xref: /linux/kernel/exit.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct *tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (group_dead) {
97 		posix_cpu_timers_exit_group(tsk);
98 		tty = sig->tty;
99 		sig->tty = NULL;
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 
109 		/*
110 		 * If there is any task waiting for the group exit
111 		 * then notify it:
112 		 */
113 		if (sig->notify_count > 0 && !--sig->notify_count)
114 			wake_up_process(sig->group_exit_task);
115 
116 		if (tsk == sig->curr_target)
117 			sig->curr_target = next_thread(tsk);
118 	}
119 
120 	/*
121 	 * Accumulate here the counters for all threads as they die. We could
122 	 * skip the group leader because it is the last user of signal_struct,
123 	 * but we want to avoid the race with thread_group_cputime() which can
124 	 * see the empty ->thread_head list.
125 	 */
126 	task_cputime(tsk, &utime, &stime);
127 	write_seqlock(&sig->stats_lock);
128 	sig->utime += utime;
129 	sig->stime += stime;
130 	sig->gtime += task_gtime(tsk);
131 	sig->min_flt += tsk->min_flt;
132 	sig->maj_flt += tsk->maj_flt;
133 	sig->nvcsw += tsk->nvcsw;
134 	sig->nivcsw += tsk->nivcsw;
135 	sig->inblock += task_io_get_inblock(tsk);
136 	sig->oublock += task_io_get_oublock(tsk);
137 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
138 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
139 	sig->nr_threads--;
140 	__unhash_process(tsk, group_dead);
141 	write_sequnlock(&sig->stats_lock);
142 
143 	/*
144 	 * Do this under ->siglock, we can race with another thread
145 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
146 	 */
147 	flush_sigqueue(&tsk->pending);
148 	tsk->sighand = NULL;
149 	spin_unlock(&sighand->siglock);
150 
151 	__cleanup_sighand(sighand);
152 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
153 	if (group_dead) {
154 		flush_sigqueue(&sig->shared_pending);
155 		tty_kref_put(tty);
156 	}
157 }
158 
159 static void delayed_put_task_struct(struct rcu_head *rhp)
160 {
161 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
162 
163 	perf_event_delayed_put(tsk);
164 	trace_sched_process_free(tsk);
165 	put_task_struct(tsk);
166 }
167 
168 
169 void release_task(struct task_struct *p)
170 {
171 	struct task_struct *leader;
172 	int zap_leader;
173 repeat:
174 	/* don't need to get the RCU readlock here - the process is dead and
175 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 	rcu_read_lock();
177 	atomic_dec(&__task_cred(p)->user->processes);
178 	rcu_read_unlock();
179 
180 	proc_flush_task(p);
181 
182 	write_lock_irq(&tasklist_lock);
183 	ptrace_release_task(p);
184 	__exit_signal(p);
185 
186 	/*
187 	 * If we are the last non-leader member of the thread
188 	 * group, and the leader is zombie, then notify the
189 	 * group leader's parent process. (if it wants notification.)
190 	 */
191 	zap_leader = 0;
192 	leader = p->group_leader;
193 	if (leader != p && thread_group_empty(leader)
194 			&& leader->exit_state == EXIT_ZOMBIE) {
195 		/*
196 		 * If we were the last child thread and the leader has
197 		 * exited already, and the leader's parent ignores SIGCHLD,
198 		 * then we are the one who should release the leader.
199 		 */
200 		zap_leader = do_notify_parent(leader, leader->exit_signal);
201 		if (zap_leader)
202 			leader->exit_state = EXIT_DEAD;
203 	}
204 
205 	write_unlock_irq(&tasklist_lock);
206 	release_thread(p);
207 	call_rcu(&p->rcu, delayed_put_task_struct);
208 
209 	p = leader;
210 	if (unlikely(zap_leader))
211 		goto repeat;
212 }
213 
214 /*
215  * This checks not only the pgrp, but falls back on the pid if no
216  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
217  * without this...
218  *
219  * The caller must hold rcu lock or the tasklist lock.
220  */
221 struct pid *session_of_pgrp(struct pid *pgrp)
222 {
223 	struct task_struct *p;
224 	struct pid *sid = NULL;
225 
226 	p = pid_task(pgrp, PIDTYPE_PGID);
227 	if (p == NULL)
228 		p = pid_task(pgrp, PIDTYPE_PID);
229 	if (p != NULL)
230 		sid = task_session(p);
231 
232 	return sid;
233 }
234 
235 /*
236  * Determine if a process group is "orphaned", according to the POSIX
237  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
238  * by terminal-generated stop signals.  Newly orphaned process groups are
239  * to receive a SIGHUP and a SIGCONT.
240  *
241  * "I ask you, have you ever known what it is to be an orphan?"
242  */
243 static int will_become_orphaned_pgrp(struct pid *pgrp,
244 					struct task_struct *ignored_task)
245 {
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if ((p == ignored_task) ||
250 		    (p->exit_state && thread_group_empty(p)) ||
251 		    is_global_init(p->real_parent))
252 			continue;
253 
254 		if (task_pgrp(p->real_parent) != pgrp &&
255 		    task_session(p->real_parent) == task_session(p))
256 			return 0;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 
259 	return 1;
260 }
261 
262 int is_current_pgrp_orphaned(void)
263 {
264 	int retval;
265 
266 	read_lock(&tasklist_lock);
267 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 	read_unlock(&tasklist_lock);
269 
270 	return retval;
271 }
272 
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 			return true;
280 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 
282 	return false;
283 }
284 
285 /*
286  * Check to see if any process groups have become orphaned as
287  * a result of our exiting, and if they have any stopped jobs,
288  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289  */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 	struct pid *pgrp = task_pgrp(tsk);
294 	struct task_struct *ignored_task = tsk;
295 
296 	if (!parent)
297 		/* exit: our father is in a different pgrp than
298 		 * we are and we were the only connection outside.
299 		 */
300 		parent = tsk->real_parent;
301 	else
302 		/* reparent: our child is in a different pgrp than
303 		 * we are, and it was the only connection outside.
304 		 */
305 		ignored_task = NULL;
306 
307 	if (task_pgrp(parent) != pgrp &&
308 	    task_session(parent) == task_session(tsk) &&
309 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 	    has_stopped_jobs(pgrp)) {
311 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 	}
314 }
315 
316 #ifdef CONFIG_MEMCG
317 /*
318  * A task is exiting.   If it owned this mm, find a new owner for the mm.
319  */
320 void mm_update_next_owner(struct mm_struct *mm)
321 {
322 	struct task_struct *c, *g, *p = current;
323 
324 retry:
325 	/*
326 	 * If the exiting or execing task is not the owner, it's
327 	 * someone else's problem.
328 	 */
329 	if (mm->owner != p)
330 		return;
331 	/*
332 	 * The current owner is exiting/execing and there are no other
333 	 * candidates.  Do not leave the mm pointing to a possibly
334 	 * freed task structure.
335 	 */
336 	if (atomic_read(&mm->mm_users) <= 1) {
337 		mm->owner = NULL;
338 		return;
339 	}
340 
341 	read_lock(&tasklist_lock);
342 	/*
343 	 * Search in the children
344 	 */
345 	list_for_each_entry(c, &p->children, sibling) {
346 		if (c->mm == mm)
347 			goto assign_new_owner;
348 	}
349 
350 	/*
351 	 * Search in the siblings
352 	 */
353 	list_for_each_entry(c, &p->real_parent->children, sibling) {
354 		if (c->mm == mm)
355 			goto assign_new_owner;
356 	}
357 
358 	/*
359 	 * Search through everything else, we should not get here often.
360 	 */
361 	for_each_process(g) {
362 		if (g->flags & PF_KTHREAD)
363 			continue;
364 		for_each_thread(g, c) {
365 			if (c->mm == mm)
366 				goto assign_new_owner;
367 			if (c->mm)
368 				break;
369 		}
370 	}
371 	read_unlock(&tasklist_lock);
372 	/*
373 	 * We found no owner yet mm_users > 1: this implies that we are
374 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
375 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
376 	 */
377 	mm->owner = NULL;
378 	return;
379 
380 assign_new_owner:
381 	BUG_ON(c == p);
382 	get_task_struct(c);
383 	/*
384 	 * The task_lock protects c->mm from changing.
385 	 * We always want mm->owner->mm == mm
386 	 */
387 	task_lock(c);
388 	/*
389 	 * Delay read_unlock() till we have the task_lock()
390 	 * to ensure that c does not slip away underneath us
391 	 */
392 	read_unlock(&tasklist_lock);
393 	if (c->mm != mm) {
394 		task_unlock(c);
395 		put_task_struct(c);
396 		goto retry;
397 	}
398 	mm->owner = c;
399 	task_unlock(c);
400 	put_task_struct(c);
401 }
402 #endif /* CONFIG_MEMCG */
403 
404 /*
405  * Turn us into a lazy TLB process if we
406  * aren't already..
407  */
408 static void exit_mm(struct task_struct *tsk)
409 {
410 	struct mm_struct *mm = tsk->mm;
411 	struct core_state *core_state;
412 
413 	mm_release(tsk, mm);
414 	if (!mm)
415 		return;
416 	sync_mm_rss(mm);
417 	/*
418 	 * Serialize with any possible pending coredump.
419 	 * We must hold mmap_sem around checking core_state
420 	 * and clearing tsk->mm.  The core-inducing thread
421 	 * will increment ->nr_threads for each thread in the
422 	 * group with ->mm != NULL.
423 	 */
424 	down_read(&mm->mmap_sem);
425 	core_state = mm->core_state;
426 	if (core_state) {
427 		struct core_thread self;
428 
429 		up_read(&mm->mmap_sem);
430 
431 		self.task = tsk;
432 		self.next = xchg(&core_state->dumper.next, &self);
433 		/*
434 		 * Implies mb(), the result of xchg() must be visible
435 		 * to core_state->dumper.
436 		 */
437 		if (atomic_dec_and_test(&core_state->nr_threads))
438 			complete(&core_state->startup);
439 
440 		for (;;) {
441 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
442 			if (!self.task) /* see coredump_finish() */
443 				break;
444 			freezable_schedule();
445 		}
446 		__set_task_state(tsk, TASK_RUNNING);
447 		down_read(&mm->mmap_sem);
448 	}
449 	atomic_inc(&mm->mm_count);
450 	BUG_ON(mm != tsk->active_mm);
451 	/* more a memory barrier than a real lock */
452 	task_lock(tsk);
453 	tsk->mm = NULL;
454 	up_read(&mm->mmap_sem);
455 	enter_lazy_tlb(mm, current);
456 	task_unlock(tsk);
457 	mm_update_next_owner(mm);
458 	mmput(mm);
459 	clear_thread_flag(TIF_MEMDIE);
460 }
461 
462 static struct task_struct *find_alive_thread(struct task_struct *p)
463 {
464 	struct task_struct *t;
465 
466 	for_each_thread(p, t) {
467 		if (!(t->flags & PF_EXITING))
468 			return t;
469 	}
470 	return NULL;
471 }
472 
473 static struct task_struct *find_child_reaper(struct task_struct *father)
474 	__releases(&tasklist_lock)
475 	__acquires(&tasklist_lock)
476 {
477 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
478 	struct task_struct *reaper = pid_ns->child_reaper;
479 
480 	if (likely(reaper != father))
481 		return reaper;
482 
483 	reaper = find_alive_thread(father);
484 	if (reaper) {
485 		pid_ns->child_reaper = reaper;
486 		return reaper;
487 	}
488 
489 	write_unlock_irq(&tasklist_lock);
490 	if (unlikely(pid_ns == &init_pid_ns)) {
491 		panic("Attempted to kill init! exitcode=0x%08x\n",
492 			father->signal->group_exit_code ?: father->exit_code);
493 	}
494 	zap_pid_ns_processes(pid_ns);
495 	write_lock_irq(&tasklist_lock);
496 
497 	return father;
498 }
499 
500 /*
501  * When we die, we re-parent all our children, and try to:
502  * 1. give them to another thread in our thread group, if such a member exists
503  * 2. give it to the first ancestor process which prctl'd itself as a
504  *    child_subreaper for its children (like a service manager)
505  * 3. give it to the init process (PID 1) in our pid namespace
506  */
507 static struct task_struct *find_new_reaper(struct task_struct *father,
508 					   struct task_struct *child_reaper)
509 {
510 	struct task_struct *thread, *reaper;
511 
512 	thread = find_alive_thread(father);
513 	if (thread)
514 		return thread;
515 
516 	if (father->signal->has_child_subreaper) {
517 		/*
518 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
519 		 * We start from father to ensure we can not look into another
520 		 * namespace, this is safe because all its threads are dead.
521 		 */
522 		for (reaper = father;
523 		     !same_thread_group(reaper, child_reaper);
524 		     reaper = reaper->real_parent) {
525 			/* call_usermodehelper() descendants need this check */
526 			if (reaper == &init_task)
527 				break;
528 			if (!reaper->signal->is_child_subreaper)
529 				continue;
530 			thread = find_alive_thread(reaper);
531 			if (thread)
532 				return thread;
533 		}
534 	}
535 
536 	return child_reaper;
537 }
538 
539 /*
540 * Any that need to be release_task'd are put on the @dead list.
541  */
542 static void reparent_leader(struct task_struct *father, struct task_struct *p,
543 				struct list_head *dead)
544 {
545 	if (unlikely(p->exit_state == EXIT_DEAD))
546 		return;
547 
548 	/* We don't want people slaying init. */
549 	p->exit_signal = SIGCHLD;
550 
551 	/* If it has exited notify the new parent about this child's death. */
552 	if (!p->ptrace &&
553 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
554 		if (do_notify_parent(p, p->exit_signal)) {
555 			p->exit_state = EXIT_DEAD;
556 			list_add(&p->ptrace_entry, dead);
557 		}
558 	}
559 
560 	kill_orphaned_pgrp(p, father);
561 }
562 
563 /*
564  * This does two things:
565  *
566  * A.  Make init inherit all the child processes
567  * B.  Check to see if any process groups have become orphaned
568  *	as a result of our exiting, and if they have any stopped
569  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
570  */
571 static void forget_original_parent(struct task_struct *father,
572 					struct list_head *dead)
573 {
574 	struct task_struct *p, *t, *reaper;
575 
576 	if (unlikely(!list_empty(&father->ptraced)))
577 		exit_ptrace(father, dead);
578 
579 	/* Can drop and reacquire tasklist_lock */
580 	reaper = find_child_reaper(father);
581 	if (list_empty(&father->children))
582 		return;
583 
584 	reaper = find_new_reaper(father, reaper);
585 	list_for_each_entry(p, &father->children, sibling) {
586 		for_each_thread(p, t) {
587 			t->real_parent = reaper;
588 			BUG_ON((!t->ptrace) != (t->parent == father));
589 			if (likely(!t->ptrace))
590 				t->parent = t->real_parent;
591 			if (t->pdeath_signal)
592 				group_send_sig_info(t->pdeath_signal,
593 						    SEND_SIG_NOINFO, t);
594 		}
595 		/*
596 		 * If this is a threaded reparent there is no need to
597 		 * notify anyone anything has happened.
598 		 */
599 		if (!same_thread_group(reaper, father))
600 			reparent_leader(father, p, dead);
601 	}
602 	list_splice_tail_init(&father->children, &reaper->children);
603 }
604 
605 /*
606  * Send signals to all our closest relatives so that they know
607  * to properly mourn us..
608  */
609 static void exit_notify(struct task_struct *tsk, int group_dead)
610 {
611 	bool autoreap;
612 	struct task_struct *p, *n;
613 	LIST_HEAD(dead);
614 
615 	write_lock_irq(&tasklist_lock);
616 	forget_original_parent(tsk, &dead);
617 
618 	if (group_dead)
619 		kill_orphaned_pgrp(tsk->group_leader, NULL);
620 
621 	if (unlikely(tsk->ptrace)) {
622 		int sig = thread_group_leader(tsk) &&
623 				thread_group_empty(tsk) &&
624 				!ptrace_reparented(tsk) ?
625 			tsk->exit_signal : SIGCHLD;
626 		autoreap = do_notify_parent(tsk, sig);
627 	} else if (thread_group_leader(tsk)) {
628 		autoreap = thread_group_empty(tsk) &&
629 			do_notify_parent(tsk, tsk->exit_signal);
630 	} else {
631 		autoreap = true;
632 	}
633 
634 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
635 	if (tsk->exit_state == EXIT_DEAD)
636 		list_add(&tsk->ptrace_entry, &dead);
637 
638 	/* mt-exec, de_thread() is waiting for group leader */
639 	if (unlikely(tsk->signal->notify_count < 0))
640 		wake_up_process(tsk->signal->group_exit_task);
641 	write_unlock_irq(&tasklist_lock);
642 
643 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
644 		list_del_init(&p->ptrace_entry);
645 		release_task(p);
646 	}
647 }
648 
649 #ifdef CONFIG_DEBUG_STACK_USAGE
650 static void check_stack_usage(void)
651 {
652 	static DEFINE_SPINLOCK(low_water_lock);
653 	static int lowest_to_date = THREAD_SIZE;
654 	unsigned long free;
655 
656 	free = stack_not_used(current);
657 
658 	if (free >= lowest_to_date)
659 		return;
660 
661 	spin_lock(&low_water_lock);
662 	if (free < lowest_to_date) {
663 		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
664 			current->comm, task_pid_nr(current), free);
665 		lowest_to_date = free;
666 	}
667 	spin_unlock(&low_water_lock);
668 }
669 #else
670 static inline void check_stack_usage(void) {}
671 #endif
672 
673 void do_exit(long code)
674 {
675 	struct task_struct *tsk = current;
676 	int group_dead;
677 	TASKS_RCU(int tasks_rcu_i);
678 
679 	profile_task_exit(tsk);
680 
681 	WARN_ON(blk_needs_flush_plug(tsk));
682 
683 	if (unlikely(in_interrupt()))
684 		panic("Aiee, killing interrupt handler!");
685 	if (unlikely(!tsk->pid))
686 		panic("Attempted to kill the idle task!");
687 
688 	/*
689 	 * If do_exit is called because this processes oopsed, it's possible
690 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
691 	 * continuing. Amongst other possible reasons, this is to prevent
692 	 * mm_release()->clear_child_tid() from writing to a user-controlled
693 	 * kernel address.
694 	 */
695 	set_fs(USER_DS);
696 
697 	ptrace_event(PTRACE_EVENT_EXIT, code);
698 
699 	validate_creds_for_do_exit(tsk);
700 
701 	/*
702 	 * We're taking recursive faults here in do_exit. Safest is to just
703 	 * leave this task alone and wait for reboot.
704 	 */
705 	if (unlikely(tsk->flags & PF_EXITING)) {
706 		pr_alert("Fixing recursive fault but reboot is needed!\n");
707 		/*
708 		 * We can do this unlocked here. The futex code uses
709 		 * this flag just to verify whether the pi state
710 		 * cleanup has been done or not. In the worst case it
711 		 * loops once more. We pretend that the cleanup was
712 		 * done as there is no way to return. Either the
713 		 * OWNER_DIED bit is set by now or we push the blocked
714 		 * task into the wait for ever nirwana as well.
715 		 */
716 		tsk->flags |= PF_EXITPIDONE;
717 		set_current_state(TASK_UNINTERRUPTIBLE);
718 		schedule();
719 	}
720 
721 	exit_signals(tsk);  /* sets PF_EXITING */
722 	/*
723 	 * tsk->flags are checked in the futex code to protect against
724 	 * an exiting task cleaning up the robust pi futexes.
725 	 */
726 	smp_mb();
727 	raw_spin_unlock_wait(&tsk->pi_lock);
728 
729 	if (unlikely(in_atomic()))
730 		pr_info("note: %s[%d] exited with preempt_count %d\n",
731 			current->comm, task_pid_nr(current),
732 			preempt_count());
733 
734 	acct_update_integrals(tsk);
735 	/* sync mm's RSS info before statistics gathering */
736 	if (tsk->mm)
737 		sync_mm_rss(tsk->mm);
738 	group_dead = atomic_dec_and_test(&tsk->signal->live);
739 	if (group_dead) {
740 		hrtimer_cancel(&tsk->signal->real_timer);
741 		exit_itimers(tsk->signal);
742 		if (tsk->mm)
743 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
744 	}
745 	acct_collect(code, group_dead);
746 	if (group_dead)
747 		tty_audit_exit();
748 	audit_free(tsk);
749 
750 	tsk->exit_code = code;
751 	taskstats_exit(tsk, group_dead);
752 
753 	exit_mm(tsk);
754 
755 	if (group_dead)
756 		acct_process();
757 	trace_sched_process_exit(tsk);
758 
759 	exit_sem(tsk);
760 	exit_shm(tsk);
761 	exit_files(tsk);
762 	exit_fs(tsk);
763 	if (group_dead)
764 		disassociate_ctty(1);
765 	exit_task_namespaces(tsk);
766 	exit_task_work(tsk);
767 	exit_thread();
768 
769 	/*
770 	 * Flush inherited counters to the parent - before the parent
771 	 * gets woken up by child-exit notifications.
772 	 *
773 	 * because of cgroup mode, must be called before cgroup_exit()
774 	 */
775 	perf_event_exit_task(tsk);
776 
777 	cgroup_exit(tsk);
778 
779 	module_put(task_thread_info(tsk)->exec_domain->module);
780 
781 	/*
782 	 * FIXME: do that only when needed, using sched_exit tracepoint
783 	 */
784 	flush_ptrace_hw_breakpoint(tsk);
785 
786 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
787 	exit_notify(tsk, group_dead);
788 	proc_exit_connector(tsk);
789 #ifdef CONFIG_NUMA
790 	task_lock(tsk);
791 	mpol_put(tsk->mempolicy);
792 	tsk->mempolicy = NULL;
793 	task_unlock(tsk);
794 #endif
795 #ifdef CONFIG_FUTEX
796 	if (unlikely(current->pi_state_cache))
797 		kfree(current->pi_state_cache);
798 #endif
799 	/*
800 	 * Make sure we are holding no locks:
801 	 */
802 	debug_check_no_locks_held();
803 	/*
804 	 * We can do this unlocked here. The futex code uses this flag
805 	 * just to verify whether the pi state cleanup has been done
806 	 * or not. In the worst case it loops once more.
807 	 */
808 	tsk->flags |= PF_EXITPIDONE;
809 
810 	if (tsk->io_context)
811 		exit_io_context(tsk);
812 
813 	if (tsk->splice_pipe)
814 		free_pipe_info(tsk->splice_pipe);
815 
816 	if (tsk->task_frag.page)
817 		put_page(tsk->task_frag.page);
818 
819 	validate_creds_for_do_exit(tsk);
820 
821 	check_stack_usage();
822 	preempt_disable();
823 	if (tsk->nr_dirtied)
824 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
825 	exit_rcu();
826 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
827 
828 	/*
829 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
830 	 * when the following two conditions become true.
831 	 *   - There is race condition of mmap_sem (It is acquired by
832 	 *     exit_mm()), and
833 	 *   - SMI occurs before setting TASK_RUNINNG.
834 	 *     (or hypervisor of virtual machine switches to other guest)
835 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
836 	 *
837 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
838 	 * is held by try_to_wake_up()
839 	 */
840 	smp_mb();
841 	raw_spin_unlock_wait(&tsk->pi_lock);
842 
843 	/* causes final put_task_struct in finish_task_switch(). */
844 	tsk->state = TASK_DEAD;
845 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
846 	schedule();
847 	BUG();
848 	/* Avoid "noreturn function does return".  */
849 	for (;;)
850 		cpu_relax();	/* For when BUG is null */
851 }
852 EXPORT_SYMBOL_GPL(do_exit);
853 
854 void complete_and_exit(struct completion *comp, long code)
855 {
856 	if (comp)
857 		complete(comp);
858 
859 	do_exit(code);
860 }
861 EXPORT_SYMBOL(complete_and_exit);
862 
863 SYSCALL_DEFINE1(exit, int, error_code)
864 {
865 	do_exit((error_code&0xff)<<8);
866 }
867 
868 /*
869  * Take down every thread in the group.  This is called by fatal signals
870  * as well as by sys_exit_group (below).
871  */
872 void
873 do_group_exit(int exit_code)
874 {
875 	struct signal_struct *sig = current->signal;
876 
877 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
878 
879 	if (signal_group_exit(sig))
880 		exit_code = sig->group_exit_code;
881 	else if (!thread_group_empty(current)) {
882 		struct sighand_struct *const sighand = current->sighand;
883 
884 		spin_lock_irq(&sighand->siglock);
885 		if (signal_group_exit(sig))
886 			/* Another thread got here before we took the lock.  */
887 			exit_code = sig->group_exit_code;
888 		else {
889 			sig->group_exit_code = exit_code;
890 			sig->flags = SIGNAL_GROUP_EXIT;
891 			zap_other_threads(current);
892 		}
893 		spin_unlock_irq(&sighand->siglock);
894 	}
895 
896 	do_exit(exit_code);
897 	/* NOTREACHED */
898 }
899 
900 /*
901  * this kills every thread in the thread group. Note that any externally
902  * wait4()-ing process will get the correct exit code - even if this
903  * thread is not the thread group leader.
904  */
905 SYSCALL_DEFINE1(exit_group, int, error_code)
906 {
907 	do_group_exit((error_code & 0xff) << 8);
908 	/* NOTREACHED */
909 	return 0;
910 }
911 
912 struct wait_opts {
913 	enum pid_type		wo_type;
914 	int			wo_flags;
915 	struct pid		*wo_pid;
916 
917 	struct siginfo __user	*wo_info;
918 	int __user		*wo_stat;
919 	struct rusage __user	*wo_rusage;
920 
921 	wait_queue_t		child_wait;
922 	int			notask_error;
923 };
924 
925 static inline
926 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
927 {
928 	if (type != PIDTYPE_PID)
929 		task = task->group_leader;
930 	return task->pids[type].pid;
931 }
932 
933 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
934 {
935 	return	wo->wo_type == PIDTYPE_MAX ||
936 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
937 }
938 
939 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
940 {
941 	if (!eligible_pid(wo, p))
942 		return 0;
943 	/* Wait for all children (clone and not) if __WALL is set;
944 	 * otherwise, wait for clone children *only* if __WCLONE is
945 	 * set; otherwise, wait for non-clone children *only*.  (Note:
946 	 * A "clone" child here is one that reports to its parent
947 	 * using a signal other than SIGCHLD.) */
948 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
949 	    && !(wo->wo_flags & __WALL))
950 		return 0;
951 
952 	return 1;
953 }
954 
955 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
956 				pid_t pid, uid_t uid, int why, int status)
957 {
958 	struct siginfo __user *infop;
959 	int retval = wo->wo_rusage
960 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
961 
962 	put_task_struct(p);
963 	infop = wo->wo_info;
964 	if (infop) {
965 		if (!retval)
966 			retval = put_user(SIGCHLD, &infop->si_signo);
967 		if (!retval)
968 			retval = put_user(0, &infop->si_errno);
969 		if (!retval)
970 			retval = put_user((short)why, &infop->si_code);
971 		if (!retval)
972 			retval = put_user(pid, &infop->si_pid);
973 		if (!retval)
974 			retval = put_user(uid, &infop->si_uid);
975 		if (!retval)
976 			retval = put_user(status, &infop->si_status);
977 	}
978 	if (!retval)
979 		retval = pid;
980 	return retval;
981 }
982 
983 /*
984  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
985  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
986  * the lock and this task is uninteresting.  If we return nonzero, we have
987  * released the lock and the system call should return.
988  */
989 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
990 {
991 	int state, retval, status;
992 	pid_t pid = task_pid_vnr(p);
993 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
994 	struct siginfo __user *infop;
995 
996 	if (!likely(wo->wo_flags & WEXITED))
997 		return 0;
998 
999 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1000 		int exit_code = p->exit_code;
1001 		int why;
1002 
1003 		get_task_struct(p);
1004 		read_unlock(&tasklist_lock);
1005 		sched_annotate_sleep();
1006 
1007 		if ((exit_code & 0x7f) == 0) {
1008 			why = CLD_EXITED;
1009 			status = exit_code >> 8;
1010 		} else {
1011 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1012 			status = exit_code & 0x7f;
1013 		}
1014 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1015 	}
1016 	/*
1017 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1018 	 */
1019 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1020 		EXIT_TRACE : EXIT_DEAD;
1021 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1022 		return 0;
1023 	/*
1024 	 * We own this thread, nobody else can reap it.
1025 	 */
1026 	read_unlock(&tasklist_lock);
1027 	sched_annotate_sleep();
1028 
1029 	/*
1030 	 * Check thread_group_leader() to exclude the traced sub-threads.
1031 	 */
1032 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1033 		struct signal_struct *sig = p->signal;
1034 		struct signal_struct *psig = current->signal;
1035 		unsigned long maxrss;
1036 		cputime_t tgutime, tgstime;
1037 
1038 		/*
1039 		 * The resource counters for the group leader are in its
1040 		 * own task_struct.  Those for dead threads in the group
1041 		 * are in its signal_struct, as are those for the child
1042 		 * processes it has previously reaped.  All these
1043 		 * accumulate in the parent's signal_struct c* fields.
1044 		 *
1045 		 * We don't bother to take a lock here to protect these
1046 		 * p->signal fields because the whole thread group is dead
1047 		 * and nobody can change them.
1048 		 *
1049 		 * psig->stats_lock also protects us from our sub-theads
1050 		 * which can reap other children at the same time. Until
1051 		 * we change k_getrusage()-like users to rely on this lock
1052 		 * we have to take ->siglock as well.
1053 		 *
1054 		 * We use thread_group_cputime_adjusted() to get times for
1055 		 * the thread group, which consolidates times for all threads
1056 		 * in the group including the group leader.
1057 		 */
1058 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1059 		spin_lock_irq(&current->sighand->siglock);
1060 		write_seqlock(&psig->stats_lock);
1061 		psig->cutime += tgutime + sig->cutime;
1062 		psig->cstime += tgstime + sig->cstime;
1063 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1064 		psig->cmin_flt +=
1065 			p->min_flt + sig->min_flt + sig->cmin_flt;
1066 		psig->cmaj_flt +=
1067 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1068 		psig->cnvcsw +=
1069 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1070 		psig->cnivcsw +=
1071 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1072 		psig->cinblock +=
1073 			task_io_get_inblock(p) +
1074 			sig->inblock + sig->cinblock;
1075 		psig->coublock +=
1076 			task_io_get_oublock(p) +
1077 			sig->oublock + sig->coublock;
1078 		maxrss = max(sig->maxrss, sig->cmaxrss);
1079 		if (psig->cmaxrss < maxrss)
1080 			psig->cmaxrss = maxrss;
1081 		task_io_accounting_add(&psig->ioac, &p->ioac);
1082 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1083 		write_sequnlock(&psig->stats_lock);
1084 		spin_unlock_irq(&current->sighand->siglock);
1085 	}
1086 
1087 	retval = wo->wo_rusage
1088 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1089 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090 		? p->signal->group_exit_code : p->exit_code;
1091 	if (!retval && wo->wo_stat)
1092 		retval = put_user(status, wo->wo_stat);
1093 
1094 	infop = wo->wo_info;
1095 	if (!retval && infop)
1096 		retval = put_user(SIGCHLD, &infop->si_signo);
1097 	if (!retval && infop)
1098 		retval = put_user(0, &infop->si_errno);
1099 	if (!retval && infop) {
1100 		int why;
1101 
1102 		if ((status & 0x7f) == 0) {
1103 			why = CLD_EXITED;
1104 			status >>= 8;
1105 		} else {
1106 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1107 			status &= 0x7f;
1108 		}
1109 		retval = put_user((short)why, &infop->si_code);
1110 		if (!retval)
1111 			retval = put_user(status, &infop->si_status);
1112 	}
1113 	if (!retval && infop)
1114 		retval = put_user(pid, &infop->si_pid);
1115 	if (!retval && infop)
1116 		retval = put_user(uid, &infop->si_uid);
1117 	if (!retval)
1118 		retval = pid;
1119 
1120 	if (state == EXIT_TRACE) {
1121 		write_lock_irq(&tasklist_lock);
1122 		/* We dropped tasklist, ptracer could die and untrace */
1123 		ptrace_unlink(p);
1124 
1125 		/* If parent wants a zombie, don't release it now */
1126 		state = EXIT_ZOMBIE;
1127 		if (do_notify_parent(p, p->exit_signal))
1128 			state = EXIT_DEAD;
1129 		p->exit_state = state;
1130 		write_unlock_irq(&tasklist_lock);
1131 	}
1132 	if (state == EXIT_DEAD)
1133 		release_task(p);
1134 
1135 	return retval;
1136 }
1137 
1138 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1139 {
1140 	if (ptrace) {
1141 		if (task_is_stopped_or_traced(p) &&
1142 		    !(p->jobctl & JOBCTL_LISTENING))
1143 			return &p->exit_code;
1144 	} else {
1145 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1146 			return &p->signal->group_exit_code;
1147 	}
1148 	return NULL;
1149 }
1150 
1151 /**
1152  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1153  * @wo: wait options
1154  * @ptrace: is the wait for ptrace
1155  * @p: task to wait for
1156  *
1157  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1158  *
1159  * CONTEXT:
1160  * read_lock(&tasklist_lock), which is released if return value is
1161  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1162  *
1163  * RETURNS:
1164  * 0 if wait condition didn't exist and search for other wait conditions
1165  * should continue.  Non-zero return, -errno on failure and @p's pid on
1166  * success, implies that tasklist_lock is released and wait condition
1167  * search should terminate.
1168  */
1169 static int wait_task_stopped(struct wait_opts *wo,
1170 				int ptrace, struct task_struct *p)
1171 {
1172 	struct siginfo __user *infop;
1173 	int retval, exit_code, *p_code, why;
1174 	uid_t uid = 0; /* unneeded, required by compiler */
1175 	pid_t pid;
1176 
1177 	/*
1178 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1179 	 */
1180 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1181 		return 0;
1182 
1183 	if (!task_stopped_code(p, ptrace))
1184 		return 0;
1185 
1186 	exit_code = 0;
1187 	spin_lock_irq(&p->sighand->siglock);
1188 
1189 	p_code = task_stopped_code(p, ptrace);
1190 	if (unlikely(!p_code))
1191 		goto unlock_sig;
1192 
1193 	exit_code = *p_code;
1194 	if (!exit_code)
1195 		goto unlock_sig;
1196 
1197 	if (!unlikely(wo->wo_flags & WNOWAIT))
1198 		*p_code = 0;
1199 
1200 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1201 unlock_sig:
1202 	spin_unlock_irq(&p->sighand->siglock);
1203 	if (!exit_code)
1204 		return 0;
1205 
1206 	/*
1207 	 * Now we are pretty sure this task is interesting.
1208 	 * Make sure it doesn't get reaped out from under us while we
1209 	 * give up the lock and then examine it below.  We don't want to
1210 	 * keep holding onto the tasklist_lock while we call getrusage and
1211 	 * possibly take page faults for user memory.
1212 	 */
1213 	get_task_struct(p);
1214 	pid = task_pid_vnr(p);
1215 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1216 	read_unlock(&tasklist_lock);
1217 	sched_annotate_sleep();
1218 
1219 	if (unlikely(wo->wo_flags & WNOWAIT))
1220 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1221 
1222 	retval = wo->wo_rusage
1223 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1224 	if (!retval && wo->wo_stat)
1225 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1226 
1227 	infop = wo->wo_info;
1228 	if (!retval && infop)
1229 		retval = put_user(SIGCHLD, &infop->si_signo);
1230 	if (!retval && infop)
1231 		retval = put_user(0, &infop->si_errno);
1232 	if (!retval && infop)
1233 		retval = put_user((short)why, &infop->si_code);
1234 	if (!retval && infop)
1235 		retval = put_user(exit_code, &infop->si_status);
1236 	if (!retval && infop)
1237 		retval = put_user(pid, &infop->si_pid);
1238 	if (!retval && infop)
1239 		retval = put_user(uid, &infop->si_uid);
1240 	if (!retval)
1241 		retval = pid;
1242 	put_task_struct(p);
1243 
1244 	BUG_ON(!retval);
1245 	return retval;
1246 }
1247 
1248 /*
1249  * Handle do_wait work for one task in a live, non-stopped state.
1250  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1251  * the lock and this task is uninteresting.  If we return nonzero, we have
1252  * released the lock and the system call should return.
1253  */
1254 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1255 {
1256 	int retval;
1257 	pid_t pid;
1258 	uid_t uid;
1259 
1260 	if (!unlikely(wo->wo_flags & WCONTINUED))
1261 		return 0;
1262 
1263 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1264 		return 0;
1265 
1266 	spin_lock_irq(&p->sighand->siglock);
1267 	/* Re-check with the lock held.  */
1268 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1269 		spin_unlock_irq(&p->sighand->siglock);
1270 		return 0;
1271 	}
1272 	if (!unlikely(wo->wo_flags & WNOWAIT))
1273 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1274 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1275 	spin_unlock_irq(&p->sighand->siglock);
1276 
1277 	pid = task_pid_vnr(p);
1278 	get_task_struct(p);
1279 	read_unlock(&tasklist_lock);
1280 	sched_annotate_sleep();
1281 
1282 	if (!wo->wo_info) {
1283 		retval = wo->wo_rusage
1284 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1285 		put_task_struct(p);
1286 		if (!retval && wo->wo_stat)
1287 			retval = put_user(0xffff, wo->wo_stat);
1288 		if (!retval)
1289 			retval = pid;
1290 	} else {
1291 		retval = wait_noreap_copyout(wo, p, pid, uid,
1292 					     CLD_CONTINUED, SIGCONT);
1293 		BUG_ON(retval == 0);
1294 	}
1295 
1296 	return retval;
1297 }
1298 
1299 /*
1300  * Consider @p for a wait by @parent.
1301  *
1302  * -ECHILD should be in ->notask_error before the first call.
1303  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1304  * Returns zero if the search for a child should continue;
1305  * then ->notask_error is 0 if @p is an eligible child,
1306  * or another error from security_task_wait(), or still -ECHILD.
1307  */
1308 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1309 				struct task_struct *p)
1310 {
1311 	int ret;
1312 
1313 	if (unlikely(p->exit_state == EXIT_DEAD))
1314 		return 0;
1315 
1316 	ret = eligible_child(wo, p);
1317 	if (!ret)
1318 		return ret;
1319 
1320 	ret = security_task_wait(p);
1321 	if (unlikely(ret < 0)) {
1322 		/*
1323 		 * If we have not yet seen any eligible child,
1324 		 * then let this error code replace -ECHILD.
1325 		 * A permission error will give the user a clue
1326 		 * to look for security policy problems, rather
1327 		 * than for mysterious wait bugs.
1328 		 */
1329 		if (wo->notask_error)
1330 			wo->notask_error = ret;
1331 		return 0;
1332 	}
1333 
1334 	if (unlikely(p->exit_state == EXIT_TRACE)) {
1335 		/*
1336 		 * ptrace == 0 means we are the natural parent. In this case
1337 		 * we should clear notask_error, debugger will notify us.
1338 		 */
1339 		if (likely(!ptrace))
1340 			wo->notask_error = 0;
1341 		return 0;
1342 	}
1343 
1344 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1345 		/*
1346 		 * If it is traced by its real parent's group, just pretend
1347 		 * the caller is ptrace_do_wait() and reap this child if it
1348 		 * is zombie.
1349 		 *
1350 		 * This also hides group stop state from real parent; otherwise
1351 		 * a single stop can be reported twice as group and ptrace stop.
1352 		 * If a ptracer wants to distinguish these two events for its
1353 		 * own children it should create a separate process which takes
1354 		 * the role of real parent.
1355 		 */
1356 		if (!ptrace_reparented(p))
1357 			ptrace = 1;
1358 	}
1359 
1360 	/* slay zombie? */
1361 	if (p->exit_state == EXIT_ZOMBIE) {
1362 		/* we don't reap group leaders with subthreads */
1363 		if (!delay_group_leader(p)) {
1364 			/*
1365 			 * A zombie ptracee is only visible to its ptracer.
1366 			 * Notification and reaping will be cascaded to the
1367 			 * real parent when the ptracer detaches.
1368 			 */
1369 			if (unlikely(ptrace) || likely(!p->ptrace))
1370 				return wait_task_zombie(wo, p);
1371 		}
1372 
1373 		/*
1374 		 * Allow access to stopped/continued state via zombie by
1375 		 * falling through.  Clearing of notask_error is complex.
1376 		 *
1377 		 * When !@ptrace:
1378 		 *
1379 		 * If WEXITED is set, notask_error should naturally be
1380 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1381 		 * so, if there are live subthreads, there are events to
1382 		 * wait for.  If all subthreads are dead, it's still safe
1383 		 * to clear - this function will be called again in finite
1384 		 * amount time once all the subthreads are released and
1385 		 * will then return without clearing.
1386 		 *
1387 		 * When @ptrace:
1388 		 *
1389 		 * Stopped state is per-task and thus can't change once the
1390 		 * target task dies.  Only continued and exited can happen.
1391 		 * Clear notask_error if WCONTINUED | WEXITED.
1392 		 */
1393 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1394 			wo->notask_error = 0;
1395 	} else {
1396 		/*
1397 		 * @p is alive and it's gonna stop, continue or exit, so
1398 		 * there always is something to wait for.
1399 		 */
1400 		wo->notask_error = 0;
1401 	}
1402 
1403 	/*
1404 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1405 	 * is used and the two don't interact with each other.
1406 	 */
1407 	ret = wait_task_stopped(wo, ptrace, p);
1408 	if (ret)
1409 		return ret;
1410 
1411 	/*
1412 	 * Wait for continued.  There's only one continued state and the
1413 	 * ptracer can consume it which can confuse the real parent.  Don't
1414 	 * use WCONTINUED from ptracer.  You don't need or want it.
1415 	 */
1416 	return wait_task_continued(wo, p);
1417 }
1418 
1419 /*
1420  * Do the work of do_wait() for one thread in the group, @tsk.
1421  *
1422  * -ECHILD should be in ->notask_error before the first call.
1423  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1424  * Returns zero if the search for a child should continue; then
1425  * ->notask_error is 0 if there were any eligible children,
1426  * or another error from security_task_wait(), or still -ECHILD.
1427  */
1428 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1429 {
1430 	struct task_struct *p;
1431 
1432 	list_for_each_entry(p, &tsk->children, sibling) {
1433 		int ret = wait_consider_task(wo, 0, p);
1434 
1435 		if (ret)
1436 			return ret;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1443 {
1444 	struct task_struct *p;
1445 
1446 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1447 		int ret = wait_consider_task(wo, 1, p);
1448 
1449 		if (ret)
1450 			return ret;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1457 				int sync, void *key)
1458 {
1459 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1460 						child_wait);
1461 	struct task_struct *p = key;
1462 
1463 	if (!eligible_pid(wo, p))
1464 		return 0;
1465 
1466 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1467 		return 0;
1468 
1469 	return default_wake_function(wait, mode, sync, key);
1470 }
1471 
1472 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1473 {
1474 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1475 				TASK_INTERRUPTIBLE, 1, p);
1476 }
1477 
1478 static long do_wait(struct wait_opts *wo)
1479 {
1480 	struct task_struct *tsk;
1481 	int retval;
1482 
1483 	trace_sched_process_wait(wo->wo_pid);
1484 
1485 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1486 	wo->child_wait.private = current;
1487 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1488 repeat:
1489 	/*
1490 	 * If there is nothing that can match our critiera just get out.
1491 	 * We will clear ->notask_error to zero if we see any child that
1492 	 * might later match our criteria, even if we are not able to reap
1493 	 * it yet.
1494 	 */
1495 	wo->notask_error = -ECHILD;
1496 	if ((wo->wo_type < PIDTYPE_MAX) &&
1497 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1498 		goto notask;
1499 
1500 	set_current_state(TASK_INTERRUPTIBLE);
1501 	read_lock(&tasklist_lock);
1502 	tsk = current;
1503 	do {
1504 		retval = do_wait_thread(wo, tsk);
1505 		if (retval)
1506 			goto end;
1507 
1508 		retval = ptrace_do_wait(wo, tsk);
1509 		if (retval)
1510 			goto end;
1511 
1512 		if (wo->wo_flags & __WNOTHREAD)
1513 			break;
1514 	} while_each_thread(current, tsk);
1515 	read_unlock(&tasklist_lock);
1516 
1517 notask:
1518 	retval = wo->notask_error;
1519 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1520 		retval = -ERESTARTSYS;
1521 		if (!signal_pending(current)) {
1522 			schedule();
1523 			goto repeat;
1524 		}
1525 	}
1526 end:
1527 	__set_current_state(TASK_RUNNING);
1528 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1529 	return retval;
1530 }
1531 
1532 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1533 		infop, int, options, struct rusage __user *, ru)
1534 {
1535 	struct wait_opts wo;
1536 	struct pid *pid = NULL;
1537 	enum pid_type type;
1538 	long ret;
1539 
1540 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1541 		return -EINVAL;
1542 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1543 		return -EINVAL;
1544 
1545 	switch (which) {
1546 	case P_ALL:
1547 		type = PIDTYPE_MAX;
1548 		break;
1549 	case P_PID:
1550 		type = PIDTYPE_PID;
1551 		if (upid <= 0)
1552 			return -EINVAL;
1553 		break;
1554 	case P_PGID:
1555 		type = PIDTYPE_PGID;
1556 		if (upid <= 0)
1557 			return -EINVAL;
1558 		break;
1559 	default:
1560 		return -EINVAL;
1561 	}
1562 
1563 	if (type < PIDTYPE_MAX)
1564 		pid = find_get_pid(upid);
1565 
1566 	wo.wo_type	= type;
1567 	wo.wo_pid	= pid;
1568 	wo.wo_flags	= options;
1569 	wo.wo_info	= infop;
1570 	wo.wo_stat	= NULL;
1571 	wo.wo_rusage	= ru;
1572 	ret = do_wait(&wo);
1573 
1574 	if (ret > 0) {
1575 		ret = 0;
1576 	} else if (infop) {
1577 		/*
1578 		 * For a WNOHANG return, clear out all the fields
1579 		 * we would set so the user can easily tell the
1580 		 * difference.
1581 		 */
1582 		if (!ret)
1583 			ret = put_user(0, &infop->si_signo);
1584 		if (!ret)
1585 			ret = put_user(0, &infop->si_errno);
1586 		if (!ret)
1587 			ret = put_user(0, &infop->si_code);
1588 		if (!ret)
1589 			ret = put_user(0, &infop->si_pid);
1590 		if (!ret)
1591 			ret = put_user(0, &infop->si_uid);
1592 		if (!ret)
1593 			ret = put_user(0, &infop->si_status);
1594 	}
1595 
1596 	put_pid(pid);
1597 	return ret;
1598 }
1599 
1600 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1601 		int, options, struct rusage __user *, ru)
1602 {
1603 	struct wait_opts wo;
1604 	struct pid *pid = NULL;
1605 	enum pid_type type;
1606 	long ret;
1607 
1608 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1609 			__WNOTHREAD|__WCLONE|__WALL))
1610 		return -EINVAL;
1611 
1612 	if (upid == -1)
1613 		type = PIDTYPE_MAX;
1614 	else if (upid < 0) {
1615 		type = PIDTYPE_PGID;
1616 		pid = find_get_pid(-upid);
1617 	} else if (upid == 0) {
1618 		type = PIDTYPE_PGID;
1619 		pid = get_task_pid(current, PIDTYPE_PGID);
1620 	} else /* upid > 0 */ {
1621 		type = PIDTYPE_PID;
1622 		pid = find_get_pid(upid);
1623 	}
1624 
1625 	wo.wo_type	= type;
1626 	wo.wo_pid	= pid;
1627 	wo.wo_flags	= options | WEXITED;
1628 	wo.wo_info	= NULL;
1629 	wo.wo_stat	= stat_addr;
1630 	wo.wo_rusage	= ru;
1631 	ret = do_wait(&wo);
1632 	put_pid(pid);
1633 
1634 	return ret;
1635 }
1636 
1637 #ifdef __ARCH_WANT_SYS_WAITPID
1638 
1639 /*
1640  * sys_waitpid() remains for compatibility. waitpid() should be
1641  * implemented by calling sys_wait4() from libc.a.
1642  */
1643 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1644 {
1645 	return sys_wait4(pid, stat_addr, options, NULL);
1646 }
1647 
1648 #endif
1649