1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct *tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 } 119 120 /* 121 * Accumulate here the counters for all threads as they die. We could 122 * skip the group leader because it is the last user of signal_struct, 123 * but we want to avoid the race with thread_group_cputime() which can 124 * see the empty ->thread_head list. 125 */ 126 task_cputime(tsk, &utime, &stime); 127 write_seqlock(&sig->stats_lock); 128 sig->utime += utime; 129 sig->stime += stime; 130 sig->gtime += task_gtime(tsk); 131 sig->min_flt += tsk->min_flt; 132 sig->maj_flt += tsk->maj_flt; 133 sig->nvcsw += tsk->nvcsw; 134 sig->nivcsw += tsk->nivcsw; 135 sig->inblock += task_io_get_inblock(tsk); 136 sig->oublock += task_io_get_oublock(tsk); 137 task_io_accounting_add(&sig->ioac, &tsk->ioac); 138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 139 sig->nr_threads--; 140 __unhash_process(tsk, group_dead); 141 write_sequnlock(&sig->stats_lock); 142 143 /* 144 * Do this under ->siglock, we can race with another thread 145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 146 */ 147 flush_sigqueue(&tsk->pending); 148 tsk->sighand = NULL; 149 spin_unlock(&sighand->siglock); 150 151 __cleanup_sighand(sighand); 152 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 153 if (group_dead) { 154 flush_sigqueue(&sig->shared_pending); 155 tty_kref_put(tty); 156 } 157 } 158 159 static void delayed_put_task_struct(struct rcu_head *rhp) 160 { 161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 162 163 perf_event_delayed_put(tsk); 164 trace_sched_process_free(tsk); 165 put_task_struct(tsk); 166 } 167 168 169 void release_task(struct task_struct *p) 170 { 171 struct task_struct *leader; 172 int zap_leader; 173 repeat: 174 /* don't need to get the RCU readlock here - the process is dead and 175 * can't be modifying its own credentials. But shut RCU-lockdep up */ 176 rcu_read_lock(); 177 atomic_dec(&__task_cred(p)->user->processes); 178 rcu_read_unlock(); 179 180 proc_flush_task(p); 181 182 write_lock_irq(&tasklist_lock); 183 ptrace_release_task(p); 184 __exit_signal(p); 185 186 /* 187 * If we are the last non-leader member of the thread 188 * group, and the leader is zombie, then notify the 189 * group leader's parent process. (if it wants notification.) 190 */ 191 zap_leader = 0; 192 leader = p->group_leader; 193 if (leader != p && thread_group_empty(leader) 194 && leader->exit_state == EXIT_ZOMBIE) { 195 /* 196 * If we were the last child thread and the leader has 197 * exited already, and the leader's parent ignores SIGCHLD, 198 * then we are the one who should release the leader. 199 */ 200 zap_leader = do_notify_parent(leader, leader->exit_signal); 201 if (zap_leader) 202 leader->exit_state = EXIT_DEAD; 203 } 204 205 write_unlock_irq(&tasklist_lock); 206 release_thread(p); 207 call_rcu(&p->rcu, delayed_put_task_struct); 208 209 p = leader; 210 if (unlikely(zap_leader)) 211 goto repeat; 212 } 213 214 /* 215 * This checks not only the pgrp, but falls back on the pid if no 216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 217 * without this... 218 * 219 * The caller must hold rcu lock or the tasklist lock. 220 */ 221 struct pid *session_of_pgrp(struct pid *pgrp) 222 { 223 struct task_struct *p; 224 struct pid *sid = NULL; 225 226 p = pid_task(pgrp, PIDTYPE_PGID); 227 if (p == NULL) 228 p = pid_task(pgrp, PIDTYPE_PID); 229 if (p != NULL) 230 sid = task_session(p); 231 232 return sid; 233 } 234 235 /* 236 * Determine if a process group is "orphaned", according to the POSIX 237 * definition in 2.2.2.52. Orphaned process groups are not to be affected 238 * by terminal-generated stop signals. Newly orphaned process groups are 239 * to receive a SIGHUP and a SIGCONT. 240 * 241 * "I ask you, have you ever known what it is to be an orphan?" 242 */ 243 static int will_become_orphaned_pgrp(struct pid *pgrp, 244 struct task_struct *ignored_task) 245 { 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if ((p == ignored_task) || 250 (p->exit_state && thread_group_empty(p)) || 251 is_global_init(p->real_parent)) 252 continue; 253 254 if (task_pgrp(p->real_parent) != pgrp && 255 task_session(p->real_parent) == task_session(p)) 256 return 0; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 259 return 1; 260 } 261 262 int is_current_pgrp_orphaned(void) 263 { 264 int retval; 265 266 read_lock(&tasklist_lock); 267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 268 read_unlock(&tasklist_lock); 269 270 return retval; 271 } 272 273 static bool has_stopped_jobs(struct pid *pgrp) 274 { 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if (p->signal->flags & SIGNAL_STOP_STOPPED) 279 return true; 280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 281 282 return false; 283 } 284 285 /* 286 * Check to see if any process groups have become orphaned as 287 * a result of our exiting, and if they have any stopped jobs, 288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 289 */ 290 static void 291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 292 { 293 struct pid *pgrp = task_pgrp(tsk); 294 struct task_struct *ignored_task = tsk; 295 296 if (!parent) 297 /* exit: our father is in a different pgrp than 298 * we are and we were the only connection outside. 299 */ 300 parent = tsk->real_parent; 301 else 302 /* reparent: our child is in a different pgrp than 303 * we are, and it was the only connection outside. 304 */ 305 ignored_task = NULL; 306 307 if (task_pgrp(parent) != pgrp && 308 task_session(parent) == task_session(tsk) && 309 will_become_orphaned_pgrp(pgrp, ignored_task) && 310 has_stopped_jobs(pgrp)) { 311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 313 } 314 } 315 316 #ifdef CONFIG_MEMCG 317 /* 318 * A task is exiting. If it owned this mm, find a new owner for the mm. 319 */ 320 void mm_update_next_owner(struct mm_struct *mm) 321 { 322 struct task_struct *c, *g, *p = current; 323 324 retry: 325 /* 326 * If the exiting or execing task is not the owner, it's 327 * someone else's problem. 328 */ 329 if (mm->owner != p) 330 return; 331 /* 332 * The current owner is exiting/execing and there are no other 333 * candidates. Do not leave the mm pointing to a possibly 334 * freed task structure. 335 */ 336 if (atomic_read(&mm->mm_users) <= 1) { 337 mm->owner = NULL; 338 return; 339 } 340 341 read_lock(&tasklist_lock); 342 /* 343 * Search in the children 344 */ 345 list_for_each_entry(c, &p->children, sibling) { 346 if (c->mm == mm) 347 goto assign_new_owner; 348 } 349 350 /* 351 * Search in the siblings 352 */ 353 list_for_each_entry(c, &p->real_parent->children, sibling) { 354 if (c->mm == mm) 355 goto assign_new_owner; 356 } 357 358 /* 359 * Search through everything else, we should not get here often. 360 */ 361 for_each_process(g) { 362 if (g->flags & PF_KTHREAD) 363 continue; 364 for_each_thread(g, c) { 365 if (c->mm == mm) 366 goto assign_new_owner; 367 if (c->mm) 368 break; 369 } 370 } 371 read_unlock(&tasklist_lock); 372 /* 373 * We found no owner yet mm_users > 1: this implies that we are 374 * most likely racing with swapoff (try_to_unuse()) or /proc or 375 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 376 */ 377 mm->owner = NULL; 378 return; 379 380 assign_new_owner: 381 BUG_ON(c == p); 382 get_task_struct(c); 383 /* 384 * The task_lock protects c->mm from changing. 385 * We always want mm->owner->mm == mm 386 */ 387 task_lock(c); 388 /* 389 * Delay read_unlock() till we have the task_lock() 390 * to ensure that c does not slip away underneath us 391 */ 392 read_unlock(&tasklist_lock); 393 if (c->mm != mm) { 394 task_unlock(c); 395 put_task_struct(c); 396 goto retry; 397 } 398 mm->owner = c; 399 task_unlock(c); 400 put_task_struct(c); 401 } 402 #endif /* CONFIG_MEMCG */ 403 404 /* 405 * Turn us into a lazy TLB process if we 406 * aren't already.. 407 */ 408 static void exit_mm(struct task_struct *tsk) 409 { 410 struct mm_struct *mm = tsk->mm; 411 struct core_state *core_state; 412 413 mm_release(tsk, mm); 414 if (!mm) 415 return; 416 sync_mm_rss(mm); 417 /* 418 * Serialize with any possible pending coredump. 419 * We must hold mmap_sem around checking core_state 420 * and clearing tsk->mm. The core-inducing thread 421 * will increment ->nr_threads for each thread in the 422 * group with ->mm != NULL. 423 */ 424 down_read(&mm->mmap_sem); 425 core_state = mm->core_state; 426 if (core_state) { 427 struct core_thread self; 428 429 up_read(&mm->mmap_sem); 430 431 self.task = tsk; 432 self.next = xchg(&core_state->dumper.next, &self); 433 /* 434 * Implies mb(), the result of xchg() must be visible 435 * to core_state->dumper. 436 */ 437 if (atomic_dec_and_test(&core_state->nr_threads)) 438 complete(&core_state->startup); 439 440 for (;;) { 441 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 442 if (!self.task) /* see coredump_finish() */ 443 break; 444 freezable_schedule(); 445 } 446 __set_task_state(tsk, TASK_RUNNING); 447 down_read(&mm->mmap_sem); 448 } 449 atomic_inc(&mm->mm_count); 450 BUG_ON(mm != tsk->active_mm); 451 /* more a memory barrier than a real lock */ 452 task_lock(tsk); 453 tsk->mm = NULL; 454 up_read(&mm->mmap_sem); 455 enter_lazy_tlb(mm, current); 456 task_unlock(tsk); 457 mm_update_next_owner(mm); 458 mmput(mm); 459 clear_thread_flag(TIF_MEMDIE); 460 } 461 462 static struct task_struct *find_alive_thread(struct task_struct *p) 463 { 464 struct task_struct *t; 465 466 for_each_thread(p, t) { 467 if (!(t->flags & PF_EXITING)) 468 return t; 469 } 470 return NULL; 471 } 472 473 static struct task_struct *find_child_reaper(struct task_struct *father) 474 __releases(&tasklist_lock) 475 __acquires(&tasklist_lock) 476 { 477 struct pid_namespace *pid_ns = task_active_pid_ns(father); 478 struct task_struct *reaper = pid_ns->child_reaper; 479 480 if (likely(reaper != father)) 481 return reaper; 482 483 reaper = find_alive_thread(father); 484 if (reaper) { 485 pid_ns->child_reaper = reaper; 486 return reaper; 487 } 488 489 write_unlock_irq(&tasklist_lock); 490 if (unlikely(pid_ns == &init_pid_ns)) { 491 panic("Attempted to kill init! exitcode=0x%08x\n", 492 father->signal->group_exit_code ?: father->exit_code); 493 } 494 zap_pid_ns_processes(pid_ns); 495 write_lock_irq(&tasklist_lock); 496 497 return father; 498 } 499 500 /* 501 * When we die, we re-parent all our children, and try to: 502 * 1. give them to another thread in our thread group, if such a member exists 503 * 2. give it to the first ancestor process which prctl'd itself as a 504 * child_subreaper for its children (like a service manager) 505 * 3. give it to the init process (PID 1) in our pid namespace 506 */ 507 static struct task_struct *find_new_reaper(struct task_struct *father, 508 struct task_struct *child_reaper) 509 { 510 struct task_struct *thread, *reaper; 511 512 thread = find_alive_thread(father); 513 if (thread) 514 return thread; 515 516 if (father->signal->has_child_subreaper) { 517 /* 518 * Find the first ->is_child_subreaper ancestor in our pid_ns. 519 * We start from father to ensure we can not look into another 520 * namespace, this is safe because all its threads are dead. 521 */ 522 for (reaper = father; 523 !same_thread_group(reaper, child_reaper); 524 reaper = reaper->real_parent) { 525 /* call_usermodehelper() descendants need this check */ 526 if (reaper == &init_task) 527 break; 528 if (!reaper->signal->is_child_subreaper) 529 continue; 530 thread = find_alive_thread(reaper); 531 if (thread) 532 return thread; 533 } 534 } 535 536 return child_reaper; 537 } 538 539 /* 540 * Any that need to be release_task'd are put on the @dead list. 541 */ 542 static void reparent_leader(struct task_struct *father, struct task_struct *p, 543 struct list_head *dead) 544 { 545 if (unlikely(p->exit_state == EXIT_DEAD)) 546 return; 547 548 /* We don't want people slaying init. */ 549 p->exit_signal = SIGCHLD; 550 551 /* If it has exited notify the new parent about this child's death. */ 552 if (!p->ptrace && 553 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 554 if (do_notify_parent(p, p->exit_signal)) { 555 p->exit_state = EXIT_DEAD; 556 list_add(&p->ptrace_entry, dead); 557 } 558 } 559 560 kill_orphaned_pgrp(p, father); 561 } 562 563 /* 564 * This does two things: 565 * 566 * A. Make init inherit all the child processes 567 * B. Check to see if any process groups have become orphaned 568 * as a result of our exiting, and if they have any stopped 569 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 570 */ 571 static void forget_original_parent(struct task_struct *father, 572 struct list_head *dead) 573 { 574 struct task_struct *p, *t, *reaper; 575 576 if (unlikely(!list_empty(&father->ptraced))) 577 exit_ptrace(father, dead); 578 579 /* Can drop and reacquire tasklist_lock */ 580 reaper = find_child_reaper(father); 581 if (list_empty(&father->children)) 582 return; 583 584 reaper = find_new_reaper(father, reaper); 585 list_for_each_entry(p, &father->children, sibling) { 586 for_each_thread(p, t) { 587 t->real_parent = reaper; 588 BUG_ON((!t->ptrace) != (t->parent == father)); 589 if (likely(!t->ptrace)) 590 t->parent = t->real_parent; 591 if (t->pdeath_signal) 592 group_send_sig_info(t->pdeath_signal, 593 SEND_SIG_NOINFO, t); 594 } 595 /* 596 * If this is a threaded reparent there is no need to 597 * notify anyone anything has happened. 598 */ 599 if (!same_thread_group(reaper, father)) 600 reparent_leader(father, p, dead); 601 } 602 list_splice_tail_init(&father->children, &reaper->children); 603 } 604 605 /* 606 * Send signals to all our closest relatives so that they know 607 * to properly mourn us.. 608 */ 609 static void exit_notify(struct task_struct *tsk, int group_dead) 610 { 611 bool autoreap; 612 struct task_struct *p, *n; 613 LIST_HEAD(dead); 614 615 write_lock_irq(&tasklist_lock); 616 forget_original_parent(tsk, &dead); 617 618 if (group_dead) 619 kill_orphaned_pgrp(tsk->group_leader, NULL); 620 621 if (unlikely(tsk->ptrace)) { 622 int sig = thread_group_leader(tsk) && 623 thread_group_empty(tsk) && 624 !ptrace_reparented(tsk) ? 625 tsk->exit_signal : SIGCHLD; 626 autoreap = do_notify_parent(tsk, sig); 627 } else if (thread_group_leader(tsk)) { 628 autoreap = thread_group_empty(tsk) && 629 do_notify_parent(tsk, tsk->exit_signal); 630 } else { 631 autoreap = true; 632 } 633 634 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 635 if (tsk->exit_state == EXIT_DEAD) 636 list_add(&tsk->ptrace_entry, &dead); 637 638 /* mt-exec, de_thread() is waiting for group leader */ 639 if (unlikely(tsk->signal->notify_count < 0)) 640 wake_up_process(tsk->signal->group_exit_task); 641 write_unlock_irq(&tasklist_lock); 642 643 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 644 list_del_init(&p->ptrace_entry); 645 release_task(p); 646 } 647 } 648 649 #ifdef CONFIG_DEBUG_STACK_USAGE 650 static void check_stack_usage(void) 651 { 652 static DEFINE_SPINLOCK(low_water_lock); 653 static int lowest_to_date = THREAD_SIZE; 654 unsigned long free; 655 656 free = stack_not_used(current); 657 658 if (free >= lowest_to_date) 659 return; 660 661 spin_lock(&low_water_lock); 662 if (free < lowest_to_date) { 663 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 664 current->comm, task_pid_nr(current), free); 665 lowest_to_date = free; 666 } 667 spin_unlock(&low_water_lock); 668 } 669 #else 670 static inline void check_stack_usage(void) {} 671 #endif 672 673 void do_exit(long code) 674 { 675 struct task_struct *tsk = current; 676 int group_dead; 677 TASKS_RCU(int tasks_rcu_i); 678 679 profile_task_exit(tsk); 680 681 WARN_ON(blk_needs_flush_plug(tsk)); 682 683 if (unlikely(in_interrupt())) 684 panic("Aiee, killing interrupt handler!"); 685 if (unlikely(!tsk->pid)) 686 panic("Attempted to kill the idle task!"); 687 688 /* 689 * If do_exit is called because this processes oopsed, it's possible 690 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 691 * continuing. Amongst other possible reasons, this is to prevent 692 * mm_release()->clear_child_tid() from writing to a user-controlled 693 * kernel address. 694 */ 695 set_fs(USER_DS); 696 697 ptrace_event(PTRACE_EVENT_EXIT, code); 698 699 validate_creds_for_do_exit(tsk); 700 701 /* 702 * We're taking recursive faults here in do_exit. Safest is to just 703 * leave this task alone and wait for reboot. 704 */ 705 if (unlikely(tsk->flags & PF_EXITING)) { 706 pr_alert("Fixing recursive fault but reboot is needed!\n"); 707 /* 708 * We can do this unlocked here. The futex code uses 709 * this flag just to verify whether the pi state 710 * cleanup has been done or not. In the worst case it 711 * loops once more. We pretend that the cleanup was 712 * done as there is no way to return. Either the 713 * OWNER_DIED bit is set by now or we push the blocked 714 * task into the wait for ever nirwana as well. 715 */ 716 tsk->flags |= PF_EXITPIDONE; 717 set_current_state(TASK_UNINTERRUPTIBLE); 718 schedule(); 719 } 720 721 exit_signals(tsk); /* sets PF_EXITING */ 722 /* 723 * tsk->flags are checked in the futex code to protect against 724 * an exiting task cleaning up the robust pi futexes. 725 */ 726 smp_mb(); 727 raw_spin_unlock_wait(&tsk->pi_lock); 728 729 if (unlikely(in_atomic())) 730 pr_info("note: %s[%d] exited with preempt_count %d\n", 731 current->comm, task_pid_nr(current), 732 preempt_count()); 733 734 acct_update_integrals(tsk); 735 /* sync mm's RSS info before statistics gathering */ 736 if (tsk->mm) 737 sync_mm_rss(tsk->mm); 738 group_dead = atomic_dec_and_test(&tsk->signal->live); 739 if (group_dead) { 740 hrtimer_cancel(&tsk->signal->real_timer); 741 exit_itimers(tsk->signal); 742 if (tsk->mm) 743 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 744 } 745 acct_collect(code, group_dead); 746 if (group_dead) 747 tty_audit_exit(); 748 audit_free(tsk); 749 750 tsk->exit_code = code; 751 taskstats_exit(tsk, group_dead); 752 753 exit_mm(tsk); 754 755 if (group_dead) 756 acct_process(); 757 trace_sched_process_exit(tsk); 758 759 exit_sem(tsk); 760 exit_shm(tsk); 761 exit_files(tsk); 762 exit_fs(tsk); 763 if (group_dead) 764 disassociate_ctty(1); 765 exit_task_namespaces(tsk); 766 exit_task_work(tsk); 767 exit_thread(); 768 769 /* 770 * Flush inherited counters to the parent - before the parent 771 * gets woken up by child-exit notifications. 772 * 773 * because of cgroup mode, must be called before cgroup_exit() 774 */ 775 perf_event_exit_task(tsk); 776 777 cgroup_exit(tsk); 778 779 module_put(task_thread_info(tsk)->exec_domain->module); 780 781 /* 782 * FIXME: do that only when needed, using sched_exit tracepoint 783 */ 784 flush_ptrace_hw_breakpoint(tsk); 785 786 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 787 exit_notify(tsk, group_dead); 788 proc_exit_connector(tsk); 789 #ifdef CONFIG_NUMA 790 task_lock(tsk); 791 mpol_put(tsk->mempolicy); 792 tsk->mempolicy = NULL; 793 task_unlock(tsk); 794 #endif 795 #ifdef CONFIG_FUTEX 796 if (unlikely(current->pi_state_cache)) 797 kfree(current->pi_state_cache); 798 #endif 799 /* 800 * Make sure we are holding no locks: 801 */ 802 debug_check_no_locks_held(); 803 /* 804 * We can do this unlocked here. The futex code uses this flag 805 * just to verify whether the pi state cleanup has been done 806 * or not. In the worst case it loops once more. 807 */ 808 tsk->flags |= PF_EXITPIDONE; 809 810 if (tsk->io_context) 811 exit_io_context(tsk); 812 813 if (tsk->splice_pipe) 814 free_pipe_info(tsk->splice_pipe); 815 816 if (tsk->task_frag.page) 817 put_page(tsk->task_frag.page); 818 819 validate_creds_for_do_exit(tsk); 820 821 check_stack_usage(); 822 preempt_disable(); 823 if (tsk->nr_dirtied) 824 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 825 exit_rcu(); 826 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 827 828 /* 829 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 830 * when the following two conditions become true. 831 * - There is race condition of mmap_sem (It is acquired by 832 * exit_mm()), and 833 * - SMI occurs before setting TASK_RUNINNG. 834 * (or hypervisor of virtual machine switches to other guest) 835 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 836 * 837 * To avoid it, we have to wait for releasing tsk->pi_lock which 838 * is held by try_to_wake_up() 839 */ 840 smp_mb(); 841 raw_spin_unlock_wait(&tsk->pi_lock); 842 843 /* causes final put_task_struct in finish_task_switch(). */ 844 tsk->state = TASK_DEAD; 845 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 846 schedule(); 847 BUG(); 848 /* Avoid "noreturn function does return". */ 849 for (;;) 850 cpu_relax(); /* For when BUG is null */ 851 } 852 EXPORT_SYMBOL_GPL(do_exit); 853 854 void complete_and_exit(struct completion *comp, long code) 855 { 856 if (comp) 857 complete(comp); 858 859 do_exit(code); 860 } 861 EXPORT_SYMBOL(complete_and_exit); 862 863 SYSCALL_DEFINE1(exit, int, error_code) 864 { 865 do_exit((error_code&0xff)<<8); 866 } 867 868 /* 869 * Take down every thread in the group. This is called by fatal signals 870 * as well as by sys_exit_group (below). 871 */ 872 void 873 do_group_exit(int exit_code) 874 { 875 struct signal_struct *sig = current->signal; 876 877 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 878 879 if (signal_group_exit(sig)) 880 exit_code = sig->group_exit_code; 881 else if (!thread_group_empty(current)) { 882 struct sighand_struct *const sighand = current->sighand; 883 884 spin_lock_irq(&sighand->siglock); 885 if (signal_group_exit(sig)) 886 /* Another thread got here before we took the lock. */ 887 exit_code = sig->group_exit_code; 888 else { 889 sig->group_exit_code = exit_code; 890 sig->flags = SIGNAL_GROUP_EXIT; 891 zap_other_threads(current); 892 } 893 spin_unlock_irq(&sighand->siglock); 894 } 895 896 do_exit(exit_code); 897 /* NOTREACHED */ 898 } 899 900 /* 901 * this kills every thread in the thread group. Note that any externally 902 * wait4()-ing process will get the correct exit code - even if this 903 * thread is not the thread group leader. 904 */ 905 SYSCALL_DEFINE1(exit_group, int, error_code) 906 { 907 do_group_exit((error_code & 0xff) << 8); 908 /* NOTREACHED */ 909 return 0; 910 } 911 912 struct wait_opts { 913 enum pid_type wo_type; 914 int wo_flags; 915 struct pid *wo_pid; 916 917 struct siginfo __user *wo_info; 918 int __user *wo_stat; 919 struct rusage __user *wo_rusage; 920 921 wait_queue_t child_wait; 922 int notask_error; 923 }; 924 925 static inline 926 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 927 { 928 if (type != PIDTYPE_PID) 929 task = task->group_leader; 930 return task->pids[type].pid; 931 } 932 933 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 934 { 935 return wo->wo_type == PIDTYPE_MAX || 936 task_pid_type(p, wo->wo_type) == wo->wo_pid; 937 } 938 939 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 940 { 941 if (!eligible_pid(wo, p)) 942 return 0; 943 /* Wait for all children (clone and not) if __WALL is set; 944 * otherwise, wait for clone children *only* if __WCLONE is 945 * set; otherwise, wait for non-clone children *only*. (Note: 946 * A "clone" child here is one that reports to its parent 947 * using a signal other than SIGCHLD.) */ 948 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 949 && !(wo->wo_flags & __WALL)) 950 return 0; 951 952 return 1; 953 } 954 955 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 956 pid_t pid, uid_t uid, int why, int status) 957 { 958 struct siginfo __user *infop; 959 int retval = wo->wo_rusage 960 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 961 962 put_task_struct(p); 963 infop = wo->wo_info; 964 if (infop) { 965 if (!retval) 966 retval = put_user(SIGCHLD, &infop->si_signo); 967 if (!retval) 968 retval = put_user(0, &infop->si_errno); 969 if (!retval) 970 retval = put_user((short)why, &infop->si_code); 971 if (!retval) 972 retval = put_user(pid, &infop->si_pid); 973 if (!retval) 974 retval = put_user(uid, &infop->si_uid); 975 if (!retval) 976 retval = put_user(status, &infop->si_status); 977 } 978 if (!retval) 979 retval = pid; 980 return retval; 981 } 982 983 /* 984 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 985 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 986 * the lock and this task is uninteresting. If we return nonzero, we have 987 * released the lock and the system call should return. 988 */ 989 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 990 { 991 int state, retval, status; 992 pid_t pid = task_pid_vnr(p); 993 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 994 struct siginfo __user *infop; 995 996 if (!likely(wo->wo_flags & WEXITED)) 997 return 0; 998 999 if (unlikely(wo->wo_flags & WNOWAIT)) { 1000 int exit_code = p->exit_code; 1001 int why; 1002 1003 get_task_struct(p); 1004 read_unlock(&tasklist_lock); 1005 sched_annotate_sleep(); 1006 1007 if ((exit_code & 0x7f) == 0) { 1008 why = CLD_EXITED; 1009 status = exit_code >> 8; 1010 } else { 1011 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1012 status = exit_code & 0x7f; 1013 } 1014 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1015 } 1016 /* 1017 * Move the task's state to DEAD/TRACE, only one thread can do this. 1018 */ 1019 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1020 EXIT_TRACE : EXIT_DEAD; 1021 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1022 return 0; 1023 /* 1024 * We own this thread, nobody else can reap it. 1025 */ 1026 read_unlock(&tasklist_lock); 1027 sched_annotate_sleep(); 1028 1029 /* 1030 * Check thread_group_leader() to exclude the traced sub-threads. 1031 */ 1032 if (state == EXIT_DEAD && thread_group_leader(p)) { 1033 struct signal_struct *sig = p->signal; 1034 struct signal_struct *psig = current->signal; 1035 unsigned long maxrss; 1036 cputime_t tgutime, tgstime; 1037 1038 /* 1039 * The resource counters for the group leader are in its 1040 * own task_struct. Those for dead threads in the group 1041 * are in its signal_struct, as are those for the child 1042 * processes it has previously reaped. All these 1043 * accumulate in the parent's signal_struct c* fields. 1044 * 1045 * We don't bother to take a lock here to protect these 1046 * p->signal fields because the whole thread group is dead 1047 * and nobody can change them. 1048 * 1049 * psig->stats_lock also protects us from our sub-theads 1050 * which can reap other children at the same time. Until 1051 * we change k_getrusage()-like users to rely on this lock 1052 * we have to take ->siglock as well. 1053 * 1054 * We use thread_group_cputime_adjusted() to get times for 1055 * the thread group, which consolidates times for all threads 1056 * in the group including the group leader. 1057 */ 1058 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1059 spin_lock_irq(¤t->sighand->siglock); 1060 write_seqlock(&psig->stats_lock); 1061 psig->cutime += tgutime + sig->cutime; 1062 psig->cstime += tgstime + sig->cstime; 1063 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1064 psig->cmin_flt += 1065 p->min_flt + sig->min_flt + sig->cmin_flt; 1066 psig->cmaj_flt += 1067 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1068 psig->cnvcsw += 1069 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1070 psig->cnivcsw += 1071 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1072 psig->cinblock += 1073 task_io_get_inblock(p) + 1074 sig->inblock + sig->cinblock; 1075 psig->coublock += 1076 task_io_get_oublock(p) + 1077 sig->oublock + sig->coublock; 1078 maxrss = max(sig->maxrss, sig->cmaxrss); 1079 if (psig->cmaxrss < maxrss) 1080 psig->cmaxrss = maxrss; 1081 task_io_accounting_add(&psig->ioac, &p->ioac); 1082 task_io_accounting_add(&psig->ioac, &sig->ioac); 1083 write_sequnlock(&psig->stats_lock); 1084 spin_unlock_irq(¤t->sighand->siglock); 1085 } 1086 1087 retval = wo->wo_rusage 1088 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1089 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1090 ? p->signal->group_exit_code : p->exit_code; 1091 if (!retval && wo->wo_stat) 1092 retval = put_user(status, wo->wo_stat); 1093 1094 infop = wo->wo_info; 1095 if (!retval && infop) 1096 retval = put_user(SIGCHLD, &infop->si_signo); 1097 if (!retval && infop) 1098 retval = put_user(0, &infop->si_errno); 1099 if (!retval && infop) { 1100 int why; 1101 1102 if ((status & 0x7f) == 0) { 1103 why = CLD_EXITED; 1104 status >>= 8; 1105 } else { 1106 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1107 status &= 0x7f; 1108 } 1109 retval = put_user((short)why, &infop->si_code); 1110 if (!retval) 1111 retval = put_user(status, &infop->si_status); 1112 } 1113 if (!retval && infop) 1114 retval = put_user(pid, &infop->si_pid); 1115 if (!retval && infop) 1116 retval = put_user(uid, &infop->si_uid); 1117 if (!retval) 1118 retval = pid; 1119 1120 if (state == EXIT_TRACE) { 1121 write_lock_irq(&tasklist_lock); 1122 /* We dropped tasklist, ptracer could die and untrace */ 1123 ptrace_unlink(p); 1124 1125 /* If parent wants a zombie, don't release it now */ 1126 state = EXIT_ZOMBIE; 1127 if (do_notify_parent(p, p->exit_signal)) 1128 state = EXIT_DEAD; 1129 p->exit_state = state; 1130 write_unlock_irq(&tasklist_lock); 1131 } 1132 if (state == EXIT_DEAD) 1133 release_task(p); 1134 1135 return retval; 1136 } 1137 1138 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1139 { 1140 if (ptrace) { 1141 if (task_is_stopped_or_traced(p) && 1142 !(p->jobctl & JOBCTL_LISTENING)) 1143 return &p->exit_code; 1144 } else { 1145 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1146 return &p->signal->group_exit_code; 1147 } 1148 return NULL; 1149 } 1150 1151 /** 1152 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1153 * @wo: wait options 1154 * @ptrace: is the wait for ptrace 1155 * @p: task to wait for 1156 * 1157 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1158 * 1159 * CONTEXT: 1160 * read_lock(&tasklist_lock), which is released if return value is 1161 * non-zero. Also, grabs and releases @p->sighand->siglock. 1162 * 1163 * RETURNS: 1164 * 0 if wait condition didn't exist and search for other wait conditions 1165 * should continue. Non-zero return, -errno on failure and @p's pid on 1166 * success, implies that tasklist_lock is released and wait condition 1167 * search should terminate. 1168 */ 1169 static int wait_task_stopped(struct wait_opts *wo, 1170 int ptrace, struct task_struct *p) 1171 { 1172 struct siginfo __user *infop; 1173 int retval, exit_code, *p_code, why; 1174 uid_t uid = 0; /* unneeded, required by compiler */ 1175 pid_t pid; 1176 1177 /* 1178 * Traditionally we see ptrace'd stopped tasks regardless of options. 1179 */ 1180 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1181 return 0; 1182 1183 if (!task_stopped_code(p, ptrace)) 1184 return 0; 1185 1186 exit_code = 0; 1187 spin_lock_irq(&p->sighand->siglock); 1188 1189 p_code = task_stopped_code(p, ptrace); 1190 if (unlikely(!p_code)) 1191 goto unlock_sig; 1192 1193 exit_code = *p_code; 1194 if (!exit_code) 1195 goto unlock_sig; 1196 1197 if (!unlikely(wo->wo_flags & WNOWAIT)) 1198 *p_code = 0; 1199 1200 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1201 unlock_sig: 1202 spin_unlock_irq(&p->sighand->siglock); 1203 if (!exit_code) 1204 return 0; 1205 1206 /* 1207 * Now we are pretty sure this task is interesting. 1208 * Make sure it doesn't get reaped out from under us while we 1209 * give up the lock and then examine it below. We don't want to 1210 * keep holding onto the tasklist_lock while we call getrusage and 1211 * possibly take page faults for user memory. 1212 */ 1213 get_task_struct(p); 1214 pid = task_pid_vnr(p); 1215 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1216 read_unlock(&tasklist_lock); 1217 sched_annotate_sleep(); 1218 1219 if (unlikely(wo->wo_flags & WNOWAIT)) 1220 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1221 1222 retval = wo->wo_rusage 1223 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1224 if (!retval && wo->wo_stat) 1225 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1226 1227 infop = wo->wo_info; 1228 if (!retval && infop) 1229 retval = put_user(SIGCHLD, &infop->si_signo); 1230 if (!retval && infop) 1231 retval = put_user(0, &infop->si_errno); 1232 if (!retval && infop) 1233 retval = put_user((short)why, &infop->si_code); 1234 if (!retval && infop) 1235 retval = put_user(exit_code, &infop->si_status); 1236 if (!retval && infop) 1237 retval = put_user(pid, &infop->si_pid); 1238 if (!retval && infop) 1239 retval = put_user(uid, &infop->si_uid); 1240 if (!retval) 1241 retval = pid; 1242 put_task_struct(p); 1243 1244 BUG_ON(!retval); 1245 return retval; 1246 } 1247 1248 /* 1249 * Handle do_wait work for one task in a live, non-stopped state. 1250 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1251 * the lock and this task is uninteresting. If we return nonzero, we have 1252 * released the lock and the system call should return. 1253 */ 1254 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1255 { 1256 int retval; 1257 pid_t pid; 1258 uid_t uid; 1259 1260 if (!unlikely(wo->wo_flags & WCONTINUED)) 1261 return 0; 1262 1263 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1264 return 0; 1265 1266 spin_lock_irq(&p->sighand->siglock); 1267 /* Re-check with the lock held. */ 1268 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1269 spin_unlock_irq(&p->sighand->siglock); 1270 return 0; 1271 } 1272 if (!unlikely(wo->wo_flags & WNOWAIT)) 1273 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1274 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1275 spin_unlock_irq(&p->sighand->siglock); 1276 1277 pid = task_pid_vnr(p); 1278 get_task_struct(p); 1279 read_unlock(&tasklist_lock); 1280 sched_annotate_sleep(); 1281 1282 if (!wo->wo_info) { 1283 retval = wo->wo_rusage 1284 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1285 put_task_struct(p); 1286 if (!retval && wo->wo_stat) 1287 retval = put_user(0xffff, wo->wo_stat); 1288 if (!retval) 1289 retval = pid; 1290 } else { 1291 retval = wait_noreap_copyout(wo, p, pid, uid, 1292 CLD_CONTINUED, SIGCONT); 1293 BUG_ON(retval == 0); 1294 } 1295 1296 return retval; 1297 } 1298 1299 /* 1300 * Consider @p for a wait by @parent. 1301 * 1302 * -ECHILD should be in ->notask_error before the first call. 1303 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1304 * Returns zero if the search for a child should continue; 1305 * then ->notask_error is 0 if @p is an eligible child, 1306 * or another error from security_task_wait(), or still -ECHILD. 1307 */ 1308 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1309 struct task_struct *p) 1310 { 1311 int ret; 1312 1313 if (unlikely(p->exit_state == EXIT_DEAD)) 1314 return 0; 1315 1316 ret = eligible_child(wo, p); 1317 if (!ret) 1318 return ret; 1319 1320 ret = security_task_wait(p); 1321 if (unlikely(ret < 0)) { 1322 /* 1323 * If we have not yet seen any eligible child, 1324 * then let this error code replace -ECHILD. 1325 * A permission error will give the user a clue 1326 * to look for security policy problems, rather 1327 * than for mysterious wait bugs. 1328 */ 1329 if (wo->notask_error) 1330 wo->notask_error = ret; 1331 return 0; 1332 } 1333 1334 if (unlikely(p->exit_state == EXIT_TRACE)) { 1335 /* 1336 * ptrace == 0 means we are the natural parent. In this case 1337 * we should clear notask_error, debugger will notify us. 1338 */ 1339 if (likely(!ptrace)) 1340 wo->notask_error = 0; 1341 return 0; 1342 } 1343 1344 if (likely(!ptrace) && unlikely(p->ptrace)) { 1345 /* 1346 * If it is traced by its real parent's group, just pretend 1347 * the caller is ptrace_do_wait() and reap this child if it 1348 * is zombie. 1349 * 1350 * This also hides group stop state from real parent; otherwise 1351 * a single stop can be reported twice as group and ptrace stop. 1352 * If a ptracer wants to distinguish these two events for its 1353 * own children it should create a separate process which takes 1354 * the role of real parent. 1355 */ 1356 if (!ptrace_reparented(p)) 1357 ptrace = 1; 1358 } 1359 1360 /* slay zombie? */ 1361 if (p->exit_state == EXIT_ZOMBIE) { 1362 /* we don't reap group leaders with subthreads */ 1363 if (!delay_group_leader(p)) { 1364 /* 1365 * A zombie ptracee is only visible to its ptracer. 1366 * Notification and reaping will be cascaded to the 1367 * real parent when the ptracer detaches. 1368 */ 1369 if (unlikely(ptrace) || likely(!p->ptrace)) 1370 return wait_task_zombie(wo, p); 1371 } 1372 1373 /* 1374 * Allow access to stopped/continued state via zombie by 1375 * falling through. Clearing of notask_error is complex. 1376 * 1377 * When !@ptrace: 1378 * 1379 * If WEXITED is set, notask_error should naturally be 1380 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1381 * so, if there are live subthreads, there are events to 1382 * wait for. If all subthreads are dead, it's still safe 1383 * to clear - this function will be called again in finite 1384 * amount time once all the subthreads are released and 1385 * will then return without clearing. 1386 * 1387 * When @ptrace: 1388 * 1389 * Stopped state is per-task and thus can't change once the 1390 * target task dies. Only continued and exited can happen. 1391 * Clear notask_error if WCONTINUED | WEXITED. 1392 */ 1393 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1394 wo->notask_error = 0; 1395 } else { 1396 /* 1397 * @p is alive and it's gonna stop, continue or exit, so 1398 * there always is something to wait for. 1399 */ 1400 wo->notask_error = 0; 1401 } 1402 1403 /* 1404 * Wait for stopped. Depending on @ptrace, different stopped state 1405 * is used and the two don't interact with each other. 1406 */ 1407 ret = wait_task_stopped(wo, ptrace, p); 1408 if (ret) 1409 return ret; 1410 1411 /* 1412 * Wait for continued. There's only one continued state and the 1413 * ptracer can consume it which can confuse the real parent. Don't 1414 * use WCONTINUED from ptracer. You don't need or want it. 1415 */ 1416 return wait_task_continued(wo, p); 1417 } 1418 1419 /* 1420 * Do the work of do_wait() for one thread in the group, @tsk. 1421 * 1422 * -ECHILD should be in ->notask_error before the first call. 1423 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1424 * Returns zero if the search for a child should continue; then 1425 * ->notask_error is 0 if there were any eligible children, 1426 * or another error from security_task_wait(), or still -ECHILD. 1427 */ 1428 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1429 { 1430 struct task_struct *p; 1431 1432 list_for_each_entry(p, &tsk->children, sibling) { 1433 int ret = wait_consider_task(wo, 0, p); 1434 1435 if (ret) 1436 return ret; 1437 } 1438 1439 return 0; 1440 } 1441 1442 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1443 { 1444 struct task_struct *p; 1445 1446 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1447 int ret = wait_consider_task(wo, 1, p); 1448 1449 if (ret) 1450 return ret; 1451 } 1452 1453 return 0; 1454 } 1455 1456 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1457 int sync, void *key) 1458 { 1459 struct wait_opts *wo = container_of(wait, struct wait_opts, 1460 child_wait); 1461 struct task_struct *p = key; 1462 1463 if (!eligible_pid(wo, p)) 1464 return 0; 1465 1466 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1467 return 0; 1468 1469 return default_wake_function(wait, mode, sync, key); 1470 } 1471 1472 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1473 { 1474 __wake_up_sync_key(&parent->signal->wait_chldexit, 1475 TASK_INTERRUPTIBLE, 1, p); 1476 } 1477 1478 static long do_wait(struct wait_opts *wo) 1479 { 1480 struct task_struct *tsk; 1481 int retval; 1482 1483 trace_sched_process_wait(wo->wo_pid); 1484 1485 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1486 wo->child_wait.private = current; 1487 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1488 repeat: 1489 /* 1490 * If there is nothing that can match our critiera just get out. 1491 * We will clear ->notask_error to zero if we see any child that 1492 * might later match our criteria, even if we are not able to reap 1493 * it yet. 1494 */ 1495 wo->notask_error = -ECHILD; 1496 if ((wo->wo_type < PIDTYPE_MAX) && 1497 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1498 goto notask; 1499 1500 set_current_state(TASK_INTERRUPTIBLE); 1501 read_lock(&tasklist_lock); 1502 tsk = current; 1503 do { 1504 retval = do_wait_thread(wo, tsk); 1505 if (retval) 1506 goto end; 1507 1508 retval = ptrace_do_wait(wo, tsk); 1509 if (retval) 1510 goto end; 1511 1512 if (wo->wo_flags & __WNOTHREAD) 1513 break; 1514 } while_each_thread(current, tsk); 1515 read_unlock(&tasklist_lock); 1516 1517 notask: 1518 retval = wo->notask_error; 1519 if (!retval && !(wo->wo_flags & WNOHANG)) { 1520 retval = -ERESTARTSYS; 1521 if (!signal_pending(current)) { 1522 schedule(); 1523 goto repeat; 1524 } 1525 } 1526 end: 1527 __set_current_state(TASK_RUNNING); 1528 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1529 return retval; 1530 } 1531 1532 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1533 infop, int, options, struct rusage __user *, ru) 1534 { 1535 struct wait_opts wo; 1536 struct pid *pid = NULL; 1537 enum pid_type type; 1538 long ret; 1539 1540 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1541 return -EINVAL; 1542 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1543 return -EINVAL; 1544 1545 switch (which) { 1546 case P_ALL: 1547 type = PIDTYPE_MAX; 1548 break; 1549 case P_PID: 1550 type = PIDTYPE_PID; 1551 if (upid <= 0) 1552 return -EINVAL; 1553 break; 1554 case P_PGID: 1555 type = PIDTYPE_PGID; 1556 if (upid <= 0) 1557 return -EINVAL; 1558 break; 1559 default: 1560 return -EINVAL; 1561 } 1562 1563 if (type < PIDTYPE_MAX) 1564 pid = find_get_pid(upid); 1565 1566 wo.wo_type = type; 1567 wo.wo_pid = pid; 1568 wo.wo_flags = options; 1569 wo.wo_info = infop; 1570 wo.wo_stat = NULL; 1571 wo.wo_rusage = ru; 1572 ret = do_wait(&wo); 1573 1574 if (ret > 0) { 1575 ret = 0; 1576 } else if (infop) { 1577 /* 1578 * For a WNOHANG return, clear out all the fields 1579 * we would set so the user can easily tell the 1580 * difference. 1581 */ 1582 if (!ret) 1583 ret = put_user(0, &infop->si_signo); 1584 if (!ret) 1585 ret = put_user(0, &infop->si_errno); 1586 if (!ret) 1587 ret = put_user(0, &infop->si_code); 1588 if (!ret) 1589 ret = put_user(0, &infop->si_pid); 1590 if (!ret) 1591 ret = put_user(0, &infop->si_uid); 1592 if (!ret) 1593 ret = put_user(0, &infop->si_status); 1594 } 1595 1596 put_pid(pid); 1597 return ret; 1598 } 1599 1600 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1601 int, options, struct rusage __user *, ru) 1602 { 1603 struct wait_opts wo; 1604 struct pid *pid = NULL; 1605 enum pid_type type; 1606 long ret; 1607 1608 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1609 __WNOTHREAD|__WCLONE|__WALL)) 1610 return -EINVAL; 1611 1612 if (upid == -1) 1613 type = PIDTYPE_MAX; 1614 else if (upid < 0) { 1615 type = PIDTYPE_PGID; 1616 pid = find_get_pid(-upid); 1617 } else if (upid == 0) { 1618 type = PIDTYPE_PGID; 1619 pid = get_task_pid(current, PIDTYPE_PGID); 1620 } else /* upid > 0 */ { 1621 type = PIDTYPE_PID; 1622 pid = find_get_pid(upid); 1623 } 1624 1625 wo.wo_type = type; 1626 wo.wo_pid = pid; 1627 wo.wo_flags = options | WEXITED; 1628 wo.wo_info = NULL; 1629 wo.wo_stat = stat_addr; 1630 wo.wo_rusage = ru; 1631 ret = do_wait(&wo); 1632 put_pid(pid); 1633 1634 return ret; 1635 } 1636 1637 #ifdef __ARCH_WANT_SYS_WAITPID 1638 1639 /* 1640 * sys_waitpid() remains for compatibility. waitpid() should be 1641 * implemented by calling sys_wait4() from libc.a. 1642 */ 1643 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1644 { 1645 return sys_wait4(pid, stat_addr, options, NULL); 1646 } 1647 1648 #endif 1649