1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/freezer.h> 34 #include <linux/cpuset.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/freezer.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/pgtable.h> 52 #include <asm/mmu_context.h> 53 54 extern void sem_exit (void); 55 56 static void exit_mm(struct task_struct * tsk); 57 58 static void __unhash_process(struct task_struct *p) 59 { 60 nr_threads--; 61 detach_pid(p, PIDTYPE_PID); 62 if (thread_group_leader(p)) { 63 detach_pid(p, PIDTYPE_PGID); 64 detach_pid(p, PIDTYPE_SID); 65 66 list_del_rcu(&p->tasks); 67 __get_cpu_var(process_counts)--; 68 } 69 list_del_rcu(&p->thread_group); 70 remove_parent(p); 71 } 72 73 /* 74 * This function expects the tasklist_lock write-locked. 75 */ 76 static void __exit_signal(struct task_struct *tsk) 77 { 78 struct signal_struct *sig = tsk->signal; 79 struct sighand_struct *sighand; 80 81 BUG_ON(!sig); 82 BUG_ON(!atomic_read(&sig->count)); 83 84 rcu_read_lock(); 85 sighand = rcu_dereference(tsk->sighand); 86 spin_lock(&sighand->siglock); 87 88 posix_cpu_timers_exit(tsk); 89 if (atomic_dec_and_test(&sig->count)) 90 posix_cpu_timers_exit_group(tsk); 91 else { 92 /* 93 * If there is any task waiting for the group exit 94 * then notify it: 95 */ 96 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 97 wake_up_process(sig->group_exit_task); 98 sig->group_exit_task = NULL; 99 } 100 if (tsk == sig->curr_target) 101 sig->curr_target = next_thread(tsk); 102 /* 103 * Accumulate here the counters for all threads but the 104 * group leader as they die, so they can be added into 105 * the process-wide totals when those are taken. 106 * The group leader stays around as a zombie as long 107 * as there are other threads. When it gets reaped, 108 * the exit.c code will add its counts into these totals. 109 * We won't ever get here for the group leader, since it 110 * will have been the last reference on the signal_struct. 111 */ 112 sig->utime = cputime_add(sig->utime, tsk->utime); 113 sig->stime = cputime_add(sig->stime, tsk->stime); 114 sig->min_flt += tsk->min_flt; 115 sig->maj_flt += tsk->maj_flt; 116 sig->nvcsw += tsk->nvcsw; 117 sig->nivcsw += tsk->nivcsw; 118 sig->inblock += task_io_get_inblock(tsk); 119 sig->oublock += task_io_get_oublock(tsk); 120 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 121 sig = NULL; /* Marker for below. */ 122 } 123 124 __unhash_process(tsk); 125 126 tsk->signal = NULL; 127 tsk->sighand = NULL; 128 spin_unlock(&sighand->siglock); 129 rcu_read_unlock(); 130 131 __cleanup_sighand(sighand); 132 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 133 flush_sigqueue(&tsk->pending); 134 if (sig) { 135 flush_sigqueue(&sig->shared_pending); 136 taskstats_tgid_free(sig); 137 __cleanup_signal(sig); 138 } 139 } 140 141 static void delayed_put_task_struct(struct rcu_head *rhp) 142 { 143 put_task_struct(container_of(rhp, struct task_struct, rcu)); 144 } 145 146 void release_task(struct task_struct * p) 147 { 148 struct task_struct *leader; 149 int zap_leader; 150 repeat: 151 atomic_dec(&p->user->processes); 152 write_lock_irq(&tasklist_lock); 153 ptrace_unlink(p); 154 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 155 __exit_signal(p); 156 157 /* 158 * If we are the last non-leader member of the thread 159 * group, and the leader is zombie, then notify the 160 * group leader's parent process. (if it wants notification.) 161 */ 162 zap_leader = 0; 163 leader = p->group_leader; 164 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 165 BUG_ON(leader->exit_signal == -1); 166 do_notify_parent(leader, leader->exit_signal); 167 /* 168 * If we were the last child thread and the leader has 169 * exited already, and the leader's parent ignores SIGCHLD, 170 * then we are the one who should release the leader. 171 * 172 * do_notify_parent() will have marked it self-reaping in 173 * that case. 174 */ 175 zap_leader = (leader->exit_signal == -1); 176 } 177 178 write_unlock_irq(&tasklist_lock); 179 proc_flush_task(p); 180 release_thread(p); 181 call_rcu(&p->rcu, delayed_put_task_struct); 182 183 p = leader; 184 if (unlikely(zap_leader)) 185 goto repeat; 186 } 187 188 /* 189 * This checks not only the pgrp, but falls back on the pid if no 190 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 191 * without this... 192 * 193 * The caller must hold rcu lock or the tasklist lock. 194 */ 195 struct pid *session_of_pgrp(struct pid *pgrp) 196 { 197 struct task_struct *p; 198 struct pid *sid = NULL; 199 200 p = pid_task(pgrp, PIDTYPE_PGID); 201 if (p == NULL) 202 p = pid_task(pgrp, PIDTYPE_PID); 203 if (p != NULL) 204 sid = task_session(p); 205 206 return sid; 207 } 208 209 /* 210 * Determine if a process group is "orphaned", according to the POSIX 211 * definition in 2.2.2.52. Orphaned process groups are not to be affected 212 * by terminal-generated stop signals. Newly orphaned process groups are 213 * to receive a SIGHUP and a SIGCONT. 214 * 215 * "I ask you, have you ever known what it is to be an orphan?" 216 */ 217 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 218 { 219 struct task_struct *p; 220 int ret = 1; 221 222 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 223 if (p == ignored_task 224 || p->exit_state 225 || is_init(p->real_parent)) 226 continue; 227 if (task_pgrp(p->real_parent) != pgrp && 228 task_session(p->real_parent) == task_session(p)) { 229 ret = 0; 230 break; 231 } 232 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 233 return ret; /* (sighing) "Often!" */ 234 } 235 236 int is_current_pgrp_orphaned(void) 237 { 238 int retval; 239 240 read_lock(&tasklist_lock); 241 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 242 read_unlock(&tasklist_lock); 243 244 return retval; 245 } 246 247 static int has_stopped_jobs(struct pid *pgrp) 248 { 249 int retval = 0; 250 struct task_struct *p; 251 252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 253 if (p->state != TASK_STOPPED) 254 continue; 255 retval = 1; 256 break; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 return retval; 259 } 260 261 /** 262 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 263 * 264 * If a kernel thread is launched as a result of a system call, or if 265 * it ever exits, it should generally reparent itself to kthreadd so it 266 * isn't in the way of other processes and is correctly cleaned up on exit. 267 * 268 * The various task state such as scheduling policy and priority may have 269 * been inherited from a user process, so we reset them to sane values here. 270 * 271 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 272 */ 273 static void reparent_to_kthreadd(void) 274 { 275 write_lock_irq(&tasklist_lock); 276 277 ptrace_unlink(current); 278 /* Reparent to init */ 279 remove_parent(current); 280 current->real_parent = current->parent = kthreadd_task; 281 add_parent(current); 282 283 /* Set the exit signal to SIGCHLD so we signal init on exit */ 284 current->exit_signal = SIGCHLD; 285 286 if (task_nice(current) < 0) 287 set_user_nice(current, 0); 288 /* cpus_allowed? */ 289 /* rt_priority? */ 290 /* signals? */ 291 security_task_reparent_to_init(current); 292 memcpy(current->signal->rlim, init_task.signal->rlim, 293 sizeof(current->signal->rlim)); 294 atomic_inc(&(INIT_USER->__count)); 295 write_unlock_irq(&tasklist_lock); 296 switch_uid(INIT_USER); 297 } 298 299 void __set_special_pids(pid_t session, pid_t pgrp) 300 { 301 struct task_struct *curr = current->group_leader; 302 303 if (process_session(curr) != session) { 304 detach_pid(curr, PIDTYPE_SID); 305 set_signal_session(curr->signal, session); 306 attach_pid(curr, PIDTYPE_SID, find_pid(session)); 307 } 308 if (process_group(curr) != pgrp) { 309 detach_pid(curr, PIDTYPE_PGID); 310 curr->signal->pgrp = pgrp; 311 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp)); 312 } 313 } 314 315 static void set_special_pids(pid_t session, pid_t pgrp) 316 { 317 write_lock_irq(&tasklist_lock); 318 __set_special_pids(session, pgrp); 319 write_unlock_irq(&tasklist_lock); 320 } 321 322 /* 323 * Let kernel threads use this to say that they 324 * allow a certain signal (since daemonize() will 325 * have disabled all of them by default). 326 */ 327 int allow_signal(int sig) 328 { 329 if (!valid_signal(sig) || sig < 1) 330 return -EINVAL; 331 332 spin_lock_irq(¤t->sighand->siglock); 333 sigdelset(¤t->blocked, sig); 334 if (!current->mm) { 335 /* Kernel threads handle their own signals. 336 Let the signal code know it'll be handled, so 337 that they don't get converted to SIGKILL or 338 just silently dropped */ 339 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 340 } 341 recalc_sigpending(); 342 spin_unlock_irq(¤t->sighand->siglock); 343 return 0; 344 } 345 346 EXPORT_SYMBOL(allow_signal); 347 348 int disallow_signal(int sig) 349 { 350 if (!valid_signal(sig) || sig < 1) 351 return -EINVAL; 352 353 spin_lock_irq(¤t->sighand->siglock); 354 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 355 recalc_sigpending(); 356 spin_unlock_irq(¤t->sighand->siglock); 357 return 0; 358 } 359 360 EXPORT_SYMBOL(disallow_signal); 361 362 /* 363 * Put all the gunge required to become a kernel thread without 364 * attached user resources in one place where it belongs. 365 */ 366 367 void daemonize(const char *name, ...) 368 { 369 va_list args; 370 struct fs_struct *fs; 371 sigset_t blocked; 372 373 va_start(args, name); 374 vsnprintf(current->comm, sizeof(current->comm), name, args); 375 va_end(args); 376 377 /* 378 * If we were started as result of loading a module, close all of the 379 * user space pages. We don't need them, and if we didn't close them 380 * they would be locked into memory. 381 */ 382 exit_mm(current); 383 /* 384 * We don't want to have TIF_FREEZE set if the system-wide hibernation 385 * or suspend transition begins right now. 386 */ 387 current->flags |= PF_NOFREEZE; 388 389 set_special_pids(1, 1); 390 proc_clear_tty(current); 391 392 /* Block and flush all signals */ 393 sigfillset(&blocked); 394 sigprocmask(SIG_BLOCK, &blocked, NULL); 395 flush_signals(current); 396 397 /* Become as one with the init task */ 398 399 exit_fs(current); /* current->fs->count--; */ 400 fs = init_task.fs; 401 current->fs = fs; 402 atomic_inc(&fs->count); 403 404 exit_task_namespaces(current); 405 current->nsproxy = init_task.nsproxy; 406 get_task_namespaces(current); 407 408 exit_files(current); 409 current->files = init_task.files; 410 atomic_inc(¤t->files->count); 411 412 reparent_to_kthreadd(); 413 } 414 415 EXPORT_SYMBOL(daemonize); 416 417 static void close_files(struct files_struct * files) 418 { 419 int i, j; 420 struct fdtable *fdt; 421 422 j = 0; 423 424 /* 425 * It is safe to dereference the fd table without RCU or 426 * ->file_lock because this is the last reference to the 427 * files structure. 428 */ 429 fdt = files_fdtable(files); 430 for (;;) { 431 unsigned long set; 432 i = j * __NFDBITS; 433 if (i >= fdt->max_fds) 434 break; 435 set = fdt->open_fds->fds_bits[j++]; 436 while (set) { 437 if (set & 1) { 438 struct file * file = xchg(&fdt->fd[i], NULL); 439 if (file) { 440 filp_close(file, files); 441 cond_resched(); 442 } 443 } 444 i++; 445 set >>= 1; 446 } 447 } 448 } 449 450 struct files_struct *get_files_struct(struct task_struct *task) 451 { 452 struct files_struct *files; 453 454 task_lock(task); 455 files = task->files; 456 if (files) 457 atomic_inc(&files->count); 458 task_unlock(task); 459 460 return files; 461 } 462 463 void fastcall put_files_struct(struct files_struct *files) 464 { 465 struct fdtable *fdt; 466 467 if (atomic_dec_and_test(&files->count)) { 468 close_files(files); 469 /* 470 * Free the fd and fdset arrays if we expanded them. 471 * If the fdtable was embedded, pass files for freeing 472 * at the end of the RCU grace period. Otherwise, 473 * you can free files immediately. 474 */ 475 fdt = files_fdtable(files); 476 if (fdt != &files->fdtab) 477 kmem_cache_free(files_cachep, files); 478 free_fdtable(fdt); 479 } 480 } 481 482 EXPORT_SYMBOL(put_files_struct); 483 484 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 485 { 486 struct files_struct *old; 487 488 old = tsk->files; 489 task_lock(tsk); 490 tsk->files = files; 491 task_unlock(tsk); 492 put_files_struct(old); 493 } 494 EXPORT_SYMBOL(reset_files_struct); 495 496 static inline void __exit_files(struct task_struct *tsk) 497 { 498 struct files_struct * files = tsk->files; 499 500 if (files) { 501 task_lock(tsk); 502 tsk->files = NULL; 503 task_unlock(tsk); 504 put_files_struct(files); 505 } 506 } 507 508 void exit_files(struct task_struct *tsk) 509 { 510 __exit_files(tsk); 511 } 512 513 static inline void __put_fs_struct(struct fs_struct *fs) 514 { 515 /* No need to hold fs->lock if we are killing it */ 516 if (atomic_dec_and_test(&fs->count)) { 517 dput(fs->root); 518 mntput(fs->rootmnt); 519 dput(fs->pwd); 520 mntput(fs->pwdmnt); 521 if (fs->altroot) { 522 dput(fs->altroot); 523 mntput(fs->altrootmnt); 524 } 525 kmem_cache_free(fs_cachep, fs); 526 } 527 } 528 529 void put_fs_struct(struct fs_struct *fs) 530 { 531 __put_fs_struct(fs); 532 } 533 534 static inline void __exit_fs(struct task_struct *tsk) 535 { 536 struct fs_struct * fs = tsk->fs; 537 538 if (fs) { 539 task_lock(tsk); 540 tsk->fs = NULL; 541 task_unlock(tsk); 542 __put_fs_struct(fs); 543 } 544 } 545 546 void exit_fs(struct task_struct *tsk) 547 { 548 __exit_fs(tsk); 549 } 550 551 EXPORT_SYMBOL_GPL(exit_fs); 552 553 /* 554 * Turn us into a lazy TLB process if we 555 * aren't already.. 556 */ 557 static void exit_mm(struct task_struct * tsk) 558 { 559 struct mm_struct *mm = tsk->mm; 560 561 mm_release(tsk, mm); 562 if (!mm) 563 return; 564 /* 565 * Serialize with any possible pending coredump. 566 * We must hold mmap_sem around checking core_waiters 567 * and clearing tsk->mm. The core-inducing thread 568 * will increment core_waiters for each thread in the 569 * group with ->mm != NULL. 570 */ 571 down_read(&mm->mmap_sem); 572 if (mm->core_waiters) { 573 up_read(&mm->mmap_sem); 574 down_write(&mm->mmap_sem); 575 if (!--mm->core_waiters) 576 complete(mm->core_startup_done); 577 up_write(&mm->mmap_sem); 578 579 wait_for_completion(&mm->core_done); 580 down_read(&mm->mmap_sem); 581 } 582 atomic_inc(&mm->mm_count); 583 BUG_ON(mm != tsk->active_mm); 584 /* more a memory barrier than a real lock */ 585 task_lock(tsk); 586 tsk->mm = NULL; 587 up_read(&mm->mmap_sem); 588 enter_lazy_tlb(mm, current); 589 /* We don't want this task to be frozen prematurely */ 590 clear_freeze_flag(tsk); 591 task_unlock(tsk); 592 mmput(mm); 593 } 594 595 static inline void 596 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 597 { 598 /* 599 * Make sure we're not reparenting to ourselves and that 600 * the parent is not a zombie. 601 */ 602 BUG_ON(p == reaper || reaper->exit_state); 603 p->real_parent = reaper; 604 } 605 606 static void 607 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 608 { 609 if (p->pdeath_signal) 610 /* We already hold the tasklist_lock here. */ 611 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 612 613 /* Move the child from its dying parent to the new one. */ 614 if (unlikely(traced)) { 615 /* Preserve ptrace links if someone else is tracing this child. */ 616 list_del_init(&p->ptrace_list); 617 if (p->parent != p->real_parent) 618 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 619 } else { 620 /* If this child is being traced, then we're the one tracing it 621 * anyway, so let go of it. 622 */ 623 p->ptrace = 0; 624 remove_parent(p); 625 p->parent = p->real_parent; 626 add_parent(p); 627 628 if (p->state == TASK_TRACED) { 629 /* 630 * If it was at a trace stop, turn it into 631 * a normal stop since it's no longer being 632 * traced. 633 */ 634 ptrace_untrace(p); 635 } 636 } 637 638 /* If this is a threaded reparent there is no need to 639 * notify anyone anything has happened. 640 */ 641 if (p->real_parent->group_leader == father->group_leader) 642 return; 643 644 /* We don't want people slaying init. */ 645 if (p->exit_signal != -1) 646 p->exit_signal = SIGCHLD; 647 648 /* If we'd notified the old parent about this child's death, 649 * also notify the new parent. 650 */ 651 if (!traced && p->exit_state == EXIT_ZOMBIE && 652 p->exit_signal != -1 && thread_group_empty(p)) 653 do_notify_parent(p, p->exit_signal); 654 655 /* 656 * process group orphan check 657 * Case ii: Our child is in a different pgrp 658 * than we are, and it was the only connection 659 * outside, so the child pgrp is now orphaned. 660 */ 661 if ((task_pgrp(p) != task_pgrp(father)) && 662 (task_session(p) == task_session(father))) { 663 struct pid *pgrp = task_pgrp(p); 664 665 if (will_become_orphaned_pgrp(pgrp, NULL) && 666 has_stopped_jobs(pgrp)) { 667 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 668 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 669 } 670 } 671 } 672 673 /* 674 * When we die, we re-parent all our children. 675 * Try to give them to another thread in our thread 676 * group, and if no such member exists, give it to 677 * the child reaper process (ie "init") in our pid 678 * space. 679 */ 680 static void 681 forget_original_parent(struct task_struct *father, struct list_head *to_release) 682 { 683 struct task_struct *p, *reaper = father; 684 struct list_head *_p, *_n; 685 686 do { 687 reaper = next_thread(reaper); 688 if (reaper == father) { 689 reaper = child_reaper(father); 690 break; 691 } 692 } while (reaper->exit_state); 693 694 /* 695 * There are only two places where our children can be: 696 * 697 * - in our child list 698 * - in our ptraced child list 699 * 700 * Search them and reparent children. 701 */ 702 list_for_each_safe(_p, _n, &father->children) { 703 int ptrace; 704 p = list_entry(_p, struct task_struct, sibling); 705 706 ptrace = p->ptrace; 707 708 /* if father isn't the real parent, then ptrace must be enabled */ 709 BUG_ON(father != p->real_parent && !ptrace); 710 711 if (father == p->real_parent) { 712 /* reparent with a reaper, real father it's us */ 713 choose_new_parent(p, reaper); 714 reparent_thread(p, father, 0); 715 } else { 716 /* reparent ptraced task to its real parent */ 717 __ptrace_unlink (p); 718 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 719 thread_group_empty(p)) 720 do_notify_parent(p, p->exit_signal); 721 } 722 723 /* 724 * if the ptraced child is a zombie with exit_signal == -1 725 * we must collect it before we exit, or it will remain 726 * zombie forever since we prevented it from self-reap itself 727 * while it was being traced by us, to be able to see it in wait4. 728 */ 729 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 730 list_add(&p->ptrace_list, to_release); 731 } 732 list_for_each_safe(_p, _n, &father->ptrace_children) { 733 p = list_entry(_p, struct task_struct, ptrace_list); 734 choose_new_parent(p, reaper); 735 reparent_thread(p, father, 1); 736 } 737 } 738 739 /* 740 * Send signals to all our closest relatives so that they know 741 * to properly mourn us.. 742 */ 743 static void exit_notify(struct task_struct *tsk) 744 { 745 int state; 746 struct task_struct *t; 747 struct list_head ptrace_dead, *_p, *_n; 748 struct pid *pgrp; 749 750 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 751 && !thread_group_empty(tsk)) { 752 /* 753 * This occurs when there was a race between our exit 754 * syscall and a group signal choosing us as the one to 755 * wake up. It could be that we are the only thread 756 * alerted to check for pending signals, but another thread 757 * should be woken now to take the signal since we will not. 758 * Now we'll wake all the threads in the group just to make 759 * sure someone gets all the pending signals. 760 */ 761 read_lock(&tasklist_lock); 762 spin_lock_irq(&tsk->sighand->siglock); 763 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 764 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 765 recalc_sigpending_and_wake(t); 766 spin_unlock_irq(&tsk->sighand->siglock); 767 read_unlock(&tasklist_lock); 768 } 769 770 write_lock_irq(&tasklist_lock); 771 772 /* 773 * This does two things: 774 * 775 * A. Make init inherit all the child processes 776 * B. Check to see if any process groups have become orphaned 777 * as a result of our exiting, and if they have any stopped 778 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 779 */ 780 781 INIT_LIST_HEAD(&ptrace_dead); 782 forget_original_parent(tsk, &ptrace_dead); 783 BUG_ON(!list_empty(&tsk->children)); 784 BUG_ON(!list_empty(&tsk->ptrace_children)); 785 786 /* 787 * Check to see if any process groups have become orphaned 788 * as a result of our exiting, and if they have any stopped 789 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 790 * 791 * Case i: Our father is in a different pgrp than we are 792 * and we were the only connection outside, so our pgrp 793 * is about to become orphaned. 794 */ 795 796 t = tsk->real_parent; 797 798 pgrp = task_pgrp(tsk); 799 if ((task_pgrp(t) != pgrp) && 800 (task_session(t) == task_session(tsk)) && 801 will_become_orphaned_pgrp(pgrp, tsk) && 802 has_stopped_jobs(pgrp)) { 803 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 804 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 805 } 806 807 /* Let father know we died 808 * 809 * Thread signals are configurable, but you aren't going to use 810 * that to send signals to arbitary processes. 811 * That stops right now. 812 * 813 * If the parent exec id doesn't match the exec id we saved 814 * when we started then we know the parent has changed security 815 * domain. 816 * 817 * If our self_exec id doesn't match our parent_exec_id then 818 * we have changed execution domain as these two values started 819 * the same after a fork. 820 */ 821 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 822 ( tsk->parent_exec_id != t->self_exec_id || 823 tsk->self_exec_id != tsk->parent_exec_id) 824 && !capable(CAP_KILL)) 825 tsk->exit_signal = SIGCHLD; 826 827 828 /* If something other than our normal parent is ptracing us, then 829 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 830 * only has special meaning to our real parent. 831 */ 832 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 833 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 834 do_notify_parent(tsk, signal); 835 } else if (tsk->ptrace) { 836 do_notify_parent(tsk, SIGCHLD); 837 } 838 839 state = EXIT_ZOMBIE; 840 if (tsk->exit_signal == -1 && likely(!tsk->ptrace)) 841 state = EXIT_DEAD; 842 tsk->exit_state = state; 843 844 write_unlock_irq(&tasklist_lock); 845 846 list_for_each_safe(_p, _n, &ptrace_dead) { 847 list_del_init(_p); 848 t = list_entry(_p, struct task_struct, ptrace_list); 849 release_task(t); 850 } 851 852 /* If the process is dead, release it - nobody will wait for it */ 853 if (state == EXIT_DEAD) 854 release_task(tsk); 855 } 856 857 #ifdef CONFIG_DEBUG_STACK_USAGE 858 static void check_stack_usage(void) 859 { 860 static DEFINE_SPINLOCK(low_water_lock); 861 static int lowest_to_date = THREAD_SIZE; 862 unsigned long *n = end_of_stack(current); 863 unsigned long free; 864 865 while (*n == 0) 866 n++; 867 free = (unsigned long)n - (unsigned long)end_of_stack(current); 868 869 if (free >= lowest_to_date) 870 return; 871 872 spin_lock(&low_water_lock); 873 if (free < lowest_to_date) { 874 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 875 "left\n", 876 current->comm, free); 877 lowest_to_date = free; 878 } 879 spin_unlock(&low_water_lock); 880 } 881 #else 882 static inline void check_stack_usage(void) {} 883 #endif 884 885 fastcall NORET_TYPE void do_exit(long code) 886 { 887 struct task_struct *tsk = current; 888 int group_dead; 889 890 profile_task_exit(tsk); 891 892 WARN_ON(atomic_read(&tsk->fs_excl)); 893 894 if (unlikely(in_interrupt())) 895 panic("Aiee, killing interrupt handler!"); 896 if (unlikely(!tsk->pid)) 897 panic("Attempted to kill the idle task!"); 898 if (unlikely(tsk == child_reaper(tsk))) { 899 if (tsk->nsproxy->pid_ns != &init_pid_ns) 900 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 901 else 902 panic("Attempted to kill init!"); 903 } 904 905 906 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 907 current->ptrace_message = code; 908 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 909 } 910 911 /* 912 * We're taking recursive faults here in do_exit. Safest is to just 913 * leave this task alone and wait for reboot. 914 */ 915 if (unlikely(tsk->flags & PF_EXITING)) { 916 printk(KERN_ALERT 917 "Fixing recursive fault but reboot is needed!\n"); 918 /* 919 * We can do this unlocked here. The futex code uses 920 * this flag just to verify whether the pi state 921 * cleanup has been done or not. In the worst case it 922 * loops once more. We pretend that the cleanup was 923 * done as there is no way to return. Either the 924 * OWNER_DIED bit is set by now or we push the blocked 925 * task into the wait for ever nirwana as well. 926 */ 927 tsk->flags |= PF_EXITPIDONE; 928 if (tsk->io_context) 929 exit_io_context(); 930 set_current_state(TASK_UNINTERRUPTIBLE); 931 schedule(); 932 } 933 934 /* 935 * tsk->flags are checked in the futex code to protect against 936 * an exiting task cleaning up the robust pi futexes. 937 */ 938 spin_lock_irq(&tsk->pi_lock); 939 tsk->flags |= PF_EXITING; 940 spin_unlock_irq(&tsk->pi_lock); 941 942 if (unlikely(in_atomic())) 943 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 944 current->comm, current->pid, 945 preempt_count()); 946 947 acct_update_integrals(tsk); 948 if (tsk->mm) { 949 update_hiwater_rss(tsk->mm); 950 update_hiwater_vm(tsk->mm); 951 } 952 group_dead = atomic_dec_and_test(&tsk->signal->live); 953 if (group_dead) { 954 hrtimer_cancel(&tsk->signal->real_timer); 955 exit_itimers(tsk->signal); 956 } 957 acct_collect(code, group_dead); 958 if (unlikely(tsk->robust_list)) 959 exit_robust_list(tsk); 960 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 961 if (unlikely(tsk->compat_robust_list)) 962 compat_exit_robust_list(tsk); 963 #endif 964 if (group_dead) 965 tty_audit_exit(); 966 if (unlikely(tsk->audit_context)) 967 audit_free(tsk); 968 969 tsk->exit_code = code; 970 taskstats_exit(tsk, group_dead); 971 972 exit_mm(tsk); 973 974 if (group_dead) 975 acct_process(); 976 exit_sem(tsk); 977 __exit_files(tsk); 978 __exit_fs(tsk); 979 check_stack_usage(); 980 exit_thread(); 981 cpuset_exit(tsk); 982 exit_keys(tsk); 983 984 if (group_dead && tsk->signal->leader) 985 disassociate_ctty(1); 986 987 module_put(task_thread_info(tsk)->exec_domain->module); 988 if (tsk->binfmt) 989 module_put(tsk->binfmt->module); 990 991 proc_exit_connector(tsk); 992 exit_task_namespaces(tsk); 993 exit_notify(tsk); 994 #ifdef CONFIG_NUMA 995 mpol_free(tsk->mempolicy); 996 tsk->mempolicy = NULL; 997 #endif 998 /* 999 * This must happen late, after the PID is not 1000 * hashed anymore: 1001 */ 1002 if (unlikely(!list_empty(&tsk->pi_state_list))) 1003 exit_pi_state_list(tsk); 1004 if (unlikely(current->pi_state_cache)) 1005 kfree(current->pi_state_cache); 1006 /* 1007 * Make sure we are holding no locks: 1008 */ 1009 debug_check_no_locks_held(tsk); 1010 /* 1011 * We can do this unlocked here. The futex code uses this flag 1012 * just to verify whether the pi state cleanup has been done 1013 * or not. In the worst case it loops once more. 1014 */ 1015 tsk->flags |= PF_EXITPIDONE; 1016 1017 if (tsk->io_context) 1018 exit_io_context(); 1019 1020 if (tsk->splice_pipe) 1021 __free_pipe_info(tsk->splice_pipe); 1022 1023 preempt_disable(); 1024 /* causes final put_task_struct in finish_task_switch(). */ 1025 tsk->state = TASK_DEAD; 1026 1027 schedule(); 1028 BUG(); 1029 /* Avoid "noreturn function does return". */ 1030 for (;;) 1031 cpu_relax(); /* For when BUG is null */ 1032 } 1033 1034 EXPORT_SYMBOL_GPL(do_exit); 1035 1036 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1037 { 1038 if (comp) 1039 complete(comp); 1040 1041 do_exit(code); 1042 } 1043 1044 EXPORT_SYMBOL(complete_and_exit); 1045 1046 asmlinkage long sys_exit(int error_code) 1047 { 1048 do_exit((error_code&0xff)<<8); 1049 } 1050 1051 /* 1052 * Take down every thread in the group. This is called by fatal signals 1053 * as well as by sys_exit_group (below). 1054 */ 1055 NORET_TYPE void 1056 do_group_exit(int exit_code) 1057 { 1058 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1059 1060 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1061 exit_code = current->signal->group_exit_code; 1062 else if (!thread_group_empty(current)) { 1063 struct signal_struct *const sig = current->signal; 1064 struct sighand_struct *const sighand = current->sighand; 1065 spin_lock_irq(&sighand->siglock); 1066 if (sig->flags & SIGNAL_GROUP_EXIT) 1067 /* Another thread got here before we took the lock. */ 1068 exit_code = sig->group_exit_code; 1069 else { 1070 sig->group_exit_code = exit_code; 1071 zap_other_threads(current); 1072 } 1073 spin_unlock_irq(&sighand->siglock); 1074 } 1075 1076 do_exit(exit_code); 1077 /* NOTREACHED */ 1078 } 1079 1080 /* 1081 * this kills every thread in the thread group. Note that any externally 1082 * wait4()-ing process will get the correct exit code - even if this 1083 * thread is not the thread group leader. 1084 */ 1085 asmlinkage void sys_exit_group(int error_code) 1086 { 1087 do_group_exit((error_code & 0xff) << 8); 1088 } 1089 1090 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1091 { 1092 int err; 1093 1094 if (pid > 0) { 1095 if (p->pid != pid) 1096 return 0; 1097 } else if (!pid) { 1098 if (process_group(p) != process_group(current)) 1099 return 0; 1100 } else if (pid != -1) { 1101 if (process_group(p) != -pid) 1102 return 0; 1103 } 1104 1105 /* 1106 * Do not consider detached threads that are 1107 * not ptraced: 1108 */ 1109 if (p->exit_signal == -1 && !p->ptrace) 1110 return 0; 1111 1112 /* Wait for all children (clone and not) if __WALL is set; 1113 * otherwise, wait for clone children *only* if __WCLONE is 1114 * set; otherwise, wait for non-clone children *only*. (Note: 1115 * A "clone" child here is one that reports to its parent 1116 * using a signal other than SIGCHLD.) */ 1117 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1118 && !(options & __WALL)) 1119 return 0; 1120 /* 1121 * Do not consider thread group leaders that are 1122 * in a non-empty thread group: 1123 */ 1124 if (delay_group_leader(p)) 1125 return 2; 1126 1127 err = security_task_wait(p); 1128 if (err) 1129 return err; 1130 1131 return 1; 1132 } 1133 1134 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1135 int why, int status, 1136 struct siginfo __user *infop, 1137 struct rusage __user *rusagep) 1138 { 1139 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1140 1141 put_task_struct(p); 1142 if (!retval) 1143 retval = put_user(SIGCHLD, &infop->si_signo); 1144 if (!retval) 1145 retval = put_user(0, &infop->si_errno); 1146 if (!retval) 1147 retval = put_user((short)why, &infop->si_code); 1148 if (!retval) 1149 retval = put_user(pid, &infop->si_pid); 1150 if (!retval) 1151 retval = put_user(uid, &infop->si_uid); 1152 if (!retval) 1153 retval = put_user(status, &infop->si_status); 1154 if (!retval) 1155 retval = pid; 1156 return retval; 1157 } 1158 1159 /* 1160 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1161 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1162 * the lock and this task is uninteresting. If we return nonzero, we have 1163 * released the lock and the system call should return. 1164 */ 1165 static int wait_task_zombie(struct task_struct *p, int noreap, 1166 struct siginfo __user *infop, 1167 int __user *stat_addr, struct rusage __user *ru) 1168 { 1169 unsigned long state; 1170 int retval; 1171 int status; 1172 1173 if (unlikely(noreap)) { 1174 pid_t pid = p->pid; 1175 uid_t uid = p->uid; 1176 int exit_code = p->exit_code; 1177 int why, status; 1178 1179 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1180 return 0; 1181 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1182 return 0; 1183 get_task_struct(p); 1184 read_unlock(&tasklist_lock); 1185 if ((exit_code & 0x7f) == 0) { 1186 why = CLD_EXITED; 1187 status = exit_code >> 8; 1188 } else { 1189 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1190 status = exit_code & 0x7f; 1191 } 1192 return wait_noreap_copyout(p, pid, uid, why, 1193 status, infop, ru); 1194 } 1195 1196 /* 1197 * Try to move the task's state to DEAD 1198 * only one thread is allowed to do this: 1199 */ 1200 state = xchg(&p->exit_state, EXIT_DEAD); 1201 if (state != EXIT_ZOMBIE) { 1202 BUG_ON(state != EXIT_DEAD); 1203 return 0; 1204 } 1205 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1206 /* 1207 * This can only happen in a race with a ptraced thread 1208 * dying on another processor. 1209 */ 1210 return 0; 1211 } 1212 1213 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1214 struct signal_struct *psig; 1215 struct signal_struct *sig; 1216 1217 /* 1218 * The resource counters for the group leader are in its 1219 * own task_struct. Those for dead threads in the group 1220 * are in its signal_struct, as are those for the child 1221 * processes it has previously reaped. All these 1222 * accumulate in the parent's signal_struct c* fields. 1223 * 1224 * We don't bother to take a lock here to protect these 1225 * p->signal fields, because they are only touched by 1226 * __exit_signal, which runs with tasklist_lock 1227 * write-locked anyway, and so is excluded here. We do 1228 * need to protect the access to p->parent->signal fields, 1229 * as other threads in the parent group can be right 1230 * here reaping other children at the same time. 1231 */ 1232 spin_lock_irq(&p->parent->sighand->siglock); 1233 psig = p->parent->signal; 1234 sig = p->signal; 1235 psig->cutime = 1236 cputime_add(psig->cutime, 1237 cputime_add(p->utime, 1238 cputime_add(sig->utime, 1239 sig->cutime))); 1240 psig->cstime = 1241 cputime_add(psig->cstime, 1242 cputime_add(p->stime, 1243 cputime_add(sig->stime, 1244 sig->cstime))); 1245 psig->cmin_flt += 1246 p->min_flt + sig->min_flt + sig->cmin_flt; 1247 psig->cmaj_flt += 1248 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1249 psig->cnvcsw += 1250 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1251 psig->cnivcsw += 1252 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1253 psig->cinblock += 1254 task_io_get_inblock(p) + 1255 sig->inblock + sig->cinblock; 1256 psig->coublock += 1257 task_io_get_oublock(p) + 1258 sig->oublock + sig->coublock; 1259 spin_unlock_irq(&p->parent->sighand->siglock); 1260 } 1261 1262 /* 1263 * Now we are sure this task is interesting, and no other 1264 * thread can reap it because we set its state to EXIT_DEAD. 1265 */ 1266 read_unlock(&tasklist_lock); 1267 1268 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1269 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1270 ? p->signal->group_exit_code : p->exit_code; 1271 if (!retval && stat_addr) 1272 retval = put_user(status, stat_addr); 1273 if (!retval && infop) 1274 retval = put_user(SIGCHLD, &infop->si_signo); 1275 if (!retval && infop) 1276 retval = put_user(0, &infop->si_errno); 1277 if (!retval && infop) { 1278 int why; 1279 1280 if ((status & 0x7f) == 0) { 1281 why = CLD_EXITED; 1282 status >>= 8; 1283 } else { 1284 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1285 status &= 0x7f; 1286 } 1287 retval = put_user((short)why, &infop->si_code); 1288 if (!retval) 1289 retval = put_user(status, &infop->si_status); 1290 } 1291 if (!retval && infop) 1292 retval = put_user(p->pid, &infop->si_pid); 1293 if (!retval && infop) 1294 retval = put_user(p->uid, &infop->si_uid); 1295 if (retval) { 1296 // TODO: is this safe? 1297 p->exit_state = EXIT_ZOMBIE; 1298 return retval; 1299 } 1300 retval = p->pid; 1301 if (p->real_parent != p->parent) { 1302 write_lock_irq(&tasklist_lock); 1303 /* Double-check with lock held. */ 1304 if (p->real_parent != p->parent) { 1305 __ptrace_unlink(p); 1306 // TODO: is this safe? 1307 p->exit_state = EXIT_ZOMBIE; 1308 /* 1309 * If this is not a detached task, notify the parent. 1310 * If it's still not detached after that, don't release 1311 * it now. 1312 */ 1313 if (p->exit_signal != -1) { 1314 do_notify_parent(p, p->exit_signal); 1315 if (p->exit_signal != -1) 1316 p = NULL; 1317 } 1318 } 1319 write_unlock_irq(&tasklist_lock); 1320 } 1321 if (p != NULL) 1322 release_task(p); 1323 BUG_ON(!retval); 1324 return retval; 1325 } 1326 1327 /* 1328 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1329 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1330 * the lock and this task is uninteresting. If we return nonzero, we have 1331 * released the lock and the system call should return. 1332 */ 1333 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1334 int noreap, struct siginfo __user *infop, 1335 int __user *stat_addr, struct rusage __user *ru) 1336 { 1337 int retval, exit_code; 1338 1339 if (!p->exit_code) 1340 return 0; 1341 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1342 p->signal && p->signal->group_stop_count > 0) 1343 /* 1344 * A group stop is in progress and this is the group leader. 1345 * We won't report until all threads have stopped. 1346 */ 1347 return 0; 1348 1349 /* 1350 * Now we are pretty sure this task is interesting. 1351 * Make sure it doesn't get reaped out from under us while we 1352 * give up the lock and then examine it below. We don't want to 1353 * keep holding onto the tasklist_lock while we call getrusage and 1354 * possibly take page faults for user memory. 1355 */ 1356 get_task_struct(p); 1357 read_unlock(&tasklist_lock); 1358 1359 if (unlikely(noreap)) { 1360 pid_t pid = p->pid; 1361 uid_t uid = p->uid; 1362 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1363 1364 exit_code = p->exit_code; 1365 if (unlikely(!exit_code) || 1366 unlikely(p->state & TASK_TRACED)) 1367 goto bail_ref; 1368 return wait_noreap_copyout(p, pid, uid, 1369 why, (exit_code << 8) | 0x7f, 1370 infop, ru); 1371 } 1372 1373 write_lock_irq(&tasklist_lock); 1374 1375 /* 1376 * This uses xchg to be atomic with the thread resuming and setting 1377 * it. It must also be done with the write lock held to prevent a 1378 * race with the EXIT_ZOMBIE case. 1379 */ 1380 exit_code = xchg(&p->exit_code, 0); 1381 if (unlikely(p->exit_state)) { 1382 /* 1383 * The task resumed and then died. Let the next iteration 1384 * catch it in EXIT_ZOMBIE. Note that exit_code might 1385 * already be zero here if it resumed and did _exit(0). 1386 * The task itself is dead and won't touch exit_code again; 1387 * other processors in this function are locked out. 1388 */ 1389 p->exit_code = exit_code; 1390 exit_code = 0; 1391 } 1392 if (unlikely(exit_code == 0)) { 1393 /* 1394 * Another thread in this function got to it first, or it 1395 * resumed, or it resumed and then died. 1396 */ 1397 write_unlock_irq(&tasklist_lock); 1398 bail_ref: 1399 put_task_struct(p); 1400 /* 1401 * We are returning to the wait loop without having successfully 1402 * removed the process and having released the lock. We cannot 1403 * continue, since the "p" task pointer is potentially stale. 1404 * 1405 * Return -EAGAIN, and do_wait() will restart the loop from the 1406 * beginning. Do _not_ re-acquire the lock. 1407 */ 1408 return -EAGAIN; 1409 } 1410 1411 /* move to end of parent's list to avoid starvation */ 1412 remove_parent(p); 1413 add_parent(p); 1414 1415 write_unlock_irq(&tasklist_lock); 1416 1417 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1418 if (!retval && stat_addr) 1419 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1420 if (!retval && infop) 1421 retval = put_user(SIGCHLD, &infop->si_signo); 1422 if (!retval && infop) 1423 retval = put_user(0, &infop->si_errno); 1424 if (!retval && infop) 1425 retval = put_user((short)((p->ptrace & PT_PTRACED) 1426 ? CLD_TRAPPED : CLD_STOPPED), 1427 &infop->si_code); 1428 if (!retval && infop) 1429 retval = put_user(exit_code, &infop->si_status); 1430 if (!retval && infop) 1431 retval = put_user(p->pid, &infop->si_pid); 1432 if (!retval && infop) 1433 retval = put_user(p->uid, &infop->si_uid); 1434 if (!retval) 1435 retval = p->pid; 1436 put_task_struct(p); 1437 1438 BUG_ON(!retval); 1439 return retval; 1440 } 1441 1442 /* 1443 * Handle do_wait work for one task in a live, non-stopped state. 1444 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1445 * the lock and this task is uninteresting. If we return nonzero, we have 1446 * released the lock and the system call should return. 1447 */ 1448 static int wait_task_continued(struct task_struct *p, int noreap, 1449 struct siginfo __user *infop, 1450 int __user *stat_addr, struct rusage __user *ru) 1451 { 1452 int retval; 1453 pid_t pid; 1454 uid_t uid; 1455 1456 if (unlikely(!p->signal)) 1457 return 0; 1458 1459 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1460 return 0; 1461 1462 spin_lock_irq(&p->sighand->siglock); 1463 /* Re-check with the lock held. */ 1464 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1465 spin_unlock_irq(&p->sighand->siglock); 1466 return 0; 1467 } 1468 if (!noreap) 1469 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1470 spin_unlock_irq(&p->sighand->siglock); 1471 1472 pid = p->pid; 1473 uid = p->uid; 1474 get_task_struct(p); 1475 read_unlock(&tasklist_lock); 1476 1477 if (!infop) { 1478 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1479 put_task_struct(p); 1480 if (!retval && stat_addr) 1481 retval = put_user(0xffff, stat_addr); 1482 if (!retval) 1483 retval = p->pid; 1484 } else { 1485 retval = wait_noreap_copyout(p, pid, uid, 1486 CLD_CONTINUED, SIGCONT, 1487 infop, ru); 1488 BUG_ON(retval == 0); 1489 } 1490 1491 return retval; 1492 } 1493 1494 1495 static inline int my_ptrace_child(struct task_struct *p) 1496 { 1497 if (!(p->ptrace & PT_PTRACED)) 1498 return 0; 1499 if (!(p->ptrace & PT_ATTACHED)) 1500 return 1; 1501 /* 1502 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1503 * we are the attacher. If we are the real parent, this is a race 1504 * inside ptrace_attach. It is waiting for the tasklist_lock, 1505 * which we have to switch the parent links, but has already set 1506 * the flags in p->ptrace. 1507 */ 1508 return (p->parent != p->real_parent); 1509 } 1510 1511 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1512 int __user *stat_addr, struct rusage __user *ru) 1513 { 1514 DECLARE_WAITQUEUE(wait, current); 1515 struct task_struct *tsk; 1516 int flag, retval; 1517 int allowed, denied; 1518 1519 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1520 repeat: 1521 /* 1522 * We will set this flag if we see any child that might later 1523 * match our criteria, even if we are not able to reap it yet. 1524 */ 1525 flag = 0; 1526 allowed = denied = 0; 1527 current->state = TASK_INTERRUPTIBLE; 1528 read_lock(&tasklist_lock); 1529 tsk = current; 1530 do { 1531 struct task_struct *p; 1532 struct list_head *_p; 1533 int ret; 1534 1535 list_for_each(_p,&tsk->children) { 1536 p = list_entry(_p, struct task_struct, sibling); 1537 1538 ret = eligible_child(pid, options, p); 1539 if (!ret) 1540 continue; 1541 1542 if (unlikely(ret < 0)) { 1543 denied = ret; 1544 continue; 1545 } 1546 allowed = 1; 1547 1548 switch (p->state) { 1549 case TASK_TRACED: 1550 /* 1551 * When we hit the race with PTRACE_ATTACH, 1552 * we will not report this child. But the 1553 * race means it has not yet been moved to 1554 * our ptrace_children list, so we need to 1555 * set the flag here to avoid a spurious ECHILD 1556 * when the race happens with the only child. 1557 */ 1558 flag = 1; 1559 if (!my_ptrace_child(p)) 1560 continue; 1561 /*FALLTHROUGH*/ 1562 case TASK_STOPPED: 1563 /* 1564 * It's stopped now, so it might later 1565 * continue, exit, or stop again. 1566 */ 1567 flag = 1; 1568 if (!(options & WUNTRACED) && 1569 !my_ptrace_child(p)) 1570 continue; 1571 retval = wait_task_stopped(p, ret == 2, 1572 (options & WNOWAIT), 1573 infop, 1574 stat_addr, ru); 1575 if (retval == -EAGAIN) 1576 goto repeat; 1577 if (retval != 0) /* He released the lock. */ 1578 goto end; 1579 break; 1580 default: 1581 // case EXIT_DEAD: 1582 if (p->exit_state == EXIT_DEAD) 1583 continue; 1584 // case EXIT_ZOMBIE: 1585 if (p->exit_state == EXIT_ZOMBIE) { 1586 /* 1587 * Eligible but we cannot release 1588 * it yet: 1589 */ 1590 if (ret == 2) 1591 goto check_continued; 1592 if (!likely(options & WEXITED)) 1593 continue; 1594 retval = wait_task_zombie( 1595 p, (options & WNOWAIT), 1596 infop, stat_addr, ru); 1597 /* He released the lock. */ 1598 if (retval != 0) 1599 goto end; 1600 break; 1601 } 1602 check_continued: 1603 /* 1604 * It's running now, so it might later 1605 * exit, stop, or stop and then continue. 1606 */ 1607 flag = 1; 1608 if (!unlikely(options & WCONTINUED)) 1609 continue; 1610 retval = wait_task_continued( 1611 p, (options & WNOWAIT), 1612 infop, stat_addr, ru); 1613 if (retval != 0) /* He released the lock. */ 1614 goto end; 1615 break; 1616 } 1617 } 1618 if (!flag) { 1619 list_for_each(_p, &tsk->ptrace_children) { 1620 p = list_entry(_p, struct task_struct, 1621 ptrace_list); 1622 if (!eligible_child(pid, options, p)) 1623 continue; 1624 flag = 1; 1625 break; 1626 } 1627 } 1628 if (options & __WNOTHREAD) 1629 break; 1630 tsk = next_thread(tsk); 1631 BUG_ON(tsk->signal != current->signal); 1632 } while (tsk != current); 1633 1634 read_unlock(&tasklist_lock); 1635 if (flag) { 1636 retval = 0; 1637 if (options & WNOHANG) 1638 goto end; 1639 retval = -ERESTARTSYS; 1640 if (signal_pending(current)) 1641 goto end; 1642 schedule(); 1643 goto repeat; 1644 } 1645 retval = -ECHILD; 1646 if (unlikely(denied) && !allowed) 1647 retval = denied; 1648 end: 1649 current->state = TASK_RUNNING; 1650 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1651 if (infop) { 1652 if (retval > 0) 1653 retval = 0; 1654 else { 1655 /* 1656 * For a WNOHANG return, clear out all the fields 1657 * we would set so the user can easily tell the 1658 * difference. 1659 */ 1660 if (!retval) 1661 retval = put_user(0, &infop->si_signo); 1662 if (!retval) 1663 retval = put_user(0, &infop->si_errno); 1664 if (!retval) 1665 retval = put_user(0, &infop->si_code); 1666 if (!retval) 1667 retval = put_user(0, &infop->si_pid); 1668 if (!retval) 1669 retval = put_user(0, &infop->si_uid); 1670 if (!retval) 1671 retval = put_user(0, &infop->si_status); 1672 } 1673 } 1674 return retval; 1675 } 1676 1677 asmlinkage long sys_waitid(int which, pid_t pid, 1678 struct siginfo __user *infop, int options, 1679 struct rusage __user *ru) 1680 { 1681 long ret; 1682 1683 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1684 return -EINVAL; 1685 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1686 return -EINVAL; 1687 1688 switch (which) { 1689 case P_ALL: 1690 pid = -1; 1691 break; 1692 case P_PID: 1693 if (pid <= 0) 1694 return -EINVAL; 1695 break; 1696 case P_PGID: 1697 if (pid <= 0) 1698 return -EINVAL; 1699 pid = -pid; 1700 break; 1701 default: 1702 return -EINVAL; 1703 } 1704 1705 ret = do_wait(pid, options, infop, NULL, ru); 1706 1707 /* avoid REGPARM breakage on x86: */ 1708 prevent_tail_call(ret); 1709 return ret; 1710 } 1711 1712 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1713 int options, struct rusage __user *ru) 1714 { 1715 long ret; 1716 1717 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1718 __WNOTHREAD|__WCLONE|__WALL)) 1719 return -EINVAL; 1720 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1721 1722 /* avoid REGPARM breakage on x86: */ 1723 prevent_tail_call(ret); 1724 return ret; 1725 } 1726 1727 #ifdef __ARCH_WANT_SYS_WAITPID 1728 1729 /* 1730 * sys_waitpid() remains for compatibility. waitpid() should be 1731 * implemented by calling sys_wait4() from libc.a. 1732 */ 1733 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1734 { 1735 return sys_wait4(pid, stat_addr, options, NULL); 1736 } 1737 1738 #endif 1739