xref: /linux/kernel/exit.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/cpuset.h>
29 #include <linux/syscalls.h>
30 #include <linux/signal.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36 
37 extern void sem_exit (void);
38 extern struct task_struct *child_reaper;
39 
40 int getrusage(struct task_struct *, int, struct rusage __user *);
41 
42 static void exit_mm(struct task_struct * tsk);
43 
44 static void __unhash_process(struct task_struct *p)
45 {
46 	nr_threads--;
47 	detach_pid(p, PIDTYPE_PID);
48 	detach_pid(p, PIDTYPE_TGID);
49 	if (thread_group_leader(p)) {
50 		detach_pid(p, PIDTYPE_PGID);
51 		detach_pid(p, PIDTYPE_SID);
52 		if (p->pid)
53 			__get_cpu_var(process_counts)--;
54 	}
55 
56 	REMOVE_LINKS(p);
57 }
58 
59 void release_task(struct task_struct * p)
60 {
61 	int zap_leader;
62 	task_t *leader;
63 	struct dentry *proc_dentry;
64 
65 repeat:
66 	atomic_dec(&p->user->processes);
67 	spin_lock(&p->proc_lock);
68 	proc_dentry = proc_pid_unhash(p);
69 	write_lock_irq(&tasklist_lock);
70 	if (unlikely(p->ptrace))
71 		__ptrace_unlink(p);
72 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
73 	__exit_signal(p);
74 	__exit_sighand(p);
75 	__unhash_process(p);
76 
77 	/*
78 	 * If we are the last non-leader member of the thread
79 	 * group, and the leader is zombie, then notify the
80 	 * group leader's parent process. (if it wants notification.)
81 	 */
82 	zap_leader = 0;
83 	leader = p->group_leader;
84 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
85 		BUG_ON(leader->exit_signal == -1);
86 		do_notify_parent(leader, leader->exit_signal);
87 		/*
88 		 * If we were the last child thread and the leader has
89 		 * exited already, and the leader's parent ignores SIGCHLD,
90 		 * then we are the one who should release the leader.
91 		 *
92 		 * do_notify_parent() will have marked it self-reaping in
93 		 * that case.
94 		 */
95 		zap_leader = (leader->exit_signal == -1);
96 	}
97 
98 	sched_exit(p);
99 	write_unlock_irq(&tasklist_lock);
100 	spin_unlock(&p->proc_lock);
101 	proc_pid_flush(proc_dentry);
102 	release_thread(p);
103 	put_task_struct(p);
104 
105 	p = leader;
106 	if (unlikely(zap_leader))
107 		goto repeat;
108 }
109 
110 /* we are using it only for SMP init */
111 
112 void unhash_process(struct task_struct *p)
113 {
114 	struct dentry *proc_dentry;
115 
116 	spin_lock(&p->proc_lock);
117 	proc_dentry = proc_pid_unhash(p);
118 	write_lock_irq(&tasklist_lock);
119 	__unhash_process(p);
120 	write_unlock_irq(&tasklist_lock);
121 	spin_unlock(&p->proc_lock);
122 	proc_pid_flush(proc_dentry);
123 }
124 
125 /*
126  * This checks not only the pgrp, but falls back on the pid if no
127  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
128  * without this...
129  */
130 int session_of_pgrp(int pgrp)
131 {
132 	struct task_struct *p;
133 	int sid = -1;
134 
135 	read_lock(&tasklist_lock);
136 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
137 		if (p->signal->session > 0) {
138 			sid = p->signal->session;
139 			goto out;
140 		}
141 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
142 	p = find_task_by_pid(pgrp);
143 	if (p)
144 		sid = p->signal->session;
145 out:
146 	read_unlock(&tasklist_lock);
147 
148 	return sid;
149 }
150 
151 /*
152  * Determine if a process group is "orphaned", according to the POSIX
153  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
154  * by terminal-generated stop signals.  Newly orphaned process groups are
155  * to receive a SIGHUP and a SIGCONT.
156  *
157  * "I ask you, have you ever known what it is to be an orphan?"
158  */
159 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
160 {
161 	struct task_struct *p;
162 	int ret = 1;
163 
164 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
165 		if (p == ignored_task
166 				|| p->exit_state
167 				|| p->real_parent->pid == 1)
168 			continue;
169 		if (process_group(p->real_parent) != pgrp
170 			    && p->real_parent->signal->session == p->signal->session) {
171 			ret = 0;
172 			break;
173 		}
174 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
175 	return ret;	/* (sighing) "Often!" */
176 }
177 
178 int is_orphaned_pgrp(int pgrp)
179 {
180 	int retval;
181 
182 	read_lock(&tasklist_lock);
183 	retval = will_become_orphaned_pgrp(pgrp, NULL);
184 	read_unlock(&tasklist_lock);
185 
186 	return retval;
187 }
188 
189 static inline int has_stopped_jobs(int pgrp)
190 {
191 	int retval = 0;
192 	struct task_struct *p;
193 
194 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
195 		if (p->state != TASK_STOPPED)
196 			continue;
197 
198 		/* If p is stopped by a debugger on a signal that won't
199 		   stop it, then don't count p as stopped.  This isn't
200 		   perfect but it's a good approximation.  */
201 		if (unlikely (p->ptrace)
202 		    && p->exit_code != SIGSTOP
203 		    && p->exit_code != SIGTSTP
204 		    && p->exit_code != SIGTTOU
205 		    && p->exit_code != SIGTTIN)
206 			continue;
207 
208 		retval = 1;
209 		break;
210 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
211 	return retval;
212 }
213 
214 /**
215  * reparent_to_init - Reparent the calling kernel thread to the init task.
216  *
217  * If a kernel thread is launched as a result of a system call, or if
218  * it ever exits, it should generally reparent itself to init so that
219  * it is correctly cleaned up on exit.
220  *
221  * The various task state such as scheduling policy and priority may have
222  * been inherited from a user process, so we reset them to sane values here.
223  *
224  * NOTE that reparent_to_init() gives the caller full capabilities.
225  */
226 static inline void reparent_to_init(void)
227 {
228 	write_lock_irq(&tasklist_lock);
229 
230 	ptrace_unlink(current);
231 	/* Reparent to init */
232 	REMOVE_LINKS(current);
233 	current->parent = child_reaper;
234 	current->real_parent = child_reaper;
235 	SET_LINKS(current);
236 
237 	/* Set the exit signal to SIGCHLD so we signal init on exit */
238 	current->exit_signal = SIGCHLD;
239 
240 	if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0))
241 		set_user_nice(current, 0);
242 	/* cpus_allowed? */
243 	/* rt_priority? */
244 	/* signals? */
245 	security_task_reparent_to_init(current);
246 	memcpy(current->signal->rlim, init_task.signal->rlim,
247 	       sizeof(current->signal->rlim));
248 	atomic_inc(&(INIT_USER->__count));
249 	write_unlock_irq(&tasklist_lock);
250 	switch_uid(INIT_USER);
251 }
252 
253 void __set_special_pids(pid_t session, pid_t pgrp)
254 {
255 	struct task_struct *curr = current;
256 
257 	if (curr->signal->session != session) {
258 		detach_pid(curr, PIDTYPE_SID);
259 		curr->signal->session = session;
260 		attach_pid(curr, PIDTYPE_SID, session);
261 	}
262 	if (process_group(curr) != pgrp) {
263 		detach_pid(curr, PIDTYPE_PGID);
264 		curr->signal->pgrp = pgrp;
265 		attach_pid(curr, PIDTYPE_PGID, pgrp);
266 	}
267 }
268 
269 void set_special_pids(pid_t session, pid_t pgrp)
270 {
271 	write_lock_irq(&tasklist_lock);
272 	__set_special_pids(session, pgrp);
273 	write_unlock_irq(&tasklist_lock);
274 }
275 
276 /*
277  * Let kernel threads use this to say that they
278  * allow a certain signal (since daemonize() will
279  * have disabled all of them by default).
280  */
281 int allow_signal(int sig)
282 {
283 	if (!valid_signal(sig) || sig < 1)
284 		return -EINVAL;
285 
286 	spin_lock_irq(&current->sighand->siglock);
287 	sigdelset(&current->blocked, sig);
288 	if (!current->mm) {
289 		/* Kernel threads handle their own signals.
290 		   Let the signal code know it'll be handled, so
291 		   that they don't get converted to SIGKILL or
292 		   just silently dropped */
293 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
294 	}
295 	recalc_sigpending();
296 	spin_unlock_irq(&current->sighand->siglock);
297 	return 0;
298 }
299 
300 EXPORT_SYMBOL(allow_signal);
301 
302 int disallow_signal(int sig)
303 {
304 	if (!valid_signal(sig) || sig < 1)
305 		return -EINVAL;
306 
307 	spin_lock_irq(&current->sighand->siglock);
308 	sigaddset(&current->blocked, sig);
309 	recalc_sigpending();
310 	spin_unlock_irq(&current->sighand->siglock);
311 	return 0;
312 }
313 
314 EXPORT_SYMBOL(disallow_signal);
315 
316 /*
317  *	Put all the gunge required to become a kernel thread without
318  *	attached user resources in one place where it belongs.
319  */
320 
321 void daemonize(const char *name, ...)
322 {
323 	va_list args;
324 	struct fs_struct *fs;
325 	sigset_t blocked;
326 
327 	va_start(args, name);
328 	vsnprintf(current->comm, sizeof(current->comm), name, args);
329 	va_end(args);
330 
331 	/*
332 	 * If we were started as result of loading a module, close all of the
333 	 * user space pages.  We don't need them, and if we didn't close them
334 	 * they would be locked into memory.
335 	 */
336 	exit_mm(current);
337 
338 	set_special_pids(1, 1);
339 	down(&tty_sem);
340 	current->signal->tty = NULL;
341 	up(&tty_sem);
342 
343 	/* Block and flush all signals */
344 	sigfillset(&blocked);
345 	sigprocmask(SIG_BLOCK, &blocked, NULL);
346 	flush_signals(current);
347 
348 	/* Become as one with the init task */
349 
350 	exit_fs(current);	/* current->fs->count--; */
351 	fs = init_task.fs;
352 	current->fs = fs;
353 	atomic_inc(&fs->count);
354  	exit_files(current);
355 	current->files = init_task.files;
356 	atomic_inc(&current->files->count);
357 
358 	reparent_to_init();
359 }
360 
361 EXPORT_SYMBOL(daemonize);
362 
363 static inline void close_files(struct files_struct * files)
364 {
365 	int i, j;
366 
367 	j = 0;
368 	for (;;) {
369 		unsigned long set;
370 		i = j * __NFDBITS;
371 		if (i >= files->max_fdset || i >= files->max_fds)
372 			break;
373 		set = files->open_fds->fds_bits[j++];
374 		while (set) {
375 			if (set & 1) {
376 				struct file * file = xchg(&files->fd[i], NULL);
377 				if (file)
378 					filp_close(file, files);
379 			}
380 			i++;
381 			set >>= 1;
382 		}
383 	}
384 }
385 
386 struct files_struct *get_files_struct(struct task_struct *task)
387 {
388 	struct files_struct *files;
389 
390 	task_lock(task);
391 	files = task->files;
392 	if (files)
393 		atomic_inc(&files->count);
394 	task_unlock(task);
395 
396 	return files;
397 }
398 
399 void fastcall put_files_struct(struct files_struct *files)
400 {
401 	if (atomic_dec_and_test(&files->count)) {
402 		close_files(files);
403 		/*
404 		 * Free the fd and fdset arrays if we expanded them.
405 		 */
406 		if (files->fd != &files->fd_array[0])
407 			free_fd_array(files->fd, files->max_fds);
408 		if (files->max_fdset > __FD_SETSIZE) {
409 			free_fdset(files->open_fds, files->max_fdset);
410 			free_fdset(files->close_on_exec, files->max_fdset);
411 		}
412 		kmem_cache_free(files_cachep, files);
413 	}
414 }
415 
416 EXPORT_SYMBOL(put_files_struct);
417 
418 static inline void __exit_files(struct task_struct *tsk)
419 {
420 	struct files_struct * files = tsk->files;
421 
422 	if (files) {
423 		task_lock(tsk);
424 		tsk->files = NULL;
425 		task_unlock(tsk);
426 		put_files_struct(files);
427 	}
428 }
429 
430 void exit_files(struct task_struct *tsk)
431 {
432 	__exit_files(tsk);
433 }
434 
435 static inline void __put_fs_struct(struct fs_struct *fs)
436 {
437 	/* No need to hold fs->lock if we are killing it */
438 	if (atomic_dec_and_test(&fs->count)) {
439 		dput(fs->root);
440 		mntput(fs->rootmnt);
441 		dput(fs->pwd);
442 		mntput(fs->pwdmnt);
443 		if (fs->altroot) {
444 			dput(fs->altroot);
445 			mntput(fs->altrootmnt);
446 		}
447 		kmem_cache_free(fs_cachep, fs);
448 	}
449 }
450 
451 void put_fs_struct(struct fs_struct *fs)
452 {
453 	__put_fs_struct(fs);
454 }
455 
456 static inline void __exit_fs(struct task_struct *tsk)
457 {
458 	struct fs_struct * fs = tsk->fs;
459 
460 	if (fs) {
461 		task_lock(tsk);
462 		tsk->fs = NULL;
463 		task_unlock(tsk);
464 		__put_fs_struct(fs);
465 	}
466 }
467 
468 void exit_fs(struct task_struct *tsk)
469 {
470 	__exit_fs(tsk);
471 }
472 
473 EXPORT_SYMBOL_GPL(exit_fs);
474 
475 /*
476  * Turn us into a lazy TLB process if we
477  * aren't already..
478  */
479 static void exit_mm(struct task_struct * tsk)
480 {
481 	struct mm_struct *mm = tsk->mm;
482 
483 	mm_release(tsk, mm);
484 	if (!mm)
485 		return;
486 	/*
487 	 * Serialize with any possible pending coredump.
488 	 * We must hold mmap_sem around checking core_waiters
489 	 * and clearing tsk->mm.  The core-inducing thread
490 	 * will increment core_waiters for each thread in the
491 	 * group with ->mm != NULL.
492 	 */
493 	down_read(&mm->mmap_sem);
494 	if (mm->core_waiters) {
495 		up_read(&mm->mmap_sem);
496 		down_write(&mm->mmap_sem);
497 		if (!--mm->core_waiters)
498 			complete(mm->core_startup_done);
499 		up_write(&mm->mmap_sem);
500 
501 		wait_for_completion(&mm->core_done);
502 		down_read(&mm->mmap_sem);
503 	}
504 	atomic_inc(&mm->mm_count);
505 	if (mm != tsk->active_mm) BUG();
506 	/* more a memory barrier than a real lock */
507 	task_lock(tsk);
508 	tsk->mm = NULL;
509 	up_read(&mm->mmap_sem);
510 	enter_lazy_tlb(mm, current);
511 	task_unlock(tsk);
512 	mmput(mm);
513 }
514 
515 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
516 {
517 	/*
518 	 * Make sure we're not reparenting to ourselves and that
519 	 * the parent is not a zombie.
520 	 */
521 	BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE);
522 	p->real_parent = reaper;
523 }
524 
525 static inline void reparent_thread(task_t *p, task_t *father, int traced)
526 {
527 	/* We don't want people slaying init.  */
528 	if (p->exit_signal != -1)
529 		p->exit_signal = SIGCHLD;
530 
531 	if (p->pdeath_signal)
532 		/* We already hold the tasklist_lock here.  */
533 		group_send_sig_info(p->pdeath_signal, (void *) 0, p);
534 
535 	/* Move the child from its dying parent to the new one.  */
536 	if (unlikely(traced)) {
537 		/* Preserve ptrace links if someone else is tracing this child.  */
538 		list_del_init(&p->ptrace_list);
539 		if (p->parent != p->real_parent)
540 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
541 	} else {
542 		/* If this child is being traced, then we're the one tracing it
543 		 * anyway, so let go of it.
544 		 */
545 		p->ptrace = 0;
546 		list_del_init(&p->sibling);
547 		p->parent = p->real_parent;
548 		list_add_tail(&p->sibling, &p->parent->children);
549 
550 		/* If we'd notified the old parent about this child's death,
551 		 * also notify the new parent.
552 		 */
553 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
554 		    thread_group_empty(p))
555 			do_notify_parent(p, p->exit_signal);
556 		else if (p->state == TASK_TRACED) {
557 			/*
558 			 * If it was at a trace stop, turn it into
559 			 * a normal stop since it's no longer being
560 			 * traced.
561 			 */
562 			ptrace_untrace(p);
563 		}
564 	}
565 
566 	/*
567 	 * process group orphan check
568 	 * Case ii: Our child is in a different pgrp
569 	 * than we are, and it was the only connection
570 	 * outside, so the child pgrp is now orphaned.
571 	 */
572 	if ((process_group(p) != process_group(father)) &&
573 	    (p->signal->session == father->signal->session)) {
574 		int pgrp = process_group(p);
575 
576 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
577 			__kill_pg_info(SIGHUP, (void *)1, pgrp);
578 			__kill_pg_info(SIGCONT, (void *)1, pgrp);
579 		}
580 	}
581 }
582 
583 /*
584  * When we die, we re-parent all our children.
585  * Try to give them to another thread in our thread
586  * group, and if no such member exists, give it to
587  * the global child reaper process (ie "init")
588  */
589 static inline void forget_original_parent(struct task_struct * father,
590 					  struct list_head *to_release)
591 {
592 	struct task_struct *p, *reaper = father;
593 	struct list_head *_p, *_n;
594 
595 	do {
596 		reaper = next_thread(reaper);
597 		if (reaper == father) {
598 			reaper = child_reaper;
599 			break;
600 		}
601 	} while (reaper->exit_state);
602 
603 	/*
604 	 * There are only two places where our children can be:
605 	 *
606 	 * - in our child list
607 	 * - in our ptraced child list
608 	 *
609 	 * Search them and reparent children.
610 	 */
611 	list_for_each_safe(_p, _n, &father->children) {
612 		int ptrace;
613 		p = list_entry(_p,struct task_struct,sibling);
614 
615 		ptrace = p->ptrace;
616 
617 		/* if father isn't the real parent, then ptrace must be enabled */
618 		BUG_ON(father != p->real_parent && !ptrace);
619 
620 		if (father == p->real_parent) {
621 			/* reparent with a reaper, real father it's us */
622 			choose_new_parent(p, reaper, child_reaper);
623 			reparent_thread(p, father, 0);
624 		} else {
625 			/* reparent ptraced task to its real parent */
626 			__ptrace_unlink (p);
627 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
628 			    thread_group_empty(p))
629 				do_notify_parent(p, p->exit_signal);
630 		}
631 
632 		/*
633 		 * if the ptraced child is a zombie with exit_signal == -1
634 		 * we must collect it before we exit, or it will remain
635 		 * zombie forever since we prevented it from self-reap itself
636 		 * while it was being traced by us, to be able to see it in wait4.
637 		 */
638 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
639 			list_add(&p->ptrace_list, to_release);
640 	}
641 	list_for_each_safe(_p, _n, &father->ptrace_children) {
642 		p = list_entry(_p,struct task_struct,ptrace_list);
643 		choose_new_parent(p, reaper, child_reaper);
644 		reparent_thread(p, father, 1);
645 	}
646 }
647 
648 /*
649  * Send signals to all our closest relatives so that they know
650  * to properly mourn us..
651  */
652 static void exit_notify(struct task_struct *tsk)
653 {
654 	int state;
655 	struct task_struct *t;
656 	struct list_head ptrace_dead, *_p, *_n;
657 
658 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
659 	    && !thread_group_empty(tsk)) {
660 		/*
661 		 * This occurs when there was a race between our exit
662 		 * syscall and a group signal choosing us as the one to
663 		 * wake up.  It could be that we are the only thread
664 		 * alerted to check for pending signals, but another thread
665 		 * should be woken now to take the signal since we will not.
666 		 * Now we'll wake all the threads in the group just to make
667 		 * sure someone gets all the pending signals.
668 		 */
669 		read_lock(&tasklist_lock);
670 		spin_lock_irq(&tsk->sighand->siglock);
671 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
672 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
673 				recalc_sigpending_tsk(t);
674 				if (signal_pending(t))
675 					signal_wake_up(t, 0);
676 			}
677 		spin_unlock_irq(&tsk->sighand->siglock);
678 		read_unlock(&tasklist_lock);
679 	}
680 
681 	write_lock_irq(&tasklist_lock);
682 
683 	/*
684 	 * This does two things:
685 	 *
686   	 * A.  Make init inherit all the child processes
687 	 * B.  Check to see if any process groups have become orphaned
688 	 *	as a result of our exiting, and if they have any stopped
689 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
690 	 */
691 
692 	INIT_LIST_HEAD(&ptrace_dead);
693 	forget_original_parent(tsk, &ptrace_dead);
694 	BUG_ON(!list_empty(&tsk->children));
695 	BUG_ON(!list_empty(&tsk->ptrace_children));
696 
697 	/*
698 	 * Check to see if any process groups have become orphaned
699 	 * as a result of our exiting, and if they have any stopped
700 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
701 	 *
702 	 * Case i: Our father is in a different pgrp than we are
703 	 * and we were the only connection outside, so our pgrp
704 	 * is about to become orphaned.
705 	 */
706 
707 	t = tsk->real_parent;
708 
709 	if ((process_group(t) != process_group(tsk)) &&
710 	    (t->signal->session == tsk->signal->session) &&
711 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
712 	    has_stopped_jobs(process_group(tsk))) {
713 		__kill_pg_info(SIGHUP, (void *)1, process_group(tsk));
714 		__kill_pg_info(SIGCONT, (void *)1, process_group(tsk));
715 	}
716 
717 	/* Let father know we died
718 	 *
719 	 * Thread signals are configurable, but you aren't going to use
720 	 * that to send signals to arbitary processes.
721 	 * That stops right now.
722 	 *
723 	 * If the parent exec id doesn't match the exec id we saved
724 	 * when we started then we know the parent has changed security
725 	 * domain.
726 	 *
727 	 * If our self_exec id doesn't match our parent_exec_id then
728 	 * we have changed execution domain as these two values started
729 	 * the same after a fork.
730 	 *
731 	 */
732 
733 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
734 	    ( tsk->parent_exec_id != t->self_exec_id  ||
735 	      tsk->self_exec_id != tsk->parent_exec_id)
736 	    && !capable(CAP_KILL))
737 		tsk->exit_signal = SIGCHLD;
738 
739 
740 	/* If something other than our normal parent is ptracing us, then
741 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
742 	 * only has special meaning to our real parent.
743 	 */
744 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
745 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
746 		do_notify_parent(tsk, signal);
747 	} else if (tsk->ptrace) {
748 		do_notify_parent(tsk, SIGCHLD);
749 	}
750 
751 	state = EXIT_ZOMBIE;
752 	if (tsk->exit_signal == -1 &&
753 	    (likely(tsk->ptrace == 0) ||
754 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
755 		state = EXIT_DEAD;
756 	tsk->exit_state = state;
757 
758 	write_unlock_irq(&tasklist_lock);
759 
760 	list_for_each_safe(_p, _n, &ptrace_dead) {
761 		list_del_init(_p);
762 		t = list_entry(_p,struct task_struct,ptrace_list);
763 		release_task(t);
764 	}
765 
766 	/* If the process is dead, release it - nobody will wait for it */
767 	if (state == EXIT_DEAD)
768 		release_task(tsk);
769 
770 	/* PF_DEAD causes final put_task_struct after we schedule. */
771 	preempt_disable();
772 	tsk->flags |= PF_DEAD;
773 }
774 
775 fastcall NORET_TYPE void do_exit(long code)
776 {
777 	struct task_struct *tsk = current;
778 	int group_dead;
779 
780 	profile_task_exit(tsk);
781 
782 	if (unlikely(in_interrupt()))
783 		panic("Aiee, killing interrupt handler!");
784 	if (unlikely(!tsk->pid))
785 		panic("Attempted to kill the idle task!");
786 	if (unlikely(tsk->pid == 1))
787 		panic("Attempted to kill init!");
788 	if (tsk->io_context)
789 		exit_io_context();
790 
791 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
792 		current->ptrace_message = code;
793 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
794 	}
795 
796 	tsk->flags |= PF_EXITING;
797 
798 	/*
799 	 * Make sure we don't try to process any timer firings
800 	 * while we are already exiting.
801 	 */
802  	tsk->it_virt_expires = cputime_zero;
803  	tsk->it_prof_expires = cputime_zero;
804 	tsk->it_sched_expires = 0;
805 
806 	if (unlikely(in_atomic()))
807 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
808 				current->comm, current->pid,
809 				preempt_count());
810 
811 	acct_update_integrals(tsk);
812 	update_mem_hiwater(tsk);
813 	group_dead = atomic_dec_and_test(&tsk->signal->live);
814 	if (group_dead) {
815  		del_timer_sync(&tsk->signal->real_timer);
816 		acct_process(code);
817 	}
818 	exit_mm(tsk);
819 
820 	exit_sem(tsk);
821 	__exit_files(tsk);
822 	__exit_fs(tsk);
823 	exit_namespace(tsk);
824 	exit_thread();
825 	cpuset_exit(tsk);
826 	exit_keys(tsk);
827 
828 	if (group_dead && tsk->signal->leader)
829 		disassociate_ctty(1);
830 
831 	module_put(tsk->thread_info->exec_domain->module);
832 	if (tsk->binfmt)
833 		module_put(tsk->binfmt->module);
834 
835 	tsk->exit_code = code;
836 	exit_notify(tsk);
837 #ifdef CONFIG_NUMA
838 	mpol_free(tsk->mempolicy);
839 	tsk->mempolicy = NULL;
840 #endif
841 
842 	BUG_ON(!(current->flags & PF_DEAD));
843 	schedule();
844 	BUG();
845 	/* Avoid "noreturn function does return".  */
846 	for (;;) ;
847 }
848 
849 EXPORT_SYMBOL_GPL(do_exit);
850 
851 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
852 {
853 	if (comp)
854 		complete(comp);
855 
856 	do_exit(code);
857 }
858 
859 EXPORT_SYMBOL(complete_and_exit);
860 
861 asmlinkage long sys_exit(int error_code)
862 {
863 	do_exit((error_code&0xff)<<8);
864 }
865 
866 task_t fastcall *next_thread(const task_t *p)
867 {
868 	return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
869 }
870 
871 EXPORT_SYMBOL(next_thread);
872 
873 /*
874  * Take down every thread in the group.  This is called by fatal signals
875  * as well as by sys_exit_group (below).
876  */
877 NORET_TYPE void
878 do_group_exit(int exit_code)
879 {
880 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
881 
882 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
883 		exit_code = current->signal->group_exit_code;
884 	else if (!thread_group_empty(current)) {
885 		struct signal_struct *const sig = current->signal;
886 		struct sighand_struct *const sighand = current->sighand;
887 		read_lock(&tasklist_lock);
888 		spin_lock_irq(&sighand->siglock);
889 		if (sig->flags & SIGNAL_GROUP_EXIT)
890 			/* Another thread got here before we took the lock.  */
891 			exit_code = sig->group_exit_code;
892 		else {
893 			sig->flags = SIGNAL_GROUP_EXIT;
894 			sig->group_exit_code = exit_code;
895 			zap_other_threads(current);
896 		}
897 		spin_unlock_irq(&sighand->siglock);
898 		read_unlock(&tasklist_lock);
899 	}
900 
901 	do_exit(exit_code);
902 	/* NOTREACHED */
903 }
904 
905 /*
906  * this kills every thread in the thread group. Note that any externally
907  * wait4()-ing process will get the correct exit code - even if this
908  * thread is not the thread group leader.
909  */
910 asmlinkage void sys_exit_group(int error_code)
911 {
912 	do_group_exit((error_code & 0xff) << 8);
913 }
914 
915 static int eligible_child(pid_t pid, int options, task_t *p)
916 {
917 	if (pid > 0) {
918 		if (p->pid != pid)
919 			return 0;
920 	} else if (!pid) {
921 		if (process_group(p) != process_group(current))
922 			return 0;
923 	} else if (pid != -1) {
924 		if (process_group(p) != -pid)
925 			return 0;
926 	}
927 
928 	/*
929 	 * Do not consider detached threads that are
930 	 * not ptraced:
931 	 */
932 	if (p->exit_signal == -1 && !p->ptrace)
933 		return 0;
934 
935 	/* Wait for all children (clone and not) if __WALL is set;
936 	 * otherwise, wait for clone children *only* if __WCLONE is
937 	 * set; otherwise, wait for non-clone children *only*.  (Note:
938 	 * A "clone" child here is one that reports to its parent
939 	 * using a signal other than SIGCHLD.) */
940 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
941 	    && !(options & __WALL))
942 		return 0;
943 	/*
944 	 * Do not consider thread group leaders that are
945 	 * in a non-empty thread group:
946 	 */
947 	if (current->tgid != p->tgid && delay_group_leader(p))
948 		return 2;
949 
950 	if (security_task_wait(p))
951 		return 0;
952 
953 	return 1;
954 }
955 
956 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
957 			       int why, int status,
958 			       struct siginfo __user *infop,
959 			       struct rusage __user *rusagep)
960 {
961 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
962 	put_task_struct(p);
963 	if (!retval)
964 		retval = put_user(SIGCHLD, &infop->si_signo);
965 	if (!retval)
966 		retval = put_user(0, &infop->si_errno);
967 	if (!retval)
968 		retval = put_user((short)why, &infop->si_code);
969 	if (!retval)
970 		retval = put_user(pid, &infop->si_pid);
971 	if (!retval)
972 		retval = put_user(uid, &infop->si_uid);
973 	if (!retval)
974 		retval = put_user(status, &infop->si_status);
975 	if (!retval)
976 		retval = pid;
977 	return retval;
978 }
979 
980 /*
981  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
982  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
983  * the lock and this task is uninteresting.  If we return nonzero, we have
984  * released the lock and the system call should return.
985  */
986 static int wait_task_zombie(task_t *p, int noreap,
987 			    struct siginfo __user *infop,
988 			    int __user *stat_addr, struct rusage __user *ru)
989 {
990 	unsigned long state;
991 	int retval;
992 	int status;
993 
994 	if (unlikely(noreap)) {
995 		pid_t pid = p->pid;
996 		uid_t uid = p->uid;
997 		int exit_code = p->exit_code;
998 		int why, status;
999 
1000 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1001 			return 0;
1002 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1003 			return 0;
1004 		get_task_struct(p);
1005 		read_unlock(&tasklist_lock);
1006 		if ((exit_code & 0x7f) == 0) {
1007 			why = CLD_EXITED;
1008 			status = exit_code >> 8;
1009 		} else {
1010 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1011 			status = exit_code & 0x7f;
1012 		}
1013 		return wait_noreap_copyout(p, pid, uid, why,
1014 					   status, infop, ru);
1015 	}
1016 
1017 	/*
1018 	 * Try to move the task's state to DEAD
1019 	 * only one thread is allowed to do this:
1020 	 */
1021 	state = xchg(&p->exit_state, EXIT_DEAD);
1022 	if (state != EXIT_ZOMBIE) {
1023 		BUG_ON(state != EXIT_DEAD);
1024 		return 0;
1025 	}
1026 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1027 		/*
1028 		 * This can only happen in a race with a ptraced thread
1029 		 * dying on another processor.
1030 		 */
1031 		return 0;
1032 	}
1033 
1034 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1035 		/*
1036 		 * The resource counters for the group leader are in its
1037 		 * own task_struct.  Those for dead threads in the group
1038 		 * are in its signal_struct, as are those for the child
1039 		 * processes it has previously reaped.  All these
1040 		 * accumulate in the parent's signal_struct c* fields.
1041 		 *
1042 		 * We don't bother to take a lock here to protect these
1043 		 * p->signal fields, because they are only touched by
1044 		 * __exit_signal, which runs with tasklist_lock
1045 		 * write-locked anyway, and so is excluded here.  We do
1046 		 * need to protect the access to p->parent->signal fields,
1047 		 * as other threads in the parent group can be right
1048 		 * here reaping other children at the same time.
1049 		 */
1050 		spin_lock_irq(&p->parent->sighand->siglock);
1051 		p->parent->signal->cutime =
1052 			cputime_add(p->parent->signal->cutime,
1053 			cputime_add(p->utime,
1054 			cputime_add(p->signal->utime,
1055 				    p->signal->cutime)));
1056 		p->parent->signal->cstime =
1057 			cputime_add(p->parent->signal->cstime,
1058 			cputime_add(p->stime,
1059 			cputime_add(p->signal->stime,
1060 				    p->signal->cstime)));
1061 		p->parent->signal->cmin_flt +=
1062 			p->min_flt + p->signal->min_flt + p->signal->cmin_flt;
1063 		p->parent->signal->cmaj_flt +=
1064 			p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt;
1065 		p->parent->signal->cnvcsw +=
1066 			p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw;
1067 		p->parent->signal->cnivcsw +=
1068 			p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw;
1069 		spin_unlock_irq(&p->parent->sighand->siglock);
1070 	}
1071 
1072 	/*
1073 	 * Now we are sure this task is interesting, and no other
1074 	 * thread can reap it because we set its state to EXIT_DEAD.
1075 	 */
1076 	read_unlock(&tasklist_lock);
1077 
1078 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1079 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1080 		? p->signal->group_exit_code : p->exit_code;
1081 	if (!retval && stat_addr)
1082 		retval = put_user(status, stat_addr);
1083 	if (!retval && infop)
1084 		retval = put_user(SIGCHLD, &infop->si_signo);
1085 	if (!retval && infop)
1086 		retval = put_user(0, &infop->si_errno);
1087 	if (!retval && infop) {
1088 		int why;
1089 
1090 		if ((status & 0x7f) == 0) {
1091 			why = CLD_EXITED;
1092 			status >>= 8;
1093 		} else {
1094 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1095 			status &= 0x7f;
1096 		}
1097 		retval = put_user((short)why, &infop->si_code);
1098 		if (!retval)
1099 			retval = put_user(status, &infop->si_status);
1100 	}
1101 	if (!retval && infop)
1102 		retval = put_user(p->pid, &infop->si_pid);
1103 	if (!retval && infop)
1104 		retval = put_user(p->uid, &infop->si_uid);
1105 	if (retval) {
1106 		// TODO: is this safe?
1107 		p->exit_state = EXIT_ZOMBIE;
1108 		return retval;
1109 	}
1110 	retval = p->pid;
1111 	if (p->real_parent != p->parent) {
1112 		write_lock_irq(&tasklist_lock);
1113 		/* Double-check with lock held.  */
1114 		if (p->real_parent != p->parent) {
1115 			__ptrace_unlink(p);
1116 			// TODO: is this safe?
1117 			p->exit_state = EXIT_ZOMBIE;
1118 			/*
1119 			 * If this is not a detached task, notify the parent.
1120 			 * If it's still not detached after that, don't release
1121 			 * it now.
1122 			 */
1123 			if (p->exit_signal != -1) {
1124 				do_notify_parent(p, p->exit_signal);
1125 				if (p->exit_signal != -1)
1126 					p = NULL;
1127 			}
1128 		}
1129 		write_unlock_irq(&tasklist_lock);
1130 	}
1131 	if (p != NULL)
1132 		release_task(p);
1133 	BUG_ON(!retval);
1134 	return retval;
1135 }
1136 
1137 /*
1138  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1139  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1140  * the lock and this task is uninteresting.  If we return nonzero, we have
1141  * released the lock and the system call should return.
1142  */
1143 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1144 			     struct siginfo __user *infop,
1145 			     int __user *stat_addr, struct rusage __user *ru)
1146 {
1147 	int retval, exit_code;
1148 
1149 	if (!p->exit_code)
1150 		return 0;
1151 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1152 	    p->signal && p->signal->group_stop_count > 0)
1153 		/*
1154 		 * A group stop is in progress and this is the group leader.
1155 		 * We won't report until all threads have stopped.
1156 		 */
1157 		return 0;
1158 
1159 	/*
1160 	 * Now we are pretty sure this task is interesting.
1161 	 * Make sure it doesn't get reaped out from under us while we
1162 	 * give up the lock and then examine it below.  We don't want to
1163 	 * keep holding onto the tasklist_lock while we call getrusage and
1164 	 * possibly take page faults for user memory.
1165 	 */
1166 	get_task_struct(p);
1167 	read_unlock(&tasklist_lock);
1168 
1169 	if (unlikely(noreap)) {
1170 		pid_t pid = p->pid;
1171 		uid_t uid = p->uid;
1172 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1173 
1174 		exit_code = p->exit_code;
1175 		if (unlikely(!exit_code) ||
1176 		    unlikely(p->state > TASK_STOPPED))
1177 			goto bail_ref;
1178 		return wait_noreap_copyout(p, pid, uid,
1179 					   why, (exit_code << 8) | 0x7f,
1180 					   infop, ru);
1181 	}
1182 
1183 	write_lock_irq(&tasklist_lock);
1184 
1185 	/*
1186 	 * This uses xchg to be atomic with the thread resuming and setting
1187 	 * it.  It must also be done with the write lock held to prevent a
1188 	 * race with the EXIT_ZOMBIE case.
1189 	 */
1190 	exit_code = xchg(&p->exit_code, 0);
1191 	if (unlikely(p->exit_state)) {
1192 		/*
1193 		 * The task resumed and then died.  Let the next iteration
1194 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1195 		 * already be zero here if it resumed and did _exit(0).
1196 		 * The task itself is dead and won't touch exit_code again;
1197 		 * other processors in this function are locked out.
1198 		 */
1199 		p->exit_code = exit_code;
1200 		exit_code = 0;
1201 	}
1202 	if (unlikely(exit_code == 0)) {
1203 		/*
1204 		 * Another thread in this function got to it first, or it
1205 		 * resumed, or it resumed and then died.
1206 		 */
1207 		write_unlock_irq(&tasklist_lock);
1208 bail_ref:
1209 		put_task_struct(p);
1210 		/*
1211 		 * We are returning to the wait loop without having successfully
1212 		 * removed the process and having released the lock. We cannot
1213 		 * continue, since the "p" task pointer is potentially stale.
1214 		 *
1215 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1216 		 * beginning. Do _not_ re-acquire the lock.
1217 		 */
1218 		return -EAGAIN;
1219 	}
1220 
1221 	/* move to end of parent's list to avoid starvation */
1222 	remove_parent(p);
1223 	add_parent(p, p->parent);
1224 
1225 	write_unlock_irq(&tasklist_lock);
1226 
1227 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1228 	if (!retval && stat_addr)
1229 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1230 	if (!retval && infop)
1231 		retval = put_user(SIGCHLD, &infop->si_signo);
1232 	if (!retval && infop)
1233 		retval = put_user(0, &infop->si_errno);
1234 	if (!retval && infop)
1235 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1236 					  ? CLD_TRAPPED : CLD_STOPPED),
1237 				  &infop->si_code);
1238 	if (!retval && infop)
1239 		retval = put_user(exit_code, &infop->si_status);
1240 	if (!retval && infop)
1241 		retval = put_user(p->pid, &infop->si_pid);
1242 	if (!retval && infop)
1243 		retval = put_user(p->uid, &infop->si_uid);
1244 	if (!retval)
1245 		retval = p->pid;
1246 	put_task_struct(p);
1247 
1248 	BUG_ON(!retval);
1249 	return retval;
1250 }
1251 
1252 /*
1253  * Handle do_wait work for one task in a live, non-stopped state.
1254  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1255  * the lock and this task is uninteresting.  If we return nonzero, we have
1256  * released the lock and the system call should return.
1257  */
1258 static int wait_task_continued(task_t *p, int noreap,
1259 			       struct siginfo __user *infop,
1260 			       int __user *stat_addr, struct rusage __user *ru)
1261 {
1262 	int retval;
1263 	pid_t pid;
1264 	uid_t uid;
1265 
1266 	if (unlikely(!p->signal))
1267 		return 0;
1268 
1269 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1270 		return 0;
1271 
1272 	spin_lock_irq(&p->sighand->siglock);
1273 	/* Re-check with the lock held.  */
1274 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1275 		spin_unlock_irq(&p->sighand->siglock);
1276 		return 0;
1277 	}
1278 	if (!noreap)
1279 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1280 	spin_unlock_irq(&p->sighand->siglock);
1281 
1282 	pid = p->pid;
1283 	uid = p->uid;
1284 	get_task_struct(p);
1285 	read_unlock(&tasklist_lock);
1286 
1287 	if (!infop) {
1288 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1289 		put_task_struct(p);
1290 		if (!retval && stat_addr)
1291 			retval = put_user(0xffff, stat_addr);
1292 		if (!retval)
1293 			retval = p->pid;
1294 	} else {
1295 		retval = wait_noreap_copyout(p, pid, uid,
1296 					     CLD_CONTINUED, SIGCONT,
1297 					     infop, ru);
1298 		BUG_ON(retval == 0);
1299 	}
1300 
1301 	return retval;
1302 }
1303 
1304 
1305 static inline int my_ptrace_child(struct task_struct *p)
1306 {
1307 	if (!(p->ptrace & PT_PTRACED))
1308 		return 0;
1309 	if (!(p->ptrace & PT_ATTACHED))
1310 		return 1;
1311 	/*
1312 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1313 	 * we are the attacher.  If we are the real parent, this is a race
1314 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1315 	 * which we have to switch the parent links, but has already set
1316 	 * the flags in p->ptrace.
1317 	 */
1318 	return (p->parent != p->real_parent);
1319 }
1320 
1321 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1322 		    int __user *stat_addr, struct rusage __user *ru)
1323 {
1324 	DECLARE_WAITQUEUE(wait, current);
1325 	struct task_struct *tsk;
1326 	int flag, retval;
1327 
1328 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1329 repeat:
1330 	/*
1331 	 * We will set this flag if we see any child that might later
1332 	 * match our criteria, even if we are not able to reap it yet.
1333 	 */
1334 	flag = 0;
1335 	current->state = TASK_INTERRUPTIBLE;
1336 	read_lock(&tasklist_lock);
1337 	tsk = current;
1338 	do {
1339 		struct task_struct *p;
1340 		struct list_head *_p;
1341 		int ret;
1342 
1343 		list_for_each(_p,&tsk->children) {
1344 			p = list_entry(_p,struct task_struct,sibling);
1345 
1346 			ret = eligible_child(pid, options, p);
1347 			if (!ret)
1348 				continue;
1349 
1350 			switch (p->state) {
1351 			case TASK_TRACED:
1352 				if (!my_ptrace_child(p))
1353 					continue;
1354 				/*FALLTHROUGH*/
1355 			case TASK_STOPPED:
1356 				/*
1357 				 * It's stopped now, so it might later
1358 				 * continue, exit, or stop again.
1359 				 */
1360 				flag = 1;
1361 				if (!(options & WUNTRACED) &&
1362 				    !my_ptrace_child(p))
1363 					continue;
1364 				retval = wait_task_stopped(p, ret == 2,
1365 							   (options & WNOWAIT),
1366 							   infop,
1367 							   stat_addr, ru);
1368 				if (retval == -EAGAIN)
1369 					goto repeat;
1370 				if (retval != 0) /* He released the lock.  */
1371 					goto end;
1372 				break;
1373 			default:
1374 			// case EXIT_DEAD:
1375 				if (p->exit_state == EXIT_DEAD)
1376 					continue;
1377 			// case EXIT_ZOMBIE:
1378 				if (p->exit_state == EXIT_ZOMBIE) {
1379 					/*
1380 					 * Eligible but we cannot release
1381 					 * it yet:
1382 					 */
1383 					if (ret == 2)
1384 						goto check_continued;
1385 					if (!likely(options & WEXITED))
1386 						continue;
1387 					retval = wait_task_zombie(
1388 						p, (options & WNOWAIT),
1389 						infop, stat_addr, ru);
1390 					/* He released the lock.  */
1391 					if (retval != 0)
1392 						goto end;
1393 					break;
1394 				}
1395 check_continued:
1396 				/*
1397 				 * It's running now, so it might later
1398 				 * exit, stop, or stop and then continue.
1399 				 */
1400 				flag = 1;
1401 				if (!unlikely(options & WCONTINUED))
1402 					continue;
1403 				retval = wait_task_continued(
1404 					p, (options & WNOWAIT),
1405 					infop, stat_addr, ru);
1406 				if (retval != 0) /* He released the lock.  */
1407 					goto end;
1408 				break;
1409 			}
1410 		}
1411 		if (!flag) {
1412 			list_for_each(_p, &tsk->ptrace_children) {
1413 				p = list_entry(_p, struct task_struct,
1414 						ptrace_list);
1415 				if (!eligible_child(pid, options, p))
1416 					continue;
1417 				flag = 1;
1418 				break;
1419 			}
1420 		}
1421 		if (options & __WNOTHREAD)
1422 			break;
1423 		tsk = next_thread(tsk);
1424 		if (tsk->signal != current->signal)
1425 			BUG();
1426 	} while (tsk != current);
1427 
1428 	read_unlock(&tasklist_lock);
1429 	if (flag) {
1430 		retval = 0;
1431 		if (options & WNOHANG)
1432 			goto end;
1433 		retval = -ERESTARTSYS;
1434 		if (signal_pending(current))
1435 			goto end;
1436 		schedule();
1437 		goto repeat;
1438 	}
1439 	retval = -ECHILD;
1440 end:
1441 	current->state = TASK_RUNNING;
1442 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1443 	if (infop) {
1444 		if (retval > 0)
1445 		retval = 0;
1446 		else {
1447 			/*
1448 			 * For a WNOHANG return, clear out all the fields
1449 			 * we would set so the user can easily tell the
1450 			 * difference.
1451 			 */
1452 			if (!retval)
1453 				retval = put_user(0, &infop->si_signo);
1454 			if (!retval)
1455 				retval = put_user(0, &infop->si_errno);
1456 			if (!retval)
1457 				retval = put_user(0, &infop->si_code);
1458 			if (!retval)
1459 				retval = put_user(0, &infop->si_pid);
1460 			if (!retval)
1461 				retval = put_user(0, &infop->si_uid);
1462 			if (!retval)
1463 				retval = put_user(0, &infop->si_status);
1464 		}
1465 	}
1466 	return retval;
1467 }
1468 
1469 asmlinkage long sys_waitid(int which, pid_t pid,
1470 			   struct siginfo __user *infop, int options,
1471 			   struct rusage __user *ru)
1472 {
1473 	long ret;
1474 
1475 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1476 		return -EINVAL;
1477 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1478 		return -EINVAL;
1479 
1480 	switch (which) {
1481 	case P_ALL:
1482 		pid = -1;
1483 		break;
1484 	case P_PID:
1485 		if (pid <= 0)
1486 			return -EINVAL;
1487 		break;
1488 	case P_PGID:
1489 		if (pid <= 0)
1490 			return -EINVAL;
1491 		pid = -pid;
1492 		break;
1493 	default:
1494 		return -EINVAL;
1495 	}
1496 
1497 	ret = do_wait(pid, options, infop, NULL, ru);
1498 
1499 	/* avoid REGPARM breakage on x86: */
1500 	prevent_tail_call(ret);
1501 	return ret;
1502 }
1503 
1504 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1505 			  int options, struct rusage __user *ru)
1506 {
1507 	long ret;
1508 
1509 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1510 			__WNOTHREAD|__WCLONE|__WALL))
1511 		return -EINVAL;
1512 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1513 
1514 	/* avoid REGPARM breakage on x86: */
1515 	prevent_tail_call(ret);
1516 	return ret;
1517 }
1518 
1519 #ifdef __ARCH_WANT_SYS_WAITPID
1520 
1521 /*
1522  * sys_waitpid() remains for compatibility. waitpid() should be
1523  * implemented by calling sys_wait4() from libc.a.
1524  */
1525 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1526 {
1527 	return sys_wait4(pid, stat_addr, options, NULL);
1528 }
1529 
1530 #endif
1531