1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 typedef int (*remote_function_f)(void *); 53 54 struct remote_function_call { 55 struct task_struct *p; 56 remote_function_f func; 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 /* -EAGAIN */ 68 if (task_cpu(p) != smp_processor_id()) 69 return; 70 71 /* 72 * Now that we're on right CPU with IRQs disabled, we can test 73 * if we hit the right task without races. 74 */ 75 76 tfc->ret = -ESRCH; /* No such (running) process */ 77 if (p != current) 78 return; 79 } 80 81 tfc->ret = tfc->func(tfc->info); 82 } 83 84 /** 85 * task_function_call - call a function on the cpu on which a task runs 86 * @p: the task to evaluate 87 * @func: the function to be called 88 * @info: the function call argument 89 * 90 * Calls the function @func when the task is currently running. This might 91 * be on the current CPU, which just calls the function directly 92 * 93 * returns: @func return value, or 94 * -ESRCH - when the process isn't running 95 * -EAGAIN - when the process moved away 96 */ 97 static int 98 task_function_call(struct task_struct *p, remote_function_f func, void *info) 99 { 100 struct remote_function_call data = { 101 .p = p, 102 .func = func, 103 .info = info, 104 .ret = -EAGAIN, 105 }; 106 int ret; 107 108 do { 109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 110 if (!ret) 111 ret = data.ret; 112 } while (ret == -EAGAIN); 113 114 return ret; 115 } 116 117 /** 118 * cpu_function_call - call a function on the cpu 119 * @func: the function to be called 120 * @info: the function call argument 121 * 122 * Calls the function @func on the remote cpu. 123 * 124 * returns: @func return value or -ENXIO when the cpu is offline 125 */ 126 static int cpu_function_call(int cpu, remote_function_f func, void *info) 127 { 128 struct remote_function_call data = { 129 .p = NULL, 130 .func = func, 131 .info = info, 132 .ret = -ENXIO, /* No such CPU */ 133 }; 134 135 smp_call_function_single(cpu, remote_function, &data, 1); 136 137 return data.ret; 138 } 139 140 static inline struct perf_cpu_context * 141 __get_cpu_context(struct perf_event_context *ctx) 142 { 143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 144 } 145 146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 147 struct perf_event_context *ctx) 148 { 149 raw_spin_lock(&cpuctx->ctx.lock); 150 if (ctx) 151 raw_spin_lock(&ctx->lock); 152 } 153 154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 155 struct perf_event_context *ctx) 156 { 157 if (ctx) 158 raw_spin_unlock(&ctx->lock); 159 raw_spin_unlock(&cpuctx->ctx.lock); 160 } 161 162 #define TASK_TOMBSTONE ((void *)-1L) 163 164 static bool is_kernel_event(struct perf_event *event) 165 { 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 167 } 168 169 /* 170 * On task ctx scheduling... 171 * 172 * When !ctx->nr_events a task context will not be scheduled. This means 173 * we can disable the scheduler hooks (for performance) without leaving 174 * pending task ctx state. 175 * 176 * This however results in two special cases: 177 * 178 * - removing the last event from a task ctx; this is relatively straight 179 * forward and is done in __perf_remove_from_context. 180 * 181 * - adding the first event to a task ctx; this is tricky because we cannot 182 * rely on ctx->is_active and therefore cannot use event_function_call(). 183 * See perf_install_in_context(). 184 * 185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 186 */ 187 188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 189 struct perf_event_context *, void *); 190 191 struct event_function_struct { 192 struct perf_event *event; 193 event_f func; 194 void *data; 195 }; 196 197 static int event_function(void *info) 198 { 199 struct event_function_struct *efs = info; 200 struct perf_event *event = efs->event; 201 struct perf_event_context *ctx = event->ctx; 202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 203 struct perf_event_context *task_ctx = cpuctx->task_ctx; 204 int ret = 0; 205 206 WARN_ON_ONCE(!irqs_disabled()); 207 208 perf_ctx_lock(cpuctx, task_ctx); 209 /* 210 * Since we do the IPI call without holding ctx->lock things can have 211 * changed, double check we hit the task we set out to hit. 212 */ 213 if (ctx->task) { 214 if (ctx->task != current) { 215 ret = -ESRCH; 216 goto unlock; 217 } 218 219 /* 220 * We only use event_function_call() on established contexts, 221 * and event_function() is only ever called when active (or 222 * rather, we'll have bailed in task_function_call() or the 223 * above ctx->task != current test), therefore we must have 224 * ctx->is_active here. 225 */ 226 WARN_ON_ONCE(!ctx->is_active); 227 /* 228 * And since we have ctx->is_active, cpuctx->task_ctx must 229 * match. 230 */ 231 WARN_ON_ONCE(task_ctx != ctx); 232 } else { 233 WARN_ON_ONCE(&cpuctx->ctx != ctx); 234 } 235 236 efs->func(event, cpuctx, ctx, efs->data); 237 unlock: 238 perf_ctx_unlock(cpuctx, task_ctx); 239 240 return ret; 241 } 242 243 static void event_function_local(struct perf_event *event, event_f func, void *data) 244 { 245 struct event_function_struct efs = { 246 .event = event, 247 .func = func, 248 .data = data, 249 }; 250 251 int ret = event_function(&efs); 252 WARN_ON_ONCE(ret); 253 } 254 255 static void event_function_call(struct perf_event *event, event_f func, void *data) 256 { 257 struct perf_event_context *ctx = event->ctx; 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 259 struct event_function_struct efs = { 260 .event = event, 261 .func = func, 262 .data = data, 263 }; 264 265 if (!event->parent) { 266 /* 267 * If this is a !child event, we must hold ctx::mutex to 268 * stabilize the the event->ctx relation. See 269 * perf_event_ctx_lock(). 270 */ 271 lockdep_assert_held(&ctx->mutex); 272 } 273 274 if (!task) { 275 cpu_function_call(event->cpu, event_function, &efs); 276 return; 277 } 278 279 if (task == TASK_TOMBSTONE) 280 return; 281 282 again: 283 if (!task_function_call(task, event_function, &efs)) 284 return; 285 286 raw_spin_lock_irq(&ctx->lock); 287 /* 288 * Reload the task pointer, it might have been changed by 289 * a concurrent perf_event_context_sched_out(). 290 */ 291 task = ctx->task; 292 if (task == TASK_TOMBSTONE) { 293 raw_spin_unlock_irq(&ctx->lock); 294 return; 295 } 296 if (ctx->is_active) { 297 raw_spin_unlock_irq(&ctx->lock); 298 goto again; 299 } 300 func(event, NULL, ctx, data); 301 raw_spin_unlock_irq(&ctx->lock); 302 } 303 304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 305 PERF_FLAG_FD_OUTPUT |\ 306 PERF_FLAG_PID_CGROUP |\ 307 PERF_FLAG_FD_CLOEXEC) 308 309 /* 310 * branch priv levels that need permission checks 311 */ 312 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 313 (PERF_SAMPLE_BRANCH_KERNEL |\ 314 PERF_SAMPLE_BRANCH_HV) 315 316 enum event_type_t { 317 EVENT_FLEXIBLE = 0x1, 318 EVENT_PINNED = 0x2, 319 EVENT_TIME = 0x4, 320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 321 }; 322 323 /* 324 * perf_sched_events : >0 events exist 325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 326 */ 327 328 static void perf_sched_delayed(struct work_struct *work); 329 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 331 static DEFINE_MUTEX(perf_sched_mutex); 332 static atomic_t perf_sched_count; 333 334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 335 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 336 337 static atomic_t nr_mmap_events __read_mostly; 338 static atomic_t nr_comm_events __read_mostly; 339 static atomic_t nr_task_events __read_mostly; 340 static atomic_t nr_freq_events __read_mostly; 341 static atomic_t nr_switch_events __read_mostly; 342 343 static LIST_HEAD(pmus); 344 static DEFINE_MUTEX(pmus_lock); 345 static struct srcu_struct pmus_srcu; 346 347 /* 348 * perf event paranoia level: 349 * -1 - not paranoid at all 350 * 0 - disallow raw tracepoint access for unpriv 351 * 1 - disallow cpu events for unpriv 352 * 2 - disallow kernel profiling for unpriv 353 */ 354 int sysctl_perf_event_paranoid __read_mostly = 1; 355 356 /* Minimum for 512 kiB + 1 user control page */ 357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 358 359 /* 360 * max perf event sample rate 361 */ 362 #define DEFAULT_MAX_SAMPLE_RATE 100000 363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 365 366 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 367 368 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 369 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 370 371 static int perf_sample_allowed_ns __read_mostly = 372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 373 374 static void update_perf_cpu_limits(void) 375 { 376 u64 tmp = perf_sample_period_ns; 377 378 tmp *= sysctl_perf_cpu_time_max_percent; 379 tmp = div_u64(tmp, 100); 380 if (!tmp) 381 tmp = 1; 382 383 WRITE_ONCE(perf_sample_allowed_ns, tmp); 384 } 385 386 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 387 388 int perf_proc_update_handler(struct ctl_table *table, int write, 389 void __user *buffer, size_t *lenp, 390 loff_t *ppos) 391 { 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 393 394 if (ret || !write) 395 return ret; 396 397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 399 update_perf_cpu_limits(); 400 401 return 0; 402 } 403 404 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 405 406 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 407 void __user *buffer, size_t *lenp, 408 loff_t *ppos) 409 { 410 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 411 412 if (ret || !write) 413 return ret; 414 415 if (sysctl_perf_cpu_time_max_percent == 100) { 416 printk(KERN_WARNING 417 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 418 WRITE_ONCE(perf_sample_allowed_ns, 0); 419 } else { 420 update_perf_cpu_limits(); 421 } 422 423 return 0; 424 } 425 426 /* 427 * perf samples are done in some very critical code paths (NMIs). 428 * If they take too much CPU time, the system can lock up and not 429 * get any real work done. This will drop the sample rate when 430 * we detect that events are taking too long. 431 */ 432 #define NR_ACCUMULATED_SAMPLES 128 433 static DEFINE_PER_CPU(u64, running_sample_length); 434 435 static u64 __report_avg; 436 static u64 __report_allowed; 437 438 static void perf_duration_warn(struct irq_work *w) 439 { 440 printk_ratelimited(KERN_WARNING 441 "perf: interrupt took too long (%lld > %lld), lowering " 442 "kernel.perf_event_max_sample_rate to %d\n", 443 __report_avg, __report_allowed, 444 sysctl_perf_event_sample_rate); 445 } 446 447 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 448 449 void perf_sample_event_took(u64 sample_len_ns) 450 { 451 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 452 u64 running_len; 453 u64 avg_len; 454 u32 max; 455 456 if (max_len == 0) 457 return; 458 459 /* Decay the counter by 1 average sample. */ 460 running_len = __this_cpu_read(running_sample_length); 461 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 462 running_len += sample_len_ns; 463 __this_cpu_write(running_sample_length, running_len); 464 465 /* 466 * Note: this will be biased artifically low until we have 467 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 468 * from having to maintain a count. 469 */ 470 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 471 if (avg_len <= max_len) 472 return; 473 474 __report_avg = avg_len; 475 __report_allowed = max_len; 476 477 /* 478 * Compute a throttle threshold 25% below the current duration. 479 */ 480 avg_len += avg_len / 4; 481 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 482 if (avg_len < max) 483 max /= (u32)avg_len; 484 else 485 max = 1; 486 487 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 488 WRITE_ONCE(max_samples_per_tick, max); 489 490 sysctl_perf_event_sample_rate = max * HZ; 491 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 492 493 if (!irq_work_queue(&perf_duration_work)) { 494 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 495 "kernel.perf_event_max_sample_rate to %d\n", 496 __report_avg, __report_allowed, 497 sysctl_perf_event_sample_rate); 498 } 499 } 500 501 static atomic64_t perf_event_id; 502 503 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 504 enum event_type_t event_type); 505 506 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 507 enum event_type_t event_type, 508 struct task_struct *task); 509 510 static void update_context_time(struct perf_event_context *ctx); 511 static u64 perf_event_time(struct perf_event *event); 512 513 void __weak perf_event_print_debug(void) { } 514 515 extern __weak const char *perf_pmu_name(void) 516 { 517 return "pmu"; 518 } 519 520 static inline u64 perf_clock(void) 521 { 522 return local_clock(); 523 } 524 525 static inline u64 perf_event_clock(struct perf_event *event) 526 { 527 return event->clock(); 528 } 529 530 #ifdef CONFIG_CGROUP_PERF 531 532 static inline bool 533 perf_cgroup_match(struct perf_event *event) 534 { 535 struct perf_event_context *ctx = event->ctx; 536 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 537 538 /* @event doesn't care about cgroup */ 539 if (!event->cgrp) 540 return true; 541 542 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 543 if (!cpuctx->cgrp) 544 return false; 545 546 /* 547 * Cgroup scoping is recursive. An event enabled for a cgroup is 548 * also enabled for all its descendant cgroups. If @cpuctx's 549 * cgroup is a descendant of @event's (the test covers identity 550 * case), it's a match. 551 */ 552 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 553 event->cgrp->css.cgroup); 554 } 555 556 static inline void perf_detach_cgroup(struct perf_event *event) 557 { 558 css_put(&event->cgrp->css); 559 event->cgrp = NULL; 560 } 561 562 static inline int is_cgroup_event(struct perf_event *event) 563 { 564 return event->cgrp != NULL; 565 } 566 567 static inline u64 perf_cgroup_event_time(struct perf_event *event) 568 { 569 struct perf_cgroup_info *t; 570 571 t = per_cpu_ptr(event->cgrp->info, event->cpu); 572 return t->time; 573 } 574 575 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 576 { 577 struct perf_cgroup_info *info; 578 u64 now; 579 580 now = perf_clock(); 581 582 info = this_cpu_ptr(cgrp->info); 583 584 info->time += now - info->timestamp; 585 info->timestamp = now; 586 } 587 588 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 589 { 590 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 591 if (cgrp_out) 592 __update_cgrp_time(cgrp_out); 593 } 594 595 static inline void update_cgrp_time_from_event(struct perf_event *event) 596 { 597 struct perf_cgroup *cgrp; 598 599 /* 600 * ensure we access cgroup data only when needed and 601 * when we know the cgroup is pinned (css_get) 602 */ 603 if (!is_cgroup_event(event)) 604 return; 605 606 cgrp = perf_cgroup_from_task(current, event->ctx); 607 /* 608 * Do not update time when cgroup is not active 609 */ 610 if (cgrp == event->cgrp) 611 __update_cgrp_time(event->cgrp); 612 } 613 614 static inline void 615 perf_cgroup_set_timestamp(struct task_struct *task, 616 struct perf_event_context *ctx) 617 { 618 struct perf_cgroup *cgrp; 619 struct perf_cgroup_info *info; 620 621 /* 622 * ctx->lock held by caller 623 * ensure we do not access cgroup data 624 * unless we have the cgroup pinned (css_get) 625 */ 626 if (!task || !ctx->nr_cgroups) 627 return; 628 629 cgrp = perf_cgroup_from_task(task, ctx); 630 info = this_cpu_ptr(cgrp->info); 631 info->timestamp = ctx->timestamp; 632 } 633 634 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 635 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 636 637 /* 638 * reschedule events based on the cgroup constraint of task. 639 * 640 * mode SWOUT : schedule out everything 641 * mode SWIN : schedule in based on cgroup for next 642 */ 643 static void perf_cgroup_switch(struct task_struct *task, int mode) 644 { 645 struct perf_cpu_context *cpuctx; 646 struct pmu *pmu; 647 unsigned long flags; 648 649 /* 650 * disable interrupts to avoid geting nr_cgroup 651 * changes via __perf_event_disable(). Also 652 * avoids preemption. 653 */ 654 local_irq_save(flags); 655 656 /* 657 * we reschedule only in the presence of cgroup 658 * constrained events. 659 */ 660 661 list_for_each_entry_rcu(pmu, &pmus, entry) { 662 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 663 if (cpuctx->unique_pmu != pmu) 664 continue; /* ensure we process each cpuctx once */ 665 666 /* 667 * perf_cgroup_events says at least one 668 * context on this CPU has cgroup events. 669 * 670 * ctx->nr_cgroups reports the number of cgroup 671 * events for a context. 672 */ 673 if (cpuctx->ctx.nr_cgroups > 0) { 674 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 675 perf_pmu_disable(cpuctx->ctx.pmu); 676 677 if (mode & PERF_CGROUP_SWOUT) { 678 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 679 /* 680 * must not be done before ctxswout due 681 * to event_filter_match() in event_sched_out() 682 */ 683 cpuctx->cgrp = NULL; 684 } 685 686 if (mode & PERF_CGROUP_SWIN) { 687 WARN_ON_ONCE(cpuctx->cgrp); 688 /* 689 * set cgrp before ctxsw in to allow 690 * event_filter_match() to not have to pass 691 * task around 692 * we pass the cpuctx->ctx to perf_cgroup_from_task() 693 * because cgorup events are only per-cpu 694 */ 695 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 696 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 697 } 698 perf_pmu_enable(cpuctx->ctx.pmu); 699 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 700 } 701 } 702 703 local_irq_restore(flags); 704 } 705 706 static inline void perf_cgroup_sched_out(struct task_struct *task, 707 struct task_struct *next) 708 { 709 struct perf_cgroup *cgrp1; 710 struct perf_cgroup *cgrp2 = NULL; 711 712 rcu_read_lock(); 713 /* 714 * we come here when we know perf_cgroup_events > 0 715 * we do not need to pass the ctx here because we know 716 * we are holding the rcu lock 717 */ 718 cgrp1 = perf_cgroup_from_task(task, NULL); 719 cgrp2 = perf_cgroup_from_task(next, NULL); 720 721 /* 722 * only schedule out current cgroup events if we know 723 * that we are switching to a different cgroup. Otherwise, 724 * do no touch the cgroup events. 725 */ 726 if (cgrp1 != cgrp2) 727 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 728 729 rcu_read_unlock(); 730 } 731 732 static inline void perf_cgroup_sched_in(struct task_struct *prev, 733 struct task_struct *task) 734 { 735 struct perf_cgroup *cgrp1; 736 struct perf_cgroup *cgrp2 = NULL; 737 738 rcu_read_lock(); 739 /* 740 * we come here when we know perf_cgroup_events > 0 741 * we do not need to pass the ctx here because we know 742 * we are holding the rcu lock 743 */ 744 cgrp1 = perf_cgroup_from_task(task, NULL); 745 cgrp2 = perf_cgroup_from_task(prev, NULL); 746 747 /* 748 * only need to schedule in cgroup events if we are changing 749 * cgroup during ctxsw. Cgroup events were not scheduled 750 * out of ctxsw out if that was not the case. 751 */ 752 if (cgrp1 != cgrp2) 753 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 754 755 rcu_read_unlock(); 756 } 757 758 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 759 struct perf_event_attr *attr, 760 struct perf_event *group_leader) 761 { 762 struct perf_cgroup *cgrp; 763 struct cgroup_subsys_state *css; 764 struct fd f = fdget(fd); 765 int ret = 0; 766 767 if (!f.file) 768 return -EBADF; 769 770 css = css_tryget_online_from_dir(f.file->f_path.dentry, 771 &perf_event_cgrp_subsys); 772 if (IS_ERR(css)) { 773 ret = PTR_ERR(css); 774 goto out; 775 } 776 777 cgrp = container_of(css, struct perf_cgroup, css); 778 event->cgrp = cgrp; 779 780 /* 781 * all events in a group must monitor 782 * the same cgroup because a task belongs 783 * to only one perf cgroup at a time 784 */ 785 if (group_leader && group_leader->cgrp != cgrp) { 786 perf_detach_cgroup(event); 787 ret = -EINVAL; 788 } 789 out: 790 fdput(f); 791 return ret; 792 } 793 794 static inline void 795 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 796 { 797 struct perf_cgroup_info *t; 798 t = per_cpu_ptr(event->cgrp->info, event->cpu); 799 event->shadow_ctx_time = now - t->timestamp; 800 } 801 802 static inline void 803 perf_cgroup_defer_enabled(struct perf_event *event) 804 { 805 /* 806 * when the current task's perf cgroup does not match 807 * the event's, we need to remember to call the 808 * perf_mark_enable() function the first time a task with 809 * a matching perf cgroup is scheduled in. 810 */ 811 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 812 event->cgrp_defer_enabled = 1; 813 } 814 815 static inline void 816 perf_cgroup_mark_enabled(struct perf_event *event, 817 struct perf_event_context *ctx) 818 { 819 struct perf_event *sub; 820 u64 tstamp = perf_event_time(event); 821 822 if (!event->cgrp_defer_enabled) 823 return; 824 825 event->cgrp_defer_enabled = 0; 826 827 event->tstamp_enabled = tstamp - event->total_time_enabled; 828 list_for_each_entry(sub, &event->sibling_list, group_entry) { 829 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 830 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 831 sub->cgrp_defer_enabled = 0; 832 } 833 } 834 } 835 #else /* !CONFIG_CGROUP_PERF */ 836 837 static inline bool 838 perf_cgroup_match(struct perf_event *event) 839 { 840 return true; 841 } 842 843 static inline void perf_detach_cgroup(struct perf_event *event) 844 {} 845 846 static inline int is_cgroup_event(struct perf_event *event) 847 { 848 return 0; 849 } 850 851 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 852 { 853 return 0; 854 } 855 856 static inline void update_cgrp_time_from_event(struct perf_event *event) 857 { 858 } 859 860 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 861 { 862 } 863 864 static inline void perf_cgroup_sched_out(struct task_struct *task, 865 struct task_struct *next) 866 { 867 } 868 869 static inline void perf_cgroup_sched_in(struct task_struct *prev, 870 struct task_struct *task) 871 { 872 } 873 874 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 875 struct perf_event_attr *attr, 876 struct perf_event *group_leader) 877 { 878 return -EINVAL; 879 } 880 881 static inline void 882 perf_cgroup_set_timestamp(struct task_struct *task, 883 struct perf_event_context *ctx) 884 { 885 } 886 887 void 888 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 889 { 890 } 891 892 static inline void 893 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 894 { 895 } 896 897 static inline u64 perf_cgroup_event_time(struct perf_event *event) 898 { 899 return 0; 900 } 901 902 static inline void 903 perf_cgroup_defer_enabled(struct perf_event *event) 904 { 905 } 906 907 static inline void 908 perf_cgroup_mark_enabled(struct perf_event *event, 909 struct perf_event_context *ctx) 910 { 911 } 912 #endif 913 914 /* 915 * set default to be dependent on timer tick just 916 * like original code 917 */ 918 #define PERF_CPU_HRTIMER (1000 / HZ) 919 /* 920 * function must be called with interrupts disbled 921 */ 922 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 923 { 924 struct perf_cpu_context *cpuctx; 925 int rotations = 0; 926 927 WARN_ON(!irqs_disabled()); 928 929 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 930 rotations = perf_rotate_context(cpuctx); 931 932 raw_spin_lock(&cpuctx->hrtimer_lock); 933 if (rotations) 934 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 935 else 936 cpuctx->hrtimer_active = 0; 937 raw_spin_unlock(&cpuctx->hrtimer_lock); 938 939 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 940 } 941 942 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 943 { 944 struct hrtimer *timer = &cpuctx->hrtimer; 945 struct pmu *pmu = cpuctx->ctx.pmu; 946 u64 interval; 947 948 /* no multiplexing needed for SW PMU */ 949 if (pmu->task_ctx_nr == perf_sw_context) 950 return; 951 952 /* 953 * check default is sane, if not set then force to 954 * default interval (1/tick) 955 */ 956 interval = pmu->hrtimer_interval_ms; 957 if (interval < 1) 958 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 959 960 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 961 962 raw_spin_lock_init(&cpuctx->hrtimer_lock); 963 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 964 timer->function = perf_mux_hrtimer_handler; 965 } 966 967 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 968 { 969 struct hrtimer *timer = &cpuctx->hrtimer; 970 struct pmu *pmu = cpuctx->ctx.pmu; 971 unsigned long flags; 972 973 /* not for SW PMU */ 974 if (pmu->task_ctx_nr == perf_sw_context) 975 return 0; 976 977 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 978 if (!cpuctx->hrtimer_active) { 979 cpuctx->hrtimer_active = 1; 980 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 981 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 982 } 983 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 984 985 return 0; 986 } 987 988 void perf_pmu_disable(struct pmu *pmu) 989 { 990 int *count = this_cpu_ptr(pmu->pmu_disable_count); 991 if (!(*count)++) 992 pmu->pmu_disable(pmu); 993 } 994 995 void perf_pmu_enable(struct pmu *pmu) 996 { 997 int *count = this_cpu_ptr(pmu->pmu_disable_count); 998 if (!--(*count)) 999 pmu->pmu_enable(pmu); 1000 } 1001 1002 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1003 1004 /* 1005 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1006 * perf_event_task_tick() are fully serialized because they're strictly cpu 1007 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1008 * disabled, while perf_event_task_tick is called from IRQ context. 1009 */ 1010 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1011 { 1012 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1013 1014 WARN_ON(!irqs_disabled()); 1015 1016 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1017 1018 list_add(&ctx->active_ctx_list, head); 1019 } 1020 1021 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1022 { 1023 WARN_ON(!irqs_disabled()); 1024 1025 WARN_ON(list_empty(&ctx->active_ctx_list)); 1026 1027 list_del_init(&ctx->active_ctx_list); 1028 } 1029 1030 static void get_ctx(struct perf_event_context *ctx) 1031 { 1032 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1033 } 1034 1035 static void free_ctx(struct rcu_head *head) 1036 { 1037 struct perf_event_context *ctx; 1038 1039 ctx = container_of(head, struct perf_event_context, rcu_head); 1040 kfree(ctx->task_ctx_data); 1041 kfree(ctx); 1042 } 1043 1044 static void put_ctx(struct perf_event_context *ctx) 1045 { 1046 if (atomic_dec_and_test(&ctx->refcount)) { 1047 if (ctx->parent_ctx) 1048 put_ctx(ctx->parent_ctx); 1049 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1050 put_task_struct(ctx->task); 1051 call_rcu(&ctx->rcu_head, free_ctx); 1052 } 1053 } 1054 1055 /* 1056 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1057 * perf_pmu_migrate_context() we need some magic. 1058 * 1059 * Those places that change perf_event::ctx will hold both 1060 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1061 * 1062 * Lock ordering is by mutex address. There are two other sites where 1063 * perf_event_context::mutex nests and those are: 1064 * 1065 * - perf_event_exit_task_context() [ child , 0 ] 1066 * perf_event_exit_event() 1067 * put_event() [ parent, 1 ] 1068 * 1069 * - perf_event_init_context() [ parent, 0 ] 1070 * inherit_task_group() 1071 * inherit_group() 1072 * inherit_event() 1073 * perf_event_alloc() 1074 * perf_init_event() 1075 * perf_try_init_event() [ child , 1 ] 1076 * 1077 * While it appears there is an obvious deadlock here -- the parent and child 1078 * nesting levels are inverted between the two. This is in fact safe because 1079 * life-time rules separate them. That is an exiting task cannot fork, and a 1080 * spawning task cannot (yet) exit. 1081 * 1082 * But remember that that these are parent<->child context relations, and 1083 * migration does not affect children, therefore these two orderings should not 1084 * interact. 1085 * 1086 * The change in perf_event::ctx does not affect children (as claimed above) 1087 * because the sys_perf_event_open() case will install a new event and break 1088 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1089 * concerned with cpuctx and that doesn't have children. 1090 * 1091 * The places that change perf_event::ctx will issue: 1092 * 1093 * perf_remove_from_context(); 1094 * synchronize_rcu(); 1095 * perf_install_in_context(); 1096 * 1097 * to affect the change. The remove_from_context() + synchronize_rcu() should 1098 * quiesce the event, after which we can install it in the new location. This 1099 * means that only external vectors (perf_fops, prctl) can perturb the event 1100 * while in transit. Therefore all such accessors should also acquire 1101 * perf_event_context::mutex to serialize against this. 1102 * 1103 * However; because event->ctx can change while we're waiting to acquire 1104 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1105 * function. 1106 * 1107 * Lock order: 1108 * task_struct::perf_event_mutex 1109 * perf_event_context::mutex 1110 * perf_event::child_mutex; 1111 * perf_event_context::lock 1112 * perf_event::mmap_mutex 1113 * mmap_sem 1114 */ 1115 static struct perf_event_context * 1116 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1117 { 1118 struct perf_event_context *ctx; 1119 1120 again: 1121 rcu_read_lock(); 1122 ctx = ACCESS_ONCE(event->ctx); 1123 if (!atomic_inc_not_zero(&ctx->refcount)) { 1124 rcu_read_unlock(); 1125 goto again; 1126 } 1127 rcu_read_unlock(); 1128 1129 mutex_lock_nested(&ctx->mutex, nesting); 1130 if (event->ctx != ctx) { 1131 mutex_unlock(&ctx->mutex); 1132 put_ctx(ctx); 1133 goto again; 1134 } 1135 1136 return ctx; 1137 } 1138 1139 static inline struct perf_event_context * 1140 perf_event_ctx_lock(struct perf_event *event) 1141 { 1142 return perf_event_ctx_lock_nested(event, 0); 1143 } 1144 1145 static void perf_event_ctx_unlock(struct perf_event *event, 1146 struct perf_event_context *ctx) 1147 { 1148 mutex_unlock(&ctx->mutex); 1149 put_ctx(ctx); 1150 } 1151 1152 /* 1153 * This must be done under the ctx->lock, such as to serialize against 1154 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1155 * calling scheduler related locks and ctx->lock nests inside those. 1156 */ 1157 static __must_check struct perf_event_context * 1158 unclone_ctx(struct perf_event_context *ctx) 1159 { 1160 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1161 1162 lockdep_assert_held(&ctx->lock); 1163 1164 if (parent_ctx) 1165 ctx->parent_ctx = NULL; 1166 ctx->generation++; 1167 1168 return parent_ctx; 1169 } 1170 1171 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1172 { 1173 /* 1174 * only top level events have the pid namespace they were created in 1175 */ 1176 if (event->parent) 1177 event = event->parent; 1178 1179 return task_tgid_nr_ns(p, event->ns); 1180 } 1181 1182 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1183 { 1184 /* 1185 * only top level events have the pid namespace they were created in 1186 */ 1187 if (event->parent) 1188 event = event->parent; 1189 1190 return task_pid_nr_ns(p, event->ns); 1191 } 1192 1193 /* 1194 * If we inherit events we want to return the parent event id 1195 * to userspace. 1196 */ 1197 static u64 primary_event_id(struct perf_event *event) 1198 { 1199 u64 id = event->id; 1200 1201 if (event->parent) 1202 id = event->parent->id; 1203 1204 return id; 1205 } 1206 1207 /* 1208 * Get the perf_event_context for a task and lock it. 1209 * 1210 * This has to cope with with the fact that until it is locked, 1211 * the context could get moved to another task. 1212 */ 1213 static struct perf_event_context * 1214 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1215 { 1216 struct perf_event_context *ctx; 1217 1218 retry: 1219 /* 1220 * One of the few rules of preemptible RCU is that one cannot do 1221 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1222 * part of the read side critical section was irqs-enabled -- see 1223 * rcu_read_unlock_special(). 1224 * 1225 * Since ctx->lock nests under rq->lock we must ensure the entire read 1226 * side critical section has interrupts disabled. 1227 */ 1228 local_irq_save(*flags); 1229 rcu_read_lock(); 1230 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1231 if (ctx) { 1232 /* 1233 * If this context is a clone of another, it might 1234 * get swapped for another underneath us by 1235 * perf_event_task_sched_out, though the 1236 * rcu_read_lock() protects us from any context 1237 * getting freed. Lock the context and check if it 1238 * got swapped before we could get the lock, and retry 1239 * if so. If we locked the right context, then it 1240 * can't get swapped on us any more. 1241 */ 1242 raw_spin_lock(&ctx->lock); 1243 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1244 raw_spin_unlock(&ctx->lock); 1245 rcu_read_unlock(); 1246 local_irq_restore(*flags); 1247 goto retry; 1248 } 1249 1250 if (ctx->task == TASK_TOMBSTONE || 1251 !atomic_inc_not_zero(&ctx->refcount)) { 1252 raw_spin_unlock(&ctx->lock); 1253 ctx = NULL; 1254 } else { 1255 WARN_ON_ONCE(ctx->task != task); 1256 } 1257 } 1258 rcu_read_unlock(); 1259 if (!ctx) 1260 local_irq_restore(*flags); 1261 return ctx; 1262 } 1263 1264 /* 1265 * Get the context for a task and increment its pin_count so it 1266 * can't get swapped to another task. This also increments its 1267 * reference count so that the context can't get freed. 1268 */ 1269 static struct perf_event_context * 1270 perf_pin_task_context(struct task_struct *task, int ctxn) 1271 { 1272 struct perf_event_context *ctx; 1273 unsigned long flags; 1274 1275 ctx = perf_lock_task_context(task, ctxn, &flags); 1276 if (ctx) { 1277 ++ctx->pin_count; 1278 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1279 } 1280 return ctx; 1281 } 1282 1283 static void perf_unpin_context(struct perf_event_context *ctx) 1284 { 1285 unsigned long flags; 1286 1287 raw_spin_lock_irqsave(&ctx->lock, flags); 1288 --ctx->pin_count; 1289 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1290 } 1291 1292 /* 1293 * Update the record of the current time in a context. 1294 */ 1295 static void update_context_time(struct perf_event_context *ctx) 1296 { 1297 u64 now = perf_clock(); 1298 1299 ctx->time += now - ctx->timestamp; 1300 ctx->timestamp = now; 1301 } 1302 1303 static u64 perf_event_time(struct perf_event *event) 1304 { 1305 struct perf_event_context *ctx = event->ctx; 1306 1307 if (is_cgroup_event(event)) 1308 return perf_cgroup_event_time(event); 1309 1310 return ctx ? ctx->time : 0; 1311 } 1312 1313 /* 1314 * Update the total_time_enabled and total_time_running fields for a event. 1315 */ 1316 static void update_event_times(struct perf_event *event) 1317 { 1318 struct perf_event_context *ctx = event->ctx; 1319 u64 run_end; 1320 1321 lockdep_assert_held(&ctx->lock); 1322 1323 if (event->state < PERF_EVENT_STATE_INACTIVE || 1324 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1325 return; 1326 1327 /* 1328 * in cgroup mode, time_enabled represents 1329 * the time the event was enabled AND active 1330 * tasks were in the monitored cgroup. This is 1331 * independent of the activity of the context as 1332 * there may be a mix of cgroup and non-cgroup events. 1333 * 1334 * That is why we treat cgroup events differently 1335 * here. 1336 */ 1337 if (is_cgroup_event(event)) 1338 run_end = perf_cgroup_event_time(event); 1339 else if (ctx->is_active) 1340 run_end = ctx->time; 1341 else 1342 run_end = event->tstamp_stopped; 1343 1344 event->total_time_enabled = run_end - event->tstamp_enabled; 1345 1346 if (event->state == PERF_EVENT_STATE_INACTIVE) 1347 run_end = event->tstamp_stopped; 1348 else 1349 run_end = perf_event_time(event); 1350 1351 event->total_time_running = run_end - event->tstamp_running; 1352 1353 } 1354 1355 /* 1356 * Update total_time_enabled and total_time_running for all events in a group. 1357 */ 1358 static void update_group_times(struct perf_event *leader) 1359 { 1360 struct perf_event *event; 1361 1362 update_event_times(leader); 1363 list_for_each_entry(event, &leader->sibling_list, group_entry) 1364 update_event_times(event); 1365 } 1366 1367 static struct list_head * 1368 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1369 { 1370 if (event->attr.pinned) 1371 return &ctx->pinned_groups; 1372 else 1373 return &ctx->flexible_groups; 1374 } 1375 1376 /* 1377 * Add a event from the lists for its context. 1378 * Must be called with ctx->mutex and ctx->lock held. 1379 */ 1380 static void 1381 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1382 { 1383 lockdep_assert_held(&ctx->lock); 1384 1385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1386 event->attach_state |= PERF_ATTACH_CONTEXT; 1387 1388 /* 1389 * If we're a stand alone event or group leader, we go to the context 1390 * list, group events are kept attached to the group so that 1391 * perf_group_detach can, at all times, locate all siblings. 1392 */ 1393 if (event->group_leader == event) { 1394 struct list_head *list; 1395 1396 if (is_software_event(event)) 1397 event->group_flags |= PERF_GROUP_SOFTWARE; 1398 1399 list = ctx_group_list(event, ctx); 1400 list_add_tail(&event->group_entry, list); 1401 } 1402 1403 if (is_cgroup_event(event)) 1404 ctx->nr_cgroups++; 1405 1406 list_add_rcu(&event->event_entry, &ctx->event_list); 1407 ctx->nr_events++; 1408 if (event->attr.inherit_stat) 1409 ctx->nr_stat++; 1410 1411 ctx->generation++; 1412 } 1413 1414 /* 1415 * Initialize event state based on the perf_event_attr::disabled. 1416 */ 1417 static inline void perf_event__state_init(struct perf_event *event) 1418 { 1419 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1420 PERF_EVENT_STATE_INACTIVE; 1421 } 1422 1423 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1424 { 1425 int entry = sizeof(u64); /* value */ 1426 int size = 0; 1427 int nr = 1; 1428 1429 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1430 size += sizeof(u64); 1431 1432 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1433 size += sizeof(u64); 1434 1435 if (event->attr.read_format & PERF_FORMAT_ID) 1436 entry += sizeof(u64); 1437 1438 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1439 nr += nr_siblings; 1440 size += sizeof(u64); 1441 } 1442 1443 size += entry * nr; 1444 event->read_size = size; 1445 } 1446 1447 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1448 { 1449 struct perf_sample_data *data; 1450 u16 size = 0; 1451 1452 if (sample_type & PERF_SAMPLE_IP) 1453 size += sizeof(data->ip); 1454 1455 if (sample_type & PERF_SAMPLE_ADDR) 1456 size += sizeof(data->addr); 1457 1458 if (sample_type & PERF_SAMPLE_PERIOD) 1459 size += sizeof(data->period); 1460 1461 if (sample_type & PERF_SAMPLE_WEIGHT) 1462 size += sizeof(data->weight); 1463 1464 if (sample_type & PERF_SAMPLE_READ) 1465 size += event->read_size; 1466 1467 if (sample_type & PERF_SAMPLE_DATA_SRC) 1468 size += sizeof(data->data_src.val); 1469 1470 if (sample_type & PERF_SAMPLE_TRANSACTION) 1471 size += sizeof(data->txn); 1472 1473 event->header_size = size; 1474 } 1475 1476 /* 1477 * Called at perf_event creation and when events are attached/detached from a 1478 * group. 1479 */ 1480 static void perf_event__header_size(struct perf_event *event) 1481 { 1482 __perf_event_read_size(event, 1483 event->group_leader->nr_siblings); 1484 __perf_event_header_size(event, event->attr.sample_type); 1485 } 1486 1487 static void perf_event__id_header_size(struct perf_event *event) 1488 { 1489 struct perf_sample_data *data; 1490 u64 sample_type = event->attr.sample_type; 1491 u16 size = 0; 1492 1493 if (sample_type & PERF_SAMPLE_TID) 1494 size += sizeof(data->tid_entry); 1495 1496 if (sample_type & PERF_SAMPLE_TIME) 1497 size += sizeof(data->time); 1498 1499 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1500 size += sizeof(data->id); 1501 1502 if (sample_type & PERF_SAMPLE_ID) 1503 size += sizeof(data->id); 1504 1505 if (sample_type & PERF_SAMPLE_STREAM_ID) 1506 size += sizeof(data->stream_id); 1507 1508 if (sample_type & PERF_SAMPLE_CPU) 1509 size += sizeof(data->cpu_entry); 1510 1511 event->id_header_size = size; 1512 } 1513 1514 static bool perf_event_validate_size(struct perf_event *event) 1515 { 1516 /* 1517 * The values computed here will be over-written when we actually 1518 * attach the event. 1519 */ 1520 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1521 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1522 perf_event__id_header_size(event); 1523 1524 /* 1525 * Sum the lot; should not exceed the 64k limit we have on records. 1526 * Conservative limit to allow for callchains and other variable fields. 1527 */ 1528 if (event->read_size + event->header_size + 1529 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1530 return false; 1531 1532 return true; 1533 } 1534 1535 static void perf_group_attach(struct perf_event *event) 1536 { 1537 struct perf_event *group_leader = event->group_leader, *pos; 1538 1539 /* 1540 * We can have double attach due to group movement in perf_event_open. 1541 */ 1542 if (event->attach_state & PERF_ATTACH_GROUP) 1543 return; 1544 1545 event->attach_state |= PERF_ATTACH_GROUP; 1546 1547 if (group_leader == event) 1548 return; 1549 1550 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1551 1552 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1553 !is_software_event(event)) 1554 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1555 1556 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1557 group_leader->nr_siblings++; 1558 1559 perf_event__header_size(group_leader); 1560 1561 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1562 perf_event__header_size(pos); 1563 } 1564 1565 /* 1566 * Remove a event from the lists for its context. 1567 * Must be called with ctx->mutex and ctx->lock held. 1568 */ 1569 static void 1570 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1571 { 1572 struct perf_cpu_context *cpuctx; 1573 1574 WARN_ON_ONCE(event->ctx != ctx); 1575 lockdep_assert_held(&ctx->lock); 1576 1577 /* 1578 * We can have double detach due to exit/hot-unplug + close. 1579 */ 1580 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1581 return; 1582 1583 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1584 1585 if (is_cgroup_event(event)) { 1586 ctx->nr_cgroups--; 1587 /* 1588 * Because cgroup events are always per-cpu events, this will 1589 * always be called from the right CPU. 1590 */ 1591 cpuctx = __get_cpu_context(ctx); 1592 /* 1593 * If there are no more cgroup events then clear cgrp to avoid 1594 * stale pointer in update_cgrp_time_from_cpuctx(). 1595 */ 1596 if (!ctx->nr_cgroups) 1597 cpuctx->cgrp = NULL; 1598 } 1599 1600 ctx->nr_events--; 1601 if (event->attr.inherit_stat) 1602 ctx->nr_stat--; 1603 1604 list_del_rcu(&event->event_entry); 1605 1606 if (event->group_leader == event) 1607 list_del_init(&event->group_entry); 1608 1609 update_group_times(event); 1610 1611 /* 1612 * If event was in error state, then keep it 1613 * that way, otherwise bogus counts will be 1614 * returned on read(). The only way to get out 1615 * of error state is by explicit re-enabling 1616 * of the event 1617 */ 1618 if (event->state > PERF_EVENT_STATE_OFF) 1619 event->state = PERF_EVENT_STATE_OFF; 1620 1621 ctx->generation++; 1622 } 1623 1624 static void perf_group_detach(struct perf_event *event) 1625 { 1626 struct perf_event *sibling, *tmp; 1627 struct list_head *list = NULL; 1628 1629 /* 1630 * We can have double detach due to exit/hot-unplug + close. 1631 */ 1632 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1633 return; 1634 1635 event->attach_state &= ~PERF_ATTACH_GROUP; 1636 1637 /* 1638 * If this is a sibling, remove it from its group. 1639 */ 1640 if (event->group_leader != event) { 1641 list_del_init(&event->group_entry); 1642 event->group_leader->nr_siblings--; 1643 goto out; 1644 } 1645 1646 if (!list_empty(&event->group_entry)) 1647 list = &event->group_entry; 1648 1649 /* 1650 * If this was a group event with sibling events then 1651 * upgrade the siblings to singleton events by adding them 1652 * to whatever list we are on. 1653 */ 1654 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1655 if (list) 1656 list_move_tail(&sibling->group_entry, list); 1657 sibling->group_leader = sibling; 1658 1659 /* Inherit group flags from the previous leader */ 1660 sibling->group_flags = event->group_flags; 1661 1662 WARN_ON_ONCE(sibling->ctx != event->ctx); 1663 } 1664 1665 out: 1666 perf_event__header_size(event->group_leader); 1667 1668 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1669 perf_event__header_size(tmp); 1670 } 1671 1672 static bool is_orphaned_event(struct perf_event *event) 1673 { 1674 return event->state == PERF_EVENT_STATE_DEAD; 1675 } 1676 1677 static inline int pmu_filter_match(struct perf_event *event) 1678 { 1679 struct pmu *pmu = event->pmu; 1680 return pmu->filter_match ? pmu->filter_match(event) : 1; 1681 } 1682 1683 static inline int 1684 event_filter_match(struct perf_event *event) 1685 { 1686 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1687 && perf_cgroup_match(event) && pmu_filter_match(event); 1688 } 1689 1690 static void 1691 event_sched_out(struct perf_event *event, 1692 struct perf_cpu_context *cpuctx, 1693 struct perf_event_context *ctx) 1694 { 1695 u64 tstamp = perf_event_time(event); 1696 u64 delta; 1697 1698 WARN_ON_ONCE(event->ctx != ctx); 1699 lockdep_assert_held(&ctx->lock); 1700 1701 /* 1702 * An event which could not be activated because of 1703 * filter mismatch still needs to have its timings 1704 * maintained, otherwise bogus information is return 1705 * via read() for time_enabled, time_running: 1706 */ 1707 if (event->state == PERF_EVENT_STATE_INACTIVE 1708 && !event_filter_match(event)) { 1709 delta = tstamp - event->tstamp_stopped; 1710 event->tstamp_running += delta; 1711 event->tstamp_stopped = tstamp; 1712 } 1713 1714 if (event->state != PERF_EVENT_STATE_ACTIVE) 1715 return; 1716 1717 perf_pmu_disable(event->pmu); 1718 1719 event->tstamp_stopped = tstamp; 1720 event->pmu->del(event, 0); 1721 event->oncpu = -1; 1722 event->state = PERF_EVENT_STATE_INACTIVE; 1723 if (event->pending_disable) { 1724 event->pending_disable = 0; 1725 event->state = PERF_EVENT_STATE_OFF; 1726 } 1727 1728 if (!is_software_event(event)) 1729 cpuctx->active_oncpu--; 1730 if (!--ctx->nr_active) 1731 perf_event_ctx_deactivate(ctx); 1732 if (event->attr.freq && event->attr.sample_freq) 1733 ctx->nr_freq--; 1734 if (event->attr.exclusive || !cpuctx->active_oncpu) 1735 cpuctx->exclusive = 0; 1736 1737 perf_pmu_enable(event->pmu); 1738 } 1739 1740 static void 1741 group_sched_out(struct perf_event *group_event, 1742 struct perf_cpu_context *cpuctx, 1743 struct perf_event_context *ctx) 1744 { 1745 struct perf_event *event; 1746 int state = group_event->state; 1747 1748 event_sched_out(group_event, cpuctx, ctx); 1749 1750 /* 1751 * Schedule out siblings (if any): 1752 */ 1753 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1754 event_sched_out(event, cpuctx, ctx); 1755 1756 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1757 cpuctx->exclusive = 0; 1758 } 1759 1760 #define DETACH_GROUP 0x01UL 1761 1762 /* 1763 * Cross CPU call to remove a performance event 1764 * 1765 * We disable the event on the hardware level first. After that we 1766 * remove it from the context list. 1767 */ 1768 static void 1769 __perf_remove_from_context(struct perf_event *event, 1770 struct perf_cpu_context *cpuctx, 1771 struct perf_event_context *ctx, 1772 void *info) 1773 { 1774 unsigned long flags = (unsigned long)info; 1775 1776 event_sched_out(event, cpuctx, ctx); 1777 if (flags & DETACH_GROUP) 1778 perf_group_detach(event); 1779 list_del_event(event, ctx); 1780 1781 if (!ctx->nr_events && ctx->is_active) { 1782 ctx->is_active = 0; 1783 if (ctx->task) { 1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1785 cpuctx->task_ctx = NULL; 1786 } 1787 } 1788 } 1789 1790 /* 1791 * Remove the event from a task's (or a CPU's) list of events. 1792 * 1793 * If event->ctx is a cloned context, callers must make sure that 1794 * every task struct that event->ctx->task could possibly point to 1795 * remains valid. This is OK when called from perf_release since 1796 * that only calls us on the top-level context, which can't be a clone. 1797 * When called from perf_event_exit_task, it's OK because the 1798 * context has been detached from its task. 1799 */ 1800 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1801 { 1802 lockdep_assert_held(&event->ctx->mutex); 1803 1804 event_function_call(event, __perf_remove_from_context, (void *)flags); 1805 } 1806 1807 /* 1808 * Cross CPU call to disable a performance event 1809 */ 1810 static void __perf_event_disable(struct perf_event *event, 1811 struct perf_cpu_context *cpuctx, 1812 struct perf_event_context *ctx, 1813 void *info) 1814 { 1815 if (event->state < PERF_EVENT_STATE_INACTIVE) 1816 return; 1817 1818 update_context_time(ctx); 1819 update_cgrp_time_from_event(event); 1820 update_group_times(event); 1821 if (event == event->group_leader) 1822 group_sched_out(event, cpuctx, ctx); 1823 else 1824 event_sched_out(event, cpuctx, ctx); 1825 event->state = PERF_EVENT_STATE_OFF; 1826 } 1827 1828 /* 1829 * Disable a event. 1830 * 1831 * If event->ctx is a cloned context, callers must make sure that 1832 * every task struct that event->ctx->task could possibly point to 1833 * remains valid. This condition is satisifed when called through 1834 * perf_event_for_each_child or perf_event_for_each because they 1835 * hold the top-level event's child_mutex, so any descendant that 1836 * goes to exit will block in perf_event_exit_event(). 1837 * 1838 * When called from perf_pending_event it's OK because event->ctx 1839 * is the current context on this CPU and preemption is disabled, 1840 * hence we can't get into perf_event_task_sched_out for this context. 1841 */ 1842 static void _perf_event_disable(struct perf_event *event) 1843 { 1844 struct perf_event_context *ctx = event->ctx; 1845 1846 raw_spin_lock_irq(&ctx->lock); 1847 if (event->state <= PERF_EVENT_STATE_OFF) { 1848 raw_spin_unlock_irq(&ctx->lock); 1849 return; 1850 } 1851 raw_spin_unlock_irq(&ctx->lock); 1852 1853 event_function_call(event, __perf_event_disable, NULL); 1854 } 1855 1856 void perf_event_disable_local(struct perf_event *event) 1857 { 1858 event_function_local(event, __perf_event_disable, NULL); 1859 } 1860 1861 /* 1862 * Strictly speaking kernel users cannot create groups and therefore this 1863 * interface does not need the perf_event_ctx_lock() magic. 1864 */ 1865 void perf_event_disable(struct perf_event *event) 1866 { 1867 struct perf_event_context *ctx; 1868 1869 ctx = perf_event_ctx_lock(event); 1870 _perf_event_disable(event); 1871 perf_event_ctx_unlock(event, ctx); 1872 } 1873 EXPORT_SYMBOL_GPL(perf_event_disable); 1874 1875 static void perf_set_shadow_time(struct perf_event *event, 1876 struct perf_event_context *ctx, 1877 u64 tstamp) 1878 { 1879 /* 1880 * use the correct time source for the time snapshot 1881 * 1882 * We could get by without this by leveraging the 1883 * fact that to get to this function, the caller 1884 * has most likely already called update_context_time() 1885 * and update_cgrp_time_xx() and thus both timestamp 1886 * are identical (or very close). Given that tstamp is, 1887 * already adjusted for cgroup, we could say that: 1888 * tstamp - ctx->timestamp 1889 * is equivalent to 1890 * tstamp - cgrp->timestamp. 1891 * 1892 * Then, in perf_output_read(), the calculation would 1893 * work with no changes because: 1894 * - event is guaranteed scheduled in 1895 * - no scheduled out in between 1896 * - thus the timestamp would be the same 1897 * 1898 * But this is a bit hairy. 1899 * 1900 * So instead, we have an explicit cgroup call to remain 1901 * within the time time source all along. We believe it 1902 * is cleaner and simpler to understand. 1903 */ 1904 if (is_cgroup_event(event)) 1905 perf_cgroup_set_shadow_time(event, tstamp); 1906 else 1907 event->shadow_ctx_time = tstamp - ctx->timestamp; 1908 } 1909 1910 #define MAX_INTERRUPTS (~0ULL) 1911 1912 static void perf_log_throttle(struct perf_event *event, int enable); 1913 static void perf_log_itrace_start(struct perf_event *event); 1914 1915 static int 1916 event_sched_in(struct perf_event *event, 1917 struct perf_cpu_context *cpuctx, 1918 struct perf_event_context *ctx) 1919 { 1920 u64 tstamp = perf_event_time(event); 1921 int ret = 0; 1922 1923 lockdep_assert_held(&ctx->lock); 1924 1925 if (event->state <= PERF_EVENT_STATE_OFF) 1926 return 0; 1927 1928 event->state = PERF_EVENT_STATE_ACTIVE; 1929 event->oncpu = smp_processor_id(); 1930 1931 /* 1932 * Unthrottle events, since we scheduled we might have missed several 1933 * ticks already, also for a heavily scheduling task there is little 1934 * guarantee it'll get a tick in a timely manner. 1935 */ 1936 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1937 perf_log_throttle(event, 1); 1938 event->hw.interrupts = 0; 1939 } 1940 1941 /* 1942 * The new state must be visible before we turn it on in the hardware: 1943 */ 1944 smp_wmb(); 1945 1946 perf_pmu_disable(event->pmu); 1947 1948 perf_set_shadow_time(event, ctx, tstamp); 1949 1950 perf_log_itrace_start(event); 1951 1952 if (event->pmu->add(event, PERF_EF_START)) { 1953 event->state = PERF_EVENT_STATE_INACTIVE; 1954 event->oncpu = -1; 1955 ret = -EAGAIN; 1956 goto out; 1957 } 1958 1959 event->tstamp_running += tstamp - event->tstamp_stopped; 1960 1961 if (!is_software_event(event)) 1962 cpuctx->active_oncpu++; 1963 if (!ctx->nr_active++) 1964 perf_event_ctx_activate(ctx); 1965 if (event->attr.freq && event->attr.sample_freq) 1966 ctx->nr_freq++; 1967 1968 if (event->attr.exclusive) 1969 cpuctx->exclusive = 1; 1970 1971 out: 1972 perf_pmu_enable(event->pmu); 1973 1974 return ret; 1975 } 1976 1977 static int 1978 group_sched_in(struct perf_event *group_event, 1979 struct perf_cpu_context *cpuctx, 1980 struct perf_event_context *ctx) 1981 { 1982 struct perf_event *event, *partial_group = NULL; 1983 struct pmu *pmu = ctx->pmu; 1984 u64 now = ctx->time; 1985 bool simulate = false; 1986 1987 if (group_event->state == PERF_EVENT_STATE_OFF) 1988 return 0; 1989 1990 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 1991 1992 if (event_sched_in(group_event, cpuctx, ctx)) { 1993 pmu->cancel_txn(pmu); 1994 perf_mux_hrtimer_restart(cpuctx); 1995 return -EAGAIN; 1996 } 1997 1998 /* 1999 * Schedule in siblings as one group (if any): 2000 */ 2001 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2002 if (event_sched_in(event, cpuctx, ctx)) { 2003 partial_group = event; 2004 goto group_error; 2005 } 2006 } 2007 2008 if (!pmu->commit_txn(pmu)) 2009 return 0; 2010 2011 group_error: 2012 /* 2013 * Groups can be scheduled in as one unit only, so undo any 2014 * partial group before returning: 2015 * The events up to the failed event are scheduled out normally, 2016 * tstamp_stopped will be updated. 2017 * 2018 * The failed events and the remaining siblings need to have 2019 * their timings updated as if they had gone thru event_sched_in() 2020 * and event_sched_out(). This is required to get consistent timings 2021 * across the group. This also takes care of the case where the group 2022 * could never be scheduled by ensuring tstamp_stopped is set to mark 2023 * the time the event was actually stopped, such that time delta 2024 * calculation in update_event_times() is correct. 2025 */ 2026 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2027 if (event == partial_group) 2028 simulate = true; 2029 2030 if (simulate) { 2031 event->tstamp_running += now - event->tstamp_stopped; 2032 event->tstamp_stopped = now; 2033 } else { 2034 event_sched_out(event, cpuctx, ctx); 2035 } 2036 } 2037 event_sched_out(group_event, cpuctx, ctx); 2038 2039 pmu->cancel_txn(pmu); 2040 2041 perf_mux_hrtimer_restart(cpuctx); 2042 2043 return -EAGAIN; 2044 } 2045 2046 /* 2047 * Work out whether we can put this event group on the CPU now. 2048 */ 2049 static int group_can_go_on(struct perf_event *event, 2050 struct perf_cpu_context *cpuctx, 2051 int can_add_hw) 2052 { 2053 /* 2054 * Groups consisting entirely of software events can always go on. 2055 */ 2056 if (event->group_flags & PERF_GROUP_SOFTWARE) 2057 return 1; 2058 /* 2059 * If an exclusive group is already on, no other hardware 2060 * events can go on. 2061 */ 2062 if (cpuctx->exclusive) 2063 return 0; 2064 /* 2065 * If this group is exclusive and there are already 2066 * events on the CPU, it can't go on. 2067 */ 2068 if (event->attr.exclusive && cpuctx->active_oncpu) 2069 return 0; 2070 /* 2071 * Otherwise, try to add it if all previous groups were able 2072 * to go on. 2073 */ 2074 return can_add_hw; 2075 } 2076 2077 static void add_event_to_ctx(struct perf_event *event, 2078 struct perf_event_context *ctx) 2079 { 2080 u64 tstamp = perf_event_time(event); 2081 2082 list_add_event(event, ctx); 2083 perf_group_attach(event); 2084 event->tstamp_enabled = tstamp; 2085 event->tstamp_running = tstamp; 2086 event->tstamp_stopped = tstamp; 2087 } 2088 2089 static void ctx_sched_out(struct perf_event_context *ctx, 2090 struct perf_cpu_context *cpuctx, 2091 enum event_type_t event_type); 2092 static void 2093 ctx_sched_in(struct perf_event_context *ctx, 2094 struct perf_cpu_context *cpuctx, 2095 enum event_type_t event_type, 2096 struct task_struct *task); 2097 2098 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2099 struct perf_event_context *ctx) 2100 { 2101 if (!cpuctx->task_ctx) 2102 return; 2103 2104 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2105 return; 2106 2107 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2108 } 2109 2110 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2111 struct perf_event_context *ctx, 2112 struct task_struct *task) 2113 { 2114 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2115 if (ctx) 2116 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2117 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2118 if (ctx) 2119 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2120 } 2121 2122 static void ctx_resched(struct perf_cpu_context *cpuctx, 2123 struct perf_event_context *task_ctx) 2124 { 2125 perf_pmu_disable(cpuctx->ctx.pmu); 2126 if (task_ctx) 2127 task_ctx_sched_out(cpuctx, task_ctx); 2128 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2129 perf_event_sched_in(cpuctx, task_ctx, current); 2130 perf_pmu_enable(cpuctx->ctx.pmu); 2131 } 2132 2133 /* 2134 * Cross CPU call to install and enable a performance event 2135 * 2136 * Very similar to remote_function() + event_function() but cannot assume that 2137 * things like ctx->is_active and cpuctx->task_ctx are set. 2138 */ 2139 static int __perf_install_in_context(void *info) 2140 { 2141 struct perf_event *event = info; 2142 struct perf_event_context *ctx = event->ctx; 2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2144 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2145 bool activate = true; 2146 int ret = 0; 2147 2148 raw_spin_lock(&cpuctx->ctx.lock); 2149 if (ctx->task) { 2150 raw_spin_lock(&ctx->lock); 2151 task_ctx = ctx; 2152 2153 /* If we're on the wrong CPU, try again */ 2154 if (task_cpu(ctx->task) != smp_processor_id()) { 2155 ret = -ESRCH; 2156 goto unlock; 2157 } 2158 2159 /* 2160 * If we're on the right CPU, see if the task we target is 2161 * current, if not we don't have to activate the ctx, a future 2162 * context switch will do that for us. 2163 */ 2164 if (ctx->task != current) 2165 activate = false; 2166 else 2167 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2168 2169 } else if (task_ctx) { 2170 raw_spin_lock(&task_ctx->lock); 2171 } 2172 2173 if (activate) { 2174 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2175 add_event_to_ctx(event, ctx); 2176 ctx_resched(cpuctx, task_ctx); 2177 } else { 2178 add_event_to_ctx(event, ctx); 2179 } 2180 2181 unlock: 2182 perf_ctx_unlock(cpuctx, task_ctx); 2183 2184 return ret; 2185 } 2186 2187 /* 2188 * Attach a performance event to a context. 2189 * 2190 * Very similar to event_function_call, see comment there. 2191 */ 2192 static void 2193 perf_install_in_context(struct perf_event_context *ctx, 2194 struct perf_event *event, 2195 int cpu) 2196 { 2197 struct task_struct *task = READ_ONCE(ctx->task); 2198 2199 lockdep_assert_held(&ctx->mutex); 2200 2201 event->ctx = ctx; 2202 if (event->cpu != -1) 2203 event->cpu = cpu; 2204 2205 if (!task) { 2206 cpu_function_call(cpu, __perf_install_in_context, event); 2207 return; 2208 } 2209 2210 /* 2211 * Should not happen, we validate the ctx is still alive before calling. 2212 */ 2213 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2214 return; 2215 2216 /* 2217 * Installing events is tricky because we cannot rely on ctx->is_active 2218 * to be set in case this is the nr_events 0 -> 1 transition. 2219 */ 2220 again: 2221 /* 2222 * Cannot use task_function_call() because we need to run on the task's 2223 * CPU regardless of whether its current or not. 2224 */ 2225 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2226 return; 2227 2228 raw_spin_lock_irq(&ctx->lock); 2229 task = ctx->task; 2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2231 /* 2232 * Cannot happen because we already checked above (which also 2233 * cannot happen), and we hold ctx->mutex, which serializes us 2234 * against perf_event_exit_task_context(). 2235 */ 2236 raw_spin_unlock_irq(&ctx->lock); 2237 return; 2238 } 2239 raw_spin_unlock_irq(&ctx->lock); 2240 /* 2241 * Since !ctx->is_active doesn't mean anything, we must IPI 2242 * unconditionally. 2243 */ 2244 goto again; 2245 } 2246 2247 /* 2248 * Put a event into inactive state and update time fields. 2249 * Enabling the leader of a group effectively enables all 2250 * the group members that aren't explicitly disabled, so we 2251 * have to update their ->tstamp_enabled also. 2252 * Note: this works for group members as well as group leaders 2253 * since the non-leader members' sibling_lists will be empty. 2254 */ 2255 static void __perf_event_mark_enabled(struct perf_event *event) 2256 { 2257 struct perf_event *sub; 2258 u64 tstamp = perf_event_time(event); 2259 2260 event->state = PERF_EVENT_STATE_INACTIVE; 2261 event->tstamp_enabled = tstamp - event->total_time_enabled; 2262 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2263 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2264 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2265 } 2266 } 2267 2268 /* 2269 * Cross CPU call to enable a performance event 2270 */ 2271 static void __perf_event_enable(struct perf_event *event, 2272 struct perf_cpu_context *cpuctx, 2273 struct perf_event_context *ctx, 2274 void *info) 2275 { 2276 struct perf_event *leader = event->group_leader; 2277 struct perf_event_context *task_ctx; 2278 2279 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2280 event->state <= PERF_EVENT_STATE_ERROR) 2281 return; 2282 2283 if (ctx->is_active) 2284 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2285 2286 __perf_event_mark_enabled(event); 2287 2288 if (!ctx->is_active) 2289 return; 2290 2291 if (!event_filter_match(event)) { 2292 if (is_cgroup_event(event)) 2293 perf_cgroup_defer_enabled(event); 2294 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2295 return; 2296 } 2297 2298 /* 2299 * If the event is in a group and isn't the group leader, 2300 * then don't put it on unless the group is on. 2301 */ 2302 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2304 return; 2305 } 2306 2307 task_ctx = cpuctx->task_ctx; 2308 if (ctx->task) 2309 WARN_ON_ONCE(task_ctx != ctx); 2310 2311 ctx_resched(cpuctx, task_ctx); 2312 } 2313 2314 /* 2315 * Enable a event. 2316 * 2317 * If event->ctx is a cloned context, callers must make sure that 2318 * every task struct that event->ctx->task could possibly point to 2319 * remains valid. This condition is satisfied when called through 2320 * perf_event_for_each_child or perf_event_for_each as described 2321 * for perf_event_disable. 2322 */ 2323 static void _perf_event_enable(struct perf_event *event) 2324 { 2325 struct perf_event_context *ctx = event->ctx; 2326 2327 raw_spin_lock_irq(&ctx->lock); 2328 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2329 event->state < PERF_EVENT_STATE_ERROR) { 2330 raw_spin_unlock_irq(&ctx->lock); 2331 return; 2332 } 2333 2334 /* 2335 * If the event is in error state, clear that first. 2336 * 2337 * That way, if we see the event in error state below, we know that it 2338 * has gone back into error state, as distinct from the task having 2339 * been scheduled away before the cross-call arrived. 2340 */ 2341 if (event->state == PERF_EVENT_STATE_ERROR) 2342 event->state = PERF_EVENT_STATE_OFF; 2343 raw_spin_unlock_irq(&ctx->lock); 2344 2345 event_function_call(event, __perf_event_enable, NULL); 2346 } 2347 2348 /* 2349 * See perf_event_disable(); 2350 */ 2351 void perf_event_enable(struct perf_event *event) 2352 { 2353 struct perf_event_context *ctx; 2354 2355 ctx = perf_event_ctx_lock(event); 2356 _perf_event_enable(event); 2357 perf_event_ctx_unlock(event, ctx); 2358 } 2359 EXPORT_SYMBOL_GPL(perf_event_enable); 2360 2361 static int _perf_event_refresh(struct perf_event *event, int refresh) 2362 { 2363 /* 2364 * not supported on inherited events 2365 */ 2366 if (event->attr.inherit || !is_sampling_event(event)) 2367 return -EINVAL; 2368 2369 atomic_add(refresh, &event->event_limit); 2370 _perf_event_enable(event); 2371 2372 return 0; 2373 } 2374 2375 /* 2376 * See perf_event_disable() 2377 */ 2378 int perf_event_refresh(struct perf_event *event, int refresh) 2379 { 2380 struct perf_event_context *ctx; 2381 int ret; 2382 2383 ctx = perf_event_ctx_lock(event); 2384 ret = _perf_event_refresh(event, refresh); 2385 perf_event_ctx_unlock(event, ctx); 2386 2387 return ret; 2388 } 2389 EXPORT_SYMBOL_GPL(perf_event_refresh); 2390 2391 static void ctx_sched_out(struct perf_event_context *ctx, 2392 struct perf_cpu_context *cpuctx, 2393 enum event_type_t event_type) 2394 { 2395 int is_active = ctx->is_active; 2396 struct perf_event *event; 2397 2398 lockdep_assert_held(&ctx->lock); 2399 2400 if (likely(!ctx->nr_events)) { 2401 /* 2402 * See __perf_remove_from_context(). 2403 */ 2404 WARN_ON_ONCE(ctx->is_active); 2405 if (ctx->task) 2406 WARN_ON_ONCE(cpuctx->task_ctx); 2407 return; 2408 } 2409 2410 ctx->is_active &= ~event_type; 2411 if (!(ctx->is_active & EVENT_ALL)) 2412 ctx->is_active = 0; 2413 2414 if (ctx->task) { 2415 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2416 if (!ctx->is_active) 2417 cpuctx->task_ctx = NULL; 2418 } 2419 2420 is_active ^= ctx->is_active; /* changed bits */ 2421 2422 if (is_active & EVENT_TIME) { 2423 /* update (and stop) ctx time */ 2424 update_context_time(ctx); 2425 update_cgrp_time_from_cpuctx(cpuctx); 2426 } 2427 2428 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2429 return; 2430 2431 perf_pmu_disable(ctx->pmu); 2432 if (is_active & EVENT_PINNED) { 2433 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2434 group_sched_out(event, cpuctx, ctx); 2435 } 2436 2437 if (is_active & EVENT_FLEXIBLE) { 2438 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2439 group_sched_out(event, cpuctx, ctx); 2440 } 2441 perf_pmu_enable(ctx->pmu); 2442 } 2443 2444 /* 2445 * Test whether two contexts are equivalent, i.e. whether they have both been 2446 * cloned from the same version of the same context. 2447 * 2448 * Equivalence is measured using a generation number in the context that is 2449 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2450 * and list_del_event(). 2451 */ 2452 static int context_equiv(struct perf_event_context *ctx1, 2453 struct perf_event_context *ctx2) 2454 { 2455 lockdep_assert_held(&ctx1->lock); 2456 lockdep_assert_held(&ctx2->lock); 2457 2458 /* Pinning disables the swap optimization */ 2459 if (ctx1->pin_count || ctx2->pin_count) 2460 return 0; 2461 2462 /* If ctx1 is the parent of ctx2 */ 2463 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2464 return 1; 2465 2466 /* If ctx2 is the parent of ctx1 */ 2467 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2468 return 1; 2469 2470 /* 2471 * If ctx1 and ctx2 have the same parent; we flatten the parent 2472 * hierarchy, see perf_event_init_context(). 2473 */ 2474 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2475 ctx1->parent_gen == ctx2->parent_gen) 2476 return 1; 2477 2478 /* Unmatched */ 2479 return 0; 2480 } 2481 2482 static void __perf_event_sync_stat(struct perf_event *event, 2483 struct perf_event *next_event) 2484 { 2485 u64 value; 2486 2487 if (!event->attr.inherit_stat) 2488 return; 2489 2490 /* 2491 * Update the event value, we cannot use perf_event_read() 2492 * because we're in the middle of a context switch and have IRQs 2493 * disabled, which upsets smp_call_function_single(), however 2494 * we know the event must be on the current CPU, therefore we 2495 * don't need to use it. 2496 */ 2497 switch (event->state) { 2498 case PERF_EVENT_STATE_ACTIVE: 2499 event->pmu->read(event); 2500 /* fall-through */ 2501 2502 case PERF_EVENT_STATE_INACTIVE: 2503 update_event_times(event); 2504 break; 2505 2506 default: 2507 break; 2508 } 2509 2510 /* 2511 * In order to keep per-task stats reliable we need to flip the event 2512 * values when we flip the contexts. 2513 */ 2514 value = local64_read(&next_event->count); 2515 value = local64_xchg(&event->count, value); 2516 local64_set(&next_event->count, value); 2517 2518 swap(event->total_time_enabled, next_event->total_time_enabled); 2519 swap(event->total_time_running, next_event->total_time_running); 2520 2521 /* 2522 * Since we swizzled the values, update the user visible data too. 2523 */ 2524 perf_event_update_userpage(event); 2525 perf_event_update_userpage(next_event); 2526 } 2527 2528 static void perf_event_sync_stat(struct perf_event_context *ctx, 2529 struct perf_event_context *next_ctx) 2530 { 2531 struct perf_event *event, *next_event; 2532 2533 if (!ctx->nr_stat) 2534 return; 2535 2536 update_context_time(ctx); 2537 2538 event = list_first_entry(&ctx->event_list, 2539 struct perf_event, event_entry); 2540 2541 next_event = list_first_entry(&next_ctx->event_list, 2542 struct perf_event, event_entry); 2543 2544 while (&event->event_entry != &ctx->event_list && 2545 &next_event->event_entry != &next_ctx->event_list) { 2546 2547 __perf_event_sync_stat(event, next_event); 2548 2549 event = list_next_entry(event, event_entry); 2550 next_event = list_next_entry(next_event, event_entry); 2551 } 2552 } 2553 2554 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2555 struct task_struct *next) 2556 { 2557 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2558 struct perf_event_context *next_ctx; 2559 struct perf_event_context *parent, *next_parent; 2560 struct perf_cpu_context *cpuctx; 2561 int do_switch = 1; 2562 2563 if (likely(!ctx)) 2564 return; 2565 2566 cpuctx = __get_cpu_context(ctx); 2567 if (!cpuctx->task_ctx) 2568 return; 2569 2570 rcu_read_lock(); 2571 next_ctx = next->perf_event_ctxp[ctxn]; 2572 if (!next_ctx) 2573 goto unlock; 2574 2575 parent = rcu_dereference(ctx->parent_ctx); 2576 next_parent = rcu_dereference(next_ctx->parent_ctx); 2577 2578 /* If neither context have a parent context; they cannot be clones. */ 2579 if (!parent && !next_parent) 2580 goto unlock; 2581 2582 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2583 /* 2584 * Looks like the two contexts are clones, so we might be 2585 * able to optimize the context switch. We lock both 2586 * contexts and check that they are clones under the 2587 * lock (including re-checking that neither has been 2588 * uncloned in the meantime). It doesn't matter which 2589 * order we take the locks because no other cpu could 2590 * be trying to lock both of these tasks. 2591 */ 2592 raw_spin_lock(&ctx->lock); 2593 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2594 if (context_equiv(ctx, next_ctx)) { 2595 WRITE_ONCE(ctx->task, next); 2596 WRITE_ONCE(next_ctx->task, task); 2597 2598 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2599 2600 /* 2601 * RCU_INIT_POINTER here is safe because we've not 2602 * modified the ctx and the above modification of 2603 * ctx->task and ctx->task_ctx_data are immaterial 2604 * since those values are always verified under 2605 * ctx->lock which we're now holding. 2606 */ 2607 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2608 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2609 2610 do_switch = 0; 2611 2612 perf_event_sync_stat(ctx, next_ctx); 2613 } 2614 raw_spin_unlock(&next_ctx->lock); 2615 raw_spin_unlock(&ctx->lock); 2616 } 2617 unlock: 2618 rcu_read_unlock(); 2619 2620 if (do_switch) { 2621 raw_spin_lock(&ctx->lock); 2622 task_ctx_sched_out(cpuctx, ctx); 2623 raw_spin_unlock(&ctx->lock); 2624 } 2625 } 2626 2627 void perf_sched_cb_dec(struct pmu *pmu) 2628 { 2629 this_cpu_dec(perf_sched_cb_usages); 2630 } 2631 2632 void perf_sched_cb_inc(struct pmu *pmu) 2633 { 2634 this_cpu_inc(perf_sched_cb_usages); 2635 } 2636 2637 /* 2638 * This function provides the context switch callback to the lower code 2639 * layer. It is invoked ONLY when the context switch callback is enabled. 2640 */ 2641 static void perf_pmu_sched_task(struct task_struct *prev, 2642 struct task_struct *next, 2643 bool sched_in) 2644 { 2645 struct perf_cpu_context *cpuctx; 2646 struct pmu *pmu; 2647 unsigned long flags; 2648 2649 if (prev == next) 2650 return; 2651 2652 local_irq_save(flags); 2653 2654 rcu_read_lock(); 2655 2656 list_for_each_entry_rcu(pmu, &pmus, entry) { 2657 if (pmu->sched_task) { 2658 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2659 2660 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2661 2662 perf_pmu_disable(pmu); 2663 2664 pmu->sched_task(cpuctx->task_ctx, sched_in); 2665 2666 perf_pmu_enable(pmu); 2667 2668 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2669 } 2670 } 2671 2672 rcu_read_unlock(); 2673 2674 local_irq_restore(flags); 2675 } 2676 2677 static void perf_event_switch(struct task_struct *task, 2678 struct task_struct *next_prev, bool sched_in); 2679 2680 #define for_each_task_context_nr(ctxn) \ 2681 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2682 2683 /* 2684 * Called from scheduler to remove the events of the current task, 2685 * with interrupts disabled. 2686 * 2687 * We stop each event and update the event value in event->count. 2688 * 2689 * This does not protect us against NMI, but disable() 2690 * sets the disabled bit in the control field of event _before_ 2691 * accessing the event control register. If a NMI hits, then it will 2692 * not restart the event. 2693 */ 2694 void __perf_event_task_sched_out(struct task_struct *task, 2695 struct task_struct *next) 2696 { 2697 int ctxn; 2698 2699 if (__this_cpu_read(perf_sched_cb_usages)) 2700 perf_pmu_sched_task(task, next, false); 2701 2702 if (atomic_read(&nr_switch_events)) 2703 perf_event_switch(task, next, false); 2704 2705 for_each_task_context_nr(ctxn) 2706 perf_event_context_sched_out(task, ctxn, next); 2707 2708 /* 2709 * if cgroup events exist on this CPU, then we need 2710 * to check if we have to switch out PMU state. 2711 * cgroup event are system-wide mode only 2712 */ 2713 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2714 perf_cgroup_sched_out(task, next); 2715 } 2716 2717 /* 2718 * Called with IRQs disabled 2719 */ 2720 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2721 enum event_type_t event_type) 2722 { 2723 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2724 } 2725 2726 static void 2727 ctx_pinned_sched_in(struct perf_event_context *ctx, 2728 struct perf_cpu_context *cpuctx) 2729 { 2730 struct perf_event *event; 2731 2732 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2733 if (event->state <= PERF_EVENT_STATE_OFF) 2734 continue; 2735 if (!event_filter_match(event)) 2736 continue; 2737 2738 /* may need to reset tstamp_enabled */ 2739 if (is_cgroup_event(event)) 2740 perf_cgroup_mark_enabled(event, ctx); 2741 2742 if (group_can_go_on(event, cpuctx, 1)) 2743 group_sched_in(event, cpuctx, ctx); 2744 2745 /* 2746 * If this pinned group hasn't been scheduled, 2747 * put it in error state. 2748 */ 2749 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2750 update_group_times(event); 2751 event->state = PERF_EVENT_STATE_ERROR; 2752 } 2753 } 2754 } 2755 2756 static void 2757 ctx_flexible_sched_in(struct perf_event_context *ctx, 2758 struct perf_cpu_context *cpuctx) 2759 { 2760 struct perf_event *event; 2761 int can_add_hw = 1; 2762 2763 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2764 /* Ignore events in OFF or ERROR state */ 2765 if (event->state <= PERF_EVENT_STATE_OFF) 2766 continue; 2767 /* 2768 * Listen to the 'cpu' scheduling filter constraint 2769 * of events: 2770 */ 2771 if (!event_filter_match(event)) 2772 continue; 2773 2774 /* may need to reset tstamp_enabled */ 2775 if (is_cgroup_event(event)) 2776 perf_cgroup_mark_enabled(event, ctx); 2777 2778 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2779 if (group_sched_in(event, cpuctx, ctx)) 2780 can_add_hw = 0; 2781 } 2782 } 2783 } 2784 2785 static void 2786 ctx_sched_in(struct perf_event_context *ctx, 2787 struct perf_cpu_context *cpuctx, 2788 enum event_type_t event_type, 2789 struct task_struct *task) 2790 { 2791 int is_active = ctx->is_active; 2792 u64 now; 2793 2794 lockdep_assert_held(&ctx->lock); 2795 2796 if (likely(!ctx->nr_events)) 2797 return; 2798 2799 ctx->is_active |= (event_type | EVENT_TIME); 2800 if (ctx->task) { 2801 if (!is_active) 2802 cpuctx->task_ctx = ctx; 2803 else 2804 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2805 } 2806 2807 is_active ^= ctx->is_active; /* changed bits */ 2808 2809 if (is_active & EVENT_TIME) { 2810 /* start ctx time */ 2811 now = perf_clock(); 2812 ctx->timestamp = now; 2813 perf_cgroup_set_timestamp(task, ctx); 2814 } 2815 2816 /* 2817 * First go through the list and put on any pinned groups 2818 * in order to give them the best chance of going on. 2819 */ 2820 if (is_active & EVENT_PINNED) 2821 ctx_pinned_sched_in(ctx, cpuctx); 2822 2823 /* Then walk through the lower prio flexible groups */ 2824 if (is_active & EVENT_FLEXIBLE) 2825 ctx_flexible_sched_in(ctx, cpuctx); 2826 } 2827 2828 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2829 enum event_type_t event_type, 2830 struct task_struct *task) 2831 { 2832 struct perf_event_context *ctx = &cpuctx->ctx; 2833 2834 ctx_sched_in(ctx, cpuctx, event_type, task); 2835 } 2836 2837 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2838 struct task_struct *task) 2839 { 2840 struct perf_cpu_context *cpuctx; 2841 2842 cpuctx = __get_cpu_context(ctx); 2843 if (cpuctx->task_ctx == ctx) 2844 return; 2845 2846 perf_ctx_lock(cpuctx, ctx); 2847 perf_pmu_disable(ctx->pmu); 2848 /* 2849 * We want to keep the following priority order: 2850 * cpu pinned (that don't need to move), task pinned, 2851 * cpu flexible, task flexible. 2852 */ 2853 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2854 perf_event_sched_in(cpuctx, ctx, task); 2855 perf_pmu_enable(ctx->pmu); 2856 perf_ctx_unlock(cpuctx, ctx); 2857 } 2858 2859 /* 2860 * Called from scheduler to add the events of the current task 2861 * with interrupts disabled. 2862 * 2863 * We restore the event value and then enable it. 2864 * 2865 * This does not protect us against NMI, but enable() 2866 * sets the enabled bit in the control field of event _before_ 2867 * accessing the event control register. If a NMI hits, then it will 2868 * keep the event running. 2869 */ 2870 void __perf_event_task_sched_in(struct task_struct *prev, 2871 struct task_struct *task) 2872 { 2873 struct perf_event_context *ctx; 2874 int ctxn; 2875 2876 /* 2877 * If cgroup events exist on this CPU, then we need to check if we have 2878 * to switch in PMU state; cgroup event are system-wide mode only. 2879 * 2880 * Since cgroup events are CPU events, we must schedule these in before 2881 * we schedule in the task events. 2882 */ 2883 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2884 perf_cgroup_sched_in(prev, task); 2885 2886 for_each_task_context_nr(ctxn) { 2887 ctx = task->perf_event_ctxp[ctxn]; 2888 if (likely(!ctx)) 2889 continue; 2890 2891 perf_event_context_sched_in(ctx, task); 2892 } 2893 2894 if (atomic_read(&nr_switch_events)) 2895 perf_event_switch(task, prev, true); 2896 2897 if (__this_cpu_read(perf_sched_cb_usages)) 2898 perf_pmu_sched_task(prev, task, true); 2899 } 2900 2901 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2902 { 2903 u64 frequency = event->attr.sample_freq; 2904 u64 sec = NSEC_PER_SEC; 2905 u64 divisor, dividend; 2906 2907 int count_fls, nsec_fls, frequency_fls, sec_fls; 2908 2909 count_fls = fls64(count); 2910 nsec_fls = fls64(nsec); 2911 frequency_fls = fls64(frequency); 2912 sec_fls = 30; 2913 2914 /* 2915 * We got @count in @nsec, with a target of sample_freq HZ 2916 * the target period becomes: 2917 * 2918 * @count * 10^9 2919 * period = ------------------- 2920 * @nsec * sample_freq 2921 * 2922 */ 2923 2924 /* 2925 * Reduce accuracy by one bit such that @a and @b converge 2926 * to a similar magnitude. 2927 */ 2928 #define REDUCE_FLS(a, b) \ 2929 do { \ 2930 if (a##_fls > b##_fls) { \ 2931 a >>= 1; \ 2932 a##_fls--; \ 2933 } else { \ 2934 b >>= 1; \ 2935 b##_fls--; \ 2936 } \ 2937 } while (0) 2938 2939 /* 2940 * Reduce accuracy until either term fits in a u64, then proceed with 2941 * the other, so that finally we can do a u64/u64 division. 2942 */ 2943 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2944 REDUCE_FLS(nsec, frequency); 2945 REDUCE_FLS(sec, count); 2946 } 2947 2948 if (count_fls + sec_fls > 64) { 2949 divisor = nsec * frequency; 2950 2951 while (count_fls + sec_fls > 64) { 2952 REDUCE_FLS(count, sec); 2953 divisor >>= 1; 2954 } 2955 2956 dividend = count * sec; 2957 } else { 2958 dividend = count * sec; 2959 2960 while (nsec_fls + frequency_fls > 64) { 2961 REDUCE_FLS(nsec, frequency); 2962 dividend >>= 1; 2963 } 2964 2965 divisor = nsec * frequency; 2966 } 2967 2968 if (!divisor) 2969 return dividend; 2970 2971 return div64_u64(dividend, divisor); 2972 } 2973 2974 static DEFINE_PER_CPU(int, perf_throttled_count); 2975 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2976 2977 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2978 { 2979 struct hw_perf_event *hwc = &event->hw; 2980 s64 period, sample_period; 2981 s64 delta; 2982 2983 period = perf_calculate_period(event, nsec, count); 2984 2985 delta = (s64)(period - hwc->sample_period); 2986 delta = (delta + 7) / 8; /* low pass filter */ 2987 2988 sample_period = hwc->sample_period + delta; 2989 2990 if (!sample_period) 2991 sample_period = 1; 2992 2993 hwc->sample_period = sample_period; 2994 2995 if (local64_read(&hwc->period_left) > 8*sample_period) { 2996 if (disable) 2997 event->pmu->stop(event, PERF_EF_UPDATE); 2998 2999 local64_set(&hwc->period_left, 0); 3000 3001 if (disable) 3002 event->pmu->start(event, PERF_EF_RELOAD); 3003 } 3004 } 3005 3006 /* 3007 * combine freq adjustment with unthrottling to avoid two passes over the 3008 * events. At the same time, make sure, having freq events does not change 3009 * the rate of unthrottling as that would introduce bias. 3010 */ 3011 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3012 int needs_unthr) 3013 { 3014 struct perf_event *event; 3015 struct hw_perf_event *hwc; 3016 u64 now, period = TICK_NSEC; 3017 s64 delta; 3018 3019 /* 3020 * only need to iterate over all events iff: 3021 * - context have events in frequency mode (needs freq adjust) 3022 * - there are events to unthrottle on this cpu 3023 */ 3024 if (!(ctx->nr_freq || needs_unthr)) 3025 return; 3026 3027 raw_spin_lock(&ctx->lock); 3028 perf_pmu_disable(ctx->pmu); 3029 3030 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3031 if (event->state != PERF_EVENT_STATE_ACTIVE) 3032 continue; 3033 3034 if (!event_filter_match(event)) 3035 continue; 3036 3037 perf_pmu_disable(event->pmu); 3038 3039 hwc = &event->hw; 3040 3041 if (hwc->interrupts == MAX_INTERRUPTS) { 3042 hwc->interrupts = 0; 3043 perf_log_throttle(event, 1); 3044 event->pmu->start(event, 0); 3045 } 3046 3047 if (!event->attr.freq || !event->attr.sample_freq) 3048 goto next; 3049 3050 /* 3051 * stop the event and update event->count 3052 */ 3053 event->pmu->stop(event, PERF_EF_UPDATE); 3054 3055 now = local64_read(&event->count); 3056 delta = now - hwc->freq_count_stamp; 3057 hwc->freq_count_stamp = now; 3058 3059 /* 3060 * restart the event 3061 * reload only if value has changed 3062 * we have stopped the event so tell that 3063 * to perf_adjust_period() to avoid stopping it 3064 * twice. 3065 */ 3066 if (delta > 0) 3067 perf_adjust_period(event, period, delta, false); 3068 3069 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3070 next: 3071 perf_pmu_enable(event->pmu); 3072 } 3073 3074 perf_pmu_enable(ctx->pmu); 3075 raw_spin_unlock(&ctx->lock); 3076 } 3077 3078 /* 3079 * Round-robin a context's events: 3080 */ 3081 static void rotate_ctx(struct perf_event_context *ctx) 3082 { 3083 /* 3084 * Rotate the first entry last of non-pinned groups. Rotation might be 3085 * disabled by the inheritance code. 3086 */ 3087 if (!ctx->rotate_disable) 3088 list_rotate_left(&ctx->flexible_groups); 3089 } 3090 3091 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3092 { 3093 struct perf_event_context *ctx = NULL; 3094 int rotate = 0; 3095 3096 if (cpuctx->ctx.nr_events) { 3097 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3098 rotate = 1; 3099 } 3100 3101 ctx = cpuctx->task_ctx; 3102 if (ctx && ctx->nr_events) { 3103 if (ctx->nr_events != ctx->nr_active) 3104 rotate = 1; 3105 } 3106 3107 if (!rotate) 3108 goto done; 3109 3110 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3111 perf_pmu_disable(cpuctx->ctx.pmu); 3112 3113 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3114 if (ctx) 3115 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3116 3117 rotate_ctx(&cpuctx->ctx); 3118 if (ctx) 3119 rotate_ctx(ctx); 3120 3121 perf_event_sched_in(cpuctx, ctx, current); 3122 3123 perf_pmu_enable(cpuctx->ctx.pmu); 3124 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3125 done: 3126 3127 return rotate; 3128 } 3129 3130 void perf_event_task_tick(void) 3131 { 3132 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3133 struct perf_event_context *ctx, *tmp; 3134 int throttled; 3135 3136 WARN_ON(!irqs_disabled()); 3137 3138 __this_cpu_inc(perf_throttled_seq); 3139 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3140 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3141 3142 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3143 perf_adjust_freq_unthr_context(ctx, throttled); 3144 } 3145 3146 static int event_enable_on_exec(struct perf_event *event, 3147 struct perf_event_context *ctx) 3148 { 3149 if (!event->attr.enable_on_exec) 3150 return 0; 3151 3152 event->attr.enable_on_exec = 0; 3153 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3154 return 0; 3155 3156 __perf_event_mark_enabled(event); 3157 3158 return 1; 3159 } 3160 3161 /* 3162 * Enable all of a task's events that have been marked enable-on-exec. 3163 * This expects task == current. 3164 */ 3165 static void perf_event_enable_on_exec(int ctxn) 3166 { 3167 struct perf_event_context *ctx, *clone_ctx = NULL; 3168 struct perf_cpu_context *cpuctx; 3169 struct perf_event *event; 3170 unsigned long flags; 3171 int enabled = 0; 3172 3173 local_irq_save(flags); 3174 ctx = current->perf_event_ctxp[ctxn]; 3175 if (!ctx || !ctx->nr_events) 3176 goto out; 3177 3178 cpuctx = __get_cpu_context(ctx); 3179 perf_ctx_lock(cpuctx, ctx); 3180 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3181 list_for_each_entry(event, &ctx->event_list, event_entry) 3182 enabled |= event_enable_on_exec(event, ctx); 3183 3184 /* 3185 * Unclone and reschedule this context if we enabled any event. 3186 */ 3187 if (enabled) { 3188 clone_ctx = unclone_ctx(ctx); 3189 ctx_resched(cpuctx, ctx); 3190 } 3191 perf_ctx_unlock(cpuctx, ctx); 3192 3193 out: 3194 local_irq_restore(flags); 3195 3196 if (clone_ctx) 3197 put_ctx(clone_ctx); 3198 } 3199 3200 void perf_event_exec(void) 3201 { 3202 int ctxn; 3203 3204 rcu_read_lock(); 3205 for_each_task_context_nr(ctxn) 3206 perf_event_enable_on_exec(ctxn); 3207 rcu_read_unlock(); 3208 } 3209 3210 struct perf_read_data { 3211 struct perf_event *event; 3212 bool group; 3213 int ret; 3214 }; 3215 3216 /* 3217 * Cross CPU call to read the hardware event 3218 */ 3219 static void __perf_event_read(void *info) 3220 { 3221 struct perf_read_data *data = info; 3222 struct perf_event *sub, *event = data->event; 3223 struct perf_event_context *ctx = event->ctx; 3224 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3225 struct pmu *pmu = event->pmu; 3226 3227 /* 3228 * If this is a task context, we need to check whether it is 3229 * the current task context of this cpu. If not it has been 3230 * scheduled out before the smp call arrived. In that case 3231 * event->count would have been updated to a recent sample 3232 * when the event was scheduled out. 3233 */ 3234 if (ctx->task && cpuctx->task_ctx != ctx) 3235 return; 3236 3237 raw_spin_lock(&ctx->lock); 3238 if (ctx->is_active) { 3239 update_context_time(ctx); 3240 update_cgrp_time_from_event(event); 3241 } 3242 3243 update_event_times(event); 3244 if (event->state != PERF_EVENT_STATE_ACTIVE) 3245 goto unlock; 3246 3247 if (!data->group) { 3248 pmu->read(event); 3249 data->ret = 0; 3250 goto unlock; 3251 } 3252 3253 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3254 3255 pmu->read(event); 3256 3257 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3258 update_event_times(sub); 3259 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3260 /* 3261 * Use sibling's PMU rather than @event's since 3262 * sibling could be on different (eg: software) PMU. 3263 */ 3264 sub->pmu->read(sub); 3265 } 3266 } 3267 3268 data->ret = pmu->commit_txn(pmu); 3269 3270 unlock: 3271 raw_spin_unlock(&ctx->lock); 3272 } 3273 3274 static inline u64 perf_event_count(struct perf_event *event) 3275 { 3276 if (event->pmu->count) 3277 return event->pmu->count(event); 3278 3279 return __perf_event_count(event); 3280 } 3281 3282 /* 3283 * NMI-safe method to read a local event, that is an event that 3284 * is: 3285 * - either for the current task, or for this CPU 3286 * - does not have inherit set, for inherited task events 3287 * will not be local and we cannot read them atomically 3288 * - must not have a pmu::count method 3289 */ 3290 u64 perf_event_read_local(struct perf_event *event) 3291 { 3292 unsigned long flags; 3293 u64 val; 3294 3295 /* 3296 * Disabling interrupts avoids all counter scheduling (context 3297 * switches, timer based rotation and IPIs). 3298 */ 3299 local_irq_save(flags); 3300 3301 /* If this is a per-task event, it must be for current */ 3302 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3303 event->hw.target != current); 3304 3305 /* If this is a per-CPU event, it must be for this CPU */ 3306 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3307 event->cpu != smp_processor_id()); 3308 3309 /* 3310 * It must not be an event with inherit set, we cannot read 3311 * all child counters from atomic context. 3312 */ 3313 WARN_ON_ONCE(event->attr.inherit); 3314 3315 /* 3316 * It must not have a pmu::count method, those are not 3317 * NMI safe. 3318 */ 3319 WARN_ON_ONCE(event->pmu->count); 3320 3321 /* 3322 * If the event is currently on this CPU, its either a per-task event, 3323 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3324 * oncpu == -1). 3325 */ 3326 if (event->oncpu == smp_processor_id()) 3327 event->pmu->read(event); 3328 3329 val = local64_read(&event->count); 3330 local_irq_restore(flags); 3331 3332 return val; 3333 } 3334 3335 static int perf_event_read(struct perf_event *event, bool group) 3336 { 3337 int ret = 0; 3338 3339 /* 3340 * If event is enabled and currently active on a CPU, update the 3341 * value in the event structure: 3342 */ 3343 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3344 struct perf_read_data data = { 3345 .event = event, 3346 .group = group, 3347 .ret = 0, 3348 }; 3349 smp_call_function_single(event->oncpu, 3350 __perf_event_read, &data, 1); 3351 ret = data.ret; 3352 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3353 struct perf_event_context *ctx = event->ctx; 3354 unsigned long flags; 3355 3356 raw_spin_lock_irqsave(&ctx->lock, flags); 3357 /* 3358 * may read while context is not active 3359 * (e.g., thread is blocked), in that case 3360 * we cannot update context time 3361 */ 3362 if (ctx->is_active) { 3363 update_context_time(ctx); 3364 update_cgrp_time_from_event(event); 3365 } 3366 if (group) 3367 update_group_times(event); 3368 else 3369 update_event_times(event); 3370 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3371 } 3372 3373 return ret; 3374 } 3375 3376 /* 3377 * Initialize the perf_event context in a task_struct: 3378 */ 3379 static void __perf_event_init_context(struct perf_event_context *ctx) 3380 { 3381 raw_spin_lock_init(&ctx->lock); 3382 mutex_init(&ctx->mutex); 3383 INIT_LIST_HEAD(&ctx->active_ctx_list); 3384 INIT_LIST_HEAD(&ctx->pinned_groups); 3385 INIT_LIST_HEAD(&ctx->flexible_groups); 3386 INIT_LIST_HEAD(&ctx->event_list); 3387 atomic_set(&ctx->refcount, 1); 3388 } 3389 3390 static struct perf_event_context * 3391 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3392 { 3393 struct perf_event_context *ctx; 3394 3395 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3396 if (!ctx) 3397 return NULL; 3398 3399 __perf_event_init_context(ctx); 3400 if (task) { 3401 ctx->task = task; 3402 get_task_struct(task); 3403 } 3404 ctx->pmu = pmu; 3405 3406 return ctx; 3407 } 3408 3409 static struct task_struct * 3410 find_lively_task_by_vpid(pid_t vpid) 3411 { 3412 struct task_struct *task; 3413 int err; 3414 3415 rcu_read_lock(); 3416 if (!vpid) 3417 task = current; 3418 else 3419 task = find_task_by_vpid(vpid); 3420 if (task) 3421 get_task_struct(task); 3422 rcu_read_unlock(); 3423 3424 if (!task) 3425 return ERR_PTR(-ESRCH); 3426 3427 /* Reuse ptrace permission checks for now. */ 3428 err = -EACCES; 3429 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 3430 goto errout; 3431 3432 return task; 3433 errout: 3434 put_task_struct(task); 3435 return ERR_PTR(err); 3436 3437 } 3438 3439 /* 3440 * Returns a matching context with refcount and pincount. 3441 */ 3442 static struct perf_event_context * 3443 find_get_context(struct pmu *pmu, struct task_struct *task, 3444 struct perf_event *event) 3445 { 3446 struct perf_event_context *ctx, *clone_ctx = NULL; 3447 struct perf_cpu_context *cpuctx; 3448 void *task_ctx_data = NULL; 3449 unsigned long flags; 3450 int ctxn, err; 3451 int cpu = event->cpu; 3452 3453 if (!task) { 3454 /* Must be root to operate on a CPU event: */ 3455 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3456 return ERR_PTR(-EACCES); 3457 3458 /* 3459 * We could be clever and allow to attach a event to an 3460 * offline CPU and activate it when the CPU comes up, but 3461 * that's for later. 3462 */ 3463 if (!cpu_online(cpu)) 3464 return ERR_PTR(-ENODEV); 3465 3466 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3467 ctx = &cpuctx->ctx; 3468 get_ctx(ctx); 3469 ++ctx->pin_count; 3470 3471 return ctx; 3472 } 3473 3474 err = -EINVAL; 3475 ctxn = pmu->task_ctx_nr; 3476 if (ctxn < 0) 3477 goto errout; 3478 3479 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3480 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3481 if (!task_ctx_data) { 3482 err = -ENOMEM; 3483 goto errout; 3484 } 3485 } 3486 3487 retry: 3488 ctx = perf_lock_task_context(task, ctxn, &flags); 3489 if (ctx) { 3490 clone_ctx = unclone_ctx(ctx); 3491 ++ctx->pin_count; 3492 3493 if (task_ctx_data && !ctx->task_ctx_data) { 3494 ctx->task_ctx_data = task_ctx_data; 3495 task_ctx_data = NULL; 3496 } 3497 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3498 3499 if (clone_ctx) 3500 put_ctx(clone_ctx); 3501 } else { 3502 ctx = alloc_perf_context(pmu, task); 3503 err = -ENOMEM; 3504 if (!ctx) 3505 goto errout; 3506 3507 if (task_ctx_data) { 3508 ctx->task_ctx_data = task_ctx_data; 3509 task_ctx_data = NULL; 3510 } 3511 3512 err = 0; 3513 mutex_lock(&task->perf_event_mutex); 3514 /* 3515 * If it has already passed perf_event_exit_task(). 3516 * we must see PF_EXITING, it takes this mutex too. 3517 */ 3518 if (task->flags & PF_EXITING) 3519 err = -ESRCH; 3520 else if (task->perf_event_ctxp[ctxn]) 3521 err = -EAGAIN; 3522 else { 3523 get_ctx(ctx); 3524 ++ctx->pin_count; 3525 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3526 } 3527 mutex_unlock(&task->perf_event_mutex); 3528 3529 if (unlikely(err)) { 3530 put_ctx(ctx); 3531 3532 if (err == -EAGAIN) 3533 goto retry; 3534 goto errout; 3535 } 3536 } 3537 3538 kfree(task_ctx_data); 3539 return ctx; 3540 3541 errout: 3542 kfree(task_ctx_data); 3543 return ERR_PTR(err); 3544 } 3545 3546 static void perf_event_free_filter(struct perf_event *event); 3547 static void perf_event_free_bpf_prog(struct perf_event *event); 3548 3549 static void free_event_rcu(struct rcu_head *head) 3550 { 3551 struct perf_event *event; 3552 3553 event = container_of(head, struct perf_event, rcu_head); 3554 if (event->ns) 3555 put_pid_ns(event->ns); 3556 perf_event_free_filter(event); 3557 kfree(event); 3558 } 3559 3560 static void ring_buffer_attach(struct perf_event *event, 3561 struct ring_buffer *rb); 3562 3563 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3564 { 3565 if (event->parent) 3566 return; 3567 3568 if (is_cgroup_event(event)) 3569 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3570 } 3571 3572 #ifdef CONFIG_NO_HZ_FULL 3573 static DEFINE_SPINLOCK(nr_freq_lock); 3574 #endif 3575 3576 static void unaccount_freq_event_nohz(void) 3577 { 3578 #ifdef CONFIG_NO_HZ_FULL 3579 spin_lock(&nr_freq_lock); 3580 if (atomic_dec_and_test(&nr_freq_events)) 3581 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3582 spin_unlock(&nr_freq_lock); 3583 #endif 3584 } 3585 3586 static void unaccount_freq_event(void) 3587 { 3588 if (tick_nohz_full_enabled()) 3589 unaccount_freq_event_nohz(); 3590 else 3591 atomic_dec(&nr_freq_events); 3592 } 3593 3594 static void unaccount_event(struct perf_event *event) 3595 { 3596 bool dec = false; 3597 3598 if (event->parent) 3599 return; 3600 3601 if (event->attach_state & PERF_ATTACH_TASK) 3602 dec = true; 3603 if (event->attr.mmap || event->attr.mmap_data) 3604 atomic_dec(&nr_mmap_events); 3605 if (event->attr.comm) 3606 atomic_dec(&nr_comm_events); 3607 if (event->attr.task) 3608 atomic_dec(&nr_task_events); 3609 if (event->attr.freq) 3610 unaccount_freq_event(); 3611 if (event->attr.context_switch) { 3612 dec = true; 3613 atomic_dec(&nr_switch_events); 3614 } 3615 if (is_cgroup_event(event)) 3616 dec = true; 3617 if (has_branch_stack(event)) 3618 dec = true; 3619 3620 if (dec) { 3621 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3622 schedule_delayed_work(&perf_sched_work, HZ); 3623 } 3624 3625 unaccount_event_cpu(event, event->cpu); 3626 } 3627 3628 static void perf_sched_delayed(struct work_struct *work) 3629 { 3630 mutex_lock(&perf_sched_mutex); 3631 if (atomic_dec_and_test(&perf_sched_count)) 3632 static_branch_disable(&perf_sched_events); 3633 mutex_unlock(&perf_sched_mutex); 3634 } 3635 3636 /* 3637 * The following implement mutual exclusion of events on "exclusive" pmus 3638 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3639 * at a time, so we disallow creating events that might conflict, namely: 3640 * 3641 * 1) cpu-wide events in the presence of per-task events, 3642 * 2) per-task events in the presence of cpu-wide events, 3643 * 3) two matching events on the same context. 3644 * 3645 * The former two cases are handled in the allocation path (perf_event_alloc(), 3646 * _free_event()), the latter -- before the first perf_install_in_context(). 3647 */ 3648 static int exclusive_event_init(struct perf_event *event) 3649 { 3650 struct pmu *pmu = event->pmu; 3651 3652 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3653 return 0; 3654 3655 /* 3656 * Prevent co-existence of per-task and cpu-wide events on the 3657 * same exclusive pmu. 3658 * 3659 * Negative pmu::exclusive_cnt means there are cpu-wide 3660 * events on this "exclusive" pmu, positive means there are 3661 * per-task events. 3662 * 3663 * Since this is called in perf_event_alloc() path, event::ctx 3664 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3665 * to mean "per-task event", because unlike other attach states it 3666 * never gets cleared. 3667 */ 3668 if (event->attach_state & PERF_ATTACH_TASK) { 3669 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3670 return -EBUSY; 3671 } else { 3672 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3673 return -EBUSY; 3674 } 3675 3676 return 0; 3677 } 3678 3679 static void exclusive_event_destroy(struct perf_event *event) 3680 { 3681 struct pmu *pmu = event->pmu; 3682 3683 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3684 return; 3685 3686 /* see comment in exclusive_event_init() */ 3687 if (event->attach_state & PERF_ATTACH_TASK) 3688 atomic_dec(&pmu->exclusive_cnt); 3689 else 3690 atomic_inc(&pmu->exclusive_cnt); 3691 } 3692 3693 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3694 { 3695 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3696 (e1->cpu == e2->cpu || 3697 e1->cpu == -1 || 3698 e2->cpu == -1)) 3699 return true; 3700 return false; 3701 } 3702 3703 /* Called under the same ctx::mutex as perf_install_in_context() */ 3704 static bool exclusive_event_installable(struct perf_event *event, 3705 struct perf_event_context *ctx) 3706 { 3707 struct perf_event *iter_event; 3708 struct pmu *pmu = event->pmu; 3709 3710 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3711 return true; 3712 3713 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3714 if (exclusive_event_match(iter_event, event)) 3715 return false; 3716 } 3717 3718 return true; 3719 } 3720 3721 static void _free_event(struct perf_event *event) 3722 { 3723 irq_work_sync(&event->pending); 3724 3725 unaccount_event(event); 3726 3727 if (event->rb) { 3728 /* 3729 * Can happen when we close an event with re-directed output. 3730 * 3731 * Since we have a 0 refcount, perf_mmap_close() will skip 3732 * over us; possibly making our ring_buffer_put() the last. 3733 */ 3734 mutex_lock(&event->mmap_mutex); 3735 ring_buffer_attach(event, NULL); 3736 mutex_unlock(&event->mmap_mutex); 3737 } 3738 3739 if (is_cgroup_event(event)) 3740 perf_detach_cgroup(event); 3741 3742 if (!event->parent) { 3743 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3744 put_callchain_buffers(); 3745 } 3746 3747 perf_event_free_bpf_prog(event); 3748 3749 if (event->destroy) 3750 event->destroy(event); 3751 3752 if (event->ctx) 3753 put_ctx(event->ctx); 3754 3755 if (event->pmu) { 3756 exclusive_event_destroy(event); 3757 module_put(event->pmu->module); 3758 } 3759 3760 call_rcu(&event->rcu_head, free_event_rcu); 3761 } 3762 3763 /* 3764 * Used to free events which have a known refcount of 1, such as in error paths 3765 * where the event isn't exposed yet and inherited events. 3766 */ 3767 static void free_event(struct perf_event *event) 3768 { 3769 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3770 "unexpected event refcount: %ld; ptr=%p\n", 3771 atomic_long_read(&event->refcount), event)) { 3772 /* leak to avoid use-after-free */ 3773 return; 3774 } 3775 3776 _free_event(event); 3777 } 3778 3779 /* 3780 * Remove user event from the owner task. 3781 */ 3782 static void perf_remove_from_owner(struct perf_event *event) 3783 { 3784 struct task_struct *owner; 3785 3786 rcu_read_lock(); 3787 /* 3788 * Matches the smp_store_release() in perf_event_exit_task(). If we 3789 * observe !owner it means the list deletion is complete and we can 3790 * indeed free this event, otherwise we need to serialize on 3791 * owner->perf_event_mutex. 3792 */ 3793 owner = lockless_dereference(event->owner); 3794 if (owner) { 3795 /* 3796 * Since delayed_put_task_struct() also drops the last 3797 * task reference we can safely take a new reference 3798 * while holding the rcu_read_lock(). 3799 */ 3800 get_task_struct(owner); 3801 } 3802 rcu_read_unlock(); 3803 3804 if (owner) { 3805 /* 3806 * If we're here through perf_event_exit_task() we're already 3807 * holding ctx->mutex which would be an inversion wrt. the 3808 * normal lock order. 3809 * 3810 * However we can safely take this lock because its the child 3811 * ctx->mutex. 3812 */ 3813 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3814 3815 /* 3816 * We have to re-check the event->owner field, if it is cleared 3817 * we raced with perf_event_exit_task(), acquiring the mutex 3818 * ensured they're done, and we can proceed with freeing the 3819 * event. 3820 */ 3821 if (event->owner) { 3822 list_del_init(&event->owner_entry); 3823 smp_store_release(&event->owner, NULL); 3824 } 3825 mutex_unlock(&owner->perf_event_mutex); 3826 put_task_struct(owner); 3827 } 3828 } 3829 3830 static void put_event(struct perf_event *event) 3831 { 3832 if (!atomic_long_dec_and_test(&event->refcount)) 3833 return; 3834 3835 _free_event(event); 3836 } 3837 3838 /* 3839 * Kill an event dead; while event:refcount will preserve the event 3840 * object, it will not preserve its functionality. Once the last 'user' 3841 * gives up the object, we'll destroy the thing. 3842 */ 3843 int perf_event_release_kernel(struct perf_event *event) 3844 { 3845 struct perf_event_context *ctx = event->ctx; 3846 struct perf_event *child, *tmp; 3847 3848 /* 3849 * If we got here through err_file: fput(event_file); we will not have 3850 * attached to a context yet. 3851 */ 3852 if (!ctx) { 3853 WARN_ON_ONCE(event->attach_state & 3854 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 3855 goto no_ctx; 3856 } 3857 3858 if (!is_kernel_event(event)) 3859 perf_remove_from_owner(event); 3860 3861 ctx = perf_event_ctx_lock(event); 3862 WARN_ON_ONCE(ctx->parent_ctx); 3863 perf_remove_from_context(event, DETACH_GROUP); 3864 3865 raw_spin_lock_irq(&ctx->lock); 3866 /* 3867 * Mark this even as STATE_DEAD, there is no external reference to it 3868 * anymore. 3869 * 3870 * Anybody acquiring event->child_mutex after the below loop _must_ 3871 * also see this, most importantly inherit_event() which will avoid 3872 * placing more children on the list. 3873 * 3874 * Thus this guarantees that we will in fact observe and kill _ALL_ 3875 * child events. 3876 */ 3877 event->state = PERF_EVENT_STATE_DEAD; 3878 raw_spin_unlock_irq(&ctx->lock); 3879 3880 perf_event_ctx_unlock(event, ctx); 3881 3882 again: 3883 mutex_lock(&event->child_mutex); 3884 list_for_each_entry(child, &event->child_list, child_list) { 3885 3886 /* 3887 * Cannot change, child events are not migrated, see the 3888 * comment with perf_event_ctx_lock_nested(). 3889 */ 3890 ctx = lockless_dereference(child->ctx); 3891 /* 3892 * Since child_mutex nests inside ctx::mutex, we must jump 3893 * through hoops. We start by grabbing a reference on the ctx. 3894 * 3895 * Since the event cannot get freed while we hold the 3896 * child_mutex, the context must also exist and have a !0 3897 * reference count. 3898 */ 3899 get_ctx(ctx); 3900 3901 /* 3902 * Now that we have a ctx ref, we can drop child_mutex, and 3903 * acquire ctx::mutex without fear of it going away. Then we 3904 * can re-acquire child_mutex. 3905 */ 3906 mutex_unlock(&event->child_mutex); 3907 mutex_lock(&ctx->mutex); 3908 mutex_lock(&event->child_mutex); 3909 3910 /* 3911 * Now that we hold ctx::mutex and child_mutex, revalidate our 3912 * state, if child is still the first entry, it didn't get freed 3913 * and we can continue doing so. 3914 */ 3915 tmp = list_first_entry_or_null(&event->child_list, 3916 struct perf_event, child_list); 3917 if (tmp == child) { 3918 perf_remove_from_context(child, DETACH_GROUP); 3919 list_del(&child->child_list); 3920 free_event(child); 3921 /* 3922 * This matches the refcount bump in inherit_event(); 3923 * this can't be the last reference. 3924 */ 3925 put_event(event); 3926 } 3927 3928 mutex_unlock(&event->child_mutex); 3929 mutex_unlock(&ctx->mutex); 3930 put_ctx(ctx); 3931 goto again; 3932 } 3933 mutex_unlock(&event->child_mutex); 3934 3935 no_ctx: 3936 put_event(event); /* Must be the 'last' reference */ 3937 return 0; 3938 } 3939 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3940 3941 /* 3942 * Called when the last reference to the file is gone. 3943 */ 3944 static int perf_release(struct inode *inode, struct file *file) 3945 { 3946 perf_event_release_kernel(file->private_data); 3947 return 0; 3948 } 3949 3950 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3951 { 3952 struct perf_event *child; 3953 u64 total = 0; 3954 3955 *enabled = 0; 3956 *running = 0; 3957 3958 mutex_lock(&event->child_mutex); 3959 3960 (void)perf_event_read(event, false); 3961 total += perf_event_count(event); 3962 3963 *enabled += event->total_time_enabled + 3964 atomic64_read(&event->child_total_time_enabled); 3965 *running += event->total_time_running + 3966 atomic64_read(&event->child_total_time_running); 3967 3968 list_for_each_entry(child, &event->child_list, child_list) { 3969 (void)perf_event_read(child, false); 3970 total += perf_event_count(child); 3971 *enabled += child->total_time_enabled; 3972 *running += child->total_time_running; 3973 } 3974 mutex_unlock(&event->child_mutex); 3975 3976 return total; 3977 } 3978 EXPORT_SYMBOL_GPL(perf_event_read_value); 3979 3980 static int __perf_read_group_add(struct perf_event *leader, 3981 u64 read_format, u64 *values) 3982 { 3983 struct perf_event *sub; 3984 int n = 1; /* skip @nr */ 3985 int ret; 3986 3987 ret = perf_event_read(leader, true); 3988 if (ret) 3989 return ret; 3990 3991 /* 3992 * Since we co-schedule groups, {enabled,running} times of siblings 3993 * will be identical to those of the leader, so we only publish one 3994 * set. 3995 */ 3996 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3997 values[n++] += leader->total_time_enabled + 3998 atomic64_read(&leader->child_total_time_enabled); 3999 } 4000 4001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4002 values[n++] += leader->total_time_running + 4003 atomic64_read(&leader->child_total_time_running); 4004 } 4005 4006 /* 4007 * Write {count,id} tuples for every sibling. 4008 */ 4009 values[n++] += perf_event_count(leader); 4010 if (read_format & PERF_FORMAT_ID) 4011 values[n++] = primary_event_id(leader); 4012 4013 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4014 values[n++] += perf_event_count(sub); 4015 if (read_format & PERF_FORMAT_ID) 4016 values[n++] = primary_event_id(sub); 4017 } 4018 4019 return 0; 4020 } 4021 4022 static int perf_read_group(struct perf_event *event, 4023 u64 read_format, char __user *buf) 4024 { 4025 struct perf_event *leader = event->group_leader, *child; 4026 struct perf_event_context *ctx = leader->ctx; 4027 int ret; 4028 u64 *values; 4029 4030 lockdep_assert_held(&ctx->mutex); 4031 4032 values = kzalloc(event->read_size, GFP_KERNEL); 4033 if (!values) 4034 return -ENOMEM; 4035 4036 values[0] = 1 + leader->nr_siblings; 4037 4038 /* 4039 * By locking the child_mutex of the leader we effectively 4040 * lock the child list of all siblings.. XXX explain how. 4041 */ 4042 mutex_lock(&leader->child_mutex); 4043 4044 ret = __perf_read_group_add(leader, read_format, values); 4045 if (ret) 4046 goto unlock; 4047 4048 list_for_each_entry(child, &leader->child_list, child_list) { 4049 ret = __perf_read_group_add(child, read_format, values); 4050 if (ret) 4051 goto unlock; 4052 } 4053 4054 mutex_unlock(&leader->child_mutex); 4055 4056 ret = event->read_size; 4057 if (copy_to_user(buf, values, event->read_size)) 4058 ret = -EFAULT; 4059 goto out; 4060 4061 unlock: 4062 mutex_unlock(&leader->child_mutex); 4063 out: 4064 kfree(values); 4065 return ret; 4066 } 4067 4068 static int perf_read_one(struct perf_event *event, 4069 u64 read_format, char __user *buf) 4070 { 4071 u64 enabled, running; 4072 u64 values[4]; 4073 int n = 0; 4074 4075 values[n++] = perf_event_read_value(event, &enabled, &running); 4076 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4077 values[n++] = enabled; 4078 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4079 values[n++] = running; 4080 if (read_format & PERF_FORMAT_ID) 4081 values[n++] = primary_event_id(event); 4082 4083 if (copy_to_user(buf, values, n * sizeof(u64))) 4084 return -EFAULT; 4085 4086 return n * sizeof(u64); 4087 } 4088 4089 static bool is_event_hup(struct perf_event *event) 4090 { 4091 bool no_children; 4092 4093 if (event->state > PERF_EVENT_STATE_EXIT) 4094 return false; 4095 4096 mutex_lock(&event->child_mutex); 4097 no_children = list_empty(&event->child_list); 4098 mutex_unlock(&event->child_mutex); 4099 return no_children; 4100 } 4101 4102 /* 4103 * Read the performance event - simple non blocking version for now 4104 */ 4105 static ssize_t 4106 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4107 { 4108 u64 read_format = event->attr.read_format; 4109 int ret; 4110 4111 /* 4112 * Return end-of-file for a read on a event that is in 4113 * error state (i.e. because it was pinned but it couldn't be 4114 * scheduled on to the CPU at some point). 4115 */ 4116 if (event->state == PERF_EVENT_STATE_ERROR) 4117 return 0; 4118 4119 if (count < event->read_size) 4120 return -ENOSPC; 4121 4122 WARN_ON_ONCE(event->ctx->parent_ctx); 4123 if (read_format & PERF_FORMAT_GROUP) 4124 ret = perf_read_group(event, read_format, buf); 4125 else 4126 ret = perf_read_one(event, read_format, buf); 4127 4128 return ret; 4129 } 4130 4131 static ssize_t 4132 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4133 { 4134 struct perf_event *event = file->private_data; 4135 struct perf_event_context *ctx; 4136 int ret; 4137 4138 ctx = perf_event_ctx_lock(event); 4139 ret = __perf_read(event, buf, count); 4140 perf_event_ctx_unlock(event, ctx); 4141 4142 return ret; 4143 } 4144 4145 static unsigned int perf_poll(struct file *file, poll_table *wait) 4146 { 4147 struct perf_event *event = file->private_data; 4148 struct ring_buffer *rb; 4149 unsigned int events = POLLHUP; 4150 4151 poll_wait(file, &event->waitq, wait); 4152 4153 if (is_event_hup(event)) 4154 return events; 4155 4156 /* 4157 * Pin the event->rb by taking event->mmap_mutex; otherwise 4158 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4159 */ 4160 mutex_lock(&event->mmap_mutex); 4161 rb = event->rb; 4162 if (rb) 4163 events = atomic_xchg(&rb->poll, 0); 4164 mutex_unlock(&event->mmap_mutex); 4165 return events; 4166 } 4167 4168 static void _perf_event_reset(struct perf_event *event) 4169 { 4170 (void)perf_event_read(event, false); 4171 local64_set(&event->count, 0); 4172 perf_event_update_userpage(event); 4173 } 4174 4175 /* 4176 * Holding the top-level event's child_mutex means that any 4177 * descendant process that has inherited this event will block 4178 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4179 * task existence requirements of perf_event_enable/disable. 4180 */ 4181 static void perf_event_for_each_child(struct perf_event *event, 4182 void (*func)(struct perf_event *)) 4183 { 4184 struct perf_event *child; 4185 4186 WARN_ON_ONCE(event->ctx->parent_ctx); 4187 4188 mutex_lock(&event->child_mutex); 4189 func(event); 4190 list_for_each_entry(child, &event->child_list, child_list) 4191 func(child); 4192 mutex_unlock(&event->child_mutex); 4193 } 4194 4195 static void perf_event_for_each(struct perf_event *event, 4196 void (*func)(struct perf_event *)) 4197 { 4198 struct perf_event_context *ctx = event->ctx; 4199 struct perf_event *sibling; 4200 4201 lockdep_assert_held(&ctx->mutex); 4202 4203 event = event->group_leader; 4204 4205 perf_event_for_each_child(event, func); 4206 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4207 perf_event_for_each_child(sibling, func); 4208 } 4209 4210 static void __perf_event_period(struct perf_event *event, 4211 struct perf_cpu_context *cpuctx, 4212 struct perf_event_context *ctx, 4213 void *info) 4214 { 4215 u64 value = *((u64 *)info); 4216 bool active; 4217 4218 if (event->attr.freq) { 4219 event->attr.sample_freq = value; 4220 } else { 4221 event->attr.sample_period = value; 4222 event->hw.sample_period = value; 4223 } 4224 4225 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4226 if (active) { 4227 perf_pmu_disable(ctx->pmu); 4228 /* 4229 * We could be throttled; unthrottle now to avoid the tick 4230 * trying to unthrottle while we already re-started the event. 4231 */ 4232 if (event->hw.interrupts == MAX_INTERRUPTS) { 4233 event->hw.interrupts = 0; 4234 perf_log_throttle(event, 1); 4235 } 4236 event->pmu->stop(event, PERF_EF_UPDATE); 4237 } 4238 4239 local64_set(&event->hw.period_left, 0); 4240 4241 if (active) { 4242 event->pmu->start(event, PERF_EF_RELOAD); 4243 perf_pmu_enable(ctx->pmu); 4244 } 4245 } 4246 4247 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4248 { 4249 u64 value; 4250 4251 if (!is_sampling_event(event)) 4252 return -EINVAL; 4253 4254 if (copy_from_user(&value, arg, sizeof(value))) 4255 return -EFAULT; 4256 4257 if (!value) 4258 return -EINVAL; 4259 4260 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4261 return -EINVAL; 4262 4263 event_function_call(event, __perf_event_period, &value); 4264 4265 return 0; 4266 } 4267 4268 static const struct file_operations perf_fops; 4269 4270 static inline int perf_fget_light(int fd, struct fd *p) 4271 { 4272 struct fd f = fdget(fd); 4273 if (!f.file) 4274 return -EBADF; 4275 4276 if (f.file->f_op != &perf_fops) { 4277 fdput(f); 4278 return -EBADF; 4279 } 4280 *p = f; 4281 return 0; 4282 } 4283 4284 static int perf_event_set_output(struct perf_event *event, 4285 struct perf_event *output_event); 4286 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4287 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4288 4289 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4290 { 4291 void (*func)(struct perf_event *); 4292 u32 flags = arg; 4293 4294 switch (cmd) { 4295 case PERF_EVENT_IOC_ENABLE: 4296 func = _perf_event_enable; 4297 break; 4298 case PERF_EVENT_IOC_DISABLE: 4299 func = _perf_event_disable; 4300 break; 4301 case PERF_EVENT_IOC_RESET: 4302 func = _perf_event_reset; 4303 break; 4304 4305 case PERF_EVENT_IOC_REFRESH: 4306 return _perf_event_refresh(event, arg); 4307 4308 case PERF_EVENT_IOC_PERIOD: 4309 return perf_event_period(event, (u64 __user *)arg); 4310 4311 case PERF_EVENT_IOC_ID: 4312 { 4313 u64 id = primary_event_id(event); 4314 4315 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4316 return -EFAULT; 4317 return 0; 4318 } 4319 4320 case PERF_EVENT_IOC_SET_OUTPUT: 4321 { 4322 int ret; 4323 if (arg != -1) { 4324 struct perf_event *output_event; 4325 struct fd output; 4326 ret = perf_fget_light(arg, &output); 4327 if (ret) 4328 return ret; 4329 output_event = output.file->private_data; 4330 ret = perf_event_set_output(event, output_event); 4331 fdput(output); 4332 } else { 4333 ret = perf_event_set_output(event, NULL); 4334 } 4335 return ret; 4336 } 4337 4338 case PERF_EVENT_IOC_SET_FILTER: 4339 return perf_event_set_filter(event, (void __user *)arg); 4340 4341 case PERF_EVENT_IOC_SET_BPF: 4342 return perf_event_set_bpf_prog(event, arg); 4343 4344 default: 4345 return -ENOTTY; 4346 } 4347 4348 if (flags & PERF_IOC_FLAG_GROUP) 4349 perf_event_for_each(event, func); 4350 else 4351 perf_event_for_each_child(event, func); 4352 4353 return 0; 4354 } 4355 4356 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4357 { 4358 struct perf_event *event = file->private_data; 4359 struct perf_event_context *ctx; 4360 long ret; 4361 4362 ctx = perf_event_ctx_lock(event); 4363 ret = _perf_ioctl(event, cmd, arg); 4364 perf_event_ctx_unlock(event, ctx); 4365 4366 return ret; 4367 } 4368 4369 #ifdef CONFIG_COMPAT 4370 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4371 unsigned long arg) 4372 { 4373 switch (_IOC_NR(cmd)) { 4374 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4375 case _IOC_NR(PERF_EVENT_IOC_ID): 4376 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4377 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4378 cmd &= ~IOCSIZE_MASK; 4379 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4380 } 4381 break; 4382 } 4383 return perf_ioctl(file, cmd, arg); 4384 } 4385 #else 4386 # define perf_compat_ioctl NULL 4387 #endif 4388 4389 int perf_event_task_enable(void) 4390 { 4391 struct perf_event_context *ctx; 4392 struct perf_event *event; 4393 4394 mutex_lock(¤t->perf_event_mutex); 4395 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4396 ctx = perf_event_ctx_lock(event); 4397 perf_event_for_each_child(event, _perf_event_enable); 4398 perf_event_ctx_unlock(event, ctx); 4399 } 4400 mutex_unlock(¤t->perf_event_mutex); 4401 4402 return 0; 4403 } 4404 4405 int perf_event_task_disable(void) 4406 { 4407 struct perf_event_context *ctx; 4408 struct perf_event *event; 4409 4410 mutex_lock(¤t->perf_event_mutex); 4411 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4412 ctx = perf_event_ctx_lock(event); 4413 perf_event_for_each_child(event, _perf_event_disable); 4414 perf_event_ctx_unlock(event, ctx); 4415 } 4416 mutex_unlock(¤t->perf_event_mutex); 4417 4418 return 0; 4419 } 4420 4421 static int perf_event_index(struct perf_event *event) 4422 { 4423 if (event->hw.state & PERF_HES_STOPPED) 4424 return 0; 4425 4426 if (event->state != PERF_EVENT_STATE_ACTIVE) 4427 return 0; 4428 4429 return event->pmu->event_idx(event); 4430 } 4431 4432 static void calc_timer_values(struct perf_event *event, 4433 u64 *now, 4434 u64 *enabled, 4435 u64 *running) 4436 { 4437 u64 ctx_time; 4438 4439 *now = perf_clock(); 4440 ctx_time = event->shadow_ctx_time + *now; 4441 *enabled = ctx_time - event->tstamp_enabled; 4442 *running = ctx_time - event->tstamp_running; 4443 } 4444 4445 static void perf_event_init_userpage(struct perf_event *event) 4446 { 4447 struct perf_event_mmap_page *userpg; 4448 struct ring_buffer *rb; 4449 4450 rcu_read_lock(); 4451 rb = rcu_dereference(event->rb); 4452 if (!rb) 4453 goto unlock; 4454 4455 userpg = rb->user_page; 4456 4457 /* Allow new userspace to detect that bit 0 is deprecated */ 4458 userpg->cap_bit0_is_deprecated = 1; 4459 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4460 userpg->data_offset = PAGE_SIZE; 4461 userpg->data_size = perf_data_size(rb); 4462 4463 unlock: 4464 rcu_read_unlock(); 4465 } 4466 4467 void __weak arch_perf_update_userpage( 4468 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4469 { 4470 } 4471 4472 /* 4473 * Callers need to ensure there can be no nesting of this function, otherwise 4474 * the seqlock logic goes bad. We can not serialize this because the arch 4475 * code calls this from NMI context. 4476 */ 4477 void perf_event_update_userpage(struct perf_event *event) 4478 { 4479 struct perf_event_mmap_page *userpg; 4480 struct ring_buffer *rb; 4481 u64 enabled, running, now; 4482 4483 rcu_read_lock(); 4484 rb = rcu_dereference(event->rb); 4485 if (!rb) 4486 goto unlock; 4487 4488 /* 4489 * compute total_time_enabled, total_time_running 4490 * based on snapshot values taken when the event 4491 * was last scheduled in. 4492 * 4493 * we cannot simply called update_context_time() 4494 * because of locking issue as we can be called in 4495 * NMI context 4496 */ 4497 calc_timer_values(event, &now, &enabled, &running); 4498 4499 userpg = rb->user_page; 4500 /* 4501 * Disable preemption so as to not let the corresponding user-space 4502 * spin too long if we get preempted. 4503 */ 4504 preempt_disable(); 4505 ++userpg->lock; 4506 barrier(); 4507 userpg->index = perf_event_index(event); 4508 userpg->offset = perf_event_count(event); 4509 if (userpg->index) 4510 userpg->offset -= local64_read(&event->hw.prev_count); 4511 4512 userpg->time_enabled = enabled + 4513 atomic64_read(&event->child_total_time_enabled); 4514 4515 userpg->time_running = running + 4516 atomic64_read(&event->child_total_time_running); 4517 4518 arch_perf_update_userpage(event, userpg, now); 4519 4520 barrier(); 4521 ++userpg->lock; 4522 preempt_enable(); 4523 unlock: 4524 rcu_read_unlock(); 4525 } 4526 4527 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4528 { 4529 struct perf_event *event = vma->vm_file->private_data; 4530 struct ring_buffer *rb; 4531 int ret = VM_FAULT_SIGBUS; 4532 4533 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4534 if (vmf->pgoff == 0) 4535 ret = 0; 4536 return ret; 4537 } 4538 4539 rcu_read_lock(); 4540 rb = rcu_dereference(event->rb); 4541 if (!rb) 4542 goto unlock; 4543 4544 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4545 goto unlock; 4546 4547 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4548 if (!vmf->page) 4549 goto unlock; 4550 4551 get_page(vmf->page); 4552 vmf->page->mapping = vma->vm_file->f_mapping; 4553 vmf->page->index = vmf->pgoff; 4554 4555 ret = 0; 4556 unlock: 4557 rcu_read_unlock(); 4558 4559 return ret; 4560 } 4561 4562 static void ring_buffer_attach(struct perf_event *event, 4563 struct ring_buffer *rb) 4564 { 4565 struct ring_buffer *old_rb = NULL; 4566 unsigned long flags; 4567 4568 if (event->rb) { 4569 /* 4570 * Should be impossible, we set this when removing 4571 * event->rb_entry and wait/clear when adding event->rb_entry. 4572 */ 4573 WARN_ON_ONCE(event->rcu_pending); 4574 4575 old_rb = event->rb; 4576 spin_lock_irqsave(&old_rb->event_lock, flags); 4577 list_del_rcu(&event->rb_entry); 4578 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4579 4580 event->rcu_batches = get_state_synchronize_rcu(); 4581 event->rcu_pending = 1; 4582 } 4583 4584 if (rb) { 4585 if (event->rcu_pending) { 4586 cond_synchronize_rcu(event->rcu_batches); 4587 event->rcu_pending = 0; 4588 } 4589 4590 spin_lock_irqsave(&rb->event_lock, flags); 4591 list_add_rcu(&event->rb_entry, &rb->event_list); 4592 spin_unlock_irqrestore(&rb->event_lock, flags); 4593 } 4594 4595 rcu_assign_pointer(event->rb, rb); 4596 4597 if (old_rb) { 4598 ring_buffer_put(old_rb); 4599 /* 4600 * Since we detached before setting the new rb, so that we 4601 * could attach the new rb, we could have missed a wakeup. 4602 * Provide it now. 4603 */ 4604 wake_up_all(&event->waitq); 4605 } 4606 } 4607 4608 static void ring_buffer_wakeup(struct perf_event *event) 4609 { 4610 struct ring_buffer *rb; 4611 4612 rcu_read_lock(); 4613 rb = rcu_dereference(event->rb); 4614 if (rb) { 4615 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4616 wake_up_all(&event->waitq); 4617 } 4618 rcu_read_unlock(); 4619 } 4620 4621 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4622 { 4623 struct ring_buffer *rb; 4624 4625 rcu_read_lock(); 4626 rb = rcu_dereference(event->rb); 4627 if (rb) { 4628 if (!atomic_inc_not_zero(&rb->refcount)) 4629 rb = NULL; 4630 } 4631 rcu_read_unlock(); 4632 4633 return rb; 4634 } 4635 4636 void ring_buffer_put(struct ring_buffer *rb) 4637 { 4638 if (!atomic_dec_and_test(&rb->refcount)) 4639 return; 4640 4641 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4642 4643 call_rcu(&rb->rcu_head, rb_free_rcu); 4644 } 4645 4646 static void perf_mmap_open(struct vm_area_struct *vma) 4647 { 4648 struct perf_event *event = vma->vm_file->private_data; 4649 4650 atomic_inc(&event->mmap_count); 4651 atomic_inc(&event->rb->mmap_count); 4652 4653 if (vma->vm_pgoff) 4654 atomic_inc(&event->rb->aux_mmap_count); 4655 4656 if (event->pmu->event_mapped) 4657 event->pmu->event_mapped(event); 4658 } 4659 4660 /* 4661 * A buffer can be mmap()ed multiple times; either directly through the same 4662 * event, or through other events by use of perf_event_set_output(). 4663 * 4664 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4665 * the buffer here, where we still have a VM context. This means we need 4666 * to detach all events redirecting to us. 4667 */ 4668 static void perf_mmap_close(struct vm_area_struct *vma) 4669 { 4670 struct perf_event *event = vma->vm_file->private_data; 4671 4672 struct ring_buffer *rb = ring_buffer_get(event); 4673 struct user_struct *mmap_user = rb->mmap_user; 4674 int mmap_locked = rb->mmap_locked; 4675 unsigned long size = perf_data_size(rb); 4676 4677 if (event->pmu->event_unmapped) 4678 event->pmu->event_unmapped(event); 4679 4680 /* 4681 * rb->aux_mmap_count will always drop before rb->mmap_count and 4682 * event->mmap_count, so it is ok to use event->mmap_mutex to 4683 * serialize with perf_mmap here. 4684 */ 4685 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4686 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4687 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4688 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4689 4690 rb_free_aux(rb); 4691 mutex_unlock(&event->mmap_mutex); 4692 } 4693 4694 atomic_dec(&rb->mmap_count); 4695 4696 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4697 goto out_put; 4698 4699 ring_buffer_attach(event, NULL); 4700 mutex_unlock(&event->mmap_mutex); 4701 4702 /* If there's still other mmap()s of this buffer, we're done. */ 4703 if (atomic_read(&rb->mmap_count)) 4704 goto out_put; 4705 4706 /* 4707 * No other mmap()s, detach from all other events that might redirect 4708 * into the now unreachable buffer. Somewhat complicated by the 4709 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4710 */ 4711 again: 4712 rcu_read_lock(); 4713 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4714 if (!atomic_long_inc_not_zero(&event->refcount)) { 4715 /* 4716 * This event is en-route to free_event() which will 4717 * detach it and remove it from the list. 4718 */ 4719 continue; 4720 } 4721 rcu_read_unlock(); 4722 4723 mutex_lock(&event->mmap_mutex); 4724 /* 4725 * Check we didn't race with perf_event_set_output() which can 4726 * swizzle the rb from under us while we were waiting to 4727 * acquire mmap_mutex. 4728 * 4729 * If we find a different rb; ignore this event, a next 4730 * iteration will no longer find it on the list. We have to 4731 * still restart the iteration to make sure we're not now 4732 * iterating the wrong list. 4733 */ 4734 if (event->rb == rb) 4735 ring_buffer_attach(event, NULL); 4736 4737 mutex_unlock(&event->mmap_mutex); 4738 put_event(event); 4739 4740 /* 4741 * Restart the iteration; either we're on the wrong list or 4742 * destroyed its integrity by doing a deletion. 4743 */ 4744 goto again; 4745 } 4746 rcu_read_unlock(); 4747 4748 /* 4749 * It could be there's still a few 0-ref events on the list; they'll 4750 * get cleaned up by free_event() -- they'll also still have their 4751 * ref on the rb and will free it whenever they are done with it. 4752 * 4753 * Aside from that, this buffer is 'fully' detached and unmapped, 4754 * undo the VM accounting. 4755 */ 4756 4757 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4758 vma->vm_mm->pinned_vm -= mmap_locked; 4759 free_uid(mmap_user); 4760 4761 out_put: 4762 ring_buffer_put(rb); /* could be last */ 4763 } 4764 4765 static const struct vm_operations_struct perf_mmap_vmops = { 4766 .open = perf_mmap_open, 4767 .close = perf_mmap_close, /* non mergable */ 4768 .fault = perf_mmap_fault, 4769 .page_mkwrite = perf_mmap_fault, 4770 }; 4771 4772 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4773 { 4774 struct perf_event *event = file->private_data; 4775 unsigned long user_locked, user_lock_limit; 4776 struct user_struct *user = current_user(); 4777 unsigned long locked, lock_limit; 4778 struct ring_buffer *rb = NULL; 4779 unsigned long vma_size; 4780 unsigned long nr_pages; 4781 long user_extra = 0, extra = 0; 4782 int ret = 0, flags = 0; 4783 4784 /* 4785 * Don't allow mmap() of inherited per-task counters. This would 4786 * create a performance issue due to all children writing to the 4787 * same rb. 4788 */ 4789 if (event->cpu == -1 && event->attr.inherit) 4790 return -EINVAL; 4791 4792 if (!(vma->vm_flags & VM_SHARED)) 4793 return -EINVAL; 4794 4795 vma_size = vma->vm_end - vma->vm_start; 4796 4797 if (vma->vm_pgoff == 0) { 4798 nr_pages = (vma_size / PAGE_SIZE) - 1; 4799 } else { 4800 /* 4801 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4802 * mapped, all subsequent mappings should have the same size 4803 * and offset. Must be above the normal perf buffer. 4804 */ 4805 u64 aux_offset, aux_size; 4806 4807 if (!event->rb) 4808 return -EINVAL; 4809 4810 nr_pages = vma_size / PAGE_SIZE; 4811 4812 mutex_lock(&event->mmap_mutex); 4813 ret = -EINVAL; 4814 4815 rb = event->rb; 4816 if (!rb) 4817 goto aux_unlock; 4818 4819 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4820 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4821 4822 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4823 goto aux_unlock; 4824 4825 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4826 goto aux_unlock; 4827 4828 /* already mapped with a different offset */ 4829 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4830 goto aux_unlock; 4831 4832 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4833 goto aux_unlock; 4834 4835 /* already mapped with a different size */ 4836 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4837 goto aux_unlock; 4838 4839 if (!is_power_of_2(nr_pages)) 4840 goto aux_unlock; 4841 4842 if (!atomic_inc_not_zero(&rb->mmap_count)) 4843 goto aux_unlock; 4844 4845 if (rb_has_aux(rb)) { 4846 atomic_inc(&rb->aux_mmap_count); 4847 ret = 0; 4848 goto unlock; 4849 } 4850 4851 atomic_set(&rb->aux_mmap_count, 1); 4852 user_extra = nr_pages; 4853 4854 goto accounting; 4855 } 4856 4857 /* 4858 * If we have rb pages ensure they're a power-of-two number, so we 4859 * can do bitmasks instead of modulo. 4860 */ 4861 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4862 return -EINVAL; 4863 4864 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4865 return -EINVAL; 4866 4867 WARN_ON_ONCE(event->ctx->parent_ctx); 4868 again: 4869 mutex_lock(&event->mmap_mutex); 4870 if (event->rb) { 4871 if (event->rb->nr_pages != nr_pages) { 4872 ret = -EINVAL; 4873 goto unlock; 4874 } 4875 4876 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4877 /* 4878 * Raced against perf_mmap_close() through 4879 * perf_event_set_output(). Try again, hope for better 4880 * luck. 4881 */ 4882 mutex_unlock(&event->mmap_mutex); 4883 goto again; 4884 } 4885 4886 goto unlock; 4887 } 4888 4889 user_extra = nr_pages + 1; 4890 4891 accounting: 4892 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4893 4894 /* 4895 * Increase the limit linearly with more CPUs: 4896 */ 4897 user_lock_limit *= num_online_cpus(); 4898 4899 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4900 4901 if (user_locked > user_lock_limit) 4902 extra = user_locked - user_lock_limit; 4903 4904 lock_limit = rlimit(RLIMIT_MEMLOCK); 4905 lock_limit >>= PAGE_SHIFT; 4906 locked = vma->vm_mm->pinned_vm + extra; 4907 4908 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4909 !capable(CAP_IPC_LOCK)) { 4910 ret = -EPERM; 4911 goto unlock; 4912 } 4913 4914 WARN_ON(!rb && event->rb); 4915 4916 if (vma->vm_flags & VM_WRITE) 4917 flags |= RING_BUFFER_WRITABLE; 4918 4919 if (!rb) { 4920 rb = rb_alloc(nr_pages, 4921 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4922 event->cpu, flags); 4923 4924 if (!rb) { 4925 ret = -ENOMEM; 4926 goto unlock; 4927 } 4928 4929 atomic_set(&rb->mmap_count, 1); 4930 rb->mmap_user = get_current_user(); 4931 rb->mmap_locked = extra; 4932 4933 ring_buffer_attach(event, rb); 4934 4935 perf_event_init_userpage(event); 4936 perf_event_update_userpage(event); 4937 } else { 4938 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4939 event->attr.aux_watermark, flags); 4940 if (!ret) 4941 rb->aux_mmap_locked = extra; 4942 } 4943 4944 unlock: 4945 if (!ret) { 4946 atomic_long_add(user_extra, &user->locked_vm); 4947 vma->vm_mm->pinned_vm += extra; 4948 4949 atomic_inc(&event->mmap_count); 4950 } else if (rb) { 4951 atomic_dec(&rb->mmap_count); 4952 } 4953 aux_unlock: 4954 mutex_unlock(&event->mmap_mutex); 4955 4956 /* 4957 * Since pinned accounting is per vm we cannot allow fork() to copy our 4958 * vma. 4959 */ 4960 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4961 vma->vm_ops = &perf_mmap_vmops; 4962 4963 if (event->pmu->event_mapped) 4964 event->pmu->event_mapped(event); 4965 4966 return ret; 4967 } 4968 4969 static int perf_fasync(int fd, struct file *filp, int on) 4970 { 4971 struct inode *inode = file_inode(filp); 4972 struct perf_event *event = filp->private_data; 4973 int retval; 4974 4975 inode_lock(inode); 4976 retval = fasync_helper(fd, filp, on, &event->fasync); 4977 inode_unlock(inode); 4978 4979 if (retval < 0) 4980 return retval; 4981 4982 return 0; 4983 } 4984 4985 static const struct file_operations perf_fops = { 4986 .llseek = no_llseek, 4987 .release = perf_release, 4988 .read = perf_read, 4989 .poll = perf_poll, 4990 .unlocked_ioctl = perf_ioctl, 4991 .compat_ioctl = perf_compat_ioctl, 4992 .mmap = perf_mmap, 4993 .fasync = perf_fasync, 4994 }; 4995 4996 /* 4997 * Perf event wakeup 4998 * 4999 * If there's data, ensure we set the poll() state and publish everything 5000 * to user-space before waking everybody up. 5001 */ 5002 5003 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5004 { 5005 /* only the parent has fasync state */ 5006 if (event->parent) 5007 event = event->parent; 5008 return &event->fasync; 5009 } 5010 5011 void perf_event_wakeup(struct perf_event *event) 5012 { 5013 ring_buffer_wakeup(event); 5014 5015 if (event->pending_kill) { 5016 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5017 event->pending_kill = 0; 5018 } 5019 } 5020 5021 static void perf_pending_event(struct irq_work *entry) 5022 { 5023 struct perf_event *event = container_of(entry, 5024 struct perf_event, pending); 5025 int rctx; 5026 5027 rctx = perf_swevent_get_recursion_context(); 5028 /* 5029 * If we 'fail' here, that's OK, it means recursion is already disabled 5030 * and we won't recurse 'further'. 5031 */ 5032 5033 if (event->pending_disable) { 5034 event->pending_disable = 0; 5035 perf_event_disable_local(event); 5036 } 5037 5038 if (event->pending_wakeup) { 5039 event->pending_wakeup = 0; 5040 perf_event_wakeup(event); 5041 } 5042 5043 if (rctx >= 0) 5044 perf_swevent_put_recursion_context(rctx); 5045 } 5046 5047 /* 5048 * We assume there is only KVM supporting the callbacks. 5049 * Later on, we might change it to a list if there is 5050 * another virtualization implementation supporting the callbacks. 5051 */ 5052 struct perf_guest_info_callbacks *perf_guest_cbs; 5053 5054 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5055 { 5056 perf_guest_cbs = cbs; 5057 return 0; 5058 } 5059 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5060 5061 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5062 { 5063 perf_guest_cbs = NULL; 5064 return 0; 5065 } 5066 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5067 5068 static void 5069 perf_output_sample_regs(struct perf_output_handle *handle, 5070 struct pt_regs *regs, u64 mask) 5071 { 5072 int bit; 5073 5074 for_each_set_bit(bit, (const unsigned long *) &mask, 5075 sizeof(mask) * BITS_PER_BYTE) { 5076 u64 val; 5077 5078 val = perf_reg_value(regs, bit); 5079 perf_output_put(handle, val); 5080 } 5081 } 5082 5083 static void perf_sample_regs_user(struct perf_regs *regs_user, 5084 struct pt_regs *regs, 5085 struct pt_regs *regs_user_copy) 5086 { 5087 if (user_mode(regs)) { 5088 regs_user->abi = perf_reg_abi(current); 5089 regs_user->regs = regs; 5090 } else if (current->mm) { 5091 perf_get_regs_user(regs_user, regs, regs_user_copy); 5092 } else { 5093 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5094 regs_user->regs = NULL; 5095 } 5096 } 5097 5098 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5099 struct pt_regs *regs) 5100 { 5101 regs_intr->regs = regs; 5102 regs_intr->abi = perf_reg_abi(current); 5103 } 5104 5105 5106 /* 5107 * Get remaining task size from user stack pointer. 5108 * 5109 * It'd be better to take stack vma map and limit this more 5110 * precisly, but there's no way to get it safely under interrupt, 5111 * so using TASK_SIZE as limit. 5112 */ 5113 static u64 perf_ustack_task_size(struct pt_regs *regs) 5114 { 5115 unsigned long addr = perf_user_stack_pointer(regs); 5116 5117 if (!addr || addr >= TASK_SIZE) 5118 return 0; 5119 5120 return TASK_SIZE - addr; 5121 } 5122 5123 static u16 5124 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5125 struct pt_regs *regs) 5126 { 5127 u64 task_size; 5128 5129 /* No regs, no stack pointer, no dump. */ 5130 if (!regs) 5131 return 0; 5132 5133 /* 5134 * Check if we fit in with the requested stack size into the: 5135 * - TASK_SIZE 5136 * If we don't, we limit the size to the TASK_SIZE. 5137 * 5138 * - remaining sample size 5139 * If we don't, we customize the stack size to 5140 * fit in to the remaining sample size. 5141 */ 5142 5143 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5144 stack_size = min(stack_size, (u16) task_size); 5145 5146 /* Current header size plus static size and dynamic size. */ 5147 header_size += 2 * sizeof(u64); 5148 5149 /* Do we fit in with the current stack dump size? */ 5150 if ((u16) (header_size + stack_size) < header_size) { 5151 /* 5152 * If we overflow the maximum size for the sample, 5153 * we customize the stack dump size to fit in. 5154 */ 5155 stack_size = USHRT_MAX - header_size - sizeof(u64); 5156 stack_size = round_up(stack_size, sizeof(u64)); 5157 } 5158 5159 return stack_size; 5160 } 5161 5162 static void 5163 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5164 struct pt_regs *regs) 5165 { 5166 /* Case of a kernel thread, nothing to dump */ 5167 if (!regs) { 5168 u64 size = 0; 5169 perf_output_put(handle, size); 5170 } else { 5171 unsigned long sp; 5172 unsigned int rem; 5173 u64 dyn_size; 5174 5175 /* 5176 * We dump: 5177 * static size 5178 * - the size requested by user or the best one we can fit 5179 * in to the sample max size 5180 * data 5181 * - user stack dump data 5182 * dynamic size 5183 * - the actual dumped size 5184 */ 5185 5186 /* Static size. */ 5187 perf_output_put(handle, dump_size); 5188 5189 /* Data. */ 5190 sp = perf_user_stack_pointer(regs); 5191 rem = __output_copy_user(handle, (void *) sp, dump_size); 5192 dyn_size = dump_size - rem; 5193 5194 perf_output_skip(handle, rem); 5195 5196 /* Dynamic size. */ 5197 perf_output_put(handle, dyn_size); 5198 } 5199 } 5200 5201 static void __perf_event_header__init_id(struct perf_event_header *header, 5202 struct perf_sample_data *data, 5203 struct perf_event *event) 5204 { 5205 u64 sample_type = event->attr.sample_type; 5206 5207 data->type = sample_type; 5208 header->size += event->id_header_size; 5209 5210 if (sample_type & PERF_SAMPLE_TID) { 5211 /* namespace issues */ 5212 data->tid_entry.pid = perf_event_pid(event, current); 5213 data->tid_entry.tid = perf_event_tid(event, current); 5214 } 5215 5216 if (sample_type & PERF_SAMPLE_TIME) 5217 data->time = perf_event_clock(event); 5218 5219 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5220 data->id = primary_event_id(event); 5221 5222 if (sample_type & PERF_SAMPLE_STREAM_ID) 5223 data->stream_id = event->id; 5224 5225 if (sample_type & PERF_SAMPLE_CPU) { 5226 data->cpu_entry.cpu = raw_smp_processor_id(); 5227 data->cpu_entry.reserved = 0; 5228 } 5229 } 5230 5231 void perf_event_header__init_id(struct perf_event_header *header, 5232 struct perf_sample_data *data, 5233 struct perf_event *event) 5234 { 5235 if (event->attr.sample_id_all) 5236 __perf_event_header__init_id(header, data, event); 5237 } 5238 5239 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5240 struct perf_sample_data *data) 5241 { 5242 u64 sample_type = data->type; 5243 5244 if (sample_type & PERF_SAMPLE_TID) 5245 perf_output_put(handle, data->tid_entry); 5246 5247 if (sample_type & PERF_SAMPLE_TIME) 5248 perf_output_put(handle, data->time); 5249 5250 if (sample_type & PERF_SAMPLE_ID) 5251 perf_output_put(handle, data->id); 5252 5253 if (sample_type & PERF_SAMPLE_STREAM_ID) 5254 perf_output_put(handle, data->stream_id); 5255 5256 if (sample_type & PERF_SAMPLE_CPU) 5257 perf_output_put(handle, data->cpu_entry); 5258 5259 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5260 perf_output_put(handle, data->id); 5261 } 5262 5263 void perf_event__output_id_sample(struct perf_event *event, 5264 struct perf_output_handle *handle, 5265 struct perf_sample_data *sample) 5266 { 5267 if (event->attr.sample_id_all) 5268 __perf_event__output_id_sample(handle, sample); 5269 } 5270 5271 static void perf_output_read_one(struct perf_output_handle *handle, 5272 struct perf_event *event, 5273 u64 enabled, u64 running) 5274 { 5275 u64 read_format = event->attr.read_format; 5276 u64 values[4]; 5277 int n = 0; 5278 5279 values[n++] = perf_event_count(event); 5280 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5281 values[n++] = enabled + 5282 atomic64_read(&event->child_total_time_enabled); 5283 } 5284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5285 values[n++] = running + 5286 atomic64_read(&event->child_total_time_running); 5287 } 5288 if (read_format & PERF_FORMAT_ID) 5289 values[n++] = primary_event_id(event); 5290 5291 __output_copy(handle, values, n * sizeof(u64)); 5292 } 5293 5294 /* 5295 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5296 */ 5297 static void perf_output_read_group(struct perf_output_handle *handle, 5298 struct perf_event *event, 5299 u64 enabled, u64 running) 5300 { 5301 struct perf_event *leader = event->group_leader, *sub; 5302 u64 read_format = event->attr.read_format; 5303 u64 values[5]; 5304 int n = 0; 5305 5306 values[n++] = 1 + leader->nr_siblings; 5307 5308 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5309 values[n++] = enabled; 5310 5311 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5312 values[n++] = running; 5313 5314 if (leader != event) 5315 leader->pmu->read(leader); 5316 5317 values[n++] = perf_event_count(leader); 5318 if (read_format & PERF_FORMAT_ID) 5319 values[n++] = primary_event_id(leader); 5320 5321 __output_copy(handle, values, n * sizeof(u64)); 5322 5323 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5324 n = 0; 5325 5326 if ((sub != event) && 5327 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5328 sub->pmu->read(sub); 5329 5330 values[n++] = perf_event_count(sub); 5331 if (read_format & PERF_FORMAT_ID) 5332 values[n++] = primary_event_id(sub); 5333 5334 __output_copy(handle, values, n * sizeof(u64)); 5335 } 5336 } 5337 5338 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5339 PERF_FORMAT_TOTAL_TIME_RUNNING) 5340 5341 static void perf_output_read(struct perf_output_handle *handle, 5342 struct perf_event *event) 5343 { 5344 u64 enabled = 0, running = 0, now; 5345 u64 read_format = event->attr.read_format; 5346 5347 /* 5348 * compute total_time_enabled, total_time_running 5349 * based on snapshot values taken when the event 5350 * was last scheduled in. 5351 * 5352 * we cannot simply called update_context_time() 5353 * because of locking issue as we are called in 5354 * NMI context 5355 */ 5356 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5357 calc_timer_values(event, &now, &enabled, &running); 5358 5359 if (event->attr.read_format & PERF_FORMAT_GROUP) 5360 perf_output_read_group(handle, event, enabled, running); 5361 else 5362 perf_output_read_one(handle, event, enabled, running); 5363 } 5364 5365 void perf_output_sample(struct perf_output_handle *handle, 5366 struct perf_event_header *header, 5367 struct perf_sample_data *data, 5368 struct perf_event *event) 5369 { 5370 u64 sample_type = data->type; 5371 5372 perf_output_put(handle, *header); 5373 5374 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5375 perf_output_put(handle, data->id); 5376 5377 if (sample_type & PERF_SAMPLE_IP) 5378 perf_output_put(handle, data->ip); 5379 5380 if (sample_type & PERF_SAMPLE_TID) 5381 perf_output_put(handle, data->tid_entry); 5382 5383 if (sample_type & PERF_SAMPLE_TIME) 5384 perf_output_put(handle, data->time); 5385 5386 if (sample_type & PERF_SAMPLE_ADDR) 5387 perf_output_put(handle, data->addr); 5388 5389 if (sample_type & PERF_SAMPLE_ID) 5390 perf_output_put(handle, data->id); 5391 5392 if (sample_type & PERF_SAMPLE_STREAM_ID) 5393 perf_output_put(handle, data->stream_id); 5394 5395 if (sample_type & PERF_SAMPLE_CPU) 5396 perf_output_put(handle, data->cpu_entry); 5397 5398 if (sample_type & PERF_SAMPLE_PERIOD) 5399 perf_output_put(handle, data->period); 5400 5401 if (sample_type & PERF_SAMPLE_READ) 5402 perf_output_read(handle, event); 5403 5404 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5405 if (data->callchain) { 5406 int size = 1; 5407 5408 if (data->callchain) 5409 size += data->callchain->nr; 5410 5411 size *= sizeof(u64); 5412 5413 __output_copy(handle, data->callchain, size); 5414 } else { 5415 u64 nr = 0; 5416 perf_output_put(handle, nr); 5417 } 5418 } 5419 5420 if (sample_type & PERF_SAMPLE_RAW) { 5421 if (data->raw) { 5422 u32 raw_size = data->raw->size; 5423 u32 real_size = round_up(raw_size + sizeof(u32), 5424 sizeof(u64)) - sizeof(u32); 5425 u64 zero = 0; 5426 5427 perf_output_put(handle, real_size); 5428 __output_copy(handle, data->raw->data, raw_size); 5429 if (real_size - raw_size) 5430 __output_copy(handle, &zero, real_size - raw_size); 5431 } else { 5432 struct { 5433 u32 size; 5434 u32 data; 5435 } raw = { 5436 .size = sizeof(u32), 5437 .data = 0, 5438 }; 5439 perf_output_put(handle, raw); 5440 } 5441 } 5442 5443 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5444 if (data->br_stack) { 5445 size_t size; 5446 5447 size = data->br_stack->nr 5448 * sizeof(struct perf_branch_entry); 5449 5450 perf_output_put(handle, data->br_stack->nr); 5451 perf_output_copy(handle, data->br_stack->entries, size); 5452 } else { 5453 /* 5454 * we always store at least the value of nr 5455 */ 5456 u64 nr = 0; 5457 perf_output_put(handle, nr); 5458 } 5459 } 5460 5461 if (sample_type & PERF_SAMPLE_REGS_USER) { 5462 u64 abi = data->regs_user.abi; 5463 5464 /* 5465 * If there are no regs to dump, notice it through 5466 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5467 */ 5468 perf_output_put(handle, abi); 5469 5470 if (abi) { 5471 u64 mask = event->attr.sample_regs_user; 5472 perf_output_sample_regs(handle, 5473 data->regs_user.regs, 5474 mask); 5475 } 5476 } 5477 5478 if (sample_type & PERF_SAMPLE_STACK_USER) { 5479 perf_output_sample_ustack(handle, 5480 data->stack_user_size, 5481 data->regs_user.regs); 5482 } 5483 5484 if (sample_type & PERF_SAMPLE_WEIGHT) 5485 perf_output_put(handle, data->weight); 5486 5487 if (sample_type & PERF_SAMPLE_DATA_SRC) 5488 perf_output_put(handle, data->data_src.val); 5489 5490 if (sample_type & PERF_SAMPLE_TRANSACTION) 5491 perf_output_put(handle, data->txn); 5492 5493 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5494 u64 abi = data->regs_intr.abi; 5495 /* 5496 * If there are no regs to dump, notice it through 5497 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5498 */ 5499 perf_output_put(handle, abi); 5500 5501 if (abi) { 5502 u64 mask = event->attr.sample_regs_intr; 5503 5504 perf_output_sample_regs(handle, 5505 data->regs_intr.regs, 5506 mask); 5507 } 5508 } 5509 5510 if (!event->attr.watermark) { 5511 int wakeup_events = event->attr.wakeup_events; 5512 5513 if (wakeup_events) { 5514 struct ring_buffer *rb = handle->rb; 5515 int events = local_inc_return(&rb->events); 5516 5517 if (events >= wakeup_events) { 5518 local_sub(wakeup_events, &rb->events); 5519 local_inc(&rb->wakeup); 5520 } 5521 } 5522 } 5523 } 5524 5525 void perf_prepare_sample(struct perf_event_header *header, 5526 struct perf_sample_data *data, 5527 struct perf_event *event, 5528 struct pt_regs *regs) 5529 { 5530 u64 sample_type = event->attr.sample_type; 5531 5532 header->type = PERF_RECORD_SAMPLE; 5533 header->size = sizeof(*header) + event->header_size; 5534 5535 header->misc = 0; 5536 header->misc |= perf_misc_flags(regs); 5537 5538 __perf_event_header__init_id(header, data, event); 5539 5540 if (sample_type & PERF_SAMPLE_IP) 5541 data->ip = perf_instruction_pointer(regs); 5542 5543 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5544 int size = 1; 5545 5546 data->callchain = perf_callchain(event, regs); 5547 5548 if (data->callchain) 5549 size += data->callchain->nr; 5550 5551 header->size += size * sizeof(u64); 5552 } 5553 5554 if (sample_type & PERF_SAMPLE_RAW) { 5555 int size = sizeof(u32); 5556 5557 if (data->raw) 5558 size += data->raw->size; 5559 else 5560 size += sizeof(u32); 5561 5562 header->size += round_up(size, sizeof(u64)); 5563 } 5564 5565 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5566 int size = sizeof(u64); /* nr */ 5567 if (data->br_stack) { 5568 size += data->br_stack->nr 5569 * sizeof(struct perf_branch_entry); 5570 } 5571 header->size += size; 5572 } 5573 5574 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5575 perf_sample_regs_user(&data->regs_user, regs, 5576 &data->regs_user_copy); 5577 5578 if (sample_type & PERF_SAMPLE_REGS_USER) { 5579 /* regs dump ABI info */ 5580 int size = sizeof(u64); 5581 5582 if (data->regs_user.regs) { 5583 u64 mask = event->attr.sample_regs_user; 5584 size += hweight64(mask) * sizeof(u64); 5585 } 5586 5587 header->size += size; 5588 } 5589 5590 if (sample_type & PERF_SAMPLE_STACK_USER) { 5591 /* 5592 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5593 * processed as the last one or have additional check added 5594 * in case new sample type is added, because we could eat 5595 * up the rest of the sample size. 5596 */ 5597 u16 stack_size = event->attr.sample_stack_user; 5598 u16 size = sizeof(u64); 5599 5600 stack_size = perf_sample_ustack_size(stack_size, header->size, 5601 data->regs_user.regs); 5602 5603 /* 5604 * If there is something to dump, add space for the dump 5605 * itself and for the field that tells the dynamic size, 5606 * which is how many have been actually dumped. 5607 */ 5608 if (stack_size) 5609 size += sizeof(u64) + stack_size; 5610 5611 data->stack_user_size = stack_size; 5612 header->size += size; 5613 } 5614 5615 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5616 /* regs dump ABI info */ 5617 int size = sizeof(u64); 5618 5619 perf_sample_regs_intr(&data->regs_intr, regs); 5620 5621 if (data->regs_intr.regs) { 5622 u64 mask = event->attr.sample_regs_intr; 5623 5624 size += hweight64(mask) * sizeof(u64); 5625 } 5626 5627 header->size += size; 5628 } 5629 } 5630 5631 void perf_event_output(struct perf_event *event, 5632 struct perf_sample_data *data, 5633 struct pt_regs *regs) 5634 { 5635 struct perf_output_handle handle; 5636 struct perf_event_header header; 5637 5638 /* protect the callchain buffers */ 5639 rcu_read_lock(); 5640 5641 perf_prepare_sample(&header, data, event, regs); 5642 5643 if (perf_output_begin(&handle, event, header.size)) 5644 goto exit; 5645 5646 perf_output_sample(&handle, &header, data, event); 5647 5648 perf_output_end(&handle); 5649 5650 exit: 5651 rcu_read_unlock(); 5652 } 5653 5654 /* 5655 * read event_id 5656 */ 5657 5658 struct perf_read_event { 5659 struct perf_event_header header; 5660 5661 u32 pid; 5662 u32 tid; 5663 }; 5664 5665 static void 5666 perf_event_read_event(struct perf_event *event, 5667 struct task_struct *task) 5668 { 5669 struct perf_output_handle handle; 5670 struct perf_sample_data sample; 5671 struct perf_read_event read_event = { 5672 .header = { 5673 .type = PERF_RECORD_READ, 5674 .misc = 0, 5675 .size = sizeof(read_event) + event->read_size, 5676 }, 5677 .pid = perf_event_pid(event, task), 5678 .tid = perf_event_tid(event, task), 5679 }; 5680 int ret; 5681 5682 perf_event_header__init_id(&read_event.header, &sample, event); 5683 ret = perf_output_begin(&handle, event, read_event.header.size); 5684 if (ret) 5685 return; 5686 5687 perf_output_put(&handle, read_event); 5688 perf_output_read(&handle, event); 5689 perf_event__output_id_sample(event, &handle, &sample); 5690 5691 perf_output_end(&handle); 5692 } 5693 5694 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5695 5696 static void 5697 perf_event_aux_ctx(struct perf_event_context *ctx, 5698 perf_event_aux_output_cb output, 5699 void *data) 5700 { 5701 struct perf_event *event; 5702 5703 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5704 if (event->state < PERF_EVENT_STATE_INACTIVE) 5705 continue; 5706 if (!event_filter_match(event)) 5707 continue; 5708 output(event, data); 5709 } 5710 } 5711 5712 static void 5713 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5714 struct perf_event_context *task_ctx) 5715 { 5716 rcu_read_lock(); 5717 preempt_disable(); 5718 perf_event_aux_ctx(task_ctx, output, data); 5719 preempt_enable(); 5720 rcu_read_unlock(); 5721 } 5722 5723 static void 5724 perf_event_aux(perf_event_aux_output_cb output, void *data, 5725 struct perf_event_context *task_ctx) 5726 { 5727 struct perf_cpu_context *cpuctx; 5728 struct perf_event_context *ctx; 5729 struct pmu *pmu; 5730 int ctxn; 5731 5732 /* 5733 * If we have task_ctx != NULL we only notify 5734 * the task context itself. The task_ctx is set 5735 * only for EXIT events before releasing task 5736 * context. 5737 */ 5738 if (task_ctx) { 5739 perf_event_aux_task_ctx(output, data, task_ctx); 5740 return; 5741 } 5742 5743 rcu_read_lock(); 5744 list_for_each_entry_rcu(pmu, &pmus, entry) { 5745 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5746 if (cpuctx->unique_pmu != pmu) 5747 goto next; 5748 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5749 ctxn = pmu->task_ctx_nr; 5750 if (ctxn < 0) 5751 goto next; 5752 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5753 if (ctx) 5754 perf_event_aux_ctx(ctx, output, data); 5755 next: 5756 put_cpu_ptr(pmu->pmu_cpu_context); 5757 } 5758 rcu_read_unlock(); 5759 } 5760 5761 /* 5762 * task tracking -- fork/exit 5763 * 5764 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5765 */ 5766 5767 struct perf_task_event { 5768 struct task_struct *task; 5769 struct perf_event_context *task_ctx; 5770 5771 struct { 5772 struct perf_event_header header; 5773 5774 u32 pid; 5775 u32 ppid; 5776 u32 tid; 5777 u32 ptid; 5778 u64 time; 5779 } event_id; 5780 }; 5781 5782 static int perf_event_task_match(struct perf_event *event) 5783 { 5784 return event->attr.comm || event->attr.mmap || 5785 event->attr.mmap2 || event->attr.mmap_data || 5786 event->attr.task; 5787 } 5788 5789 static void perf_event_task_output(struct perf_event *event, 5790 void *data) 5791 { 5792 struct perf_task_event *task_event = data; 5793 struct perf_output_handle handle; 5794 struct perf_sample_data sample; 5795 struct task_struct *task = task_event->task; 5796 int ret, size = task_event->event_id.header.size; 5797 5798 if (!perf_event_task_match(event)) 5799 return; 5800 5801 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5802 5803 ret = perf_output_begin(&handle, event, 5804 task_event->event_id.header.size); 5805 if (ret) 5806 goto out; 5807 5808 task_event->event_id.pid = perf_event_pid(event, task); 5809 task_event->event_id.ppid = perf_event_pid(event, current); 5810 5811 task_event->event_id.tid = perf_event_tid(event, task); 5812 task_event->event_id.ptid = perf_event_tid(event, current); 5813 5814 task_event->event_id.time = perf_event_clock(event); 5815 5816 perf_output_put(&handle, task_event->event_id); 5817 5818 perf_event__output_id_sample(event, &handle, &sample); 5819 5820 perf_output_end(&handle); 5821 out: 5822 task_event->event_id.header.size = size; 5823 } 5824 5825 static void perf_event_task(struct task_struct *task, 5826 struct perf_event_context *task_ctx, 5827 int new) 5828 { 5829 struct perf_task_event task_event; 5830 5831 if (!atomic_read(&nr_comm_events) && 5832 !atomic_read(&nr_mmap_events) && 5833 !atomic_read(&nr_task_events)) 5834 return; 5835 5836 task_event = (struct perf_task_event){ 5837 .task = task, 5838 .task_ctx = task_ctx, 5839 .event_id = { 5840 .header = { 5841 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5842 .misc = 0, 5843 .size = sizeof(task_event.event_id), 5844 }, 5845 /* .pid */ 5846 /* .ppid */ 5847 /* .tid */ 5848 /* .ptid */ 5849 /* .time */ 5850 }, 5851 }; 5852 5853 perf_event_aux(perf_event_task_output, 5854 &task_event, 5855 task_ctx); 5856 } 5857 5858 void perf_event_fork(struct task_struct *task) 5859 { 5860 perf_event_task(task, NULL, 1); 5861 } 5862 5863 /* 5864 * comm tracking 5865 */ 5866 5867 struct perf_comm_event { 5868 struct task_struct *task; 5869 char *comm; 5870 int comm_size; 5871 5872 struct { 5873 struct perf_event_header header; 5874 5875 u32 pid; 5876 u32 tid; 5877 } event_id; 5878 }; 5879 5880 static int perf_event_comm_match(struct perf_event *event) 5881 { 5882 return event->attr.comm; 5883 } 5884 5885 static void perf_event_comm_output(struct perf_event *event, 5886 void *data) 5887 { 5888 struct perf_comm_event *comm_event = data; 5889 struct perf_output_handle handle; 5890 struct perf_sample_data sample; 5891 int size = comm_event->event_id.header.size; 5892 int ret; 5893 5894 if (!perf_event_comm_match(event)) 5895 return; 5896 5897 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5898 ret = perf_output_begin(&handle, event, 5899 comm_event->event_id.header.size); 5900 5901 if (ret) 5902 goto out; 5903 5904 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5905 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5906 5907 perf_output_put(&handle, comm_event->event_id); 5908 __output_copy(&handle, comm_event->comm, 5909 comm_event->comm_size); 5910 5911 perf_event__output_id_sample(event, &handle, &sample); 5912 5913 perf_output_end(&handle); 5914 out: 5915 comm_event->event_id.header.size = size; 5916 } 5917 5918 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5919 { 5920 char comm[TASK_COMM_LEN]; 5921 unsigned int size; 5922 5923 memset(comm, 0, sizeof(comm)); 5924 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5925 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5926 5927 comm_event->comm = comm; 5928 comm_event->comm_size = size; 5929 5930 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5931 5932 perf_event_aux(perf_event_comm_output, 5933 comm_event, 5934 NULL); 5935 } 5936 5937 void perf_event_comm(struct task_struct *task, bool exec) 5938 { 5939 struct perf_comm_event comm_event; 5940 5941 if (!atomic_read(&nr_comm_events)) 5942 return; 5943 5944 comm_event = (struct perf_comm_event){ 5945 .task = task, 5946 /* .comm */ 5947 /* .comm_size */ 5948 .event_id = { 5949 .header = { 5950 .type = PERF_RECORD_COMM, 5951 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5952 /* .size */ 5953 }, 5954 /* .pid */ 5955 /* .tid */ 5956 }, 5957 }; 5958 5959 perf_event_comm_event(&comm_event); 5960 } 5961 5962 /* 5963 * mmap tracking 5964 */ 5965 5966 struct perf_mmap_event { 5967 struct vm_area_struct *vma; 5968 5969 const char *file_name; 5970 int file_size; 5971 int maj, min; 5972 u64 ino; 5973 u64 ino_generation; 5974 u32 prot, flags; 5975 5976 struct { 5977 struct perf_event_header header; 5978 5979 u32 pid; 5980 u32 tid; 5981 u64 start; 5982 u64 len; 5983 u64 pgoff; 5984 } event_id; 5985 }; 5986 5987 static int perf_event_mmap_match(struct perf_event *event, 5988 void *data) 5989 { 5990 struct perf_mmap_event *mmap_event = data; 5991 struct vm_area_struct *vma = mmap_event->vma; 5992 int executable = vma->vm_flags & VM_EXEC; 5993 5994 return (!executable && event->attr.mmap_data) || 5995 (executable && (event->attr.mmap || event->attr.mmap2)); 5996 } 5997 5998 static void perf_event_mmap_output(struct perf_event *event, 5999 void *data) 6000 { 6001 struct perf_mmap_event *mmap_event = data; 6002 struct perf_output_handle handle; 6003 struct perf_sample_data sample; 6004 int size = mmap_event->event_id.header.size; 6005 int ret; 6006 6007 if (!perf_event_mmap_match(event, data)) 6008 return; 6009 6010 if (event->attr.mmap2) { 6011 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6012 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6013 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6014 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6015 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6016 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6017 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6018 } 6019 6020 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6021 ret = perf_output_begin(&handle, event, 6022 mmap_event->event_id.header.size); 6023 if (ret) 6024 goto out; 6025 6026 mmap_event->event_id.pid = perf_event_pid(event, current); 6027 mmap_event->event_id.tid = perf_event_tid(event, current); 6028 6029 perf_output_put(&handle, mmap_event->event_id); 6030 6031 if (event->attr.mmap2) { 6032 perf_output_put(&handle, mmap_event->maj); 6033 perf_output_put(&handle, mmap_event->min); 6034 perf_output_put(&handle, mmap_event->ino); 6035 perf_output_put(&handle, mmap_event->ino_generation); 6036 perf_output_put(&handle, mmap_event->prot); 6037 perf_output_put(&handle, mmap_event->flags); 6038 } 6039 6040 __output_copy(&handle, mmap_event->file_name, 6041 mmap_event->file_size); 6042 6043 perf_event__output_id_sample(event, &handle, &sample); 6044 6045 perf_output_end(&handle); 6046 out: 6047 mmap_event->event_id.header.size = size; 6048 } 6049 6050 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6051 { 6052 struct vm_area_struct *vma = mmap_event->vma; 6053 struct file *file = vma->vm_file; 6054 int maj = 0, min = 0; 6055 u64 ino = 0, gen = 0; 6056 u32 prot = 0, flags = 0; 6057 unsigned int size; 6058 char tmp[16]; 6059 char *buf = NULL; 6060 char *name; 6061 6062 if (file) { 6063 struct inode *inode; 6064 dev_t dev; 6065 6066 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6067 if (!buf) { 6068 name = "//enomem"; 6069 goto cpy_name; 6070 } 6071 /* 6072 * d_path() works from the end of the rb backwards, so we 6073 * need to add enough zero bytes after the string to handle 6074 * the 64bit alignment we do later. 6075 */ 6076 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6077 if (IS_ERR(name)) { 6078 name = "//toolong"; 6079 goto cpy_name; 6080 } 6081 inode = file_inode(vma->vm_file); 6082 dev = inode->i_sb->s_dev; 6083 ino = inode->i_ino; 6084 gen = inode->i_generation; 6085 maj = MAJOR(dev); 6086 min = MINOR(dev); 6087 6088 if (vma->vm_flags & VM_READ) 6089 prot |= PROT_READ; 6090 if (vma->vm_flags & VM_WRITE) 6091 prot |= PROT_WRITE; 6092 if (vma->vm_flags & VM_EXEC) 6093 prot |= PROT_EXEC; 6094 6095 if (vma->vm_flags & VM_MAYSHARE) 6096 flags = MAP_SHARED; 6097 else 6098 flags = MAP_PRIVATE; 6099 6100 if (vma->vm_flags & VM_DENYWRITE) 6101 flags |= MAP_DENYWRITE; 6102 if (vma->vm_flags & VM_MAYEXEC) 6103 flags |= MAP_EXECUTABLE; 6104 if (vma->vm_flags & VM_LOCKED) 6105 flags |= MAP_LOCKED; 6106 if (vma->vm_flags & VM_HUGETLB) 6107 flags |= MAP_HUGETLB; 6108 6109 goto got_name; 6110 } else { 6111 if (vma->vm_ops && vma->vm_ops->name) { 6112 name = (char *) vma->vm_ops->name(vma); 6113 if (name) 6114 goto cpy_name; 6115 } 6116 6117 name = (char *)arch_vma_name(vma); 6118 if (name) 6119 goto cpy_name; 6120 6121 if (vma->vm_start <= vma->vm_mm->start_brk && 6122 vma->vm_end >= vma->vm_mm->brk) { 6123 name = "[heap]"; 6124 goto cpy_name; 6125 } 6126 if (vma->vm_start <= vma->vm_mm->start_stack && 6127 vma->vm_end >= vma->vm_mm->start_stack) { 6128 name = "[stack]"; 6129 goto cpy_name; 6130 } 6131 6132 name = "//anon"; 6133 goto cpy_name; 6134 } 6135 6136 cpy_name: 6137 strlcpy(tmp, name, sizeof(tmp)); 6138 name = tmp; 6139 got_name: 6140 /* 6141 * Since our buffer works in 8 byte units we need to align our string 6142 * size to a multiple of 8. However, we must guarantee the tail end is 6143 * zero'd out to avoid leaking random bits to userspace. 6144 */ 6145 size = strlen(name)+1; 6146 while (!IS_ALIGNED(size, sizeof(u64))) 6147 name[size++] = '\0'; 6148 6149 mmap_event->file_name = name; 6150 mmap_event->file_size = size; 6151 mmap_event->maj = maj; 6152 mmap_event->min = min; 6153 mmap_event->ino = ino; 6154 mmap_event->ino_generation = gen; 6155 mmap_event->prot = prot; 6156 mmap_event->flags = flags; 6157 6158 if (!(vma->vm_flags & VM_EXEC)) 6159 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6160 6161 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6162 6163 perf_event_aux(perf_event_mmap_output, 6164 mmap_event, 6165 NULL); 6166 6167 kfree(buf); 6168 } 6169 6170 void perf_event_mmap(struct vm_area_struct *vma) 6171 { 6172 struct perf_mmap_event mmap_event; 6173 6174 if (!atomic_read(&nr_mmap_events)) 6175 return; 6176 6177 mmap_event = (struct perf_mmap_event){ 6178 .vma = vma, 6179 /* .file_name */ 6180 /* .file_size */ 6181 .event_id = { 6182 .header = { 6183 .type = PERF_RECORD_MMAP, 6184 .misc = PERF_RECORD_MISC_USER, 6185 /* .size */ 6186 }, 6187 /* .pid */ 6188 /* .tid */ 6189 .start = vma->vm_start, 6190 .len = vma->vm_end - vma->vm_start, 6191 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6192 }, 6193 /* .maj (attr_mmap2 only) */ 6194 /* .min (attr_mmap2 only) */ 6195 /* .ino (attr_mmap2 only) */ 6196 /* .ino_generation (attr_mmap2 only) */ 6197 /* .prot (attr_mmap2 only) */ 6198 /* .flags (attr_mmap2 only) */ 6199 }; 6200 6201 perf_event_mmap_event(&mmap_event); 6202 } 6203 6204 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6205 unsigned long size, u64 flags) 6206 { 6207 struct perf_output_handle handle; 6208 struct perf_sample_data sample; 6209 struct perf_aux_event { 6210 struct perf_event_header header; 6211 u64 offset; 6212 u64 size; 6213 u64 flags; 6214 } rec = { 6215 .header = { 6216 .type = PERF_RECORD_AUX, 6217 .misc = 0, 6218 .size = sizeof(rec), 6219 }, 6220 .offset = head, 6221 .size = size, 6222 .flags = flags, 6223 }; 6224 int ret; 6225 6226 perf_event_header__init_id(&rec.header, &sample, event); 6227 ret = perf_output_begin(&handle, event, rec.header.size); 6228 6229 if (ret) 6230 return; 6231 6232 perf_output_put(&handle, rec); 6233 perf_event__output_id_sample(event, &handle, &sample); 6234 6235 perf_output_end(&handle); 6236 } 6237 6238 /* 6239 * Lost/dropped samples logging 6240 */ 6241 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6242 { 6243 struct perf_output_handle handle; 6244 struct perf_sample_data sample; 6245 int ret; 6246 6247 struct { 6248 struct perf_event_header header; 6249 u64 lost; 6250 } lost_samples_event = { 6251 .header = { 6252 .type = PERF_RECORD_LOST_SAMPLES, 6253 .misc = 0, 6254 .size = sizeof(lost_samples_event), 6255 }, 6256 .lost = lost, 6257 }; 6258 6259 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6260 6261 ret = perf_output_begin(&handle, event, 6262 lost_samples_event.header.size); 6263 if (ret) 6264 return; 6265 6266 perf_output_put(&handle, lost_samples_event); 6267 perf_event__output_id_sample(event, &handle, &sample); 6268 perf_output_end(&handle); 6269 } 6270 6271 /* 6272 * context_switch tracking 6273 */ 6274 6275 struct perf_switch_event { 6276 struct task_struct *task; 6277 struct task_struct *next_prev; 6278 6279 struct { 6280 struct perf_event_header header; 6281 u32 next_prev_pid; 6282 u32 next_prev_tid; 6283 } event_id; 6284 }; 6285 6286 static int perf_event_switch_match(struct perf_event *event) 6287 { 6288 return event->attr.context_switch; 6289 } 6290 6291 static void perf_event_switch_output(struct perf_event *event, void *data) 6292 { 6293 struct perf_switch_event *se = data; 6294 struct perf_output_handle handle; 6295 struct perf_sample_data sample; 6296 int ret; 6297 6298 if (!perf_event_switch_match(event)) 6299 return; 6300 6301 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6302 if (event->ctx->task) { 6303 se->event_id.header.type = PERF_RECORD_SWITCH; 6304 se->event_id.header.size = sizeof(se->event_id.header); 6305 } else { 6306 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6307 se->event_id.header.size = sizeof(se->event_id); 6308 se->event_id.next_prev_pid = 6309 perf_event_pid(event, se->next_prev); 6310 se->event_id.next_prev_tid = 6311 perf_event_tid(event, se->next_prev); 6312 } 6313 6314 perf_event_header__init_id(&se->event_id.header, &sample, event); 6315 6316 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6317 if (ret) 6318 return; 6319 6320 if (event->ctx->task) 6321 perf_output_put(&handle, se->event_id.header); 6322 else 6323 perf_output_put(&handle, se->event_id); 6324 6325 perf_event__output_id_sample(event, &handle, &sample); 6326 6327 perf_output_end(&handle); 6328 } 6329 6330 static void perf_event_switch(struct task_struct *task, 6331 struct task_struct *next_prev, bool sched_in) 6332 { 6333 struct perf_switch_event switch_event; 6334 6335 /* N.B. caller checks nr_switch_events != 0 */ 6336 6337 switch_event = (struct perf_switch_event){ 6338 .task = task, 6339 .next_prev = next_prev, 6340 .event_id = { 6341 .header = { 6342 /* .type */ 6343 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6344 /* .size */ 6345 }, 6346 /* .next_prev_pid */ 6347 /* .next_prev_tid */ 6348 }, 6349 }; 6350 6351 perf_event_aux(perf_event_switch_output, 6352 &switch_event, 6353 NULL); 6354 } 6355 6356 /* 6357 * IRQ throttle logging 6358 */ 6359 6360 static void perf_log_throttle(struct perf_event *event, int enable) 6361 { 6362 struct perf_output_handle handle; 6363 struct perf_sample_data sample; 6364 int ret; 6365 6366 struct { 6367 struct perf_event_header header; 6368 u64 time; 6369 u64 id; 6370 u64 stream_id; 6371 } throttle_event = { 6372 .header = { 6373 .type = PERF_RECORD_THROTTLE, 6374 .misc = 0, 6375 .size = sizeof(throttle_event), 6376 }, 6377 .time = perf_event_clock(event), 6378 .id = primary_event_id(event), 6379 .stream_id = event->id, 6380 }; 6381 6382 if (enable) 6383 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6384 6385 perf_event_header__init_id(&throttle_event.header, &sample, event); 6386 6387 ret = perf_output_begin(&handle, event, 6388 throttle_event.header.size); 6389 if (ret) 6390 return; 6391 6392 perf_output_put(&handle, throttle_event); 6393 perf_event__output_id_sample(event, &handle, &sample); 6394 perf_output_end(&handle); 6395 } 6396 6397 static void perf_log_itrace_start(struct perf_event *event) 6398 { 6399 struct perf_output_handle handle; 6400 struct perf_sample_data sample; 6401 struct perf_aux_event { 6402 struct perf_event_header header; 6403 u32 pid; 6404 u32 tid; 6405 } rec; 6406 int ret; 6407 6408 if (event->parent) 6409 event = event->parent; 6410 6411 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6412 event->hw.itrace_started) 6413 return; 6414 6415 rec.header.type = PERF_RECORD_ITRACE_START; 6416 rec.header.misc = 0; 6417 rec.header.size = sizeof(rec); 6418 rec.pid = perf_event_pid(event, current); 6419 rec.tid = perf_event_tid(event, current); 6420 6421 perf_event_header__init_id(&rec.header, &sample, event); 6422 ret = perf_output_begin(&handle, event, rec.header.size); 6423 6424 if (ret) 6425 return; 6426 6427 perf_output_put(&handle, rec); 6428 perf_event__output_id_sample(event, &handle, &sample); 6429 6430 perf_output_end(&handle); 6431 } 6432 6433 /* 6434 * Generic event overflow handling, sampling. 6435 */ 6436 6437 static int __perf_event_overflow(struct perf_event *event, 6438 int throttle, struct perf_sample_data *data, 6439 struct pt_regs *regs) 6440 { 6441 int events = atomic_read(&event->event_limit); 6442 struct hw_perf_event *hwc = &event->hw; 6443 u64 seq; 6444 int ret = 0; 6445 6446 /* 6447 * Non-sampling counters might still use the PMI to fold short 6448 * hardware counters, ignore those. 6449 */ 6450 if (unlikely(!is_sampling_event(event))) 6451 return 0; 6452 6453 seq = __this_cpu_read(perf_throttled_seq); 6454 if (seq != hwc->interrupts_seq) { 6455 hwc->interrupts_seq = seq; 6456 hwc->interrupts = 1; 6457 } else { 6458 hwc->interrupts++; 6459 if (unlikely(throttle 6460 && hwc->interrupts >= max_samples_per_tick)) { 6461 __this_cpu_inc(perf_throttled_count); 6462 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6463 hwc->interrupts = MAX_INTERRUPTS; 6464 perf_log_throttle(event, 0); 6465 ret = 1; 6466 } 6467 } 6468 6469 if (event->attr.freq) { 6470 u64 now = perf_clock(); 6471 s64 delta = now - hwc->freq_time_stamp; 6472 6473 hwc->freq_time_stamp = now; 6474 6475 if (delta > 0 && delta < 2*TICK_NSEC) 6476 perf_adjust_period(event, delta, hwc->last_period, true); 6477 } 6478 6479 /* 6480 * XXX event_limit might not quite work as expected on inherited 6481 * events 6482 */ 6483 6484 event->pending_kill = POLL_IN; 6485 if (events && atomic_dec_and_test(&event->event_limit)) { 6486 ret = 1; 6487 event->pending_kill = POLL_HUP; 6488 event->pending_disable = 1; 6489 irq_work_queue(&event->pending); 6490 } 6491 6492 if (event->overflow_handler) 6493 event->overflow_handler(event, data, regs); 6494 else 6495 perf_event_output(event, data, regs); 6496 6497 if (*perf_event_fasync(event) && event->pending_kill) { 6498 event->pending_wakeup = 1; 6499 irq_work_queue(&event->pending); 6500 } 6501 6502 return ret; 6503 } 6504 6505 int perf_event_overflow(struct perf_event *event, 6506 struct perf_sample_data *data, 6507 struct pt_regs *regs) 6508 { 6509 return __perf_event_overflow(event, 1, data, regs); 6510 } 6511 6512 /* 6513 * Generic software event infrastructure 6514 */ 6515 6516 struct swevent_htable { 6517 struct swevent_hlist *swevent_hlist; 6518 struct mutex hlist_mutex; 6519 int hlist_refcount; 6520 6521 /* Recursion avoidance in each contexts */ 6522 int recursion[PERF_NR_CONTEXTS]; 6523 }; 6524 6525 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6526 6527 /* 6528 * We directly increment event->count and keep a second value in 6529 * event->hw.period_left to count intervals. This period event 6530 * is kept in the range [-sample_period, 0] so that we can use the 6531 * sign as trigger. 6532 */ 6533 6534 u64 perf_swevent_set_period(struct perf_event *event) 6535 { 6536 struct hw_perf_event *hwc = &event->hw; 6537 u64 period = hwc->last_period; 6538 u64 nr, offset; 6539 s64 old, val; 6540 6541 hwc->last_period = hwc->sample_period; 6542 6543 again: 6544 old = val = local64_read(&hwc->period_left); 6545 if (val < 0) 6546 return 0; 6547 6548 nr = div64_u64(period + val, period); 6549 offset = nr * period; 6550 val -= offset; 6551 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6552 goto again; 6553 6554 return nr; 6555 } 6556 6557 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6558 struct perf_sample_data *data, 6559 struct pt_regs *regs) 6560 { 6561 struct hw_perf_event *hwc = &event->hw; 6562 int throttle = 0; 6563 6564 if (!overflow) 6565 overflow = perf_swevent_set_period(event); 6566 6567 if (hwc->interrupts == MAX_INTERRUPTS) 6568 return; 6569 6570 for (; overflow; overflow--) { 6571 if (__perf_event_overflow(event, throttle, 6572 data, regs)) { 6573 /* 6574 * We inhibit the overflow from happening when 6575 * hwc->interrupts == MAX_INTERRUPTS. 6576 */ 6577 break; 6578 } 6579 throttle = 1; 6580 } 6581 } 6582 6583 static void perf_swevent_event(struct perf_event *event, u64 nr, 6584 struct perf_sample_data *data, 6585 struct pt_regs *regs) 6586 { 6587 struct hw_perf_event *hwc = &event->hw; 6588 6589 local64_add(nr, &event->count); 6590 6591 if (!regs) 6592 return; 6593 6594 if (!is_sampling_event(event)) 6595 return; 6596 6597 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6598 data->period = nr; 6599 return perf_swevent_overflow(event, 1, data, regs); 6600 } else 6601 data->period = event->hw.last_period; 6602 6603 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6604 return perf_swevent_overflow(event, 1, data, regs); 6605 6606 if (local64_add_negative(nr, &hwc->period_left)) 6607 return; 6608 6609 perf_swevent_overflow(event, 0, data, regs); 6610 } 6611 6612 static int perf_exclude_event(struct perf_event *event, 6613 struct pt_regs *regs) 6614 { 6615 if (event->hw.state & PERF_HES_STOPPED) 6616 return 1; 6617 6618 if (regs) { 6619 if (event->attr.exclude_user && user_mode(regs)) 6620 return 1; 6621 6622 if (event->attr.exclude_kernel && !user_mode(regs)) 6623 return 1; 6624 } 6625 6626 return 0; 6627 } 6628 6629 static int perf_swevent_match(struct perf_event *event, 6630 enum perf_type_id type, 6631 u32 event_id, 6632 struct perf_sample_data *data, 6633 struct pt_regs *regs) 6634 { 6635 if (event->attr.type != type) 6636 return 0; 6637 6638 if (event->attr.config != event_id) 6639 return 0; 6640 6641 if (perf_exclude_event(event, regs)) 6642 return 0; 6643 6644 return 1; 6645 } 6646 6647 static inline u64 swevent_hash(u64 type, u32 event_id) 6648 { 6649 u64 val = event_id | (type << 32); 6650 6651 return hash_64(val, SWEVENT_HLIST_BITS); 6652 } 6653 6654 static inline struct hlist_head * 6655 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6656 { 6657 u64 hash = swevent_hash(type, event_id); 6658 6659 return &hlist->heads[hash]; 6660 } 6661 6662 /* For the read side: events when they trigger */ 6663 static inline struct hlist_head * 6664 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6665 { 6666 struct swevent_hlist *hlist; 6667 6668 hlist = rcu_dereference(swhash->swevent_hlist); 6669 if (!hlist) 6670 return NULL; 6671 6672 return __find_swevent_head(hlist, type, event_id); 6673 } 6674 6675 /* For the event head insertion and removal in the hlist */ 6676 static inline struct hlist_head * 6677 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6678 { 6679 struct swevent_hlist *hlist; 6680 u32 event_id = event->attr.config; 6681 u64 type = event->attr.type; 6682 6683 /* 6684 * Event scheduling is always serialized against hlist allocation 6685 * and release. Which makes the protected version suitable here. 6686 * The context lock guarantees that. 6687 */ 6688 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6689 lockdep_is_held(&event->ctx->lock)); 6690 if (!hlist) 6691 return NULL; 6692 6693 return __find_swevent_head(hlist, type, event_id); 6694 } 6695 6696 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6697 u64 nr, 6698 struct perf_sample_data *data, 6699 struct pt_regs *regs) 6700 { 6701 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6702 struct perf_event *event; 6703 struct hlist_head *head; 6704 6705 rcu_read_lock(); 6706 head = find_swevent_head_rcu(swhash, type, event_id); 6707 if (!head) 6708 goto end; 6709 6710 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6711 if (perf_swevent_match(event, type, event_id, data, regs)) 6712 perf_swevent_event(event, nr, data, regs); 6713 } 6714 end: 6715 rcu_read_unlock(); 6716 } 6717 6718 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6719 6720 int perf_swevent_get_recursion_context(void) 6721 { 6722 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6723 6724 return get_recursion_context(swhash->recursion); 6725 } 6726 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6727 6728 inline void perf_swevent_put_recursion_context(int rctx) 6729 { 6730 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6731 6732 put_recursion_context(swhash->recursion, rctx); 6733 } 6734 6735 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6736 { 6737 struct perf_sample_data data; 6738 6739 if (WARN_ON_ONCE(!regs)) 6740 return; 6741 6742 perf_sample_data_init(&data, addr, 0); 6743 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6744 } 6745 6746 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6747 { 6748 int rctx; 6749 6750 preempt_disable_notrace(); 6751 rctx = perf_swevent_get_recursion_context(); 6752 if (unlikely(rctx < 0)) 6753 goto fail; 6754 6755 ___perf_sw_event(event_id, nr, regs, addr); 6756 6757 perf_swevent_put_recursion_context(rctx); 6758 fail: 6759 preempt_enable_notrace(); 6760 } 6761 6762 static void perf_swevent_read(struct perf_event *event) 6763 { 6764 } 6765 6766 static int perf_swevent_add(struct perf_event *event, int flags) 6767 { 6768 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6769 struct hw_perf_event *hwc = &event->hw; 6770 struct hlist_head *head; 6771 6772 if (is_sampling_event(event)) { 6773 hwc->last_period = hwc->sample_period; 6774 perf_swevent_set_period(event); 6775 } 6776 6777 hwc->state = !(flags & PERF_EF_START); 6778 6779 head = find_swevent_head(swhash, event); 6780 if (WARN_ON_ONCE(!head)) 6781 return -EINVAL; 6782 6783 hlist_add_head_rcu(&event->hlist_entry, head); 6784 perf_event_update_userpage(event); 6785 6786 return 0; 6787 } 6788 6789 static void perf_swevent_del(struct perf_event *event, int flags) 6790 { 6791 hlist_del_rcu(&event->hlist_entry); 6792 } 6793 6794 static void perf_swevent_start(struct perf_event *event, int flags) 6795 { 6796 event->hw.state = 0; 6797 } 6798 6799 static void perf_swevent_stop(struct perf_event *event, int flags) 6800 { 6801 event->hw.state = PERF_HES_STOPPED; 6802 } 6803 6804 /* Deref the hlist from the update side */ 6805 static inline struct swevent_hlist * 6806 swevent_hlist_deref(struct swevent_htable *swhash) 6807 { 6808 return rcu_dereference_protected(swhash->swevent_hlist, 6809 lockdep_is_held(&swhash->hlist_mutex)); 6810 } 6811 6812 static void swevent_hlist_release(struct swevent_htable *swhash) 6813 { 6814 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6815 6816 if (!hlist) 6817 return; 6818 6819 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6820 kfree_rcu(hlist, rcu_head); 6821 } 6822 6823 static void swevent_hlist_put_cpu(int cpu) 6824 { 6825 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6826 6827 mutex_lock(&swhash->hlist_mutex); 6828 6829 if (!--swhash->hlist_refcount) 6830 swevent_hlist_release(swhash); 6831 6832 mutex_unlock(&swhash->hlist_mutex); 6833 } 6834 6835 static void swevent_hlist_put(void) 6836 { 6837 int cpu; 6838 6839 for_each_possible_cpu(cpu) 6840 swevent_hlist_put_cpu(cpu); 6841 } 6842 6843 static int swevent_hlist_get_cpu(int cpu) 6844 { 6845 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6846 int err = 0; 6847 6848 mutex_lock(&swhash->hlist_mutex); 6849 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6850 struct swevent_hlist *hlist; 6851 6852 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6853 if (!hlist) { 6854 err = -ENOMEM; 6855 goto exit; 6856 } 6857 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6858 } 6859 swhash->hlist_refcount++; 6860 exit: 6861 mutex_unlock(&swhash->hlist_mutex); 6862 6863 return err; 6864 } 6865 6866 static int swevent_hlist_get(void) 6867 { 6868 int err, cpu, failed_cpu; 6869 6870 get_online_cpus(); 6871 for_each_possible_cpu(cpu) { 6872 err = swevent_hlist_get_cpu(cpu); 6873 if (err) { 6874 failed_cpu = cpu; 6875 goto fail; 6876 } 6877 } 6878 put_online_cpus(); 6879 6880 return 0; 6881 fail: 6882 for_each_possible_cpu(cpu) { 6883 if (cpu == failed_cpu) 6884 break; 6885 swevent_hlist_put_cpu(cpu); 6886 } 6887 6888 put_online_cpus(); 6889 return err; 6890 } 6891 6892 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6893 6894 static void sw_perf_event_destroy(struct perf_event *event) 6895 { 6896 u64 event_id = event->attr.config; 6897 6898 WARN_ON(event->parent); 6899 6900 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6901 swevent_hlist_put(); 6902 } 6903 6904 static int perf_swevent_init(struct perf_event *event) 6905 { 6906 u64 event_id = event->attr.config; 6907 6908 if (event->attr.type != PERF_TYPE_SOFTWARE) 6909 return -ENOENT; 6910 6911 /* 6912 * no branch sampling for software events 6913 */ 6914 if (has_branch_stack(event)) 6915 return -EOPNOTSUPP; 6916 6917 switch (event_id) { 6918 case PERF_COUNT_SW_CPU_CLOCK: 6919 case PERF_COUNT_SW_TASK_CLOCK: 6920 return -ENOENT; 6921 6922 default: 6923 break; 6924 } 6925 6926 if (event_id >= PERF_COUNT_SW_MAX) 6927 return -ENOENT; 6928 6929 if (!event->parent) { 6930 int err; 6931 6932 err = swevent_hlist_get(); 6933 if (err) 6934 return err; 6935 6936 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6937 event->destroy = sw_perf_event_destroy; 6938 } 6939 6940 return 0; 6941 } 6942 6943 static struct pmu perf_swevent = { 6944 .task_ctx_nr = perf_sw_context, 6945 6946 .capabilities = PERF_PMU_CAP_NO_NMI, 6947 6948 .event_init = perf_swevent_init, 6949 .add = perf_swevent_add, 6950 .del = perf_swevent_del, 6951 .start = perf_swevent_start, 6952 .stop = perf_swevent_stop, 6953 .read = perf_swevent_read, 6954 }; 6955 6956 #ifdef CONFIG_EVENT_TRACING 6957 6958 static int perf_tp_filter_match(struct perf_event *event, 6959 struct perf_sample_data *data) 6960 { 6961 void *record = data->raw->data; 6962 6963 /* only top level events have filters set */ 6964 if (event->parent) 6965 event = event->parent; 6966 6967 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6968 return 1; 6969 return 0; 6970 } 6971 6972 static int perf_tp_event_match(struct perf_event *event, 6973 struct perf_sample_data *data, 6974 struct pt_regs *regs) 6975 { 6976 if (event->hw.state & PERF_HES_STOPPED) 6977 return 0; 6978 /* 6979 * All tracepoints are from kernel-space. 6980 */ 6981 if (event->attr.exclude_kernel) 6982 return 0; 6983 6984 if (!perf_tp_filter_match(event, data)) 6985 return 0; 6986 6987 return 1; 6988 } 6989 6990 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6991 struct pt_regs *regs, struct hlist_head *head, int rctx, 6992 struct task_struct *task) 6993 { 6994 struct perf_sample_data data; 6995 struct perf_event *event; 6996 6997 struct perf_raw_record raw = { 6998 .size = entry_size, 6999 .data = record, 7000 }; 7001 7002 perf_sample_data_init(&data, addr, 0); 7003 data.raw = &raw; 7004 7005 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7006 if (perf_tp_event_match(event, &data, regs)) 7007 perf_swevent_event(event, count, &data, regs); 7008 } 7009 7010 /* 7011 * If we got specified a target task, also iterate its context and 7012 * deliver this event there too. 7013 */ 7014 if (task && task != current) { 7015 struct perf_event_context *ctx; 7016 struct trace_entry *entry = record; 7017 7018 rcu_read_lock(); 7019 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7020 if (!ctx) 7021 goto unlock; 7022 7023 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7024 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7025 continue; 7026 if (event->attr.config != entry->type) 7027 continue; 7028 if (perf_tp_event_match(event, &data, regs)) 7029 perf_swevent_event(event, count, &data, regs); 7030 } 7031 unlock: 7032 rcu_read_unlock(); 7033 } 7034 7035 perf_swevent_put_recursion_context(rctx); 7036 } 7037 EXPORT_SYMBOL_GPL(perf_tp_event); 7038 7039 static void tp_perf_event_destroy(struct perf_event *event) 7040 { 7041 perf_trace_destroy(event); 7042 } 7043 7044 static int perf_tp_event_init(struct perf_event *event) 7045 { 7046 int err; 7047 7048 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7049 return -ENOENT; 7050 7051 /* 7052 * no branch sampling for tracepoint events 7053 */ 7054 if (has_branch_stack(event)) 7055 return -EOPNOTSUPP; 7056 7057 err = perf_trace_init(event); 7058 if (err) 7059 return err; 7060 7061 event->destroy = tp_perf_event_destroy; 7062 7063 return 0; 7064 } 7065 7066 static struct pmu perf_tracepoint = { 7067 .task_ctx_nr = perf_sw_context, 7068 7069 .event_init = perf_tp_event_init, 7070 .add = perf_trace_add, 7071 .del = perf_trace_del, 7072 .start = perf_swevent_start, 7073 .stop = perf_swevent_stop, 7074 .read = perf_swevent_read, 7075 }; 7076 7077 static inline void perf_tp_register(void) 7078 { 7079 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7080 } 7081 7082 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7083 { 7084 char *filter_str; 7085 int ret; 7086 7087 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7088 return -EINVAL; 7089 7090 filter_str = strndup_user(arg, PAGE_SIZE); 7091 if (IS_ERR(filter_str)) 7092 return PTR_ERR(filter_str); 7093 7094 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 7095 7096 kfree(filter_str); 7097 return ret; 7098 } 7099 7100 static void perf_event_free_filter(struct perf_event *event) 7101 { 7102 ftrace_profile_free_filter(event); 7103 } 7104 7105 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7106 { 7107 struct bpf_prog *prog; 7108 7109 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7110 return -EINVAL; 7111 7112 if (event->tp_event->prog) 7113 return -EEXIST; 7114 7115 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7116 /* bpf programs can only be attached to u/kprobes */ 7117 return -EINVAL; 7118 7119 prog = bpf_prog_get(prog_fd); 7120 if (IS_ERR(prog)) 7121 return PTR_ERR(prog); 7122 7123 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7124 /* valid fd, but invalid bpf program type */ 7125 bpf_prog_put(prog); 7126 return -EINVAL; 7127 } 7128 7129 event->tp_event->prog = prog; 7130 7131 return 0; 7132 } 7133 7134 static void perf_event_free_bpf_prog(struct perf_event *event) 7135 { 7136 struct bpf_prog *prog; 7137 7138 if (!event->tp_event) 7139 return; 7140 7141 prog = event->tp_event->prog; 7142 if (prog) { 7143 event->tp_event->prog = NULL; 7144 bpf_prog_put(prog); 7145 } 7146 } 7147 7148 #else 7149 7150 static inline void perf_tp_register(void) 7151 { 7152 } 7153 7154 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7155 { 7156 return -ENOENT; 7157 } 7158 7159 static void perf_event_free_filter(struct perf_event *event) 7160 { 7161 } 7162 7163 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7164 { 7165 return -ENOENT; 7166 } 7167 7168 static void perf_event_free_bpf_prog(struct perf_event *event) 7169 { 7170 } 7171 #endif /* CONFIG_EVENT_TRACING */ 7172 7173 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7174 void perf_bp_event(struct perf_event *bp, void *data) 7175 { 7176 struct perf_sample_data sample; 7177 struct pt_regs *regs = data; 7178 7179 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7180 7181 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7182 perf_swevent_event(bp, 1, &sample, regs); 7183 } 7184 #endif 7185 7186 /* 7187 * hrtimer based swevent callback 7188 */ 7189 7190 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7191 { 7192 enum hrtimer_restart ret = HRTIMER_RESTART; 7193 struct perf_sample_data data; 7194 struct pt_regs *regs; 7195 struct perf_event *event; 7196 u64 period; 7197 7198 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7199 7200 if (event->state != PERF_EVENT_STATE_ACTIVE) 7201 return HRTIMER_NORESTART; 7202 7203 event->pmu->read(event); 7204 7205 perf_sample_data_init(&data, 0, event->hw.last_period); 7206 regs = get_irq_regs(); 7207 7208 if (regs && !perf_exclude_event(event, regs)) { 7209 if (!(event->attr.exclude_idle && is_idle_task(current))) 7210 if (__perf_event_overflow(event, 1, &data, regs)) 7211 ret = HRTIMER_NORESTART; 7212 } 7213 7214 period = max_t(u64, 10000, event->hw.sample_period); 7215 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7216 7217 return ret; 7218 } 7219 7220 static void perf_swevent_start_hrtimer(struct perf_event *event) 7221 { 7222 struct hw_perf_event *hwc = &event->hw; 7223 s64 period; 7224 7225 if (!is_sampling_event(event)) 7226 return; 7227 7228 period = local64_read(&hwc->period_left); 7229 if (period) { 7230 if (period < 0) 7231 period = 10000; 7232 7233 local64_set(&hwc->period_left, 0); 7234 } else { 7235 period = max_t(u64, 10000, hwc->sample_period); 7236 } 7237 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7238 HRTIMER_MODE_REL_PINNED); 7239 } 7240 7241 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7242 { 7243 struct hw_perf_event *hwc = &event->hw; 7244 7245 if (is_sampling_event(event)) { 7246 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7247 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7248 7249 hrtimer_cancel(&hwc->hrtimer); 7250 } 7251 } 7252 7253 static void perf_swevent_init_hrtimer(struct perf_event *event) 7254 { 7255 struct hw_perf_event *hwc = &event->hw; 7256 7257 if (!is_sampling_event(event)) 7258 return; 7259 7260 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7261 hwc->hrtimer.function = perf_swevent_hrtimer; 7262 7263 /* 7264 * Since hrtimers have a fixed rate, we can do a static freq->period 7265 * mapping and avoid the whole period adjust feedback stuff. 7266 */ 7267 if (event->attr.freq) { 7268 long freq = event->attr.sample_freq; 7269 7270 event->attr.sample_period = NSEC_PER_SEC / freq; 7271 hwc->sample_period = event->attr.sample_period; 7272 local64_set(&hwc->period_left, hwc->sample_period); 7273 hwc->last_period = hwc->sample_period; 7274 event->attr.freq = 0; 7275 } 7276 } 7277 7278 /* 7279 * Software event: cpu wall time clock 7280 */ 7281 7282 static void cpu_clock_event_update(struct perf_event *event) 7283 { 7284 s64 prev; 7285 u64 now; 7286 7287 now = local_clock(); 7288 prev = local64_xchg(&event->hw.prev_count, now); 7289 local64_add(now - prev, &event->count); 7290 } 7291 7292 static void cpu_clock_event_start(struct perf_event *event, int flags) 7293 { 7294 local64_set(&event->hw.prev_count, local_clock()); 7295 perf_swevent_start_hrtimer(event); 7296 } 7297 7298 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7299 { 7300 perf_swevent_cancel_hrtimer(event); 7301 cpu_clock_event_update(event); 7302 } 7303 7304 static int cpu_clock_event_add(struct perf_event *event, int flags) 7305 { 7306 if (flags & PERF_EF_START) 7307 cpu_clock_event_start(event, flags); 7308 perf_event_update_userpage(event); 7309 7310 return 0; 7311 } 7312 7313 static void cpu_clock_event_del(struct perf_event *event, int flags) 7314 { 7315 cpu_clock_event_stop(event, flags); 7316 } 7317 7318 static void cpu_clock_event_read(struct perf_event *event) 7319 { 7320 cpu_clock_event_update(event); 7321 } 7322 7323 static int cpu_clock_event_init(struct perf_event *event) 7324 { 7325 if (event->attr.type != PERF_TYPE_SOFTWARE) 7326 return -ENOENT; 7327 7328 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7329 return -ENOENT; 7330 7331 /* 7332 * no branch sampling for software events 7333 */ 7334 if (has_branch_stack(event)) 7335 return -EOPNOTSUPP; 7336 7337 perf_swevent_init_hrtimer(event); 7338 7339 return 0; 7340 } 7341 7342 static struct pmu perf_cpu_clock = { 7343 .task_ctx_nr = perf_sw_context, 7344 7345 .capabilities = PERF_PMU_CAP_NO_NMI, 7346 7347 .event_init = cpu_clock_event_init, 7348 .add = cpu_clock_event_add, 7349 .del = cpu_clock_event_del, 7350 .start = cpu_clock_event_start, 7351 .stop = cpu_clock_event_stop, 7352 .read = cpu_clock_event_read, 7353 }; 7354 7355 /* 7356 * Software event: task time clock 7357 */ 7358 7359 static void task_clock_event_update(struct perf_event *event, u64 now) 7360 { 7361 u64 prev; 7362 s64 delta; 7363 7364 prev = local64_xchg(&event->hw.prev_count, now); 7365 delta = now - prev; 7366 local64_add(delta, &event->count); 7367 } 7368 7369 static void task_clock_event_start(struct perf_event *event, int flags) 7370 { 7371 local64_set(&event->hw.prev_count, event->ctx->time); 7372 perf_swevent_start_hrtimer(event); 7373 } 7374 7375 static void task_clock_event_stop(struct perf_event *event, int flags) 7376 { 7377 perf_swevent_cancel_hrtimer(event); 7378 task_clock_event_update(event, event->ctx->time); 7379 } 7380 7381 static int task_clock_event_add(struct perf_event *event, int flags) 7382 { 7383 if (flags & PERF_EF_START) 7384 task_clock_event_start(event, flags); 7385 perf_event_update_userpage(event); 7386 7387 return 0; 7388 } 7389 7390 static void task_clock_event_del(struct perf_event *event, int flags) 7391 { 7392 task_clock_event_stop(event, PERF_EF_UPDATE); 7393 } 7394 7395 static void task_clock_event_read(struct perf_event *event) 7396 { 7397 u64 now = perf_clock(); 7398 u64 delta = now - event->ctx->timestamp; 7399 u64 time = event->ctx->time + delta; 7400 7401 task_clock_event_update(event, time); 7402 } 7403 7404 static int task_clock_event_init(struct perf_event *event) 7405 { 7406 if (event->attr.type != PERF_TYPE_SOFTWARE) 7407 return -ENOENT; 7408 7409 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7410 return -ENOENT; 7411 7412 /* 7413 * no branch sampling for software events 7414 */ 7415 if (has_branch_stack(event)) 7416 return -EOPNOTSUPP; 7417 7418 perf_swevent_init_hrtimer(event); 7419 7420 return 0; 7421 } 7422 7423 static struct pmu perf_task_clock = { 7424 .task_ctx_nr = perf_sw_context, 7425 7426 .capabilities = PERF_PMU_CAP_NO_NMI, 7427 7428 .event_init = task_clock_event_init, 7429 .add = task_clock_event_add, 7430 .del = task_clock_event_del, 7431 .start = task_clock_event_start, 7432 .stop = task_clock_event_stop, 7433 .read = task_clock_event_read, 7434 }; 7435 7436 static void perf_pmu_nop_void(struct pmu *pmu) 7437 { 7438 } 7439 7440 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 7441 { 7442 } 7443 7444 static int perf_pmu_nop_int(struct pmu *pmu) 7445 { 7446 return 0; 7447 } 7448 7449 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 7450 7451 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 7452 { 7453 __this_cpu_write(nop_txn_flags, flags); 7454 7455 if (flags & ~PERF_PMU_TXN_ADD) 7456 return; 7457 7458 perf_pmu_disable(pmu); 7459 } 7460 7461 static int perf_pmu_commit_txn(struct pmu *pmu) 7462 { 7463 unsigned int flags = __this_cpu_read(nop_txn_flags); 7464 7465 __this_cpu_write(nop_txn_flags, 0); 7466 7467 if (flags & ~PERF_PMU_TXN_ADD) 7468 return 0; 7469 7470 perf_pmu_enable(pmu); 7471 return 0; 7472 } 7473 7474 static void perf_pmu_cancel_txn(struct pmu *pmu) 7475 { 7476 unsigned int flags = __this_cpu_read(nop_txn_flags); 7477 7478 __this_cpu_write(nop_txn_flags, 0); 7479 7480 if (flags & ~PERF_PMU_TXN_ADD) 7481 return; 7482 7483 perf_pmu_enable(pmu); 7484 } 7485 7486 static int perf_event_idx_default(struct perf_event *event) 7487 { 7488 return 0; 7489 } 7490 7491 /* 7492 * Ensures all contexts with the same task_ctx_nr have the same 7493 * pmu_cpu_context too. 7494 */ 7495 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7496 { 7497 struct pmu *pmu; 7498 7499 if (ctxn < 0) 7500 return NULL; 7501 7502 list_for_each_entry(pmu, &pmus, entry) { 7503 if (pmu->task_ctx_nr == ctxn) 7504 return pmu->pmu_cpu_context; 7505 } 7506 7507 return NULL; 7508 } 7509 7510 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7511 { 7512 int cpu; 7513 7514 for_each_possible_cpu(cpu) { 7515 struct perf_cpu_context *cpuctx; 7516 7517 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7518 7519 if (cpuctx->unique_pmu == old_pmu) 7520 cpuctx->unique_pmu = pmu; 7521 } 7522 } 7523 7524 static void free_pmu_context(struct pmu *pmu) 7525 { 7526 struct pmu *i; 7527 7528 mutex_lock(&pmus_lock); 7529 /* 7530 * Like a real lame refcount. 7531 */ 7532 list_for_each_entry(i, &pmus, entry) { 7533 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7534 update_pmu_context(i, pmu); 7535 goto out; 7536 } 7537 } 7538 7539 free_percpu(pmu->pmu_cpu_context); 7540 out: 7541 mutex_unlock(&pmus_lock); 7542 } 7543 static struct idr pmu_idr; 7544 7545 static ssize_t 7546 type_show(struct device *dev, struct device_attribute *attr, char *page) 7547 { 7548 struct pmu *pmu = dev_get_drvdata(dev); 7549 7550 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7551 } 7552 static DEVICE_ATTR_RO(type); 7553 7554 static ssize_t 7555 perf_event_mux_interval_ms_show(struct device *dev, 7556 struct device_attribute *attr, 7557 char *page) 7558 { 7559 struct pmu *pmu = dev_get_drvdata(dev); 7560 7561 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7562 } 7563 7564 static DEFINE_MUTEX(mux_interval_mutex); 7565 7566 static ssize_t 7567 perf_event_mux_interval_ms_store(struct device *dev, 7568 struct device_attribute *attr, 7569 const char *buf, size_t count) 7570 { 7571 struct pmu *pmu = dev_get_drvdata(dev); 7572 int timer, cpu, ret; 7573 7574 ret = kstrtoint(buf, 0, &timer); 7575 if (ret) 7576 return ret; 7577 7578 if (timer < 1) 7579 return -EINVAL; 7580 7581 /* same value, noting to do */ 7582 if (timer == pmu->hrtimer_interval_ms) 7583 return count; 7584 7585 mutex_lock(&mux_interval_mutex); 7586 pmu->hrtimer_interval_ms = timer; 7587 7588 /* update all cpuctx for this PMU */ 7589 get_online_cpus(); 7590 for_each_online_cpu(cpu) { 7591 struct perf_cpu_context *cpuctx; 7592 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7593 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7594 7595 cpu_function_call(cpu, 7596 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7597 } 7598 put_online_cpus(); 7599 mutex_unlock(&mux_interval_mutex); 7600 7601 return count; 7602 } 7603 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7604 7605 static struct attribute *pmu_dev_attrs[] = { 7606 &dev_attr_type.attr, 7607 &dev_attr_perf_event_mux_interval_ms.attr, 7608 NULL, 7609 }; 7610 ATTRIBUTE_GROUPS(pmu_dev); 7611 7612 static int pmu_bus_running; 7613 static struct bus_type pmu_bus = { 7614 .name = "event_source", 7615 .dev_groups = pmu_dev_groups, 7616 }; 7617 7618 static void pmu_dev_release(struct device *dev) 7619 { 7620 kfree(dev); 7621 } 7622 7623 static int pmu_dev_alloc(struct pmu *pmu) 7624 { 7625 int ret = -ENOMEM; 7626 7627 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7628 if (!pmu->dev) 7629 goto out; 7630 7631 pmu->dev->groups = pmu->attr_groups; 7632 device_initialize(pmu->dev); 7633 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7634 if (ret) 7635 goto free_dev; 7636 7637 dev_set_drvdata(pmu->dev, pmu); 7638 pmu->dev->bus = &pmu_bus; 7639 pmu->dev->release = pmu_dev_release; 7640 ret = device_add(pmu->dev); 7641 if (ret) 7642 goto free_dev; 7643 7644 out: 7645 return ret; 7646 7647 free_dev: 7648 put_device(pmu->dev); 7649 goto out; 7650 } 7651 7652 static struct lock_class_key cpuctx_mutex; 7653 static struct lock_class_key cpuctx_lock; 7654 7655 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7656 { 7657 int cpu, ret; 7658 7659 mutex_lock(&pmus_lock); 7660 ret = -ENOMEM; 7661 pmu->pmu_disable_count = alloc_percpu(int); 7662 if (!pmu->pmu_disable_count) 7663 goto unlock; 7664 7665 pmu->type = -1; 7666 if (!name) 7667 goto skip_type; 7668 pmu->name = name; 7669 7670 if (type < 0) { 7671 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7672 if (type < 0) { 7673 ret = type; 7674 goto free_pdc; 7675 } 7676 } 7677 pmu->type = type; 7678 7679 if (pmu_bus_running) { 7680 ret = pmu_dev_alloc(pmu); 7681 if (ret) 7682 goto free_idr; 7683 } 7684 7685 skip_type: 7686 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7687 if (pmu->pmu_cpu_context) 7688 goto got_cpu_context; 7689 7690 ret = -ENOMEM; 7691 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7692 if (!pmu->pmu_cpu_context) 7693 goto free_dev; 7694 7695 for_each_possible_cpu(cpu) { 7696 struct perf_cpu_context *cpuctx; 7697 7698 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7699 __perf_event_init_context(&cpuctx->ctx); 7700 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7701 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7702 cpuctx->ctx.pmu = pmu; 7703 7704 __perf_mux_hrtimer_init(cpuctx, cpu); 7705 7706 cpuctx->unique_pmu = pmu; 7707 } 7708 7709 got_cpu_context: 7710 if (!pmu->start_txn) { 7711 if (pmu->pmu_enable) { 7712 /* 7713 * If we have pmu_enable/pmu_disable calls, install 7714 * transaction stubs that use that to try and batch 7715 * hardware accesses. 7716 */ 7717 pmu->start_txn = perf_pmu_start_txn; 7718 pmu->commit_txn = perf_pmu_commit_txn; 7719 pmu->cancel_txn = perf_pmu_cancel_txn; 7720 } else { 7721 pmu->start_txn = perf_pmu_nop_txn; 7722 pmu->commit_txn = perf_pmu_nop_int; 7723 pmu->cancel_txn = perf_pmu_nop_void; 7724 } 7725 } 7726 7727 if (!pmu->pmu_enable) { 7728 pmu->pmu_enable = perf_pmu_nop_void; 7729 pmu->pmu_disable = perf_pmu_nop_void; 7730 } 7731 7732 if (!pmu->event_idx) 7733 pmu->event_idx = perf_event_idx_default; 7734 7735 list_add_rcu(&pmu->entry, &pmus); 7736 atomic_set(&pmu->exclusive_cnt, 0); 7737 ret = 0; 7738 unlock: 7739 mutex_unlock(&pmus_lock); 7740 7741 return ret; 7742 7743 free_dev: 7744 device_del(pmu->dev); 7745 put_device(pmu->dev); 7746 7747 free_idr: 7748 if (pmu->type >= PERF_TYPE_MAX) 7749 idr_remove(&pmu_idr, pmu->type); 7750 7751 free_pdc: 7752 free_percpu(pmu->pmu_disable_count); 7753 goto unlock; 7754 } 7755 EXPORT_SYMBOL_GPL(perf_pmu_register); 7756 7757 void perf_pmu_unregister(struct pmu *pmu) 7758 { 7759 mutex_lock(&pmus_lock); 7760 list_del_rcu(&pmu->entry); 7761 mutex_unlock(&pmus_lock); 7762 7763 /* 7764 * We dereference the pmu list under both SRCU and regular RCU, so 7765 * synchronize against both of those. 7766 */ 7767 synchronize_srcu(&pmus_srcu); 7768 synchronize_rcu(); 7769 7770 free_percpu(pmu->pmu_disable_count); 7771 if (pmu->type >= PERF_TYPE_MAX) 7772 idr_remove(&pmu_idr, pmu->type); 7773 device_del(pmu->dev); 7774 put_device(pmu->dev); 7775 free_pmu_context(pmu); 7776 } 7777 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7778 7779 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7780 { 7781 struct perf_event_context *ctx = NULL; 7782 int ret; 7783 7784 if (!try_module_get(pmu->module)) 7785 return -ENODEV; 7786 7787 if (event->group_leader != event) { 7788 /* 7789 * This ctx->mutex can nest when we're called through 7790 * inheritance. See the perf_event_ctx_lock_nested() comment. 7791 */ 7792 ctx = perf_event_ctx_lock_nested(event->group_leader, 7793 SINGLE_DEPTH_NESTING); 7794 BUG_ON(!ctx); 7795 } 7796 7797 event->pmu = pmu; 7798 ret = pmu->event_init(event); 7799 7800 if (ctx) 7801 perf_event_ctx_unlock(event->group_leader, ctx); 7802 7803 if (ret) 7804 module_put(pmu->module); 7805 7806 return ret; 7807 } 7808 7809 static struct pmu *perf_init_event(struct perf_event *event) 7810 { 7811 struct pmu *pmu = NULL; 7812 int idx; 7813 int ret; 7814 7815 idx = srcu_read_lock(&pmus_srcu); 7816 7817 rcu_read_lock(); 7818 pmu = idr_find(&pmu_idr, event->attr.type); 7819 rcu_read_unlock(); 7820 if (pmu) { 7821 ret = perf_try_init_event(pmu, event); 7822 if (ret) 7823 pmu = ERR_PTR(ret); 7824 goto unlock; 7825 } 7826 7827 list_for_each_entry_rcu(pmu, &pmus, entry) { 7828 ret = perf_try_init_event(pmu, event); 7829 if (!ret) 7830 goto unlock; 7831 7832 if (ret != -ENOENT) { 7833 pmu = ERR_PTR(ret); 7834 goto unlock; 7835 } 7836 } 7837 pmu = ERR_PTR(-ENOENT); 7838 unlock: 7839 srcu_read_unlock(&pmus_srcu, idx); 7840 7841 return pmu; 7842 } 7843 7844 static void account_event_cpu(struct perf_event *event, int cpu) 7845 { 7846 if (event->parent) 7847 return; 7848 7849 if (is_cgroup_event(event)) 7850 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7851 } 7852 7853 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 7854 static void account_freq_event_nohz(void) 7855 { 7856 #ifdef CONFIG_NO_HZ_FULL 7857 /* Lock so we don't race with concurrent unaccount */ 7858 spin_lock(&nr_freq_lock); 7859 if (atomic_inc_return(&nr_freq_events) == 1) 7860 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 7861 spin_unlock(&nr_freq_lock); 7862 #endif 7863 } 7864 7865 static void account_freq_event(void) 7866 { 7867 if (tick_nohz_full_enabled()) 7868 account_freq_event_nohz(); 7869 else 7870 atomic_inc(&nr_freq_events); 7871 } 7872 7873 7874 static void account_event(struct perf_event *event) 7875 { 7876 bool inc = false; 7877 7878 if (event->parent) 7879 return; 7880 7881 if (event->attach_state & PERF_ATTACH_TASK) 7882 inc = true; 7883 if (event->attr.mmap || event->attr.mmap_data) 7884 atomic_inc(&nr_mmap_events); 7885 if (event->attr.comm) 7886 atomic_inc(&nr_comm_events); 7887 if (event->attr.task) 7888 atomic_inc(&nr_task_events); 7889 if (event->attr.freq) 7890 account_freq_event(); 7891 if (event->attr.context_switch) { 7892 atomic_inc(&nr_switch_events); 7893 inc = true; 7894 } 7895 if (has_branch_stack(event)) 7896 inc = true; 7897 if (is_cgroup_event(event)) 7898 inc = true; 7899 7900 if (inc) { 7901 if (atomic_inc_not_zero(&perf_sched_count)) 7902 goto enabled; 7903 7904 mutex_lock(&perf_sched_mutex); 7905 if (!atomic_read(&perf_sched_count)) { 7906 static_branch_enable(&perf_sched_events); 7907 /* 7908 * Guarantee that all CPUs observe they key change and 7909 * call the perf scheduling hooks before proceeding to 7910 * install events that need them. 7911 */ 7912 synchronize_sched(); 7913 } 7914 /* 7915 * Now that we have waited for the sync_sched(), allow further 7916 * increments to by-pass the mutex. 7917 */ 7918 atomic_inc(&perf_sched_count); 7919 mutex_unlock(&perf_sched_mutex); 7920 } 7921 enabled: 7922 7923 account_event_cpu(event, event->cpu); 7924 } 7925 7926 /* 7927 * Allocate and initialize a event structure 7928 */ 7929 static struct perf_event * 7930 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7931 struct task_struct *task, 7932 struct perf_event *group_leader, 7933 struct perf_event *parent_event, 7934 perf_overflow_handler_t overflow_handler, 7935 void *context, int cgroup_fd) 7936 { 7937 struct pmu *pmu; 7938 struct perf_event *event; 7939 struct hw_perf_event *hwc; 7940 long err = -EINVAL; 7941 7942 if ((unsigned)cpu >= nr_cpu_ids) { 7943 if (!task || cpu != -1) 7944 return ERR_PTR(-EINVAL); 7945 } 7946 7947 event = kzalloc(sizeof(*event), GFP_KERNEL); 7948 if (!event) 7949 return ERR_PTR(-ENOMEM); 7950 7951 /* 7952 * Single events are their own group leaders, with an 7953 * empty sibling list: 7954 */ 7955 if (!group_leader) 7956 group_leader = event; 7957 7958 mutex_init(&event->child_mutex); 7959 INIT_LIST_HEAD(&event->child_list); 7960 7961 INIT_LIST_HEAD(&event->group_entry); 7962 INIT_LIST_HEAD(&event->event_entry); 7963 INIT_LIST_HEAD(&event->sibling_list); 7964 INIT_LIST_HEAD(&event->rb_entry); 7965 INIT_LIST_HEAD(&event->active_entry); 7966 INIT_HLIST_NODE(&event->hlist_entry); 7967 7968 7969 init_waitqueue_head(&event->waitq); 7970 init_irq_work(&event->pending, perf_pending_event); 7971 7972 mutex_init(&event->mmap_mutex); 7973 7974 atomic_long_set(&event->refcount, 1); 7975 event->cpu = cpu; 7976 event->attr = *attr; 7977 event->group_leader = group_leader; 7978 event->pmu = NULL; 7979 event->oncpu = -1; 7980 7981 event->parent = parent_event; 7982 7983 event->ns = get_pid_ns(task_active_pid_ns(current)); 7984 event->id = atomic64_inc_return(&perf_event_id); 7985 7986 event->state = PERF_EVENT_STATE_INACTIVE; 7987 7988 if (task) { 7989 event->attach_state = PERF_ATTACH_TASK; 7990 /* 7991 * XXX pmu::event_init needs to know what task to account to 7992 * and we cannot use the ctx information because we need the 7993 * pmu before we get a ctx. 7994 */ 7995 event->hw.target = task; 7996 } 7997 7998 event->clock = &local_clock; 7999 if (parent_event) 8000 event->clock = parent_event->clock; 8001 8002 if (!overflow_handler && parent_event) { 8003 overflow_handler = parent_event->overflow_handler; 8004 context = parent_event->overflow_handler_context; 8005 } 8006 8007 event->overflow_handler = overflow_handler; 8008 event->overflow_handler_context = context; 8009 8010 perf_event__state_init(event); 8011 8012 pmu = NULL; 8013 8014 hwc = &event->hw; 8015 hwc->sample_period = attr->sample_period; 8016 if (attr->freq && attr->sample_freq) 8017 hwc->sample_period = 1; 8018 hwc->last_period = hwc->sample_period; 8019 8020 local64_set(&hwc->period_left, hwc->sample_period); 8021 8022 /* 8023 * we currently do not support PERF_FORMAT_GROUP on inherited events 8024 */ 8025 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8026 goto err_ns; 8027 8028 if (!has_branch_stack(event)) 8029 event->attr.branch_sample_type = 0; 8030 8031 if (cgroup_fd != -1) { 8032 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8033 if (err) 8034 goto err_ns; 8035 } 8036 8037 pmu = perf_init_event(event); 8038 if (!pmu) 8039 goto err_ns; 8040 else if (IS_ERR(pmu)) { 8041 err = PTR_ERR(pmu); 8042 goto err_ns; 8043 } 8044 8045 err = exclusive_event_init(event); 8046 if (err) 8047 goto err_pmu; 8048 8049 if (!event->parent) { 8050 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8051 err = get_callchain_buffers(); 8052 if (err) 8053 goto err_per_task; 8054 } 8055 } 8056 8057 /* symmetric to unaccount_event() in _free_event() */ 8058 account_event(event); 8059 8060 return event; 8061 8062 err_per_task: 8063 exclusive_event_destroy(event); 8064 8065 err_pmu: 8066 if (event->destroy) 8067 event->destroy(event); 8068 module_put(pmu->module); 8069 err_ns: 8070 if (is_cgroup_event(event)) 8071 perf_detach_cgroup(event); 8072 if (event->ns) 8073 put_pid_ns(event->ns); 8074 kfree(event); 8075 8076 return ERR_PTR(err); 8077 } 8078 8079 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8080 struct perf_event_attr *attr) 8081 { 8082 u32 size; 8083 int ret; 8084 8085 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8086 return -EFAULT; 8087 8088 /* 8089 * zero the full structure, so that a short copy will be nice. 8090 */ 8091 memset(attr, 0, sizeof(*attr)); 8092 8093 ret = get_user(size, &uattr->size); 8094 if (ret) 8095 return ret; 8096 8097 if (size > PAGE_SIZE) /* silly large */ 8098 goto err_size; 8099 8100 if (!size) /* abi compat */ 8101 size = PERF_ATTR_SIZE_VER0; 8102 8103 if (size < PERF_ATTR_SIZE_VER0) 8104 goto err_size; 8105 8106 /* 8107 * If we're handed a bigger struct than we know of, 8108 * ensure all the unknown bits are 0 - i.e. new 8109 * user-space does not rely on any kernel feature 8110 * extensions we dont know about yet. 8111 */ 8112 if (size > sizeof(*attr)) { 8113 unsigned char __user *addr; 8114 unsigned char __user *end; 8115 unsigned char val; 8116 8117 addr = (void __user *)uattr + sizeof(*attr); 8118 end = (void __user *)uattr + size; 8119 8120 for (; addr < end; addr++) { 8121 ret = get_user(val, addr); 8122 if (ret) 8123 return ret; 8124 if (val) 8125 goto err_size; 8126 } 8127 size = sizeof(*attr); 8128 } 8129 8130 ret = copy_from_user(attr, uattr, size); 8131 if (ret) 8132 return -EFAULT; 8133 8134 if (attr->__reserved_1) 8135 return -EINVAL; 8136 8137 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 8138 return -EINVAL; 8139 8140 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 8141 return -EINVAL; 8142 8143 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 8144 u64 mask = attr->branch_sample_type; 8145 8146 /* only using defined bits */ 8147 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8148 return -EINVAL; 8149 8150 /* at least one branch bit must be set */ 8151 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8152 return -EINVAL; 8153 8154 /* propagate priv level, when not set for branch */ 8155 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8156 8157 /* exclude_kernel checked on syscall entry */ 8158 if (!attr->exclude_kernel) 8159 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8160 8161 if (!attr->exclude_user) 8162 mask |= PERF_SAMPLE_BRANCH_USER; 8163 8164 if (!attr->exclude_hv) 8165 mask |= PERF_SAMPLE_BRANCH_HV; 8166 /* 8167 * adjust user setting (for HW filter setup) 8168 */ 8169 attr->branch_sample_type = mask; 8170 } 8171 /* privileged levels capture (kernel, hv): check permissions */ 8172 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 8173 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8174 return -EACCES; 8175 } 8176 8177 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 8178 ret = perf_reg_validate(attr->sample_regs_user); 8179 if (ret) 8180 return ret; 8181 } 8182 8183 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 8184 if (!arch_perf_have_user_stack_dump()) 8185 return -ENOSYS; 8186 8187 /* 8188 * We have __u32 type for the size, but so far 8189 * we can only use __u16 as maximum due to the 8190 * __u16 sample size limit. 8191 */ 8192 if (attr->sample_stack_user >= USHRT_MAX) 8193 ret = -EINVAL; 8194 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 8195 ret = -EINVAL; 8196 } 8197 8198 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 8199 ret = perf_reg_validate(attr->sample_regs_intr); 8200 out: 8201 return ret; 8202 8203 err_size: 8204 put_user(sizeof(*attr), &uattr->size); 8205 ret = -E2BIG; 8206 goto out; 8207 } 8208 8209 static int 8210 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 8211 { 8212 struct ring_buffer *rb = NULL; 8213 int ret = -EINVAL; 8214 8215 if (!output_event) 8216 goto set; 8217 8218 /* don't allow circular references */ 8219 if (event == output_event) 8220 goto out; 8221 8222 /* 8223 * Don't allow cross-cpu buffers 8224 */ 8225 if (output_event->cpu != event->cpu) 8226 goto out; 8227 8228 /* 8229 * If its not a per-cpu rb, it must be the same task. 8230 */ 8231 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8232 goto out; 8233 8234 /* 8235 * Mixing clocks in the same buffer is trouble you don't need. 8236 */ 8237 if (output_event->clock != event->clock) 8238 goto out; 8239 8240 /* 8241 * If both events generate aux data, they must be on the same PMU 8242 */ 8243 if (has_aux(event) && has_aux(output_event) && 8244 event->pmu != output_event->pmu) 8245 goto out; 8246 8247 set: 8248 mutex_lock(&event->mmap_mutex); 8249 /* Can't redirect output if we've got an active mmap() */ 8250 if (atomic_read(&event->mmap_count)) 8251 goto unlock; 8252 8253 if (output_event) { 8254 /* get the rb we want to redirect to */ 8255 rb = ring_buffer_get(output_event); 8256 if (!rb) 8257 goto unlock; 8258 } 8259 8260 ring_buffer_attach(event, rb); 8261 8262 ret = 0; 8263 unlock: 8264 mutex_unlock(&event->mmap_mutex); 8265 8266 out: 8267 return ret; 8268 } 8269 8270 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8271 { 8272 if (b < a) 8273 swap(a, b); 8274 8275 mutex_lock(a); 8276 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8277 } 8278 8279 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8280 { 8281 bool nmi_safe = false; 8282 8283 switch (clk_id) { 8284 case CLOCK_MONOTONIC: 8285 event->clock = &ktime_get_mono_fast_ns; 8286 nmi_safe = true; 8287 break; 8288 8289 case CLOCK_MONOTONIC_RAW: 8290 event->clock = &ktime_get_raw_fast_ns; 8291 nmi_safe = true; 8292 break; 8293 8294 case CLOCK_REALTIME: 8295 event->clock = &ktime_get_real_ns; 8296 break; 8297 8298 case CLOCK_BOOTTIME: 8299 event->clock = &ktime_get_boot_ns; 8300 break; 8301 8302 case CLOCK_TAI: 8303 event->clock = &ktime_get_tai_ns; 8304 break; 8305 8306 default: 8307 return -EINVAL; 8308 } 8309 8310 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8311 return -EINVAL; 8312 8313 return 0; 8314 } 8315 8316 /** 8317 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8318 * 8319 * @attr_uptr: event_id type attributes for monitoring/sampling 8320 * @pid: target pid 8321 * @cpu: target cpu 8322 * @group_fd: group leader event fd 8323 */ 8324 SYSCALL_DEFINE5(perf_event_open, 8325 struct perf_event_attr __user *, attr_uptr, 8326 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8327 { 8328 struct perf_event *group_leader = NULL, *output_event = NULL; 8329 struct perf_event *event, *sibling; 8330 struct perf_event_attr attr; 8331 struct perf_event_context *ctx, *uninitialized_var(gctx); 8332 struct file *event_file = NULL; 8333 struct fd group = {NULL, 0}; 8334 struct task_struct *task = NULL; 8335 struct pmu *pmu; 8336 int event_fd; 8337 int move_group = 0; 8338 int err; 8339 int f_flags = O_RDWR; 8340 int cgroup_fd = -1; 8341 8342 /* for future expandability... */ 8343 if (flags & ~PERF_FLAG_ALL) 8344 return -EINVAL; 8345 8346 err = perf_copy_attr(attr_uptr, &attr); 8347 if (err) 8348 return err; 8349 8350 if (!attr.exclude_kernel) { 8351 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8352 return -EACCES; 8353 } 8354 8355 if (attr.freq) { 8356 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8357 return -EINVAL; 8358 } else { 8359 if (attr.sample_period & (1ULL << 63)) 8360 return -EINVAL; 8361 } 8362 8363 /* 8364 * In cgroup mode, the pid argument is used to pass the fd 8365 * opened to the cgroup directory in cgroupfs. The cpu argument 8366 * designates the cpu on which to monitor threads from that 8367 * cgroup. 8368 */ 8369 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8370 return -EINVAL; 8371 8372 if (flags & PERF_FLAG_FD_CLOEXEC) 8373 f_flags |= O_CLOEXEC; 8374 8375 event_fd = get_unused_fd_flags(f_flags); 8376 if (event_fd < 0) 8377 return event_fd; 8378 8379 if (group_fd != -1) { 8380 err = perf_fget_light(group_fd, &group); 8381 if (err) 8382 goto err_fd; 8383 group_leader = group.file->private_data; 8384 if (flags & PERF_FLAG_FD_OUTPUT) 8385 output_event = group_leader; 8386 if (flags & PERF_FLAG_FD_NO_GROUP) 8387 group_leader = NULL; 8388 } 8389 8390 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8391 task = find_lively_task_by_vpid(pid); 8392 if (IS_ERR(task)) { 8393 err = PTR_ERR(task); 8394 goto err_group_fd; 8395 } 8396 } 8397 8398 if (task && group_leader && 8399 group_leader->attr.inherit != attr.inherit) { 8400 err = -EINVAL; 8401 goto err_task; 8402 } 8403 8404 get_online_cpus(); 8405 8406 if (flags & PERF_FLAG_PID_CGROUP) 8407 cgroup_fd = pid; 8408 8409 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8410 NULL, NULL, cgroup_fd); 8411 if (IS_ERR(event)) { 8412 err = PTR_ERR(event); 8413 goto err_cpus; 8414 } 8415 8416 if (is_sampling_event(event)) { 8417 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8418 err = -ENOTSUPP; 8419 goto err_alloc; 8420 } 8421 } 8422 8423 /* 8424 * Special case software events and allow them to be part of 8425 * any hardware group. 8426 */ 8427 pmu = event->pmu; 8428 8429 if (attr.use_clockid) { 8430 err = perf_event_set_clock(event, attr.clockid); 8431 if (err) 8432 goto err_alloc; 8433 } 8434 8435 if (group_leader && 8436 (is_software_event(event) != is_software_event(group_leader))) { 8437 if (is_software_event(event)) { 8438 /* 8439 * If event and group_leader are not both a software 8440 * event, and event is, then group leader is not. 8441 * 8442 * Allow the addition of software events to !software 8443 * groups, this is safe because software events never 8444 * fail to schedule. 8445 */ 8446 pmu = group_leader->pmu; 8447 } else if (is_software_event(group_leader) && 8448 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8449 /* 8450 * In case the group is a pure software group, and we 8451 * try to add a hardware event, move the whole group to 8452 * the hardware context. 8453 */ 8454 move_group = 1; 8455 } 8456 } 8457 8458 /* 8459 * Get the target context (task or percpu): 8460 */ 8461 ctx = find_get_context(pmu, task, event); 8462 if (IS_ERR(ctx)) { 8463 err = PTR_ERR(ctx); 8464 goto err_alloc; 8465 } 8466 8467 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8468 err = -EBUSY; 8469 goto err_context; 8470 } 8471 8472 if (task) { 8473 put_task_struct(task); 8474 task = NULL; 8475 } 8476 8477 /* 8478 * Look up the group leader (we will attach this event to it): 8479 */ 8480 if (group_leader) { 8481 err = -EINVAL; 8482 8483 /* 8484 * Do not allow a recursive hierarchy (this new sibling 8485 * becoming part of another group-sibling): 8486 */ 8487 if (group_leader->group_leader != group_leader) 8488 goto err_context; 8489 8490 /* All events in a group should have the same clock */ 8491 if (group_leader->clock != event->clock) 8492 goto err_context; 8493 8494 /* 8495 * Do not allow to attach to a group in a different 8496 * task or CPU context: 8497 */ 8498 if (move_group) { 8499 /* 8500 * Make sure we're both on the same task, or both 8501 * per-cpu events. 8502 */ 8503 if (group_leader->ctx->task != ctx->task) 8504 goto err_context; 8505 8506 /* 8507 * Make sure we're both events for the same CPU; 8508 * grouping events for different CPUs is broken; since 8509 * you can never concurrently schedule them anyhow. 8510 */ 8511 if (group_leader->cpu != event->cpu) 8512 goto err_context; 8513 } else { 8514 if (group_leader->ctx != ctx) 8515 goto err_context; 8516 } 8517 8518 /* 8519 * Only a group leader can be exclusive or pinned 8520 */ 8521 if (attr.exclusive || attr.pinned) 8522 goto err_context; 8523 } 8524 8525 if (output_event) { 8526 err = perf_event_set_output(event, output_event); 8527 if (err) 8528 goto err_context; 8529 } 8530 8531 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8532 f_flags); 8533 if (IS_ERR(event_file)) { 8534 err = PTR_ERR(event_file); 8535 goto err_context; 8536 } 8537 8538 if (move_group) { 8539 gctx = group_leader->ctx; 8540 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8541 if (gctx->task == TASK_TOMBSTONE) { 8542 err = -ESRCH; 8543 goto err_locked; 8544 } 8545 } else { 8546 mutex_lock(&ctx->mutex); 8547 } 8548 8549 if (ctx->task == TASK_TOMBSTONE) { 8550 err = -ESRCH; 8551 goto err_locked; 8552 } 8553 8554 if (!perf_event_validate_size(event)) { 8555 err = -E2BIG; 8556 goto err_locked; 8557 } 8558 8559 /* 8560 * Must be under the same ctx::mutex as perf_install_in_context(), 8561 * because we need to serialize with concurrent event creation. 8562 */ 8563 if (!exclusive_event_installable(event, ctx)) { 8564 /* exclusive and group stuff are assumed mutually exclusive */ 8565 WARN_ON_ONCE(move_group); 8566 8567 err = -EBUSY; 8568 goto err_locked; 8569 } 8570 8571 WARN_ON_ONCE(ctx->parent_ctx); 8572 8573 if (move_group) { 8574 /* 8575 * See perf_event_ctx_lock() for comments on the details 8576 * of swizzling perf_event::ctx. 8577 */ 8578 perf_remove_from_context(group_leader, 0); 8579 8580 list_for_each_entry(sibling, &group_leader->sibling_list, 8581 group_entry) { 8582 perf_remove_from_context(sibling, 0); 8583 put_ctx(gctx); 8584 } 8585 8586 /* 8587 * Wait for everybody to stop referencing the events through 8588 * the old lists, before installing it on new lists. 8589 */ 8590 synchronize_rcu(); 8591 8592 /* 8593 * Install the group siblings before the group leader. 8594 * 8595 * Because a group leader will try and install the entire group 8596 * (through the sibling list, which is still in-tact), we can 8597 * end up with siblings installed in the wrong context. 8598 * 8599 * By installing siblings first we NO-OP because they're not 8600 * reachable through the group lists. 8601 */ 8602 list_for_each_entry(sibling, &group_leader->sibling_list, 8603 group_entry) { 8604 perf_event__state_init(sibling); 8605 perf_install_in_context(ctx, sibling, sibling->cpu); 8606 get_ctx(ctx); 8607 } 8608 8609 /* 8610 * Removing from the context ends up with disabled 8611 * event. What we want here is event in the initial 8612 * startup state, ready to be add into new context. 8613 */ 8614 perf_event__state_init(group_leader); 8615 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8616 get_ctx(ctx); 8617 8618 /* 8619 * Now that all events are installed in @ctx, nothing 8620 * references @gctx anymore, so drop the last reference we have 8621 * on it. 8622 */ 8623 put_ctx(gctx); 8624 } 8625 8626 /* 8627 * Precalculate sample_data sizes; do while holding ctx::mutex such 8628 * that we're serialized against further additions and before 8629 * perf_install_in_context() which is the point the event is active and 8630 * can use these values. 8631 */ 8632 perf_event__header_size(event); 8633 perf_event__id_header_size(event); 8634 8635 event->owner = current; 8636 8637 perf_install_in_context(ctx, event, event->cpu); 8638 perf_unpin_context(ctx); 8639 8640 if (move_group) 8641 mutex_unlock(&gctx->mutex); 8642 mutex_unlock(&ctx->mutex); 8643 8644 put_online_cpus(); 8645 8646 mutex_lock(¤t->perf_event_mutex); 8647 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8648 mutex_unlock(¤t->perf_event_mutex); 8649 8650 /* 8651 * Drop the reference on the group_event after placing the 8652 * new event on the sibling_list. This ensures destruction 8653 * of the group leader will find the pointer to itself in 8654 * perf_group_detach(). 8655 */ 8656 fdput(group); 8657 fd_install(event_fd, event_file); 8658 return event_fd; 8659 8660 err_locked: 8661 if (move_group) 8662 mutex_unlock(&gctx->mutex); 8663 mutex_unlock(&ctx->mutex); 8664 /* err_file: */ 8665 fput(event_file); 8666 err_context: 8667 perf_unpin_context(ctx); 8668 put_ctx(ctx); 8669 err_alloc: 8670 /* 8671 * If event_file is set, the fput() above will have called ->release() 8672 * and that will take care of freeing the event. 8673 */ 8674 if (!event_file) 8675 free_event(event); 8676 err_cpus: 8677 put_online_cpus(); 8678 err_task: 8679 if (task) 8680 put_task_struct(task); 8681 err_group_fd: 8682 fdput(group); 8683 err_fd: 8684 put_unused_fd(event_fd); 8685 return err; 8686 } 8687 8688 /** 8689 * perf_event_create_kernel_counter 8690 * 8691 * @attr: attributes of the counter to create 8692 * @cpu: cpu in which the counter is bound 8693 * @task: task to profile (NULL for percpu) 8694 */ 8695 struct perf_event * 8696 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8697 struct task_struct *task, 8698 perf_overflow_handler_t overflow_handler, 8699 void *context) 8700 { 8701 struct perf_event_context *ctx; 8702 struct perf_event *event; 8703 int err; 8704 8705 /* 8706 * Get the target context (task or percpu): 8707 */ 8708 8709 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8710 overflow_handler, context, -1); 8711 if (IS_ERR(event)) { 8712 err = PTR_ERR(event); 8713 goto err; 8714 } 8715 8716 /* Mark owner so we could distinguish it from user events. */ 8717 event->owner = TASK_TOMBSTONE; 8718 8719 ctx = find_get_context(event->pmu, task, event); 8720 if (IS_ERR(ctx)) { 8721 err = PTR_ERR(ctx); 8722 goto err_free; 8723 } 8724 8725 WARN_ON_ONCE(ctx->parent_ctx); 8726 mutex_lock(&ctx->mutex); 8727 if (ctx->task == TASK_TOMBSTONE) { 8728 err = -ESRCH; 8729 goto err_unlock; 8730 } 8731 8732 if (!exclusive_event_installable(event, ctx)) { 8733 err = -EBUSY; 8734 goto err_unlock; 8735 } 8736 8737 perf_install_in_context(ctx, event, cpu); 8738 perf_unpin_context(ctx); 8739 mutex_unlock(&ctx->mutex); 8740 8741 return event; 8742 8743 err_unlock: 8744 mutex_unlock(&ctx->mutex); 8745 perf_unpin_context(ctx); 8746 put_ctx(ctx); 8747 err_free: 8748 free_event(event); 8749 err: 8750 return ERR_PTR(err); 8751 } 8752 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8753 8754 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8755 { 8756 struct perf_event_context *src_ctx; 8757 struct perf_event_context *dst_ctx; 8758 struct perf_event *event, *tmp; 8759 LIST_HEAD(events); 8760 8761 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8762 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8763 8764 /* 8765 * See perf_event_ctx_lock() for comments on the details 8766 * of swizzling perf_event::ctx. 8767 */ 8768 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8769 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8770 event_entry) { 8771 perf_remove_from_context(event, 0); 8772 unaccount_event_cpu(event, src_cpu); 8773 put_ctx(src_ctx); 8774 list_add(&event->migrate_entry, &events); 8775 } 8776 8777 /* 8778 * Wait for the events to quiesce before re-instating them. 8779 */ 8780 synchronize_rcu(); 8781 8782 /* 8783 * Re-instate events in 2 passes. 8784 * 8785 * Skip over group leaders and only install siblings on this first 8786 * pass, siblings will not get enabled without a leader, however a 8787 * leader will enable its siblings, even if those are still on the old 8788 * context. 8789 */ 8790 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8791 if (event->group_leader == event) 8792 continue; 8793 8794 list_del(&event->migrate_entry); 8795 if (event->state >= PERF_EVENT_STATE_OFF) 8796 event->state = PERF_EVENT_STATE_INACTIVE; 8797 account_event_cpu(event, dst_cpu); 8798 perf_install_in_context(dst_ctx, event, dst_cpu); 8799 get_ctx(dst_ctx); 8800 } 8801 8802 /* 8803 * Once all the siblings are setup properly, install the group leaders 8804 * to make it go. 8805 */ 8806 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8807 list_del(&event->migrate_entry); 8808 if (event->state >= PERF_EVENT_STATE_OFF) 8809 event->state = PERF_EVENT_STATE_INACTIVE; 8810 account_event_cpu(event, dst_cpu); 8811 perf_install_in_context(dst_ctx, event, dst_cpu); 8812 get_ctx(dst_ctx); 8813 } 8814 mutex_unlock(&dst_ctx->mutex); 8815 mutex_unlock(&src_ctx->mutex); 8816 } 8817 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8818 8819 static void sync_child_event(struct perf_event *child_event, 8820 struct task_struct *child) 8821 { 8822 struct perf_event *parent_event = child_event->parent; 8823 u64 child_val; 8824 8825 if (child_event->attr.inherit_stat) 8826 perf_event_read_event(child_event, child); 8827 8828 child_val = perf_event_count(child_event); 8829 8830 /* 8831 * Add back the child's count to the parent's count: 8832 */ 8833 atomic64_add(child_val, &parent_event->child_count); 8834 atomic64_add(child_event->total_time_enabled, 8835 &parent_event->child_total_time_enabled); 8836 atomic64_add(child_event->total_time_running, 8837 &parent_event->child_total_time_running); 8838 } 8839 8840 static void 8841 perf_event_exit_event(struct perf_event *child_event, 8842 struct perf_event_context *child_ctx, 8843 struct task_struct *child) 8844 { 8845 struct perf_event *parent_event = child_event->parent; 8846 8847 /* 8848 * Do not destroy the 'original' grouping; because of the context 8849 * switch optimization the original events could've ended up in a 8850 * random child task. 8851 * 8852 * If we were to destroy the original group, all group related 8853 * operations would cease to function properly after this random 8854 * child dies. 8855 * 8856 * Do destroy all inherited groups, we don't care about those 8857 * and being thorough is better. 8858 */ 8859 raw_spin_lock_irq(&child_ctx->lock); 8860 WARN_ON_ONCE(child_ctx->is_active); 8861 8862 if (parent_event) 8863 perf_group_detach(child_event); 8864 list_del_event(child_event, child_ctx); 8865 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 8866 raw_spin_unlock_irq(&child_ctx->lock); 8867 8868 /* 8869 * Parent events are governed by their filedesc, retain them. 8870 */ 8871 if (!parent_event) { 8872 perf_event_wakeup(child_event); 8873 return; 8874 } 8875 /* 8876 * Child events can be cleaned up. 8877 */ 8878 8879 sync_child_event(child_event, child); 8880 8881 /* 8882 * Remove this event from the parent's list 8883 */ 8884 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8885 mutex_lock(&parent_event->child_mutex); 8886 list_del_init(&child_event->child_list); 8887 mutex_unlock(&parent_event->child_mutex); 8888 8889 /* 8890 * Kick perf_poll() for is_event_hup(). 8891 */ 8892 perf_event_wakeup(parent_event); 8893 free_event(child_event); 8894 put_event(parent_event); 8895 } 8896 8897 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8898 { 8899 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8900 struct perf_event *child_event, *next; 8901 8902 WARN_ON_ONCE(child != current); 8903 8904 child_ctx = perf_pin_task_context(child, ctxn); 8905 if (!child_ctx) 8906 return; 8907 8908 /* 8909 * In order to reduce the amount of tricky in ctx tear-down, we hold 8910 * ctx::mutex over the entire thing. This serializes against almost 8911 * everything that wants to access the ctx. 8912 * 8913 * The exception is sys_perf_event_open() / 8914 * perf_event_create_kernel_count() which does find_get_context() 8915 * without ctx::mutex (it cannot because of the move_group double mutex 8916 * lock thing). See the comments in perf_install_in_context(). 8917 */ 8918 mutex_lock(&child_ctx->mutex); 8919 8920 /* 8921 * In a single ctx::lock section, de-schedule the events and detach the 8922 * context from the task such that we cannot ever get it scheduled back 8923 * in. 8924 */ 8925 raw_spin_lock_irq(&child_ctx->lock); 8926 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 8927 8928 /* 8929 * Now that the context is inactive, destroy the task <-> ctx relation 8930 * and mark the context dead. 8931 */ 8932 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 8933 put_ctx(child_ctx); /* cannot be last */ 8934 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 8935 put_task_struct(current); /* cannot be last */ 8936 8937 clone_ctx = unclone_ctx(child_ctx); 8938 raw_spin_unlock_irq(&child_ctx->lock); 8939 8940 if (clone_ctx) 8941 put_ctx(clone_ctx); 8942 8943 /* 8944 * Report the task dead after unscheduling the events so that we 8945 * won't get any samples after PERF_RECORD_EXIT. We can however still 8946 * get a few PERF_RECORD_READ events. 8947 */ 8948 perf_event_task(child, child_ctx, 0); 8949 8950 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8951 perf_event_exit_event(child_event, child_ctx, child); 8952 8953 mutex_unlock(&child_ctx->mutex); 8954 8955 put_ctx(child_ctx); 8956 } 8957 8958 /* 8959 * When a child task exits, feed back event values to parent events. 8960 */ 8961 void perf_event_exit_task(struct task_struct *child) 8962 { 8963 struct perf_event *event, *tmp; 8964 int ctxn; 8965 8966 mutex_lock(&child->perf_event_mutex); 8967 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8968 owner_entry) { 8969 list_del_init(&event->owner_entry); 8970 8971 /* 8972 * Ensure the list deletion is visible before we clear 8973 * the owner, closes a race against perf_release() where 8974 * we need to serialize on the owner->perf_event_mutex. 8975 */ 8976 smp_store_release(&event->owner, NULL); 8977 } 8978 mutex_unlock(&child->perf_event_mutex); 8979 8980 for_each_task_context_nr(ctxn) 8981 perf_event_exit_task_context(child, ctxn); 8982 8983 /* 8984 * The perf_event_exit_task_context calls perf_event_task 8985 * with child's task_ctx, which generates EXIT events for 8986 * child contexts and sets child->perf_event_ctxp[] to NULL. 8987 * At this point we need to send EXIT events to cpu contexts. 8988 */ 8989 perf_event_task(child, NULL, 0); 8990 } 8991 8992 static void perf_free_event(struct perf_event *event, 8993 struct perf_event_context *ctx) 8994 { 8995 struct perf_event *parent = event->parent; 8996 8997 if (WARN_ON_ONCE(!parent)) 8998 return; 8999 9000 mutex_lock(&parent->child_mutex); 9001 list_del_init(&event->child_list); 9002 mutex_unlock(&parent->child_mutex); 9003 9004 put_event(parent); 9005 9006 raw_spin_lock_irq(&ctx->lock); 9007 perf_group_detach(event); 9008 list_del_event(event, ctx); 9009 raw_spin_unlock_irq(&ctx->lock); 9010 free_event(event); 9011 } 9012 9013 /* 9014 * Free an unexposed, unused context as created by inheritance by 9015 * perf_event_init_task below, used by fork() in case of fail. 9016 * 9017 * Not all locks are strictly required, but take them anyway to be nice and 9018 * help out with the lockdep assertions. 9019 */ 9020 void perf_event_free_task(struct task_struct *task) 9021 { 9022 struct perf_event_context *ctx; 9023 struct perf_event *event, *tmp; 9024 int ctxn; 9025 9026 for_each_task_context_nr(ctxn) { 9027 ctx = task->perf_event_ctxp[ctxn]; 9028 if (!ctx) 9029 continue; 9030 9031 mutex_lock(&ctx->mutex); 9032 again: 9033 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9034 group_entry) 9035 perf_free_event(event, ctx); 9036 9037 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9038 group_entry) 9039 perf_free_event(event, ctx); 9040 9041 if (!list_empty(&ctx->pinned_groups) || 9042 !list_empty(&ctx->flexible_groups)) 9043 goto again; 9044 9045 mutex_unlock(&ctx->mutex); 9046 9047 put_ctx(ctx); 9048 } 9049 } 9050 9051 void perf_event_delayed_put(struct task_struct *task) 9052 { 9053 int ctxn; 9054 9055 for_each_task_context_nr(ctxn) 9056 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9057 } 9058 9059 struct file *perf_event_get(unsigned int fd) 9060 { 9061 struct file *file; 9062 9063 file = fget_raw(fd); 9064 if (!file) 9065 return ERR_PTR(-EBADF); 9066 9067 if (file->f_op != &perf_fops) { 9068 fput(file); 9069 return ERR_PTR(-EBADF); 9070 } 9071 9072 return file; 9073 } 9074 9075 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 9076 { 9077 if (!event) 9078 return ERR_PTR(-EINVAL); 9079 9080 return &event->attr; 9081 } 9082 9083 /* 9084 * inherit a event from parent task to child task: 9085 */ 9086 static struct perf_event * 9087 inherit_event(struct perf_event *parent_event, 9088 struct task_struct *parent, 9089 struct perf_event_context *parent_ctx, 9090 struct task_struct *child, 9091 struct perf_event *group_leader, 9092 struct perf_event_context *child_ctx) 9093 { 9094 enum perf_event_active_state parent_state = parent_event->state; 9095 struct perf_event *child_event; 9096 unsigned long flags; 9097 9098 /* 9099 * Instead of creating recursive hierarchies of events, 9100 * we link inherited events back to the original parent, 9101 * which has a filp for sure, which we use as the reference 9102 * count: 9103 */ 9104 if (parent_event->parent) 9105 parent_event = parent_event->parent; 9106 9107 child_event = perf_event_alloc(&parent_event->attr, 9108 parent_event->cpu, 9109 child, 9110 group_leader, parent_event, 9111 NULL, NULL, -1); 9112 if (IS_ERR(child_event)) 9113 return child_event; 9114 9115 /* 9116 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 9117 * must be under the same lock in order to serialize against 9118 * perf_event_release_kernel(), such that either we must observe 9119 * is_orphaned_event() or they will observe us on the child_list. 9120 */ 9121 mutex_lock(&parent_event->child_mutex); 9122 if (is_orphaned_event(parent_event) || 9123 !atomic_long_inc_not_zero(&parent_event->refcount)) { 9124 mutex_unlock(&parent_event->child_mutex); 9125 free_event(child_event); 9126 return NULL; 9127 } 9128 9129 get_ctx(child_ctx); 9130 9131 /* 9132 * Make the child state follow the state of the parent event, 9133 * not its attr.disabled bit. We hold the parent's mutex, 9134 * so we won't race with perf_event_{en, dis}able_family. 9135 */ 9136 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 9137 child_event->state = PERF_EVENT_STATE_INACTIVE; 9138 else 9139 child_event->state = PERF_EVENT_STATE_OFF; 9140 9141 if (parent_event->attr.freq) { 9142 u64 sample_period = parent_event->hw.sample_period; 9143 struct hw_perf_event *hwc = &child_event->hw; 9144 9145 hwc->sample_period = sample_period; 9146 hwc->last_period = sample_period; 9147 9148 local64_set(&hwc->period_left, sample_period); 9149 } 9150 9151 child_event->ctx = child_ctx; 9152 child_event->overflow_handler = parent_event->overflow_handler; 9153 child_event->overflow_handler_context 9154 = parent_event->overflow_handler_context; 9155 9156 /* 9157 * Precalculate sample_data sizes 9158 */ 9159 perf_event__header_size(child_event); 9160 perf_event__id_header_size(child_event); 9161 9162 /* 9163 * Link it up in the child's context: 9164 */ 9165 raw_spin_lock_irqsave(&child_ctx->lock, flags); 9166 add_event_to_ctx(child_event, child_ctx); 9167 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 9168 9169 /* 9170 * Link this into the parent event's child list 9171 */ 9172 list_add_tail(&child_event->child_list, &parent_event->child_list); 9173 mutex_unlock(&parent_event->child_mutex); 9174 9175 return child_event; 9176 } 9177 9178 static int inherit_group(struct perf_event *parent_event, 9179 struct task_struct *parent, 9180 struct perf_event_context *parent_ctx, 9181 struct task_struct *child, 9182 struct perf_event_context *child_ctx) 9183 { 9184 struct perf_event *leader; 9185 struct perf_event *sub; 9186 struct perf_event *child_ctr; 9187 9188 leader = inherit_event(parent_event, parent, parent_ctx, 9189 child, NULL, child_ctx); 9190 if (IS_ERR(leader)) 9191 return PTR_ERR(leader); 9192 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 9193 child_ctr = inherit_event(sub, parent, parent_ctx, 9194 child, leader, child_ctx); 9195 if (IS_ERR(child_ctr)) 9196 return PTR_ERR(child_ctr); 9197 } 9198 return 0; 9199 } 9200 9201 static int 9202 inherit_task_group(struct perf_event *event, struct task_struct *parent, 9203 struct perf_event_context *parent_ctx, 9204 struct task_struct *child, int ctxn, 9205 int *inherited_all) 9206 { 9207 int ret; 9208 struct perf_event_context *child_ctx; 9209 9210 if (!event->attr.inherit) { 9211 *inherited_all = 0; 9212 return 0; 9213 } 9214 9215 child_ctx = child->perf_event_ctxp[ctxn]; 9216 if (!child_ctx) { 9217 /* 9218 * This is executed from the parent task context, so 9219 * inherit events that have been marked for cloning. 9220 * First allocate and initialize a context for the 9221 * child. 9222 */ 9223 9224 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 9225 if (!child_ctx) 9226 return -ENOMEM; 9227 9228 child->perf_event_ctxp[ctxn] = child_ctx; 9229 } 9230 9231 ret = inherit_group(event, parent, parent_ctx, 9232 child, child_ctx); 9233 9234 if (ret) 9235 *inherited_all = 0; 9236 9237 return ret; 9238 } 9239 9240 /* 9241 * Initialize the perf_event context in task_struct 9242 */ 9243 static int perf_event_init_context(struct task_struct *child, int ctxn) 9244 { 9245 struct perf_event_context *child_ctx, *parent_ctx; 9246 struct perf_event_context *cloned_ctx; 9247 struct perf_event *event; 9248 struct task_struct *parent = current; 9249 int inherited_all = 1; 9250 unsigned long flags; 9251 int ret = 0; 9252 9253 if (likely(!parent->perf_event_ctxp[ctxn])) 9254 return 0; 9255 9256 /* 9257 * If the parent's context is a clone, pin it so it won't get 9258 * swapped under us. 9259 */ 9260 parent_ctx = perf_pin_task_context(parent, ctxn); 9261 if (!parent_ctx) 9262 return 0; 9263 9264 /* 9265 * No need to check if parent_ctx != NULL here; since we saw 9266 * it non-NULL earlier, the only reason for it to become NULL 9267 * is if we exit, and since we're currently in the middle of 9268 * a fork we can't be exiting at the same time. 9269 */ 9270 9271 /* 9272 * Lock the parent list. No need to lock the child - not PID 9273 * hashed yet and not running, so nobody can access it. 9274 */ 9275 mutex_lock(&parent_ctx->mutex); 9276 9277 /* 9278 * We dont have to disable NMIs - we are only looking at 9279 * the list, not manipulating it: 9280 */ 9281 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9282 ret = inherit_task_group(event, parent, parent_ctx, 9283 child, ctxn, &inherited_all); 9284 if (ret) 9285 break; 9286 } 9287 9288 /* 9289 * We can't hold ctx->lock when iterating the ->flexible_group list due 9290 * to allocations, but we need to prevent rotation because 9291 * rotate_ctx() will change the list from interrupt context. 9292 */ 9293 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9294 parent_ctx->rotate_disable = 1; 9295 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9296 9297 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9298 ret = inherit_task_group(event, parent, parent_ctx, 9299 child, ctxn, &inherited_all); 9300 if (ret) 9301 break; 9302 } 9303 9304 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9305 parent_ctx->rotate_disable = 0; 9306 9307 child_ctx = child->perf_event_ctxp[ctxn]; 9308 9309 if (child_ctx && inherited_all) { 9310 /* 9311 * Mark the child context as a clone of the parent 9312 * context, or of whatever the parent is a clone of. 9313 * 9314 * Note that if the parent is a clone, the holding of 9315 * parent_ctx->lock avoids it from being uncloned. 9316 */ 9317 cloned_ctx = parent_ctx->parent_ctx; 9318 if (cloned_ctx) { 9319 child_ctx->parent_ctx = cloned_ctx; 9320 child_ctx->parent_gen = parent_ctx->parent_gen; 9321 } else { 9322 child_ctx->parent_ctx = parent_ctx; 9323 child_ctx->parent_gen = parent_ctx->generation; 9324 } 9325 get_ctx(child_ctx->parent_ctx); 9326 } 9327 9328 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9329 mutex_unlock(&parent_ctx->mutex); 9330 9331 perf_unpin_context(parent_ctx); 9332 put_ctx(parent_ctx); 9333 9334 return ret; 9335 } 9336 9337 /* 9338 * Initialize the perf_event context in task_struct 9339 */ 9340 int perf_event_init_task(struct task_struct *child) 9341 { 9342 int ctxn, ret; 9343 9344 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9345 mutex_init(&child->perf_event_mutex); 9346 INIT_LIST_HEAD(&child->perf_event_list); 9347 9348 for_each_task_context_nr(ctxn) { 9349 ret = perf_event_init_context(child, ctxn); 9350 if (ret) { 9351 perf_event_free_task(child); 9352 return ret; 9353 } 9354 } 9355 9356 return 0; 9357 } 9358 9359 static void __init perf_event_init_all_cpus(void) 9360 { 9361 struct swevent_htable *swhash; 9362 int cpu; 9363 9364 for_each_possible_cpu(cpu) { 9365 swhash = &per_cpu(swevent_htable, cpu); 9366 mutex_init(&swhash->hlist_mutex); 9367 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9368 } 9369 } 9370 9371 static void perf_event_init_cpu(int cpu) 9372 { 9373 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9374 9375 mutex_lock(&swhash->hlist_mutex); 9376 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 9377 struct swevent_hlist *hlist; 9378 9379 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9380 WARN_ON(!hlist); 9381 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9382 } 9383 mutex_unlock(&swhash->hlist_mutex); 9384 } 9385 9386 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9387 static void __perf_event_exit_context(void *__info) 9388 { 9389 struct perf_event_context *ctx = __info; 9390 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 9391 struct perf_event *event; 9392 9393 raw_spin_lock(&ctx->lock); 9394 list_for_each_entry(event, &ctx->event_list, event_entry) 9395 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 9396 raw_spin_unlock(&ctx->lock); 9397 } 9398 9399 static void perf_event_exit_cpu_context(int cpu) 9400 { 9401 struct perf_event_context *ctx; 9402 struct pmu *pmu; 9403 int idx; 9404 9405 idx = srcu_read_lock(&pmus_srcu); 9406 list_for_each_entry_rcu(pmu, &pmus, entry) { 9407 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9408 9409 mutex_lock(&ctx->mutex); 9410 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9411 mutex_unlock(&ctx->mutex); 9412 } 9413 srcu_read_unlock(&pmus_srcu, idx); 9414 } 9415 9416 static void perf_event_exit_cpu(int cpu) 9417 { 9418 perf_event_exit_cpu_context(cpu); 9419 } 9420 #else 9421 static inline void perf_event_exit_cpu(int cpu) { } 9422 #endif 9423 9424 static int 9425 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9426 { 9427 int cpu; 9428 9429 for_each_online_cpu(cpu) 9430 perf_event_exit_cpu(cpu); 9431 9432 return NOTIFY_OK; 9433 } 9434 9435 /* 9436 * Run the perf reboot notifier at the very last possible moment so that 9437 * the generic watchdog code runs as long as possible. 9438 */ 9439 static struct notifier_block perf_reboot_notifier = { 9440 .notifier_call = perf_reboot, 9441 .priority = INT_MIN, 9442 }; 9443 9444 static int 9445 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9446 { 9447 unsigned int cpu = (long)hcpu; 9448 9449 switch (action & ~CPU_TASKS_FROZEN) { 9450 9451 case CPU_UP_PREPARE: 9452 /* 9453 * This must be done before the CPU comes alive, because the 9454 * moment we can run tasks we can encounter (software) events. 9455 * 9456 * Specifically, someone can have inherited events on kthreadd 9457 * or a pre-existing worker thread that gets re-bound. 9458 */ 9459 perf_event_init_cpu(cpu); 9460 break; 9461 9462 case CPU_DOWN_PREPARE: 9463 /* 9464 * This must be done before the CPU dies because after that an 9465 * active event might want to IPI the CPU and that'll not work 9466 * so great for dead CPUs. 9467 * 9468 * XXX smp_call_function_single() return -ENXIO without a warn 9469 * so we could possibly deal with this. 9470 * 9471 * This is safe against new events arriving because 9472 * sys_perf_event_open() serializes against hotplug using 9473 * get_online_cpus(). 9474 */ 9475 perf_event_exit_cpu(cpu); 9476 break; 9477 default: 9478 break; 9479 } 9480 9481 return NOTIFY_OK; 9482 } 9483 9484 void __init perf_event_init(void) 9485 { 9486 int ret; 9487 9488 idr_init(&pmu_idr); 9489 9490 perf_event_init_all_cpus(); 9491 init_srcu_struct(&pmus_srcu); 9492 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9493 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9494 perf_pmu_register(&perf_task_clock, NULL, -1); 9495 perf_tp_register(); 9496 perf_cpu_notifier(perf_cpu_notify); 9497 register_reboot_notifier(&perf_reboot_notifier); 9498 9499 ret = init_hw_breakpoint(); 9500 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9501 9502 /* 9503 * Build time assertion that we keep the data_head at the intended 9504 * location. IOW, validation we got the __reserved[] size right. 9505 */ 9506 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9507 != 1024); 9508 } 9509 9510 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9511 char *page) 9512 { 9513 struct perf_pmu_events_attr *pmu_attr = 9514 container_of(attr, struct perf_pmu_events_attr, attr); 9515 9516 if (pmu_attr->event_str) 9517 return sprintf(page, "%s\n", pmu_attr->event_str); 9518 9519 return 0; 9520 } 9521 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 9522 9523 static int __init perf_event_sysfs_init(void) 9524 { 9525 struct pmu *pmu; 9526 int ret; 9527 9528 mutex_lock(&pmus_lock); 9529 9530 ret = bus_register(&pmu_bus); 9531 if (ret) 9532 goto unlock; 9533 9534 list_for_each_entry(pmu, &pmus, entry) { 9535 if (!pmu->name || pmu->type < 0) 9536 continue; 9537 9538 ret = pmu_dev_alloc(pmu); 9539 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9540 } 9541 pmu_bus_running = 1; 9542 ret = 0; 9543 9544 unlock: 9545 mutex_unlock(&pmus_lock); 9546 9547 return ret; 9548 } 9549 device_initcall(perf_event_sysfs_init); 9550 9551 #ifdef CONFIG_CGROUP_PERF 9552 static struct cgroup_subsys_state * 9553 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9554 { 9555 struct perf_cgroup *jc; 9556 9557 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9558 if (!jc) 9559 return ERR_PTR(-ENOMEM); 9560 9561 jc->info = alloc_percpu(struct perf_cgroup_info); 9562 if (!jc->info) { 9563 kfree(jc); 9564 return ERR_PTR(-ENOMEM); 9565 } 9566 9567 return &jc->css; 9568 } 9569 9570 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9571 { 9572 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9573 9574 free_percpu(jc->info); 9575 kfree(jc); 9576 } 9577 9578 static int __perf_cgroup_move(void *info) 9579 { 9580 struct task_struct *task = info; 9581 rcu_read_lock(); 9582 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9583 rcu_read_unlock(); 9584 return 0; 9585 } 9586 9587 static void perf_cgroup_attach(struct cgroup_taskset *tset) 9588 { 9589 struct task_struct *task; 9590 struct cgroup_subsys_state *css; 9591 9592 cgroup_taskset_for_each(task, css, tset) 9593 task_function_call(task, __perf_cgroup_move, task); 9594 } 9595 9596 struct cgroup_subsys perf_event_cgrp_subsys = { 9597 .css_alloc = perf_cgroup_css_alloc, 9598 .css_free = perf_cgroup_css_free, 9599 .attach = perf_cgroup_attach, 9600 }; 9601 #endif /* CONFIG_CGROUP_PERF */ 9602