xref: /linux/kernel/exit.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/freezer.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
53 
54 extern void sem_exit (void);
55 
56 static void exit_mm(struct task_struct * tsk);
57 
58 static void __unhash_process(struct task_struct *p)
59 {
60 	nr_threads--;
61 	detach_pid(p, PIDTYPE_PID);
62 	if (thread_group_leader(p)) {
63 		detach_pid(p, PIDTYPE_PGID);
64 		detach_pid(p, PIDTYPE_SID);
65 
66 		list_del_rcu(&p->tasks);
67 		__get_cpu_var(process_counts)--;
68 	}
69 	list_del_rcu(&p->thread_group);
70 	remove_parent(p);
71 }
72 
73 /*
74  * This function expects the tasklist_lock write-locked.
75  */
76 static void __exit_signal(struct task_struct *tsk)
77 {
78 	struct signal_struct *sig = tsk->signal;
79 	struct sighand_struct *sighand;
80 
81 	BUG_ON(!sig);
82 	BUG_ON(!atomic_read(&sig->count));
83 
84 	rcu_read_lock();
85 	sighand = rcu_dereference(tsk->sighand);
86 	spin_lock(&sighand->siglock);
87 
88 	posix_cpu_timers_exit(tsk);
89 	if (atomic_dec_and_test(&sig->count))
90 		posix_cpu_timers_exit_group(tsk);
91 	else {
92 		/*
93 		 * If there is any task waiting for the group exit
94 		 * then notify it:
95 		 */
96 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
97 			wake_up_process(sig->group_exit_task);
98 			sig->group_exit_task = NULL;
99 		}
100 		if (tsk == sig->curr_target)
101 			sig->curr_target = next_thread(tsk);
102 		/*
103 		 * Accumulate here the counters for all threads but the
104 		 * group leader as they die, so they can be added into
105 		 * the process-wide totals when those are taken.
106 		 * The group leader stays around as a zombie as long
107 		 * as there are other threads.  When it gets reaped,
108 		 * the exit.c code will add its counts into these totals.
109 		 * We won't ever get here for the group leader, since it
110 		 * will have been the last reference on the signal_struct.
111 		 */
112 		sig->utime = cputime_add(sig->utime, tsk->utime);
113 		sig->stime = cputime_add(sig->stime, tsk->stime);
114 		sig->min_flt += tsk->min_flt;
115 		sig->maj_flt += tsk->maj_flt;
116 		sig->nvcsw += tsk->nvcsw;
117 		sig->nivcsw += tsk->nivcsw;
118 		sig->inblock += task_io_get_inblock(tsk);
119 		sig->oublock += task_io_get_oublock(tsk);
120 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
121 		sig = NULL; /* Marker for below. */
122 	}
123 
124 	__unhash_process(tsk);
125 
126 	tsk->signal = NULL;
127 	tsk->sighand = NULL;
128 	spin_unlock(&sighand->siglock);
129 	rcu_read_unlock();
130 
131 	__cleanup_sighand(sighand);
132 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
133 	flush_sigqueue(&tsk->pending);
134 	if (sig) {
135 		flush_sigqueue(&sig->shared_pending);
136 		taskstats_tgid_free(sig);
137 		__cleanup_signal(sig);
138 	}
139 }
140 
141 static void delayed_put_task_struct(struct rcu_head *rhp)
142 {
143 	put_task_struct(container_of(rhp, struct task_struct, rcu));
144 }
145 
146 void release_task(struct task_struct * p)
147 {
148 	struct task_struct *leader;
149 	int zap_leader;
150 repeat:
151 	atomic_dec(&p->user->processes);
152 	write_lock_irq(&tasklist_lock);
153 	ptrace_unlink(p);
154 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
155 	__exit_signal(p);
156 
157 	/*
158 	 * If we are the last non-leader member of the thread
159 	 * group, and the leader is zombie, then notify the
160 	 * group leader's parent process. (if it wants notification.)
161 	 */
162 	zap_leader = 0;
163 	leader = p->group_leader;
164 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
165 		BUG_ON(leader->exit_signal == -1);
166 		do_notify_parent(leader, leader->exit_signal);
167 		/*
168 		 * If we were the last child thread and the leader has
169 		 * exited already, and the leader's parent ignores SIGCHLD,
170 		 * then we are the one who should release the leader.
171 		 *
172 		 * do_notify_parent() will have marked it self-reaping in
173 		 * that case.
174 		 */
175 		zap_leader = (leader->exit_signal == -1);
176 	}
177 
178 	write_unlock_irq(&tasklist_lock);
179 	proc_flush_task(p);
180 	release_thread(p);
181 	call_rcu(&p->rcu, delayed_put_task_struct);
182 
183 	p = leader;
184 	if (unlikely(zap_leader))
185 		goto repeat;
186 }
187 
188 /*
189  * This checks not only the pgrp, but falls back on the pid if no
190  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
191  * without this...
192  *
193  * The caller must hold rcu lock or the tasklist lock.
194  */
195 struct pid *session_of_pgrp(struct pid *pgrp)
196 {
197 	struct task_struct *p;
198 	struct pid *sid = NULL;
199 
200 	p = pid_task(pgrp, PIDTYPE_PGID);
201 	if (p == NULL)
202 		p = pid_task(pgrp, PIDTYPE_PID);
203 	if (p != NULL)
204 		sid = task_session(p);
205 
206 	return sid;
207 }
208 
209 /*
210  * Determine if a process group is "orphaned", according to the POSIX
211  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
212  * by terminal-generated stop signals.  Newly orphaned process groups are
213  * to receive a SIGHUP and a SIGCONT.
214  *
215  * "I ask you, have you ever known what it is to be an orphan?"
216  */
217 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
218 {
219 	struct task_struct *p;
220 	int ret = 1;
221 
222 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
223 		if (p == ignored_task
224 				|| p->exit_state
225 				|| is_init(p->real_parent))
226 			continue;
227 		if (task_pgrp(p->real_parent) != pgrp &&
228 		    task_session(p->real_parent) == task_session(p)) {
229 			ret = 0;
230 			break;
231 		}
232 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
233 	return ret;	/* (sighing) "Often!" */
234 }
235 
236 int is_current_pgrp_orphaned(void)
237 {
238 	int retval;
239 
240 	read_lock(&tasklist_lock);
241 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
242 	read_unlock(&tasklist_lock);
243 
244 	return retval;
245 }
246 
247 static int has_stopped_jobs(struct pid *pgrp)
248 {
249 	int retval = 0;
250 	struct task_struct *p;
251 
252 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 		if (p->state != TASK_STOPPED)
254 			continue;
255 		retval = 1;
256 		break;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 	return retval;
259 }
260 
261 /**
262  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
263  *
264  * If a kernel thread is launched as a result of a system call, or if
265  * it ever exits, it should generally reparent itself to kthreadd so it
266  * isn't in the way of other processes and is correctly cleaned up on exit.
267  *
268  * The various task state such as scheduling policy and priority may have
269  * been inherited from a user process, so we reset them to sane values here.
270  *
271  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
272  */
273 static void reparent_to_kthreadd(void)
274 {
275 	write_lock_irq(&tasklist_lock);
276 
277 	ptrace_unlink(current);
278 	/* Reparent to init */
279 	remove_parent(current);
280 	current->real_parent = current->parent = kthreadd_task;
281 	add_parent(current);
282 
283 	/* Set the exit signal to SIGCHLD so we signal init on exit */
284 	current->exit_signal = SIGCHLD;
285 
286 	if (task_nice(current) < 0)
287 		set_user_nice(current, 0);
288 	/* cpus_allowed? */
289 	/* rt_priority? */
290 	/* signals? */
291 	security_task_reparent_to_init(current);
292 	memcpy(current->signal->rlim, init_task.signal->rlim,
293 	       sizeof(current->signal->rlim));
294 	atomic_inc(&(INIT_USER->__count));
295 	write_unlock_irq(&tasklist_lock);
296 	switch_uid(INIT_USER);
297 }
298 
299 void __set_special_pids(pid_t session, pid_t pgrp)
300 {
301 	struct task_struct *curr = current->group_leader;
302 
303 	if (process_session(curr) != session) {
304 		detach_pid(curr, PIDTYPE_SID);
305 		set_signal_session(curr->signal, session);
306 		attach_pid(curr, PIDTYPE_SID, find_pid(session));
307 	}
308 	if (process_group(curr) != pgrp) {
309 		detach_pid(curr, PIDTYPE_PGID);
310 		curr->signal->pgrp = pgrp;
311 		attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
312 	}
313 }
314 
315 static void set_special_pids(pid_t session, pid_t pgrp)
316 {
317 	write_lock_irq(&tasklist_lock);
318 	__set_special_pids(session, pgrp);
319 	write_unlock_irq(&tasklist_lock);
320 }
321 
322 /*
323  * Let kernel threads use this to say that they
324  * allow a certain signal (since daemonize() will
325  * have disabled all of them by default).
326  */
327 int allow_signal(int sig)
328 {
329 	if (!valid_signal(sig) || sig < 1)
330 		return -EINVAL;
331 
332 	spin_lock_irq(&current->sighand->siglock);
333 	sigdelset(&current->blocked, sig);
334 	if (!current->mm) {
335 		/* Kernel threads handle their own signals.
336 		   Let the signal code know it'll be handled, so
337 		   that they don't get converted to SIGKILL or
338 		   just silently dropped */
339 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
340 	}
341 	recalc_sigpending();
342 	spin_unlock_irq(&current->sighand->siglock);
343 	return 0;
344 }
345 
346 EXPORT_SYMBOL(allow_signal);
347 
348 int disallow_signal(int sig)
349 {
350 	if (!valid_signal(sig) || sig < 1)
351 		return -EINVAL;
352 
353 	spin_lock_irq(&current->sighand->siglock);
354 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
355 	recalc_sigpending();
356 	spin_unlock_irq(&current->sighand->siglock);
357 	return 0;
358 }
359 
360 EXPORT_SYMBOL(disallow_signal);
361 
362 /*
363  *	Put all the gunge required to become a kernel thread without
364  *	attached user resources in one place where it belongs.
365  */
366 
367 void daemonize(const char *name, ...)
368 {
369 	va_list args;
370 	struct fs_struct *fs;
371 	sigset_t blocked;
372 
373 	va_start(args, name);
374 	vsnprintf(current->comm, sizeof(current->comm), name, args);
375 	va_end(args);
376 
377 	/*
378 	 * If we were started as result of loading a module, close all of the
379 	 * user space pages.  We don't need them, and if we didn't close them
380 	 * they would be locked into memory.
381 	 */
382 	exit_mm(current);
383 	/*
384 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
385 	 * or suspend transition begins right now.
386 	 */
387 	current->flags |= PF_NOFREEZE;
388 
389 	set_special_pids(1, 1);
390 	proc_clear_tty(current);
391 
392 	/* Block and flush all signals */
393 	sigfillset(&blocked);
394 	sigprocmask(SIG_BLOCK, &blocked, NULL);
395 	flush_signals(current);
396 
397 	/* Become as one with the init task */
398 
399 	exit_fs(current);	/* current->fs->count--; */
400 	fs = init_task.fs;
401 	current->fs = fs;
402 	atomic_inc(&fs->count);
403 
404 	exit_task_namespaces(current);
405 	current->nsproxy = init_task.nsproxy;
406 	get_task_namespaces(current);
407 
408  	exit_files(current);
409 	current->files = init_task.files;
410 	atomic_inc(&current->files->count);
411 
412 	reparent_to_kthreadd();
413 }
414 
415 EXPORT_SYMBOL(daemonize);
416 
417 static void close_files(struct files_struct * files)
418 {
419 	int i, j;
420 	struct fdtable *fdt;
421 
422 	j = 0;
423 
424 	/*
425 	 * It is safe to dereference the fd table without RCU or
426 	 * ->file_lock because this is the last reference to the
427 	 * files structure.
428 	 */
429 	fdt = files_fdtable(files);
430 	for (;;) {
431 		unsigned long set;
432 		i = j * __NFDBITS;
433 		if (i >= fdt->max_fds)
434 			break;
435 		set = fdt->open_fds->fds_bits[j++];
436 		while (set) {
437 			if (set & 1) {
438 				struct file * file = xchg(&fdt->fd[i], NULL);
439 				if (file) {
440 					filp_close(file, files);
441 					cond_resched();
442 				}
443 			}
444 			i++;
445 			set >>= 1;
446 		}
447 	}
448 }
449 
450 struct files_struct *get_files_struct(struct task_struct *task)
451 {
452 	struct files_struct *files;
453 
454 	task_lock(task);
455 	files = task->files;
456 	if (files)
457 		atomic_inc(&files->count);
458 	task_unlock(task);
459 
460 	return files;
461 }
462 
463 void fastcall put_files_struct(struct files_struct *files)
464 {
465 	struct fdtable *fdt;
466 
467 	if (atomic_dec_and_test(&files->count)) {
468 		close_files(files);
469 		/*
470 		 * Free the fd and fdset arrays if we expanded them.
471 		 * If the fdtable was embedded, pass files for freeing
472 		 * at the end of the RCU grace period. Otherwise,
473 		 * you can free files immediately.
474 		 */
475 		fdt = files_fdtable(files);
476 		if (fdt != &files->fdtab)
477 			kmem_cache_free(files_cachep, files);
478 		free_fdtable(fdt);
479 	}
480 }
481 
482 EXPORT_SYMBOL(put_files_struct);
483 
484 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
485 {
486 	struct files_struct *old;
487 
488 	old = tsk->files;
489 	task_lock(tsk);
490 	tsk->files = files;
491 	task_unlock(tsk);
492 	put_files_struct(old);
493 }
494 EXPORT_SYMBOL(reset_files_struct);
495 
496 static inline void __exit_files(struct task_struct *tsk)
497 {
498 	struct files_struct * files = tsk->files;
499 
500 	if (files) {
501 		task_lock(tsk);
502 		tsk->files = NULL;
503 		task_unlock(tsk);
504 		put_files_struct(files);
505 	}
506 }
507 
508 void exit_files(struct task_struct *tsk)
509 {
510 	__exit_files(tsk);
511 }
512 
513 static inline void __put_fs_struct(struct fs_struct *fs)
514 {
515 	/* No need to hold fs->lock if we are killing it */
516 	if (atomic_dec_and_test(&fs->count)) {
517 		dput(fs->root);
518 		mntput(fs->rootmnt);
519 		dput(fs->pwd);
520 		mntput(fs->pwdmnt);
521 		if (fs->altroot) {
522 			dput(fs->altroot);
523 			mntput(fs->altrootmnt);
524 		}
525 		kmem_cache_free(fs_cachep, fs);
526 	}
527 }
528 
529 void put_fs_struct(struct fs_struct *fs)
530 {
531 	__put_fs_struct(fs);
532 }
533 
534 static inline void __exit_fs(struct task_struct *tsk)
535 {
536 	struct fs_struct * fs = tsk->fs;
537 
538 	if (fs) {
539 		task_lock(tsk);
540 		tsk->fs = NULL;
541 		task_unlock(tsk);
542 		__put_fs_struct(fs);
543 	}
544 }
545 
546 void exit_fs(struct task_struct *tsk)
547 {
548 	__exit_fs(tsk);
549 }
550 
551 EXPORT_SYMBOL_GPL(exit_fs);
552 
553 /*
554  * Turn us into a lazy TLB process if we
555  * aren't already..
556  */
557 static void exit_mm(struct task_struct * tsk)
558 {
559 	struct mm_struct *mm = tsk->mm;
560 
561 	mm_release(tsk, mm);
562 	if (!mm)
563 		return;
564 	/*
565 	 * Serialize with any possible pending coredump.
566 	 * We must hold mmap_sem around checking core_waiters
567 	 * and clearing tsk->mm.  The core-inducing thread
568 	 * will increment core_waiters for each thread in the
569 	 * group with ->mm != NULL.
570 	 */
571 	down_read(&mm->mmap_sem);
572 	if (mm->core_waiters) {
573 		up_read(&mm->mmap_sem);
574 		down_write(&mm->mmap_sem);
575 		if (!--mm->core_waiters)
576 			complete(mm->core_startup_done);
577 		up_write(&mm->mmap_sem);
578 
579 		wait_for_completion(&mm->core_done);
580 		down_read(&mm->mmap_sem);
581 	}
582 	atomic_inc(&mm->mm_count);
583 	BUG_ON(mm != tsk->active_mm);
584 	/* more a memory barrier than a real lock */
585 	task_lock(tsk);
586 	tsk->mm = NULL;
587 	up_read(&mm->mmap_sem);
588 	enter_lazy_tlb(mm, current);
589 	/* We don't want this task to be frozen prematurely */
590 	clear_freeze_flag(tsk);
591 	task_unlock(tsk);
592 	mmput(mm);
593 }
594 
595 static inline void
596 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
597 {
598 	/*
599 	 * Make sure we're not reparenting to ourselves and that
600 	 * the parent is not a zombie.
601 	 */
602 	BUG_ON(p == reaper || reaper->exit_state);
603 	p->real_parent = reaper;
604 }
605 
606 static void
607 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
608 {
609 	if (p->pdeath_signal)
610 		/* We already hold the tasklist_lock here.  */
611 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
612 
613 	/* Move the child from its dying parent to the new one.  */
614 	if (unlikely(traced)) {
615 		/* Preserve ptrace links if someone else is tracing this child.  */
616 		list_del_init(&p->ptrace_list);
617 		if (p->parent != p->real_parent)
618 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
619 	} else {
620 		/* If this child is being traced, then we're the one tracing it
621 		 * anyway, so let go of it.
622 		 */
623 		p->ptrace = 0;
624 		remove_parent(p);
625 		p->parent = p->real_parent;
626 		add_parent(p);
627 
628 		if (p->state == TASK_TRACED) {
629 			/*
630 			 * If it was at a trace stop, turn it into
631 			 * a normal stop since it's no longer being
632 			 * traced.
633 			 */
634 			ptrace_untrace(p);
635 		}
636 	}
637 
638 	/* If this is a threaded reparent there is no need to
639 	 * notify anyone anything has happened.
640 	 */
641 	if (p->real_parent->group_leader == father->group_leader)
642 		return;
643 
644 	/* We don't want people slaying init.  */
645 	if (p->exit_signal != -1)
646 		p->exit_signal = SIGCHLD;
647 
648 	/* If we'd notified the old parent about this child's death,
649 	 * also notify the new parent.
650 	 */
651 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
652 	    p->exit_signal != -1 && thread_group_empty(p))
653 		do_notify_parent(p, p->exit_signal);
654 
655 	/*
656 	 * process group orphan check
657 	 * Case ii: Our child is in a different pgrp
658 	 * than we are, and it was the only connection
659 	 * outside, so the child pgrp is now orphaned.
660 	 */
661 	if ((task_pgrp(p) != task_pgrp(father)) &&
662 	    (task_session(p) == task_session(father))) {
663 		struct pid *pgrp = task_pgrp(p);
664 
665 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
666 		    has_stopped_jobs(pgrp)) {
667 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
668 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
669 		}
670 	}
671 }
672 
673 /*
674  * When we die, we re-parent all our children.
675  * Try to give them to another thread in our thread
676  * group, and if no such member exists, give it to
677  * the child reaper process (ie "init") in our pid
678  * space.
679  */
680 static void
681 forget_original_parent(struct task_struct *father, struct list_head *to_release)
682 {
683 	struct task_struct *p, *reaper = father;
684 	struct list_head *_p, *_n;
685 
686 	do {
687 		reaper = next_thread(reaper);
688 		if (reaper == father) {
689 			reaper = child_reaper(father);
690 			break;
691 		}
692 	} while (reaper->exit_state);
693 
694 	/*
695 	 * There are only two places where our children can be:
696 	 *
697 	 * - in our child list
698 	 * - in our ptraced child list
699 	 *
700 	 * Search them and reparent children.
701 	 */
702 	list_for_each_safe(_p, _n, &father->children) {
703 		int ptrace;
704 		p = list_entry(_p, struct task_struct, sibling);
705 
706 		ptrace = p->ptrace;
707 
708 		/* if father isn't the real parent, then ptrace must be enabled */
709 		BUG_ON(father != p->real_parent && !ptrace);
710 
711 		if (father == p->real_parent) {
712 			/* reparent with a reaper, real father it's us */
713 			choose_new_parent(p, reaper);
714 			reparent_thread(p, father, 0);
715 		} else {
716 			/* reparent ptraced task to its real parent */
717 			__ptrace_unlink (p);
718 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
719 			    thread_group_empty(p))
720 				do_notify_parent(p, p->exit_signal);
721 		}
722 
723 		/*
724 		 * if the ptraced child is a zombie with exit_signal == -1
725 		 * we must collect it before we exit, or it will remain
726 		 * zombie forever since we prevented it from self-reap itself
727 		 * while it was being traced by us, to be able to see it in wait4.
728 		 */
729 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
730 			list_add(&p->ptrace_list, to_release);
731 	}
732 	list_for_each_safe(_p, _n, &father->ptrace_children) {
733 		p = list_entry(_p, struct task_struct, ptrace_list);
734 		choose_new_parent(p, reaper);
735 		reparent_thread(p, father, 1);
736 	}
737 }
738 
739 /*
740  * Send signals to all our closest relatives so that they know
741  * to properly mourn us..
742  */
743 static void exit_notify(struct task_struct *tsk)
744 {
745 	int state;
746 	struct task_struct *t;
747 	struct list_head ptrace_dead, *_p, *_n;
748 	struct pid *pgrp;
749 
750 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
751 	    && !thread_group_empty(tsk)) {
752 		/*
753 		 * This occurs when there was a race between our exit
754 		 * syscall and a group signal choosing us as the one to
755 		 * wake up.  It could be that we are the only thread
756 		 * alerted to check for pending signals, but another thread
757 		 * should be woken now to take the signal since we will not.
758 		 * Now we'll wake all the threads in the group just to make
759 		 * sure someone gets all the pending signals.
760 		 */
761 		read_lock(&tasklist_lock);
762 		spin_lock_irq(&tsk->sighand->siglock);
763 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
764 			if (!signal_pending(t) && !(t->flags & PF_EXITING))
765 				recalc_sigpending_and_wake(t);
766 		spin_unlock_irq(&tsk->sighand->siglock);
767 		read_unlock(&tasklist_lock);
768 	}
769 
770 	write_lock_irq(&tasklist_lock);
771 
772 	/*
773 	 * This does two things:
774 	 *
775   	 * A.  Make init inherit all the child processes
776 	 * B.  Check to see if any process groups have become orphaned
777 	 *	as a result of our exiting, and if they have any stopped
778 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
779 	 */
780 
781 	INIT_LIST_HEAD(&ptrace_dead);
782 	forget_original_parent(tsk, &ptrace_dead);
783 	BUG_ON(!list_empty(&tsk->children));
784 	BUG_ON(!list_empty(&tsk->ptrace_children));
785 
786 	/*
787 	 * Check to see if any process groups have become orphaned
788 	 * as a result of our exiting, and if they have any stopped
789 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
790 	 *
791 	 * Case i: Our father is in a different pgrp than we are
792 	 * and we were the only connection outside, so our pgrp
793 	 * is about to become orphaned.
794 	 */
795 
796 	t = tsk->real_parent;
797 
798 	pgrp = task_pgrp(tsk);
799 	if ((task_pgrp(t) != pgrp) &&
800 	    (task_session(t) == task_session(tsk)) &&
801 	    will_become_orphaned_pgrp(pgrp, tsk) &&
802 	    has_stopped_jobs(pgrp)) {
803 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
804 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
805 	}
806 
807 	/* Let father know we died
808 	 *
809 	 * Thread signals are configurable, but you aren't going to use
810 	 * that to send signals to arbitary processes.
811 	 * That stops right now.
812 	 *
813 	 * If the parent exec id doesn't match the exec id we saved
814 	 * when we started then we know the parent has changed security
815 	 * domain.
816 	 *
817 	 * If our self_exec id doesn't match our parent_exec_id then
818 	 * we have changed execution domain as these two values started
819 	 * the same after a fork.
820 	 */
821 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
822 	    ( tsk->parent_exec_id != t->self_exec_id  ||
823 	      tsk->self_exec_id != tsk->parent_exec_id)
824 	    && !capable(CAP_KILL))
825 		tsk->exit_signal = SIGCHLD;
826 
827 
828 	/* If something other than our normal parent is ptracing us, then
829 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
830 	 * only has special meaning to our real parent.
831 	 */
832 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
833 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
834 		do_notify_parent(tsk, signal);
835 	} else if (tsk->ptrace) {
836 		do_notify_parent(tsk, SIGCHLD);
837 	}
838 
839 	state = EXIT_ZOMBIE;
840 	if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
841 		state = EXIT_DEAD;
842 	tsk->exit_state = state;
843 
844 	write_unlock_irq(&tasklist_lock);
845 
846 	list_for_each_safe(_p, _n, &ptrace_dead) {
847 		list_del_init(_p);
848 		t = list_entry(_p, struct task_struct, ptrace_list);
849 		release_task(t);
850 	}
851 
852 	/* If the process is dead, release it - nobody will wait for it */
853 	if (state == EXIT_DEAD)
854 		release_task(tsk);
855 }
856 
857 #ifdef CONFIG_DEBUG_STACK_USAGE
858 static void check_stack_usage(void)
859 {
860 	static DEFINE_SPINLOCK(low_water_lock);
861 	static int lowest_to_date = THREAD_SIZE;
862 	unsigned long *n = end_of_stack(current);
863 	unsigned long free;
864 
865 	while (*n == 0)
866 		n++;
867 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
868 
869 	if (free >= lowest_to_date)
870 		return;
871 
872 	spin_lock(&low_water_lock);
873 	if (free < lowest_to_date) {
874 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
875 				"left\n",
876 				current->comm, free);
877 		lowest_to_date = free;
878 	}
879 	spin_unlock(&low_water_lock);
880 }
881 #else
882 static inline void check_stack_usage(void) {}
883 #endif
884 
885 fastcall NORET_TYPE void do_exit(long code)
886 {
887 	struct task_struct *tsk = current;
888 	int group_dead;
889 
890 	profile_task_exit(tsk);
891 
892 	WARN_ON(atomic_read(&tsk->fs_excl));
893 
894 	if (unlikely(in_interrupt()))
895 		panic("Aiee, killing interrupt handler!");
896 	if (unlikely(!tsk->pid))
897 		panic("Attempted to kill the idle task!");
898 	if (unlikely(tsk == child_reaper(tsk))) {
899 		if (tsk->nsproxy->pid_ns != &init_pid_ns)
900 			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
901 		else
902 			panic("Attempted to kill init!");
903 	}
904 
905 
906 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
907 		current->ptrace_message = code;
908 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
909 	}
910 
911 	/*
912 	 * We're taking recursive faults here in do_exit. Safest is to just
913 	 * leave this task alone and wait for reboot.
914 	 */
915 	if (unlikely(tsk->flags & PF_EXITING)) {
916 		printk(KERN_ALERT
917 			"Fixing recursive fault but reboot is needed!\n");
918 		/*
919 		 * We can do this unlocked here. The futex code uses
920 		 * this flag just to verify whether the pi state
921 		 * cleanup has been done or not. In the worst case it
922 		 * loops once more. We pretend that the cleanup was
923 		 * done as there is no way to return. Either the
924 		 * OWNER_DIED bit is set by now or we push the blocked
925 		 * task into the wait for ever nirwana as well.
926 		 */
927 		tsk->flags |= PF_EXITPIDONE;
928 		if (tsk->io_context)
929 			exit_io_context();
930 		set_current_state(TASK_UNINTERRUPTIBLE);
931 		schedule();
932 	}
933 
934 	/*
935 	 * tsk->flags are checked in the futex code to protect against
936 	 * an exiting task cleaning up the robust pi futexes.
937 	 */
938 	spin_lock_irq(&tsk->pi_lock);
939 	tsk->flags |= PF_EXITING;
940 	spin_unlock_irq(&tsk->pi_lock);
941 
942 	if (unlikely(in_atomic()))
943 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
944 				current->comm, current->pid,
945 				preempt_count());
946 
947 	acct_update_integrals(tsk);
948 	if (tsk->mm) {
949 		update_hiwater_rss(tsk->mm);
950 		update_hiwater_vm(tsk->mm);
951 	}
952 	group_dead = atomic_dec_and_test(&tsk->signal->live);
953 	if (group_dead) {
954 		hrtimer_cancel(&tsk->signal->real_timer);
955 		exit_itimers(tsk->signal);
956 	}
957 	acct_collect(code, group_dead);
958 	if (unlikely(tsk->robust_list))
959 		exit_robust_list(tsk);
960 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
961 	if (unlikely(tsk->compat_robust_list))
962 		compat_exit_robust_list(tsk);
963 #endif
964 	if (group_dead)
965 		tty_audit_exit();
966 	if (unlikely(tsk->audit_context))
967 		audit_free(tsk);
968 
969 	tsk->exit_code = code;
970 	taskstats_exit(tsk, group_dead);
971 
972 	exit_mm(tsk);
973 
974 	if (group_dead)
975 		acct_process();
976 	exit_sem(tsk);
977 	__exit_files(tsk);
978 	__exit_fs(tsk);
979 	check_stack_usage();
980 	exit_thread();
981 	cpuset_exit(tsk);
982 	exit_keys(tsk);
983 
984 	if (group_dead && tsk->signal->leader)
985 		disassociate_ctty(1);
986 
987 	module_put(task_thread_info(tsk)->exec_domain->module);
988 	if (tsk->binfmt)
989 		module_put(tsk->binfmt->module);
990 
991 	proc_exit_connector(tsk);
992 	exit_task_namespaces(tsk);
993 	exit_notify(tsk);
994 #ifdef CONFIG_NUMA
995 	mpol_free(tsk->mempolicy);
996 	tsk->mempolicy = NULL;
997 #endif
998 	/*
999 	 * This must happen late, after the PID is not
1000 	 * hashed anymore:
1001 	 */
1002 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1003 		exit_pi_state_list(tsk);
1004 	if (unlikely(current->pi_state_cache))
1005 		kfree(current->pi_state_cache);
1006 	/*
1007 	 * Make sure we are holding no locks:
1008 	 */
1009 	debug_check_no_locks_held(tsk);
1010 	/*
1011 	 * We can do this unlocked here. The futex code uses this flag
1012 	 * just to verify whether the pi state cleanup has been done
1013 	 * or not. In the worst case it loops once more.
1014 	 */
1015 	tsk->flags |= PF_EXITPIDONE;
1016 
1017 	if (tsk->io_context)
1018 		exit_io_context();
1019 
1020 	if (tsk->splice_pipe)
1021 		__free_pipe_info(tsk->splice_pipe);
1022 
1023 	preempt_disable();
1024 	/* causes final put_task_struct in finish_task_switch(). */
1025 	tsk->state = TASK_DEAD;
1026 
1027 	schedule();
1028 	BUG();
1029 	/* Avoid "noreturn function does return".  */
1030 	for (;;)
1031 		cpu_relax();	/* For when BUG is null */
1032 }
1033 
1034 EXPORT_SYMBOL_GPL(do_exit);
1035 
1036 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1037 {
1038 	if (comp)
1039 		complete(comp);
1040 
1041 	do_exit(code);
1042 }
1043 
1044 EXPORT_SYMBOL(complete_and_exit);
1045 
1046 asmlinkage long sys_exit(int error_code)
1047 {
1048 	do_exit((error_code&0xff)<<8);
1049 }
1050 
1051 /*
1052  * Take down every thread in the group.  This is called by fatal signals
1053  * as well as by sys_exit_group (below).
1054  */
1055 NORET_TYPE void
1056 do_group_exit(int exit_code)
1057 {
1058 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1059 
1060 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1061 		exit_code = current->signal->group_exit_code;
1062 	else if (!thread_group_empty(current)) {
1063 		struct signal_struct *const sig = current->signal;
1064 		struct sighand_struct *const sighand = current->sighand;
1065 		spin_lock_irq(&sighand->siglock);
1066 		if (sig->flags & SIGNAL_GROUP_EXIT)
1067 			/* Another thread got here before we took the lock.  */
1068 			exit_code = sig->group_exit_code;
1069 		else {
1070 			sig->group_exit_code = exit_code;
1071 			zap_other_threads(current);
1072 		}
1073 		spin_unlock_irq(&sighand->siglock);
1074 	}
1075 
1076 	do_exit(exit_code);
1077 	/* NOTREACHED */
1078 }
1079 
1080 /*
1081  * this kills every thread in the thread group. Note that any externally
1082  * wait4()-ing process will get the correct exit code - even if this
1083  * thread is not the thread group leader.
1084  */
1085 asmlinkage void sys_exit_group(int error_code)
1086 {
1087 	do_group_exit((error_code & 0xff) << 8);
1088 }
1089 
1090 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1091 {
1092 	int err;
1093 
1094 	if (pid > 0) {
1095 		if (p->pid != pid)
1096 			return 0;
1097 	} else if (!pid) {
1098 		if (process_group(p) != process_group(current))
1099 			return 0;
1100 	} else if (pid != -1) {
1101 		if (process_group(p) != -pid)
1102 			return 0;
1103 	}
1104 
1105 	/*
1106 	 * Do not consider detached threads that are
1107 	 * not ptraced:
1108 	 */
1109 	if (p->exit_signal == -1 && !p->ptrace)
1110 		return 0;
1111 
1112 	/* Wait for all children (clone and not) if __WALL is set;
1113 	 * otherwise, wait for clone children *only* if __WCLONE is
1114 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1115 	 * A "clone" child here is one that reports to its parent
1116 	 * using a signal other than SIGCHLD.) */
1117 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1118 	    && !(options & __WALL))
1119 		return 0;
1120 	/*
1121 	 * Do not consider thread group leaders that are
1122 	 * in a non-empty thread group:
1123 	 */
1124 	if (delay_group_leader(p))
1125 		return 2;
1126 
1127 	err = security_task_wait(p);
1128 	if (err)
1129 		return err;
1130 
1131 	return 1;
1132 }
1133 
1134 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1135 			       int why, int status,
1136 			       struct siginfo __user *infop,
1137 			       struct rusage __user *rusagep)
1138 {
1139 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1140 
1141 	put_task_struct(p);
1142 	if (!retval)
1143 		retval = put_user(SIGCHLD, &infop->si_signo);
1144 	if (!retval)
1145 		retval = put_user(0, &infop->si_errno);
1146 	if (!retval)
1147 		retval = put_user((short)why, &infop->si_code);
1148 	if (!retval)
1149 		retval = put_user(pid, &infop->si_pid);
1150 	if (!retval)
1151 		retval = put_user(uid, &infop->si_uid);
1152 	if (!retval)
1153 		retval = put_user(status, &infop->si_status);
1154 	if (!retval)
1155 		retval = pid;
1156 	return retval;
1157 }
1158 
1159 /*
1160  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1161  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1162  * the lock and this task is uninteresting.  If we return nonzero, we have
1163  * released the lock and the system call should return.
1164  */
1165 static int wait_task_zombie(struct task_struct *p, int noreap,
1166 			    struct siginfo __user *infop,
1167 			    int __user *stat_addr, struct rusage __user *ru)
1168 {
1169 	unsigned long state;
1170 	int retval;
1171 	int status;
1172 
1173 	if (unlikely(noreap)) {
1174 		pid_t pid = p->pid;
1175 		uid_t uid = p->uid;
1176 		int exit_code = p->exit_code;
1177 		int why, status;
1178 
1179 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1180 			return 0;
1181 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1182 			return 0;
1183 		get_task_struct(p);
1184 		read_unlock(&tasklist_lock);
1185 		if ((exit_code & 0x7f) == 0) {
1186 			why = CLD_EXITED;
1187 			status = exit_code >> 8;
1188 		} else {
1189 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1190 			status = exit_code & 0x7f;
1191 		}
1192 		return wait_noreap_copyout(p, pid, uid, why,
1193 					   status, infop, ru);
1194 	}
1195 
1196 	/*
1197 	 * Try to move the task's state to DEAD
1198 	 * only one thread is allowed to do this:
1199 	 */
1200 	state = xchg(&p->exit_state, EXIT_DEAD);
1201 	if (state != EXIT_ZOMBIE) {
1202 		BUG_ON(state != EXIT_DEAD);
1203 		return 0;
1204 	}
1205 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1206 		/*
1207 		 * This can only happen in a race with a ptraced thread
1208 		 * dying on another processor.
1209 		 */
1210 		return 0;
1211 	}
1212 
1213 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1214 		struct signal_struct *psig;
1215 		struct signal_struct *sig;
1216 
1217 		/*
1218 		 * The resource counters for the group leader are in its
1219 		 * own task_struct.  Those for dead threads in the group
1220 		 * are in its signal_struct, as are those for the child
1221 		 * processes it has previously reaped.  All these
1222 		 * accumulate in the parent's signal_struct c* fields.
1223 		 *
1224 		 * We don't bother to take a lock here to protect these
1225 		 * p->signal fields, because they are only touched by
1226 		 * __exit_signal, which runs with tasklist_lock
1227 		 * write-locked anyway, and so is excluded here.  We do
1228 		 * need to protect the access to p->parent->signal fields,
1229 		 * as other threads in the parent group can be right
1230 		 * here reaping other children at the same time.
1231 		 */
1232 		spin_lock_irq(&p->parent->sighand->siglock);
1233 		psig = p->parent->signal;
1234 		sig = p->signal;
1235 		psig->cutime =
1236 			cputime_add(psig->cutime,
1237 			cputime_add(p->utime,
1238 			cputime_add(sig->utime,
1239 				    sig->cutime)));
1240 		psig->cstime =
1241 			cputime_add(psig->cstime,
1242 			cputime_add(p->stime,
1243 			cputime_add(sig->stime,
1244 				    sig->cstime)));
1245 		psig->cmin_flt +=
1246 			p->min_flt + sig->min_flt + sig->cmin_flt;
1247 		psig->cmaj_flt +=
1248 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1249 		psig->cnvcsw +=
1250 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1251 		psig->cnivcsw +=
1252 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1253 		psig->cinblock +=
1254 			task_io_get_inblock(p) +
1255 			sig->inblock + sig->cinblock;
1256 		psig->coublock +=
1257 			task_io_get_oublock(p) +
1258 			sig->oublock + sig->coublock;
1259 		spin_unlock_irq(&p->parent->sighand->siglock);
1260 	}
1261 
1262 	/*
1263 	 * Now we are sure this task is interesting, and no other
1264 	 * thread can reap it because we set its state to EXIT_DEAD.
1265 	 */
1266 	read_unlock(&tasklist_lock);
1267 
1268 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1269 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1270 		? p->signal->group_exit_code : p->exit_code;
1271 	if (!retval && stat_addr)
1272 		retval = put_user(status, stat_addr);
1273 	if (!retval && infop)
1274 		retval = put_user(SIGCHLD, &infop->si_signo);
1275 	if (!retval && infop)
1276 		retval = put_user(0, &infop->si_errno);
1277 	if (!retval && infop) {
1278 		int why;
1279 
1280 		if ((status & 0x7f) == 0) {
1281 			why = CLD_EXITED;
1282 			status >>= 8;
1283 		} else {
1284 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1285 			status &= 0x7f;
1286 		}
1287 		retval = put_user((short)why, &infop->si_code);
1288 		if (!retval)
1289 			retval = put_user(status, &infop->si_status);
1290 	}
1291 	if (!retval && infop)
1292 		retval = put_user(p->pid, &infop->si_pid);
1293 	if (!retval && infop)
1294 		retval = put_user(p->uid, &infop->si_uid);
1295 	if (retval) {
1296 		// TODO: is this safe?
1297 		p->exit_state = EXIT_ZOMBIE;
1298 		return retval;
1299 	}
1300 	retval = p->pid;
1301 	if (p->real_parent != p->parent) {
1302 		write_lock_irq(&tasklist_lock);
1303 		/* Double-check with lock held.  */
1304 		if (p->real_parent != p->parent) {
1305 			__ptrace_unlink(p);
1306 			// TODO: is this safe?
1307 			p->exit_state = EXIT_ZOMBIE;
1308 			/*
1309 			 * If this is not a detached task, notify the parent.
1310 			 * If it's still not detached after that, don't release
1311 			 * it now.
1312 			 */
1313 			if (p->exit_signal != -1) {
1314 				do_notify_parent(p, p->exit_signal);
1315 				if (p->exit_signal != -1)
1316 					p = NULL;
1317 			}
1318 		}
1319 		write_unlock_irq(&tasklist_lock);
1320 	}
1321 	if (p != NULL)
1322 		release_task(p);
1323 	BUG_ON(!retval);
1324 	return retval;
1325 }
1326 
1327 /*
1328  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1329  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1330  * the lock and this task is uninteresting.  If we return nonzero, we have
1331  * released the lock and the system call should return.
1332  */
1333 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1334 			     int noreap, struct siginfo __user *infop,
1335 			     int __user *stat_addr, struct rusage __user *ru)
1336 {
1337 	int retval, exit_code;
1338 
1339 	if (!p->exit_code)
1340 		return 0;
1341 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1342 	    p->signal && p->signal->group_stop_count > 0)
1343 		/*
1344 		 * A group stop is in progress and this is the group leader.
1345 		 * We won't report until all threads have stopped.
1346 		 */
1347 		return 0;
1348 
1349 	/*
1350 	 * Now we are pretty sure this task is interesting.
1351 	 * Make sure it doesn't get reaped out from under us while we
1352 	 * give up the lock and then examine it below.  We don't want to
1353 	 * keep holding onto the tasklist_lock while we call getrusage and
1354 	 * possibly take page faults for user memory.
1355 	 */
1356 	get_task_struct(p);
1357 	read_unlock(&tasklist_lock);
1358 
1359 	if (unlikely(noreap)) {
1360 		pid_t pid = p->pid;
1361 		uid_t uid = p->uid;
1362 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1363 
1364 		exit_code = p->exit_code;
1365 		if (unlikely(!exit_code) ||
1366 		    unlikely(p->state & TASK_TRACED))
1367 			goto bail_ref;
1368 		return wait_noreap_copyout(p, pid, uid,
1369 					   why, (exit_code << 8) | 0x7f,
1370 					   infop, ru);
1371 	}
1372 
1373 	write_lock_irq(&tasklist_lock);
1374 
1375 	/*
1376 	 * This uses xchg to be atomic with the thread resuming and setting
1377 	 * it.  It must also be done with the write lock held to prevent a
1378 	 * race with the EXIT_ZOMBIE case.
1379 	 */
1380 	exit_code = xchg(&p->exit_code, 0);
1381 	if (unlikely(p->exit_state)) {
1382 		/*
1383 		 * The task resumed and then died.  Let the next iteration
1384 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1385 		 * already be zero here if it resumed and did _exit(0).
1386 		 * The task itself is dead and won't touch exit_code again;
1387 		 * other processors in this function are locked out.
1388 		 */
1389 		p->exit_code = exit_code;
1390 		exit_code = 0;
1391 	}
1392 	if (unlikely(exit_code == 0)) {
1393 		/*
1394 		 * Another thread in this function got to it first, or it
1395 		 * resumed, or it resumed and then died.
1396 		 */
1397 		write_unlock_irq(&tasklist_lock);
1398 bail_ref:
1399 		put_task_struct(p);
1400 		/*
1401 		 * We are returning to the wait loop without having successfully
1402 		 * removed the process and having released the lock. We cannot
1403 		 * continue, since the "p" task pointer is potentially stale.
1404 		 *
1405 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1406 		 * beginning. Do _not_ re-acquire the lock.
1407 		 */
1408 		return -EAGAIN;
1409 	}
1410 
1411 	/* move to end of parent's list to avoid starvation */
1412 	remove_parent(p);
1413 	add_parent(p);
1414 
1415 	write_unlock_irq(&tasklist_lock);
1416 
1417 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1418 	if (!retval && stat_addr)
1419 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1420 	if (!retval && infop)
1421 		retval = put_user(SIGCHLD, &infop->si_signo);
1422 	if (!retval && infop)
1423 		retval = put_user(0, &infop->si_errno);
1424 	if (!retval && infop)
1425 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1426 					  ? CLD_TRAPPED : CLD_STOPPED),
1427 				  &infop->si_code);
1428 	if (!retval && infop)
1429 		retval = put_user(exit_code, &infop->si_status);
1430 	if (!retval && infop)
1431 		retval = put_user(p->pid, &infop->si_pid);
1432 	if (!retval && infop)
1433 		retval = put_user(p->uid, &infop->si_uid);
1434 	if (!retval)
1435 		retval = p->pid;
1436 	put_task_struct(p);
1437 
1438 	BUG_ON(!retval);
1439 	return retval;
1440 }
1441 
1442 /*
1443  * Handle do_wait work for one task in a live, non-stopped state.
1444  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1445  * the lock and this task is uninteresting.  If we return nonzero, we have
1446  * released the lock and the system call should return.
1447  */
1448 static int wait_task_continued(struct task_struct *p, int noreap,
1449 			       struct siginfo __user *infop,
1450 			       int __user *stat_addr, struct rusage __user *ru)
1451 {
1452 	int retval;
1453 	pid_t pid;
1454 	uid_t uid;
1455 
1456 	if (unlikely(!p->signal))
1457 		return 0;
1458 
1459 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1460 		return 0;
1461 
1462 	spin_lock_irq(&p->sighand->siglock);
1463 	/* Re-check with the lock held.  */
1464 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1465 		spin_unlock_irq(&p->sighand->siglock);
1466 		return 0;
1467 	}
1468 	if (!noreap)
1469 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1470 	spin_unlock_irq(&p->sighand->siglock);
1471 
1472 	pid = p->pid;
1473 	uid = p->uid;
1474 	get_task_struct(p);
1475 	read_unlock(&tasklist_lock);
1476 
1477 	if (!infop) {
1478 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1479 		put_task_struct(p);
1480 		if (!retval && stat_addr)
1481 			retval = put_user(0xffff, stat_addr);
1482 		if (!retval)
1483 			retval = p->pid;
1484 	} else {
1485 		retval = wait_noreap_copyout(p, pid, uid,
1486 					     CLD_CONTINUED, SIGCONT,
1487 					     infop, ru);
1488 		BUG_ON(retval == 0);
1489 	}
1490 
1491 	return retval;
1492 }
1493 
1494 
1495 static inline int my_ptrace_child(struct task_struct *p)
1496 {
1497 	if (!(p->ptrace & PT_PTRACED))
1498 		return 0;
1499 	if (!(p->ptrace & PT_ATTACHED))
1500 		return 1;
1501 	/*
1502 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1503 	 * we are the attacher.  If we are the real parent, this is a race
1504 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1505 	 * which we have to switch the parent links, but has already set
1506 	 * the flags in p->ptrace.
1507 	 */
1508 	return (p->parent != p->real_parent);
1509 }
1510 
1511 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1512 		    int __user *stat_addr, struct rusage __user *ru)
1513 {
1514 	DECLARE_WAITQUEUE(wait, current);
1515 	struct task_struct *tsk;
1516 	int flag, retval;
1517 	int allowed, denied;
1518 
1519 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1520 repeat:
1521 	/*
1522 	 * We will set this flag if we see any child that might later
1523 	 * match our criteria, even if we are not able to reap it yet.
1524 	 */
1525 	flag = 0;
1526 	allowed = denied = 0;
1527 	current->state = TASK_INTERRUPTIBLE;
1528 	read_lock(&tasklist_lock);
1529 	tsk = current;
1530 	do {
1531 		struct task_struct *p;
1532 		struct list_head *_p;
1533 		int ret;
1534 
1535 		list_for_each(_p,&tsk->children) {
1536 			p = list_entry(_p, struct task_struct, sibling);
1537 
1538 			ret = eligible_child(pid, options, p);
1539 			if (!ret)
1540 				continue;
1541 
1542 			if (unlikely(ret < 0)) {
1543 				denied = ret;
1544 				continue;
1545 			}
1546 			allowed = 1;
1547 
1548 			switch (p->state) {
1549 			case TASK_TRACED:
1550 				/*
1551 				 * When we hit the race with PTRACE_ATTACH,
1552 				 * we will not report this child.  But the
1553 				 * race means it has not yet been moved to
1554 				 * our ptrace_children list, so we need to
1555 				 * set the flag here to avoid a spurious ECHILD
1556 				 * when the race happens with the only child.
1557 				 */
1558 				flag = 1;
1559 				if (!my_ptrace_child(p))
1560 					continue;
1561 				/*FALLTHROUGH*/
1562 			case TASK_STOPPED:
1563 				/*
1564 				 * It's stopped now, so it might later
1565 				 * continue, exit, or stop again.
1566 				 */
1567 				flag = 1;
1568 				if (!(options & WUNTRACED) &&
1569 				    !my_ptrace_child(p))
1570 					continue;
1571 				retval = wait_task_stopped(p, ret == 2,
1572 							   (options & WNOWAIT),
1573 							   infop,
1574 							   stat_addr, ru);
1575 				if (retval == -EAGAIN)
1576 					goto repeat;
1577 				if (retval != 0) /* He released the lock.  */
1578 					goto end;
1579 				break;
1580 			default:
1581 			// case EXIT_DEAD:
1582 				if (p->exit_state == EXIT_DEAD)
1583 					continue;
1584 			// case EXIT_ZOMBIE:
1585 				if (p->exit_state == EXIT_ZOMBIE) {
1586 					/*
1587 					 * Eligible but we cannot release
1588 					 * it yet:
1589 					 */
1590 					if (ret == 2)
1591 						goto check_continued;
1592 					if (!likely(options & WEXITED))
1593 						continue;
1594 					retval = wait_task_zombie(
1595 						p, (options & WNOWAIT),
1596 						infop, stat_addr, ru);
1597 					/* He released the lock.  */
1598 					if (retval != 0)
1599 						goto end;
1600 					break;
1601 				}
1602 check_continued:
1603 				/*
1604 				 * It's running now, so it might later
1605 				 * exit, stop, or stop and then continue.
1606 				 */
1607 				flag = 1;
1608 				if (!unlikely(options & WCONTINUED))
1609 					continue;
1610 				retval = wait_task_continued(
1611 					p, (options & WNOWAIT),
1612 					infop, stat_addr, ru);
1613 				if (retval != 0) /* He released the lock.  */
1614 					goto end;
1615 				break;
1616 			}
1617 		}
1618 		if (!flag) {
1619 			list_for_each(_p, &tsk->ptrace_children) {
1620 				p = list_entry(_p, struct task_struct,
1621 						ptrace_list);
1622 				if (!eligible_child(pid, options, p))
1623 					continue;
1624 				flag = 1;
1625 				break;
1626 			}
1627 		}
1628 		if (options & __WNOTHREAD)
1629 			break;
1630 		tsk = next_thread(tsk);
1631 		BUG_ON(tsk->signal != current->signal);
1632 	} while (tsk != current);
1633 
1634 	read_unlock(&tasklist_lock);
1635 	if (flag) {
1636 		retval = 0;
1637 		if (options & WNOHANG)
1638 			goto end;
1639 		retval = -ERESTARTSYS;
1640 		if (signal_pending(current))
1641 			goto end;
1642 		schedule();
1643 		goto repeat;
1644 	}
1645 	retval = -ECHILD;
1646 	if (unlikely(denied) && !allowed)
1647 		retval = denied;
1648 end:
1649 	current->state = TASK_RUNNING;
1650 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1651 	if (infop) {
1652 		if (retval > 0)
1653 		retval = 0;
1654 		else {
1655 			/*
1656 			 * For a WNOHANG return, clear out all the fields
1657 			 * we would set so the user can easily tell the
1658 			 * difference.
1659 			 */
1660 			if (!retval)
1661 				retval = put_user(0, &infop->si_signo);
1662 			if (!retval)
1663 				retval = put_user(0, &infop->si_errno);
1664 			if (!retval)
1665 				retval = put_user(0, &infop->si_code);
1666 			if (!retval)
1667 				retval = put_user(0, &infop->si_pid);
1668 			if (!retval)
1669 				retval = put_user(0, &infop->si_uid);
1670 			if (!retval)
1671 				retval = put_user(0, &infop->si_status);
1672 		}
1673 	}
1674 	return retval;
1675 }
1676 
1677 asmlinkage long sys_waitid(int which, pid_t pid,
1678 			   struct siginfo __user *infop, int options,
1679 			   struct rusage __user *ru)
1680 {
1681 	long ret;
1682 
1683 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1684 		return -EINVAL;
1685 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1686 		return -EINVAL;
1687 
1688 	switch (which) {
1689 	case P_ALL:
1690 		pid = -1;
1691 		break;
1692 	case P_PID:
1693 		if (pid <= 0)
1694 			return -EINVAL;
1695 		break;
1696 	case P_PGID:
1697 		if (pid <= 0)
1698 			return -EINVAL;
1699 		pid = -pid;
1700 		break;
1701 	default:
1702 		return -EINVAL;
1703 	}
1704 
1705 	ret = do_wait(pid, options, infop, NULL, ru);
1706 
1707 	/* avoid REGPARM breakage on x86: */
1708 	prevent_tail_call(ret);
1709 	return ret;
1710 }
1711 
1712 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1713 			  int options, struct rusage __user *ru)
1714 {
1715 	long ret;
1716 
1717 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1718 			__WNOTHREAD|__WCLONE|__WALL))
1719 		return -EINVAL;
1720 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1721 
1722 	/* avoid REGPARM breakage on x86: */
1723 	prevent_tail_call(ret);
1724 	return ret;
1725 }
1726 
1727 #ifdef __ARCH_WANT_SYS_WAITPID
1728 
1729 /*
1730  * sys_waitpid() remains for compatibility. waitpid() should be
1731  * implemented by calling sys_wait4() from libc.a.
1732  */
1733 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1734 {
1735 	return sys_wait4(pid, stat_addr, options, NULL);
1736 }
1737 
1738 #endif
1739