1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/interrupt.h> 11 #include <linux/smp_lock.h> 12 #include <linux/module.h> 13 #include <linux/completion.h> 14 #include <linux/personality.h> 15 #include <linux/tty.h> 16 #include <linux/namespace.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/ptrace.h> 24 #include <linux/profile.h> 25 #include <linux/mount.h> 26 #include <linux/proc_fs.h> 27 #include <linux/mempolicy.h> 28 #include <linux/cpuset.h> 29 #include <linux/syscalls.h> 30 #include <linux/signal.h> 31 32 #include <asm/uaccess.h> 33 #include <asm/unistd.h> 34 #include <asm/pgtable.h> 35 #include <asm/mmu_context.h> 36 37 extern void sem_exit (void); 38 extern struct task_struct *child_reaper; 39 40 int getrusage(struct task_struct *, int, struct rusage __user *); 41 42 static void exit_mm(struct task_struct * tsk); 43 44 static void __unhash_process(struct task_struct *p) 45 { 46 nr_threads--; 47 detach_pid(p, PIDTYPE_PID); 48 detach_pid(p, PIDTYPE_TGID); 49 if (thread_group_leader(p)) { 50 detach_pid(p, PIDTYPE_PGID); 51 detach_pid(p, PIDTYPE_SID); 52 if (p->pid) 53 __get_cpu_var(process_counts)--; 54 } 55 56 REMOVE_LINKS(p); 57 } 58 59 void release_task(struct task_struct * p) 60 { 61 int zap_leader; 62 task_t *leader; 63 struct dentry *proc_dentry; 64 65 repeat: 66 atomic_dec(&p->user->processes); 67 spin_lock(&p->proc_lock); 68 proc_dentry = proc_pid_unhash(p); 69 write_lock_irq(&tasklist_lock); 70 if (unlikely(p->ptrace)) 71 __ptrace_unlink(p); 72 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 73 __exit_signal(p); 74 __exit_sighand(p); 75 /* 76 * Note that the fastpath in sys_times depends on __exit_signal having 77 * updated the counters before a task is removed from the tasklist of 78 * the process by __unhash_process. 79 */ 80 __unhash_process(p); 81 82 /* 83 * If we are the last non-leader member of the thread 84 * group, and the leader is zombie, then notify the 85 * group leader's parent process. (if it wants notification.) 86 */ 87 zap_leader = 0; 88 leader = p->group_leader; 89 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 90 BUG_ON(leader->exit_signal == -1); 91 do_notify_parent(leader, leader->exit_signal); 92 /* 93 * If we were the last child thread and the leader has 94 * exited already, and the leader's parent ignores SIGCHLD, 95 * then we are the one who should release the leader. 96 * 97 * do_notify_parent() will have marked it self-reaping in 98 * that case. 99 */ 100 zap_leader = (leader->exit_signal == -1); 101 } 102 103 sched_exit(p); 104 write_unlock_irq(&tasklist_lock); 105 spin_unlock(&p->proc_lock); 106 proc_pid_flush(proc_dentry); 107 release_thread(p); 108 put_task_struct(p); 109 110 p = leader; 111 if (unlikely(zap_leader)) 112 goto repeat; 113 } 114 115 /* we are using it only for SMP init */ 116 117 void unhash_process(struct task_struct *p) 118 { 119 struct dentry *proc_dentry; 120 121 spin_lock(&p->proc_lock); 122 proc_dentry = proc_pid_unhash(p); 123 write_lock_irq(&tasklist_lock); 124 __unhash_process(p); 125 write_unlock_irq(&tasklist_lock); 126 spin_unlock(&p->proc_lock); 127 proc_pid_flush(proc_dentry); 128 } 129 130 /* 131 * This checks not only the pgrp, but falls back on the pid if no 132 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 133 * without this... 134 */ 135 int session_of_pgrp(int pgrp) 136 { 137 struct task_struct *p; 138 int sid = -1; 139 140 read_lock(&tasklist_lock); 141 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 142 if (p->signal->session > 0) { 143 sid = p->signal->session; 144 goto out; 145 } 146 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 147 p = find_task_by_pid(pgrp); 148 if (p) 149 sid = p->signal->session; 150 out: 151 read_unlock(&tasklist_lock); 152 153 return sid; 154 } 155 156 /* 157 * Determine if a process group is "orphaned", according to the POSIX 158 * definition in 2.2.2.52. Orphaned process groups are not to be affected 159 * by terminal-generated stop signals. Newly orphaned process groups are 160 * to receive a SIGHUP and a SIGCONT. 161 * 162 * "I ask you, have you ever known what it is to be an orphan?" 163 */ 164 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task) 165 { 166 struct task_struct *p; 167 int ret = 1; 168 169 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 170 if (p == ignored_task 171 || p->exit_state 172 || p->real_parent->pid == 1) 173 continue; 174 if (process_group(p->real_parent) != pgrp 175 && p->real_parent->signal->session == p->signal->session) { 176 ret = 0; 177 break; 178 } 179 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 180 return ret; /* (sighing) "Often!" */ 181 } 182 183 int is_orphaned_pgrp(int pgrp) 184 { 185 int retval; 186 187 read_lock(&tasklist_lock); 188 retval = will_become_orphaned_pgrp(pgrp, NULL); 189 read_unlock(&tasklist_lock); 190 191 return retval; 192 } 193 194 static inline int has_stopped_jobs(int pgrp) 195 { 196 int retval = 0; 197 struct task_struct *p; 198 199 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 200 if (p->state != TASK_STOPPED) 201 continue; 202 203 /* If p is stopped by a debugger on a signal that won't 204 stop it, then don't count p as stopped. This isn't 205 perfect but it's a good approximation. */ 206 if (unlikely (p->ptrace) 207 && p->exit_code != SIGSTOP 208 && p->exit_code != SIGTSTP 209 && p->exit_code != SIGTTOU 210 && p->exit_code != SIGTTIN) 211 continue; 212 213 retval = 1; 214 break; 215 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 216 return retval; 217 } 218 219 /** 220 * reparent_to_init - Reparent the calling kernel thread to the init task. 221 * 222 * If a kernel thread is launched as a result of a system call, or if 223 * it ever exits, it should generally reparent itself to init so that 224 * it is correctly cleaned up on exit. 225 * 226 * The various task state such as scheduling policy and priority may have 227 * been inherited from a user process, so we reset them to sane values here. 228 * 229 * NOTE that reparent_to_init() gives the caller full capabilities. 230 */ 231 static inline void reparent_to_init(void) 232 { 233 write_lock_irq(&tasklist_lock); 234 235 ptrace_unlink(current); 236 /* Reparent to init */ 237 REMOVE_LINKS(current); 238 current->parent = child_reaper; 239 current->real_parent = child_reaper; 240 SET_LINKS(current); 241 242 /* Set the exit signal to SIGCHLD so we signal init on exit */ 243 current->exit_signal = SIGCHLD; 244 245 if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0)) 246 set_user_nice(current, 0); 247 /* cpus_allowed? */ 248 /* rt_priority? */ 249 /* signals? */ 250 security_task_reparent_to_init(current); 251 memcpy(current->signal->rlim, init_task.signal->rlim, 252 sizeof(current->signal->rlim)); 253 atomic_inc(&(INIT_USER->__count)); 254 write_unlock_irq(&tasklist_lock); 255 switch_uid(INIT_USER); 256 } 257 258 void __set_special_pids(pid_t session, pid_t pgrp) 259 { 260 struct task_struct *curr = current; 261 262 if (curr->signal->session != session) { 263 detach_pid(curr, PIDTYPE_SID); 264 curr->signal->session = session; 265 attach_pid(curr, PIDTYPE_SID, session); 266 } 267 if (process_group(curr) != pgrp) { 268 detach_pid(curr, PIDTYPE_PGID); 269 curr->signal->pgrp = pgrp; 270 attach_pid(curr, PIDTYPE_PGID, pgrp); 271 } 272 } 273 274 void set_special_pids(pid_t session, pid_t pgrp) 275 { 276 write_lock_irq(&tasklist_lock); 277 __set_special_pids(session, pgrp); 278 write_unlock_irq(&tasklist_lock); 279 } 280 281 /* 282 * Let kernel threads use this to say that they 283 * allow a certain signal (since daemonize() will 284 * have disabled all of them by default). 285 */ 286 int allow_signal(int sig) 287 { 288 if (!valid_signal(sig) || sig < 1) 289 return -EINVAL; 290 291 spin_lock_irq(¤t->sighand->siglock); 292 sigdelset(¤t->blocked, sig); 293 if (!current->mm) { 294 /* Kernel threads handle their own signals. 295 Let the signal code know it'll be handled, so 296 that they don't get converted to SIGKILL or 297 just silently dropped */ 298 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 299 } 300 recalc_sigpending(); 301 spin_unlock_irq(¤t->sighand->siglock); 302 return 0; 303 } 304 305 EXPORT_SYMBOL(allow_signal); 306 307 int disallow_signal(int sig) 308 { 309 if (!valid_signal(sig) || sig < 1) 310 return -EINVAL; 311 312 spin_lock_irq(¤t->sighand->siglock); 313 sigaddset(¤t->blocked, sig); 314 recalc_sigpending(); 315 spin_unlock_irq(¤t->sighand->siglock); 316 return 0; 317 } 318 319 EXPORT_SYMBOL(disallow_signal); 320 321 /* 322 * Put all the gunge required to become a kernel thread without 323 * attached user resources in one place where it belongs. 324 */ 325 326 void daemonize(const char *name, ...) 327 { 328 va_list args; 329 struct fs_struct *fs; 330 sigset_t blocked; 331 332 va_start(args, name); 333 vsnprintf(current->comm, sizeof(current->comm), name, args); 334 va_end(args); 335 336 /* 337 * If we were started as result of loading a module, close all of the 338 * user space pages. We don't need them, and if we didn't close them 339 * they would be locked into memory. 340 */ 341 exit_mm(current); 342 343 set_special_pids(1, 1); 344 down(&tty_sem); 345 current->signal->tty = NULL; 346 up(&tty_sem); 347 348 /* Block and flush all signals */ 349 sigfillset(&blocked); 350 sigprocmask(SIG_BLOCK, &blocked, NULL); 351 flush_signals(current); 352 353 /* Become as one with the init task */ 354 355 exit_fs(current); /* current->fs->count--; */ 356 fs = init_task.fs; 357 current->fs = fs; 358 atomic_inc(&fs->count); 359 exit_files(current); 360 current->files = init_task.files; 361 atomic_inc(¤t->files->count); 362 363 reparent_to_init(); 364 } 365 366 EXPORT_SYMBOL(daemonize); 367 368 static inline void close_files(struct files_struct * files) 369 { 370 int i, j; 371 struct fdtable *fdt; 372 373 j = 0; 374 375 /* 376 * It is safe to dereference the fd table without RCU or 377 * ->file_lock because this is the last reference to the 378 * files structure. 379 */ 380 fdt = files_fdtable(files); 381 for (;;) { 382 unsigned long set; 383 i = j * __NFDBITS; 384 if (i >= fdt->max_fdset || i >= fdt->max_fds) 385 break; 386 set = fdt->open_fds->fds_bits[j++]; 387 while (set) { 388 if (set & 1) { 389 struct file * file = xchg(&fdt->fd[i], NULL); 390 if (file) 391 filp_close(file, files); 392 } 393 i++; 394 set >>= 1; 395 } 396 } 397 } 398 399 struct files_struct *get_files_struct(struct task_struct *task) 400 { 401 struct files_struct *files; 402 403 task_lock(task); 404 files = task->files; 405 if (files) 406 atomic_inc(&files->count); 407 task_unlock(task); 408 409 return files; 410 } 411 412 void fastcall put_files_struct(struct files_struct *files) 413 { 414 struct fdtable *fdt; 415 416 if (atomic_dec_and_test(&files->count)) { 417 close_files(files); 418 /* 419 * Free the fd and fdset arrays if we expanded them. 420 * If the fdtable was embedded, pass files for freeing 421 * at the end of the RCU grace period. Otherwise, 422 * you can free files immediately. 423 */ 424 fdt = files_fdtable(files); 425 if (fdt == &files->fdtab) 426 fdt->free_files = files; 427 else 428 kmem_cache_free(files_cachep, files); 429 free_fdtable(fdt); 430 } 431 } 432 433 EXPORT_SYMBOL(put_files_struct); 434 435 static inline void __exit_files(struct task_struct *tsk) 436 { 437 struct files_struct * files = tsk->files; 438 439 if (files) { 440 task_lock(tsk); 441 tsk->files = NULL; 442 task_unlock(tsk); 443 put_files_struct(files); 444 } 445 } 446 447 void exit_files(struct task_struct *tsk) 448 { 449 __exit_files(tsk); 450 } 451 452 static inline void __put_fs_struct(struct fs_struct *fs) 453 { 454 /* No need to hold fs->lock if we are killing it */ 455 if (atomic_dec_and_test(&fs->count)) { 456 dput(fs->root); 457 mntput(fs->rootmnt); 458 dput(fs->pwd); 459 mntput(fs->pwdmnt); 460 if (fs->altroot) { 461 dput(fs->altroot); 462 mntput(fs->altrootmnt); 463 } 464 kmem_cache_free(fs_cachep, fs); 465 } 466 } 467 468 void put_fs_struct(struct fs_struct *fs) 469 { 470 __put_fs_struct(fs); 471 } 472 473 static inline void __exit_fs(struct task_struct *tsk) 474 { 475 struct fs_struct * fs = tsk->fs; 476 477 if (fs) { 478 task_lock(tsk); 479 tsk->fs = NULL; 480 task_unlock(tsk); 481 __put_fs_struct(fs); 482 } 483 } 484 485 void exit_fs(struct task_struct *tsk) 486 { 487 __exit_fs(tsk); 488 } 489 490 EXPORT_SYMBOL_GPL(exit_fs); 491 492 /* 493 * Turn us into a lazy TLB process if we 494 * aren't already.. 495 */ 496 static void exit_mm(struct task_struct * tsk) 497 { 498 struct mm_struct *mm = tsk->mm; 499 500 mm_release(tsk, mm); 501 if (!mm) 502 return; 503 /* 504 * Serialize with any possible pending coredump. 505 * We must hold mmap_sem around checking core_waiters 506 * and clearing tsk->mm. The core-inducing thread 507 * will increment core_waiters for each thread in the 508 * group with ->mm != NULL. 509 */ 510 down_read(&mm->mmap_sem); 511 if (mm->core_waiters) { 512 up_read(&mm->mmap_sem); 513 down_write(&mm->mmap_sem); 514 if (!--mm->core_waiters) 515 complete(mm->core_startup_done); 516 up_write(&mm->mmap_sem); 517 518 wait_for_completion(&mm->core_done); 519 down_read(&mm->mmap_sem); 520 } 521 atomic_inc(&mm->mm_count); 522 if (mm != tsk->active_mm) BUG(); 523 /* more a memory barrier than a real lock */ 524 task_lock(tsk); 525 tsk->mm = NULL; 526 up_read(&mm->mmap_sem); 527 enter_lazy_tlb(mm, current); 528 task_unlock(tsk); 529 mmput(mm); 530 } 531 532 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper) 533 { 534 /* 535 * Make sure we're not reparenting to ourselves and that 536 * the parent is not a zombie. 537 */ 538 BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE); 539 p->real_parent = reaper; 540 } 541 542 static inline void reparent_thread(task_t *p, task_t *father, int traced) 543 { 544 /* We don't want people slaying init. */ 545 if (p->exit_signal != -1) 546 p->exit_signal = SIGCHLD; 547 548 if (p->pdeath_signal) 549 /* We already hold the tasklist_lock here. */ 550 group_send_sig_info(p->pdeath_signal, (void *) 0, p); 551 552 /* Move the child from its dying parent to the new one. */ 553 if (unlikely(traced)) { 554 /* Preserve ptrace links if someone else is tracing this child. */ 555 list_del_init(&p->ptrace_list); 556 if (p->parent != p->real_parent) 557 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 558 } else { 559 /* If this child is being traced, then we're the one tracing it 560 * anyway, so let go of it. 561 */ 562 p->ptrace = 0; 563 list_del_init(&p->sibling); 564 p->parent = p->real_parent; 565 list_add_tail(&p->sibling, &p->parent->children); 566 567 /* If we'd notified the old parent about this child's death, 568 * also notify the new parent. 569 */ 570 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 571 thread_group_empty(p)) 572 do_notify_parent(p, p->exit_signal); 573 else if (p->state == TASK_TRACED) { 574 /* 575 * If it was at a trace stop, turn it into 576 * a normal stop since it's no longer being 577 * traced. 578 */ 579 ptrace_untrace(p); 580 } 581 } 582 583 /* 584 * process group orphan check 585 * Case ii: Our child is in a different pgrp 586 * than we are, and it was the only connection 587 * outside, so the child pgrp is now orphaned. 588 */ 589 if ((process_group(p) != process_group(father)) && 590 (p->signal->session == father->signal->session)) { 591 int pgrp = process_group(p); 592 593 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) { 594 __kill_pg_info(SIGHUP, (void *)1, pgrp); 595 __kill_pg_info(SIGCONT, (void *)1, pgrp); 596 } 597 } 598 } 599 600 /* 601 * When we die, we re-parent all our children. 602 * Try to give them to another thread in our thread 603 * group, and if no such member exists, give it to 604 * the global child reaper process (ie "init") 605 */ 606 static inline void forget_original_parent(struct task_struct * father, 607 struct list_head *to_release) 608 { 609 struct task_struct *p, *reaper = father; 610 struct list_head *_p, *_n; 611 612 do { 613 reaper = next_thread(reaper); 614 if (reaper == father) { 615 reaper = child_reaper; 616 break; 617 } 618 } while (reaper->exit_state); 619 620 /* 621 * There are only two places where our children can be: 622 * 623 * - in our child list 624 * - in our ptraced child list 625 * 626 * Search them and reparent children. 627 */ 628 list_for_each_safe(_p, _n, &father->children) { 629 int ptrace; 630 p = list_entry(_p,struct task_struct,sibling); 631 632 ptrace = p->ptrace; 633 634 /* if father isn't the real parent, then ptrace must be enabled */ 635 BUG_ON(father != p->real_parent && !ptrace); 636 637 if (father == p->real_parent) { 638 /* reparent with a reaper, real father it's us */ 639 choose_new_parent(p, reaper, child_reaper); 640 reparent_thread(p, father, 0); 641 } else { 642 /* reparent ptraced task to its real parent */ 643 __ptrace_unlink (p); 644 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 645 thread_group_empty(p)) 646 do_notify_parent(p, p->exit_signal); 647 } 648 649 /* 650 * if the ptraced child is a zombie with exit_signal == -1 651 * we must collect it before we exit, or it will remain 652 * zombie forever since we prevented it from self-reap itself 653 * while it was being traced by us, to be able to see it in wait4. 654 */ 655 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 656 list_add(&p->ptrace_list, to_release); 657 } 658 list_for_each_safe(_p, _n, &father->ptrace_children) { 659 p = list_entry(_p,struct task_struct,ptrace_list); 660 choose_new_parent(p, reaper, child_reaper); 661 reparent_thread(p, father, 1); 662 } 663 } 664 665 /* 666 * Send signals to all our closest relatives so that they know 667 * to properly mourn us.. 668 */ 669 static void exit_notify(struct task_struct *tsk) 670 { 671 int state; 672 struct task_struct *t; 673 struct list_head ptrace_dead, *_p, *_n; 674 675 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 676 && !thread_group_empty(tsk)) { 677 /* 678 * This occurs when there was a race between our exit 679 * syscall and a group signal choosing us as the one to 680 * wake up. It could be that we are the only thread 681 * alerted to check for pending signals, but another thread 682 * should be woken now to take the signal since we will not. 683 * Now we'll wake all the threads in the group just to make 684 * sure someone gets all the pending signals. 685 */ 686 read_lock(&tasklist_lock); 687 spin_lock_irq(&tsk->sighand->siglock); 688 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 689 if (!signal_pending(t) && !(t->flags & PF_EXITING)) { 690 recalc_sigpending_tsk(t); 691 if (signal_pending(t)) 692 signal_wake_up(t, 0); 693 } 694 spin_unlock_irq(&tsk->sighand->siglock); 695 read_unlock(&tasklist_lock); 696 } 697 698 write_lock_irq(&tasklist_lock); 699 700 /* 701 * This does two things: 702 * 703 * A. Make init inherit all the child processes 704 * B. Check to see if any process groups have become orphaned 705 * as a result of our exiting, and if they have any stopped 706 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 707 */ 708 709 INIT_LIST_HEAD(&ptrace_dead); 710 forget_original_parent(tsk, &ptrace_dead); 711 BUG_ON(!list_empty(&tsk->children)); 712 BUG_ON(!list_empty(&tsk->ptrace_children)); 713 714 /* 715 * Check to see if any process groups have become orphaned 716 * as a result of our exiting, and if they have any stopped 717 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 718 * 719 * Case i: Our father is in a different pgrp than we are 720 * and we were the only connection outside, so our pgrp 721 * is about to become orphaned. 722 */ 723 724 t = tsk->real_parent; 725 726 if ((process_group(t) != process_group(tsk)) && 727 (t->signal->session == tsk->signal->session) && 728 will_become_orphaned_pgrp(process_group(tsk), tsk) && 729 has_stopped_jobs(process_group(tsk))) { 730 __kill_pg_info(SIGHUP, (void *)1, process_group(tsk)); 731 __kill_pg_info(SIGCONT, (void *)1, process_group(tsk)); 732 } 733 734 /* Let father know we died 735 * 736 * Thread signals are configurable, but you aren't going to use 737 * that to send signals to arbitary processes. 738 * That stops right now. 739 * 740 * If the parent exec id doesn't match the exec id we saved 741 * when we started then we know the parent has changed security 742 * domain. 743 * 744 * If our self_exec id doesn't match our parent_exec_id then 745 * we have changed execution domain as these two values started 746 * the same after a fork. 747 * 748 */ 749 750 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 751 ( tsk->parent_exec_id != t->self_exec_id || 752 tsk->self_exec_id != tsk->parent_exec_id) 753 && !capable(CAP_KILL)) 754 tsk->exit_signal = SIGCHLD; 755 756 757 /* If something other than our normal parent is ptracing us, then 758 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 759 * only has special meaning to our real parent. 760 */ 761 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 762 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 763 do_notify_parent(tsk, signal); 764 } else if (tsk->ptrace) { 765 do_notify_parent(tsk, SIGCHLD); 766 } 767 768 state = EXIT_ZOMBIE; 769 if (tsk->exit_signal == -1 && 770 (likely(tsk->ptrace == 0) || 771 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 772 state = EXIT_DEAD; 773 tsk->exit_state = state; 774 775 write_unlock_irq(&tasklist_lock); 776 777 list_for_each_safe(_p, _n, &ptrace_dead) { 778 list_del_init(_p); 779 t = list_entry(_p,struct task_struct,ptrace_list); 780 release_task(t); 781 } 782 783 /* If the process is dead, release it - nobody will wait for it */ 784 if (state == EXIT_DEAD) 785 release_task(tsk); 786 787 /* PF_DEAD causes final put_task_struct after we schedule. */ 788 preempt_disable(); 789 tsk->flags |= PF_DEAD; 790 } 791 792 fastcall NORET_TYPE void do_exit(long code) 793 { 794 struct task_struct *tsk = current; 795 int group_dead; 796 797 profile_task_exit(tsk); 798 799 WARN_ON(atomic_read(&tsk->fs_excl)); 800 801 if (unlikely(in_interrupt())) 802 panic("Aiee, killing interrupt handler!"); 803 if (unlikely(!tsk->pid)) 804 panic("Attempted to kill the idle task!"); 805 if (unlikely(tsk->pid == 1)) 806 panic("Attempted to kill init!"); 807 if (tsk->io_context) 808 exit_io_context(); 809 810 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 811 current->ptrace_message = code; 812 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 813 } 814 815 /* 816 * We're taking recursive faults here in do_exit. Safest is to just 817 * leave this task alone and wait for reboot. 818 */ 819 if (unlikely(tsk->flags & PF_EXITING)) { 820 printk(KERN_ALERT 821 "Fixing recursive fault but reboot is needed!\n"); 822 set_current_state(TASK_UNINTERRUPTIBLE); 823 schedule(); 824 } 825 826 tsk->flags |= PF_EXITING; 827 828 /* 829 * Make sure we don't try to process any timer firings 830 * while we are already exiting. 831 */ 832 tsk->it_virt_expires = cputime_zero; 833 tsk->it_prof_expires = cputime_zero; 834 tsk->it_sched_expires = 0; 835 836 if (unlikely(in_atomic())) 837 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 838 current->comm, current->pid, 839 preempt_count()); 840 841 acct_update_integrals(tsk); 842 update_mem_hiwater(tsk); 843 group_dead = atomic_dec_and_test(&tsk->signal->live); 844 if (group_dead) { 845 del_timer_sync(&tsk->signal->real_timer); 846 acct_process(code); 847 } 848 exit_mm(tsk); 849 850 exit_sem(tsk); 851 __exit_files(tsk); 852 __exit_fs(tsk); 853 exit_namespace(tsk); 854 exit_thread(); 855 cpuset_exit(tsk); 856 exit_keys(tsk); 857 858 if (group_dead && tsk->signal->leader) 859 disassociate_ctty(1); 860 861 module_put(tsk->thread_info->exec_domain->module); 862 if (tsk->binfmt) 863 module_put(tsk->binfmt->module); 864 865 tsk->exit_code = code; 866 exit_notify(tsk); 867 #ifdef CONFIG_NUMA 868 mpol_free(tsk->mempolicy); 869 tsk->mempolicy = NULL; 870 #endif 871 872 BUG_ON(!(current->flags & PF_DEAD)); 873 schedule(); 874 BUG(); 875 /* Avoid "noreturn function does return". */ 876 for (;;) ; 877 } 878 879 EXPORT_SYMBOL_GPL(do_exit); 880 881 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 882 { 883 if (comp) 884 complete(comp); 885 886 do_exit(code); 887 } 888 889 EXPORT_SYMBOL(complete_and_exit); 890 891 asmlinkage long sys_exit(int error_code) 892 { 893 do_exit((error_code&0xff)<<8); 894 } 895 896 task_t fastcall *next_thread(const task_t *p) 897 { 898 return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID); 899 } 900 901 EXPORT_SYMBOL(next_thread); 902 903 /* 904 * Take down every thread in the group. This is called by fatal signals 905 * as well as by sys_exit_group (below). 906 */ 907 NORET_TYPE void 908 do_group_exit(int exit_code) 909 { 910 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 911 912 if (current->signal->flags & SIGNAL_GROUP_EXIT) 913 exit_code = current->signal->group_exit_code; 914 else if (!thread_group_empty(current)) { 915 struct signal_struct *const sig = current->signal; 916 struct sighand_struct *const sighand = current->sighand; 917 read_lock(&tasklist_lock); 918 spin_lock_irq(&sighand->siglock); 919 if (sig->flags & SIGNAL_GROUP_EXIT) 920 /* Another thread got here before we took the lock. */ 921 exit_code = sig->group_exit_code; 922 else { 923 sig->flags = SIGNAL_GROUP_EXIT; 924 sig->group_exit_code = exit_code; 925 zap_other_threads(current); 926 } 927 spin_unlock_irq(&sighand->siglock); 928 read_unlock(&tasklist_lock); 929 } 930 931 do_exit(exit_code); 932 /* NOTREACHED */ 933 } 934 935 /* 936 * this kills every thread in the thread group. Note that any externally 937 * wait4()-ing process will get the correct exit code - even if this 938 * thread is not the thread group leader. 939 */ 940 asmlinkage void sys_exit_group(int error_code) 941 { 942 do_group_exit((error_code & 0xff) << 8); 943 } 944 945 static int eligible_child(pid_t pid, int options, task_t *p) 946 { 947 if (pid > 0) { 948 if (p->pid != pid) 949 return 0; 950 } else if (!pid) { 951 if (process_group(p) != process_group(current)) 952 return 0; 953 } else if (pid != -1) { 954 if (process_group(p) != -pid) 955 return 0; 956 } 957 958 /* 959 * Do not consider detached threads that are 960 * not ptraced: 961 */ 962 if (p->exit_signal == -1 && !p->ptrace) 963 return 0; 964 965 /* Wait for all children (clone and not) if __WALL is set; 966 * otherwise, wait for clone children *only* if __WCLONE is 967 * set; otherwise, wait for non-clone children *only*. (Note: 968 * A "clone" child here is one that reports to its parent 969 * using a signal other than SIGCHLD.) */ 970 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 971 && !(options & __WALL)) 972 return 0; 973 /* 974 * Do not consider thread group leaders that are 975 * in a non-empty thread group: 976 */ 977 if (current->tgid != p->tgid && delay_group_leader(p)) 978 return 2; 979 980 if (security_task_wait(p)) 981 return 0; 982 983 return 1; 984 } 985 986 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid, 987 int why, int status, 988 struct siginfo __user *infop, 989 struct rusage __user *rusagep) 990 { 991 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 992 put_task_struct(p); 993 if (!retval) 994 retval = put_user(SIGCHLD, &infop->si_signo); 995 if (!retval) 996 retval = put_user(0, &infop->si_errno); 997 if (!retval) 998 retval = put_user((short)why, &infop->si_code); 999 if (!retval) 1000 retval = put_user(pid, &infop->si_pid); 1001 if (!retval) 1002 retval = put_user(uid, &infop->si_uid); 1003 if (!retval) 1004 retval = put_user(status, &infop->si_status); 1005 if (!retval) 1006 retval = pid; 1007 return retval; 1008 } 1009 1010 /* 1011 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1012 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1013 * the lock and this task is uninteresting. If we return nonzero, we have 1014 * released the lock and the system call should return. 1015 */ 1016 static int wait_task_zombie(task_t *p, int noreap, 1017 struct siginfo __user *infop, 1018 int __user *stat_addr, struct rusage __user *ru) 1019 { 1020 unsigned long state; 1021 int retval; 1022 int status; 1023 1024 if (unlikely(noreap)) { 1025 pid_t pid = p->pid; 1026 uid_t uid = p->uid; 1027 int exit_code = p->exit_code; 1028 int why, status; 1029 1030 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1031 return 0; 1032 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1033 return 0; 1034 get_task_struct(p); 1035 read_unlock(&tasklist_lock); 1036 if ((exit_code & 0x7f) == 0) { 1037 why = CLD_EXITED; 1038 status = exit_code >> 8; 1039 } else { 1040 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1041 status = exit_code & 0x7f; 1042 } 1043 return wait_noreap_copyout(p, pid, uid, why, 1044 status, infop, ru); 1045 } 1046 1047 /* 1048 * Try to move the task's state to DEAD 1049 * only one thread is allowed to do this: 1050 */ 1051 state = xchg(&p->exit_state, EXIT_DEAD); 1052 if (state != EXIT_ZOMBIE) { 1053 BUG_ON(state != EXIT_DEAD); 1054 return 0; 1055 } 1056 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1057 /* 1058 * This can only happen in a race with a ptraced thread 1059 * dying on another processor. 1060 */ 1061 return 0; 1062 } 1063 1064 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1065 /* 1066 * The resource counters for the group leader are in its 1067 * own task_struct. Those for dead threads in the group 1068 * are in its signal_struct, as are those for the child 1069 * processes it has previously reaped. All these 1070 * accumulate in the parent's signal_struct c* fields. 1071 * 1072 * We don't bother to take a lock here to protect these 1073 * p->signal fields, because they are only touched by 1074 * __exit_signal, which runs with tasklist_lock 1075 * write-locked anyway, and so is excluded here. We do 1076 * need to protect the access to p->parent->signal fields, 1077 * as other threads in the parent group can be right 1078 * here reaping other children at the same time. 1079 */ 1080 spin_lock_irq(&p->parent->sighand->siglock); 1081 p->parent->signal->cutime = 1082 cputime_add(p->parent->signal->cutime, 1083 cputime_add(p->utime, 1084 cputime_add(p->signal->utime, 1085 p->signal->cutime))); 1086 p->parent->signal->cstime = 1087 cputime_add(p->parent->signal->cstime, 1088 cputime_add(p->stime, 1089 cputime_add(p->signal->stime, 1090 p->signal->cstime))); 1091 p->parent->signal->cmin_flt += 1092 p->min_flt + p->signal->min_flt + p->signal->cmin_flt; 1093 p->parent->signal->cmaj_flt += 1094 p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt; 1095 p->parent->signal->cnvcsw += 1096 p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw; 1097 p->parent->signal->cnivcsw += 1098 p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw; 1099 spin_unlock_irq(&p->parent->sighand->siglock); 1100 } 1101 1102 /* 1103 * Now we are sure this task is interesting, and no other 1104 * thread can reap it because we set its state to EXIT_DEAD. 1105 */ 1106 read_unlock(&tasklist_lock); 1107 1108 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1109 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1110 ? p->signal->group_exit_code : p->exit_code; 1111 if (!retval && stat_addr) 1112 retval = put_user(status, stat_addr); 1113 if (!retval && infop) 1114 retval = put_user(SIGCHLD, &infop->si_signo); 1115 if (!retval && infop) 1116 retval = put_user(0, &infop->si_errno); 1117 if (!retval && infop) { 1118 int why; 1119 1120 if ((status & 0x7f) == 0) { 1121 why = CLD_EXITED; 1122 status >>= 8; 1123 } else { 1124 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1125 status &= 0x7f; 1126 } 1127 retval = put_user((short)why, &infop->si_code); 1128 if (!retval) 1129 retval = put_user(status, &infop->si_status); 1130 } 1131 if (!retval && infop) 1132 retval = put_user(p->pid, &infop->si_pid); 1133 if (!retval && infop) 1134 retval = put_user(p->uid, &infop->si_uid); 1135 if (retval) { 1136 // TODO: is this safe? 1137 p->exit_state = EXIT_ZOMBIE; 1138 return retval; 1139 } 1140 retval = p->pid; 1141 if (p->real_parent != p->parent) { 1142 write_lock_irq(&tasklist_lock); 1143 /* Double-check with lock held. */ 1144 if (p->real_parent != p->parent) { 1145 __ptrace_unlink(p); 1146 // TODO: is this safe? 1147 p->exit_state = EXIT_ZOMBIE; 1148 /* 1149 * If this is not a detached task, notify the parent. 1150 * If it's still not detached after that, don't release 1151 * it now. 1152 */ 1153 if (p->exit_signal != -1) { 1154 do_notify_parent(p, p->exit_signal); 1155 if (p->exit_signal != -1) 1156 p = NULL; 1157 } 1158 } 1159 write_unlock_irq(&tasklist_lock); 1160 } 1161 if (p != NULL) 1162 release_task(p); 1163 BUG_ON(!retval); 1164 return retval; 1165 } 1166 1167 /* 1168 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1169 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1170 * the lock and this task is uninteresting. If we return nonzero, we have 1171 * released the lock and the system call should return. 1172 */ 1173 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap, 1174 struct siginfo __user *infop, 1175 int __user *stat_addr, struct rusage __user *ru) 1176 { 1177 int retval, exit_code; 1178 1179 if (!p->exit_code) 1180 return 0; 1181 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1182 p->signal && p->signal->group_stop_count > 0) 1183 /* 1184 * A group stop is in progress and this is the group leader. 1185 * We won't report until all threads have stopped. 1186 */ 1187 return 0; 1188 1189 /* 1190 * Now we are pretty sure this task is interesting. 1191 * Make sure it doesn't get reaped out from under us while we 1192 * give up the lock and then examine it below. We don't want to 1193 * keep holding onto the tasklist_lock while we call getrusage and 1194 * possibly take page faults for user memory. 1195 */ 1196 get_task_struct(p); 1197 read_unlock(&tasklist_lock); 1198 1199 if (unlikely(noreap)) { 1200 pid_t pid = p->pid; 1201 uid_t uid = p->uid; 1202 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1203 1204 exit_code = p->exit_code; 1205 if (unlikely(!exit_code) || 1206 unlikely(p->state & TASK_TRACED)) 1207 goto bail_ref; 1208 return wait_noreap_copyout(p, pid, uid, 1209 why, (exit_code << 8) | 0x7f, 1210 infop, ru); 1211 } 1212 1213 write_lock_irq(&tasklist_lock); 1214 1215 /* 1216 * This uses xchg to be atomic with the thread resuming and setting 1217 * it. It must also be done with the write lock held to prevent a 1218 * race with the EXIT_ZOMBIE case. 1219 */ 1220 exit_code = xchg(&p->exit_code, 0); 1221 if (unlikely(p->exit_state)) { 1222 /* 1223 * The task resumed and then died. Let the next iteration 1224 * catch it in EXIT_ZOMBIE. Note that exit_code might 1225 * already be zero here if it resumed and did _exit(0). 1226 * The task itself is dead and won't touch exit_code again; 1227 * other processors in this function are locked out. 1228 */ 1229 p->exit_code = exit_code; 1230 exit_code = 0; 1231 } 1232 if (unlikely(exit_code == 0)) { 1233 /* 1234 * Another thread in this function got to it first, or it 1235 * resumed, or it resumed and then died. 1236 */ 1237 write_unlock_irq(&tasklist_lock); 1238 bail_ref: 1239 put_task_struct(p); 1240 /* 1241 * We are returning to the wait loop without having successfully 1242 * removed the process and having released the lock. We cannot 1243 * continue, since the "p" task pointer is potentially stale. 1244 * 1245 * Return -EAGAIN, and do_wait() will restart the loop from the 1246 * beginning. Do _not_ re-acquire the lock. 1247 */ 1248 return -EAGAIN; 1249 } 1250 1251 /* move to end of parent's list to avoid starvation */ 1252 remove_parent(p); 1253 add_parent(p, p->parent); 1254 1255 write_unlock_irq(&tasklist_lock); 1256 1257 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1258 if (!retval && stat_addr) 1259 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1260 if (!retval && infop) 1261 retval = put_user(SIGCHLD, &infop->si_signo); 1262 if (!retval && infop) 1263 retval = put_user(0, &infop->si_errno); 1264 if (!retval && infop) 1265 retval = put_user((short)((p->ptrace & PT_PTRACED) 1266 ? CLD_TRAPPED : CLD_STOPPED), 1267 &infop->si_code); 1268 if (!retval && infop) 1269 retval = put_user(exit_code, &infop->si_status); 1270 if (!retval && infop) 1271 retval = put_user(p->pid, &infop->si_pid); 1272 if (!retval && infop) 1273 retval = put_user(p->uid, &infop->si_uid); 1274 if (!retval) 1275 retval = p->pid; 1276 put_task_struct(p); 1277 1278 BUG_ON(!retval); 1279 return retval; 1280 } 1281 1282 /* 1283 * Handle do_wait work for one task in a live, non-stopped state. 1284 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1285 * the lock and this task is uninteresting. If we return nonzero, we have 1286 * released the lock and the system call should return. 1287 */ 1288 static int wait_task_continued(task_t *p, int noreap, 1289 struct siginfo __user *infop, 1290 int __user *stat_addr, struct rusage __user *ru) 1291 { 1292 int retval; 1293 pid_t pid; 1294 uid_t uid; 1295 1296 if (unlikely(!p->signal)) 1297 return 0; 1298 1299 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1300 return 0; 1301 1302 spin_lock_irq(&p->sighand->siglock); 1303 /* Re-check with the lock held. */ 1304 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1305 spin_unlock_irq(&p->sighand->siglock); 1306 return 0; 1307 } 1308 if (!noreap) 1309 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1310 spin_unlock_irq(&p->sighand->siglock); 1311 1312 pid = p->pid; 1313 uid = p->uid; 1314 get_task_struct(p); 1315 read_unlock(&tasklist_lock); 1316 1317 if (!infop) { 1318 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1319 put_task_struct(p); 1320 if (!retval && stat_addr) 1321 retval = put_user(0xffff, stat_addr); 1322 if (!retval) 1323 retval = p->pid; 1324 } else { 1325 retval = wait_noreap_copyout(p, pid, uid, 1326 CLD_CONTINUED, SIGCONT, 1327 infop, ru); 1328 BUG_ON(retval == 0); 1329 } 1330 1331 return retval; 1332 } 1333 1334 1335 static inline int my_ptrace_child(struct task_struct *p) 1336 { 1337 if (!(p->ptrace & PT_PTRACED)) 1338 return 0; 1339 if (!(p->ptrace & PT_ATTACHED)) 1340 return 1; 1341 /* 1342 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1343 * we are the attacher. If we are the real parent, this is a race 1344 * inside ptrace_attach. It is waiting for the tasklist_lock, 1345 * which we have to switch the parent links, but has already set 1346 * the flags in p->ptrace. 1347 */ 1348 return (p->parent != p->real_parent); 1349 } 1350 1351 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1352 int __user *stat_addr, struct rusage __user *ru) 1353 { 1354 DECLARE_WAITQUEUE(wait, current); 1355 struct task_struct *tsk; 1356 int flag, retval; 1357 1358 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1359 repeat: 1360 /* 1361 * We will set this flag if we see any child that might later 1362 * match our criteria, even if we are not able to reap it yet. 1363 */ 1364 flag = 0; 1365 current->state = TASK_INTERRUPTIBLE; 1366 read_lock(&tasklist_lock); 1367 tsk = current; 1368 do { 1369 struct task_struct *p; 1370 struct list_head *_p; 1371 int ret; 1372 1373 list_for_each(_p,&tsk->children) { 1374 p = list_entry(_p,struct task_struct,sibling); 1375 1376 ret = eligible_child(pid, options, p); 1377 if (!ret) 1378 continue; 1379 1380 switch (p->state) { 1381 case TASK_TRACED: 1382 if (!my_ptrace_child(p)) 1383 continue; 1384 /*FALLTHROUGH*/ 1385 case TASK_STOPPED: 1386 /* 1387 * It's stopped now, so it might later 1388 * continue, exit, or stop again. 1389 */ 1390 flag = 1; 1391 if (!(options & WUNTRACED) && 1392 !my_ptrace_child(p)) 1393 continue; 1394 retval = wait_task_stopped(p, ret == 2, 1395 (options & WNOWAIT), 1396 infop, 1397 stat_addr, ru); 1398 if (retval == -EAGAIN) 1399 goto repeat; 1400 if (retval != 0) /* He released the lock. */ 1401 goto end; 1402 break; 1403 default: 1404 // case EXIT_DEAD: 1405 if (p->exit_state == EXIT_DEAD) 1406 continue; 1407 // case EXIT_ZOMBIE: 1408 if (p->exit_state == EXIT_ZOMBIE) { 1409 /* 1410 * Eligible but we cannot release 1411 * it yet: 1412 */ 1413 if (ret == 2) 1414 goto check_continued; 1415 if (!likely(options & WEXITED)) 1416 continue; 1417 retval = wait_task_zombie( 1418 p, (options & WNOWAIT), 1419 infop, stat_addr, ru); 1420 /* He released the lock. */ 1421 if (retval != 0) 1422 goto end; 1423 break; 1424 } 1425 check_continued: 1426 /* 1427 * It's running now, so it might later 1428 * exit, stop, or stop and then continue. 1429 */ 1430 flag = 1; 1431 if (!unlikely(options & WCONTINUED)) 1432 continue; 1433 retval = wait_task_continued( 1434 p, (options & WNOWAIT), 1435 infop, stat_addr, ru); 1436 if (retval != 0) /* He released the lock. */ 1437 goto end; 1438 break; 1439 } 1440 } 1441 if (!flag) { 1442 list_for_each(_p, &tsk->ptrace_children) { 1443 p = list_entry(_p, struct task_struct, 1444 ptrace_list); 1445 if (!eligible_child(pid, options, p)) 1446 continue; 1447 flag = 1; 1448 break; 1449 } 1450 } 1451 if (options & __WNOTHREAD) 1452 break; 1453 tsk = next_thread(tsk); 1454 if (tsk->signal != current->signal) 1455 BUG(); 1456 } while (tsk != current); 1457 1458 read_unlock(&tasklist_lock); 1459 if (flag) { 1460 retval = 0; 1461 if (options & WNOHANG) 1462 goto end; 1463 retval = -ERESTARTSYS; 1464 if (signal_pending(current)) 1465 goto end; 1466 schedule(); 1467 goto repeat; 1468 } 1469 retval = -ECHILD; 1470 end: 1471 current->state = TASK_RUNNING; 1472 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1473 if (infop) { 1474 if (retval > 0) 1475 retval = 0; 1476 else { 1477 /* 1478 * For a WNOHANG return, clear out all the fields 1479 * we would set so the user can easily tell the 1480 * difference. 1481 */ 1482 if (!retval) 1483 retval = put_user(0, &infop->si_signo); 1484 if (!retval) 1485 retval = put_user(0, &infop->si_errno); 1486 if (!retval) 1487 retval = put_user(0, &infop->si_code); 1488 if (!retval) 1489 retval = put_user(0, &infop->si_pid); 1490 if (!retval) 1491 retval = put_user(0, &infop->si_uid); 1492 if (!retval) 1493 retval = put_user(0, &infop->si_status); 1494 } 1495 } 1496 return retval; 1497 } 1498 1499 asmlinkage long sys_waitid(int which, pid_t pid, 1500 struct siginfo __user *infop, int options, 1501 struct rusage __user *ru) 1502 { 1503 long ret; 1504 1505 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1506 return -EINVAL; 1507 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1508 return -EINVAL; 1509 1510 switch (which) { 1511 case P_ALL: 1512 pid = -1; 1513 break; 1514 case P_PID: 1515 if (pid <= 0) 1516 return -EINVAL; 1517 break; 1518 case P_PGID: 1519 if (pid <= 0) 1520 return -EINVAL; 1521 pid = -pid; 1522 break; 1523 default: 1524 return -EINVAL; 1525 } 1526 1527 ret = do_wait(pid, options, infop, NULL, ru); 1528 1529 /* avoid REGPARM breakage on x86: */ 1530 prevent_tail_call(ret); 1531 return ret; 1532 } 1533 1534 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1535 int options, struct rusage __user *ru) 1536 { 1537 long ret; 1538 1539 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1540 __WNOTHREAD|__WCLONE|__WALL)) 1541 return -EINVAL; 1542 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1543 1544 /* avoid REGPARM breakage on x86: */ 1545 prevent_tail_call(ret); 1546 return ret; 1547 } 1548 1549 #ifdef __ARCH_WANT_SYS_WAITPID 1550 1551 /* 1552 * sys_waitpid() remains for compatibility. waitpid() should be 1553 * implemented by calling sys_wait4() from libc.a. 1554 */ 1555 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1556 { 1557 return sys_wait4(pid, stat_addr, options, NULL); 1558 } 1559 1560 #endif 1561