xref: /linux/kernel/events/core.c (revision cc622420798c4bcf093785d872525087a7798db9)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 typedef int (*remote_function_f)(void *);
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	remote_function_f	func;
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		/* -EAGAIN */
68 		if (task_cpu(p) != smp_processor_id())
69 			return;
70 
71 		/*
72 		 * Now that we're on right CPU with IRQs disabled, we can test
73 		 * if we hit the right task without races.
74 		 */
75 
76 		tfc->ret = -ESRCH; /* No such (running) process */
77 		if (p != current)
78 			return;
79 	}
80 
81 	tfc->ret = tfc->func(tfc->info);
82 }
83 
84 /**
85  * task_function_call - call a function on the cpu on which a task runs
86  * @p:		the task to evaluate
87  * @func:	the function to be called
88  * @info:	the function call argument
89  *
90  * Calls the function @func when the task is currently running. This might
91  * be on the current CPU, which just calls the function directly
92  *
93  * returns: @func return value, or
94  *	    -ESRCH  - when the process isn't running
95  *	    -EAGAIN - when the process moved away
96  */
97 static int
98 task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 {
100 	struct remote_function_call data = {
101 		.p	= p,
102 		.func	= func,
103 		.info	= info,
104 		.ret	= -EAGAIN,
105 	};
106 	int ret;
107 
108 	do {
109 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 		if (!ret)
111 			ret = data.ret;
112 	} while (ret == -EAGAIN);
113 
114 	return ret;
115 }
116 
117 /**
118  * cpu_function_call - call a function on the cpu
119  * @func:	the function to be called
120  * @info:	the function call argument
121  *
122  * Calls the function @func on the remote cpu.
123  *
124  * returns: @func return value or -ENXIO when the cpu is offline
125  */
126 static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 {
128 	struct remote_function_call data = {
129 		.p	= NULL,
130 		.func	= func,
131 		.info	= info,
132 		.ret	= -ENXIO, /* No such CPU */
133 	};
134 
135 	smp_call_function_single(cpu, remote_function, &data, 1);
136 
137 	return data.ret;
138 }
139 
140 static inline struct perf_cpu_context *
141 __get_cpu_context(struct perf_event_context *ctx)
142 {
143 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144 }
145 
146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 			  struct perf_event_context *ctx)
148 {
149 	raw_spin_lock(&cpuctx->ctx.lock);
150 	if (ctx)
151 		raw_spin_lock(&ctx->lock);
152 }
153 
154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 			    struct perf_event_context *ctx)
156 {
157 	if (ctx)
158 		raw_spin_unlock(&ctx->lock);
159 	raw_spin_unlock(&cpuctx->ctx.lock);
160 }
161 
162 #define TASK_TOMBSTONE ((void *)-1L)
163 
164 static bool is_kernel_event(struct perf_event *event)
165 {
166 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 }
168 
169 /*
170  * On task ctx scheduling...
171  *
172  * When !ctx->nr_events a task context will not be scheduled. This means
173  * we can disable the scheduler hooks (for performance) without leaving
174  * pending task ctx state.
175  *
176  * This however results in two special cases:
177  *
178  *  - removing the last event from a task ctx; this is relatively straight
179  *    forward and is done in __perf_remove_from_context.
180  *
181  *  - adding the first event to a task ctx; this is tricky because we cannot
182  *    rely on ctx->is_active and therefore cannot use event_function_call().
183  *    See perf_install_in_context().
184  *
185  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186  */
187 
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 			struct perf_event_context *, void *);
190 
191 struct event_function_struct {
192 	struct perf_event *event;
193 	event_f func;
194 	void *data;
195 };
196 
197 static int event_function(void *info)
198 {
199 	struct event_function_struct *efs = info;
200 	struct perf_event *event = efs->event;
201 	struct perf_event_context *ctx = event->ctx;
202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 	int ret = 0;
205 
206 	WARN_ON_ONCE(!irqs_disabled());
207 
208 	perf_ctx_lock(cpuctx, task_ctx);
209 	/*
210 	 * Since we do the IPI call without holding ctx->lock things can have
211 	 * changed, double check we hit the task we set out to hit.
212 	 */
213 	if (ctx->task) {
214 		if (ctx->task != current) {
215 			ret = -ESRCH;
216 			goto unlock;
217 		}
218 
219 		/*
220 		 * We only use event_function_call() on established contexts,
221 		 * and event_function() is only ever called when active (or
222 		 * rather, we'll have bailed in task_function_call() or the
223 		 * above ctx->task != current test), therefore we must have
224 		 * ctx->is_active here.
225 		 */
226 		WARN_ON_ONCE(!ctx->is_active);
227 		/*
228 		 * And since we have ctx->is_active, cpuctx->task_ctx must
229 		 * match.
230 		 */
231 		WARN_ON_ONCE(task_ctx != ctx);
232 	} else {
233 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 	}
235 
236 	efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 	perf_ctx_unlock(cpuctx, task_ctx);
239 
240 	return ret;
241 }
242 
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 	struct event_function_struct efs = {
246 		.event = event,
247 		.func = func,
248 		.data = data,
249 	};
250 
251 	int ret = event_function(&efs);
252 	WARN_ON_ONCE(ret);
253 }
254 
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 	struct perf_event_context *ctx = event->ctx;
258 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 	struct event_function_struct efs = {
260 		.event = event,
261 		.func = func,
262 		.data = data,
263 	};
264 
265 	if (!event->parent) {
266 		/*
267 		 * If this is a !child event, we must hold ctx::mutex to
268 		 * stabilize the the event->ctx relation. See
269 		 * perf_event_ctx_lock().
270 		 */
271 		lockdep_assert_held(&ctx->mutex);
272 	}
273 
274 	if (!task) {
275 		cpu_function_call(event->cpu, event_function, &efs);
276 		return;
277 	}
278 
279 	if (task == TASK_TOMBSTONE)
280 		return;
281 
282 again:
283 	if (!task_function_call(task, event_function, &efs))
284 		return;
285 
286 	raw_spin_lock_irq(&ctx->lock);
287 	/*
288 	 * Reload the task pointer, it might have been changed by
289 	 * a concurrent perf_event_context_sched_out().
290 	 */
291 	task = ctx->task;
292 	if (task == TASK_TOMBSTONE) {
293 		raw_spin_unlock_irq(&ctx->lock);
294 		return;
295 	}
296 	if (ctx->is_active) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		goto again;
299 	}
300 	func(event, NULL, ctx, data);
301 	raw_spin_unlock_irq(&ctx->lock);
302 }
303 
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 		       PERF_FLAG_FD_OUTPUT  |\
306 		       PERF_FLAG_PID_CGROUP |\
307 		       PERF_FLAG_FD_CLOEXEC)
308 
309 /*
310  * branch priv levels that need permission checks
311  */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 	(PERF_SAMPLE_BRANCH_KERNEL |\
314 	 PERF_SAMPLE_BRANCH_HV)
315 
316 enum event_type_t {
317 	EVENT_FLEXIBLE = 0x1,
318 	EVENT_PINNED = 0x2,
319 	EVENT_TIME = 0x4,
320 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321 };
322 
323 /*
324  * perf_sched_events : >0 events exist
325  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326  */
327 
328 static void perf_sched_delayed(struct work_struct *work);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331 static DEFINE_MUTEX(perf_sched_mutex);
332 static atomic_t perf_sched_count;
333 
334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336 
337 static atomic_t nr_mmap_events __read_mostly;
338 static atomic_t nr_comm_events __read_mostly;
339 static atomic_t nr_task_events __read_mostly;
340 static atomic_t nr_freq_events __read_mostly;
341 static atomic_t nr_switch_events __read_mostly;
342 
343 static LIST_HEAD(pmus);
344 static DEFINE_MUTEX(pmus_lock);
345 static struct srcu_struct pmus_srcu;
346 
347 /*
348  * perf event paranoia level:
349  *  -1 - not paranoid at all
350  *   0 - disallow raw tracepoint access for unpriv
351  *   1 - disallow cpu events for unpriv
352  *   2 - disallow kernel profiling for unpriv
353  */
354 int sysctl_perf_event_paranoid __read_mostly = 1;
355 
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 
359 /*
360  * max perf event sample rate
361  */
362 #define DEFAULT_MAX_SAMPLE_RATE		100000
363 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
365 
366 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
367 
368 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
370 
371 static int perf_sample_allowed_ns __read_mostly =
372 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373 
374 static void update_perf_cpu_limits(void)
375 {
376 	u64 tmp = perf_sample_period_ns;
377 
378 	tmp *= sysctl_perf_cpu_time_max_percent;
379 	tmp = div_u64(tmp, 100);
380 	if (!tmp)
381 		tmp = 1;
382 
383 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
384 }
385 
386 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387 
388 int perf_proc_update_handler(struct ctl_table *table, int write,
389 		void __user *buffer, size_t *lenp,
390 		loff_t *ppos)
391 {
392 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
393 
394 	if (ret || !write)
395 		return ret;
396 
397 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 	update_perf_cpu_limits();
400 
401 	return 0;
402 }
403 
404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405 
406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 				void __user *buffer, size_t *lenp,
408 				loff_t *ppos)
409 {
410 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411 
412 	if (ret || !write)
413 		return ret;
414 
415 	if (sysctl_perf_cpu_time_max_percent == 100) {
416 		printk(KERN_WARNING
417 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
418 		WRITE_ONCE(perf_sample_allowed_ns, 0);
419 	} else {
420 		update_perf_cpu_limits();
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  * perf samples are done in some very critical code paths (NMIs).
428  * If they take too much CPU time, the system can lock up and not
429  * get any real work done.  This will drop the sample rate when
430  * we detect that events are taking too long.
431  */
432 #define NR_ACCUMULATED_SAMPLES 128
433 static DEFINE_PER_CPU(u64, running_sample_length);
434 
435 static u64 __report_avg;
436 static u64 __report_allowed;
437 
438 static void perf_duration_warn(struct irq_work *w)
439 {
440 	printk_ratelimited(KERN_WARNING
441 		"perf: interrupt took too long (%lld > %lld), lowering "
442 		"kernel.perf_event_max_sample_rate to %d\n",
443 		__report_avg, __report_allowed,
444 		sysctl_perf_event_sample_rate);
445 }
446 
447 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
448 
449 void perf_sample_event_took(u64 sample_len_ns)
450 {
451 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
452 	u64 running_len;
453 	u64 avg_len;
454 	u32 max;
455 
456 	if (max_len == 0)
457 		return;
458 
459 	/* Decay the counter by 1 average sample. */
460 	running_len = __this_cpu_read(running_sample_length);
461 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
462 	running_len += sample_len_ns;
463 	__this_cpu_write(running_sample_length, running_len);
464 
465 	/*
466 	 * Note: this will be biased artifically low until we have
467 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
468 	 * from having to maintain a count.
469 	 */
470 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
471 	if (avg_len <= max_len)
472 		return;
473 
474 	__report_avg = avg_len;
475 	__report_allowed = max_len;
476 
477 	/*
478 	 * Compute a throttle threshold 25% below the current duration.
479 	 */
480 	avg_len += avg_len / 4;
481 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
482 	if (avg_len < max)
483 		max /= (u32)avg_len;
484 	else
485 		max = 1;
486 
487 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
488 	WRITE_ONCE(max_samples_per_tick, max);
489 
490 	sysctl_perf_event_sample_rate = max * HZ;
491 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
492 
493 	if (!irq_work_queue(&perf_duration_work)) {
494 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
495 			     "kernel.perf_event_max_sample_rate to %d\n",
496 			     __report_avg, __report_allowed,
497 			     sysctl_perf_event_sample_rate);
498 	}
499 }
500 
501 static atomic64_t perf_event_id;
502 
503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
504 			      enum event_type_t event_type);
505 
506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
507 			     enum event_type_t event_type,
508 			     struct task_struct *task);
509 
510 static void update_context_time(struct perf_event_context *ctx);
511 static u64 perf_event_time(struct perf_event *event);
512 
513 void __weak perf_event_print_debug(void)	{ }
514 
515 extern __weak const char *perf_pmu_name(void)
516 {
517 	return "pmu";
518 }
519 
520 static inline u64 perf_clock(void)
521 {
522 	return local_clock();
523 }
524 
525 static inline u64 perf_event_clock(struct perf_event *event)
526 {
527 	return event->clock();
528 }
529 
530 #ifdef CONFIG_CGROUP_PERF
531 
532 static inline bool
533 perf_cgroup_match(struct perf_event *event)
534 {
535 	struct perf_event_context *ctx = event->ctx;
536 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
537 
538 	/* @event doesn't care about cgroup */
539 	if (!event->cgrp)
540 		return true;
541 
542 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
543 	if (!cpuctx->cgrp)
544 		return false;
545 
546 	/*
547 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
548 	 * also enabled for all its descendant cgroups.  If @cpuctx's
549 	 * cgroup is a descendant of @event's (the test covers identity
550 	 * case), it's a match.
551 	 */
552 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
553 				    event->cgrp->css.cgroup);
554 }
555 
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {
558 	css_put(&event->cgrp->css);
559 	event->cgrp = NULL;
560 }
561 
562 static inline int is_cgroup_event(struct perf_event *event)
563 {
564 	return event->cgrp != NULL;
565 }
566 
567 static inline u64 perf_cgroup_event_time(struct perf_event *event)
568 {
569 	struct perf_cgroup_info *t;
570 
571 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
572 	return t->time;
573 }
574 
575 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
576 {
577 	struct perf_cgroup_info *info;
578 	u64 now;
579 
580 	now = perf_clock();
581 
582 	info = this_cpu_ptr(cgrp->info);
583 
584 	info->time += now - info->timestamp;
585 	info->timestamp = now;
586 }
587 
588 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
589 {
590 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
591 	if (cgrp_out)
592 		__update_cgrp_time(cgrp_out);
593 }
594 
595 static inline void update_cgrp_time_from_event(struct perf_event *event)
596 {
597 	struct perf_cgroup *cgrp;
598 
599 	/*
600 	 * ensure we access cgroup data only when needed and
601 	 * when we know the cgroup is pinned (css_get)
602 	 */
603 	if (!is_cgroup_event(event))
604 		return;
605 
606 	cgrp = perf_cgroup_from_task(current, event->ctx);
607 	/*
608 	 * Do not update time when cgroup is not active
609 	 */
610 	if (cgrp == event->cgrp)
611 		__update_cgrp_time(event->cgrp);
612 }
613 
614 static inline void
615 perf_cgroup_set_timestamp(struct task_struct *task,
616 			  struct perf_event_context *ctx)
617 {
618 	struct perf_cgroup *cgrp;
619 	struct perf_cgroup_info *info;
620 
621 	/*
622 	 * ctx->lock held by caller
623 	 * ensure we do not access cgroup data
624 	 * unless we have the cgroup pinned (css_get)
625 	 */
626 	if (!task || !ctx->nr_cgroups)
627 		return;
628 
629 	cgrp = perf_cgroup_from_task(task, ctx);
630 	info = this_cpu_ptr(cgrp->info);
631 	info->timestamp = ctx->timestamp;
632 }
633 
634 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
635 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
636 
637 /*
638  * reschedule events based on the cgroup constraint of task.
639  *
640  * mode SWOUT : schedule out everything
641  * mode SWIN : schedule in based on cgroup for next
642  */
643 static void perf_cgroup_switch(struct task_struct *task, int mode)
644 {
645 	struct perf_cpu_context *cpuctx;
646 	struct pmu *pmu;
647 	unsigned long flags;
648 
649 	/*
650 	 * disable interrupts to avoid geting nr_cgroup
651 	 * changes via __perf_event_disable(). Also
652 	 * avoids preemption.
653 	 */
654 	local_irq_save(flags);
655 
656 	/*
657 	 * we reschedule only in the presence of cgroup
658 	 * constrained events.
659 	 */
660 
661 	list_for_each_entry_rcu(pmu, &pmus, entry) {
662 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
663 		if (cpuctx->unique_pmu != pmu)
664 			continue; /* ensure we process each cpuctx once */
665 
666 		/*
667 		 * perf_cgroup_events says at least one
668 		 * context on this CPU has cgroup events.
669 		 *
670 		 * ctx->nr_cgroups reports the number of cgroup
671 		 * events for a context.
672 		 */
673 		if (cpuctx->ctx.nr_cgroups > 0) {
674 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
675 			perf_pmu_disable(cpuctx->ctx.pmu);
676 
677 			if (mode & PERF_CGROUP_SWOUT) {
678 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
679 				/*
680 				 * must not be done before ctxswout due
681 				 * to event_filter_match() in event_sched_out()
682 				 */
683 				cpuctx->cgrp = NULL;
684 			}
685 
686 			if (mode & PERF_CGROUP_SWIN) {
687 				WARN_ON_ONCE(cpuctx->cgrp);
688 				/*
689 				 * set cgrp before ctxsw in to allow
690 				 * event_filter_match() to not have to pass
691 				 * task around
692 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
693 				 * because cgorup events are only per-cpu
694 				 */
695 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
696 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
697 			}
698 			perf_pmu_enable(cpuctx->ctx.pmu);
699 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
700 		}
701 	}
702 
703 	local_irq_restore(flags);
704 }
705 
706 static inline void perf_cgroup_sched_out(struct task_struct *task,
707 					 struct task_struct *next)
708 {
709 	struct perf_cgroup *cgrp1;
710 	struct perf_cgroup *cgrp2 = NULL;
711 
712 	rcu_read_lock();
713 	/*
714 	 * we come here when we know perf_cgroup_events > 0
715 	 * we do not need to pass the ctx here because we know
716 	 * we are holding the rcu lock
717 	 */
718 	cgrp1 = perf_cgroup_from_task(task, NULL);
719 	cgrp2 = perf_cgroup_from_task(next, NULL);
720 
721 	/*
722 	 * only schedule out current cgroup events if we know
723 	 * that we are switching to a different cgroup. Otherwise,
724 	 * do no touch the cgroup events.
725 	 */
726 	if (cgrp1 != cgrp2)
727 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
728 
729 	rcu_read_unlock();
730 }
731 
732 static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 					struct task_struct *task)
734 {
735 	struct perf_cgroup *cgrp1;
736 	struct perf_cgroup *cgrp2 = NULL;
737 
738 	rcu_read_lock();
739 	/*
740 	 * we come here when we know perf_cgroup_events > 0
741 	 * we do not need to pass the ctx here because we know
742 	 * we are holding the rcu lock
743 	 */
744 	cgrp1 = perf_cgroup_from_task(task, NULL);
745 	cgrp2 = perf_cgroup_from_task(prev, NULL);
746 
747 	/*
748 	 * only need to schedule in cgroup events if we are changing
749 	 * cgroup during ctxsw. Cgroup events were not scheduled
750 	 * out of ctxsw out if that was not the case.
751 	 */
752 	if (cgrp1 != cgrp2)
753 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
754 
755 	rcu_read_unlock();
756 }
757 
758 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
759 				      struct perf_event_attr *attr,
760 				      struct perf_event *group_leader)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct cgroup_subsys_state *css;
764 	struct fd f = fdget(fd);
765 	int ret = 0;
766 
767 	if (!f.file)
768 		return -EBADF;
769 
770 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
771 					 &perf_event_cgrp_subsys);
772 	if (IS_ERR(css)) {
773 		ret = PTR_ERR(css);
774 		goto out;
775 	}
776 
777 	cgrp = container_of(css, struct perf_cgroup, css);
778 	event->cgrp = cgrp;
779 
780 	/*
781 	 * all events in a group must monitor
782 	 * the same cgroup because a task belongs
783 	 * to only one perf cgroup at a time
784 	 */
785 	if (group_leader && group_leader->cgrp != cgrp) {
786 		perf_detach_cgroup(event);
787 		ret = -EINVAL;
788 	}
789 out:
790 	fdput(f);
791 	return ret;
792 }
793 
794 static inline void
795 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
796 {
797 	struct perf_cgroup_info *t;
798 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
799 	event->shadow_ctx_time = now - t->timestamp;
800 }
801 
802 static inline void
803 perf_cgroup_defer_enabled(struct perf_event *event)
804 {
805 	/*
806 	 * when the current task's perf cgroup does not match
807 	 * the event's, we need to remember to call the
808 	 * perf_mark_enable() function the first time a task with
809 	 * a matching perf cgroup is scheduled in.
810 	 */
811 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
812 		event->cgrp_defer_enabled = 1;
813 }
814 
815 static inline void
816 perf_cgroup_mark_enabled(struct perf_event *event,
817 			 struct perf_event_context *ctx)
818 {
819 	struct perf_event *sub;
820 	u64 tstamp = perf_event_time(event);
821 
822 	if (!event->cgrp_defer_enabled)
823 		return;
824 
825 	event->cgrp_defer_enabled = 0;
826 
827 	event->tstamp_enabled = tstamp - event->total_time_enabled;
828 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
829 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
830 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
831 			sub->cgrp_defer_enabled = 0;
832 		}
833 	}
834 }
835 #else /* !CONFIG_CGROUP_PERF */
836 
837 static inline bool
838 perf_cgroup_match(struct perf_event *event)
839 {
840 	return true;
841 }
842 
843 static inline void perf_detach_cgroup(struct perf_event *event)
844 {}
845 
846 static inline int is_cgroup_event(struct perf_event *event)
847 {
848 	return 0;
849 }
850 
851 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
852 {
853 	return 0;
854 }
855 
856 static inline void update_cgrp_time_from_event(struct perf_event *event)
857 {
858 }
859 
860 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
861 {
862 }
863 
864 static inline void perf_cgroup_sched_out(struct task_struct *task,
865 					 struct task_struct *next)
866 {
867 }
868 
869 static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 					struct task_struct *task)
871 {
872 }
873 
874 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
875 				      struct perf_event_attr *attr,
876 				      struct perf_event *group_leader)
877 {
878 	return -EINVAL;
879 }
880 
881 static inline void
882 perf_cgroup_set_timestamp(struct task_struct *task,
883 			  struct perf_event_context *ctx)
884 {
885 }
886 
887 void
888 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
889 {
890 }
891 
892 static inline void
893 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
894 {
895 }
896 
897 static inline u64 perf_cgroup_event_time(struct perf_event *event)
898 {
899 	return 0;
900 }
901 
902 static inline void
903 perf_cgroup_defer_enabled(struct perf_event *event)
904 {
905 }
906 
907 static inline void
908 perf_cgroup_mark_enabled(struct perf_event *event,
909 			 struct perf_event_context *ctx)
910 {
911 }
912 #endif
913 
914 /*
915  * set default to be dependent on timer tick just
916  * like original code
917  */
918 #define PERF_CPU_HRTIMER (1000 / HZ)
919 /*
920  * function must be called with interrupts disbled
921  */
922 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
923 {
924 	struct perf_cpu_context *cpuctx;
925 	int rotations = 0;
926 
927 	WARN_ON(!irqs_disabled());
928 
929 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
930 	rotations = perf_rotate_context(cpuctx);
931 
932 	raw_spin_lock(&cpuctx->hrtimer_lock);
933 	if (rotations)
934 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
935 	else
936 		cpuctx->hrtimer_active = 0;
937 	raw_spin_unlock(&cpuctx->hrtimer_lock);
938 
939 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
940 }
941 
942 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
943 {
944 	struct hrtimer *timer = &cpuctx->hrtimer;
945 	struct pmu *pmu = cpuctx->ctx.pmu;
946 	u64 interval;
947 
948 	/* no multiplexing needed for SW PMU */
949 	if (pmu->task_ctx_nr == perf_sw_context)
950 		return;
951 
952 	/*
953 	 * check default is sane, if not set then force to
954 	 * default interval (1/tick)
955 	 */
956 	interval = pmu->hrtimer_interval_ms;
957 	if (interval < 1)
958 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
959 
960 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
961 
962 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
963 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
964 	timer->function = perf_mux_hrtimer_handler;
965 }
966 
967 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
968 {
969 	struct hrtimer *timer = &cpuctx->hrtimer;
970 	struct pmu *pmu = cpuctx->ctx.pmu;
971 	unsigned long flags;
972 
973 	/* not for SW PMU */
974 	if (pmu->task_ctx_nr == perf_sw_context)
975 		return 0;
976 
977 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
978 	if (!cpuctx->hrtimer_active) {
979 		cpuctx->hrtimer_active = 1;
980 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
981 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
982 	}
983 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
984 
985 	return 0;
986 }
987 
988 void perf_pmu_disable(struct pmu *pmu)
989 {
990 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
991 	if (!(*count)++)
992 		pmu->pmu_disable(pmu);
993 }
994 
995 void perf_pmu_enable(struct pmu *pmu)
996 {
997 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
998 	if (!--(*count))
999 		pmu->pmu_enable(pmu);
1000 }
1001 
1002 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1003 
1004 /*
1005  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1006  * perf_event_task_tick() are fully serialized because they're strictly cpu
1007  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1008  * disabled, while perf_event_task_tick is called from IRQ context.
1009  */
1010 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1011 {
1012 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1013 
1014 	WARN_ON(!irqs_disabled());
1015 
1016 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1017 
1018 	list_add(&ctx->active_ctx_list, head);
1019 }
1020 
1021 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1022 {
1023 	WARN_ON(!irqs_disabled());
1024 
1025 	WARN_ON(list_empty(&ctx->active_ctx_list));
1026 
1027 	list_del_init(&ctx->active_ctx_list);
1028 }
1029 
1030 static void get_ctx(struct perf_event_context *ctx)
1031 {
1032 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1033 }
1034 
1035 static void free_ctx(struct rcu_head *head)
1036 {
1037 	struct perf_event_context *ctx;
1038 
1039 	ctx = container_of(head, struct perf_event_context, rcu_head);
1040 	kfree(ctx->task_ctx_data);
1041 	kfree(ctx);
1042 }
1043 
1044 static void put_ctx(struct perf_event_context *ctx)
1045 {
1046 	if (atomic_dec_and_test(&ctx->refcount)) {
1047 		if (ctx->parent_ctx)
1048 			put_ctx(ctx->parent_ctx);
1049 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1050 			put_task_struct(ctx->task);
1051 		call_rcu(&ctx->rcu_head, free_ctx);
1052 	}
1053 }
1054 
1055 /*
1056  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1057  * perf_pmu_migrate_context() we need some magic.
1058  *
1059  * Those places that change perf_event::ctx will hold both
1060  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1061  *
1062  * Lock ordering is by mutex address. There are two other sites where
1063  * perf_event_context::mutex nests and those are:
1064  *
1065  *  - perf_event_exit_task_context()	[ child , 0 ]
1066  *      perf_event_exit_event()
1067  *        put_event()			[ parent, 1 ]
1068  *
1069  *  - perf_event_init_context()		[ parent, 0 ]
1070  *      inherit_task_group()
1071  *        inherit_group()
1072  *          inherit_event()
1073  *            perf_event_alloc()
1074  *              perf_init_event()
1075  *                perf_try_init_event()	[ child , 1 ]
1076  *
1077  * While it appears there is an obvious deadlock here -- the parent and child
1078  * nesting levels are inverted between the two. This is in fact safe because
1079  * life-time rules separate them. That is an exiting task cannot fork, and a
1080  * spawning task cannot (yet) exit.
1081  *
1082  * But remember that that these are parent<->child context relations, and
1083  * migration does not affect children, therefore these two orderings should not
1084  * interact.
1085  *
1086  * The change in perf_event::ctx does not affect children (as claimed above)
1087  * because the sys_perf_event_open() case will install a new event and break
1088  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1089  * concerned with cpuctx and that doesn't have children.
1090  *
1091  * The places that change perf_event::ctx will issue:
1092  *
1093  *   perf_remove_from_context();
1094  *   synchronize_rcu();
1095  *   perf_install_in_context();
1096  *
1097  * to affect the change. The remove_from_context() + synchronize_rcu() should
1098  * quiesce the event, after which we can install it in the new location. This
1099  * means that only external vectors (perf_fops, prctl) can perturb the event
1100  * while in transit. Therefore all such accessors should also acquire
1101  * perf_event_context::mutex to serialize against this.
1102  *
1103  * However; because event->ctx can change while we're waiting to acquire
1104  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1105  * function.
1106  *
1107  * Lock order:
1108  *	task_struct::perf_event_mutex
1109  *	  perf_event_context::mutex
1110  *	    perf_event::child_mutex;
1111  *	      perf_event_context::lock
1112  *	    perf_event::mmap_mutex
1113  *	    mmap_sem
1114  */
1115 static struct perf_event_context *
1116 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1117 {
1118 	struct perf_event_context *ctx;
1119 
1120 again:
1121 	rcu_read_lock();
1122 	ctx = ACCESS_ONCE(event->ctx);
1123 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1124 		rcu_read_unlock();
1125 		goto again;
1126 	}
1127 	rcu_read_unlock();
1128 
1129 	mutex_lock_nested(&ctx->mutex, nesting);
1130 	if (event->ctx != ctx) {
1131 		mutex_unlock(&ctx->mutex);
1132 		put_ctx(ctx);
1133 		goto again;
1134 	}
1135 
1136 	return ctx;
1137 }
1138 
1139 static inline struct perf_event_context *
1140 perf_event_ctx_lock(struct perf_event *event)
1141 {
1142 	return perf_event_ctx_lock_nested(event, 0);
1143 }
1144 
1145 static void perf_event_ctx_unlock(struct perf_event *event,
1146 				  struct perf_event_context *ctx)
1147 {
1148 	mutex_unlock(&ctx->mutex);
1149 	put_ctx(ctx);
1150 }
1151 
1152 /*
1153  * This must be done under the ctx->lock, such as to serialize against
1154  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1155  * calling scheduler related locks and ctx->lock nests inside those.
1156  */
1157 static __must_check struct perf_event_context *
1158 unclone_ctx(struct perf_event_context *ctx)
1159 {
1160 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1161 
1162 	lockdep_assert_held(&ctx->lock);
1163 
1164 	if (parent_ctx)
1165 		ctx->parent_ctx = NULL;
1166 	ctx->generation++;
1167 
1168 	return parent_ctx;
1169 }
1170 
1171 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1172 {
1173 	/*
1174 	 * only top level events have the pid namespace they were created in
1175 	 */
1176 	if (event->parent)
1177 		event = event->parent;
1178 
1179 	return task_tgid_nr_ns(p, event->ns);
1180 }
1181 
1182 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1183 {
1184 	/*
1185 	 * only top level events have the pid namespace they were created in
1186 	 */
1187 	if (event->parent)
1188 		event = event->parent;
1189 
1190 	return task_pid_nr_ns(p, event->ns);
1191 }
1192 
1193 /*
1194  * If we inherit events we want to return the parent event id
1195  * to userspace.
1196  */
1197 static u64 primary_event_id(struct perf_event *event)
1198 {
1199 	u64 id = event->id;
1200 
1201 	if (event->parent)
1202 		id = event->parent->id;
1203 
1204 	return id;
1205 }
1206 
1207 /*
1208  * Get the perf_event_context for a task and lock it.
1209  *
1210  * This has to cope with with the fact that until it is locked,
1211  * the context could get moved to another task.
1212  */
1213 static struct perf_event_context *
1214 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1215 {
1216 	struct perf_event_context *ctx;
1217 
1218 retry:
1219 	/*
1220 	 * One of the few rules of preemptible RCU is that one cannot do
1221 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1222 	 * part of the read side critical section was irqs-enabled -- see
1223 	 * rcu_read_unlock_special().
1224 	 *
1225 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1226 	 * side critical section has interrupts disabled.
1227 	 */
1228 	local_irq_save(*flags);
1229 	rcu_read_lock();
1230 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1231 	if (ctx) {
1232 		/*
1233 		 * If this context is a clone of another, it might
1234 		 * get swapped for another underneath us by
1235 		 * perf_event_task_sched_out, though the
1236 		 * rcu_read_lock() protects us from any context
1237 		 * getting freed.  Lock the context and check if it
1238 		 * got swapped before we could get the lock, and retry
1239 		 * if so.  If we locked the right context, then it
1240 		 * can't get swapped on us any more.
1241 		 */
1242 		raw_spin_lock(&ctx->lock);
1243 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1244 			raw_spin_unlock(&ctx->lock);
1245 			rcu_read_unlock();
1246 			local_irq_restore(*flags);
1247 			goto retry;
1248 		}
1249 
1250 		if (ctx->task == TASK_TOMBSTONE ||
1251 		    !atomic_inc_not_zero(&ctx->refcount)) {
1252 			raw_spin_unlock(&ctx->lock);
1253 			ctx = NULL;
1254 		} else {
1255 			WARN_ON_ONCE(ctx->task != task);
1256 		}
1257 	}
1258 	rcu_read_unlock();
1259 	if (!ctx)
1260 		local_irq_restore(*flags);
1261 	return ctx;
1262 }
1263 
1264 /*
1265  * Get the context for a task and increment its pin_count so it
1266  * can't get swapped to another task.  This also increments its
1267  * reference count so that the context can't get freed.
1268  */
1269 static struct perf_event_context *
1270 perf_pin_task_context(struct task_struct *task, int ctxn)
1271 {
1272 	struct perf_event_context *ctx;
1273 	unsigned long flags;
1274 
1275 	ctx = perf_lock_task_context(task, ctxn, &flags);
1276 	if (ctx) {
1277 		++ctx->pin_count;
1278 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1279 	}
1280 	return ctx;
1281 }
1282 
1283 static void perf_unpin_context(struct perf_event_context *ctx)
1284 {
1285 	unsigned long flags;
1286 
1287 	raw_spin_lock_irqsave(&ctx->lock, flags);
1288 	--ctx->pin_count;
1289 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1290 }
1291 
1292 /*
1293  * Update the record of the current time in a context.
1294  */
1295 static void update_context_time(struct perf_event_context *ctx)
1296 {
1297 	u64 now = perf_clock();
1298 
1299 	ctx->time += now - ctx->timestamp;
1300 	ctx->timestamp = now;
1301 }
1302 
1303 static u64 perf_event_time(struct perf_event *event)
1304 {
1305 	struct perf_event_context *ctx = event->ctx;
1306 
1307 	if (is_cgroup_event(event))
1308 		return perf_cgroup_event_time(event);
1309 
1310 	return ctx ? ctx->time : 0;
1311 }
1312 
1313 /*
1314  * Update the total_time_enabled and total_time_running fields for a event.
1315  */
1316 static void update_event_times(struct perf_event *event)
1317 {
1318 	struct perf_event_context *ctx = event->ctx;
1319 	u64 run_end;
1320 
1321 	lockdep_assert_held(&ctx->lock);
1322 
1323 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1324 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1325 		return;
1326 
1327 	/*
1328 	 * in cgroup mode, time_enabled represents
1329 	 * the time the event was enabled AND active
1330 	 * tasks were in the monitored cgroup. This is
1331 	 * independent of the activity of the context as
1332 	 * there may be a mix of cgroup and non-cgroup events.
1333 	 *
1334 	 * That is why we treat cgroup events differently
1335 	 * here.
1336 	 */
1337 	if (is_cgroup_event(event))
1338 		run_end = perf_cgroup_event_time(event);
1339 	else if (ctx->is_active)
1340 		run_end = ctx->time;
1341 	else
1342 		run_end = event->tstamp_stopped;
1343 
1344 	event->total_time_enabled = run_end - event->tstamp_enabled;
1345 
1346 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1347 		run_end = event->tstamp_stopped;
1348 	else
1349 		run_end = perf_event_time(event);
1350 
1351 	event->total_time_running = run_end - event->tstamp_running;
1352 
1353 }
1354 
1355 /*
1356  * Update total_time_enabled and total_time_running for all events in a group.
1357  */
1358 static void update_group_times(struct perf_event *leader)
1359 {
1360 	struct perf_event *event;
1361 
1362 	update_event_times(leader);
1363 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1364 		update_event_times(event);
1365 }
1366 
1367 static struct list_head *
1368 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 	if (event->attr.pinned)
1371 		return &ctx->pinned_groups;
1372 	else
1373 		return &ctx->flexible_groups;
1374 }
1375 
1376 /*
1377  * Add a event from the lists for its context.
1378  * Must be called with ctx->mutex and ctx->lock held.
1379  */
1380 static void
1381 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1382 {
1383 	lockdep_assert_held(&ctx->lock);
1384 
1385 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1386 	event->attach_state |= PERF_ATTACH_CONTEXT;
1387 
1388 	/*
1389 	 * If we're a stand alone event or group leader, we go to the context
1390 	 * list, group events are kept attached to the group so that
1391 	 * perf_group_detach can, at all times, locate all siblings.
1392 	 */
1393 	if (event->group_leader == event) {
1394 		struct list_head *list;
1395 
1396 		if (is_software_event(event))
1397 			event->group_flags |= PERF_GROUP_SOFTWARE;
1398 
1399 		list = ctx_group_list(event, ctx);
1400 		list_add_tail(&event->group_entry, list);
1401 	}
1402 
1403 	if (is_cgroup_event(event))
1404 		ctx->nr_cgroups++;
1405 
1406 	list_add_rcu(&event->event_entry, &ctx->event_list);
1407 	ctx->nr_events++;
1408 	if (event->attr.inherit_stat)
1409 		ctx->nr_stat++;
1410 
1411 	ctx->generation++;
1412 }
1413 
1414 /*
1415  * Initialize event state based on the perf_event_attr::disabled.
1416  */
1417 static inline void perf_event__state_init(struct perf_event *event)
1418 {
1419 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1420 					      PERF_EVENT_STATE_INACTIVE;
1421 }
1422 
1423 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1424 {
1425 	int entry = sizeof(u64); /* value */
1426 	int size = 0;
1427 	int nr = 1;
1428 
1429 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430 		size += sizeof(u64);
1431 
1432 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433 		size += sizeof(u64);
1434 
1435 	if (event->attr.read_format & PERF_FORMAT_ID)
1436 		entry += sizeof(u64);
1437 
1438 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1439 		nr += nr_siblings;
1440 		size += sizeof(u64);
1441 	}
1442 
1443 	size += entry * nr;
1444 	event->read_size = size;
1445 }
1446 
1447 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1448 {
1449 	struct perf_sample_data *data;
1450 	u16 size = 0;
1451 
1452 	if (sample_type & PERF_SAMPLE_IP)
1453 		size += sizeof(data->ip);
1454 
1455 	if (sample_type & PERF_SAMPLE_ADDR)
1456 		size += sizeof(data->addr);
1457 
1458 	if (sample_type & PERF_SAMPLE_PERIOD)
1459 		size += sizeof(data->period);
1460 
1461 	if (sample_type & PERF_SAMPLE_WEIGHT)
1462 		size += sizeof(data->weight);
1463 
1464 	if (sample_type & PERF_SAMPLE_READ)
1465 		size += event->read_size;
1466 
1467 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1468 		size += sizeof(data->data_src.val);
1469 
1470 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1471 		size += sizeof(data->txn);
1472 
1473 	event->header_size = size;
1474 }
1475 
1476 /*
1477  * Called at perf_event creation and when events are attached/detached from a
1478  * group.
1479  */
1480 static void perf_event__header_size(struct perf_event *event)
1481 {
1482 	__perf_event_read_size(event,
1483 			       event->group_leader->nr_siblings);
1484 	__perf_event_header_size(event, event->attr.sample_type);
1485 }
1486 
1487 static void perf_event__id_header_size(struct perf_event *event)
1488 {
1489 	struct perf_sample_data *data;
1490 	u64 sample_type = event->attr.sample_type;
1491 	u16 size = 0;
1492 
1493 	if (sample_type & PERF_SAMPLE_TID)
1494 		size += sizeof(data->tid_entry);
1495 
1496 	if (sample_type & PERF_SAMPLE_TIME)
1497 		size += sizeof(data->time);
1498 
1499 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1500 		size += sizeof(data->id);
1501 
1502 	if (sample_type & PERF_SAMPLE_ID)
1503 		size += sizeof(data->id);
1504 
1505 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1506 		size += sizeof(data->stream_id);
1507 
1508 	if (sample_type & PERF_SAMPLE_CPU)
1509 		size += sizeof(data->cpu_entry);
1510 
1511 	event->id_header_size = size;
1512 }
1513 
1514 static bool perf_event_validate_size(struct perf_event *event)
1515 {
1516 	/*
1517 	 * The values computed here will be over-written when we actually
1518 	 * attach the event.
1519 	 */
1520 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1521 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1522 	perf_event__id_header_size(event);
1523 
1524 	/*
1525 	 * Sum the lot; should not exceed the 64k limit we have on records.
1526 	 * Conservative limit to allow for callchains and other variable fields.
1527 	 */
1528 	if (event->read_size + event->header_size +
1529 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1530 		return false;
1531 
1532 	return true;
1533 }
1534 
1535 static void perf_group_attach(struct perf_event *event)
1536 {
1537 	struct perf_event *group_leader = event->group_leader, *pos;
1538 
1539 	/*
1540 	 * We can have double attach due to group movement in perf_event_open.
1541 	 */
1542 	if (event->attach_state & PERF_ATTACH_GROUP)
1543 		return;
1544 
1545 	event->attach_state |= PERF_ATTACH_GROUP;
1546 
1547 	if (group_leader == event)
1548 		return;
1549 
1550 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1551 
1552 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1553 			!is_software_event(event))
1554 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1555 
1556 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1557 	group_leader->nr_siblings++;
1558 
1559 	perf_event__header_size(group_leader);
1560 
1561 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1562 		perf_event__header_size(pos);
1563 }
1564 
1565 /*
1566  * Remove a event from the lists for its context.
1567  * Must be called with ctx->mutex and ctx->lock held.
1568  */
1569 static void
1570 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1571 {
1572 	struct perf_cpu_context *cpuctx;
1573 
1574 	WARN_ON_ONCE(event->ctx != ctx);
1575 	lockdep_assert_held(&ctx->lock);
1576 
1577 	/*
1578 	 * We can have double detach due to exit/hot-unplug + close.
1579 	 */
1580 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1581 		return;
1582 
1583 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1584 
1585 	if (is_cgroup_event(event)) {
1586 		ctx->nr_cgroups--;
1587 		/*
1588 		 * Because cgroup events are always per-cpu events, this will
1589 		 * always be called from the right CPU.
1590 		 */
1591 		cpuctx = __get_cpu_context(ctx);
1592 		/*
1593 		 * If there are no more cgroup events then clear cgrp to avoid
1594 		 * stale pointer in update_cgrp_time_from_cpuctx().
1595 		 */
1596 		if (!ctx->nr_cgroups)
1597 			cpuctx->cgrp = NULL;
1598 	}
1599 
1600 	ctx->nr_events--;
1601 	if (event->attr.inherit_stat)
1602 		ctx->nr_stat--;
1603 
1604 	list_del_rcu(&event->event_entry);
1605 
1606 	if (event->group_leader == event)
1607 		list_del_init(&event->group_entry);
1608 
1609 	update_group_times(event);
1610 
1611 	/*
1612 	 * If event was in error state, then keep it
1613 	 * that way, otherwise bogus counts will be
1614 	 * returned on read(). The only way to get out
1615 	 * of error state is by explicit re-enabling
1616 	 * of the event
1617 	 */
1618 	if (event->state > PERF_EVENT_STATE_OFF)
1619 		event->state = PERF_EVENT_STATE_OFF;
1620 
1621 	ctx->generation++;
1622 }
1623 
1624 static void perf_group_detach(struct perf_event *event)
1625 {
1626 	struct perf_event *sibling, *tmp;
1627 	struct list_head *list = NULL;
1628 
1629 	/*
1630 	 * We can have double detach due to exit/hot-unplug + close.
1631 	 */
1632 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1633 		return;
1634 
1635 	event->attach_state &= ~PERF_ATTACH_GROUP;
1636 
1637 	/*
1638 	 * If this is a sibling, remove it from its group.
1639 	 */
1640 	if (event->group_leader != event) {
1641 		list_del_init(&event->group_entry);
1642 		event->group_leader->nr_siblings--;
1643 		goto out;
1644 	}
1645 
1646 	if (!list_empty(&event->group_entry))
1647 		list = &event->group_entry;
1648 
1649 	/*
1650 	 * If this was a group event with sibling events then
1651 	 * upgrade the siblings to singleton events by adding them
1652 	 * to whatever list we are on.
1653 	 */
1654 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1655 		if (list)
1656 			list_move_tail(&sibling->group_entry, list);
1657 		sibling->group_leader = sibling;
1658 
1659 		/* Inherit group flags from the previous leader */
1660 		sibling->group_flags = event->group_flags;
1661 
1662 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1663 	}
1664 
1665 out:
1666 	perf_event__header_size(event->group_leader);
1667 
1668 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1669 		perf_event__header_size(tmp);
1670 }
1671 
1672 static bool is_orphaned_event(struct perf_event *event)
1673 {
1674 	return event->state == PERF_EVENT_STATE_DEAD;
1675 }
1676 
1677 static inline int pmu_filter_match(struct perf_event *event)
1678 {
1679 	struct pmu *pmu = event->pmu;
1680 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1681 }
1682 
1683 static inline int
1684 event_filter_match(struct perf_event *event)
1685 {
1686 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1687 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1688 }
1689 
1690 static void
1691 event_sched_out(struct perf_event *event,
1692 		  struct perf_cpu_context *cpuctx,
1693 		  struct perf_event_context *ctx)
1694 {
1695 	u64 tstamp = perf_event_time(event);
1696 	u64 delta;
1697 
1698 	WARN_ON_ONCE(event->ctx != ctx);
1699 	lockdep_assert_held(&ctx->lock);
1700 
1701 	/*
1702 	 * An event which could not be activated because of
1703 	 * filter mismatch still needs to have its timings
1704 	 * maintained, otherwise bogus information is return
1705 	 * via read() for time_enabled, time_running:
1706 	 */
1707 	if (event->state == PERF_EVENT_STATE_INACTIVE
1708 	    && !event_filter_match(event)) {
1709 		delta = tstamp - event->tstamp_stopped;
1710 		event->tstamp_running += delta;
1711 		event->tstamp_stopped = tstamp;
1712 	}
1713 
1714 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1715 		return;
1716 
1717 	perf_pmu_disable(event->pmu);
1718 
1719 	event->tstamp_stopped = tstamp;
1720 	event->pmu->del(event, 0);
1721 	event->oncpu = -1;
1722 	event->state = PERF_EVENT_STATE_INACTIVE;
1723 	if (event->pending_disable) {
1724 		event->pending_disable = 0;
1725 		event->state = PERF_EVENT_STATE_OFF;
1726 	}
1727 
1728 	if (!is_software_event(event))
1729 		cpuctx->active_oncpu--;
1730 	if (!--ctx->nr_active)
1731 		perf_event_ctx_deactivate(ctx);
1732 	if (event->attr.freq && event->attr.sample_freq)
1733 		ctx->nr_freq--;
1734 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1735 		cpuctx->exclusive = 0;
1736 
1737 	perf_pmu_enable(event->pmu);
1738 }
1739 
1740 static void
1741 group_sched_out(struct perf_event *group_event,
1742 		struct perf_cpu_context *cpuctx,
1743 		struct perf_event_context *ctx)
1744 {
1745 	struct perf_event *event;
1746 	int state = group_event->state;
1747 
1748 	event_sched_out(group_event, cpuctx, ctx);
1749 
1750 	/*
1751 	 * Schedule out siblings (if any):
1752 	 */
1753 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1754 		event_sched_out(event, cpuctx, ctx);
1755 
1756 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1757 		cpuctx->exclusive = 0;
1758 }
1759 
1760 #define DETACH_GROUP	0x01UL
1761 
1762 /*
1763  * Cross CPU call to remove a performance event
1764  *
1765  * We disable the event on the hardware level first. After that we
1766  * remove it from the context list.
1767  */
1768 static void
1769 __perf_remove_from_context(struct perf_event *event,
1770 			   struct perf_cpu_context *cpuctx,
1771 			   struct perf_event_context *ctx,
1772 			   void *info)
1773 {
1774 	unsigned long flags = (unsigned long)info;
1775 
1776 	event_sched_out(event, cpuctx, ctx);
1777 	if (flags & DETACH_GROUP)
1778 		perf_group_detach(event);
1779 	list_del_event(event, ctx);
1780 
1781 	if (!ctx->nr_events && ctx->is_active) {
1782 		ctx->is_active = 0;
1783 		if (ctx->task) {
1784 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 			cpuctx->task_ctx = NULL;
1786 		}
1787 	}
1788 }
1789 
1790 /*
1791  * Remove the event from a task's (or a CPU's) list of events.
1792  *
1793  * If event->ctx is a cloned context, callers must make sure that
1794  * every task struct that event->ctx->task could possibly point to
1795  * remains valid.  This is OK when called from perf_release since
1796  * that only calls us on the top-level context, which can't be a clone.
1797  * When called from perf_event_exit_task, it's OK because the
1798  * context has been detached from its task.
1799  */
1800 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1801 {
1802 	lockdep_assert_held(&event->ctx->mutex);
1803 
1804 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1805 }
1806 
1807 /*
1808  * Cross CPU call to disable a performance event
1809  */
1810 static void __perf_event_disable(struct perf_event *event,
1811 				 struct perf_cpu_context *cpuctx,
1812 				 struct perf_event_context *ctx,
1813 				 void *info)
1814 {
1815 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1816 		return;
1817 
1818 	update_context_time(ctx);
1819 	update_cgrp_time_from_event(event);
1820 	update_group_times(event);
1821 	if (event == event->group_leader)
1822 		group_sched_out(event, cpuctx, ctx);
1823 	else
1824 		event_sched_out(event, cpuctx, ctx);
1825 	event->state = PERF_EVENT_STATE_OFF;
1826 }
1827 
1828 /*
1829  * Disable a event.
1830  *
1831  * If event->ctx is a cloned context, callers must make sure that
1832  * every task struct that event->ctx->task could possibly point to
1833  * remains valid.  This condition is satisifed when called through
1834  * perf_event_for_each_child or perf_event_for_each because they
1835  * hold the top-level event's child_mutex, so any descendant that
1836  * goes to exit will block in perf_event_exit_event().
1837  *
1838  * When called from perf_pending_event it's OK because event->ctx
1839  * is the current context on this CPU and preemption is disabled,
1840  * hence we can't get into perf_event_task_sched_out for this context.
1841  */
1842 static void _perf_event_disable(struct perf_event *event)
1843 {
1844 	struct perf_event_context *ctx = event->ctx;
1845 
1846 	raw_spin_lock_irq(&ctx->lock);
1847 	if (event->state <= PERF_EVENT_STATE_OFF) {
1848 		raw_spin_unlock_irq(&ctx->lock);
1849 		return;
1850 	}
1851 	raw_spin_unlock_irq(&ctx->lock);
1852 
1853 	event_function_call(event, __perf_event_disable, NULL);
1854 }
1855 
1856 void perf_event_disable_local(struct perf_event *event)
1857 {
1858 	event_function_local(event, __perf_event_disable, NULL);
1859 }
1860 
1861 /*
1862  * Strictly speaking kernel users cannot create groups and therefore this
1863  * interface does not need the perf_event_ctx_lock() magic.
1864  */
1865 void perf_event_disable(struct perf_event *event)
1866 {
1867 	struct perf_event_context *ctx;
1868 
1869 	ctx = perf_event_ctx_lock(event);
1870 	_perf_event_disable(event);
1871 	perf_event_ctx_unlock(event, ctx);
1872 }
1873 EXPORT_SYMBOL_GPL(perf_event_disable);
1874 
1875 static void perf_set_shadow_time(struct perf_event *event,
1876 				 struct perf_event_context *ctx,
1877 				 u64 tstamp)
1878 {
1879 	/*
1880 	 * use the correct time source for the time snapshot
1881 	 *
1882 	 * We could get by without this by leveraging the
1883 	 * fact that to get to this function, the caller
1884 	 * has most likely already called update_context_time()
1885 	 * and update_cgrp_time_xx() and thus both timestamp
1886 	 * are identical (or very close). Given that tstamp is,
1887 	 * already adjusted for cgroup, we could say that:
1888 	 *    tstamp - ctx->timestamp
1889 	 * is equivalent to
1890 	 *    tstamp - cgrp->timestamp.
1891 	 *
1892 	 * Then, in perf_output_read(), the calculation would
1893 	 * work with no changes because:
1894 	 * - event is guaranteed scheduled in
1895 	 * - no scheduled out in between
1896 	 * - thus the timestamp would be the same
1897 	 *
1898 	 * But this is a bit hairy.
1899 	 *
1900 	 * So instead, we have an explicit cgroup call to remain
1901 	 * within the time time source all along. We believe it
1902 	 * is cleaner and simpler to understand.
1903 	 */
1904 	if (is_cgroup_event(event))
1905 		perf_cgroup_set_shadow_time(event, tstamp);
1906 	else
1907 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1908 }
1909 
1910 #define MAX_INTERRUPTS (~0ULL)
1911 
1912 static void perf_log_throttle(struct perf_event *event, int enable);
1913 static void perf_log_itrace_start(struct perf_event *event);
1914 
1915 static int
1916 event_sched_in(struct perf_event *event,
1917 		 struct perf_cpu_context *cpuctx,
1918 		 struct perf_event_context *ctx)
1919 {
1920 	u64 tstamp = perf_event_time(event);
1921 	int ret = 0;
1922 
1923 	lockdep_assert_held(&ctx->lock);
1924 
1925 	if (event->state <= PERF_EVENT_STATE_OFF)
1926 		return 0;
1927 
1928 	event->state = PERF_EVENT_STATE_ACTIVE;
1929 	event->oncpu = smp_processor_id();
1930 
1931 	/*
1932 	 * Unthrottle events, since we scheduled we might have missed several
1933 	 * ticks already, also for a heavily scheduling task there is little
1934 	 * guarantee it'll get a tick in a timely manner.
1935 	 */
1936 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1937 		perf_log_throttle(event, 1);
1938 		event->hw.interrupts = 0;
1939 	}
1940 
1941 	/*
1942 	 * The new state must be visible before we turn it on in the hardware:
1943 	 */
1944 	smp_wmb();
1945 
1946 	perf_pmu_disable(event->pmu);
1947 
1948 	perf_set_shadow_time(event, ctx, tstamp);
1949 
1950 	perf_log_itrace_start(event);
1951 
1952 	if (event->pmu->add(event, PERF_EF_START)) {
1953 		event->state = PERF_EVENT_STATE_INACTIVE;
1954 		event->oncpu = -1;
1955 		ret = -EAGAIN;
1956 		goto out;
1957 	}
1958 
1959 	event->tstamp_running += tstamp - event->tstamp_stopped;
1960 
1961 	if (!is_software_event(event))
1962 		cpuctx->active_oncpu++;
1963 	if (!ctx->nr_active++)
1964 		perf_event_ctx_activate(ctx);
1965 	if (event->attr.freq && event->attr.sample_freq)
1966 		ctx->nr_freq++;
1967 
1968 	if (event->attr.exclusive)
1969 		cpuctx->exclusive = 1;
1970 
1971 out:
1972 	perf_pmu_enable(event->pmu);
1973 
1974 	return ret;
1975 }
1976 
1977 static int
1978 group_sched_in(struct perf_event *group_event,
1979 	       struct perf_cpu_context *cpuctx,
1980 	       struct perf_event_context *ctx)
1981 {
1982 	struct perf_event *event, *partial_group = NULL;
1983 	struct pmu *pmu = ctx->pmu;
1984 	u64 now = ctx->time;
1985 	bool simulate = false;
1986 
1987 	if (group_event->state == PERF_EVENT_STATE_OFF)
1988 		return 0;
1989 
1990 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1991 
1992 	if (event_sched_in(group_event, cpuctx, ctx)) {
1993 		pmu->cancel_txn(pmu);
1994 		perf_mux_hrtimer_restart(cpuctx);
1995 		return -EAGAIN;
1996 	}
1997 
1998 	/*
1999 	 * Schedule in siblings as one group (if any):
2000 	 */
2001 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2002 		if (event_sched_in(event, cpuctx, ctx)) {
2003 			partial_group = event;
2004 			goto group_error;
2005 		}
2006 	}
2007 
2008 	if (!pmu->commit_txn(pmu))
2009 		return 0;
2010 
2011 group_error:
2012 	/*
2013 	 * Groups can be scheduled in as one unit only, so undo any
2014 	 * partial group before returning:
2015 	 * The events up to the failed event are scheduled out normally,
2016 	 * tstamp_stopped will be updated.
2017 	 *
2018 	 * The failed events and the remaining siblings need to have
2019 	 * their timings updated as if they had gone thru event_sched_in()
2020 	 * and event_sched_out(). This is required to get consistent timings
2021 	 * across the group. This also takes care of the case where the group
2022 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2023 	 * the time the event was actually stopped, such that time delta
2024 	 * calculation in update_event_times() is correct.
2025 	 */
2026 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2027 		if (event == partial_group)
2028 			simulate = true;
2029 
2030 		if (simulate) {
2031 			event->tstamp_running += now - event->tstamp_stopped;
2032 			event->tstamp_stopped = now;
2033 		} else {
2034 			event_sched_out(event, cpuctx, ctx);
2035 		}
2036 	}
2037 	event_sched_out(group_event, cpuctx, ctx);
2038 
2039 	pmu->cancel_txn(pmu);
2040 
2041 	perf_mux_hrtimer_restart(cpuctx);
2042 
2043 	return -EAGAIN;
2044 }
2045 
2046 /*
2047  * Work out whether we can put this event group on the CPU now.
2048  */
2049 static int group_can_go_on(struct perf_event *event,
2050 			   struct perf_cpu_context *cpuctx,
2051 			   int can_add_hw)
2052 {
2053 	/*
2054 	 * Groups consisting entirely of software events can always go on.
2055 	 */
2056 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2057 		return 1;
2058 	/*
2059 	 * If an exclusive group is already on, no other hardware
2060 	 * events can go on.
2061 	 */
2062 	if (cpuctx->exclusive)
2063 		return 0;
2064 	/*
2065 	 * If this group is exclusive and there are already
2066 	 * events on the CPU, it can't go on.
2067 	 */
2068 	if (event->attr.exclusive && cpuctx->active_oncpu)
2069 		return 0;
2070 	/*
2071 	 * Otherwise, try to add it if all previous groups were able
2072 	 * to go on.
2073 	 */
2074 	return can_add_hw;
2075 }
2076 
2077 static void add_event_to_ctx(struct perf_event *event,
2078 			       struct perf_event_context *ctx)
2079 {
2080 	u64 tstamp = perf_event_time(event);
2081 
2082 	list_add_event(event, ctx);
2083 	perf_group_attach(event);
2084 	event->tstamp_enabled = tstamp;
2085 	event->tstamp_running = tstamp;
2086 	event->tstamp_stopped = tstamp;
2087 }
2088 
2089 static void ctx_sched_out(struct perf_event_context *ctx,
2090 			  struct perf_cpu_context *cpuctx,
2091 			  enum event_type_t event_type);
2092 static void
2093 ctx_sched_in(struct perf_event_context *ctx,
2094 	     struct perf_cpu_context *cpuctx,
2095 	     enum event_type_t event_type,
2096 	     struct task_struct *task);
2097 
2098 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2099 			       struct perf_event_context *ctx)
2100 {
2101 	if (!cpuctx->task_ctx)
2102 		return;
2103 
2104 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2105 		return;
2106 
2107 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2108 }
2109 
2110 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2111 				struct perf_event_context *ctx,
2112 				struct task_struct *task)
2113 {
2114 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2115 	if (ctx)
2116 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2117 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2118 	if (ctx)
2119 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2120 }
2121 
2122 static void ctx_resched(struct perf_cpu_context *cpuctx,
2123 			struct perf_event_context *task_ctx)
2124 {
2125 	perf_pmu_disable(cpuctx->ctx.pmu);
2126 	if (task_ctx)
2127 		task_ctx_sched_out(cpuctx, task_ctx);
2128 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2129 	perf_event_sched_in(cpuctx, task_ctx, current);
2130 	perf_pmu_enable(cpuctx->ctx.pmu);
2131 }
2132 
2133 /*
2134  * Cross CPU call to install and enable a performance event
2135  *
2136  * Very similar to remote_function() + event_function() but cannot assume that
2137  * things like ctx->is_active and cpuctx->task_ctx are set.
2138  */
2139 static int  __perf_install_in_context(void *info)
2140 {
2141 	struct perf_event *event = info;
2142 	struct perf_event_context *ctx = event->ctx;
2143 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145 	bool activate = true;
2146 	int ret = 0;
2147 
2148 	raw_spin_lock(&cpuctx->ctx.lock);
2149 	if (ctx->task) {
2150 		raw_spin_lock(&ctx->lock);
2151 		task_ctx = ctx;
2152 
2153 		/* If we're on the wrong CPU, try again */
2154 		if (task_cpu(ctx->task) != smp_processor_id()) {
2155 			ret = -ESRCH;
2156 			goto unlock;
2157 		}
2158 
2159 		/*
2160 		 * If we're on the right CPU, see if the task we target is
2161 		 * current, if not we don't have to activate the ctx, a future
2162 		 * context switch will do that for us.
2163 		 */
2164 		if (ctx->task != current)
2165 			activate = false;
2166 		else
2167 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2168 
2169 	} else if (task_ctx) {
2170 		raw_spin_lock(&task_ctx->lock);
2171 	}
2172 
2173 	if (activate) {
2174 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2175 		add_event_to_ctx(event, ctx);
2176 		ctx_resched(cpuctx, task_ctx);
2177 	} else {
2178 		add_event_to_ctx(event, ctx);
2179 	}
2180 
2181 unlock:
2182 	perf_ctx_unlock(cpuctx, task_ctx);
2183 
2184 	return ret;
2185 }
2186 
2187 /*
2188  * Attach a performance event to a context.
2189  *
2190  * Very similar to event_function_call, see comment there.
2191  */
2192 static void
2193 perf_install_in_context(struct perf_event_context *ctx,
2194 			struct perf_event *event,
2195 			int cpu)
2196 {
2197 	struct task_struct *task = READ_ONCE(ctx->task);
2198 
2199 	lockdep_assert_held(&ctx->mutex);
2200 
2201 	event->ctx = ctx;
2202 	if (event->cpu != -1)
2203 		event->cpu = cpu;
2204 
2205 	if (!task) {
2206 		cpu_function_call(cpu, __perf_install_in_context, event);
2207 		return;
2208 	}
2209 
2210 	/*
2211 	 * Should not happen, we validate the ctx is still alive before calling.
2212 	 */
2213 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2214 		return;
2215 
2216 	/*
2217 	 * Installing events is tricky because we cannot rely on ctx->is_active
2218 	 * to be set in case this is the nr_events 0 -> 1 transition.
2219 	 */
2220 again:
2221 	/*
2222 	 * Cannot use task_function_call() because we need to run on the task's
2223 	 * CPU regardless of whether its current or not.
2224 	 */
2225 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2226 		return;
2227 
2228 	raw_spin_lock_irq(&ctx->lock);
2229 	task = ctx->task;
2230 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2231 		/*
2232 		 * Cannot happen because we already checked above (which also
2233 		 * cannot happen), and we hold ctx->mutex, which serializes us
2234 		 * against perf_event_exit_task_context().
2235 		 */
2236 		raw_spin_unlock_irq(&ctx->lock);
2237 		return;
2238 	}
2239 	raw_spin_unlock_irq(&ctx->lock);
2240 	/*
2241 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2242 	 * unconditionally.
2243 	 */
2244 	goto again;
2245 }
2246 
2247 /*
2248  * Put a event into inactive state and update time fields.
2249  * Enabling the leader of a group effectively enables all
2250  * the group members that aren't explicitly disabled, so we
2251  * have to update their ->tstamp_enabled also.
2252  * Note: this works for group members as well as group leaders
2253  * since the non-leader members' sibling_lists will be empty.
2254  */
2255 static void __perf_event_mark_enabled(struct perf_event *event)
2256 {
2257 	struct perf_event *sub;
2258 	u64 tstamp = perf_event_time(event);
2259 
2260 	event->state = PERF_EVENT_STATE_INACTIVE;
2261 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2262 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2263 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2264 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2265 	}
2266 }
2267 
2268 /*
2269  * Cross CPU call to enable a performance event
2270  */
2271 static void __perf_event_enable(struct perf_event *event,
2272 				struct perf_cpu_context *cpuctx,
2273 				struct perf_event_context *ctx,
2274 				void *info)
2275 {
2276 	struct perf_event *leader = event->group_leader;
2277 	struct perf_event_context *task_ctx;
2278 
2279 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2280 	    event->state <= PERF_EVENT_STATE_ERROR)
2281 		return;
2282 
2283 	if (ctx->is_active)
2284 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2285 
2286 	__perf_event_mark_enabled(event);
2287 
2288 	if (!ctx->is_active)
2289 		return;
2290 
2291 	if (!event_filter_match(event)) {
2292 		if (is_cgroup_event(event))
2293 			perf_cgroup_defer_enabled(event);
2294 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2295 		return;
2296 	}
2297 
2298 	/*
2299 	 * If the event is in a group and isn't the group leader,
2300 	 * then don't put it on unless the group is on.
2301 	 */
2302 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2303 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304 		return;
2305 	}
2306 
2307 	task_ctx = cpuctx->task_ctx;
2308 	if (ctx->task)
2309 		WARN_ON_ONCE(task_ctx != ctx);
2310 
2311 	ctx_resched(cpuctx, task_ctx);
2312 }
2313 
2314 /*
2315  * Enable a event.
2316  *
2317  * If event->ctx is a cloned context, callers must make sure that
2318  * every task struct that event->ctx->task could possibly point to
2319  * remains valid.  This condition is satisfied when called through
2320  * perf_event_for_each_child or perf_event_for_each as described
2321  * for perf_event_disable.
2322  */
2323 static void _perf_event_enable(struct perf_event *event)
2324 {
2325 	struct perf_event_context *ctx = event->ctx;
2326 
2327 	raw_spin_lock_irq(&ctx->lock);
2328 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2329 	    event->state <  PERF_EVENT_STATE_ERROR) {
2330 		raw_spin_unlock_irq(&ctx->lock);
2331 		return;
2332 	}
2333 
2334 	/*
2335 	 * If the event is in error state, clear that first.
2336 	 *
2337 	 * That way, if we see the event in error state below, we know that it
2338 	 * has gone back into error state, as distinct from the task having
2339 	 * been scheduled away before the cross-call arrived.
2340 	 */
2341 	if (event->state == PERF_EVENT_STATE_ERROR)
2342 		event->state = PERF_EVENT_STATE_OFF;
2343 	raw_spin_unlock_irq(&ctx->lock);
2344 
2345 	event_function_call(event, __perf_event_enable, NULL);
2346 }
2347 
2348 /*
2349  * See perf_event_disable();
2350  */
2351 void perf_event_enable(struct perf_event *event)
2352 {
2353 	struct perf_event_context *ctx;
2354 
2355 	ctx = perf_event_ctx_lock(event);
2356 	_perf_event_enable(event);
2357 	perf_event_ctx_unlock(event, ctx);
2358 }
2359 EXPORT_SYMBOL_GPL(perf_event_enable);
2360 
2361 static int _perf_event_refresh(struct perf_event *event, int refresh)
2362 {
2363 	/*
2364 	 * not supported on inherited events
2365 	 */
2366 	if (event->attr.inherit || !is_sampling_event(event))
2367 		return -EINVAL;
2368 
2369 	atomic_add(refresh, &event->event_limit);
2370 	_perf_event_enable(event);
2371 
2372 	return 0;
2373 }
2374 
2375 /*
2376  * See perf_event_disable()
2377  */
2378 int perf_event_refresh(struct perf_event *event, int refresh)
2379 {
2380 	struct perf_event_context *ctx;
2381 	int ret;
2382 
2383 	ctx = perf_event_ctx_lock(event);
2384 	ret = _perf_event_refresh(event, refresh);
2385 	perf_event_ctx_unlock(event, ctx);
2386 
2387 	return ret;
2388 }
2389 EXPORT_SYMBOL_GPL(perf_event_refresh);
2390 
2391 static void ctx_sched_out(struct perf_event_context *ctx,
2392 			  struct perf_cpu_context *cpuctx,
2393 			  enum event_type_t event_type)
2394 {
2395 	int is_active = ctx->is_active;
2396 	struct perf_event *event;
2397 
2398 	lockdep_assert_held(&ctx->lock);
2399 
2400 	if (likely(!ctx->nr_events)) {
2401 		/*
2402 		 * See __perf_remove_from_context().
2403 		 */
2404 		WARN_ON_ONCE(ctx->is_active);
2405 		if (ctx->task)
2406 			WARN_ON_ONCE(cpuctx->task_ctx);
2407 		return;
2408 	}
2409 
2410 	ctx->is_active &= ~event_type;
2411 	if (!(ctx->is_active & EVENT_ALL))
2412 		ctx->is_active = 0;
2413 
2414 	if (ctx->task) {
2415 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2416 		if (!ctx->is_active)
2417 			cpuctx->task_ctx = NULL;
2418 	}
2419 
2420 	is_active ^= ctx->is_active; /* changed bits */
2421 
2422 	if (is_active & EVENT_TIME) {
2423 		/* update (and stop) ctx time */
2424 		update_context_time(ctx);
2425 		update_cgrp_time_from_cpuctx(cpuctx);
2426 	}
2427 
2428 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2429 		return;
2430 
2431 	perf_pmu_disable(ctx->pmu);
2432 	if (is_active & EVENT_PINNED) {
2433 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2434 			group_sched_out(event, cpuctx, ctx);
2435 	}
2436 
2437 	if (is_active & EVENT_FLEXIBLE) {
2438 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2439 			group_sched_out(event, cpuctx, ctx);
2440 	}
2441 	perf_pmu_enable(ctx->pmu);
2442 }
2443 
2444 /*
2445  * Test whether two contexts are equivalent, i.e. whether they have both been
2446  * cloned from the same version of the same context.
2447  *
2448  * Equivalence is measured using a generation number in the context that is
2449  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2450  * and list_del_event().
2451  */
2452 static int context_equiv(struct perf_event_context *ctx1,
2453 			 struct perf_event_context *ctx2)
2454 {
2455 	lockdep_assert_held(&ctx1->lock);
2456 	lockdep_assert_held(&ctx2->lock);
2457 
2458 	/* Pinning disables the swap optimization */
2459 	if (ctx1->pin_count || ctx2->pin_count)
2460 		return 0;
2461 
2462 	/* If ctx1 is the parent of ctx2 */
2463 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2464 		return 1;
2465 
2466 	/* If ctx2 is the parent of ctx1 */
2467 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2468 		return 1;
2469 
2470 	/*
2471 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2472 	 * hierarchy, see perf_event_init_context().
2473 	 */
2474 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2475 			ctx1->parent_gen == ctx2->parent_gen)
2476 		return 1;
2477 
2478 	/* Unmatched */
2479 	return 0;
2480 }
2481 
2482 static void __perf_event_sync_stat(struct perf_event *event,
2483 				     struct perf_event *next_event)
2484 {
2485 	u64 value;
2486 
2487 	if (!event->attr.inherit_stat)
2488 		return;
2489 
2490 	/*
2491 	 * Update the event value, we cannot use perf_event_read()
2492 	 * because we're in the middle of a context switch and have IRQs
2493 	 * disabled, which upsets smp_call_function_single(), however
2494 	 * we know the event must be on the current CPU, therefore we
2495 	 * don't need to use it.
2496 	 */
2497 	switch (event->state) {
2498 	case PERF_EVENT_STATE_ACTIVE:
2499 		event->pmu->read(event);
2500 		/* fall-through */
2501 
2502 	case PERF_EVENT_STATE_INACTIVE:
2503 		update_event_times(event);
2504 		break;
2505 
2506 	default:
2507 		break;
2508 	}
2509 
2510 	/*
2511 	 * In order to keep per-task stats reliable we need to flip the event
2512 	 * values when we flip the contexts.
2513 	 */
2514 	value = local64_read(&next_event->count);
2515 	value = local64_xchg(&event->count, value);
2516 	local64_set(&next_event->count, value);
2517 
2518 	swap(event->total_time_enabled, next_event->total_time_enabled);
2519 	swap(event->total_time_running, next_event->total_time_running);
2520 
2521 	/*
2522 	 * Since we swizzled the values, update the user visible data too.
2523 	 */
2524 	perf_event_update_userpage(event);
2525 	perf_event_update_userpage(next_event);
2526 }
2527 
2528 static void perf_event_sync_stat(struct perf_event_context *ctx,
2529 				   struct perf_event_context *next_ctx)
2530 {
2531 	struct perf_event *event, *next_event;
2532 
2533 	if (!ctx->nr_stat)
2534 		return;
2535 
2536 	update_context_time(ctx);
2537 
2538 	event = list_first_entry(&ctx->event_list,
2539 				   struct perf_event, event_entry);
2540 
2541 	next_event = list_first_entry(&next_ctx->event_list,
2542 					struct perf_event, event_entry);
2543 
2544 	while (&event->event_entry != &ctx->event_list &&
2545 	       &next_event->event_entry != &next_ctx->event_list) {
2546 
2547 		__perf_event_sync_stat(event, next_event);
2548 
2549 		event = list_next_entry(event, event_entry);
2550 		next_event = list_next_entry(next_event, event_entry);
2551 	}
2552 }
2553 
2554 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2555 					 struct task_struct *next)
2556 {
2557 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2558 	struct perf_event_context *next_ctx;
2559 	struct perf_event_context *parent, *next_parent;
2560 	struct perf_cpu_context *cpuctx;
2561 	int do_switch = 1;
2562 
2563 	if (likely(!ctx))
2564 		return;
2565 
2566 	cpuctx = __get_cpu_context(ctx);
2567 	if (!cpuctx->task_ctx)
2568 		return;
2569 
2570 	rcu_read_lock();
2571 	next_ctx = next->perf_event_ctxp[ctxn];
2572 	if (!next_ctx)
2573 		goto unlock;
2574 
2575 	parent = rcu_dereference(ctx->parent_ctx);
2576 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2577 
2578 	/* If neither context have a parent context; they cannot be clones. */
2579 	if (!parent && !next_parent)
2580 		goto unlock;
2581 
2582 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2583 		/*
2584 		 * Looks like the two contexts are clones, so we might be
2585 		 * able to optimize the context switch.  We lock both
2586 		 * contexts and check that they are clones under the
2587 		 * lock (including re-checking that neither has been
2588 		 * uncloned in the meantime).  It doesn't matter which
2589 		 * order we take the locks because no other cpu could
2590 		 * be trying to lock both of these tasks.
2591 		 */
2592 		raw_spin_lock(&ctx->lock);
2593 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2594 		if (context_equiv(ctx, next_ctx)) {
2595 			WRITE_ONCE(ctx->task, next);
2596 			WRITE_ONCE(next_ctx->task, task);
2597 
2598 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2599 
2600 			/*
2601 			 * RCU_INIT_POINTER here is safe because we've not
2602 			 * modified the ctx and the above modification of
2603 			 * ctx->task and ctx->task_ctx_data are immaterial
2604 			 * since those values are always verified under
2605 			 * ctx->lock which we're now holding.
2606 			 */
2607 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2608 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2609 
2610 			do_switch = 0;
2611 
2612 			perf_event_sync_stat(ctx, next_ctx);
2613 		}
2614 		raw_spin_unlock(&next_ctx->lock);
2615 		raw_spin_unlock(&ctx->lock);
2616 	}
2617 unlock:
2618 	rcu_read_unlock();
2619 
2620 	if (do_switch) {
2621 		raw_spin_lock(&ctx->lock);
2622 		task_ctx_sched_out(cpuctx, ctx);
2623 		raw_spin_unlock(&ctx->lock);
2624 	}
2625 }
2626 
2627 void perf_sched_cb_dec(struct pmu *pmu)
2628 {
2629 	this_cpu_dec(perf_sched_cb_usages);
2630 }
2631 
2632 void perf_sched_cb_inc(struct pmu *pmu)
2633 {
2634 	this_cpu_inc(perf_sched_cb_usages);
2635 }
2636 
2637 /*
2638  * This function provides the context switch callback to the lower code
2639  * layer. It is invoked ONLY when the context switch callback is enabled.
2640  */
2641 static void perf_pmu_sched_task(struct task_struct *prev,
2642 				struct task_struct *next,
2643 				bool sched_in)
2644 {
2645 	struct perf_cpu_context *cpuctx;
2646 	struct pmu *pmu;
2647 	unsigned long flags;
2648 
2649 	if (prev == next)
2650 		return;
2651 
2652 	local_irq_save(flags);
2653 
2654 	rcu_read_lock();
2655 
2656 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2657 		if (pmu->sched_task) {
2658 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2659 
2660 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2661 
2662 			perf_pmu_disable(pmu);
2663 
2664 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2665 
2666 			perf_pmu_enable(pmu);
2667 
2668 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2669 		}
2670 	}
2671 
2672 	rcu_read_unlock();
2673 
2674 	local_irq_restore(flags);
2675 }
2676 
2677 static void perf_event_switch(struct task_struct *task,
2678 			      struct task_struct *next_prev, bool sched_in);
2679 
2680 #define for_each_task_context_nr(ctxn)					\
2681 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2682 
2683 /*
2684  * Called from scheduler to remove the events of the current task,
2685  * with interrupts disabled.
2686  *
2687  * We stop each event and update the event value in event->count.
2688  *
2689  * This does not protect us against NMI, but disable()
2690  * sets the disabled bit in the control field of event _before_
2691  * accessing the event control register. If a NMI hits, then it will
2692  * not restart the event.
2693  */
2694 void __perf_event_task_sched_out(struct task_struct *task,
2695 				 struct task_struct *next)
2696 {
2697 	int ctxn;
2698 
2699 	if (__this_cpu_read(perf_sched_cb_usages))
2700 		perf_pmu_sched_task(task, next, false);
2701 
2702 	if (atomic_read(&nr_switch_events))
2703 		perf_event_switch(task, next, false);
2704 
2705 	for_each_task_context_nr(ctxn)
2706 		perf_event_context_sched_out(task, ctxn, next);
2707 
2708 	/*
2709 	 * if cgroup events exist on this CPU, then we need
2710 	 * to check if we have to switch out PMU state.
2711 	 * cgroup event are system-wide mode only
2712 	 */
2713 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2714 		perf_cgroup_sched_out(task, next);
2715 }
2716 
2717 /*
2718  * Called with IRQs disabled
2719  */
2720 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2721 			      enum event_type_t event_type)
2722 {
2723 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2724 }
2725 
2726 static void
2727 ctx_pinned_sched_in(struct perf_event_context *ctx,
2728 		    struct perf_cpu_context *cpuctx)
2729 {
2730 	struct perf_event *event;
2731 
2732 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2733 		if (event->state <= PERF_EVENT_STATE_OFF)
2734 			continue;
2735 		if (!event_filter_match(event))
2736 			continue;
2737 
2738 		/* may need to reset tstamp_enabled */
2739 		if (is_cgroup_event(event))
2740 			perf_cgroup_mark_enabled(event, ctx);
2741 
2742 		if (group_can_go_on(event, cpuctx, 1))
2743 			group_sched_in(event, cpuctx, ctx);
2744 
2745 		/*
2746 		 * If this pinned group hasn't been scheduled,
2747 		 * put it in error state.
2748 		 */
2749 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2750 			update_group_times(event);
2751 			event->state = PERF_EVENT_STATE_ERROR;
2752 		}
2753 	}
2754 }
2755 
2756 static void
2757 ctx_flexible_sched_in(struct perf_event_context *ctx,
2758 		      struct perf_cpu_context *cpuctx)
2759 {
2760 	struct perf_event *event;
2761 	int can_add_hw = 1;
2762 
2763 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2764 		/* Ignore events in OFF or ERROR state */
2765 		if (event->state <= PERF_EVENT_STATE_OFF)
2766 			continue;
2767 		/*
2768 		 * Listen to the 'cpu' scheduling filter constraint
2769 		 * of events:
2770 		 */
2771 		if (!event_filter_match(event))
2772 			continue;
2773 
2774 		/* may need to reset tstamp_enabled */
2775 		if (is_cgroup_event(event))
2776 			perf_cgroup_mark_enabled(event, ctx);
2777 
2778 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2779 			if (group_sched_in(event, cpuctx, ctx))
2780 				can_add_hw = 0;
2781 		}
2782 	}
2783 }
2784 
2785 static void
2786 ctx_sched_in(struct perf_event_context *ctx,
2787 	     struct perf_cpu_context *cpuctx,
2788 	     enum event_type_t event_type,
2789 	     struct task_struct *task)
2790 {
2791 	int is_active = ctx->is_active;
2792 	u64 now;
2793 
2794 	lockdep_assert_held(&ctx->lock);
2795 
2796 	if (likely(!ctx->nr_events))
2797 		return;
2798 
2799 	ctx->is_active |= (event_type | EVENT_TIME);
2800 	if (ctx->task) {
2801 		if (!is_active)
2802 			cpuctx->task_ctx = ctx;
2803 		else
2804 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2805 	}
2806 
2807 	is_active ^= ctx->is_active; /* changed bits */
2808 
2809 	if (is_active & EVENT_TIME) {
2810 		/* start ctx time */
2811 		now = perf_clock();
2812 		ctx->timestamp = now;
2813 		perf_cgroup_set_timestamp(task, ctx);
2814 	}
2815 
2816 	/*
2817 	 * First go through the list and put on any pinned groups
2818 	 * in order to give them the best chance of going on.
2819 	 */
2820 	if (is_active & EVENT_PINNED)
2821 		ctx_pinned_sched_in(ctx, cpuctx);
2822 
2823 	/* Then walk through the lower prio flexible groups */
2824 	if (is_active & EVENT_FLEXIBLE)
2825 		ctx_flexible_sched_in(ctx, cpuctx);
2826 }
2827 
2828 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2829 			     enum event_type_t event_type,
2830 			     struct task_struct *task)
2831 {
2832 	struct perf_event_context *ctx = &cpuctx->ctx;
2833 
2834 	ctx_sched_in(ctx, cpuctx, event_type, task);
2835 }
2836 
2837 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2838 					struct task_struct *task)
2839 {
2840 	struct perf_cpu_context *cpuctx;
2841 
2842 	cpuctx = __get_cpu_context(ctx);
2843 	if (cpuctx->task_ctx == ctx)
2844 		return;
2845 
2846 	perf_ctx_lock(cpuctx, ctx);
2847 	perf_pmu_disable(ctx->pmu);
2848 	/*
2849 	 * We want to keep the following priority order:
2850 	 * cpu pinned (that don't need to move), task pinned,
2851 	 * cpu flexible, task flexible.
2852 	 */
2853 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2854 	perf_event_sched_in(cpuctx, ctx, task);
2855 	perf_pmu_enable(ctx->pmu);
2856 	perf_ctx_unlock(cpuctx, ctx);
2857 }
2858 
2859 /*
2860  * Called from scheduler to add the events of the current task
2861  * with interrupts disabled.
2862  *
2863  * We restore the event value and then enable it.
2864  *
2865  * This does not protect us against NMI, but enable()
2866  * sets the enabled bit in the control field of event _before_
2867  * accessing the event control register. If a NMI hits, then it will
2868  * keep the event running.
2869  */
2870 void __perf_event_task_sched_in(struct task_struct *prev,
2871 				struct task_struct *task)
2872 {
2873 	struct perf_event_context *ctx;
2874 	int ctxn;
2875 
2876 	/*
2877 	 * If cgroup events exist on this CPU, then we need to check if we have
2878 	 * to switch in PMU state; cgroup event are system-wide mode only.
2879 	 *
2880 	 * Since cgroup events are CPU events, we must schedule these in before
2881 	 * we schedule in the task events.
2882 	 */
2883 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2884 		perf_cgroup_sched_in(prev, task);
2885 
2886 	for_each_task_context_nr(ctxn) {
2887 		ctx = task->perf_event_ctxp[ctxn];
2888 		if (likely(!ctx))
2889 			continue;
2890 
2891 		perf_event_context_sched_in(ctx, task);
2892 	}
2893 
2894 	if (atomic_read(&nr_switch_events))
2895 		perf_event_switch(task, prev, true);
2896 
2897 	if (__this_cpu_read(perf_sched_cb_usages))
2898 		perf_pmu_sched_task(prev, task, true);
2899 }
2900 
2901 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2902 {
2903 	u64 frequency = event->attr.sample_freq;
2904 	u64 sec = NSEC_PER_SEC;
2905 	u64 divisor, dividend;
2906 
2907 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2908 
2909 	count_fls = fls64(count);
2910 	nsec_fls = fls64(nsec);
2911 	frequency_fls = fls64(frequency);
2912 	sec_fls = 30;
2913 
2914 	/*
2915 	 * We got @count in @nsec, with a target of sample_freq HZ
2916 	 * the target period becomes:
2917 	 *
2918 	 *             @count * 10^9
2919 	 * period = -------------------
2920 	 *          @nsec * sample_freq
2921 	 *
2922 	 */
2923 
2924 	/*
2925 	 * Reduce accuracy by one bit such that @a and @b converge
2926 	 * to a similar magnitude.
2927 	 */
2928 #define REDUCE_FLS(a, b)		\
2929 do {					\
2930 	if (a##_fls > b##_fls) {	\
2931 		a >>= 1;		\
2932 		a##_fls--;		\
2933 	} else {			\
2934 		b >>= 1;		\
2935 		b##_fls--;		\
2936 	}				\
2937 } while (0)
2938 
2939 	/*
2940 	 * Reduce accuracy until either term fits in a u64, then proceed with
2941 	 * the other, so that finally we can do a u64/u64 division.
2942 	 */
2943 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2944 		REDUCE_FLS(nsec, frequency);
2945 		REDUCE_FLS(sec, count);
2946 	}
2947 
2948 	if (count_fls + sec_fls > 64) {
2949 		divisor = nsec * frequency;
2950 
2951 		while (count_fls + sec_fls > 64) {
2952 			REDUCE_FLS(count, sec);
2953 			divisor >>= 1;
2954 		}
2955 
2956 		dividend = count * sec;
2957 	} else {
2958 		dividend = count * sec;
2959 
2960 		while (nsec_fls + frequency_fls > 64) {
2961 			REDUCE_FLS(nsec, frequency);
2962 			dividend >>= 1;
2963 		}
2964 
2965 		divisor = nsec * frequency;
2966 	}
2967 
2968 	if (!divisor)
2969 		return dividend;
2970 
2971 	return div64_u64(dividend, divisor);
2972 }
2973 
2974 static DEFINE_PER_CPU(int, perf_throttled_count);
2975 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2976 
2977 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2978 {
2979 	struct hw_perf_event *hwc = &event->hw;
2980 	s64 period, sample_period;
2981 	s64 delta;
2982 
2983 	period = perf_calculate_period(event, nsec, count);
2984 
2985 	delta = (s64)(period - hwc->sample_period);
2986 	delta = (delta + 7) / 8; /* low pass filter */
2987 
2988 	sample_period = hwc->sample_period + delta;
2989 
2990 	if (!sample_period)
2991 		sample_period = 1;
2992 
2993 	hwc->sample_period = sample_period;
2994 
2995 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2996 		if (disable)
2997 			event->pmu->stop(event, PERF_EF_UPDATE);
2998 
2999 		local64_set(&hwc->period_left, 0);
3000 
3001 		if (disable)
3002 			event->pmu->start(event, PERF_EF_RELOAD);
3003 	}
3004 }
3005 
3006 /*
3007  * combine freq adjustment with unthrottling to avoid two passes over the
3008  * events. At the same time, make sure, having freq events does not change
3009  * the rate of unthrottling as that would introduce bias.
3010  */
3011 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3012 					   int needs_unthr)
3013 {
3014 	struct perf_event *event;
3015 	struct hw_perf_event *hwc;
3016 	u64 now, period = TICK_NSEC;
3017 	s64 delta;
3018 
3019 	/*
3020 	 * only need to iterate over all events iff:
3021 	 * - context have events in frequency mode (needs freq adjust)
3022 	 * - there are events to unthrottle on this cpu
3023 	 */
3024 	if (!(ctx->nr_freq || needs_unthr))
3025 		return;
3026 
3027 	raw_spin_lock(&ctx->lock);
3028 	perf_pmu_disable(ctx->pmu);
3029 
3030 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3031 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3032 			continue;
3033 
3034 		if (!event_filter_match(event))
3035 			continue;
3036 
3037 		perf_pmu_disable(event->pmu);
3038 
3039 		hwc = &event->hw;
3040 
3041 		if (hwc->interrupts == MAX_INTERRUPTS) {
3042 			hwc->interrupts = 0;
3043 			perf_log_throttle(event, 1);
3044 			event->pmu->start(event, 0);
3045 		}
3046 
3047 		if (!event->attr.freq || !event->attr.sample_freq)
3048 			goto next;
3049 
3050 		/*
3051 		 * stop the event and update event->count
3052 		 */
3053 		event->pmu->stop(event, PERF_EF_UPDATE);
3054 
3055 		now = local64_read(&event->count);
3056 		delta = now - hwc->freq_count_stamp;
3057 		hwc->freq_count_stamp = now;
3058 
3059 		/*
3060 		 * restart the event
3061 		 * reload only if value has changed
3062 		 * we have stopped the event so tell that
3063 		 * to perf_adjust_period() to avoid stopping it
3064 		 * twice.
3065 		 */
3066 		if (delta > 0)
3067 			perf_adjust_period(event, period, delta, false);
3068 
3069 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3070 	next:
3071 		perf_pmu_enable(event->pmu);
3072 	}
3073 
3074 	perf_pmu_enable(ctx->pmu);
3075 	raw_spin_unlock(&ctx->lock);
3076 }
3077 
3078 /*
3079  * Round-robin a context's events:
3080  */
3081 static void rotate_ctx(struct perf_event_context *ctx)
3082 {
3083 	/*
3084 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3085 	 * disabled by the inheritance code.
3086 	 */
3087 	if (!ctx->rotate_disable)
3088 		list_rotate_left(&ctx->flexible_groups);
3089 }
3090 
3091 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3092 {
3093 	struct perf_event_context *ctx = NULL;
3094 	int rotate = 0;
3095 
3096 	if (cpuctx->ctx.nr_events) {
3097 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3098 			rotate = 1;
3099 	}
3100 
3101 	ctx = cpuctx->task_ctx;
3102 	if (ctx && ctx->nr_events) {
3103 		if (ctx->nr_events != ctx->nr_active)
3104 			rotate = 1;
3105 	}
3106 
3107 	if (!rotate)
3108 		goto done;
3109 
3110 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3111 	perf_pmu_disable(cpuctx->ctx.pmu);
3112 
3113 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3114 	if (ctx)
3115 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3116 
3117 	rotate_ctx(&cpuctx->ctx);
3118 	if (ctx)
3119 		rotate_ctx(ctx);
3120 
3121 	perf_event_sched_in(cpuctx, ctx, current);
3122 
3123 	perf_pmu_enable(cpuctx->ctx.pmu);
3124 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3125 done:
3126 
3127 	return rotate;
3128 }
3129 
3130 void perf_event_task_tick(void)
3131 {
3132 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3133 	struct perf_event_context *ctx, *tmp;
3134 	int throttled;
3135 
3136 	WARN_ON(!irqs_disabled());
3137 
3138 	__this_cpu_inc(perf_throttled_seq);
3139 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3140 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3141 
3142 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3143 		perf_adjust_freq_unthr_context(ctx, throttled);
3144 }
3145 
3146 static int event_enable_on_exec(struct perf_event *event,
3147 				struct perf_event_context *ctx)
3148 {
3149 	if (!event->attr.enable_on_exec)
3150 		return 0;
3151 
3152 	event->attr.enable_on_exec = 0;
3153 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3154 		return 0;
3155 
3156 	__perf_event_mark_enabled(event);
3157 
3158 	return 1;
3159 }
3160 
3161 /*
3162  * Enable all of a task's events that have been marked enable-on-exec.
3163  * This expects task == current.
3164  */
3165 static void perf_event_enable_on_exec(int ctxn)
3166 {
3167 	struct perf_event_context *ctx, *clone_ctx = NULL;
3168 	struct perf_cpu_context *cpuctx;
3169 	struct perf_event *event;
3170 	unsigned long flags;
3171 	int enabled = 0;
3172 
3173 	local_irq_save(flags);
3174 	ctx = current->perf_event_ctxp[ctxn];
3175 	if (!ctx || !ctx->nr_events)
3176 		goto out;
3177 
3178 	cpuctx = __get_cpu_context(ctx);
3179 	perf_ctx_lock(cpuctx, ctx);
3180 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3181 	list_for_each_entry(event, &ctx->event_list, event_entry)
3182 		enabled |= event_enable_on_exec(event, ctx);
3183 
3184 	/*
3185 	 * Unclone and reschedule this context if we enabled any event.
3186 	 */
3187 	if (enabled) {
3188 		clone_ctx = unclone_ctx(ctx);
3189 		ctx_resched(cpuctx, ctx);
3190 	}
3191 	perf_ctx_unlock(cpuctx, ctx);
3192 
3193 out:
3194 	local_irq_restore(flags);
3195 
3196 	if (clone_ctx)
3197 		put_ctx(clone_ctx);
3198 }
3199 
3200 void perf_event_exec(void)
3201 {
3202 	int ctxn;
3203 
3204 	rcu_read_lock();
3205 	for_each_task_context_nr(ctxn)
3206 		perf_event_enable_on_exec(ctxn);
3207 	rcu_read_unlock();
3208 }
3209 
3210 struct perf_read_data {
3211 	struct perf_event *event;
3212 	bool group;
3213 	int ret;
3214 };
3215 
3216 /*
3217  * Cross CPU call to read the hardware event
3218  */
3219 static void __perf_event_read(void *info)
3220 {
3221 	struct perf_read_data *data = info;
3222 	struct perf_event *sub, *event = data->event;
3223 	struct perf_event_context *ctx = event->ctx;
3224 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3225 	struct pmu *pmu = event->pmu;
3226 
3227 	/*
3228 	 * If this is a task context, we need to check whether it is
3229 	 * the current task context of this cpu.  If not it has been
3230 	 * scheduled out before the smp call arrived.  In that case
3231 	 * event->count would have been updated to a recent sample
3232 	 * when the event was scheduled out.
3233 	 */
3234 	if (ctx->task && cpuctx->task_ctx != ctx)
3235 		return;
3236 
3237 	raw_spin_lock(&ctx->lock);
3238 	if (ctx->is_active) {
3239 		update_context_time(ctx);
3240 		update_cgrp_time_from_event(event);
3241 	}
3242 
3243 	update_event_times(event);
3244 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 		goto unlock;
3246 
3247 	if (!data->group) {
3248 		pmu->read(event);
3249 		data->ret = 0;
3250 		goto unlock;
3251 	}
3252 
3253 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3254 
3255 	pmu->read(event);
3256 
3257 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3258 		update_event_times(sub);
3259 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3260 			/*
3261 			 * Use sibling's PMU rather than @event's since
3262 			 * sibling could be on different (eg: software) PMU.
3263 			 */
3264 			sub->pmu->read(sub);
3265 		}
3266 	}
3267 
3268 	data->ret = pmu->commit_txn(pmu);
3269 
3270 unlock:
3271 	raw_spin_unlock(&ctx->lock);
3272 }
3273 
3274 static inline u64 perf_event_count(struct perf_event *event)
3275 {
3276 	if (event->pmu->count)
3277 		return event->pmu->count(event);
3278 
3279 	return __perf_event_count(event);
3280 }
3281 
3282 /*
3283  * NMI-safe method to read a local event, that is an event that
3284  * is:
3285  *   - either for the current task, or for this CPU
3286  *   - does not have inherit set, for inherited task events
3287  *     will not be local and we cannot read them atomically
3288  *   - must not have a pmu::count method
3289  */
3290 u64 perf_event_read_local(struct perf_event *event)
3291 {
3292 	unsigned long flags;
3293 	u64 val;
3294 
3295 	/*
3296 	 * Disabling interrupts avoids all counter scheduling (context
3297 	 * switches, timer based rotation and IPIs).
3298 	 */
3299 	local_irq_save(flags);
3300 
3301 	/* If this is a per-task event, it must be for current */
3302 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3303 		     event->hw.target != current);
3304 
3305 	/* If this is a per-CPU event, it must be for this CPU */
3306 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3307 		     event->cpu != smp_processor_id());
3308 
3309 	/*
3310 	 * It must not be an event with inherit set, we cannot read
3311 	 * all child counters from atomic context.
3312 	 */
3313 	WARN_ON_ONCE(event->attr.inherit);
3314 
3315 	/*
3316 	 * It must not have a pmu::count method, those are not
3317 	 * NMI safe.
3318 	 */
3319 	WARN_ON_ONCE(event->pmu->count);
3320 
3321 	/*
3322 	 * If the event is currently on this CPU, its either a per-task event,
3323 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3324 	 * oncpu == -1).
3325 	 */
3326 	if (event->oncpu == smp_processor_id())
3327 		event->pmu->read(event);
3328 
3329 	val = local64_read(&event->count);
3330 	local_irq_restore(flags);
3331 
3332 	return val;
3333 }
3334 
3335 static int perf_event_read(struct perf_event *event, bool group)
3336 {
3337 	int ret = 0;
3338 
3339 	/*
3340 	 * If event is enabled and currently active on a CPU, update the
3341 	 * value in the event structure:
3342 	 */
3343 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3344 		struct perf_read_data data = {
3345 			.event = event,
3346 			.group = group,
3347 			.ret = 0,
3348 		};
3349 		smp_call_function_single(event->oncpu,
3350 					 __perf_event_read, &data, 1);
3351 		ret = data.ret;
3352 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3353 		struct perf_event_context *ctx = event->ctx;
3354 		unsigned long flags;
3355 
3356 		raw_spin_lock_irqsave(&ctx->lock, flags);
3357 		/*
3358 		 * may read while context is not active
3359 		 * (e.g., thread is blocked), in that case
3360 		 * we cannot update context time
3361 		 */
3362 		if (ctx->is_active) {
3363 			update_context_time(ctx);
3364 			update_cgrp_time_from_event(event);
3365 		}
3366 		if (group)
3367 			update_group_times(event);
3368 		else
3369 			update_event_times(event);
3370 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3371 	}
3372 
3373 	return ret;
3374 }
3375 
3376 /*
3377  * Initialize the perf_event context in a task_struct:
3378  */
3379 static void __perf_event_init_context(struct perf_event_context *ctx)
3380 {
3381 	raw_spin_lock_init(&ctx->lock);
3382 	mutex_init(&ctx->mutex);
3383 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3384 	INIT_LIST_HEAD(&ctx->pinned_groups);
3385 	INIT_LIST_HEAD(&ctx->flexible_groups);
3386 	INIT_LIST_HEAD(&ctx->event_list);
3387 	atomic_set(&ctx->refcount, 1);
3388 }
3389 
3390 static struct perf_event_context *
3391 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3392 {
3393 	struct perf_event_context *ctx;
3394 
3395 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3396 	if (!ctx)
3397 		return NULL;
3398 
3399 	__perf_event_init_context(ctx);
3400 	if (task) {
3401 		ctx->task = task;
3402 		get_task_struct(task);
3403 	}
3404 	ctx->pmu = pmu;
3405 
3406 	return ctx;
3407 }
3408 
3409 static struct task_struct *
3410 find_lively_task_by_vpid(pid_t vpid)
3411 {
3412 	struct task_struct *task;
3413 	int err;
3414 
3415 	rcu_read_lock();
3416 	if (!vpid)
3417 		task = current;
3418 	else
3419 		task = find_task_by_vpid(vpid);
3420 	if (task)
3421 		get_task_struct(task);
3422 	rcu_read_unlock();
3423 
3424 	if (!task)
3425 		return ERR_PTR(-ESRCH);
3426 
3427 	/* Reuse ptrace permission checks for now. */
3428 	err = -EACCES;
3429 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3430 		goto errout;
3431 
3432 	return task;
3433 errout:
3434 	put_task_struct(task);
3435 	return ERR_PTR(err);
3436 
3437 }
3438 
3439 /*
3440  * Returns a matching context with refcount and pincount.
3441  */
3442 static struct perf_event_context *
3443 find_get_context(struct pmu *pmu, struct task_struct *task,
3444 		struct perf_event *event)
3445 {
3446 	struct perf_event_context *ctx, *clone_ctx = NULL;
3447 	struct perf_cpu_context *cpuctx;
3448 	void *task_ctx_data = NULL;
3449 	unsigned long flags;
3450 	int ctxn, err;
3451 	int cpu = event->cpu;
3452 
3453 	if (!task) {
3454 		/* Must be root to operate on a CPU event: */
3455 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3456 			return ERR_PTR(-EACCES);
3457 
3458 		/*
3459 		 * We could be clever and allow to attach a event to an
3460 		 * offline CPU and activate it when the CPU comes up, but
3461 		 * that's for later.
3462 		 */
3463 		if (!cpu_online(cpu))
3464 			return ERR_PTR(-ENODEV);
3465 
3466 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3467 		ctx = &cpuctx->ctx;
3468 		get_ctx(ctx);
3469 		++ctx->pin_count;
3470 
3471 		return ctx;
3472 	}
3473 
3474 	err = -EINVAL;
3475 	ctxn = pmu->task_ctx_nr;
3476 	if (ctxn < 0)
3477 		goto errout;
3478 
3479 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3480 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3481 		if (!task_ctx_data) {
3482 			err = -ENOMEM;
3483 			goto errout;
3484 		}
3485 	}
3486 
3487 retry:
3488 	ctx = perf_lock_task_context(task, ctxn, &flags);
3489 	if (ctx) {
3490 		clone_ctx = unclone_ctx(ctx);
3491 		++ctx->pin_count;
3492 
3493 		if (task_ctx_data && !ctx->task_ctx_data) {
3494 			ctx->task_ctx_data = task_ctx_data;
3495 			task_ctx_data = NULL;
3496 		}
3497 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3498 
3499 		if (clone_ctx)
3500 			put_ctx(clone_ctx);
3501 	} else {
3502 		ctx = alloc_perf_context(pmu, task);
3503 		err = -ENOMEM;
3504 		if (!ctx)
3505 			goto errout;
3506 
3507 		if (task_ctx_data) {
3508 			ctx->task_ctx_data = task_ctx_data;
3509 			task_ctx_data = NULL;
3510 		}
3511 
3512 		err = 0;
3513 		mutex_lock(&task->perf_event_mutex);
3514 		/*
3515 		 * If it has already passed perf_event_exit_task().
3516 		 * we must see PF_EXITING, it takes this mutex too.
3517 		 */
3518 		if (task->flags & PF_EXITING)
3519 			err = -ESRCH;
3520 		else if (task->perf_event_ctxp[ctxn])
3521 			err = -EAGAIN;
3522 		else {
3523 			get_ctx(ctx);
3524 			++ctx->pin_count;
3525 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3526 		}
3527 		mutex_unlock(&task->perf_event_mutex);
3528 
3529 		if (unlikely(err)) {
3530 			put_ctx(ctx);
3531 
3532 			if (err == -EAGAIN)
3533 				goto retry;
3534 			goto errout;
3535 		}
3536 	}
3537 
3538 	kfree(task_ctx_data);
3539 	return ctx;
3540 
3541 errout:
3542 	kfree(task_ctx_data);
3543 	return ERR_PTR(err);
3544 }
3545 
3546 static void perf_event_free_filter(struct perf_event *event);
3547 static void perf_event_free_bpf_prog(struct perf_event *event);
3548 
3549 static void free_event_rcu(struct rcu_head *head)
3550 {
3551 	struct perf_event *event;
3552 
3553 	event = container_of(head, struct perf_event, rcu_head);
3554 	if (event->ns)
3555 		put_pid_ns(event->ns);
3556 	perf_event_free_filter(event);
3557 	kfree(event);
3558 }
3559 
3560 static void ring_buffer_attach(struct perf_event *event,
3561 			       struct ring_buffer *rb);
3562 
3563 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3564 {
3565 	if (event->parent)
3566 		return;
3567 
3568 	if (is_cgroup_event(event))
3569 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3570 }
3571 
3572 #ifdef CONFIG_NO_HZ_FULL
3573 static DEFINE_SPINLOCK(nr_freq_lock);
3574 #endif
3575 
3576 static void unaccount_freq_event_nohz(void)
3577 {
3578 #ifdef CONFIG_NO_HZ_FULL
3579 	spin_lock(&nr_freq_lock);
3580 	if (atomic_dec_and_test(&nr_freq_events))
3581 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3582 	spin_unlock(&nr_freq_lock);
3583 #endif
3584 }
3585 
3586 static void unaccount_freq_event(void)
3587 {
3588 	if (tick_nohz_full_enabled())
3589 		unaccount_freq_event_nohz();
3590 	else
3591 		atomic_dec(&nr_freq_events);
3592 }
3593 
3594 static void unaccount_event(struct perf_event *event)
3595 {
3596 	bool dec = false;
3597 
3598 	if (event->parent)
3599 		return;
3600 
3601 	if (event->attach_state & PERF_ATTACH_TASK)
3602 		dec = true;
3603 	if (event->attr.mmap || event->attr.mmap_data)
3604 		atomic_dec(&nr_mmap_events);
3605 	if (event->attr.comm)
3606 		atomic_dec(&nr_comm_events);
3607 	if (event->attr.task)
3608 		atomic_dec(&nr_task_events);
3609 	if (event->attr.freq)
3610 		unaccount_freq_event();
3611 	if (event->attr.context_switch) {
3612 		dec = true;
3613 		atomic_dec(&nr_switch_events);
3614 	}
3615 	if (is_cgroup_event(event))
3616 		dec = true;
3617 	if (has_branch_stack(event))
3618 		dec = true;
3619 
3620 	if (dec) {
3621 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3622 			schedule_delayed_work(&perf_sched_work, HZ);
3623 	}
3624 
3625 	unaccount_event_cpu(event, event->cpu);
3626 }
3627 
3628 static void perf_sched_delayed(struct work_struct *work)
3629 {
3630 	mutex_lock(&perf_sched_mutex);
3631 	if (atomic_dec_and_test(&perf_sched_count))
3632 		static_branch_disable(&perf_sched_events);
3633 	mutex_unlock(&perf_sched_mutex);
3634 }
3635 
3636 /*
3637  * The following implement mutual exclusion of events on "exclusive" pmus
3638  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3639  * at a time, so we disallow creating events that might conflict, namely:
3640  *
3641  *  1) cpu-wide events in the presence of per-task events,
3642  *  2) per-task events in the presence of cpu-wide events,
3643  *  3) two matching events on the same context.
3644  *
3645  * The former two cases are handled in the allocation path (perf_event_alloc(),
3646  * _free_event()), the latter -- before the first perf_install_in_context().
3647  */
3648 static int exclusive_event_init(struct perf_event *event)
3649 {
3650 	struct pmu *pmu = event->pmu;
3651 
3652 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3653 		return 0;
3654 
3655 	/*
3656 	 * Prevent co-existence of per-task and cpu-wide events on the
3657 	 * same exclusive pmu.
3658 	 *
3659 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3660 	 * events on this "exclusive" pmu, positive means there are
3661 	 * per-task events.
3662 	 *
3663 	 * Since this is called in perf_event_alloc() path, event::ctx
3664 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3665 	 * to mean "per-task event", because unlike other attach states it
3666 	 * never gets cleared.
3667 	 */
3668 	if (event->attach_state & PERF_ATTACH_TASK) {
3669 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3670 			return -EBUSY;
3671 	} else {
3672 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3673 			return -EBUSY;
3674 	}
3675 
3676 	return 0;
3677 }
3678 
3679 static void exclusive_event_destroy(struct perf_event *event)
3680 {
3681 	struct pmu *pmu = event->pmu;
3682 
3683 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3684 		return;
3685 
3686 	/* see comment in exclusive_event_init() */
3687 	if (event->attach_state & PERF_ATTACH_TASK)
3688 		atomic_dec(&pmu->exclusive_cnt);
3689 	else
3690 		atomic_inc(&pmu->exclusive_cnt);
3691 }
3692 
3693 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3694 {
3695 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3696 	    (e1->cpu == e2->cpu ||
3697 	     e1->cpu == -1 ||
3698 	     e2->cpu == -1))
3699 		return true;
3700 	return false;
3701 }
3702 
3703 /* Called under the same ctx::mutex as perf_install_in_context() */
3704 static bool exclusive_event_installable(struct perf_event *event,
3705 					struct perf_event_context *ctx)
3706 {
3707 	struct perf_event *iter_event;
3708 	struct pmu *pmu = event->pmu;
3709 
3710 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3711 		return true;
3712 
3713 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3714 		if (exclusive_event_match(iter_event, event))
3715 			return false;
3716 	}
3717 
3718 	return true;
3719 }
3720 
3721 static void _free_event(struct perf_event *event)
3722 {
3723 	irq_work_sync(&event->pending);
3724 
3725 	unaccount_event(event);
3726 
3727 	if (event->rb) {
3728 		/*
3729 		 * Can happen when we close an event with re-directed output.
3730 		 *
3731 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3732 		 * over us; possibly making our ring_buffer_put() the last.
3733 		 */
3734 		mutex_lock(&event->mmap_mutex);
3735 		ring_buffer_attach(event, NULL);
3736 		mutex_unlock(&event->mmap_mutex);
3737 	}
3738 
3739 	if (is_cgroup_event(event))
3740 		perf_detach_cgroup(event);
3741 
3742 	if (!event->parent) {
3743 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3744 			put_callchain_buffers();
3745 	}
3746 
3747 	perf_event_free_bpf_prog(event);
3748 
3749 	if (event->destroy)
3750 		event->destroy(event);
3751 
3752 	if (event->ctx)
3753 		put_ctx(event->ctx);
3754 
3755 	if (event->pmu) {
3756 		exclusive_event_destroy(event);
3757 		module_put(event->pmu->module);
3758 	}
3759 
3760 	call_rcu(&event->rcu_head, free_event_rcu);
3761 }
3762 
3763 /*
3764  * Used to free events which have a known refcount of 1, such as in error paths
3765  * where the event isn't exposed yet and inherited events.
3766  */
3767 static void free_event(struct perf_event *event)
3768 {
3769 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3770 				"unexpected event refcount: %ld; ptr=%p\n",
3771 				atomic_long_read(&event->refcount), event)) {
3772 		/* leak to avoid use-after-free */
3773 		return;
3774 	}
3775 
3776 	_free_event(event);
3777 }
3778 
3779 /*
3780  * Remove user event from the owner task.
3781  */
3782 static void perf_remove_from_owner(struct perf_event *event)
3783 {
3784 	struct task_struct *owner;
3785 
3786 	rcu_read_lock();
3787 	/*
3788 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3789 	 * observe !owner it means the list deletion is complete and we can
3790 	 * indeed free this event, otherwise we need to serialize on
3791 	 * owner->perf_event_mutex.
3792 	 */
3793 	owner = lockless_dereference(event->owner);
3794 	if (owner) {
3795 		/*
3796 		 * Since delayed_put_task_struct() also drops the last
3797 		 * task reference we can safely take a new reference
3798 		 * while holding the rcu_read_lock().
3799 		 */
3800 		get_task_struct(owner);
3801 	}
3802 	rcu_read_unlock();
3803 
3804 	if (owner) {
3805 		/*
3806 		 * If we're here through perf_event_exit_task() we're already
3807 		 * holding ctx->mutex which would be an inversion wrt. the
3808 		 * normal lock order.
3809 		 *
3810 		 * However we can safely take this lock because its the child
3811 		 * ctx->mutex.
3812 		 */
3813 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3814 
3815 		/*
3816 		 * We have to re-check the event->owner field, if it is cleared
3817 		 * we raced with perf_event_exit_task(), acquiring the mutex
3818 		 * ensured they're done, and we can proceed with freeing the
3819 		 * event.
3820 		 */
3821 		if (event->owner) {
3822 			list_del_init(&event->owner_entry);
3823 			smp_store_release(&event->owner, NULL);
3824 		}
3825 		mutex_unlock(&owner->perf_event_mutex);
3826 		put_task_struct(owner);
3827 	}
3828 }
3829 
3830 static void put_event(struct perf_event *event)
3831 {
3832 	if (!atomic_long_dec_and_test(&event->refcount))
3833 		return;
3834 
3835 	_free_event(event);
3836 }
3837 
3838 /*
3839  * Kill an event dead; while event:refcount will preserve the event
3840  * object, it will not preserve its functionality. Once the last 'user'
3841  * gives up the object, we'll destroy the thing.
3842  */
3843 int perf_event_release_kernel(struct perf_event *event)
3844 {
3845 	struct perf_event_context *ctx = event->ctx;
3846 	struct perf_event *child, *tmp;
3847 
3848 	/*
3849 	 * If we got here through err_file: fput(event_file); we will not have
3850 	 * attached to a context yet.
3851 	 */
3852 	if (!ctx) {
3853 		WARN_ON_ONCE(event->attach_state &
3854 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3855 		goto no_ctx;
3856 	}
3857 
3858 	if (!is_kernel_event(event))
3859 		perf_remove_from_owner(event);
3860 
3861 	ctx = perf_event_ctx_lock(event);
3862 	WARN_ON_ONCE(ctx->parent_ctx);
3863 	perf_remove_from_context(event, DETACH_GROUP);
3864 
3865 	raw_spin_lock_irq(&ctx->lock);
3866 	/*
3867 	 * Mark this even as STATE_DEAD, there is no external reference to it
3868 	 * anymore.
3869 	 *
3870 	 * Anybody acquiring event->child_mutex after the below loop _must_
3871 	 * also see this, most importantly inherit_event() which will avoid
3872 	 * placing more children on the list.
3873 	 *
3874 	 * Thus this guarantees that we will in fact observe and kill _ALL_
3875 	 * child events.
3876 	 */
3877 	event->state = PERF_EVENT_STATE_DEAD;
3878 	raw_spin_unlock_irq(&ctx->lock);
3879 
3880 	perf_event_ctx_unlock(event, ctx);
3881 
3882 again:
3883 	mutex_lock(&event->child_mutex);
3884 	list_for_each_entry(child, &event->child_list, child_list) {
3885 
3886 		/*
3887 		 * Cannot change, child events are not migrated, see the
3888 		 * comment with perf_event_ctx_lock_nested().
3889 		 */
3890 		ctx = lockless_dereference(child->ctx);
3891 		/*
3892 		 * Since child_mutex nests inside ctx::mutex, we must jump
3893 		 * through hoops. We start by grabbing a reference on the ctx.
3894 		 *
3895 		 * Since the event cannot get freed while we hold the
3896 		 * child_mutex, the context must also exist and have a !0
3897 		 * reference count.
3898 		 */
3899 		get_ctx(ctx);
3900 
3901 		/*
3902 		 * Now that we have a ctx ref, we can drop child_mutex, and
3903 		 * acquire ctx::mutex without fear of it going away. Then we
3904 		 * can re-acquire child_mutex.
3905 		 */
3906 		mutex_unlock(&event->child_mutex);
3907 		mutex_lock(&ctx->mutex);
3908 		mutex_lock(&event->child_mutex);
3909 
3910 		/*
3911 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
3912 		 * state, if child is still the first entry, it didn't get freed
3913 		 * and we can continue doing so.
3914 		 */
3915 		tmp = list_first_entry_or_null(&event->child_list,
3916 					       struct perf_event, child_list);
3917 		if (tmp == child) {
3918 			perf_remove_from_context(child, DETACH_GROUP);
3919 			list_del(&child->child_list);
3920 			free_event(child);
3921 			/*
3922 			 * This matches the refcount bump in inherit_event();
3923 			 * this can't be the last reference.
3924 			 */
3925 			put_event(event);
3926 		}
3927 
3928 		mutex_unlock(&event->child_mutex);
3929 		mutex_unlock(&ctx->mutex);
3930 		put_ctx(ctx);
3931 		goto again;
3932 	}
3933 	mutex_unlock(&event->child_mutex);
3934 
3935 no_ctx:
3936 	put_event(event); /* Must be the 'last' reference */
3937 	return 0;
3938 }
3939 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3940 
3941 /*
3942  * Called when the last reference to the file is gone.
3943  */
3944 static int perf_release(struct inode *inode, struct file *file)
3945 {
3946 	perf_event_release_kernel(file->private_data);
3947 	return 0;
3948 }
3949 
3950 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3951 {
3952 	struct perf_event *child;
3953 	u64 total = 0;
3954 
3955 	*enabled = 0;
3956 	*running = 0;
3957 
3958 	mutex_lock(&event->child_mutex);
3959 
3960 	(void)perf_event_read(event, false);
3961 	total += perf_event_count(event);
3962 
3963 	*enabled += event->total_time_enabled +
3964 			atomic64_read(&event->child_total_time_enabled);
3965 	*running += event->total_time_running +
3966 			atomic64_read(&event->child_total_time_running);
3967 
3968 	list_for_each_entry(child, &event->child_list, child_list) {
3969 		(void)perf_event_read(child, false);
3970 		total += perf_event_count(child);
3971 		*enabled += child->total_time_enabled;
3972 		*running += child->total_time_running;
3973 	}
3974 	mutex_unlock(&event->child_mutex);
3975 
3976 	return total;
3977 }
3978 EXPORT_SYMBOL_GPL(perf_event_read_value);
3979 
3980 static int __perf_read_group_add(struct perf_event *leader,
3981 					u64 read_format, u64 *values)
3982 {
3983 	struct perf_event *sub;
3984 	int n = 1; /* skip @nr */
3985 	int ret;
3986 
3987 	ret = perf_event_read(leader, true);
3988 	if (ret)
3989 		return ret;
3990 
3991 	/*
3992 	 * Since we co-schedule groups, {enabled,running} times of siblings
3993 	 * will be identical to those of the leader, so we only publish one
3994 	 * set.
3995 	 */
3996 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3997 		values[n++] += leader->total_time_enabled +
3998 			atomic64_read(&leader->child_total_time_enabled);
3999 	}
4000 
4001 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4002 		values[n++] += leader->total_time_running +
4003 			atomic64_read(&leader->child_total_time_running);
4004 	}
4005 
4006 	/*
4007 	 * Write {count,id} tuples for every sibling.
4008 	 */
4009 	values[n++] += perf_event_count(leader);
4010 	if (read_format & PERF_FORMAT_ID)
4011 		values[n++] = primary_event_id(leader);
4012 
4013 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4014 		values[n++] += perf_event_count(sub);
4015 		if (read_format & PERF_FORMAT_ID)
4016 			values[n++] = primary_event_id(sub);
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 static int perf_read_group(struct perf_event *event,
4023 				   u64 read_format, char __user *buf)
4024 {
4025 	struct perf_event *leader = event->group_leader, *child;
4026 	struct perf_event_context *ctx = leader->ctx;
4027 	int ret;
4028 	u64 *values;
4029 
4030 	lockdep_assert_held(&ctx->mutex);
4031 
4032 	values = kzalloc(event->read_size, GFP_KERNEL);
4033 	if (!values)
4034 		return -ENOMEM;
4035 
4036 	values[0] = 1 + leader->nr_siblings;
4037 
4038 	/*
4039 	 * By locking the child_mutex of the leader we effectively
4040 	 * lock the child list of all siblings.. XXX explain how.
4041 	 */
4042 	mutex_lock(&leader->child_mutex);
4043 
4044 	ret = __perf_read_group_add(leader, read_format, values);
4045 	if (ret)
4046 		goto unlock;
4047 
4048 	list_for_each_entry(child, &leader->child_list, child_list) {
4049 		ret = __perf_read_group_add(child, read_format, values);
4050 		if (ret)
4051 			goto unlock;
4052 	}
4053 
4054 	mutex_unlock(&leader->child_mutex);
4055 
4056 	ret = event->read_size;
4057 	if (copy_to_user(buf, values, event->read_size))
4058 		ret = -EFAULT;
4059 	goto out;
4060 
4061 unlock:
4062 	mutex_unlock(&leader->child_mutex);
4063 out:
4064 	kfree(values);
4065 	return ret;
4066 }
4067 
4068 static int perf_read_one(struct perf_event *event,
4069 				 u64 read_format, char __user *buf)
4070 {
4071 	u64 enabled, running;
4072 	u64 values[4];
4073 	int n = 0;
4074 
4075 	values[n++] = perf_event_read_value(event, &enabled, &running);
4076 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4077 		values[n++] = enabled;
4078 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4079 		values[n++] = running;
4080 	if (read_format & PERF_FORMAT_ID)
4081 		values[n++] = primary_event_id(event);
4082 
4083 	if (copy_to_user(buf, values, n * sizeof(u64)))
4084 		return -EFAULT;
4085 
4086 	return n * sizeof(u64);
4087 }
4088 
4089 static bool is_event_hup(struct perf_event *event)
4090 {
4091 	bool no_children;
4092 
4093 	if (event->state > PERF_EVENT_STATE_EXIT)
4094 		return false;
4095 
4096 	mutex_lock(&event->child_mutex);
4097 	no_children = list_empty(&event->child_list);
4098 	mutex_unlock(&event->child_mutex);
4099 	return no_children;
4100 }
4101 
4102 /*
4103  * Read the performance event - simple non blocking version for now
4104  */
4105 static ssize_t
4106 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4107 {
4108 	u64 read_format = event->attr.read_format;
4109 	int ret;
4110 
4111 	/*
4112 	 * Return end-of-file for a read on a event that is in
4113 	 * error state (i.e. because it was pinned but it couldn't be
4114 	 * scheduled on to the CPU at some point).
4115 	 */
4116 	if (event->state == PERF_EVENT_STATE_ERROR)
4117 		return 0;
4118 
4119 	if (count < event->read_size)
4120 		return -ENOSPC;
4121 
4122 	WARN_ON_ONCE(event->ctx->parent_ctx);
4123 	if (read_format & PERF_FORMAT_GROUP)
4124 		ret = perf_read_group(event, read_format, buf);
4125 	else
4126 		ret = perf_read_one(event, read_format, buf);
4127 
4128 	return ret;
4129 }
4130 
4131 static ssize_t
4132 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4133 {
4134 	struct perf_event *event = file->private_data;
4135 	struct perf_event_context *ctx;
4136 	int ret;
4137 
4138 	ctx = perf_event_ctx_lock(event);
4139 	ret = __perf_read(event, buf, count);
4140 	perf_event_ctx_unlock(event, ctx);
4141 
4142 	return ret;
4143 }
4144 
4145 static unsigned int perf_poll(struct file *file, poll_table *wait)
4146 {
4147 	struct perf_event *event = file->private_data;
4148 	struct ring_buffer *rb;
4149 	unsigned int events = POLLHUP;
4150 
4151 	poll_wait(file, &event->waitq, wait);
4152 
4153 	if (is_event_hup(event))
4154 		return events;
4155 
4156 	/*
4157 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4158 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4159 	 */
4160 	mutex_lock(&event->mmap_mutex);
4161 	rb = event->rb;
4162 	if (rb)
4163 		events = atomic_xchg(&rb->poll, 0);
4164 	mutex_unlock(&event->mmap_mutex);
4165 	return events;
4166 }
4167 
4168 static void _perf_event_reset(struct perf_event *event)
4169 {
4170 	(void)perf_event_read(event, false);
4171 	local64_set(&event->count, 0);
4172 	perf_event_update_userpage(event);
4173 }
4174 
4175 /*
4176  * Holding the top-level event's child_mutex means that any
4177  * descendant process that has inherited this event will block
4178  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4179  * task existence requirements of perf_event_enable/disable.
4180  */
4181 static void perf_event_for_each_child(struct perf_event *event,
4182 					void (*func)(struct perf_event *))
4183 {
4184 	struct perf_event *child;
4185 
4186 	WARN_ON_ONCE(event->ctx->parent_ctx);
4187 
4188 	mutex_lock(&event->child_mutex);
4189 	func(event);
4190 	list_for_each_entry(child, &event->child_list, child_list)
4191 		func(child);
4192 	mutex_unlock(&event->child_mutex);
4193 }
4194 
4195 static void perf_event_for_each(struct perf_event *event,
4196 				  void (*func)(struct perf_event *))
4197 {
4198 	struct perf_event_context *ctx = event->ctx;
4199 	struct perf_event *sibling;
4200 
4201 	lockdep_assert_held(&ctx->mutex);
4202 
4203 	event = event->group_leader;
4204 
4205 	perf_event_for_each_child(event, func);
4206 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4207 		perf_event_for_each_child(sibling, func);
4208 }
4209 
4210 static void __perf_event_period(struct perf_event *event,
4211 				struct perf_cpu_context *cpuctx,
4212 				struct perf_event_context *ctx,
4213 				void *info)
4214 {
4215 	u64 value = *((u64 *)info);
4216 	bool active;
4217 
4218 	if (event->attr.freq) {
4219 		event->attr.sample_freq = value;
4220 	} else {
4221 		event->attr.sample_period = value;
4222 		event->hw.sample_period = value;
4223 	}
4224 
4225 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4226 	if (active) {
4227 		perf_pmu_disable(ctx->pmu);
4228 		/*
4229 		 * We could be throttled; unthrottle now to avoid the tick
4230 		 * trying to unthrottle while we already re-started the event.
4231 		 */
4232 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4233 			event->hw.interrupts = 0;
4234 			perf_log_throttle(event, 1);
4235 		}
4236 		event->pmu->stop(event, PERF_EF_UPDATE);
4237 	}
4238 
4239 	local64_set(&event->hw.period_left, 0);
4240 
4241 	if (active) {
4242 		event->pmu->start(event, PERF_EF_RELOAD);
4243 		perf_pmu_enable(ctx->pmu);
4244 	}
4245 }
4246 
4247 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4248 {
4249 	u64 value;
4250 
4251 	if (!is_sampling_event(event))
4252 		return -EINVAL;
4253 
4254 	if (copy_from_user(&value, arg, sizeof(value)))
4255 		return -EFAULT;
4256 
4257 	if (!value)
4258 		return -EINVAL;
4259 
4260 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4261 		return -EINVAL;
4262 
4263 	event_function_call(event, __perf_event_period, &value);
4264 
4265 	return 0;
4266 }
4267 
4268 static const struct file_operations perf_fops;
4269 
4270 static inline int perf_fget_light(int fd, struct fd *p)
4271 {
4272 	struct fd f = fdget(fd);
4273 	if (!f.file)
4274 		return -EBADF;
4275 
4276 	if (f.file->f_op != &perf_fops) {
4277 		fdput(f);
4278 		return -EBADF;
4279 	}
4280 	*p = f;
4281 	return 0;
4282 }
4283 
4284 static int perf_event_set_output(struct perf_event *event,
4285 				 struct perf_event *output_event);
4286 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4287 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4288 
4289 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4290 {
4291 	void (*func)(struct perf_event *);
4292 	u32 flags = arg;
4293 
4294 	switch (cmd) {
4295 	case PERF_EVENT_IOC_ENABLE:
4296 		func = _perf_event_enable;
4297 		break;
4298 	case PERF_EVENT_IOC_DISABLE:
4299 		func = _perf_event_disable;
4300 		break;
4301 	case PERF_EVENT_IOC_RESET:
4302 		func = _perf_event_reset;
4303 		break;
4304 
4305 	case PERF_EVENT_IOC_REFRESH:
4306 		return _perf_event_refresh(event, arg);
4307 
4308 	case PERF_EVENT_IOC_PERIOD:
4309 		return perf_event_period(event, (u64 __user *)arg);
4310 
4311 	case PERF_EVENT_IOC_ID:
4312 	{
4313 		u64 id = primary_event_id(event);
4314 
4315 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4316 			return -EFAULT;
4317 		return 0;
4318 	}
4319 
4320 	case PERF_EVENT_IOC_SET_OUTPUT:
4321 	{
4322 		int ret;
4323 		if (arg != -1) {
4324 			struct perf_event *output_event;
4325 			struct fd output;
4326 			ret = perf_fget_light(arg, &output);
4327 			if (ret)
4328 				return ret;
4329 			output_event = output.file->private_data;
4330 			ret = perf_event_set_output(event, output_event);
4331 			fdput(output);
4332 		} else {
4333 			ret = perf_event_set_output(event, NULL);
4334 		}
4335 		return ret;
4336 	}
4337 
4338 	case PERF_EVENT_IOC_SET_FILTER:
4339 		return perf_event_set_filter(event, (void __user *)arg);
4340 
4341 	case PERF_EVENT_IOC_SET_BPF:
4342 		return perf_event_set_bpf_prog(event, arg);
4343 
4344 	default:
4345 		return -ENOTTY;
4346 	}
4347 
4348 	if (flags & PERF_IOC_FLAG_GROUP)
4349 		perf_event_for_each(event, func);
4350 	else
4351 		perf_event_for_each_child(event, func);
4352 
4353 	return 0;
4354 }
4355 
4356 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4357 {
4358 	struct perf_event *event = file->private_data;
4359 	struct perf_event_context *ctx;
4360 	long ret;
4361 
4362 	ctx = perf_event_ctx_lock(event);
4363 	ret = _perf_ioctl(event, cmd, arg);
4364 	perf_event_ctx_unlock(event, ctx);
4365 
4366 	return ret;
4367 }
4368 
4369 #ifdef CONFIG_COMPAT
4370 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4371 				unsigned long arg)
4372 {
4373 	switch (_IOC_NR(cmd)) {
4374 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4375 	case _IOC_NR(PERF_EVENT_IOC_ID):
4376 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4377 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4378 			cmd &= ~IOCSIZE_MASK;
4379 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4380 		}
4381 		break;
4382 	}
4383 	return perf_ioctl(file, cmd, arg);
4384 }
4385 #else
4386 # define perf_compat_ioctl NULL
4387 #endif
4388 
4389 int perf_event_task_enable(void)
4390 {
4391 	struct perf_event_context *ctx;
4392 	struct perf_event *event;
4393 
4394 	mutex_lock(&current->perf_event_mutex);
4395 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4396 		ctx = perf_event_ctx_lock(event);
4397 		perf_event_for_each_child(event, _perf_event_enable);
4398 		perf_event_ctx_unlock(event, ctx);
4399 	}
4400 	mutex_unlock(&current->perf_event_mutex);
4401 
4402 	return 0;
4403 }
4404 
4405 int perf_event_task_disable(void)
4406 {
4407 	struct perf_event_context *ctx;
4408 	struct perf_event *event;
4409 
4410 	mutex_lock(&current->perf_event_mutex);
4411 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4412 		ctx = perf_event_ctx_lock(event);
4413 		perf_event_for_each_child(event, _perf_event_disable);
4414 		perf_event_ctx_unlock(event, ctx);
4415 	}
4416 	mutex_unlock(&current->perf_event_mutex);
4417 
4418 	return 0;
4419 }
4420 
4421 static int perf_event_index(struct perf_event *event)
4422 {
4423 	if (event->hw.state & PERF_HES_STOPPED)
4424 		return 0;
4425 
4426 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4427 		return 0;
4428 
4429 	return event->pmu->event_idx(event);
4430 }
4431 
4432 static void calc_timer_values(struct perf_event *event,
4433 				u64 *now,
4434 				u64 *enabled,
4435 				u64 *running)
4436 {
4437 	u64 ctx_time;
4438 
4439 	*now = perf_clock();
4440 	ctx_time = event->shadow_ctx_time + *now;
4441 	*enabled = ctx_time - event->tstamp_enabled;
4442 	*running = ctx_time - event->tstamp_running;
4443 }
4444 
4445 static void perf_event_init_userpage(struct perf_event *event)
4446 {
4447 	struct perf_event_mmap_page *userpg;
4448 	struct ring_buffer *rb;
4449 
4450 	rcu_read_lock();
4451 	rb = rcu_dereference(event->rb);
4452 	if (!rb)
4453 		goto unlock;
4454 
4455 	userpg = rb->user_page;
4456 
4457 	/* Allow new userspace to detect that bit 0 is deprecated */
4458 	userpg->cap_bit0_is_deprecated = 1;
4459 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4460 	userpg->data_offset = PAGE_SIZE;
4461 	userpg->data_size = perf_data_size(rb);
4462 
4463 unlock:
4464 	rcu_read_unlock();
4465 }
4466 
4467 void __weak arch_perf_update_userpage(
4468 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4469 {
4470 }
4471 
4472 /*
4473  * Callers need to ensure there can be no nesting of this function, otherwise
4474  * the seqlock logic goes bad. We can not serialize this because the arch
4475  * code calls this from NMI context.
4476  */
4477 void perf_event_update_userpage(struct perf_event *event)
4478 {
4479 	struct perf_event_mmap_page *userpg;
4480 	struct ring_buffer *rb;
4481 	u64 enabled, running, now;
4482 
4483 	rcu_read_lock();
4484 	rb = rcu_dereference(event->rb);
4485 	if (!rb)
4486 		goto unlock;
4487 
4488 	/*
4489 	 * compute total_time_enabled, total_time_running
4490 	 * based on snapshot values taken when the event
4491 	 * was last scheduled in.
4492 	 *
4493 	 * we cannot simply called update_context_time()
4494 	 * because of locking issue as we can be called in
4495 	 * NMI context
4496 	 */
4497 	calc_timer_values(event, &now, &enabled, &running);
4498 
4499 	userpg = rb->user_page;
4500 	/*
4501 	 * Disable preemption so as to not let the corresponding user-space
4502 	 * spin too long if we get preempted.
4503 	 */
4504 	preempt_disable();
4505 	++userpg->lock;
4506 	barrier();
4507 	userpg->index = perf_event_index(event);
4508 	userpg->offset = perf_event_count(event);
4509 	if (userpg->index)
4510 		userpg->offset -= local64_read(&event->hw.prev_count);
4511 
4512 	userpg->time_enabled = enabled +
4513 			atomic64_read(&event->child_total_time_enabled);
4514 
4515 	userpg->time_running = running +
4516 			atomic64_read(&event->child_total_time_running);
4517 
4518 	arch_perf_update_userpage(event, userpg, now);
4519 
4520 	barrier();
4521 	++userpg->lock;
4522 	preempt_enable();
4523 unlock:
4524 	rcu_read_unlock();
4525 }
4526 
4527 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4528 {
4529 	struct perf_event *event = vma->vm_file->private_data;
4530 	struct ring_buffer *rb;
4531 	int ret = VM_FAULT_SIGBUS;
4532 
4533 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4534 		if (vmf->pgoff == 0)
4535 			ret = 0;
4536 		return ret;
4537 	}
4538 
4539 	rcu_read_lock();
4540 	rb = rcu_dereference(event->rb);
4541 	if (!rb)
4542 		goto unlock;
4543 
4544 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4545 		goto unlock;
4546 
4547 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4548 	if (!vmf->page)
4549 		goto unlock;
4550 
4551 	get_page(vmf->page);
4552 	vmf->page->mapping = vma->vm_file->f_mapping;
4553 	vmf->page->index   = vmf->pgoff;
4554 
4555 	ret = 0;
4556 unlock:
4557 	rcu_read_unlock();
4558 
4559 	return ret;
4560 }
4561 
4562 static void ring_buffer_attach(struct perf_event *event,
4563 			       struct ring_buffer *rb)
4564 {
4565 	struct ring_buffer *old_rb = NULL;
4566 	unsigned long flags;
4567 
4568 	if (event->rb) {
4569 		/*
4570 		 * Should be impossible, we set this when removing
4571 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4572 		 */
4573 		WARN_ON_ONCE(event->rcu_pending);
4574 
4575 		old_rb = event->rb;
4576 		spin_lock_irqsave(&old_rb->event_lock, flags);
4577 		list_del_rcu(&event->rb_entry);
4578 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4579 
4580 		event->rcu_batches = get_state_synchronize_rcu();
4581 		event->rcu_pending = 1;
4582 	}
4583 
4584 	if (rb) {
4585 		if (event->rcu_pending) {
4586 			cond_synchronize_rcu(event->rcu_batches);
4587 			event->rcu_pending = 0;
4588 		}
4589 
4590 		spin_lock_irqsave(&rb->event_lock, flags);
4591 		list_add_rcu(&event->rb_entry, &rb->event_list);
4592 		spin_unlock_irqrestore(&rb->event_lock, flags);
4593 	}
4594 
4595 	rcu_assign_pointer(event->rb, rb);
4596 
4597 	if (old_rb) {
4598 		ring_buffer_put(old_rb);
4599 		/*
4600 		 * Since we detached before setting the new rb, so that we
4601 		 * could attach the new rb, we could have missed a wakeup.
4602 		 * Provide it now.
4603 		 */
4604 		wake_up_all(&event->waitq);
4605 	}
4606 }
4607 
4608 static void ring_buffer_wakeup(struct perf_event *event)
4609 {
4610 	struct ring_buffer *rb;
4611 
4612 	rcu_read_lock();
4613 	rb = rcu_dereference(event->rb);
4614 	if (rb) {
4615 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4616 			wake_up_all(&event->waitq);
4617 	}
4618 	rcu_read_unlock();
4619 }
4620 
4621 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4622 {
4623 	struct ring_buffer *rb;
4624 
4625 	rcu_read_lock();
4626 	rb = rcu_dereference(event->rb);
4627 	if (rb) {
4628 		if (!atomic_inc_not_zero(&rb->refcount))
4629 			rb = NULL;
4630 	}
4631 	rcu_read_unlock();
4632 
4633 	return rb;
4634 }
4635 
4636 void ring_buffer_put(struct ring_buffer *rb)
4637 {
4638 	if (!atomic_dec_and_test(&rb->refcount))
4639 		return;
4640 
4641 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4642 
4643 	call_rcu(&rb->rcu_head, rb_free_rcu);
4644 }
4645 
4646 static void perf_mmap_open(struct vm_area_struct *vma)
4647 {
4648 	struct perf_event *event = vma->vm_file->private_data;
4649 
4650 	atomic_inc(&event->mmap_count);
4651 	atomic_inc(&event->rb->mmap_count);
4652 
4653 	if (vma->vm_pgoff)
4654 		atomic_inc(&event->rb->aux_mmap_count);
4655 
4656 	if (event->pmu->event_mapped)
4657 		event->pmu->event_mapped(event);
4658 }
4659 
4660 /*
4661  * A buffer can be mmap()ed multiple times; either directly through the same
4662  * event, or through other events by use of perf_event_set_output().
4663  *
4664  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4665  * the buffer here, where we still have a VM context. This means we need
4666  * to detach all events redirecting to us.
4667  */
4668 static void perf_mmap_close(struct vm_area_struct *vma)
4669 {
4670 	struct perf_event *event = vma->vm_file->private_data;
4671 
4672 	struct ring_buffer *rb = ring_buffer_get(event);
4673 	struct user_struct *mmap_user = rb->mmap_user;
4674 	int mmap_locked = rb->mmap_locked;
4675 	unsigned long size = perf_data_size(rb);
4676 
4677 	if (event->pmu->event_unmapped)
4678 		event->pmu->event_unmapped(event);
4679 
4680 	/*
4681 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4682 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4683 	 * serialize with perf_mmap here.
4684 	 */
4685 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4686 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4687 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4688 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4689 
4690 		rb_free_aux(rb);
4691 		mutex_unlock(&event->mmap_mutex);
4692 	}
4693 
4694 	atomic_dec(&rb->mmap_count);
4695 
4696 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4697 		goto out_put;
4698 
4699 	ring_buffer_attach(event, NULL);
4700 	mutex_unlock(&event->mmap_mutex);
4701 
4702 	/* If there's still other mmap()s of this buffer, we're done. */
4703 	if (atomic_read(&rb->mmap_count))
4704 		goto out_put;
4705 
4706 	/*
4707 	 * No other mmap()s, detach from all other events that might redirect
4708 	 * into the now unreachable buffer. Somewhat complicated by the
4709 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4710 	 */
4711 again:
4712 	rcu_read_lock();
4713 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4714 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4715 			/*
4716 			 * This event is en-route to free_event() which will
4717 			 * detach it and remove it from the list.
4718 			 */
4719 			continue;
4720 		}
4721 		rcu_read_unlock();
4722 
4723 		mutex_lock(&event->mmap_mutex);
4724 		/*
4725 		 * Check we didn't race with perf_event_set_output() which can
4726 		 * swizzle the rb from under us while we were waiting to
4727 		 * acquire mmap_mutex.
4728 		 *
4729 		 * If we find a different rb; ignore this event, a next
4730 		 * iteration will no longer find it on the list. We have to
4731 		 * still restart the iteration to make sure we're not now
4732 		 * iterating the wrong list.
4733 		 */
4734 		if (event->rb == rb)
4735 			ring_buffer_attach(event, NULL);
4736 
4737 		mutex_unlock(&event->mmap_mutex);
4738 		put_event(event);
4739 
4740 		/*
4741 		 * Restart the iteration; either we're on the wrong list or
4742 		 * destroyed its integrity by doing a deletion.
4743 		 */
4744 		goto again;
4745 	}
4746 	rcu_read_unlock();
4747 
4748 	/*
4749 	 * It could be there's still a few 0-ref events on the list; they'll
4750 	 * get cleaned up by free_event() -- they'll also still have their
4751 	 * ref on the rb and will free it whenever they are done with it.
4752 	 *
4753 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4754 	 * undo the VM accounting.
4755 	 */
4756 
4757 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4758 	vma->vm_mm->pinned_vm -= mmap_locked;
4759 	free_uid(mmap_user);
4760 
4761 out_put:
4762 	ring_buffer_put(rb); /* could be last */
4763 }
4764 
4765 static const struct vm_operations_struct perf_mmap_vmops = {
4766 	.open		= perf_mmap_open,
4767 	.close		= perf_mmap_close, /* non mergable */
4768 	.fault		= perf_mmap_fault,
4769 	.page_mkwrite	= perf_mmap_fault,
4770 };
4771 
4772 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4773 {
4774 	struct perf_event *event = file->private_data;
4775 	unsigned long user_locked, user_lock_limit;
4776 	struct user_struct *user = current_user();
4777 	unsigned long locked, lock_limit;
4778 	struct ring_buffer *rb = NULL;
4779 	unsigned long vma_size;
4780 	unsigned long nr_pages;
4781 	long user_extra = 0, extra = 0;
4782 	int ret = 0, flags = 0;
4783 
4784 	/*
4785 	 * Don't allow mmap() of inherited per-task counters. This would
4786 	 * create a performance issue due to all children writing to the
4787 	 * same rb.
4788 	 */
4789 	if (event->cpu == -1 && event->attr.inherit)
4790 		return -EINVAL;
4791 
4792 	if (!(vma->vm_flags & VM_SHARED))
4793 		return -EINVAL;
4794 
4795 	vma_size = vma->vm_end - vma->vm_start;
4796 
4797 	if (vma->vm_pgoff == 0) {
4798 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4799 	} else {
4800 		/*
4801 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4802 		 * mapped, all subsequent mappings should have the same size
4803 		 * and offset. Must be above the normal perf buffer.
4804 		 */
4805 		u64 aux_offset, aux_size;
4806 
4807 		if (!event->rb)
4808 			return -EINVAL;
4809 
4810 		nr_pages = vma_size / PAGE_SIZE;
4811 
4812 		mutex_lock(&event->mmap_mutex);
4813 		ret = -EINVAL;
4814 
4815 		rb = event->rb;
4816 		if (!rb)
4817 			goto aux_unlock;
4818 
4819 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4820 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4821 
4822 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4823 			goto aux_unlock;
4824 
4825 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4826 			goto aux_unlock;
4827 
4828 		/* already mapped with a different offset */
4829 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4830 			goto aux_unlock;
4831 
4832 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4833 			goto aux_unlock;
4834 
4835 		/* already mapped with a different size */
4836 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4837 			goto aux_unlock;
4838 
4839 		if (!is_power_of_2(nr_pages))
4840 			goto aux_unlock;
4841 
4842 		if (!atomic_inc_not_zero(&rb->mmap_count))
4843 			goto aux_unlock;
4844 
4845 		if (rb_has_aux(rb)) {
4846 			atomic_inc(&rb->aux_mmap_count);
4847 			ret = 0;
4848 			goto unlock;
4849 		}
4850 
4851 		atomic_set(&rb->aux_mmap_count, 1);
4852 		user_extra = nr_pages;
4853 
4854 		goto accounting;
4855 	}
4856 
4857 	/*
4858 	 * If we have rb pages ensure they're a power-of-two number, so we
4859 	 * can do bitmasks instead of modulo.
4860 	 */
4861 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4862 		return -EINVAL;
4863 
4864 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4865 		return -EINVAL;
4866 
4867 	WARN_ON_ONCE(event->ctx->parent_ctx);
4868 again:
4869 	mutex_lock(&event->mmap_mutex);
4870 	if (event->rb) {
4871 		if (event->rb->nr_pages != nr_pages) {
4872 			ret = -EINVAL;
4873 			goto unlock;
4874 		}
4875 
4876 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4877 			/*
4878 			 * Raced against perf_mmap_close() through
4879 			 * perf_event_set_output(). Try again, hope for better
4880 			 * luck.
4881 			 */
4882 			mutex_unlock(&event->mmap_mutex);
4883 			goto again;
4884 		}
4885 
4886 		goto unlock;
4887 	}
4888 
4889 	user_extra = nr_pages + 1;
4890 
4891 accounting:
4892 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4893 
4894 	/*
4895 	 * Increase the limit linearly with more CPUs:
4896 	 */
4897 	user_lock_limit *= num_online_cpus();
4898 
4899 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4900 
4901 	if (user_locked > user_lock_limit)
4902 		extra = user_locked - user_lock_limit;
4903 
4904 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4905 	lock_limit >>= PAGE_SHIFT;
4906 	locked = vma->vm_mm->pinned_vm + extra;
4907 
4908 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4909 		!capable(CAP_IPC_LOCK)) {
4910 		ret = -EPERM;
4911 		goto unlock;
4912 	}
4913 
4914 	WARN_ON(!rb && event->rb);
4915 
4916 	if (vma->vm_flags & VM_WRITE)
4917 		flags |= RING_BUFFER_WRITABLE;
4918 
4919 	if (!rb) {
4920 		rb = rb_alloc(nr_pages,
4921 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4922 			      event->cpu, flags);
4923 
4924 		if (!rb) {
4925 			ret = -ENOMEM;
4926 			goto unlock;
4927 		}
4928 
4929 		atomic_set(&rb->mmap_count, 1);
4930 		rb->mmap_user = get_current_user();
4931 		rb->mmap_locked = extra;
4932 
4933 		ring_buffer_attach(event, rb);
4934 
4935 		perf_event_init_userpage(event);
4936 		perf_event_update_userpage(event);
4937 	} else {
4938 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4939 				   event->attr.aux_watermark, flags);
4940 		if (!ret)
4941 			rb->aux_mmap_locked = extra;
4942 	}
4943 
4944 unlock:
4945 	if (!ret) {
4946 		atomic_long_add(user_extra, &user->locked_vm);
4947 		vma->vm_mm->pinned_vm += extra;
4948 
4949 		atomic_inc(&event->mmap_count);
4950 	} else if (rb) {
4951 		atomic_dec(&rb->mmap_count);
4952 	}
4953 aux_unlock:
4954 	mutex_unlock(&event->mmap_mutex);
4955 
4956 	/*
4957 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4958 	 * vma.
4959 	 */
4960 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4961 	vma->vm_ops = &perf_mmap_vmops;
4962 
4963 	if (event->pmu->event_mapped)
4964 		event->pmu->event_mapped(event);
4965 
4966 	return ret;
4967 }
4968 
4969 static int perf_fasync(int fd, struct file *filp, int on)
4970 {
4971 	struct inode *inode = file_inode(filp);
4972 	struct perf_event *event = filp->private_data;
4973 	int retval;
4974 
4975 	inode_lock(inode);
4976 	retval = fasync_helper(fd, filp, on, &event->fasync);
4977 	inode_unlock(inode);
4978 
4979 	if (retval < 0)
4980 		return retval;
4981 
4982 	return 0;
4983 }
4984 
4985 static const struct file_operations perf_fops = {
4986 	.llseek			= no_llseek,
4987 	.release		= perf_release,
4988 	.read			= perf_read,
4989 	.poll			= perf_poll,
4990 	.unlocked_ioctl		= perf_ioctl,
4991 	.compat_ioctl		= perf_compat_ioctl,
4992 	.mmap			= perf_mmap,
4993 	.fasync			= perf_fasync,
4994 };
4995 
4996 /*
4997  * Perf event wakeup
4998  *
4999  * If there's data, ensure we set the poll() state and publish everything
5000  * to user-space before waking everybody up.
5001  */
5002 
5003 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5004 {
5005 	/* only the parent has fasync state */
5006 	if (event->parent)
5007 		event = event->parent;
5008 	return &event->fasync;
5009 }
5010 
5011 void perf_event_wakeup(struct perf_event *event)
5012 {
5013 	ring_buffer_wakeup(event);
5014 
5015 	if (event->pending_kill) {
5016 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5017 		event->pending_kill = 0;
5018 	}
5019 }
5020 
5021 static void perf_pending_event(struct irq_work *entry)
5022 {
5023 	struct perf_event *event = container_of(entry,
5024 			struct perf_event, pending);
5025 	int rctx;
5026 
5027 	rctx = perf_swevent_get_recursion_context();
5028 	/*
5029 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5030 	 * and we won't recurse 'further'.
5031 	 */
5032 
5033 	if (event->pending_disable) {
5034 		event->pending_disable = 0;
5035 		perf_event_disable_local(event);
5036 	}
5037 
5038 	if (event->pending_wakeup) {
5039 		event->pending_wakeup = 0;
5040 		perf_event_wakeup(event);
5041 	}
5042 
5043 	if (rctx >= 0)
5044 		perf_swevent_put_recursion_context(rctx);
5045 }
5046 
5047 /*
5048  * We assume there is only KVM supporting the callbacks.
5049  * Later on, we might change it to a list if there is
5050  * another virtualization implementation supporting the callbacks.
5051  */
5052 struct perf_guest_info_callbacks *perf_guest_cbs;
5053 
5054 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5055 {
5056 	perf_guest_cbs = cbs;
5057 	return 0;
5058 }
5059 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5060 
5061 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5062 {
5063 	perf_guest_cbs = NULL;
5064 	return 0;
5065 }
5066 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5067 
5068 static void
5069 perf_output_sample_regs(struct perf_output_handle *handle,
5070 			struct pt_regs *regs, u64 mask)
5071 {
5072 	int bit;
5073 
5074 	for_each_set_bit(bit, (const unsigned long *) &mask,
5075 			 sizeof(mask) * BITS_PER_BYTE) {
5076 		u64 val;
5077 
5078 		val = perf_reg_value(regs, bit);
5079 		perf_output_put(handle, val);
5080 	}
5081 }
5082 
5083 static void perf_sample_regs_user(struct perf_regs *regs_user,
5084 				  struct pt_regs *regs,
5085 				  struct pt_regs *regs_user_copy)
5086 {
5087 	if (user_mode(regs)) {
5088 		regs_user->abi = perf_reg_abi(current);
5089 		regs_user->regs = regs;
5090 	} else if (current->mm) {
5091 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5092 	} else {
5093 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5094 		regs_user->regs = NULL;
5095 	}
5096 }
5097 
5098 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5099 				  struct pt_regs *regs)
5100 {
5101 	regs_intr->regs = regs;
5102 	regs_intr->abi  = perf_reg_abi(current);
5103 }
5104 
5105 
5106 /*
5107  * Get remaining task size from user stack pointer.
5108  *
5109  * It'd be better to take stack vma map and limit this more
5110  * precisly, but there's no way to get it safely under interrupt,
5111  * so using TASK_SIZE as limit.
5112  */
5113 static u64 perf_ustack_task_size(struct pt_regs *regs)
5114 {
5115 	unsigned long addr = perf_user_stack_pointer(regs);
5116 
5117 	if (!addr || addr >= TASK_SIZE)
5118 		return 0;
5119 
5120 	return TASK_SIZE - addr;
5121 }
5122 
5123 static u16
5124 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5125 			struct pt_regs *regs)
5126 {
5127 	u64 task_size;
5128 
5129 	/* No regs, no stack pointer, no dump. */
5130 	if (!regs)
5131 		return 0;
5132 
5133 	/*
5134 	 * Check if we fit in with the requested stack size into the:
5135 	 * - TASK_SIZE
5136 	 *   If we don't, we limit the size to the TASK_SIZE.
5137 	 *
5138 	 * - remaining sample size
5139 	 *   If we don't, we customize the stack size to
5140 	 *   fit in to the remaining sample size.
5141 	 */
5142 
5143 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5144 	stack_size = min(stack_size, (u16) task_size);
5145 
5146 	/* Current header size plus static size and dynamic size. */
5147 	header_size += 2 * sizeof(u64);
5148 
5149 	/* Do we fit in with the current stack dump size? */
5150 	if ((u16) (header_size + stack_size) < header_size) {
5151 		/*
5152 		 * If we overflow the maximum size for the sample,
5153 		 * we customize the stack dump size to fit in.
5154 		 */
5155 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5156 		stack_size = round_up(stack_size, sizeof(u64));
5157 	}
5158 
5159 	return stack_size;
5160 }
5161 
5162 static void
5163 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5164 			  struct pt_regs *regs)
5165 {
5166 	/* Case of a kernel thread, nothing to dump */
5167 	if (!regs) {
5168 		u64 size = 0;
5169 		perf_output_put(handle, size);
5170 	} else {
5171 		unsigned long sp;
5172 		unsigned int rem;
5173 		u64 dyn_size;
5174 
5175 		/*
5176 		 * We dump:
5177 		 * static size
5178 		 *   - the size requested by user or the best one we can fit
5179 		 *     in to the sample max size
5180 		 * data
5181 		 *   - user stack dump data
5182 		 * dynamic size
5183 		 *   - the actual dumped size
5184 		 */
5185 
5186 		/* Static size. */
5187 		perf_output_put(handle, dump_size);
5188 
5189 		/* Data. */
5190 		sp = perf_user_stack_pointer(regs);
5191 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5192 		dyn_size = dump_size - rem;
5193 
5194 		perf_output_skip(handle, rem);
5195 
5196 		/* Dynamic size. */
5197 		perf_output_put(handle, dyn_size);
5198 	}
5199 }
5200 
5201 static void __perf_event_header__init_id(struct perf_event_header *header,
5202 					 struct perf_sample_data *data,
5203 					 struct perf_event *event)
5204 {
5205 	u64 sample_type = event->attr.sample_type;
5206 
5207 	data->type = sample_type;
5208 	header->size += event->id_header_size;
5209 
5210 	if (sample_type & PERF_SAMPLE_TID) {
5211 		/* namespace issues */
5212 		data->tid_entry.pid = perf_event_pid(event, current);
5213 		data->tid_entry.tid = perf_event_tid(event, current);
5214 	}
5215 
5216 	if (sample_type & PERF_SAMPLE_TIME)
5217 		data->time = perf_event_clock(event);
5218 
5219 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5220 		data->id = primary_event_id(event);
5221 
5222 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5223 		data->stream_id = event->id;
5224 
5225 	if (sample_type & PERF_SAMPLE_CPU) {
5226 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5227 		data->cpu_entry.reserved = 0;
5228 	}
5229 }
5230 
5231 void perf_event_header__init_id(struct perf_event_header *header,
5232 				struct perf_sample_data *data,
5233 				struct perf_event *event)
5234 {
5235 	if (event->attr.sample_id_all)
5236 		__perf_event_header__init_id(header, data, event);
5237 }
5238 
5239 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5240 					   struct perf_sample_data *data)
5241 {
5242 	u64 sample_type = data->type;
5243 
5244 	if (sample_type & PERF_SAMPLE_TID)
5245 		perf_output_put(handle, data->tid_entry);
5246 
5247 	if (sample_type & PERF_SAMPLE_TIME)
5248 		perf_output_put(handle, data->time);
5249 
5250 	if (sample_type & PERF_SAMPLE_ID)
5251 		perf_output_put(handle, data->id);
5252 
5253 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5254 		perf_output_put(handle, data->stream_id);
5255 
5256 	if (sample_type & PERF_SAMPLE_CPU)
5257 		perf_output_put(handle, data->cpu_entry);
5258 
5259 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5260 		perf_output_put(handle, data->id);
5261 }
5262 
5263 void perf_event__output_id_sample(struct perf_event *event,
5264 				  struct perf_output_handle *handle,
5265 				  struct perf_sample_data *sample)
5266 {
5267 	if (event->attr.sample_id_all)
5268 		__perf_event__output_id_sample(handle, sample);
5269 }
5270 
5271 static void perf_output_read_one(struct perf_output_handle *handle,
5272 				 struct perf_event *event,
5273 				 u64 enabled, u64 running)
5274 {
5275 	u64 read_format = event->attr.read_format;
5276 	u64 values[4];
5277 	int n = 0;
5278 
5279 	values[n++] = perf_event_count(event);
5280 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5281 		values[n++] = enabled +
5282 			atomic64_read(&event->child_total_time_enabled);
5283 	}
5284 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5285 		values[n++] = running +
5286 			atomic64_read(&event->child_total_time_running);
5287 	}
5288 	if (read_format & PERF_FORMAT_ID)
5289 		values[n++] = primary_event_id(event);
5290 
5291 	__output_copy(handle, values, n * sizeof(u64));
5292 }
5293 
5294 /*
5295  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5296  */
5297 static void perf_output_read_group(struct perf_output_handle *handle,
5298 			    struct perf_event *event,
5299 			    u64 enabled, u64 running)
5300 {
5301 	struct perf_event *leader = event->group_leader, *sub;
5302 	u64 read_format = event->attr.read_format;
5303 	u64 values[5];
5304 	int n = 0;
5305 
5306 	values[n++] = 1 + leader->nr_siblings;
5307 
5308 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5309 		values[n++] = enabled;
5310 
5311 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5312 		values[n++] = running;
5313 
5314 	if (leader != event)
5315 		leader->pmu->read(leader);
5316 
5317 	values[n++] = perf_event_count(leader);
5318 	if (read_format & PERF_FORMAT_ID)
5319 		values[n++] = primary_event_id(leader);
5320 
5321 	__output_copy(handle, values, n * sizeof(u64));
5322 
5323 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5324 		n = 0;
5325 
5326 		if ((sub != event) &&
5327 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5328 			sub->pmu->read(sub);
5329 
5330 		values[n++] = perf_event_count(sub);
5331 		if (read_format & PERF_FORMAT_ID)
5332 			values[n++] = primary_event_id(sub);
5333 
5334 		__output_copy(handle, values, n * sizeof(u64));
5335 	}
5336 }
5337 
5338 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5339 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5340 
5341 static void perf_output_read(struct perf_output_handle *handle,
5342 			     struct perf_event *event)
5343 {
5344 	u64 enabled = 0, running = 0, now;
5345 	u64 read_format = event->attr.read_format;
5346 
5347 	/*
5348 	 * compute total_time_enabled, total_time_running
5349 	 * based on snapshot values taken when the event
5350 	 * was last scheduled in.
5351 	 *
5352 	 * we cannot simply called update_context_time()
5353 	 * because of locking issue as we are called in
5354 	 * NMI context
5355 	 */
5356 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5357 		calc_timer_values(event, &now, &enabled, &running);
5358 
5359 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5360 		perf_output_read_group(handle, event, enabled, running);
5361 	else
5362 		perf_output_read_one(handle, event, enabled, running);
5363 }
5364 
5365 void perf_output_sample(struct perf_output_handle *handle,
5366 			struct perf_event_header *header,
5367 			struct perf_sample_data *data,
5368 			struct perf_event *event)
5369 {
5370 	u64 sample_type = data->type;
5371 
5372 	perf_output_put(handle, *header);
5373 
5374 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5375 		perf_output_put(handle, data->id);
5376 
5377 	if (sample_type & PERF_SAMPLE_IP)
5378 		perf_output_put(handle, data->ip);
5379 
5380 	if (sample_type & PERF_SAMPLE_TID)
5381 		perf_output_put(handle, data->tid_entry);
5382 
5383 	if (sample_type & PERF_SAMPLE_TIME)
5384 		perf_output_put(handle, data->time);
5385 
5386 	if (sample_type & PERF_SAMPLE_ADDR)
5387 		perf_output_put(handle, data->addr);
5388 
5389 	if (sample_type & PERF_SAMPLE_ID)
5390 		perf_output_put(handle, data->id);
5391 
5392 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5393 		perf_output_put(handle, data->stream_id);
5394 
5395 	if (sample_type & PERF_SAMPLE_CPU)
5396 		perf_output_put(handle, data->cpu_entry);
5397 
5398 	if (sample_type & PERF_SAMPLE_PERIOD)
5399 		perf_output_put(handle, data->period);
5400 
5401 	if (sample_type & PERF_SAMPLE_READ)
5402 		perf_output_read(handle, event);
5403 
5404 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5405 		if (data->callchain) {
5406 			int size = 1;
5407 
5408 			if (data->callchain)
5409 				size += data->callchain->nr;
5410 
5411 			size *= sizeof(u64);
5412 
5413 			__output_copy(handle, data->callchain, size);
5414 		} else {
5415 			u64 nr = 0;
5416 			perf_output_put(handle, nr);
5417 		}
5418 	}
5419 
5420 	if (sample_type & PERF_SAMPLE_RAW) {
5421 		if (data->raw) {
5422 			u32 raw_size = data->raw->size;
5423 			u32 real_size = round_up(raw_size + sizeof(u32),
5424 						 sizeof(u64)) - sizeof(u32);
5425 			u64 zero = 0;
5426 
5427 			perf_output_put(handle, real_size);
5428 			__output_copy(handle, data->raw->data, raw_size);
5429 			if (real_size - raw_size)
5430 				__output_copy(handle, &zero, real_size - raw_size);
5431 		} else {
5432 			struct {
5433 				u32	size;
5434 				u32	data;
5435 			} raw = {
5436 				.size = sizeof(u32),
5437 				.data = 0,
5438 			};
5439 			perf_output_put(handle, raw);
5440 		}
5441 	}
5442 
5443 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5444 		if (data->br_stack) {
5445 			size_t size;
5446 
5447 			size = data->br_stack->nr
5448 			     * sizeof(struct perf_branch_entry);
5449 
5450 			perf_output_put(handle, data->br_stack->nr);
5451 			perf_output_copy(handle, data->br_stack->entries, size);
5452 		} else {
5453 			/*
5454 			 * we always store at least the value of nr
5455 			 */
5456 			u64 nr = 0;
5457 			perf_output_put(handle, nr);
5458 		}
5459 	}
5460 
5461 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5462 		u64 abi = data->regs_user.abi;
5463 
5464 		/*
5465 		 * If there are no regs to dump, notice it through
5466 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5467 		 */
5468 		perf_output_put(handle, abi);
5469 
5470 		if (abi) {
5471 			u64 mask = event->attr.sample_regs_user;
5472 			perf_output_sample_regs(handle,
5473 						data->regs_user.regs,
5474 						mask);
5475 		}
5476 	}
5477 
5478 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5479 		perf_output_sample_ustack(handle,
5480 					  data->stack_user_size,
5481 					  data->regs_user.regs);
5482 	}
5483 
5484 	if (sample_type & PERF_SAMPLE_WEIGHT)
5485 		perf_output_put(handle, data->weight);
5486 
5487 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5488 		perf_output_put(handle, data->data_src.val);
5489 
5490 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5491 		perf_output_put(handle, data->txn);
5492 
5493 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5494 		u64 abi = data->regs_intr.abi;
5495 		/*
5496 		 * If there are no regs to dump, notice it through
5497 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5498 		 */
5499 		perf_output_put(handle, abi);
5500 
5501 		if (abi) {
5502 			u64 mask = event->attr.sample_regs_intr;
5503 
5504 			perf_output_sample_regs(handle,
5505 						data->regs_intr.regs,
5506 						mask);
5507 		}
5508 	}
5509 
5510 	if (!event->attr.watermark) {
5511 		int wakeup_events = event->attr.wakeup_events;
5512 
5513 		if (wakeup_events) {
5514 			struct ring_buffer *rb = handle->rb;
5515 			int events = local_inc_return(&rb->events);
5516 
5517 			if (events >= wakeup_events) {
5518 				local_sub(wakeup_events, &rb->events);
5519 				local_inc(&rb->wakeup);
5520 			}
5521 		}
5522 	}
5523 }
5524 
5525 void perf_prepare_sample(struct perf_event_header *header,
5526 			 struct perf_sample_data *data,
5527 			 struct perf_event *event,
5528 			 struct pt_regs *regs)
5529 {
5530 	u64 sample_type = event->attr.sample_type;
5531 
5532 	header->type = PERF_RECORD_SAMPLE;
5533 	header->size = sizeof(*header) + event->header_size;
5534 
5535 	header->misc = 0;
5536 	header->misc |= perf_misc_flags(regs);
5537 
5538 	__perf_event_header__init_id(header, data, event);
5539 
5540 	if (sample_type & PERF_SAMPLE_IP)
5541 		data->ip = perf_instruction_pointer(regs);
5542 
5543 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5544 		int size = 1;
5545 
5546 		data->callchain = perf_callchain(event, regs);
5547 
5548 		if (data->callchain)
5549 			size += data->callchain->nr;
5550 
5551 		header->size += size * sizeof(u64);
5552 	}
5553 
5554 	if (sample_type & PERF_SAMPLE_RAW) {
5555 		int size = sizeof(u32);
5556 
5557 		if (data->raw)
5558 			size += data->raw->size;
5559 		else
5560 			size += sizeof(u32);
5561 
5562 		header->size += round_up(size, sizeof(u64));
5563 	}
5564 
5565 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5566 		int size = sizeof(u64); /* nr */
5567 		if (data->br_stack) {
5568 			size += data->br_stack->nr
5569 			      * sizeof(struct perf_branch_entry);
5570 		}
5571 		header->size += size;
5572 	}
5573 
5574 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5575 		perf_sample_regs_user(&data->regs_user, regs,
5576 				      &data->regs_user_copy);
5577 
5578 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5579 		/* regs dump ABI info */
5580 		int size = sizeof(u64);
5581 
5582 		if (data->regs_user.regs) {
5583 			u64 mask = event->attr.sample_regs_user;
5584 			size += hweight64(mask) * sizeof(u64);
5585 		}
5586 
5587 		header->size += size;
5588 	}
5589 
5590 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5591 		/*
5592 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5593 		 * processed as the last one or have additional check added
5594 		 * in case new sample type is added, because we could eat
5595 		 * up the rest of the sample size.
5596 		 */
5597 		u16 stack_size = event->attr.sample_stack_user;
5598 		u16 size = sizeof(u64);
5599 
5600 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5601 						     data->regs_user.regs);
5602 
5603 		/*
5604 		 * If there is something to dump, add space for the dump
5605 		 * itself and for the field that tells the dynamic size,
5606 		 * which is how many have been actually dumped.
5607 		 */
5608 		if (stack_size)
5609 			size += sizeof(u64) + stack_size;
5610 
5611 		data->stack_user_size = stack_size;
5612 		header->size += size;
5613 	}
5614 
5615 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5616 		/* regs dump ABI info */
5617 		int size = sizeof(u64);
5618 
5619 		perf_sample_regs_intr(&data->regs_intr, regs);
5620 
5621 		if (data->regs_intr.regs) {
5622 			u64 mask = event->attr.sample_regs_intr;
5623 
5624 			size += hweight64(mask) * sizeof(u64);
5625 		}
5626 
5627 		header->size += size;
5628 	}
5629 }
5630 
5631 void perf_event_output(struct perf_event *event,
5632 			struct perf_sample_data *data,
5633 			struct pt_regs *regs)
5634 {
5635 	struct perf_output_handle handle;
5636 	struct perf_event_header header;
5637 
5638 	/* protect the callchain buffers */
5639 	rcu_read_lock();
5640 
5641 	perf_prepare_sample(&header, data, event, regs);
5642 
5643 	if (perf_output_begin(&handle, event, header.size))
5644 		goto exit;
5645 
5646 	perf_output_sample(&handle, &header, data, event);
5647 
5648 	perf_output_end(&handle);
5649 
5650 exit:
5651 	rcu_read_unlock();
5652 }
5653 
5654 /*
5655  * read event_id
5656  */
5657 
5658 struct perf_read_event {
5659 	struct perf_event_header	header;
5660 
5661 	u32				pid;
5662 	u32				tid;
5663 };
5664 
5665 static void
5666 perf_event_read_event(struct perf_event *event,
5667 			struct task_struct *task)
5668 {
5669 	struct perf_output_handle handle;
5670 	struct perf_sample_data sample;
5671 	struct perf_read_event read_event = {
5672 		.header = {
5673 			.type = PERF_RECORD_READ,
5674 			.misc = 0,
5675 			.size = sizeof(read_event) + event->read_size,
5676 		},
5677 		.pid = perf_event_pid(event, task),
5678 		.tid = perf_event_tid(event, task),
5679 	};
5680 	int ret;
5681 
5682 	perf_event_header__init_id(&read_event.header, &sample, event);
5683 	ret = perf_output_begin(&handle, event, read_event.header.size);
5684 	if (ret)
5685 		return;
5686 
5687 	perf_output_put(&handle, read_event);
5688 	perf_output_read(&handle, event);
5689 	perf_event__output_id_sample(event, &handle, &sample);
5690 
5691 	perf_output_end(&handle);
5692 }
5693 
5694 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5695 
5696 static void
5697 perf_event_aux_ctx(struct perf_event_context *ctx,
5698 		   perf_event_aux_output_cb output,
5699 		   void *data)
5700 {
5701 	struct perf_event *event;
5702 
5703 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5704 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5705 			continue;
5706 		if (!event_filter_match(event))
5707 			continue;
5708 		output(event, data);
5709 	}
5710 }
5711 
5712 static void
5713 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5714 			struct perf_event_context *task_ctx)
5715 {
5716 	rcu_read_lock();
5717 	preempt_disable();
5718 	perf_event_aux_ctx(task_ctx, output, data);
5719 	preempt_enable();
5720 	rcu_read_unlock();
5721 }
5722 
5723 static void
5724 perf_event_aux(perf_event_aux_output_cb output, void *data,
5725 	       struct perf_event_context *task_ctx)
5726 {
5727 	struct perf_cpu_context *cpuctx;
5728 	struct perf_event_context *ctx;
5729 	struct pmu *pmu;
5730 	int ctxn;
5731 
5732 	/*
5733 	 * If we have task_ctx != NULL we only notify
5734 	 * the task context itself. The task_ctx is set
5735 	 * only for EXIT events before releasing task
5736 	 * context.
5737 	 */
5738 	if (task_ctx) {
5739 		perf_event_aux_task_ctx(output, data, task_ctx);
5740 		return;
5741 	}
5742 
5743 	rcu_read_lock();
5744 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5745 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5746 		if (cpuctx->unique_pmu != pmu)
5747 			goto next;
5748 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5749 		ctxn = pmu->task_ctx_nr;
5750 		if (ctxn < 0)
5751 			goto next;
5752 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5753 		if (ctx)
5754 			perf_event_aux_ctx(ctx, output, data);
5755 next:
5756 		put_cpu_ptr(pmu->pmu_cpu_context);
5757 	}
5758 	rcu_read_unlock();
5759 }
5760 
5761 /*
5762  * task tracking -- fork/exit
5763  *
5764  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5765  */
5766 
5767 struct perf_task_event {
5768 	struct task_struct		*task;
5769 	struct perf_event_context	*task_ctx;
5770 
5771 	struct {
5772 		struct perf_event_header	header;
5773 
5774 		u32				pid;
5775 		u32				ppid;
5776 		u32				tid;
5777 		u32				ptid;
5778 		u64				time;
5779 	} event_id;
5780 };
5781 
5782 static int perf_event_task_match(struct perf_event *event)
5783 {
5784 	return event->attr.comm  || event->attr.mmap ||
5785 	       event->attr.mmap2 || event->attr.mmap_data ||
5786 	       event->attr.task;
5787 }
5788 
5789 static void perf_event_task_output(struct perf_event *event,
5790 				   void *data)
5791 {
5792 	struct perf_task_event *task_event = data;
5793 	struct perf_output_handle handle;
5794 	struct perf_sample_data	sample;
5795 	struct task_struct *task = task_event->task;
5796 	int ret, size = task_event->event_id.header.size;
5797 
5798 	if (!perf_event_task_match(event))
5799 		return;
5800 
5801 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5802 
5803 	ret = perf_output_begin(&handle, event,
5804 				task_event->event_id.header.size);
5805 	if (ret)
5806 		goto out;
5807 
5808 	task_event->event_id.pid = perf_event_pid(event, task);
5809 	task_event->event_id.ppid = perf_event_pid(event, current);
5810 
5811 	task_event->event_id.tid = perf_event_tid(event, task);
5812 	task_event->event_id.ptid = perf_event_tid(event, current);
5813 
5814 	task_event->event_id.time = perf_event_clock(event);
5815 
5816 	perf_output_put(&handle, task_event->event_id);
5817 
5818 	perf_event__output_id_sample(event, &handle, &sample);
5819 
5820 	perf_output_end(&handle);
5821 out:
5822 	task_event->event_id.header.size = size;
5823 }
5824 
5825 static void perf_event_task(struct task_struct *task,
5826 			      struct perf_event_context *task_ctx,
5827 			      int new)
5828 {
5829 	struct perf_task_event task_event;
5830 
5831 	if (!atomic_read(&nr_comm_events) &&
5832 	    !atomic_read(&nr_mmap_events) &&
5833 	    !atomic_read(&nr_task_events))
5834 		return;
5835 
5836 	task_event = (struct perf_task_event){
5837 		.task	  = task,
5838 		.task_ctx = task_ctx,
5839 		.event_id    = {
5840 			.header = {
5841 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5842 				.misc = 0,
5843 				.size = sizeof(task_event.event_id),
5844 			},
5845 			/* .pid  */
5846 			/* .ppid */
5847 			/* .tid  */
5848 			/* .ptid */
5849 			/* .time */
5850 		},
5851 	};
5852 
5853 	perf_event_aux(perf_event_task_output,
5854 		       &task_event,
5855 		       task_ctx);
5856 }
5857 
5858 void perf_event_fork(struct task_struct *task)
5859 {
5860 	perf_event_task(task, NULL, 1);
5861 }
5862 
5863 /*
5864  * comm tracking
5865  */
5866 
5867 struct perf_comm_event {
5868 	struct task_struct	*task;
5869 	char			*comm;
5870 	int			comm_size;
5871 
5872 	struct {
5873 		struct perf_event_header	header;
5874 
5875 		u32				pid;
5876 		u32				tid;
5877 	} event_id;
5878 };
5879 
5880 static int perf_event_comm_match(struct perf_event *event)
5881 {
5882 	return event->attr.comm;
5883 }
5884 
5885 static void perf_event_comm_output(struct perf_event *event,
5886 				   void *data)
5887 {
5888 	struct perf_comm_event *comm_event = data;
5889 	struct perf_output_handle handle;
5890 	struct perf_sample_data sample;
5891 	int size = comm_event->event_id.header.size;
5892 	int ret;
5893 
5894 	if (!perf_event_comm_match(event))
5895 		return;
5896 
5897 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5898 	ret = perf_output_begin(&handle, event,
5899 				comm_event->event_id.header.size);
5900 
5901 	if (ret)
5902 		goto out;
5903 
5904 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5905 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5906 
5907 	perf_output_put(&handle, comm_event->event_id);
5908 	__output_copy(&handle, comm_event->comm,
5909 				   comm_event->comm_size);
5910 
5911 	perf_event__output_id_sample(event, &handle, &sample);
5912 
5913 	perf_output_end(&handle);
5914 out:
5915 	comm_event->event_id.header.size = size;
5916 }
5917 
5918 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5919 {
5920 	char comm[TASK_COMM_LEN];
5921 	unsigned int size;
5922 
5923 	memset(comm, 0, sizeof(comm));
5924 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5925 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5926 
5927 	comm_event->comm = comm;
5928 	comm_event->comm_size = size;
5929 
5930 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5931 
5932 	perf_event_aux(perf_event_comm_output,
5933 		       comm_event,
5934 		       NULL);
5935 }
5936 
5937 void perf_event_comm(struct task_struct *task, bool exec)
5938 {
5939 	struct perf_comm_event comm_event;
5940 
5941 	if (!atomic_read(&nr_comm_events))
5942 		return;
5943 
5944 	comm_event = (struct perf_comm_event){
5945 		.task	= task,
5946 		/* .comm      */
5947 		/* .comm_size */
5948 		.event_id  = {
5949 			.header = {
5950 				.type = PERF_RECORD_COMM,
5951 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5952 				/* .size */
5953 			},
5954 			/* .pid */
5955 			/* .tid */
5956 		},
5957 	};
5958 
5959 	perf_event_comm_event(&comm_event);
5960 }
5961 
5962 /*
5963  * mmap tracking
5964  */
5965 
5966 struct perf_mmap_event {
5967 	struct vm_area_struct	*vma;
5968 
5969 	const char		*file_name;
5970 	int			file_size;
5971 	int			maj, min;
5972 	u64			ino;
5973 	u64			ino_generation;
5974 	u32			prot, flags;
5975 
5976 	struct {
5977 		struct perf_event_header	header;
5978 
5979 		u32				pid;
5980 		u32				tid;
5981 		u64				start;
5982 		u64				len;
5983 		u64				pgoff;
5984 	} event_id;
5985 };
5986 
5987 static int perf_event_mmap_match(struct perf_event *event,
5988 				 void *data)
5989 {
5990 	struct perf_mmap_event *mmap_event = data;
5991 	struct vm_area_struct *vma = mmap_event->vma;
5992 	int executable = vma->vm_flags & VM_EXEC;
5993 
5994 	return (!executable && event->attr.mmap_data) ||
5995 	       (executable && (event->attr.mmap || event->attr.mmap2));
5996 }
5997 
5998 static void perf_event_mmap_output(struct perf_event *event,
5999 				   void *data)
6000 {
6001 	struct perf_mmap_event *mmap_event = data;
6002 	struct perf_output_handle handle;
6003 	struct perf_sample_data sample;
6004 	int size = mmap_event->event_id.header.size;
6005 	int ret;
6006 
6007 	if (!perf_event_mmap_match(event, data))
6008 		return;
6009 
6010 	if (event->attr.mmap2) {
6011 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6012 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6013 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6014 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6015 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6016 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6017 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6018 	}
6019 
6020 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6021 	ret = perf_output_begin(&handle, event,
6022 				mmap_event->event_id.header.size);
6023 	if (ret)
6024 		goto out;
6025 
6026 	mmap_event->event_id.pid = perf_event_pid(event, current);
6027 	mmap_event->event_id.tid = perf_event_tid(event, current);
6028 
6029 	perf_output_put(&handle, mmap_event->event_id);
6030 
6031 	if (event->attr.mmap2) {
6032 		perf_output_put(&handle, mmap_event->maj);
6033 		perf_output_put(&handle, mmap_event->min);
6034 		perf_output_put(&handle, mmap_event->ino);
6035 		perf_output_put(&handle, mmap_event->ino_generation);
6036 		perf_output_put(&handle, mmap_event->prot);
6037 		perf_output_put(&handle, mmap_event->flags);
6038 	}
6039 
6040 	__output_copy(&handle, mmap_event->file_name,
6041 				   mmap_event->file_size);
6042 
6043 	perf_event__output_id_sample(event, &handle, &sample);
6044 
6045 	perf_output_end(&handle);
6046 out:
6047 	mmap_event->event_id.header.size = size;
6048 }
6049 
6050 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6051 {
6052 	struct vm_area_struct *vma = mmap_event->vma;
6053 	struct file *file = vma->vm_file;
6054 	int maj = 0, min = 0;
6055 	u64 ino = 0, gen = 0;
6056 	u32 prot = 0, flags = 0;
6057 	unsigned int size;
6058 	char tmp[16];
6059 	char *buf = NULL;
6060 	char *name;
6061 
6062 	if (file) {
6063 		struct inode *inode;
6064 		dev_t dev;
6065 
6066 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6067 		if (!buf) {
6068 			name = "//enomem";
6069 			goto cpy_name;
6070 		}
6071 		/*
6072 		 * d_path() works from the end of the rb backwards, so we
6073 		 * need to add enough zero bytes after the string to handle
6074 		 * the 64bit alignment we do later.
6075 		 */
6076 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6077 		if (IS_ERR(name)) {
6078 			name = "//toolong";
6079 			goto cpy_name;
6080 		}
6081 		inode = file_inode(vma->vm_file);
6082 		dev = inode->i_sb->s_dev;
6083 		ino = inode->i_ino;
6084 		gen = inode->i_generation;
6085 		maj = MAJOR(dev);
6086 		min = MINOR(dev);
6087 
6088 		if (vma->vm_flags & VM_READ)
6089 			prot |= PROT_READ;
6090 		if (vma->vm_flags & VM_WRITE)
6091 			prot |= PROT_WRITE;
6092 		if (vma->vm_flags & VM_EXEC)
6093 			prot |= PROT_EXEC;
6094 
6095 		if (vma->vm_flags & VM_MAYSHARE)
6096 			flags = MAP_SHARED;
6097 		else
6098 			flags = MAP_PRIVATE;
6099 
6100 		if (vma->vm_flags & VM_DENYWRITE)
6101 			flags |= MAP_DENYWRITE;
6102 		if (vma->vm_flags & VM_MAYEXEC)
6103 			flags |= MAP_EXECUTABLE;
6104 		if (vma->vm_flags & VM_LOCKED)
6105 			flags |= MAP_LOCKED;
6106 		if (vma->vm_flags & VM_HUGETLB)
6107 			flags |= MAP_HUGETLB;
6108 
6109 		goto got_name;
6110 	} else {
6111 		if (vma->vm_ops && vma->vm_ops->name) {
6112 			name = (char *) vma->vm_ops->name(vma);
6113 			if (name)
6114 				goto cpy_name;
6115 		}
6116 
6117 		name = (char *)arch_vma_name(vma);
6118 		if (name)
6119 			goto cpy_name;
6120 
6121 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6122 				vma->vm_end >= vma->vm_mm->brk) {
6123 			name = "[heap]";
6124 			goto cpy_name;
6125 		}
6126 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6127 				vma->vm_end >= vma->vm_mm->start_stack) {
6128 			name = "[stack]";
6129 			goto cpy_name;
6130 		}
6131 
6132 		name = "//anon";
6133 		goto cpy_name;
6134 	}
6135 
6136 cpy_name:
6137 	strlcpy(tmp, name, sizeof(tmp));
6138 	name = tmp;
6139 got_name:
6140 	/*
6141 	 * Since our buffer works in 8 byte units we need to align our string
6142 	 * size to a multiple of 8. However, we must guarantee the tail end is
6143 	 * zero'd out to avoid leaking random bits to userspace.
6144 	 */
6145 	size = strlen(name)+1;
6146 	while (!IS_ALIGNED(size, sizeof(u64)))
6147 		name[size++] = '\0';
6148 
6149 	mmap_event->file_name = name;
6150 	mmap_event->file_size = size;
6151 	mmap_event->maj = maj;
6152 	mmap_event->min = min;
6153 	mmap_event->ino = ino;
6154 	mmap_event->ino_generation = gen;
6155 	mmap_event->prot = prot;
6156 	mmap_event->flags = flags;
6157 
6158 	if (!(vma->vm_flags & VM_EXEC))
6159 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6160 
6161 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6162 
6163 	perf_event_aux(perf_event_mmap_output,
6164 		       mmap_event,
6165 		       NULL);
6166 
6167 	kfree(buf);
6168 }
6169 
6170 void perf_event_mmap(struct vm_area_struct *vma)
6171 {
6172 	struct perf_mmap_event mmap_event;
6173 
6174 	if (!atomic_read(&nr_mmap_events))
6175 		return;
6176 
6177 	mmap_event = (struct perf_mmap_event){
6178 		.vma	= vma,
6179 		/* .file_name */
6180 		/* .file_size */
6181 		.event_id  = {
6182 			.header = {
6183 				.type = PERF_RECORD_MMAP,
6184 				.misc = PERF_RECORD_MISC_USER,
6185 				/* .size */
6186 			},
6187 			/* .pid */
6188 			/* .tid */
6189 			.start  = vma->vm_start,
6190 			.len    = vma->vm_end - vma->vm_start,
6191 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6192 		},
6193 		/* .maj (attr_mmap2 only) */
6194 		/* .min (attr_mmap2 only) */
6195 		/* .ino (attr_mmap2 only) */
6196 		/* .ino_generation (attr_mmap2 only) */
6197 		/* .prot (attr_mmap2 only) */
6198 		/* .flags (attr_mmap2 only) */
6199 	};
6200 
6201 	perf_event_mmap_event(&mmap_event);
6202 }
6203 
6204 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6205 			  unsigned long size, u64 flags)
6206 {
6207 	struct perf_output_handle handle;
6208 	struct perf_sample_data sample;
6209 	struct perf_aux_event {
6210 		struct perf_event_header	header;
6211 		u64				offset;
6212 		u64				size;
6213 		u64				flags;
6214 	} rec = {
6215 		.header = {
6216 			.type = PERF_RECORD_AUX,
6217 			.misc = 0,
6218 			.size = sizeof(rec),
6219 		},
6220 		.offset		= head,
6221 		.size		= size,
6222 		.flags		= flags,
6223 	};
6224 	int ret;
6225 
6226 	perf_event_header__init_id(&rec.header, &sample, event);
6227 	ret = perf_output_begin(&handle, event, rec.header.size);
6228 
6229 	if (ret)
6230 		return;
6231 
6232 	perf_output_put(&handle, rec);
6233 	perf_event__output_id_sample(event, &handle, &sample);
6234 
6235 	perf_output_end(&handle);
6236 }
6237 
6238 /*
6239  * Lost/dropped samples logging
6240  */
6241 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6242 {
6243 	struct perf_output_handle handle;
6244 	struct perf_sample_data sample;
6245 	int ret;
6246 
6247 	struct {
6248 		struct perf_event_header	header;
6249 		u64				lost;
6250 	} lost_samples_event = {
6251 		.header = {
6252 			.type = PERF_RECORD_LOST_SAMPLES,
6253 			.misc = 0,
6254 			.size = sizeof(lost_samples_event),
6255 		},
6256 		.lost		= lost,
6257 	};
6258 
6259 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6260 
6261 	ret = perf_output_begin(&handle, event,
6262 				lost_samples_event.header.size);
6263 	if (ret)
6264 		return;
6265 
6266 	perf_output_put(&handle, lost_samples_event);
6267 	perf_event__output_id_sample(event, &handle, &sample);
6268 	perf_output_end(&handle);
6269 }
6270 
6271 /*
6272  * context_switch tracking
6273  */
6274 
6275 struct perf_switch_event {
6276 	struct task_struct	*task;
6277 	struct task_struct	*next_prev;
6278 
6279 	struct {
6280 		struct perf_event_header	header;
6281 		u32				next_prev_pid;
6282 		u32				next_prev_tid;
6283 	} event_id;
6284 };
6285 
6286 static int perf_event_switch_match(struct perf_event *event)
6287 {
6288 	return event->attr.context_switch;
6289 }
6290 
6291 static void perf_event_switch_output(struct perf_event *event, void *data)
6292 {
6293 	struct perf_switch_event *se = data;
6294 	struct perf_output_handle handle;
6295 	struct perf_sample_data sample;
6296 	int ret;
6297 
6298 	if (!perf_event_switch_match(event))
6299 		return;
6300 
6301 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6302 	if (event->ctx->task) {
6303 		se->event_id.header.type = PERF_RECORD_SWITCH;
6304 		se->event_id.header.size = sizeof(se->event_id.header);
6305 	} else {
6306 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6307 		se->event_id.header.size = sizeof(se->event_id);
6308 		se->event_id.next_prev_pid =
6309 					perf_event_pid(event, se->next_prev);
6310 		se->event_id.next_prev_tid =
6311 					perf_event_tid(event, se->next_prev);
6312 	}
6313 
6314 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6315 
6316 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6317 	if (ret)
6318 		return;
6319 
6320 	if (event->ctx->task)
6321 		perf_output_put(&handle, se->event_id.header);
6322 	else
6323 		perf_output_put(&handle, se->event_id);
6324 
6325 	perf_event__output_id_sample(event, &handle, &sample);
6326 
6327 	perf_output_end(&handle);
6328 }
6329 
6330 static void perf_event_switch(struct task_struct *task,
6331 			      struct task_struct *next_prev, bool sched_in)
6332 {
6333 	struct perf_switch_event switch_event;
6334 
6335 	/* N.B. caller checks nr_switch_events != 0 */
6336 
6337 	switch_event = (struct perf_switch_event){
6338 		.task		= task,
6339 		.next_prev	= next_prev,
6340 		.event_id	= {
6341 			.header = {
6342 				/* .type */
6343 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6344 				/* .size */
6345 			},
6346 			/* .next_prev_pid */
6347 			/* .next_prev_tid */
6348 		},
6349 	};
6350 
6351 	perf_event_aux(perf_event_switch_output,
6352 		       &switch_event,
6353 		       NULL);
6354 }
6355 
6356 /*
6357  * IRQ throttle logging
6358  */
6359 
6360 static void perf_log_throttle(struct perf_event *event, int enable)
6361 {
6362 	struct perf_output_handle handle;
6363 	struct perf_sample_data sample;
6364 	int ret;
6365 
6366 	struct {
6367 		struct perf_event_header	header;
6368 		u64				time;
6369 		u64				id;
6370 		u64				stream_id;
6371 	} throttle_event = {
6372 		.header = {
6373 			.type = PERF_RECORD_THROTTLE,
6374 			.misc = 0,
6375 			.size = sizeof(throttle_event),
6376 		},
6377 		.time		= perf_event_clock(event),
6378 		.id		= primary_event_id(event),
6379 		.stream_id	= event->id,
6380 	};
6381 
6382 	if (enable)
6383 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6384 
6385 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6386 
6387 	ret = perf_output_begin(&handle, event,
6388 				throttle_event.header.size);
6389 	if (ret)
6390 		return;
6391 
6392 	perf_output_put(&handle, throttle_event);
6393 	perf_event__output_id_sample(event, &handle, &sample);
6394 	perf_output_end(&handle);
6395 }
6396 
6397 static void perf_log_itrace_start(struct perf_event *event)
6398 {
6399 	struct perf_output_handle handle;
6400 	struct perf_sample_data sample;
6401 	struct perf_aux_event {
6402 		struct perf_event_header        header;
6403 		u32				pid;
6404 		u32				tid;
6405 	} rec;
6406 	int ret;
6407 
6408 	if (event->parent)
6409 		event = event->parent;
6410 
6411 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6412 	    event->hw.itrace_started)
6413 		return;
6414 
6415 	rec.header.type	= PERF_RECORD_ITRACE_START;
6416 	rec.header.misc	= 0;
6417 	rec.header.size	= sizeof(rec);
6418 	rec.pid	= perf_event_pid(event, current);
6419 	rec.tid	= perf_event_tid(event, current);
6420 
6421 	perf_event_header__init_id(&rec.header, &sample, event);
6422 	ret = perf_output_begin(&handle, event, rec.header.size);
6423 
6424 	if (ret)
6425 		return;
6426 
6427 	perf_output_put(&handle, rec);
6428 	perf_event__output_id_sample(event, &handle, &sample);
6429 
6430 	perf_output_end(&handle);
6431 }
6432 
6433 /*
6434  * Generic event overflow handling, sampling.
6435  */
6436 
6437 static int __perf_event_overflow(struct perf_event *event,
6438 				   int throttle, struct perf_sample_data *data,
6439 				   struct pt_regs *regs)
6440 {
6441 	int events = atomic_read(&event->event_limit);
6442 	struct hw_perf_event *hwc = &event->hw;
6443 	u64 seq;
6444 	int ret = 0;
6445 
6446 	/*
6447 	 * Non-sampling counters might still use the PMI to fold short
6448 	 * hardware counters, ignore those.
6449 	 */
6450 	if (unlikely(!is_sampling_event(event)))
6451 		return 0;
6452 
6453 	seq = __this_cpu_read(perf_throttled_seq);
6454 	if (seq != hwc->interrupts_seq) {
6455 		hwc->interrupts_seq = seq;
6456 		hwc->interrupts = 1;
6457 	} else {
6458 		hwc->interrupts++;
6459 		if (unlikely(throttle
6460 			     && hwc->interrupts >= max_samples_per_tick)) {
6461 			__this_cpu_inc(perf_throttled_count);
6462 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6463 			hwc->interrupts = MAX_INTERRUPTS;
6464 			perf_log_throttle(event, 0);
6465 			ret = 1;
6466 		}
6467 	}
6468 
6469 	if (event->attr.freq) {
6470 		u64 now = perf_clock();
6471 		s64 delta = now - hwc->freq_time_stamp;
6472 
6473 		hwc->freq_time_stamp = now;
6474 
6475 		if (delta > 0 && delta < 2*TICK_NSEC)
6476 			perf_adjust_period(event, delta, hwc->last_period, true);
6477 	}
6478 
6479 	/*
6480 	 * XXX event_limit might not quite work as expected on inherited
6481 	 * events
6482 	 */
6483 
6484 	event->pending_kill = POLL_IN;
6485 	if (events && atomic_dec_and_test(&event->event_limit)) {
6486 		ret = 1;
6487 		event->pending_kill = POLL_HUP;
6488 		event->pending_disable = 1;
6489 		irq_work_queue(&event->pending);
6490 	}
6491 
6492 	if (event->overflow_handler)
6493 		event->overflow_handler(event, data, regs);
6494 	else
6495 		perf_event_output(event, data, regs);
6496 
6497 	if (*perf_event_fasync(event) && event->pending_kill) {
6498 		event->pending_wakeup = 1;
6499 		irq_work_queue(&event->pending);
6500 	}
6501 
6502 	return ret;
6503 }
6504 
6505 int perf_event_overflow(struct perf_event *event,
6506 			  struct perf_sample_data *data,
6507 			  struct pt_regs *regs)
6508 {
6509 	return __perf_event_overflow(event, 1, data, regs);
6510 }
6511 
6512 /*
6513  * Generic software event infrastructure
6514  */
6515 
6516 struct swevent_htable {
6517 	struct swevent_hlist		*swevent_hlist;
6518 	struct mutex			hlist_mutex;
6519 	int				hlist_refcount;
6520 
6521 	/* Recursion avoidance in each contexts */
6522 	int				recursion[PERF_NR_CONTEXTS];
6523 };
6524 
6525 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6526 
6527 /*
6528  * We directly increment event->count and keep a second value in
6529  * event->hw.period_left to count intervals. This period event
6530  * is kept in the range [-sample_period, 0] so that we can use the
6531  * sign as trigger.
6532  */
6533 
6534 u64 perf_swevent_set_period(struct perf_event *event)
6535 {
6536 	struct hw_perf_event *hwc = &event->hw;
6537 	u64 period = hwc->last_period;
6538 	u64 nr, offset;
6539 	s64 old, val;
6540 
6541 	hwc->last_period = hwc->sample_period;
6542 
6543 again:
6544 	old = val = local64_read(&hwc->period_left);
6545 	if (val < 0)
6546 		return 0;
6547 
6548 	nr = div64_u64(period + val, period);
6549 	offset = nr * period;
6550 	val -= offset;
6551 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6552 		goto again;
6553 
6554 	return nr;
6555 }
6556 
6557 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6558 				    struct perf_sample_data *data,
6559 				    struct pt_regs *regs)
6560 {
6561 	struct hw_perf_event *hwc = &event->hw;
6562 	int throttle = 0;
6563 
6564 	if (!overflow)
6565 		overflow = perf_swevent_set_period(event);
6566 
6567 	if (hwc->interrupts == MAX_INTERRUPTS)
6568 		return;
6569 
6570 	for (; overflow; overflow--) {
6571 		if (__perf_event_overflow(event, throttle,
6572 					    data, regs)) {
6573 			/*
6574 			 * We inhibit the overflow from happening when
6575 			 * hwc->interrupts == MAX_INTERRUPTS.
6576 			 */
6577 			break;
6578 		}
6579 		throttle = 1;
6580 	}
6581 }
6582 
6583 static void perf_swevent_event(struct perf_event *event, u64 nr,
6584 			       struct perf_sample_data *data,
6585 			       struct pt_regs *regs)
6586 {
6587 	struct hw_perf_event *hwc = &event->hw;
6588 
6589 	local64_add(nr, &event->count);
6590 
6591 	if (!regs)
6592 		return;
6593 
6594 	if (!is_sampling_event(event))
6595 		return;
6596 
6597 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6598 		data->period = nr;
6599 		return perf_swevent_overflow(event, 1, data, regs);
6600 	} else
6601 		data->period = event->hw.last_period;
6602 
6603 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6604 		return perf_swevent_overflow(event, 1, data, regs);
6605 
6606 	if (local64_add_negative(nr, &hwc->period_left))
6607 		return;
6608 
6609 	perf_swevent_overflow(event, 0, data, regs);
6610 }
6611 
6612 static int perf_exclude_event(struct perf_event *event,
6613 			      struct pt_regs *regs)
6614 {
6615 	if (event->hw.state & PERF_HES_STOPPED)
6616 		return 1;
6617 
6618 	if (regs) {
6619 		if (event->attr.exclude_user && user_mode(regs))
6620 			return 1;
6621 
6622 		if (event->attr.exclude_kernel && !user_mode(regs))
6623 			return 1;
6624 	}
6625 
6626 	return 0;
6627 }
6628 
6629 static int perf_swevent_match(struct perf_event *event,
6630 				enum perf_type_id type,
6631 				u32 event_id,
6632 				struct perf_sample_data *data,
6633 				struct pt_regs *regs)
6634 {
6635 	if (event->attr.type != type)
6636 		return 0;
6637 
6638 	if (event->attr.config != event_id)
6639 		return 0;
6640 
6641 	if (perf_exclude_event(event, regs))
6642 		return 0;
6643 
6644 	return 1;
6645 }
6646 
6647 static inline u64 swevent_hash(u64 type, u32 event_id)
6648 {
6649 	u64 val = event_id | (type << 32);
6650 
6651 	return hash_64(val, SWEVENT_HLIST_BITS);
6652 }
6653 
6654 static inline struct hlist_head *
6655 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6656 {
6657 	u64 hash = swevent_hash(type, event_id);
6658 
6659 	return &hlist->heads[hash];
6660 }
6661 
6662 /* For the read side: events when they trigger */
6663 static inline struct hlist_head *
6664 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6665 {
6666 	struct swevent_hlist *hlist;
6667 
6668 	hlist = rcu_dereference(swhash->swevent_hlist);
6669 	if (!hlist)
6670 		return NULL;
6671 
6672 	return __find_swevent_head(hlist, type, event_id);
6673 }
6674 
6675 /* For the event head insertion and removal in the hlist */
6676 static inline struct hlist_head *
6677 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6678 {
6679 	struct swevent_hlist *hlist;
6680 	u32 event_id = event->attr.config;
6681 	u64 type = event->attr.type;
6682 
6683 	/*
6684 	 * Event scheduling is always serialized against hlist allocation
6685 	 * and release. Which makes the protected version suitable here.
6686 	 * The context lock guarantees that.
6687 	 */
6688 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6689 					  lockdep_is_held(&event->ctx->lock));
6690 	if (!hlist)
6691 		return NULL;
6692 
6693 	return __find_swevent_head(hlist, type, event_id);
6694 }
6695 
6696 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6697 				    u64 nr,
6698 				    struct perf_sample_data *data,
6699 				    struct pt_regs *regs)
6700 {
6701 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6702 	struct perf_event *event;
6703 	struct hlist_head *head;
6704 
6705 	rcu_read_lock();
6706 	head = find_swevent_head_rcu(swhash, type, event_id);
6707 	if (!head)
6708 		goto end;
6709 
6710 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6711 		if (perf_swevent_match(event, type, event_id, data, regs))
6712 			perf_swevent_event(event, nr, data, regs);
6713 	}
6714 end:
6715 	rcu_read_unlock();
6716 }
6717 
6718 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6719 
6720 int perf_swevent_get_recursion_context(void)
6721 {
6722 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6723 
6724 	return get_recursion_context(swhash->recursion);
6725 }
6726 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6727 
6728 inline void perf_swevent_put_recursion_context(int rctx)
6729 {
6730 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6731 
6732 	put_recursion_context(swhash->recursion, rctx);
6733 }
6734 
6735 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6736 {
6737 	struct perf_sample_data data;
6738 
6739 	if (WARN_ON_ONCE(!regs))
6740 		return;
6741 
6742 	perf_sample_data_init(&data, addr, 0);
6743 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6744 }
6745 
6746 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6747 {
6748 	int rctx;
6749 
6750 	preempt_disable_notrace();
6751 	rctx = perf_swevent_get_recursion_context();
6752 	if (unlikely(rctx < 0))
6753 		goto fail;
6754 
6755 	___perf_sw_event(event_id, nr, regs, addr);
6756 
6757 	perf_swevent_put_recursion_context(rctx);
6758 fail:
6759 	preempt_enable_notrace();
6760 }
6761 
6762 static void perf_swevent_read(struct perf_event *event)
6763 {
6764 }
6765 
6766 static int perf_swevent_add(struct perf_event *event, int flags)
6767 {
6768 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6769 	struct hw_perf_event *hwc = &event->hw;
6770 	struct hlist_head *head;
6771 
6772 	if (is_sampling_event(event)) {
6773 		hwc->last_period = hwc->sample_period;
6774 		perf_swevent_set_period(event);
6775 	}
6776 
6777 	hwc->state = !(flags & PERF_EF_START);
6778 
6779 	head = find_swevent_head(swhash, event);
6780 	if (WARN_ON_ONCE(!head))
6781 		return -EINVAL;
6782 
6783 	hlist_add_head_rcu(&event->hlist_entry, head);
6784 	perf_event_update_userpage(event);
6785 
6786 	return 0;
6787 }
6788 
6789 static void perf_swevent_del(struct perf_event *event, int flags)
6790 {
6791 	hlist_del_rcu(&event->hlist_entry);
6792 }
6793 
6794 static void perf_swevent_start(struct perf_event *event, int flags)
6795 {
6796 	event->hw.state = 0;
6797 }
6798 
6799 static void perf_swevent_stop(struct perf_event *event, int flags)
6800 {
6801 	event->hw.state = PERF_HES_STOPPED;
6802 }
6803 
6804 /* Deref the hlist from the update side */
6805 static inline struct swevent_hlist *
6806 swevent_hlist_deref(struct swevent_htable *swhash)
6807 {
6808 	return rcu_dereference_protected(swhash->swevent_hlist,
6809 					 lockdep_is_held(&swhash->hlist_mutex));
6810 }
6811 
6812 static void swevent_hlist_release(struct swevent_htable *swhash)
6813 {
6814 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6815 
6816 	if (!hlist)
6817 		return;
6818 
6819 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6820 	kfree_rcu(hlist, rcu_head);
6821 }
6822 
6823 static void swevent_hlist_put_cpu(int cpu)
6824 {
6825 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6826 
6827 	mutex_lock(&swhash->hlist_mutex);
6828 
6829 	if (!--swhash->hlist_refcount)
6830 		swevent_hlist_release(swhash);
6831 
6832 	mutex_unlock(&swhash->hlist_mutex);
6833 }
6834 
6835 static void swevent_hlist_put(void)
6836 {
6837 	int cpu;
6838 
6839 	for_each_possible_cpu(cpu)
6840 		swevent_hlist_put_cpu(cpu);
6841 }
6842 
6843 static int swevent_hlist_get_cpu(int cpu)
6844 {
6845 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6846 	int err = 0;
6847 
6848 	mutex_lock(&swhash->hlist_mutex);
6849 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6850 		struct swevent_hlist *hlist;
6851 
6852 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6853 		if (!hlist) {
6854 			err = -ENOMEM;
6855 			goto exit;
6856 		}
6857 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6858 	}
6859 	swhash->hlist_refcount++;
6860 exit:
6861 	mutex_unlock(&swhash->hlist_mutex);
6862 
6863 	return err;
6864 }
6865 
6866 static int swevent_hlist_get(void)
6867 {
6868 	int err, cpu, failed_cpu;
6869 
6870 	get_online_cpus();
6871 	for_each_possible_cpu(cpu) {
6872 		err = swevent_hlist_get_cpu(cpu);
6873 		if (err) {
6874 			failed_cpu = cpu;
6875 			goto fail;
6876 		}
6877 	}
6878 	put_online_cpus();
6879 
6880 	return 0;
6881 fail:
6882 	for_each_possible_cpu(cpu) {
6883 		if (cpu == failed_cpu)
6884 			break;
6885 		swevent_hlist_put_cpu(cpu);
6886 	}
6887 
6888 	put_online_cpus();
6889 	return err;
6890 }
6891 
6892 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6893 
6894 static void sw_perf_event_destroy(struct perf_event *event)
6895 {
6896 	u64 event_id = event->attr.config;
6897 
6898 	WARN_ON(event->parent);
6899 
6900 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6901 	swevent_hlist_put();
6902 }
6903 
6904 static int perf_swevent_init(struct perf_event *event)
6905 {
6906 	u64 event_id = event->attr.config;
6907 
6908 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6909 		return -ENOENT;
6910 
6911 	/*
6912 	 * no branch sampling for software events
6913 	 */
6914 	if (has_branch_stack(event))
6915 		return -EOPNOTSUPP;
6916 
6917 	switch (event_id) {
6918 	case PERF_COUNT_SW_CPU_CLOCK:
6919 	case PERF_COUNT_SW_TASK_CLOCK:
6920 		return -ENOENT;
6921 
6922 	default:
6923 		break;
6924 	}
6925 
6926 	if (event_id >= PERF_COUNT_SW_MAX)
6927 		return -ENOENT;
6928 
6929 	if (!event->parent) {
6930 		int err;
6931 
6932 		err = swevent_hlist_get();
6933 		if (err)
6934 			return err;
6935 
6936 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6937 		event->destroy = sw_perf_event_destroy;
6938 	}
6939 
6940 	return 0;
6941 }
6942 
6943 static struct pmu perf_swevent = {
6944 	.task_ctx_nr	= perf_sw_context,
6945 
6946 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6947 
6948 	.event_init	= perf_swevent_init,
6949 	.add		= perf_swevent_add,
6950 	.del		= perf_swevent_del,
6951 	.start		= perf_swevent_start,
6952 	.stop		= perf_swevent_stop,
6953 	.read		= perf_swevent_read,
6954 };
6955 
6956 #ifdef CONFIG_EVENT_TRACING
6957 
6958 static int perf_tp_filter_match(struct perf_event *event,
6959 				struct perf_sample_data *data)
6960 {
6961 	void *record = data->raw->data;
6962 
6963 	/* only top level events have filters set */
6964 	if (event->parent)
6965 		event = event->parent;
6966 
6967 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6968 		return 1;
6969 	return 0;
6970 }
6971 
6972 static int perf_tp_event_match(struct perf_event *event,
6973 				struct perf_sample_data *data,
6974 				struct pt_regs *regs)
6975 {
6976 	if (event->hw.state & PERF_HES_STOPPED)
6977 		return 0;
6978 	/*
6979 	 * All tracepoints are from kernel-space.
6980 	 */
6981 	if (event->attr.exclude_kernel)
6982 		return 0;
6983 
6984 	if (!perf_tp_filter_match(event, data))
6985 		return 0;
6986 
6987 	return 1;
6988 }
6989 
6990 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6991 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6992 		   struct task_struct *task)
6993 {
6994 	struct perf_sample_data data;
6995 	struct perf_event *event;
6996 
6997 	struct perf_raw_record raw = {
6998 		.size = entry_size,
6999 		.data = record,
7000 	};
7001 
7002 	perf_sample_data_init(&data, addr, 0);
7003 	data.raw = &raw;
7004 
7005 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7006 		if (perf_tp_event_match(event, &data, regs))
7007 			perf_swevent_event(event, count, &data, regs);
7008 	}
7009 
7010 	/*
7011 	 * If we got specified a target task, also iterate its context and
7012 	 * deliver this event there too.
7013 	 */
7014 	if (task && task != current) {
7015 		struct perf_event_context *ctx;
7016 		struct trace_entry *entry = record;
7017 
7018 		rcu_read_lock();
7019 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7020 		if (!ctx)
7021 			goto unlock;
7022 
7023 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7024 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7025 				continue;
7026 			if (event->attr.config != entry->type)
7027 				continue;
7028 			if (perf_tp_event_match(event, &data, regs))
7029 				perf_swevent_event(event, count, &data, regs);
7030 		}
7031 unlock:
7032 		rcu_read_unlock();
7033 	}
7034 
7035 	perf_swevent_put_recursion_context(rctx);
7036 }
7037 EXPORT_SYMBOL_GPL(perf_tp_event);
7038 
7039 static void tp_perf_event_destroy(struct perf_event *event)
7040 {
7041 	perf_trace_destroy(event);
7042 }
7043 
7044 static int perf_tp_event_init(struct perf_event *event)
7045 {
7046 	int err;
7047 
7048 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7049 		return -ENOENT;
7050 
7051 	/*
7052 	 * no branch sampling for tracepoint events
7053 	 */
7054 	if (has_branch_stack(event))
7055 		return -EOPNOTSUPP;
7056 
7057 	err = perf_trace_init(event);
7058 	if (err)
7059 		return err;
7060 
7061 	event->destroy = tp_perf_event_destroy;
7062 
7063 	return 0;
7064 }
7065 
7066 static struct pmu perf_tracepoint = {
7067 	.task_ctx_nr	= perf_sw_context,
7068 
7069 	.event_init	= perf_tp_event_init,
7070 	.add		= perf_trace_add,
7071 	.del		= perf_trace_del,
7072 	.start		= perf_swevent_start,
7073 	.stop		= perf_swevent_stop,
7074 	.read		= perf_swevent_read,
7075 };
7076 
7077 static inline void perf_tp_register(void)
7078 {
7079 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7080 }
7081 
7082 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7083 {
7084 	char *filter_str;
7085 	int ret;
7086 
7087 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7088 		return -EINVAL;
7089 
7090 	filter_str = strndup_user(arg, PAGE_SIZE);
7091 	if (IS_ERR(filter_str))
7092 		return PTR_ERR(filter_str);
7093 
7094 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7095 
7096 	kfree(filter_str);
7097 	return ret;
7098 }
7099 
7100 static void perf_event_free_filter(struct perf_event *event)
7101 {
7102 	ftrace_profile_free_filter(event);
7103 }
7104 
7105 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7106 {
7107 	struct bpf_prog *prog;
7108 
7109 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7110 		return -EINVAL;
7111 
7112 	if (event->tp_event->prog)
7113 		return -EEXIST;
7114 
7115 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7116 		/* bpf programs can only be attached to u/kprobes */
7117 		return -EINVAL;
7118 
7119 	prog = bpf_prog_get(prog_fd);
7120 	if (IS_ERR(prog))
7121 		return PTR_ERR(prog);
7122 
7123 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7124 		/* valid fd, but invalid bpf program type */
7125 		bpf_prog_put(prog);
7126 		return -EINVAL;
7127 	}
7128 
7129 	event->tp_event->prog = prog;
7130 
7131 	return 0;
7132 }
7133 
7134 static void perf_event_free_bpf_prog(struct perf_event *event)
7135 {
7136 	struct bpf_prog *prog;
7137 
7138 	if (!event->tp_event)
7139 		return;
7140 
7141 	prog = event->tp_event->prog;
7142 	if (prog) {
7143 		event->tp_event->prog = NULL;
7144 		bpf_prog_put(prog);
7145 	}
7146 }
7147 
7148 #else
7149 
7150 static inline void perf_tp_register(void)
7151 {
7152 }
7153 
7154 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7155 {
7156 	return -ENOENT;
7157 }
7158 
7159 static void perf_event_free_filter(struct perf_event *event)
7160 {
7161 }
7162 
7163 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7164 {
7165 	return -ENOENT;
7166 }
7167 
7168 static void perf_event_free_bpf_prog(struct perf_event *event)
7169 {
7170 }
7171 #endif /* CONFIG_EVENT_TRACING */
7172 
7173 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7174 void perf_bp_event(struct perf_event *bp, void *data)
7175 {
7176 	struct perf_sample_data sample;
7177 	struct pt_regs *regs = data;
7178 
7179 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7180 
7181 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7182 		perf_swevent_event(bp, 1, &sample, regs);
7183 }
7184 #endif
7185 
7186 /*
7187  * hrtimer based swevent callback
7188  */
7189 
7190 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7191 {
7192 	enum hrtimer_restart ret = HRTIMER_RESTART;
7193 	struct perf_sample_data data;
7194 	struct pt_regs *regs;
7195 	struct perf_event *event;
7196 	u64 period;
7197 
7198 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7199 
7200 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7201 		return HRTIMER_NORESTART;
7202 
7203 	event->pmu->read(event);
7204 
7205 	perf_sample_data_init(&data, 0, event->hw.last_period);
7206 	regs = get_irq_regs();
7207 
7208 	if (regs && !perf_exclude_event(event, regs)) {
7209 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7210 			if (__perf_event_overflow(event, 1, &data, regs))
7211 				ret = HRTIMER_NORESTART;
7212 	}
7213 
7214 	period = max_t(u64, 10000, event->hw.sample_period);
7215 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7216 
7217 	return ret;
7218 }
7219 
7220 static void perf_swevent_start_hrtimer(struct perf_event *event)
7221 {
7222 	struct hw_perf_event *hwc = &event->hw;
7223 	s64 period;
7224 
7225 	if (!is_sampling_event(event))
7226 		return;
7227 
7228 	period = local64_read(&hwc->period_left);
7229 	if (period) {
7230 		if (period < 0)
7231 			period = 10000;
7232 
7233 		local64_set(&hwc->period_left, 0);
7234 	} else {
7235 		period = max_t(u64, 10000, hwc->sample_period);
7236 	}
7237 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7238 		      HRTIMER_MODE_REL_PINNED);
7239 }
7240 
7241 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7242 {
7243 	struct hw_perf_event *hwc = &event->hw;
7244 
7245 	if (is_sampling_event(event)) {
7246 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7247 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7248 
7249 		hrtimer_cancel(&hwc->hrtimer);
7250 	}
7251 }
7252 
7253 static void perf_swevent_init_hrtimer(struct perf_event *event)
7254 {
7255 	struct hw_perf_event *hwc = &event->hw;
7256 
7257 	if (!is_sampling_event(event))
7258 		return;
7259 
7260 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7261 	hwc->hrtimer.function = perf_swevent_hrtimer;
7262 
7263 	/*
7264 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7265 	 * mapping and avoid the whole period adjust feedback stuff.
7266 	 */
7267 	if (event->attr.freq) {
7268 		long freq = event->attr.sample_freq;
7269 
7270 		event->attr.sample_period = NSEC_PER_SEC / freq;
7271 		hwc->sample_period = event->attr.sample_period;
7272 		local64_set(&hwc->period_left, hwc->sample_period);
7273 		hwc->last_period = hwc->sample_period;
7274 		event->attr.freq = 0;
7275 	}
7276 }
7277 
7278 /*
7279  * Software event: cpu wall time clock
7280  */
7281 
7282 static void cpu_clock_event_update(struct perf_event *event)
7283 {
7284 	s64 prev;
7285 	u64 now;
7286 
7287 	now = local_clock();
7288 	prev = local64_xchg(&event->hw.prev_count, now);
7289 	local64_add(now - prev, &event->count);
7290 }
7291 
7292 static void cpu_clock_event_start(struct perf_event *event, int flags)
7293 {
7294 	local64_set(&event->hw.prev_count, local_clock());
7295 	perf_swevent_start_hrtimer(event);
7296 }
7297 
7298 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7299 {
7300 	perf_swevent_cancel_hrtimer(event);
7301 	cpu_clock_event_update(event);
7302 }
7303 
7304 static int cpu_clock_event_add(struct perf_event *event, int flags)
7305 {
7306 	if (flags & PERF_EF_START)
7307 		cpu_clock_event_start(event, flags);
7308 	perf_event_update_userpage(event);
7309 
7310 	return 0;
7311 }
7312 
7313 static void cpu_clock_event_del(struct perf_event *event, int flags)
7314 {
7315 	cpu_clock_event_stop(event, flags);
7316 }
7317 
7318 static void cpu_clock_event_read(struct perf_event *event)
7319 {
7320 	cpu_clock_event_update(event);
7321 }
7322 
7323 static int cpu_clock_event_init(struct perf_event *event)
7324 {
7325 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7326 		return -ENOENT;
7327 
7328 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7329 		return -ENOENT;
7330 
7331 	/*
7332 	 * no branch sampling for software events
7333 	 */
7334 	if (has_branch_stack(event))
7335 		return -EOPNOTSUPP;
7336 
7337 	perf_swevent_init_hrtimer(event);
7338 
7339 	return 0;
7340 }
7341 
7342 static struct pmu perf_cpu_clock = {
7343 	.task_ctx_nr	= perf_sw_context,
7344 
7345 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7346 
7347 	.event_init	= cpu_clock_event_init,
7348 	.add		= cpu_clock_event_add,
7349 	.del		= cpu_clock_event_del,
7350 	.start		= cpu_clock_event_start,
7351 	.stop		= cpu_clock_event_stop,
7352 	.read		= cpu_clock_event_read,
7353 };
7354 
7355 /*
7356  * Software event: task time clock
7357  */
7358 
7359 static void task_clock_event_update(struct perf_event *event, u64 now)
7360 {
7361 	u64 prev;
7362 	s64 delta;
7363 
7364 	prev = local64_xchg(&event->hw.prev_count, now);
7365 	delta = now - prev;
7366 	local64_add(delta, &event->count);
7367 }
7368 
7369 static void task_clock_event_start(struct perf_event *event, int flags)
7370 {
7371 	local64_set(&event->hw.prev_count, event->ctx->time);
7372 	perf_swevent_start_hrtimer(event);
7373 }
7374 
7375 static void task_clock_event_stop(struct perf_event *event, int flags)
7376 {
7377 	perf_swevent_cancel_hrtimer(event);
7378 	task_clock_event_update(event, event->ctx->time);
7379 }
7380 
7381 static int task_clock_event_add(struct perf_event *event, int flags)
7382 {
7383 	if (flags & PERF_EF_START)
7384 		task_clock_event_start(event, flags);
7385 	perf_event_update_userpage(event);
7386 
7387 	return 0;
7388 }
7389 
7390 static void task_clock_event_del(struct perf_event *event, int flags)
7391 {
7392 	task_clock_event_stop(event, PERF_EF_UPDATE);
7393 }
7394 
7395 static void task_clock_event_read(struct perf_event *event)
7396 {
7397 	u64 now = perf_clock();
7398 	u64 delta = now - event->ctx->timestamp;
7399 	u64 time = event->ctx->time + delta;
7400 
7401 	task_clock_event_update(event, time);
7402 }
7403 
7404 static int task_clock_event_init(struct perf_event *event)
7405 {
7406 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7407 		return -ENOENT;
7408 
7409 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7410 		return -ENOENT;
7411 
7412 	/*
7413 	 * no branch sampling for software events
7414 	 */
7415 	if (has_branch_stack(event))
7416 		return -EOPNOTSUPP;
7417 
7418 	perf_swevent_init_hrtimer(event);
7419 
7420 	return 0;
7421 }
7422 
7423 static struct pmu perf_task_clock = {
7424 	.task_ctx_nr	= perf_sw_context,
7425 
7426 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7427 
7428 	.event_init	= task_clock_event_init,
7429 	.add		= task_clock_event_add,
7430 	.del		= task_clock_event_del,
7431 	.start		= task_clock_event_start,
7432 	.stop		= task_clock_event_stop,
7433 	.read		= task_clock_event_read,
7434 };
7435 
7436 static void perf_pmu_nop_void(struct pmu *pmu)
7437 {
7438 }
7439 
7440 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7441 {
7442 }
7443 
7444 static int perf_pmu_nop_int(struct pmu *pmu)
7445 {
7446 	return 0;
7447 }
7448 
7449 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7450 
7451 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7452 {
7453 	__this_cpu_write(nop_txn_flags, flags);
7454 
7455 	if (flags & ~PERF_PMU_TXN_ADD)
7456 		return;
7457 
7458 	perf_pmu_disable(pmu);
7459 }
7460 
7461 static int perf_pmu_commit_txn(struct pmu *pmu)
7462 {
7463 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7464 
7465 	__this_cpu_write(nop_txn_flags, 0);
7466 
7467 	if (flags & ~PERF_PMU_TXN_ADD)
7468 		return 0;
7469 
7470 	perf_pmu_enable(pmu);
7471 	return 0;
7472 }
7473 
7474 static void perf_pmu_cancel_txn(struct pmu *pmu)
7475 {
7476 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7477 
7478 	__this_cpu_write(nop_txn_flags, 0);
7479 
7480 	if (flags & ~PERF_PMU_TXN_ADD)
7481 		return;
7482 
7483 	perf_pmu_enable(pmu);
7484 }
7485 
7486 static int perf_event_idx_default(struct perf_event *event)
7487 {
7488 	return 0;
7489 }
7490 
7491 /*
7492  * Ensures all contexts with the same task_ctx_nr have the same
7493  * pmu_cpu_context too.
7494  */
7495 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7496 {
7497 	struct pmu *pmu;
7498 
7499 	if (ctxn < 0)
7500 		return NULL;
7501 
7502 	list_for_each_entry(pmu, &pmus, entry) {
7503 		if (pmu->task_ctx_nr == ctxn)
7504 			return pmu->pmu_cpu_context;
7505 	}
7506 
7507 	return NULL;
7508 }
7509 
7510 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7511 {
7512 	int cpu;
7513 
7514 	for_each_possible_cpu(cpu) {
7515 		struct perf_cpu_context *cpuctx;
7516 
7517 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7518 
7519 		if (cpuctx->unique_pmu == old_pmu)
7520 			cpuctx->unique_pmu = pmu;
7521 	}
7522 }
7523 
7524 static void free_pmu_context(struct pmu *pmu)
7525 {
7526 	struct pmu *i;
7527 
7528 	mutex_lock(&pmus_lock);
7529 	/*
7530 	 * Like a real lame refcount.
7531 	 */
7532 	list_for_each_entry(i, &pmus, entry) {
7533 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7534 			update_pmu_context(i, pmu);
7535 			goto out;
7536 		}
7537 	}
7538 
7539 	free_percpu(pmu->pmu_cpu_context);
7540 out:
7541 	mutex_unlock(&pmus_lock);
7542 }
7543 static struct idr pmu_idr;
7544 
7545 static ssize_t
7546 type_show(struct device *dev, struct device_attribute *attr, char *page)
7547 {
7548 	struct pmu *pmu = dev_get_drvdata(dev);
7549 
7550 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7551 }
7552 static DEVICE_ATTR_RO(type);
7553 
7554 static ssize_t
7555 perf_event_mux_interval_ms_show(struct device *dev,
7556 				struct device_attribute *attr,
7557 				char *page)
7558 {
7559 	struct pmu *pmu = dev_get_drvdata(dev);
7560 
7561 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7562 }
7563 
7564 static DEFINE_MUTEX(mux_interval_mutex);
7565 
7566 static ssize_t
7567 perf_event_mux_interval_ms_store(struct device *dev,
7568 				 struct device_attribute *attr,
7569 				 const char *buf, size_t count)
7570 {
7571 	struct pmu *pmu = dev_get_drvdata(dev);
7572 	int timer, cpu, ret;
7573 
7574 	ret = kstrtoint(buf, 0, &timer);
7575 	if (ret)
7576 		return ret;
7577 
7578 	if (timer < 1)
7579 		return -EINVAL;
7580 
7581 	/* same value, noting to do */
7582 	if (timer == pmu->hrtimer_interval_ms)
7583 		return count;
7584 
7585 	mutex_lock(&mux_interval_mutex);
7586 	pmu->hrtimer_interval_ms = timer;
7587 
7588 	/* update all cpuctx for this PMU */
7589 	get_online_cpus();
7590 	for_each_online_cpu(cpu) {
7591 		struct perf_cpu_context *cpuctx;
7592 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7593 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7594 
7595 		cpu_function_call(cpu,
7596 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7597 	}
7598 	put_online_cpus();
7599 	mutex_unlock(&mux_interval_mutex);
7600 
7601 	return count;
7602 }
7603 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7604 
7605 static struct attribute *pmu_dev_attrs[] = {
7606 	&dev_attr_type.attr,
7607 	&dev_attr_perf_event_mux_interval_ms.attr,
7608 	NULL,
7609 };
7610 ATTRIBUTE_GROUPS(pmu_dev);
7611 
7612 static int pmu_bus_running;
7613 static struct bus_type pmu_bus = {
7614 	.name		= "event_source",
7615 	.dev_groups	= pmu_dev_groups,
7616 };
7617 
7618 static void pmu_dev_release(struct device *dev)
7619 {
7620 	kfree(dev);
7621 }
7622 
7623 static int pmu_dev_alloc(struct pmu *pmu)
7624 {
7625 	int ret = -ENOMEM;
7626 
7627 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7628 	if (!pmu->dev)
7629 		goto out;
7630 
7631 	pmu->dev->groups = pmu->attr_groups;
7632 	device_initialize(pmu->dev);
7633 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7634 	if (ret)
7635 		goto free_dev;
7636 
7637 	dev_set_drvdata(pmu->dev, pmu);
7638 	pmu->dev->bus = &pmu_bus;
7639 	pmu->dev->release = pmu_dev_release;
7640 	ret = device_add(pmu->dev);
7641 	if (ret)
7642 		goto free_dev;
7643 
7644 out:
7645 	return ret;
7646 
7647 free_dev:
7648 	put_device(pmu->dev);
7649 	goto out;
7650 }
7651 
7652 static struct lock_class_key cpuctx_mutex;
7653 static struct lock_class_key cpuctx_lock;
7654 
7655 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7656 {
7657 	int cpu, ret;
7658 
7659 	mutex_lock(&pmus_lock);
7660 	ret = -ENOMEM;
7661 	pmu->pmu_disable_count = alloc_percpu(int);
7662 	if (!pmu->pmu_disable_count)
7663 		goto unlock;
7664 
7665 	pmu->type = -1;
7666 	if (!name)
7667 		goto skip_type;
7668 	pmu->name = name;
7669 
7670 	if (type < 0) {
7671 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7672 		if (type < 0) {
7673 			ret = type;
7674 			goto free_pdc;
7675 		}
7676 	}
7677 	pmu->type = type;
7678 
7679 	if (pmu_bus_running) {
7680 		ret = pmu_dev_alloc(pmu);
7681 		if (ret)
7682 			goto free_idr;
7683 	}
7684 
7685 skip_type:
7686 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7687 	if (pmu->pmu_cpu_context)
7688 		goto got_cpu_context;
7689 
7690 	ret = -ENOMEM;
7691 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7692 	if (!pmu->pmu_cpu_context)
7693 		goto free_dev;
7694 
7695 	for_each_possible_cpu(cpu) {
7696 		struct perf_cpu_context *cpuctx;
7697 
7698 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7699 		__perf_event_init_context(&cpuctx->ctx);
7700 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7701 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7702 		cpuctx->ctx.pmu = pmu;
7703 
7704 		__perf_mux_hrtimer_init(cpuctx, cpu);
7705 
7706 		cpuctx->unique_pmu = pmu;
7707 	}
7708 
7709 got_cpu_context:
7710 	if (!pmu->start_txn) {
7711 		if (pmu->pmu_enable) {
7712 			/*
7713 			 * If we have pmu_enable/pmu_disable calls, install
7714 			 * transaction stubs that use that to try and batch
7715 			 * hardware accesses.
7716 			 */
7717 			pmu->start_txn  = perf_pmu_start_txn;
7718 			pmu->commit_txn = perf_pmu_commit_txn;
7719 			pmu->cancel_txn = perf_pmu_cancel_txn;
7720 		} else {
7721 			pmu->start_txn  = perf_pmu_nop_txn;
7722 			pmu->commit_txn = perf_pmu_nop_int;
7723 			pmu->cancel_txn = perf_pmu_nop_void;
7724 		}
7725 	}
7726 
7727 	if (!pmu->pmu_enable) {
7728 		pmu->pmu_enable  = perf_pmu_nop_void;
7729 		pmu->pmu_disable = perf_pmu_nop_void;
7730 	}
7731 
7732 	if (!pmu->event_idx)
7733 		pmu->event_idx = perf_event_idx_default;
7734 
7735 	list_add_rcu(&pmu->entry, &pmus);
7736 	atomic_set(&pmu->exclusive_cnt, 0);
7737 	ret = 0;
7738 unlock:
7739 	mutex_unlock(&pmus_lock);
7740 
7741 	return ret;
7742 
7743 free_dev:
7744 	device_del(pmu->dev);
7745 	put_device(pmu->dev);
7746 
7747 free_idr:
7748 	if (pmu->type >= PERF_TYPE_MAX)
7749 		idr_remove(&pmu_idr, pmu->type);
7750 
7751 free_pdc:
7752 	free_percpu(pmu->pmu_disable_count);
7753 	goto unlock;
7754 }
7755 EXPORT_SYMBOL_GPL(perf_pmu_register);
7756 
7757 void perf_pmu_unregister(struct pmu *pmu)
7758 {
7759 	mutex_lock(&pmus_lock);
7760 	list_del_rcu(&pmu->entry);
7761 	mutex_unlock(&pmus_lock);
7762 
7763 	/*
7764 	 * We dereference the pmu list under both SRCU and regular RCU, so
7765 	 * synchronize against both of those.
7766 	 */
7767 	synchronize_srcu(&pmus_srcu);
7768 	synchronize_rcu();
7769 
7770 	free_percpu(pmu->pmu_disable_count);
7771 	if (pmu->type >= PERF_TYPE_MAX)
7772 		idr_remove(&pmu_idr, pmu->type);
7773 	device_del(pmu->dev);
7774 	put_device(pmu->dev);
7775 	free_pmu_context(pmu);
7776 }
7777 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7778 
7779 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7780 {
7781 	struct perf_event_context *ctx = NULL;
7782 	int ret;
7783 
7784 	if (!try_module_get(pmu->module))
7785 		return -ENODEV;
7786 
7787 	if (event->group_leader != event) {
7788 		/*
7789 		 * This ctx->mutex can nest when we're called through
7790 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7791 		 */
7792 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7793 						 SINGLE_DEPTH_NESTING);
7794 		BUG_ON(!ctx);
7795 	}
7796 
7797 	event->pmu = pmu;
7798 	ret = pmu->event_init(event);
7799 
7800 	if (ctx)
7801 		perf_event_ctx_unlock(event->group_leader, ctx);
7802 
7803 	if (ret)
7804 		module_put(pmu->module);
7805 
7806 	return ret;
7807 }
7808 
7809 static struct pmu *perf_init_event(struct perf_event *event)
7810 {
7811 	struct pmu *pmu = NULL;
7812 	int idx;
7813 	int ret;
7814 
7815 	idx = srcu_read_lock(&pmus_srcu);
7816 
7817 	rcu_read_lock();
7818 	pmu = idr_find(&pmu_idr, event->attr.type);
7819 	rcu_read_unlock();
7820 	if (pmu) {
7821 		ret = perf_try_init_event(pmu, event);
7822 		if (ret)
7823 			pmu = ERR_PTR(ret);
7824 		goto unlock;
7825 	}
7826 
7827 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7828 		ret = perf_try_init_event(pmu, event);
7829 		if (!ret)
7830 			goto unlock;
7831 
7832 		if (ret != -ENOENT) {
7833 			pmu = ERR_PTR(ret);
7834 			goto unlock;
7835 		}
7836 	}
7837 	pmu = ERR_PTR(-ENOENT);
7838 unlock:
7839 	srcu_read_unlock(&pmus_srcu, idx);
7840 
7841 	return pmu;
7842 }
7843 
7844 static void account_event_cpu(struct perf_event *event, int cpu)
7845 {
7846 	if (event->parent)
7847 		return;
7848 
7849 	if (is_cgroup_event(event))
7850 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7851 }
7852 
7853 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
7854 static void account_freq_event_nohz(void)
7855 {
7856 #ifdef CONFIG_NO_HZ_FULL
7857 	/* Lock so we don't race with concurrent unaccount */
7858 	spin_lock(&nr_freq_lock);
7859 	if (atomic_inc_return(&nr_freq_events) == 1)
7860 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7861 	spin_unlock(&nr_freq_lock);
7862 #endif
7863 }
7864 
7865 static void account_freq_event(void)
7866 {
7867 	if (tick_nohz_full_enabled())
7868 		account_freq_event_nohz();
7869 	else
7870 		atomic_inc(&nr_freq_events);
7871 }
7872 
7873 
7874 static void account_event(struct perf_event *event)
7875 {
7876 	bool inc = false;
7877 
7878 	if (event->parent)
7879 		return;
7880 
7881 	if (event->attach_state & PERF_ATTACH_TASK)
7882 		inc = true;
7883 	if (event->attr.mmap || event->attr.mmap_data)
7884 		atomic_inc(&nr_mmap_events);
7885 	if (event->attr.comm)
7886 		atomic_inc(&nr_comm_events);
7887 	if (event->attr.task)
7888 		atomic_inc(&nr_task_events);
7889 	if (event->attr.freq)
7890 		account_freq_event();
7891 	if (event->attr.context_switch) {
7892 		atomic_inc(&nr_switch_events);
7893 		inc = true;
7894 	}
7895 	if (has_branch_stack(event))
7896 		inc = true;
7897 	if (is_cgroup_event(event))
7898 		inc = true;
7899 
7900 	if (inc) {
7901 		if (atomic_inc_not_zero(&perf_sched_count))
7902 			goto enabled;
7903 
7904 		mutex_lock(&perf_sched_mutex);
7905 		if (!atomic_read(&perf_sched_count)) {
7906 			static_branch_enable(&perf_sched_events);
7907 			/*
7908 			 * Guarantee that all CPUs observe they key change and
7909 			 * call the perf scheduling hooks before proceeding to
7910 			 * install events that need them.
7911 			 */
7912 			synchronize_sched();
7913 		}
7914 		/*
7915 		 * Now that we have waited for the sync_sched(), allow further
7916 		 * increments to by-pass the mutex.
7917 		 */
7918 		atomic_inc(&perf_sched_count);
7919 		mutex_unlock(&perf_sched_mutex);
7920 	}
7921 enabled:
7922 
7923 	account_event_cpu(event, event->cpu);
7924 }
7925 
7926 /*
7927  * Allocate and initialize a event structure
7928  */
7929 static struct perf_event *
7930 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7931 		 struct task_struct *task,
7932 		 struct perf_event *group_leader,
7933 		 struct perf_event *parent_event,
7934 		 perf_overflow_handler_t overflow_handler,
7935 		 void *context, int cgroup_fd)
7936 {
7937 	struct pmu *pmu;
7938 	struct perf_event *event;
7939 	struct hw_perf_event *hwc;
7940 	long err = -EINVAL;
7941 
7942 	if ((unsigned)cpu >= nr_cpu_ids) {
7943 		if (!task || cpu != -1)
7944 			return ERR_PTR(-EINVAL);
7945 	}
7946 
7947 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7948 	if (!event)
7949 		return ERR_PTR(-ENOMEM);
7950 
7951 	/*
7952 	 * Single events are their own group leaders, with an
7953 	 * empty sibling list:
7954 	 */
7955 	if (!group_leader)
7956 		group_leader = event;
7957 
7958 	mutex_init(&event->child_mutex);
7959 	INIT_LIST_HEAD(&event->child_list);
7960 
7961 	INIT_LIST_HEAD(&event->group_entry);
7962 	INIT_LIST_HEAD(&event->event_entry);
7963 	INIT_LIST_HEAD(&event->sibling_list);
7964 	INIT_LIST_HEAD(&event->rb_entry);
7965 	INIT_LIST_HEAD(&event->active_entry);
7966 	INIT_HLIST_NODE(&event->hlist_entry);
7967 
7968 
7969 	init_waitqueue_head(&event->waitq);
7970 	init_irq_work(&event->pending, perf_pending_event);
7971 
7972 	mutex_init(&event->mmap_mutex);
7973 
7974 	atomic_long_set(&event->refcount, 1);
7975 	event->cpu		= cpu;
7976 	event->attr		= *attr;
7977 	event->group_leader	= group_leader;
7978 	event->pmu		= NULL;
7979 	event->oncpu		= -1;
7980 
7981 	event->parent		= parent_event;
7982 
7983 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7984 	event->id		= atomic64_inc_return(&perf_event_id);
7985 
7986 	event->state		= PERF_EVENT_STATE_INACTIVE;
7987 
7988 	if (task) {
7989 		event->attach_state = PERF_ATTACH_TASK;
7990 		/*
7991 		 * XXX pmu::event_init needs to know what task to account to
7992 		 * and we cannot use the ctx information because we need the
7993 		 * pmu before we get a ctx.
7994 		 */
7995 		event->hw.target = task;
7996 	}
7997 
7998 	event->clock = &local_clock;
7999 	if (parent_event)
8000 		event->clock = parent_event->clock;
8001 
8002 	if (!overflow_handler && parent_event) {
8003 		overflow_handler = parent_event->overflow_handler;
8004 		context = parent_event->overflow_handler_context;
8005 	}
8006 
8007 	event->overflow_handler	= overflow_handler;
8008 	event->overflow_handler_context = context;
8009 
8010 	perf_event__state_init(event);
8011 
8012 	pmu = NULL;
8013 
8014 	hwc = &event->hw;
8015 	hwc->sample_period = attr->sample_period;
8016 	if (attr->freq && attr->sample_freq)
8017 		hwc->sample_period = 1;
8018 	hwc->last_period = hwc->sample_period;
8019 
8020 	local64_set(&hwc->period_left, hwc->sample_period);
8021 
8022 	/*
8023 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8024 	 */
8025 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8026 		goto err_ns;
8027 
8028 	if (!has_branch_stack(event))
8029 		event->attr.branch_sample_type = 0;
8030 
8031 	if (cgroup_fd != -1) {
8032 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8033 		if (err)
8034 			goto err_ns;
8035 	}
8036 
8037 	pmu = perf_init_event(event);
8038 	if (!pmu)
8039 		goto err_ns;
8040 	else if (IS_ERR(pmu)) {
8041 		err = PTR_ERR(pmu);
8042 		goto err_ns;
8043 	}
8044 
8045 	err = exclusive_event_init(event);
8046 	if (err)
8047 		goto err_pmu;
8048 
8049 	if (!event->parent) {
8050 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8051 			err = get_callchain_buffers();
8052 			if (err)
8053 				goto err_per_task;
8054 		}
8055 	}
8056 
8057 	/* symmetric to unaccount_event() in _free_event() */
8058 	account_event(event);
8059 
8060 	return event;
8061 
8062 err_per_task:
8063 	exclusive_event_destroy(event);
8064 
8065 err_pmu:
8066 	if (event->destroy)
8067 		event->destroy(event);
8068 	module_put(pmu->module);
8069 err_ns:
8070 	if (is_cgroup_event(event))
8071 		perf_detach_cgroup(event);
8072 	if (event->ns)
8073 		put_pid_ns(event->ns);
8074 	kfree(event);
8075 
8076 	return ERR_PTR(err);
8077 }
8078 
8079 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8080 			  struct perf_event_attr *attr)
8081 {
8082 	u32 size;
8083 	int ret;
8084 
8085 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8086 		return -EFAULT;
8087 
8088 	/*
8089 	 * zero the full structure, so that a short copy will be nice.
8090 	 */
8091 	memset(attr, 0, sizeof(*attr));
8092 
8093 	ret = get_user(size, &uattr->size);
8094 	if (ret)
8095 		return ret;
8096 
8097 	if (size > PAGE_SIZE)	/* silly large */
8098 		goto err_size;
8099 
8100 	if (!size)		/* abi compat */
8101 		size = PERF_ATTR_SIZE_VER0;
8102 
8103 	if (size < PERF_ATTR_SIZE_VER0)
8104 		goto err_size;
8105 
8106 	/*
8107 	 * If we're handed a bigger struct than we know of,
8108 	 * ensure all the unknown bits are 0 - i.e. new
8109 	 * user-space does not rely on any kernel feature
8110 	 * extensions we dont know about yet.
8111 	 */
8112 	if (size > sizeof(*attr)) {
8113 		unsigned char __user *addr;
8114 		unsigned char __user *end;
8115 		unsigned char val;
8116 
8117 		addr = (void __user *)uattr + sizeof(*attr);
8118 		end  = (void __user *)uattr + size;
8119 
8120 		for (; addr < end; addr++) {
8121 			ret = get_user(val, addr);
8122 			if (ret)
8123 				return ret;
8124 			if (val)
8125 				goto err_size;
8126 		}
8127 		size = sizeof(*attr);
8128 	}
8129 
8130 	ret = copy_from_user(attr, uattr, size);
8131 	if (ret)
8132 		return -EFAULT;
8133 
8134 	if (attr->__reserved_1)
8135 		return -EINVAL;
8136 
8137 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8138 		return -EINVAL;
8139 
8140 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8141 		return -EINVAL;
8142 
8143 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8144 		u64 mask = attr->branch_sample_type;
8145 
8146 		/* only using defined bits */
8147 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8148 			return -EINVAL;
8149 
8150 		/* at least one branch bit must be set */
8151 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8152 			return -EINVAL;
8153 
8154 		/* propagate priv level, when not set for branch */
8155 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8156 
8157 			/* exclude_kernel checked on syscall entry */
8158 			if (!attr->exclude_kernel)
8159 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8160 
8161 			if (!attr->exclude_user)
8162 				mask |= PERF_SAMPLE_BRANCH_USER;
8163 
8164 			if (!attr->exclude_hv)
8165 				mask |= PERF_SAMPLE_BRANCH_HV;
8166 			/*
8167 			 * adjust user setting (for HW filter setup)
8168 			 */
8169 			attr->branch_sample_type = mask;
8170 		}
8171 		/* privileged levels capture (kernel, hv): check permissions */
8172 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8173 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8174 			return -EACCES;
8175 	}
8176 
8177 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8178 		ret = perf_reg_validate(attr->sample_regs_user);
8179 		if (ret)
8180 			return ret;
8181 	}
8182 
8183 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8184 		if (!arch_perf_have_user_stack_dump())
8185 			return -ENOSYS;
8186 
8187 		/*
8188 		 * We have __u32 type for the size, but so far
8189 		 * we can only use __u16 as maximum due to the
8190 		 * __u16 sample size limit.
8191 		 */
8192 		if (attr->sample_stack_user >= USHRT_MAX)
8193 			ret = -EINVAL;
8194 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8195 			ret = -EINVAL;
8196 	}
8197 
8198 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8199 		ret = perf_reg_validate(attr->sample_regs_intr);
8200 out:
8201 	return ret;
8202 
8203 err_size:
8204 	put_user(sizeof(*attr), &uattr->size);
8205 	ret = -E2BIG;
8206 	goto out;
8207 }
8208 
8209 static int
8210 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8211 {
8212 	struct ring_buffer *rb = NULL;
8213 	int ret = -EINVAL;
8214 
8215 	if (!output_event)
8216 		goto set;
8217 
8218 	/* don't allow circular references */
8219 	if (event == output_event)
8220 		goto out;
8221 
8222 	/*
8223 	 * Don't allow cross-cpu buffers
8224 	 */
8225 	if (output_event->cpu != event->cpu)
8226 		goto out;
8227 
8228 	/*
8229 	 * If its not a per-cpu rb, it must be the same task.
8230 	 */
8231 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8232 		goto out;
8233 
8234 	/*
8235 	 * Mixing clocks in the same buffer is trouble you don't need.
8236 	 */
8237 	if (output_event->clock != event->clock)
8238 		goto out;
8239 
8240 	/*
8241 	 * If both events generate aux data, they must be on the same PMU
8242 	 */
8243 	if (has_aux(event) && has_aux(output_event) &&
8244 	    event->pmu != output_event->pmu)
8245 		goto out;
8246 
8247 set:
8248 	mutex_lock(&event->mmap_mutex);
8249 	/* Can't redirect output if we've got an active mmap() */
8250 	if (atomic_read(&event->mmap_count))
8251 		goto unlock;
8252 
8253 	if (output_event) {
8254 		/* get the rb we want to redirect to */
8255 		rb = ring_buffer_get(output_event);
8256 		if (!rb)
8257 			goto unlock;
8258 	}
8259 
8260 	ring_buffer_attach(event, rb);
8261 
8262 	ret = 0;
8263 unlock:
8264 	mutex_unlock(&event->mmap_mutex);
8265 
8266 out:
8267 	return ret;
8268 }
8269 
8270 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8271 {
8272 	if (b < a)
8273 		swap(a, b);
8274 
8275 	mutex_lock(a);
8276 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8277 }
8278 
8279 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8280 {
8281 	bool nmi_safe = false;
8282 
8283 	switch (clk_id) {
8284 	case CLOCK_MONOTONIC:
8285 		event->clock = &ktime_get_mono_fast_ns;
8286 		nmi_safe = true;
8287 		break;
8288 
8289 	case CLOCK_MONOTONIC_RAW:
8290 		event->clock = &ktime_get_raw_fast_ns;
8291 		nmi_safe = true;
8292 		break;
8293 
8294 	case CLOCK_REALTIME:
8295 		event->clock = &ktime_get_real_ns;
8296 		break;
8297 
8298 	case CLOCK_BOOTTIME:
8299 		event->clock = &ktime_get_boot_ns;
8300 		break;
8301 
8302 	case CLOCK_TAI:
8303 		event->clock = &ktime_get_tai_ns;
8304 		break;
8305 
8306 	default:
8307 		return -EINVAL;
8308 	}
8309 
8310 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8311 		return -EINVAL;
8312 
8313 	return 0;
8314 }
8315 
8316 /**
8317  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8318  *
8319  * @attr_uptr:	event_id type attributes for monitoring/sampling
8320  * @pid:		target pid
8321  * @cpu:		target cpu
8322  * @group_fd:		group leader event fd
8323  */
8324 SYSCALL_DEFINE5(perf_event_open,
8325 		struct perf_event_attr __user *, attr_uptr,
8326 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8327 {
8328 	struct perf_event *group_leader = NULL, *output_event = NULL;
8329 	struct perf_event *event, *sibling;
8330 	struct perf_event_attr attr;
8331 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8332 	struct file *event_file = NULL;
8333 	struct fd group = {NULL, 0};
8334 	struct task_struct *task = NULL;
8335 	struct pmu *pmu;
8336 	int event_fd;
8337 	int move_group = 0;
8338 	int err;
8339 	int f_flags = O_RDWR;
8340 	int cgroup_fd = -1;
8341 
8342 	/* for future expandability... */
8343 	if (flags & ~PERF_FLAG_ALL)
8344 		return -EINVAL;
8345 
8346 	err = perf_copy_attr(attr_uptr, &attr);
8347 	if (err)
8348 		return err;
8349 
8350 	if (!attr.exclude_kernel) {
8351 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8352 			return -EACCES;
8353 	}
8354 
8355 	if (attr.freq) {
8356 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8357 			return -EINVAL;
8358 	} else {
8359 		if (attr.sample_period & (1ULL << 63))
8360 			return -EINVAL;
8361 	}
8362 
8363 	/*
8364 	 * In cgroup mode, the pid argument is used to pass the fd
8365 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8366 	 * designates the cpu on which to monitor threads from that
8367 	 * cgroup.
8368 	 */
8369 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8370 		return -EINVAL;
8371 
8372 	if (flags & PERF_FLAG_FD_CLOEXEC)
8373 		f_flags |= O_CLOEXEC;
8374 
8375 	event_fd = get_unused_fd_flags(f_flags);
8376 	if (event_fd < 0)
8377 		return event_fd;
8378 
8379 	if (group_fd != -1) {
8380 		err = perf_fget_light(group_fd, &group);
8381 		if (err)
8382 			goto err_fd;
8383 		group_leader = group.file->private_data;
8384 		if (flags & PERF_FLAG_FD_OUTPUT)
8385 			output_event = group_leader;
8386 		if (flags & PERF_FLAG_FD_NO_GROUP)
8387 			group_leader = NULL;
8388 	}
8389 
8390 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8391 		task = find_lively_task_by_vpid(pid);
8392 		if (IS_ERR(task)) {
8393 			err = PTR_ERR(task);
8394 			goto err_group_fd;
8395 		}
8396 	}
8397 
8398 	if (task && group_leader &&
8399 	    group_leader->attr.inherit != attr.inherit) {
8400 		err = -EINVAL;
8401 		goto err_task;
8402 	}
8403 
8404 	get_online_cpus();
8405 
8406 	if (flags & PERF_FLAG_PID_CGROUP)
8407 		cgroup_fd = pid;
8408 
8409 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8410 				 NULL, NULL, cgroup_fd);
8411 	if (IS_ERR(event)) {
8412 		err = PTR_ERR(event);
8413 		goto err_cpus;
8414 	}
8415 
8416 	if (is_sampling_event(event)) {
8417 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8418 			err = -ENOTSUPP;
8419 			goto err_alloc;
8420 		}
8421 	}
8422 
8423 	/*
8424 	 * Special case software events and allow them to be part of
8425 	 * any hardware group.
8426 	 */
8427 	pmu = event->pmu;
8428 
8429 	if (attr.use_clockid) {
8430 		err = perf_event_set_clock(event, attr.clockid);
8431 		if (err)
8432 			goto err_alloc;
8433 	}
8434 
8435 	if (group_leader &&
8436 	    (is_software_event(event) != is_software_event(group_leader))) {
8437 		if (is_software_event(event)) {
8438 			/*
8439 			 * If event and group_leader are not both a software
8440 			 * event, and event is, then group leader is not.
8441 			 *
8442 			 * Allow the addition of software events to !software
8443 			 * groups, this is safe because software events never
8444 			 * fail to schedule.
8445 			 */
8446 			pmu = group_leader->pmu;
8447 		} else if (is_software_event(group_leader) &&
8448 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8449 			/*
8450 			 * In case the group is a pure software group, and we
8451 			 * try to add a hardware event, move the whole group to
8452 			 * the hardware context.
8453 			 */
8454 			move_group = 1;
8455 		}
8456 	}
8457 
8458 	/*
8459 	 * Get the target context (task or percpu):
8460 	 */
8461 	ctx = find_get_context(pmu, task, event);
8462 	if (IS_ERR(ctx)) {
8463 		err = PTR_ERR(ctx);
8464 		goto err_alloc;
8465 	}
8466 
8467 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8468 		err = -EBUSY;
8469 		goto err_context;
8470 	}
8471 
8472 	if (task) {
8473 		put_task_struct(task);
8474 		task = NULL;
8475 	}
8476 
8477 	/*
8478 	 * Look up the group leader (we will attach this event to it):
8479 	 */
8480 	if (group_leader) {
8481 		err = -EINVAL;
8482 
8483 		/*
8484 		 * Do not allow a recursive hierarchy (this new sibling
8485 		 * becoming part of another group-sibling):
8486 		 */
8487 		if (group_leader->group_leader != group_leader)
8488 			goto err_context;
8489 
8490 		/* All events in a group should have the same clock */
8491 		if (group_leader->clock != event->clock)
8492 			goto err_context;
8493 
8494 		/*
8495 		 * Do not allow to attach to a group in a different
8496 		 * task or CPU context:
8497 		 */
8498 		if (move_group) {
8499 			/*
8500 			 * Make sure we're both on the same task, or both
8501 			 * per-cpu events.
8502 			 */
8503 			if (group_leader->ctx->task != ctx->task)
8504 				goto err_context;
8505 
8506 			/*
8507 			 * Make sure we're both events for the same CPU;
8508 			 * grouping events for different CPUs is broken; since
8509 			 * you can never concurrently schedule them anyhow.
8510 			 */
8511 			if (group_leader->cpu != event->cpu)
8512 				goto err_context;
8513 		} else {
8514 			if (group_leader->ctx != ctx)
8515 				goto err_context;
8516 		}
8517 
8518 		/*
8519 		 * Only a group leader can be exclusive or pinned
8520 		 */
8521 		if (attr.exclusive || attr.pinned)
8522 			goto err_context;
8523 	}
8524 
8525 	if (output_event) {
8526 		err = perf_event_set_output(event, output_event);
8527 		if (err)
8528 			goto err_context;
8529 	}
8530 
8531 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8532 					f_flags);
8533 	if (IS_ERR(event_file)) {
8534 		err = PTR_ERR(event_file);
8535 		goto err_context;
8536 	}
8537 
8538 	if (move_group) {
8539 		gctx = group_leader->ctx;
8540 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8541 		if (gctx->task == TASK_TOMBSTONE) {
8542 			err = -ESRCH;
8543 			goto err_locked;
8544 		}
8545 	} else {
8546 		mutex_lock(&ctx->mutex);
8547 	}
8548 
8549 	if (ctx->task == TASK_TOMBSTONE) {
8550 		err = -ESRCH;
8551 		goto err_locked;
8552 	}
8553 
8554 	if (!perf_event_validate_size(event)) {
8555 		err = -E2BIG;
8556 		goto err_locked;
8557 	}
8558 
8559 	/*
8560 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8561 	 * because we need to serialize with concurrent event creation.
8562 	 */
8563 	if (!exclusive_event_installable(event, ctx)) {
8564 		/* exclusive and group stuff are assumed mutually exclusive */
8565 		WARN_ON_ONCE(move_group);
8566 
8567 		err = -EBUSY;
8568 		goto err_locked;
8569 	}
8570 
8571 	WARN_ON_ONCE(ctx->parent_ctx);
8572 
8573 	if (move_group) {
8574 		/*
8575 		 * See perf_event_ctx_lock() for comments on the details
8576 		 * of swizzling perf_event::ctx.
8577 		 */
8578 		perf_remove_from_context(group_leader, 0);
8579 
8580 		list_for_each_entry(sibling, &group_leader->sibling_list,
8581 				    group_entry) {
8582 			perf_remove_from_context(sibling, 0);
8583 			put_ctx(gctx);
8584 		}
8585 
8586 		/*
8587 		 * Wait for everybody to stop referencing the events through
8588 		 * the old lists, before installing it on new lists.
8589 		 */
8590 		synchronize_rcu();
8591 
8592 		/*
8593 		 * Install the group siblings before the group leader.
8594 		 *
8595 		 * Because a group leader will try and install the entire group
8596 		 * (through the sibling list, which is still in-tact), we can
8597 		 * end up with siblings installed in the wrong context.
8598 		 *
8599 		 * By installing siblings first we NO-OP because they're not
8600 		 * reachable through the group lists.
8601 		 */
8602 		list_for_each_entry(sibling, &group_leader->sibling_list,
8603 				    group_entry) {
8604 			perf_event__state_init(sibling);
8605 			perf_install_in_context(ctx, sibling, sibling->cpu);
8606 			get_ctx(ctx);
8607 		}
8608 
8609 		/*
8610 		 * Removing from the context ends up with disabled
8611 		 * event. What we want here is event in the initial
8612 		 * startup state, ready to be add into new context.
8613 		 */
8614 		perf_event__state_init(group_leader);
8615 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8616 		get_ctx(ctx);
8617 
8618 		/*
8619 		 * Now that all events are installed in @ctx, nothing
8620 		 * references @gctx anymore, so drop the last reference we have
8621 		 * on it.
8622 		 */
8623 		put_ctx(gctx);
8624 	}
8625 
8626 	/*
8627 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8628 	 * that we're serialized against further additions and before
8629 	 * perf_install_in_context() which is the point the event is active and
8630 	 * can use these values.
8631 	 */
8632 	perf_event__header_size(event);
8633 	perf_event__id_header_size(event);
8634 
8635 	event->owner = current;
8636 
8637 	perf_install_in_context(ctx, event, event->cpu);
8638 	perf_unpin_context(ctx);
8639 
8640 	if (move_group)
8641 		mutex_unlock(&gctx->mutex);
8642 	mutex_unlock(&ctx->mutex);
8643 
8644 	put_online_cpus();
8645 
8646 	mutex_lock(&current->perf_event_mutex);
8647 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8648 	mutex_unlock(&current->perf_event_mutex);
8649 
8650 	/*
8651 	 * Drop the reference on the group_event after placing the
8652 	 * new event on the sibling_list. This ensures destruction
8653 	 * of the group leader will find the pointer to itself in
8654 	 * perf_group_detach().
8655 	 */
8656 	fdput(group);
8657 	fd_install(event_fd, event_file);
8658 	return event_fd;
8659 
8660 err_locked:
8661 	if (move_group)
8662 		mutex_unlock(&gctx->mutex);
8663 	mutex_unlock(&ctx->mutex);
8664 /* err_file: */
8665 	fput(event_file);
8666 err_context:
8667 	perf_unpin_context(ctx);
8668 	put_ctx(ctx);
8669 err_alloc:
8670 	/*
8671 	 * If event_file is set, the fput() above will have called ->release()
8672 	 * and that will take care of freeing the event.
8673 	 */
8674 	if (!event_file)
8675 		free_event(event);
8676 err_cpus:
8677 	put_online_cpus();
8678 err_task:
8679 	if (task)
8680 		put_task_struct(task);
8681 err_group_fd:
8682 	fdput(group);
8683 err_fd:
8684 	put_unused_fd(event_fd);
8685 	return err;
8686 }
8687 
8688 /**
8689  * perf_event_create_kernel_counter
8690  *
8691  * @attr: attributes of the counter to create
8692  * @cpu: cpu in which the counter is bound
8693  * @task: task to profile (NULL for percpu)
8694  */
8695 struct perf_event *
8696 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8697 				 struct task_struct *task,
8698 				 perf_overflow_handler_t overflow_handler,
8699 				 void *context)
8700 {
8701 	struct perf_event_context *ctx;
8702 	struct perf_event *event;
8703 	int err;
8704 
8705 	/*
8706 	 * Get the target context (task or percpu):
8707 	 */
8708 
8709 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8710 				 overflow_handler, context, -1);
8711 	if (IS_ERR(event)) {
8712 		err = PTR_ERR(event);
8713 		goto err;
8714 	}
8715 
8716 	/* Mark owner so we could distinguish it from user events. */
8717 	event->owner = TASK_TOMBSTONE;
8718 
8719 	ctx = find_get_context(event->pmu, task, event);
8720 	if (IS_ERR(ctx)) {
8721 		err = PTR_ERR(ctx);
8722 		goto err_free;
8723 	}
8724 
8725 	WARN_ON_ONCE(ctx->parent_ctx);
8726 	mutex_lock(&ctx->mutex);
8727 	if (ctx->task == TASK_TOMBSTONE) {
8728 		err = -ESRCH;
8729 		goto err_unlock;
8730 	}
8731 
8732 	if (!exclusive_event_installable(event, ctx)) {
8733 		err = -EBUSY;
8734 		goto err_unlock;
8735 	}
8736 
8737 	perf_install_in_context(ctx, event, cpu);
8738 	perf_unpin_context(ctx);
8739 	mutex_unlock(&ctx->mutex);
8740 
8741 	return event;
8742 
8743 err_unlock:
8744 	mutex_unlock(&ctx->mutex);
8745 	perf_unpin_context(ctx);
8746 	put_ctx(ctx);
8747 err_free:
8748 	free_event(event);
8749 err:
8750 	return ERR_PTR(err);
8751 }
8752 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8753 
8754 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8755 {
8756 	struct perf_event_context *src_ctx;
8757 	struct perf_event_context *dst_ctx;
8758 	struct perf_event *event, *tmp;
8759 	LIST_HEAD(events);
8760 
8761 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8762 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8763 
8764 	/*
8765 	 * See perf_event_ctx_lock() for comments on the details
8766 	 * of swizzling perf_event::ctx.
8767 	 */
8768 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8769 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8770 				 event_entry) {
8771 		perf_remove_from_context(event, 0);
8772 		unaccount_event_cpu(event, src_cpu);
8773 		put_ctx(src_ctx);
8774 		list_add(&event->migrate_entry, &events);
8775 	}
8776 
8777 	/*
8778 	 * Wait for the events to quiesce before re-instating them.
8779 	 */
8780 	synchronize_rcu();
8781 
8782 	/*
8783 	 * Re-instate events in 2 passes.
8784 	 *
8785 	 * Skip over group leaders and only install siblings on this first
8786 	 * pass, siblings will not get enabled without a leader, however a
8787 	 * leader will enable its siblings, even if those are still on the old
8788 	 * context.
8789 	 */
8790 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8791 		if (event->group_leader == event)
8792 			continue;
8793 
8794 		list_del(&event->migrate_entry);
8795 		if (event->state >= PERF_EVENT_STATE_OFF)
8796 			event->state = PERF_EVENT_STATE_INACTIVE;
8797 		account_event_cpu(event, dst_cpu);
8798 		perf_install_in_context(dst_ctx, event, dst_cpu);
8799 		get_ctx(dst_ctx);
8800 	}
8801 
8802 	/*
8803 	 * Once all the siblings are setup properly, install the group leaders
8804 	 * to make it go.
8805 	 */
8806 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8807 		list_del(&event->migrate_entry);
8808 		if (event->state >= PERF_EVENT_STATE_OFF)
8809 			event->state = PERF_EVENT_STATE_INACTIVE;
8810 		account_event_cpu(event, dst_cpu);
8811 		perf_install_in_context(dst_ctx, event, dst_cpu);
8812 		get_ctx(dst_ctx);
8813 	}
8814 	mutex_unlock(&dst_ctx->mutex);
8815 	mutex_unlock(&src_ctx->mutex);
8816 }
8817 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8818 
8819 static void sync_child_event(struct perf_event *child_event,
8820 			       struct task_struct *child)
8821 {
8822 	struct perf_event *parent_event = child_event->parent;
8823 	u64 child_val;
8824 
8825 	if (child_event->attr.inherit_stat)
8826 		perf_event_read_event(child_event, child);
8827 
8828 	child_val = perf_event_count(child_event);
8829 
8830 	/*
8831 	 * Add back the child's count to the parent's count:
8832 	 */
8833 	atomic64_add(child_val, &parent_event->child_count);
8834 	atomic64_add(child_event->total_time_enabled,
8835 		     &parent_event->child_total_time_enabled);
8836 	atomic64_add(child_event->total_time_running,
8837 		     &parent_event->child_total_time_running);
8838 }
8839 
8840 static void
8841 perf_event_exit_event(struct perf_event *child_event,
8842 		      struct perf_event_context *child_ctx,
8843 		      struct task_struct *child)
8844 {
8845 	struct perf_event *parent_event = child_event->parent;
8846 
8847 	/*
8848 	 * Do not destroy the 'original' grouping; because of the context
8849 	 * switch optimization the original events could've ended up in a
8850 	 * random child task.
8851 	 *
8852 	 * If we were to destroy the original group, all group related
8853 	 * operations would cease to function properly after this random
8854 	 * child dies.
8855 	 *
8856 	 * Do destroy all inherited groups, we don't care about those
8857 	 * and being thorough is better.
8858 	 */
8859 	raw_spin_lock_irq(&child_ctx->lock);
8860 	WARN_ON_ONCE(child_ctx->is_active);
8861 
8862 	if (parent_event)
8863 		perf_group_detach(child_event);
8864 	list_del_event(child_event, child_ctx);
8865 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8866 	raw_spin_unlock_irq(&child_ctx->lock);
8867 
8868 	/*
8869 	 * Parent events are governed by their filedesc, retain them.
8870 	 */
8871 	if (!parent_event) {
8872 		perf_event_wakeup(child_event);
8873 		return;
8874 	}
8875 	/*
8876 	 * Child events can be cleaned up.
8877 	 */
8878 
8879 	sync_child_event(child_event, child);
8880 
8881 	/*
8882 	 * Remove this event from the parent's list
8883 	 */
8884 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8885 	mutex_lock(&parent_event->child_mutex);
8886 	list_del_init(&child_event->child_list);
8887 	mutex_unlock(&parent_event->child_mutex);
8888 
8889 	/*
8890 	 * Kick perf_poll() for is_event_hup().
8891 	 */
8892 	perf_event_wakeup(parent_event);
8893 	free_event(child_event);
8894 	put_event(parent_event);
8895 }
8896 
8897 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8898 {
8899 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8900 	struct perf_event *child_event, *next;
8901 
8902 	WARN_ON_ONCE(child != current);
8903 
8904 	child_ctx = perf_pin_task_context(child, ctxn);
8905 	if (!child_ctx)
8906 		return;
8907 
8908 	/*
8909 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
8910 	 * ctx::mutex over the entire thing. This serializes against almost
8911 	 * everything that wants to access the ctx.
8912 	 *
8913 	 * The exception is sys_perf_event_open() /
8914 	 * perf_event_create_kernel_count() which does find_get_context()
8915 	 * without ctx::mutex (it cannot because of the move_group double mutex
8916 	 * lock thing). See the comments in perf_install_in_context().
8917 	 */
8918 	mutex_lock(&child_ctx->mutex);
8919 
8920 	/*
8921 	 * In a single ctx::lock section, de-schedule the events and detach the
8922 	 * context from the task such that we cannot ever get it scheduled back
8923 	 * in.
8924 	 */
8925 	raw_spin_lock_irq(&child_ctx->lock);
8926 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8927 
8928 	/*
8929 	 * Now that the context is inactive, destroy the task <-> ctx relation
8930 	 * and mark the context dead.
8931 	 */
8932 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8933 	put_ctx(child_ctx); /* cannot be last */
8934 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8935 	put_task_struct(current); /* cannot be last */
8936 
8937 	clone_ctx = unclone_ctx(child_ctx);
8938 	raw_spin_unlock_irq(&child_ctx->lock);
8939 
8940 	if (clone_ctx)
8941 		put_ctx(clone_ctx);
8942 
8943 	/*
8944 	 * Report the task dead after unscheduling the events so that we
8945 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8946 	 * get a few PERF_RECORD_READ events.
8947 	 */
8948 	perf_event_task(child, child_ctx, 0);
8949 
8950 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8951 		perf_event_exit_event(child_event, child_ctx, child);
8952 
8953 	mutex_unlock(&child_ctx->mutex);
8954 
8955 	put_ctx(child_ctx);
8956 }
8957 
8958 /*
8959  * When a child task exits, feed back event values to parent events.
8960  */
8961 void perf_event_exit_task(struct task_struct *child)
8962 {
8963 	struct perf_event *event, *tmp;
8964 	int ctxn;
8965 
8966 	mutex_lock(&child->perf_event_mutex);
8967 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8968 				 owner_entry) {
8969 		list_del_init(&event->owner_entry);
8970 
8971 		/*
8972 		 * Ensure the list deletion is visible before we clear
8973 		 * the owner, closes a race against perf_release() where
8974 		 * we need to serialize on the owner->perf_event_mutex.
8975 		 */
8976 		smp_store_release(&event->owner, NULL);
8977 	}
8978 	mutex_unlock(&child->perf_event_mutex);
8979 
8980 	for_each_task_context_nr(ctxn)
8981 		perf_event_exit_task_context(child, ctxn);
8982 
8983 	/*
8984 	 * The perf_event_exit_task_context calls perf_event_task
8985 	 * with child's task_ctx, which generates EXIT events for
8986 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8987 	 * At this point we need to send EXIT events to cpu contexts.
8988 	 */
8989 	perf_event_task(child, NULL, 0);
8990 }
8991 
8992 static void perf_free_event(struct perf_event *event,
8993 			    struct perf_event_context *ctx)
8994 {
8995 	struct perf_event *parent = event->parent;
8996 
8997 	if (WARN_ON_ONCE(!parent))
8998 		return;
8999 
9000 	mutex_lock(&parent->child_mutex);
9001 	list_del_init(&event->child_list);
9002 	mutex_unlock(&parent->child_mutex);
9003 
9004 	put_event(parent);
9005 
9006 	raw_spin_lock_irq(&ctx->lock);
9007 	perf_group_detach(event);
9008 	list_del_event(event, ctx);
9009 	raw_spin_unlock_irq(&ctx->lock);
9010 	free_event(event);
9011 }
9012 
9013 /*
9014  * Free an unexposed, unused context as created by inheritance by
9015  * perf_event_init_task below, used by fork() in case of fail.
9016  *
9017  * Not all locks are strictly required, but take them anyway to be nice and
9018  * help out with the lockdep assertions.
9019  */
9020 void perf_event_free_task(struct task_struct *task)
9021 {
9022 	struct perf_event_context *ctx;
9023 	struct perf_event *event, *tmp;
9024 	int ctxn;
9025 
9026 	for_each_task_context_nr(ctxn) {
9027 		ctx = task->perf_event_ctxp[ctxn];
9028 		if (!ctx)
9029 			continue;
9030 
9031 		mutex_lock(&ctx->mutex);
9032 again:
9033 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9034 				group_entry)
9035 			perf_free_event(event, ctx);
9036 
9037 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9038 				group_entry)
9039 			perf_free_event(event, ctx);
9040 
9041 		if (!list_empty(&ctx->pinned_groups) ||
9042 				!list_empty(&ctx->flexible_groups))
9043 			goto again;
9044 
9045 		mutex_unlock(&ctx->mutex);
9046 
9047 		put_ctx(ctx);
9048 	}
9049 }
9050 
9051 void perf_event_delayed_put(struct task_struct *task)
9052 {
9053 	int ctxn;
9054 
9055 	for_each_task_context_nr(ctxn)
9056 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9057 }
9058 
9059 struct file *perf_event_get(unsigned int fd)
9060 {
9061 	struct file *file;
9062 
9063 	file = fget_raw(fd);
9064 	if (!file)
9065 		return ERR_PTR(-EBADF);
9066 
9067 	if (file->f_op != &perf_fops) {
9068 		fput(file);
9069 		return ERR_PTR(-EBADF);
9070 	}
9071 
9072 	return file;
9073 }
9074 
9075 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9076 {
9077 	if (!event)
9078 		return ERR_PTR(-EINVAL);
9079 
9080 	return &event->attr;
9081 }
9082 
9083 /*
9084  * inherit a event from parent task to child task:
9085  */
9086 static struct perf_event *
9087 inherit_event(struct perf_event *parent_event,
9088 	      struct task_struct *parent,
9089 	      struct perf_event_context *parent_ctx,
9090 	      struct task_struct *child,
9091 	      struct perf_event *group_leader,
9092 	      struct perf_event_context *child_ctx)
9093 {
9094 	enum perf_event_active_state parent_state = parent_event->state;
9095 	struct perf_event *child_event;
9096 	unsigned long flags;
9097 
9098 	/*
9099 	 * Instead of creating recursive hierarchies of events,
9100 	 * we link inherited events back to the original parent,
9101 	 * which has a filp for sure, which we use as the reference
9102 	 * count:
9103 	 */
9104 	if (parent_event->parent)
9105 		parent_event = parent_event->parent;
9106 
9107 	child_event = perf_event_alloc(&parent_event->attr,
9108 					   parent_event->cpu,
9109 					   child,
9110 					   group_leader, parent_event,
9111 					   NULL, NULL, -1);
9112 	if (IS_ERR(child_event))
9113 		return child_event;
9114 
9115 	/*
9116 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9117 	 * must be under the same lock in order to serialize against
9118 	 * perf_event_release_kernel(), such that either we must observe
9119 	 * is_orphaned_event() or they will observe us on the child_list.
9120 	 */
9121 	mutex_lock(&parent_event->child_mutex);
9122 	if (is_orphaned_event(parent_event) ||
9123 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9124 		mutex_unlock(&parent_event->child_mutex);
9125 		free_event(child_event);
9126 		return NULL;
9127 	}
9128 
9129 	get_ctx(child_ctx);
9130 
9131 	/*
9132 	 * Make the child state follow the state of the parent event,
9133 	 * not its attr.disabled bit.  We hold the parent's mutex,
9134 	 * so we won't race with perf_event_{en, dis}able_family.
9135 	 */
9136 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9137 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9138 	else
9139 		child_event->state = PERF_EVENT_STATE_OFF;
9140 
9141 	if (parent_event->attr.freq) {
9142 		u64 sample_period = parent_event->hw.sample_period;
9143 		struct hw_perf_event *hwc = &child_event->hw;
9144 
9145 		hwc->sample_period = sample_period;
9146 		hwc->last_period   = sample_period;
9147 
9148 		local64_set(&hwc->period_left, sample_period);
9149 	}
9150 
9151 	child_event->ctx = child_ctx;
9152 	child_event->overflow_handler = parent_event->overflow_handler;
9153 	child_event->overflow_handler_context
9154 		= parent_event->overflow_handler_context;
9155 
9156 	/*
9157 	 * Precalculate sample_data sizes
9158 	 */
9159 	perf_event__header_size(child_event);
9160 	perf_event__id_header_size(child_event);
9161 
9162 	/*
9163 	 * Link it up in the child's context:
9164 	 */
9165 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9166 	add_event_to_ctx(child_event, child_ctx);
9167 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9168 
9169 	/*
9170 	 * Link this into the parent event's child list
9171 	 */
9172 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9173 	mutex_unlock(&parent_event->child_mutex);
9174 
9175 	return child_event;
9176 }
9177 
9178 static int inherit_group(struct perf_event *parent_event,
9179 	      struct task_struct *parent,
9180 	      struct perf_event_context *parent_ctx,
9181 	      struct task_struct *child,
9182 	      struct perf_event_context *child_ctx)
9183 {
9184 	struct perf_event *leader;
9185 	struct perf_event *sub;
9186 	struct perf_event *child_ctr;
9187 
9188 	leader = inherit_event(parent_event, parent, parent_ctx,
9189 				 child, NULL, child_ctx);
9190 	if (IS_ERR(leader))
9191 		return PTR_ERR(leader);
9192 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9193 		child_ctr = inherit_event(sub, parent, parent_ctx,
9194 					    child, leader, child_ctx);
9195 		if (IS_ERR(child_ctr))
9196 			return PTR_ERR(child_ctr);
9197 	}
9198 	return 0;
9199 }
9200 
9201 static int
9202 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9203 		   struct perf_event_context *parent_ctx,
9204 		   struct task_struct *child, int ctxn,
9205 		   int *inherited_all)
9206 {
9207 	int ret;
9208 	struct perf_event_context *child_ctx;
9209 
9210 	if (!event->attr.inherit) {
9211 		*inherited_all = 0;
9212 		return 0;
9213 	}
9214 
9215 	child_ctx = child->perf_event_ctxp[ctxn];
9216 	if (!child_ctx) {
9217 		/*
9218 		 * This is executed from the parent task context, so
9219 		 * inherit events that have been marked for cloning.
9220 		 * First allocate and initialize a context for the
9221 		 * child.
9222 		 */
9223 
9224 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9225 		if (!child_ctx)
9226 			return -ENOMEM;
9227 
9228 		child->perf_event_ctxp[ctxn] = child_ctx;
9229 	}
9230 
9231 	ret = inherit_group(event, parent, parent_ctx,
9232 			    child, child_ctx);
9233 
9234 	if (ret)
9235 		*inherited_all = 0;
9236 
9237 	return ret;
9238 }
9239 
9240 /*
9241  * Initialize the perf_event context in task_struct
9242  */
9243 static int perf_event_init_context(struct task_struct *child, int ctxn)
9244 {
9245 	struct perf_event_context *child_ctx, *parent_ctx;
9246 	struct perf_event_context *cloned_ctx;
9247 	struct perf_event *event;
9248 	struct task_struct *parent = current;
9249 	int inherited_all = 1;
9250 	unsigned long flags;
9251 	int ret = 0;
9252 
9253 	if (likely(!parent->perf_event_ctxp[ctxn]))
9254 		return 0;
9255 
9256 	/*
9257 	 * If the parent's context is a clone, pin it so it won't get
9258 	 * swapped under us.
9259 	 */
9260 	parent_ctx = perf_pin_task_context(parent, ctxn);
9261 	if (!parent_ctx)
9262 		return 0;
9263 
9264 	/*
9265 	 * No need to check if parent_ctx != NULL here; since we saw
9266 	 * it non-NULL earlier, the only reason for it to become NULL
9267 	 * is if we exit, and since we're currently in the middle of
9268 	 * a fork we can't be exiting at the same time.
9269 	 */
9270 
9271 	/*
9272 	 * Lock the parent list. No need to lock the child - not PID
9273 	 * hashed yet and not running, so nobody can access it.
9274 	 */
9275 	mutex_lock(&parent_ctx->mutex);
9276 
9277 	/*
9278 	 * We dont have to disable NMIs - we are only looking at
9279 	 * the list, not manipulating it:
9280 	 */
9281 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9282 		ret = inherit_task_group(event, parent, parent_ctx,
9283 					 child, ctxn, &inherited_all);
9284 		if (ret)
9285 			break;
9286 	}
9287 
9288 	/*
9289 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9290 	 * to allocations, but we need to prevent rotation because
9291 	 * rotate_ctx() will change the list from interrupt context.
9292 	 */
9293 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9294 	parent_ctx->rotate_disable = 1;
9295 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9296 
9297 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9298 		ret = inherit_task_group(event, parent, parent_ctx,
9299 					 child, ctxn, &inherited_all);
9300 		if (ret)
9301 			break;
9302 	}
9303 
9304 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9305 	parent_ctx->rotate_disable = 0;
9306 
9307 	child_ctx = child->perf_event_ctxp[ctxn];
9308 
9309 	if (child_ctx && inherited_all) {
9310 		/*
9311 		 * Mark the child context as a clone of the parent
9312 		 * context, or of whatever the parent is a clone of.
9313 		 *
9314 		 * Note that if the parent is a clone, the holding of
9315 		 * parent_ctx->lock avoids it from being uncloned.
9316 		 */
9317 		cloned_ctx = parent_ctx->parent_ctx;
9318 		if (cloned_ctx) {
9319 			child_ctx->parent_ctx = cloned_ctx;
9320 			child_ctx->parent_gen = parent_ctx->parent_gen;
9321 		} else {
9322 			child_ctx->parent_ctx = parent_ctx;
9323 			child_ctx->parent_gen = parent_ctx->generation;
9324 		}
9325 		get_ctx(child_ctx->parent_ctx);
9326 	}
9327 
9328 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9329 	mutex_unlock(&parent_ctx->mutex);
9330 
9331 	perf_unpin_context(parent_ctx);
9332 	put_ctx(parent_ctx);
9333 
9334 	return ret;
9335 }
9336 
9337 /*
9338  * Initialize the perf_event context in task_struct
9339  */
9340 int perf_event_init_task(struct task_struct *child)
9341 {
9342 	int ctxn, ret;
9343 
9344 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9345 	mutex_init(&child->perf_event_mutex);
9346 	INIT_LIST_HEAD(&child->perf_event_list);
9347 
9348 	for_each_task_context_nr(ctxn) {
9349 		ret = perf_event_init_context(child, ctxn);
9350 		if (ret) {
9351 			perf_event_free_task(child);
9352 			return ret;
9353 		}
9354 	}
9355 
9356 	return 0;
9357 }
9358 
9359 static void __init perf_event_init_all_cpus(void)
9360 {
9361 	struct swevent_htable *swhash;
9362 	int cpu;
9363 
9364 	for_each_possible_cpu(cpu) {
9365 		swhash = &per_cpu(swevent_htable, cpu);
9366 		mutex_init(&swhash->hlist_mutex);
9367 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9368 	}
9369 }
9370 
9371 static void perf_event_init_cpu(int cpu)
9372 {
9373 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9374 
9375 	mutex_lock(&swhash->hlist_mutex);
9376 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9377 		struct swevent_hlist *hlist;
9378 
9379 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9380 		WARN_ON(!hlist);
9381 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9382 	}
9383 	mutex_unlock(&swhash->hlist_mutex);
9384 }
9385 
9386 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9387 static void __perf_event_exit_context(void *__info)
9388 {
9389 	struct perf_event_context *ctx = __info;
9390 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9391 	struct perf_event *event;
9392 
9393 	raw_spin_lock(&ctx->lock);
9394 	list_for_each_entry(event, &ctx->event_list, event_entry)
9395 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9396 	raw_spin_unlock(&ctx->lock);
9397 }
9398 
9399 static void perf_event_exit_cpu_context(int cpu)
9400 {
9401 	struct perf_event_context *ctx;
9402 	struct pmu *pmu;
9403 	int idx;
9404 
9405 	idx = srcu_read_lock(&pmus_srcu);
9406 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9407 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9408 
9409 		mutex_lock(&ctx->mutex);
9410 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9411 		mutex_unlock(&ctx->mutex);
9412 	}
9413 	srcu_read_unlock(&pmus_srcu, idx);
9414 }
9415 
9416 static void perf_event_exit_cpu(int cpu)
9417 {
9418 	perf_event_exit_cpu_context(cpu);
9419 }
9420 #else
9421 static inline void perf_event_exit_cpu(int cpu) { }
9422 #endif
9423 
9424 static int
9425 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9426 {
9427 	int cpu;
9428 
9429 	for_each_online_cpu(cpu)
9430 		perf_event_exit_cpu(cpu);
9431 
9432 	return NOTIFY_OK;
9433 }
9434 
9435 /*
9436  * Run the perf reboot notifier at the very last possible moment so that
9437  * the generic watchdog code runs as long as possible.
9438  */
9439 static struct notifier_block perf_reboot_notifier = {
9440 	.notifier_call = perf_reboot,
9441 	.priority = INT_MIN,
9442 };
9443 
9444 static int
9445 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9446 {
9447 	unsigned int cpu = (long)hcpu;
9448 
9449 	switch (action & ~CPU_TASKS_FROZEN) {
9450 
9451 	case CPU_UP_PREPARE:
9452 		/*
9453 		 * This must be done before the CPU comes alive, because the
9454 		 * moment we can run tasks we can encounter (software) events.
9455 		 *
9456 		 * Specifically, someone can have inherited events on kthreadd
9457 		 * or a pre-existing worker thread that gets re-bound.
9458 		 */
9459 		perf_event_init_cpu(cpu);
9460 		break;
9461 
9462 	case CPU_DOWN_PREPARE:
9463 		/*
9464 		 * This must be done before the CPU dies because after that an
9465 		 * active event might want to IPI the CPU and that'll not work
9466 		 * so great for dead CPUs.
9467 		 *
9468 		 * XXX smp_call_function_single() return -ENXIO without a warn
9469 		 * so we could possibly deal with this.
9470 		 *
9471 		 * This is safe against new events arriving because
9472 		 * sys_perf_event_open() serializes against hotplug using
9473 		 * get_online_cpus().
9474 		 */
9475 		perf_event_exit_cpu(cpu);
9476 		break;
9477 	default:
9478 		break;
9479 	}
9480 
9481 	return NOTIFY_OK;
9482 }
9483 
9484 void __init perf_event_init(void)
9485 {
9486 	int ret;
9487 
9488 	idr_init(&pmu_idr);
9489 
9490 	perf_event_init_all_cpus();
9491 	init_srcu_struct(&pmus_srcu);
9492 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9493 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9494 	perf_pmu_register(&perf_task_clock, NULL, -1);
9495 	perf_tp_register();
9496 	perf_cpu_notifier(perf_cpu_notify);
9497 	register_reboot_notifier(&perf_reboot_notifier);
9498 
9499 	ret = init_hw_breakpoint();
9500 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9501 
9502 	/*
9503 	 * Build time assertion that we keep the data_head at the intended
9504 	 * location.  IOW, validation we got the __reserved[] size right.
9505 	 */
9506 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9507 		     != 1024);
9508 }
9509 
9510 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9511 			      char *page)
9512 {
9513 	struct perf_pmu_events_attr *pmu_attr =
9514 		container_of(attr, struct perf_pmu_events_attr, attr);
9515 
9516 	if (pmu_attr->event_str)
9517 		return sprintf(page, "%s\n", pmu_attr->event_str);
9518 
9519 	return 0;
9520 }
9521 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9522 
9523 static int __init perf_event_sysfs_init(void)
9524 {
9525 	struct pmu *pmu;
9526 	int ret;
9527 
9528 	mutex_lock(&pmus_lock);
9529 
9530 	ret = bus_register(&pmu_bus);
9531 	if (ret)
9532 		goto unlock;
9533 
9534 	list_for_each_entry(pmu, &pmus, entry) {
9535 		if (!pmu->name || pmu->type < 0)
9536 			continue;
9537 
9538 		ret = pmu_dev_alloc(pmu);
9539 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9540 	}
9541 	pmu_bus_running = 1;
9542 	ret = 0;
9543 
9544 unlock:
9545 	mutex_unlock(&pmus_lock);
9546 
9547 	return ret;
9548 }
9549 device_initcall(perf_event_sysfs_init);
9550 
9551 #ifdef CONFIG_CGROUP_PERF
9552 static struct cgroup_subsys_state *
9553 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9554 {
9555 	struct perf_cgroup *jc;
9556 
9557 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9558 	if (!jc)
9559 		return ERR_PTR(-ENOMEM);
9560 
9561 	jc->info = alloc_percpu(struct perf_cgroup_info);
9562 	if (!jc->info) {
9563 		kfree(jc);
9564 		return ERR_PTR(-ENOMEM);
9565 	}
9566 
9567 	return &jc->css;
9568 }
9569 
9570 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9571 {
9572 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9573 
9574 	free_percpu(jc->info);
9575 	kfree(jc);
9576 }
9577 
9578 static int __perf_cgroup_move(void *info)
9579 {
9580 	struct task_struct *task = info;
9581 	rcu_read_lock();
9582 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9583 	rcu_read_unlock();
9584 	return 0;
9585 }
9586 
9587 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9588 {
9589 	struct task_struct *task;
9590 	struct cgroup_subsys_state *css;
9591 
9592 	cgroup_taskset_for_each(task, css, tset)
9593 		task_function_call(task, __perf_cgroup_move, task);
9594 }
9595 
9596 struct cgroup_subsys perf_event_cgrp_subsys = {
9597 	.css_alloc	= perf_cgroup_css_alloc,
9598 	.css_free	= perf_cgroup_css_free,
9599 	.attach		= perf_cgroup_attach,
9600 };
9601 #endif /* CONFIG_CGROUP_PERF */
9602