat;
1602 		}
1603 	}
1604 end:
1605 	__set_current_state(TASK_RUNNING);
1606 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1607 	return retval;
1608 }
1609 
1610 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1611 		infop, int, options, struct rusage __user *, ru)
1612 {
1613 	struct wait_opts wo;
1614 	struct pid *pid = NULL;
1615 	enum pid_type type;
1616 	long ret;
1617 
1618 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1619 			__WNOTHREAD|__WCLONE|__WALL))
1620 		return -EINVAL;
1621 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1622 		return -EINVAL;
1623 
1624 	switch (which) {
1625 	case P_ALL:
1626 		type = PIDTYPE_MAX;
1627 		break;
1628 	case P_PID:
1629 		type = PIDTYPE_PID;
1630 		if (upid <= 0)
1631 			return -EINVAL;
1632 		break;
1633 	case P_PGID:
1634 		type = PIDTYPE_PGID;
1635 		if (upid <= 0)
1636 			return -EINVAL;
1637 		break;
1638 	default:
1639 		return -EINVAL;
1640 	}
1641 
1642 	if (type < PIDTYPE_MAX)
1643 		pid = find_get_pid(upid);
1644 
1645 	wo.wo_type	= type;
1646 	wo.wo_pid	= pid;
1647 	wo.wo_flags	= options;
1648 	wo.wo_info	= infop;
1649 	wo.wo_stat	= NULL;
1650 	wo.wo_rusage	= ru;
1651 	ret = do_wait(&wo);
1652 
1653 	if (ret > 0) {
1654 		ret = 0;
1655 	} else if (infop) {
1656 		/*
1657 		 * For a WNOHANG return, clear out all the fields
1658 		 * we would set so the user can easily tell the
1659 		 * difference.
1660 		 */
1661 		if (!ret)
1662 			ret = put_user(0, &infop->si_signo);
1663 		if (!ret)
1664 			ret = put_user(0, &infop->si_errno);
1665 		if (!ret)
1666 			ret = put_user(0, &infop->si_code);
1667 		if (!ret)
1668 			ret = put_user(0, &infop->si_pid);
1669 		if (!ret)
1670 			ret = put_user(0, &infop->si_uid);
1671 		if (!ret)
1672 			ret = put_user(0, &infop->si_status);
1673 	}
1674 
1675 	put_pid(pid);
1676 	return ret;
1677 }
1678 
1679 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1680 		int, options, struct rusage __user *, ru)
1681 {
1682 	struct wait_opts wo;
1683 	struct pid *pid = NULL;
1684 	enum pid_type type;
1685 	long ret;
1686 
1687 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1688 			__WNOTHREAD|__WCLONE|__WALL))
1689 		return -EINVAL;
1690 
1691 	if (upid == -1)
1692 		type = PIDTYPE_MAX;
1693 	else if (upid < 0) {
1694 		type = PIDTYPE_PGID;
1695 		pid = find_get_pid(-upid);
1696 	} else if (upid == 0) {
1697 		type = PIDTYPE_PGID;
1698 		pid = get_task_pid(current, PIDTYPE_PGID);
1699 	} else /* upid > 0 */ {
1700 		type = PIDTYPE_PID;
1701 		pid = find_get_pid(upid);
1702 	}
1703 
1704 	wo.wo_type	= type;
1705 	wo.wo_pid	= pid;
1706 	wo.wo_flags	= options | WEXITED;
1707 	wo.wo_info	= NULL;
1708 	wo.wo_stat	= stat_addr;
1709 	wo.wo_rusage	= ru;
1710 	ret = do_wait(&wo);
1711 	put_pid(pid);
1712 
1713 	return ret;
1714 }
1715 
1716 #ifdef __ARCH_WANT_SYS_WAITPID
1717 
1718 /*
1719  * sys_waitpid() remains for compatibility. waitpid() should be
1720  * implemented by calling sys_wait4() from libc.a.
1721  */
1722 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1723 {
1724 	return sys_wait4(pid, stat_addr, options, NULL);
1725 }
1726 
1727 #endif
1728