xref: /linux/kernel/events/core.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 	if (cgrp_out)
729 		__update_cgrp_time(cgrp_out);
730 }
731 
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 	struct perf_cgroup *cgrp;
735 
736 	/*
737 	 * ensure we access cgroup data only when needed and
738 	 * when we know the cgroup is pinned (css_get)
739 	 */
740 	if (!is_cgroup_event(event))
741 		return;
742 
743 	cgrp = perf_cgroup_from_task(current, event->ctx);
744 	/*
745 	 * Do not update time when cgroup is not active
746 	 */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 		__update_cgrp_time(event->cgrp);
749 }
750 
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 			  struct perf_event_context *ctx)
754 {
755 	struct perf_cgroup *cgrp;
756 	struct perf_cgroup_info *info;
757 
758 	/*
759 	 * ctx->lock held by caller
760 	 * ensure we do not access cgroup data
761 	 * unless we have the cgroup pinned (css_get)
762 	 */
763 	if (!task || !ctx->nr_cgroups)
764 		return;
765 
766 	cgrp = perf_cgroup_from_task(task, ctx);
767 	info = this_cpu_ptr(cgrp->info);
768 	info->timestamp = ctx->timestamp;
769 }
770 
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772 
773 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
775 
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 	struct perf_cpu_context *cpuctx;
785 	struct list_head *list;
786 	unsigned long flags;
787 
788 	/*
789 	 * Disable interrupts and preemption to avoid this CPU's
790 	 * cgrp_cpuctx_entry to change under us.
791 	 */
792 	local_irq_save(flags);
793 
794 	list = this_cpu_ptr(&cgrp_cpuctx_list);
795 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797 
798 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 		perf_pmu_disable(cpuctx->ctx.pmu);
800 
801 		if (mode & PERF_CGROUP_SWOUT) {
802 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 			/*
804 			 * must not be done before ctxswout due
805 			 * to event_filter_match() in event_sched_out()
806 			 */
807 			cpuctx->cgrp = NULL;
808 		}
809 
810 		if (mode & PERF_CGROUP_SWIN) {
811 			WARN_ON_ONCE(cpuctx->cgrp);
812 			/*
813 			 * set cgrp before ctxsw in to allow
814 			 * event_filter_match() to not have to pass
815 			 * task around
816 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 			 * because cgorup events are only per-cpu
818 			 */
819 			cpuctx->cgrp = perf_cgroup_from_task(task,
820 							     &cpuctx->ctx);
821 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 		}
823 		perf_pmu_enable(cpuctx->ctx.pmu);
824 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 	}
826 
827 	local_irq_restore(flags);
828 }
829 
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 					 struct task_struct *next)
832 {
833 	struct perf_cgroup *cgrp1;
834 	struct perf_cgroup *cgrp2 = NULL;
835 
836 	rcu_read_lock();
837 	/*
838 	 * we come here when we know perf_cgroup_events > 0
839 	 * we do not need to pass the ctx here because we know
840 	 * we are holding the rcu lock
841 	 */
842 	cgrp1 = perf_cgroup_from_task(task, NULL);
843 	cgrp2 = perf_cgroup_from_task(next, NULL);
844 
845 	/*
846 	 * only schedule out current cgroup events if we know
847 	 * that we are switching to a different cgroup. Otherwise,
848 	 * do no touch the cgroup events.
849 	 */
850 	if (cgrp1 != cgrp2)
851 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 
853 	rcu_read_unlock();
854 }
855 
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 					struct task_struct *task)
858 {
859 	struct perf_cgroup *cgrp1;
860 	struct perf_cgroup *cgrp2 = NULL;
861 
862 	rcu_read_lock();
863 	/*
864 	 * we come here when we know perf_cgroup_events > 0
865 	 * we do not need to pass the ctx here because we know
866 	 * we are holding the rcu lock
867 	 */
868 	cgrp1 = perf_cgroup_from_task(task, NULL);
869 	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 
871 	/*
872 	 * only need to schedule in cgroup events if we are changing
873 	 * cgroup during ctxsw. Cgroup events were not scheduled
874 	 * out of ctxsw out if that was not the case.
875 	 */
876 	if (cgrp1 != cgrp2)
877 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 
879 	rcu_read_unlock();
880 }
881 
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 				      struct perf_event_attr *attr,
884 				      struct perf_event *group_leader)
885 {
886 	struct perf_cgroup *cgrp;
887 	struct cgroup_subsys_state *css;
888 	struct fd f = fdget(fd);
889 	int ret = 0;
890 
891 	if (!f.file)
892 		return -EBADF;
893 
894 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 					 &perf_event_cgrp_subsys);
896 	if (IS_ERR(css)) {
897 		ret = PTR_ERR(css);
898 		goto out;
899 	}
900 
901 	cgrp = container_of(css, struct perf_cgroup, css);
902 	event->cgrp = cgrp;
903 
904 	/*
905 	 * all events in a group must monitor
906 	 * the same cgroup because a task belongs
907 	 * to only one perf cgroup at a time
908 	 */
909 	if (group_leader && group_leader->cgrp != cgrp) {
910 		perf_detach_cgroup(event);
911 		ret = -EINVAL;
912 	}
913 out:
914 	fdput(f);
915 	return ret;
916 }
917 
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 	struct perf_cgroup_info *t;
922 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 	event->shadow_ctx_time = now - t->timestamp;
924 }
925 
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 			 struct perf_event_context *ctx, bool add)
933 {
934 	struct perf_cpu_context *cpuctx;
935 	struct list_head *cpuctx_entry;
936 
937 	if (!is_cgroup_event(event))
938 		return;
939 
940 	if (add && ctx->nr_cgroups++)
941 		return;
942 	else if (!add && --ctx->nr_cgroups)
943 		return;
944 	/*
945 	 * Because cgroup events are always per-cpu events,
946 	 * this will always be called from the right CPU.
947 	 */
948 	cpuctx = __get_cpu_context(ctx);
949 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 	if (add) {
952 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953 
954 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 			cpuctx->cgrp = cgrp;
957 	} else {
958 		list_del(cpuctx_entry);
959 		cpuctx->cgrp = NULL;
960 	}
961 }
962 
963 #else /* !CONFIG_CGROUP_PERF */
964 
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968 	return true;
969 }
970 
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973 
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976 	return 0;
977 }
978 
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982 
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986 
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 					 struct task_struct *next)
989 {
990 }
991 
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 					struct task_struct *task)
994 {
995 }
996 
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 				      struct perf_event_attr *attr,
999 				      struct perf_event *group_leader)
1000 {
1001 	return -EINVAL;
1002 }
1003 
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 			  struct perf_event_context *ctx)
1007 {
1008 }
1009 
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019 
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022 	return 0;
1023 }
1024 
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 			 struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030 
1031 #endif
1032 
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043 	struct perf_cpu_context *cpuctx;
1044 	int rotations = 0;
1045 
1046 	lockdep_assert_irqs_disabled();
1047 
1048 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 	rotations = perf_rotate_context(cpuctx);
1050 
1051 	raw_spin_lock(&cpuctx->hrtimer_lock);
1052 	if (rotations)
1053 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 	else
1055 		cpuctx->hrtimer_active = 0;
1056 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1057 
1058 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060 
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063 	struct hrtimer *timer = &cpuctx->hrtimer;
1064 	struct pmu *pmu = cpuctx->ctx.pmu;
1065 	u64 interval;
1066 
1067 	/* no multiplexing needed for SW PMU */
1068 	if (pmu->task_ctx_nr == perf_sw_context)
1069 		return;
1070 
1071 	/*
1072 	 * check default is sane, if not set then force to
1073 	 * default interval (1/tick)
1074 	 */
1075 	interval = pmu->hrtimer_interval_ms;
1076 	if (interval < 1)
1077 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078 
1079 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080 
1081 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 	timer->function = perf_mux_hrtimer_handler;
1084 }
1085 
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088 	struct hrtimer *timer = &cpuctx->hrtimer;
1089 	struct pmu *pmu = cpuctx->ctx.pmu;
1090 	unsigned long flags;
1091 
1092 	/* not for SW PMU */
1093 	if (pmu->task_ctx_nr == perf_sw_context)
1094 		return 0;
1095 
1096 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 	if (!cpuctx->hrtimer_active) {
1098 		cpuctx->hrtimer_active = 1;
1099 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 	}
1102 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103 
1104 	return 0;
1105 }
1106 
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 	if (!(*count)++)
1111 		pmu->pmu_disable(pmu);
1112 }
1113 
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 	if (!--(*count))
1118 		pmu->pmu_enable(pmu);
1119 }
1120 
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122 
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132 
1133 	lockdep_assert_irqs_disabled();
1134 
1135 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1136 
1137 	list_add(&ctx->active_ctx_list, head);
1138 }
1139 
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142 	lockdep_assert_irqs_disabled();
1143 
1144 	WARN_ON(list_empty(&ctx->active_ctx_list));
1145 
1146 	list_del_init(&ctx->active_ctx_list);
1147 }
1148 
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153 
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156 	struct perf_event_context *ctx;
1157 
1158 	ctx = container_of(head, struct perf_event_context, rcu_head);
1159 	kfree(ctx->task_ctx_data);
1160 	kfree(ctx);
1161 }
1162 
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165 	if (atomic_dec_and_test(&ctx->refcount)) {
1166 		if (ctx->parent_ctx)
1167 			put_ctx(ctx->parent_ctx);
1168 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 			put_task_struct(ctx->task);
1170 		call_rcu(&ctx->rcu_head, free_ctx);
1171 	}
1172 }
1173 
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()	[ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()			[ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()		[ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event()	[ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *	task_struct::perf_event_mutex
1229  *	  perf_event_context::mutex
1230  *	    perf_event::child_mutex;
1231  *	      perf_event_context::lock
1232  *	    perf_event::mmap_mutex
1233  *	    mmap_sem
1234  */
1235 static struct perf_event_context *
1236 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1237 {
1238 	struct perf_event_context *ctx;
1239 
1240 again:
1241 	rcu_read_lock();
1242 	ctx = READ_ONCE(event->ctx);
1243 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1244 		rcu_read_unlock();
1245 		goto again;
1246 	}
1247 	rcu_read_unlock();
1248 
1249 	mutex_lock_nested(&ctx->mutex, nesting);
1250 	if (event->ctx != ctx) {
1251 		mutex_unlock(&ctx->mutex);
1252 		put_ctx(ctx);
1253 		goto again;
1254 	}
1255 
1256 	return ctx;
1257 }
1258 
1259 static inline struct perf_event_context *
1260 perf_event_ctx_lock(struct perf_event *event)
1261 {
1262 	return perf_event_ctx_lock_nested(event, 0);
1263 }
1264 
1265 static void perf_event_ctx_unlock(struct perf_event *event,
1266 				  struct perf_event_context *ctx)
1267 {
1268 	mutex_unlock(&ctx->mutex);
1269 	put_ctx(ctx);
1270 }
1271 
1272 /*
1273  * This must be done under the ctx->lock, such as to serialize against
1274  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1275  * calling scheduler related locks and ctx->lock nests inside those.
1276  */
1277 static __must_check struct perf_event_context *
1278 unclone_ctx(struct perf_event_context *ctx)
1279 {
1280 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1281 
1282 	lockdep_assert_held(&ctx->lock);
1283 
1284 	if (parent_ctx)
1285 		ctx->parent_ctx = NULL;
1286 	ctx->generation++;
1287 
1288 	return parent_ctx;
1289 }
1290 
1291 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1292 				enum pid_type type)
1293 {
1294 	u32 nr;
1295 	/*
1296 	 * only top level events have the pid namespace they were created in
1297 	 */
1298 	if (event->parent)
1299 		event = event->parent;
1300 
1301 	nr = __task_pid_nr_ns(p, type, event->ns);
1302 	/* avoid -1 if it is idle thread or runs in another ns */
1303 	if (!nr && !pid_alive(p))
1304 		nr = -1;
1305 	return nr;
1306 }
1307 
1308 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1309 {
1310 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1311 }
1312 
1313 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1314 {
1315 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1316 }
1317 
1318 /*
1319  * If we inherit events we want to return the parent event id
1320  * to userspace.
1321  */
1322 static u64 primary_event_id(struct perf_event *event)
1323 {
1324 	u64 id = event->id;
1325 
1326 	if (event->parent)
1327 		id = event->parent->id;
1328 
1329 	return id;
1330 }
1331 
1332 /*
1333  * Get the perf_event_context for a task and lock it.
1334  *
1335  * This has to cope with with the fact that until it is locked,
1336  * the context could get moved to another task.
1337  */
1338 static struct perf_event_context *
1339 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1340 {
1341 	struct perf_event_context *ctx;
1342 
1343 retry:
1344 	/*
1345 	 * One of the few rules of preemptible RCU is that one cannot do
1346 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1347 	 * part of the read side critical section was irqs-enabled -- see
1348 	 * rcu_read_unlock_special().
1349 	 *
1350 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1351 	 * side critical section has interrupts disabled.
1352 	 */
1353 	local_irq_save(*flags);
1354 	rcu_read_lock();
1355 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1356 	if (ctx) {
1357 		/*
1358 		 * If this context is a clone of another, it might
1359 		 * get swapped for another underneath us by
1360 		 * perf_event_task_sched_out, though the
1361 		 * rcu_read_lock() protects us from any context
1362 		 * getting freed.  Lock the context and check if it
1363 		 * got swapped before we could get the lock, and retry
1364 		 * if so.  If we locked the right context, then it
1365 		 * can't get swapped on us any more.
1366 		 */
1367 		raw_spin_lock(&ctx->lock);
1368 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1369 			raw_spin_unlock(&ctx->lock);
1370 			rcu_read_unlock();
1371 			local_irq_restore(*flags);
1372 			goto retry;
1373 		}
1374 
1375 		if (ctx->task == TASK_TOMBSTONE ||
1376 		    !atomic_inc_not_zero(&ctx->refcount)) {
1377 			raw_spin_unlock(&ctx->lock);
1378 			ctx = NULL;
1379 		} else {
1380 			WARN_ON_ONCE(ctx->task != task);
1381 		}
1382 	}
1383 	rcu_read_unlock();
1384 	if (!ctx)
1385 		local_irq_restore(*flags);
1386 	return ctx;
1387 }
1388 
1389 /*
1390  * Get the context for a task and increment its pin_count so it
1391  * can't get swapped to another task.  This also increments its
1392  * reference count so that the context can't get freed.
1393  */
1394 static struct perf_event_context *
1395 perf_pin_task_context(struct task_struct *task, int ctxn)
1396 {
1397 	struct perf_event_context *ctx;
1398 	unsigned long flags;
1399 
1400 	ctx = perf_lock_task_context(task, ctxn, &flags);
1401 	if (ctx) {
1402 		++ctx->pin_count;
1403 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1404 	}
1405 	return ctx;
1406 }
1407 
1408 static void perf_unpin_context(struct perf_event_context *ctx)
1409 {
1410 	unsigned long flags;
1411 
1412 	raw_spin_lock_irqsave(&ctx->lock, flags);
1413 	--ctx->pin_count;
1414 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1415 }
1416 
1417 /*
1418  * Update the record of the current time in a context.
1419  */
1420 static void update_context_time(struct perf_event_context *ctx)
1421 {
1422 	u64 now = perf_clock();
1423 
1424 	ctx->time += now - ctx->timestamp;
1425 	ctx->timestamp = now;
1426 }
1427 
1428 static u64 perf_event_time(struct perf_event *event)
1429 {
1430 	struct perf_event_context *ctx = event->ctx;
1431 
1432 	if (is_cgroup_event(event))
1433 		return perf_cgroup_event_time(event);
1434 
1435 	return ctx ? ctx->time : 0;
1436 }
1437 
1438 static enum event_type_t get_event_type(struct perf_event *event)
1439 {
1440 	struct perf_event_context *ctx = event->ctx;
1441 	enum event_type_t event_type;
1442 
1443 	lockdep_assert_held(&ctx->lock);
1444 
1445 	/*
1446 	 * It's 'group type', really, because if our group leader is
1447 	 * pinned, so are we.
1448 	 */
1449 	if (event->group_leader != event)
1450 		event = event->group_leader;
1451 
1452 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1453 	if (!ctx->task)
1454 		event_type |= EVENT_CPU;
1455 
1456 	return event_type;
1457 }
1458 
1459 static struct list_head *
1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461 {
1462 	if (event->attr.pinned)
1463 		return &ctx->pinned_groups;
1464 	else
1465 		return &ctx->flexible_groups;
1466 }
1467 
1468 /*
1469  * Add a event from the lists for its context.
1470  * Must be called with ctx->mutex and ctx->lock held.
1471  */
1472 static void
1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474 {
1475 	lockdep_assert_held(&ctx->lock);
1476 
1477 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1478 	event->attach_state |= PERF_ATTACH_CONTEXT;
1479 
1480 	event->tstamp = perf_event_time(event);
1481 
1482 	/*
1483 	 * If we're a stand alone event or group leader, we go to the context
1484 	 * list, group events are kept attached to the group so that
1485 	 * perf_group_detach can, at all times, locate all siblings.
1486 	 */
1487 	if (event->group_leader == event) {
1488 		struct list_head *list;
1489 
1490 		event->group_caps = event->event_caps;
1491 
1492 		list = ctx_group_list(event, ctx);
1493 		list_add_tail(&event->group_entry, list);
1494 	}
1495 
1496 	list_update_cgroup_event(event, ctx, true);
1497 
1498 	list_add_rcu(&event->event_entry, &ctx->event_list);
1499 	ctx->nr_events++;
1500 	if (event->attr.inherit_stat)
1501 		ctx->nr_stat++;
1502 
1503 	ctx->generation++;
1504 }
1505 
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 					      PERF_EVENT_STATE_INACTIVE;
1513 }
1514 
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517 	int entry = sizeof(u64); /* value */
1518 	int size = 0;
1519 	int nr = 1;
1520 
1521 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 		size += sizeof(u64);
1523 
1524 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 		size += sizeof(u64);
1526 
1527 	if (event->attr.read_format & PERF_FORMAT_ID)
1528 		entry += sizeof(u64);
1529 
1530 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531 		nr += nr_siblings;
1532 		size += sizeof(u64);
1533 	}
1534 
1535 	size += entry * nr;
1536 	event->read_size = size;
1537 }
1538 
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541 	struct perf_sample_data *data;
1542 	u16 size = 0;
1543 
1544 	if (sample_type & PERF_SAMPLE_IP)
1545 		size += sizeof(data->ip);
1546 
1547 	if (sample_type & PERF_SAMPLE_ADDR)
1548 		size += sizeof(data->addr);
1549 
1550 	if (sample_type & PERF_SAMPLE_PERIOD)
1551 		size += sizeof(data->period);
1552 
1553 	if (sample_type & PERF_SAMPLE_WEIGHT)
1554 		size += sizeof(data->weight);
1555 
1556 	if (sample_type & PERF_SAMPLE_READ)
1557 		size += event->read_size;
1558 
1559 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 		size += sizeof(data->data_src.val);
1561 
1562 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 		size += sizeof(data->txn);
1564 
1565 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1566 		size += sizeof(data->phys_addr);
1567 
1568 	event->header_size = size;
1569 }
1570 
1571 /*
1572  * Called at perf_event creation and when events are attached/detached from a
1573  * group.
1574  */
1575 static void perf_event__header_size(struct perf_event *event)
1576 {
1577 	__perf_event_read_size(event,
1578 			       event->group_leader->nr_siblings);
1579 	__perf_event_header_size(event, event->attr.sample_type);
1580 }
1581 
1582 static void perf_event__id_header_size(struct perf_event *event)
1583 {
1584 	struct perf_sample_data *data;
1585 	u64 sample_type = event->attr.sample_type;
1586 	u16 size = 0;
1587 
1588 	if (sample_type & PERF_SAMPLE_TID)
1589 		size += sizeof(data->tid_entry);
1590 
1591 	if (sample_type & PERF_SAMPLE_TIME)
1592 		size += sizeof(data->time);
1593 
1594 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1595 		size += sizeof(data->id);
1596 
1597 	if (sample_type & PERF_SAMPLE_ID)
1598 		size += sizeof(data->id);
1599 
1600 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1601 		size += sizeof(data->stream_id);
1602 
1603 	if (sample_type & PERF_SAMPLE_CPU)
1604 		size += sizeof(data->cpu_entry);
1605 
1606 	event->id_header_size = size;
1607 }
1608 
1609 static bool perf_event_validate_size(struct perf_event *event)
1610 {
1611 	/*
1612 	 * The values computed here will be over-written when we actually
1613 	 * attach the event.
1614 	 */
1615 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1616 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1617 	perf_event__id_header_size(event);
1618 
1619 	/*
1620 	 * Sum the lot; should not exceed the 64k limit we have on records.
1621 	 * Conservative limit to allow for callchains and other variable fields.
1622 	 */
1623 	if (event->read_size + event->header_size +
1624 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1625 		return false;
1626 
1627 	return true;
1628 }
1629 
1630 static void perf_group_attach(struct perf_event *event)
1631 {
1632 	struct perf_event *group_leader = event->group_leader, *pos;
1633 
1634 	lockdep_assert_held(&event->ctx->lock);
1635 
1636 	/*
1637 	 * We can have double attach due to group movement in perf_event_open.
1638 	 */
1639 	if (event->attach_state & PERF_ATTACH_GROUP)
1640 		return;
1641 
1642 	event->attach_state |= PERF_ATTACH_GROUP;
1643 
1644 	if (group_leader == event)
1645 		return;
1646 
1647 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1648 
1649 	group_leader->group_caps &= event->event_caps;
1650 
1651 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1652 	group_leader->nr_siblings++;
1653 
1654 	perf_event__header_size(group_leader);
1655 
1656 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1657 		perf_event__header_size(pos);
1658 }
1659 
1660 /*
1661  * Remove a event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	WARN_ON_ONCE(event->ctx != ctx);
1668 	lockdep_assert_held(&ctx->lock);
1669 
1670 	/*
1671 	 * We can have double detach due to exit/hot-unplug + close.
1672 	 */
1673 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1674 		return;
1675 
1676 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1677 
1678 	list_update_cgroup_event(event, ctx, false);
1679 
1680 	ctx->nr_events--;
1681 	if (event->attr.inherit_stat)
1682 		ctx->nr_stat--;
1683 
1684 	list_del_rcu(&event->event_entry);
1685 
1686 	if (event->group_leader == event)
1687 		list_del_init(&event->group_entry);
1688 
1689 	/*
1690 	 * If event was in error state, then keep it
1691 	 * that way, otherwise bogus counts will be
1692 	 * returned on read(). The only way to get out
1693 	 * of error state is by explicit re-enabling
1694 	 * of the event
1695 	 */
1696 	if (event->state > PERF_EVENT_STATE_OFF)
1697 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1698 
1699 	ctx->generation++;
1700 }
1701 
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704 	struct perf_event *sibling, *tmp;
1705 	struct list_head *list = NULL;
1706 
1707 	lockdep_assert_held(&event->ctx->lock);
1708 
1709 	/*
1710 	 * We can have double detach due to exit/hot-unplug + close.
1711 	 */
1712 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 		return;
1714 
1715 	event->attach_state &= ~PERF_ATTACH_GROUP;
1716 
1717 	/*
1718 	 * If this is a sibling, remove it from its group.
1719 	 */
1720 	if (event->group_leader != event) {
1721 		list_del_init(&event->group_entry);
1722 		event->group_leader->nr_siblings--;
1723 		goto out;
1724 	}
1725 
1726 	if (!list_empty(&event->group_entry))
1727 		list = &event->group_entry;
1728 
1729 	/*
1730 	 * If this was a group event with sibling events then
1731 	 * upgrade the siblings to singleton events by adding them
1732 	 * to whatever list we are on.
1733 	 */
1734 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735 		if (list)
1736 			list_move_tail(&sibling->group_entry, list);
1737 		sibling->group_leader = sibling;
1738 
1739 		/* Inherit group flags from the previous leader */
1740 		sibling->group_caps = event->group_caps;
1741 
1742 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1743 	}
1744 
1745 out:
1746 	perf_event__header_size(event->group_leader);
1747 
1748 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 		perf_event__header_size(tmp);
1750 }
1751 
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754 	return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756 
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759 	struct pmu *pmu = event->pmu;
1760 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762 
1763 /*
1764  * Check whether we should attempt to schedule an event group based on
1765  * PMU-specific filtering. An event group can consist of HW and SW events,
1766  * potentially with a SW leader, so we must check all the filters, to
1767  * determine whether a group is schedulable:
1768  */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771 	struct perf_event *child;
1772 
1773 	if (!__pmu_filter_match(event))
1774 		return 0;
1775 
1776 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 		if (!__pmu_filter_match(child))
1778 			return 0;
1779 	}
1780 
1781 	return 1;
1782 }
1783 
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 	       perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790 
1791 static void
1792 event_sched_out(struct perf_event *event,
1793 		  struct perf_cpu_context *cpuctx,
1794 		  struct perf_event_context *ctx)
1795 {
1796 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1797 
1798 	WARN_ON_ONCE(event->ctx != ctx);
1799 	lockdep_assert_held(&ctx->lock);
1800 
1801 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1802 		return;
1803 
1804 	perf_pmu_disable(event->pmu);
1805 
1806 	event->pmu->del(event, 0);
1807 	event->oncpu = -1;
1808 
1809 	if (event->pending_disable) {
1810 		event->pending_disable = 0;
1811 		state = PERF_EVENT_STATE_OFF;
1812 	}
1813 	perf_event_set_state(event, state);
1814 
1815 	if (!is_software_event(event))
1816 		cpuctx->active_oncpu--;
1817 	if (!--ctx->nr_active)
1818 		perf_event_ctx_deactivate(ctx);
1819 	if (event->attr.freq && event->attr.sample_freq)
1820 		ctx->nr_freq--;
1821 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1822 		cpuctx->exclusive = 0;
1823 
1824 	perf_pmu_enable(event->pmu);
1825 }
1826 
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829 		struct perf_cpu_context *cpuctx,
1830 		struct perf_event_context *ctx)
1831 {
1832 	struct perf_event *event;
1833 
1834 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1835 		return;
1836 
1837 	perf_pmu_disable(ctx->pmu);
1838 
1839 	event_sched_out(group_event, cpuctx, ctx);
1840 
1841 	/*
1842 	 * Schedule out siblings (if any):
1843 	 */
1844 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1845 		event_sched_out(event, cpuctx, ctx);
1846 
1847 	perf_pmu_enable(ctx->pmu);
1848 
1849 	if (group_event->attr.exclusive)
1850 		cpuctx->exclusive = 0;
1851 }
1852 
1853 #define DETACH_GROUP	0x01UL
1854 
1855 /*
1856  * Cross CPU call to remove a performance event
1857  *
1858  * We disable the event on the hardware level first. After that we
1859  * remove it from the context list.
1860  */
1861 static void
1862 __perf_remove_from_context(struct perf_event *event,
1863 			   struct perf_cpu_context *cpuctx,
1864 			   struct perf_event_context *ctx,
1865 			   void *info)
1866 {
1867 	unsigned long flags = (unsigned long)info;
1868 
1869 	if (ctx->is_active & EVENT_TIME) {
1870 		update_context_time(ctx);
1871 		update_cgrp_time_from_cpuctx(cpuctx);
1872 	}
1873 
1874 	event_sched_out(event, cpuctx, ctx);
1875 	if (flags & DETACH_GROUP)
1876 		perf_group_detach(event);
1877 	list_del_event(event, ctx);
1878 
1879 	if (!ctx->nr_events && ctx->is_active) {
1880 		ctx->is_active = 0;
1881 		if (ctx->task) {
1882 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1883 			cpuctx->task_ctx = NULL;
1884 		}
1885 	}
1886 }
1887 
1888 /*
1889  * Remove the event from a task's (or a CPU's) list of events.
1890  *
1891  * If event->ctx is a cloned context, callers must make sure that
1892  * every task struct that event->ctx->task could possibly point to
1893  * remains valid.  This is OK when called from perf_release since
1894  * that only calls us on the top-level context, which can't be a clone.
1895  * When called from perf_event_exit_task, it's OK because the
1896  * context has been detached from its task.
1897  */
1898 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1899 {
1900 	struct perf_event_context *ctx = event->ctx;
1901 
1902 	lockdep_assert_held(&ctx->mutex);
1903 
1904 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1905 
1906 	/*
1907 	 * The above event_function_call() can NO-OP when it hits
1908 	 * TASK_TOMBSTONE. In that case we must already have been detached
1909 	 * from the context (by perf_event_exit_event()) but the grouping
1910 	 * might still be in-tact.
1911 	 */
1912 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1913 	if ((flags & DETACH_GROUP) &&
1914 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1915 		/*
1916 		 * Since in that case we cannot possibly be scheduled, simply
1917 		 * detach now.
1918 		 */
1919 		raw_spin_lock_irq(&ctx->lock);
1920 		perf_group_detach(event);
1921 		raw_spin_unlock_irq(&ctx->lock);
1922 	}
1923 }
1924 
1925 /*
1926  * Cross CPU call to disable a performance event
1927  */
1928 static void __perf_event_disable(struct perf_event *event,
1929 				 struct perf_cpu_context *cpuctx,
1930 				 struct perf_event_context *ctx,
1931 				 void *info)
1932 {
1933 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1934 		return;
1935 
1936 	if (ctx->is_active & EVENT_TIME) {
1937 		update_context_time(ctx);
1938 		update_cgrp_time_from_event(event);
1939 	}
1940 
1941 	if (event == event->group_leader)
1942 		group_sched_out(event, cpuctx, ctx);
1943 	else
1944 		event_sched_out(event, cpuctx, ctx);
1945 
1946 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1947 }
1948 
1949 /*
1950  * Disable a event.
1951  *
1952  * If event->ctx is a cloned context, callers must make sure that
1953  * every task struct that event->ctx->task could possibly point to
1954  * remains valid.  This condition is satisifed when called through
1955  * perf_event_for_each_child or perf_event_for_each because they
1956  * hold the top-level event's child_mutex, so any descendant that
1957  * goes to exit will block in perf_event_exit_event().
1958  *
1959  * When called from perf_pending_event it's OK because event->ctx
1960  * is the current context on this CPU and preemption is disabled,
1961  * hence we can't get into perf_event_task_sched_out for this context.
1962  */
1963 static void _perf_event_disable(struct perf_event *event)
1964 {
1965 	struct perf_event_context *ctx = event->ctx;
1966 
1967 	raw_spin_lock_irq(&ctx->lock);
1968 	if (event->state <= PERF_EVENT_STATE_OFF) {
1969 		raw_spin_unlock_irq(&ctx->lock);
1970 		return;
1971 	}
1972 	raw_spin_unlock_irq(&ctx->lock);
1973 
1974 	event_function_call(event, __perf_event_disable, NULL);
1975 }
1976 
1977 void perf_event_disable_local(struct perf_event *event)
1978 {
1979 	event_function_local(event, __perf_event_disable, NULL);
1980 }
1981 
1982 /*
1983  * Strictly speaking kernel users cannot create groups and therefore this
1984  * interface does not need the perf_event_ctx_lock() magic.
1985  */
1986 void perf_event_disable(struct perf_event *event)
1987 {
1988 	struct perf_event_context *ctx;
1989 
1990 	ctx = perf_event_ctx_lock(event);
1991 	_perf_event_disable(event);
1992 	perf_event_ctx_unlock(event, ctx);
1993 }
1994 EXPORT_SYMBOL_GPL(perf_event_disable);
1995 
1996 void perf_event_disable_inatomic(struct perf_event *event)
1997 {
1998 	event->pending_disable = 1;
1999 	irq_work_queue(&event->pending);
2000 }
2001 
2002 static void perf_set_shadow_time(struct perf_event *event,
2003 				 struct perf_event_context *ctx)
2004 {
2005 	/*
2006 	 * use the correct time source for the time snapshot
2007 	 *
2008 	 * We could get by without this by leveraging the
2009 	 * fact that to get to this function, the caller
2010 	 * has most likely already called update_context_time()
2011 	 * and update_cgrp_time_xx() and thus both timestamp
2012 	 * are identical (or very close). Given that tstamp is,
2013 	 * already adjusted for cgroup, we could say that:
2014 	 *    tstamp - ctx->timestamp
2015 	 * is equivalent to
2016 	 *    tstamp - cgrp->timestamp.
2017 	 *
2018 	 * Then, in perf_output_read(), the calculation would
2019 	 * work with no changes because:
2020 	 * - event is guaranteed scheduled in
2021 	 * - no scheduled out in between
2022 	 * - thus the timestamp would be the same
2023 	 *
2024 	 * But this is a bit hairy.
2025 	 *
2026 	 * So instead, we have an explicit cgroup call to remain
2027 	 * within the time time source all along. We believe it
2028 	 * is cleaner and simpler to understand.
2029 	 */
2030 	if (is_cgroup_event(event))
2031 		perf_cgroup_set_shadow_time(event, event->tstamp);
2032 	else
2033 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2034 }
2035 
2036 #define MAX_INTERRUPTS (~0ULL)
2037 
2038 static void perf_log_throttle(struct perf_event *event, int enable);
2039 static void perf_log_itrace_start(struct perf_event *event);
2040 
2041 static int
2042 event_sched_in(struct perf_event *event,
2043 		 struct perf_cpu_context *cpuctx,
2044 		 struct perf_event_context *ctx)
2045 {
2046 	int ret = 0;
2047 
2048 	lockdep_assert_held(&ctx->lock);
2049 
2050 	if (event->state <= PERF_EVENT_STATE_OFF)
2051 		return 0;
2052 
2053 	WRITE_ONCE(event->oncpu, smp_processor_id());
2054 	/*
2055 	 * Order event::oncpu write to happen before the ACTIVE state is
2056 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2057 	 * ->oncpu if it sees ACTIVE.
2058 	 */
2059 	smp_wmb();
2060 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2061 
2062 	/*
2063 	 * Unthrottle events, since we scheduled we might have missed several
2064 	 * ticks already, also for a heavily scheduling task there is little
2065 	 * guarantee it'll get a tick in a timely manner.
2066 	 */
2067 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2068 		perf_log_throttle(event, 1);
2069 		event->hw.interrupts = 0;
2070 	}
2071 
2072 	perf_pmu_disable(event->pmu);
2073 
2074 	perf_set_shadow_time(event, ctx);
2075 
2076 	perf_log_itrace_start(event);
2077 
2078 	if (event->pmu->add(event, PERF_EF_START)) {
2079 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2080 		event->oncpu = -1;
2081 		ret = -EAGAIN;
2082 		goto out;
2083 	}
2084 
2085 	if (!is_software_event(event))
2086 		cpuctx->active_oncpu++;
2087 	if (!ctx->nr_active++)
2088 		perf_event_ctx_activate(ctx);
2089 	if (event->attr.freq && event->attr.sample_freq)
2090 		ctx->nr_freq++;
2091 
2092 	if (event->attr.exclusive)
2093 		cpuctx->exclusive = 1;
2094 
2095 out:
2096 	perf_pmu_enable(event->pmu);
2097 
2098 	return ret;
2099 }
2100 
2101 static int
2102 group_sched_in(struct perf_event *group_event,
2103 	       struct perf_cpu_context *cpuctx,
2104 	       struct perf_event_context *ctx)
2105 {
2106 	struct perf_event *event, *partial_group = NULL;
2107 	struct pmu *pmu = ctx->pmu;
2108 
2109 	if (group_event->state == PERF_EVENT_STATE_OFF)
2110 		return 0;
2111 
2112 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2113 
2114 	if (event_sched_in(group_event, cpuctx, ctx)) {
2115 		pmu->cancel_txn(pmu);
2116 		perf_mux_hrtimer_restart(cpuctx);
2117 		return -EAGAIN;
2118 	}
2119 
2120 	/*
2121 	 * Schedule in siblings as one group (if any):
2122 	 */
2123 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2124 		if (event_sched_in(event, cpuctx, ctx)) {
2125 			partial_group = event;
2126 			goto group_error;
2127 		}
2128 	}
2129 
2130 	if (!pmu->commit_txn(pmu))
2131 		return 0;
2132 
2133 group_error:
2134 	/*
2135 	 * Groups can be scheduled in as one unit only, so undo any
2136 	 * partial group before returning:
2137 	 * The events up to the failed event are scheduled out normally.
2138 	 */
2139 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2140 		if (event == partial_group)
2141 			break;
2142 
2143 		event_sched_out(event, cpuctx, ctx);
2144 	}
2145 	event_sched_out(group_event, cpuctx, ctx);
2146 
2147 	pmu->cancel_txn(pmu);
2148 
2149 	perf_mux_hrtimer_restart(cpuctx);
2150 
2151 	return -EAGAIN;
2152 }
2153 
2154 /*
2155  * Work out whether we can put this event group on the CPU now.
2156  */
2157 static int group_can_go_on(struct perf_event *event,
2158 			   struct perf_cpu_context *cpuctx,
2159 			   int can_add_hw)
2160 {
2161 	/*
2162 	 * Groups consisting entirely of software events can always go on.
2163 	 */
2164 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2165 		return 1;
2166 	/*
2167 	 * If an exclusive group is already on, no other hardware
2168 	 * events can go on.
2169 	 */
2170 	if (cpuctx->exclusive)
2171 		return 0;
2172 	/*
2173 	 * If this group is exclusive and there are already
2174 	 * events on the CPU, it can't go on.
2175 	 */
2176 	if (event->attr.exclusive && cpuctx->active_oncpu)
2177 		return 0;
2178 	/*
2179 	 * Otherwise, try to add it if all previous groups were able
2180 	 * to go on.
2181 	 */
2182 	return can_add_hw;
2183 }
2184 
2185 static void add_event_to_ctx(struct perf_event *event,
2186 			       struct perf_event_context *ctx)
2187 {
2188 	list_add_event(event, ctx);
2189 	perf_group_attach(event);
2190 }
2191 
2192 static void ctx_sched_out(struct perf_event_context *ctx,
2193 			  struct perf_cpu_context *cpuctx,
2194 			  enum event_type_t event_type);
2195 static void
2196 ctx_sched_in(struct perf_event_context *ctx,
2197 	     struct perf_cpu_context *cpuctx,
2198 	     enum event_type_t event_type,
2199 	     struct task_struct *task);
2200 
2201 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2202 			       struct perf_event_context *ctx,
2203 			       enum event_type_t event_type)
2204 {
2205 	if (!cpuctx->task_ctx)
2206 		return;
2207 
2208 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2209 		return;
2210 
2211 	ctx_sched_out(ctx, cpuctx, event_type);
2212 }
2213 
2214 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2215 				struct perf_event_context *ctx,
2216 				struct task_struct *task)
2217 {
2218 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2219 	if (ctx)
2220 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2221 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2222 	if (ctx)
2223 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2224 }
2225 
2226 /*
2227  * We want to maintain the following priority of scheduling:
2228  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2229  *  - task pinned (EVENT_PINNED)
2230  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2231  *  - task flexible (EVENT_FLEXIBLE).
2232  *
2233  * In order to avoid unscheduling and scheduling back in everything every
2234  * time an event is added, only do it for the groups of equal priority and
2235  * below.
2236  *
2237  * This can be called after a batch operation on task events, in which case
2238  * event_type is a bit mask of the types of events involved. For CPU events,
2239  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2240  */
2241 static void ctx_resched(struct perf_cpu_context *cpuctx,
2242 			struct perf_event_context *task_ctx,
2243 			enum event_type_t event_type)
2244 {
2245 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2246 	bool cpu_event = !!(event_type & EVENT_CPU);
2247 
2248 	/*
2249 	 * If pinned groups are involved, flexible groups also need to be
2250 	 * scheduled out.
2251 	 */
2252 	if (event_type & EVENT_PINNED)
2253 		event_type |= EVENT_FLEXIBLE;
2254 
2255 	perf_pmu_disable(cpuctx->ctx.pmu);
2256 	if (task_ctx)
2257 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2258 
2259 	/*
2260 	 * Decide which cpu ctx groups to schedule out based on the types
2261 	 * of events that caused rescheduling:
2262 	 *  - EVENT_CPU: schedule out corresponding groups;
2263 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2264 	 *  - otherwise, do nothing more.
2265 	 */
2266 	if (cpu_event)
2267 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2268 	else if (ctx_event_type & EVENT_PINNED)
2269 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2270 
2271 	perf_event_sched_in(cpuctx, task_ctx, current);
2272 	perf_pmu_enable(cpuctx->ctx.pmu);
2273 }
2274 
2275 /*
2276  * Cross CPU call to install and enable a performance event
2277  *
2278  * Very similar to remote_function() + event_function() but cannot assume that
2279  * things like ctx->is_active and cpuctx->task_ctx are set.
2280  */
2281 static int  __perf_install_in_context(void *info)
2282 {
2283 	struct perf_event *event = info;
2284 	struct perf_event_context *ctx = event->ctx;
2285 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2286 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2287 	bool reprogram = true;
2288 	int ret = 0;
2289 
2290 	raw_spin_lock(&cpuctx->ctx.lock);
2291 	if (ctx->task) {
2292 		raw_spin_lock(&ctx->lock);
2293 		task_ctx = ctx;
2294 
2295 		reprogram = (ctx->task == current);
2296 
2297 		/*
2298 		 * If the task is running, it must be running on this CPU,
2299 		 * otherwise we cannot reprogram things.
2300 		 *
2301 		 * If its not running, we don't care, ctx->lock will
2302 		 * serialize against it becoming runnable.
2303 		 */
2304 		if (task_curr(ctx->task) && !reprogram) {
2305 			ret = -ESRCH;
2306 			goto unlock;
2307 		}
2308 
2309 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2310 	} else if (task_ctx) {
2311 		raw_spin_lock(&task_ctx->lock);
2312 	}
2313 
2314 	if (reprogram) {
2315 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2316 		add_event_to_ctx(event, ctx);
2317 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2318 	} else {
2319 		add_event_to_ctx(event, ctx);
2320 	}
2321 
2322 unlock:
2323 	perf_ctx_unlock(cpuctx, task_ctx);
2324 
2325 	return ret;
2326 }
2327 
2328 /*
2329  * Attach a performance event to a context.
2330  *
2331  * Very similar to event_function_call, see comment there.
2332  */
2333 static void
2334 perf_install_in_context(struct perf_event_context *ctx,
2335 			struct perf_event *event,
2336 			int cpu)
2337 {
2338 	struct task_struct *task = READ_ONCE(ctx->task);
2339 
2340 	lockdep_assert_held(&ctx->mutex);
2341 
2342 	if (event->cpu != -1)
2343 		event->cpu = cpu;
2344 
2345 	/*
2346 	 * Ensures that if we can observe event->ctx, both the event and ctx
2347 	 * will be 'complete'. See perf_iterate_sb_cpu().
2348 	 */
2349 	smp_store_release(&event->ctx, ctx);
2350 
2351 	if (!task) {
2352 		cpu_function_call(cpu, __perf_install_in_context, event);
2353 		return;
2354 	}
2355 
2356 	/*
2357 	 * Should not happen, we validate the ctx is still alive before calling.
2358 	 */
2359 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2360 		return;
2361 
2362 	/*
2363 	 * Installing events is tricky because we cannot rely on ctx->is_active
2364 	 * to be set in case this is the nr_events 0 -> 1 transition.
2365 	 *
2366 	 * Instead we use task_curr(), which tells us if the task is running.
2367 	 * However, since we use task_curr() outside of rq::lock, we can race
2368 	 * against the actual state. This means the result can be wrong.
2369 	 *
2370 	 * If we get a false positive, we retry, this is harmless.
2371 	 *
2372 	 * If we get a false negative, things are complicated. If we are after
2373 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2374 	 * value must be correct. If we're before, it doesn't matter since
2375 	 * perf_event_context_sched_in() will program the counter.
2376 	 *
2377 	 * However, this hinges on the remote context switch having observed
2378 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2379 	 * ctx::lock in perf_event_context_sched_in().
2380 	 *
2381 	 * We do this by task_function_call(), if the IPI fails to hit the task
2382 	 * we know any future context switch of task must see the
2383 	 * perf_event_ctpx[] store.
2384 	 */
2385 
2386 	/*
2387 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2388 	 * task_cpu() load, such that if the IPI then does not find the task
2389 	 * running, a future context switch of that task must observe the
2390 	 * store.
2391 	 */
2392 	smp_mb();
2393 again:
2394 	if (!task_function_call(task, __perf_install_in_context, event))
2395 		return;
2396 
2397 	raw_spin_lock_irq(&ctx->lock);
2398 	task = ctx->task;
2399 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2400 		/*
2401 		 * Cannot happen because we already checked above (which also
2402 		 * cannot happen), and we hold ctx->mutex, which serializes us
2403 		 * against perf_event_exit_task_context().
2404 		 */
2405 		raw_spin_unlock_irq(&ctx->lock);
2406 		return;
2407 	}
2408 	/*
2409 	 * If the task is not running, ctx->lock will avoid it becoming so,
2410 	 * thus we can safely install the event.
2411 	 */
2412 	if (task_curr(task)) {
2413 		raw_spin_unlock_irq(&ctx->lock);
2414 		goto again;
2415 	}
2416 	add_event_to_ctx(event, ctx);
2417 	raw_spin_unlock_irq(&ctx->lock);
2418 }
2419 
2420 /*
2421  * Cross CPU call to enable a performance event
2422  */
2423 static void __perf_event_enable(struct perf_event *event,
2424 				struct perf_cpu_context *cpuctx,
2425 				struct perf_event_context *ctx,
2426 				void *info)
2427 {
2428 	struct perf_event *leader = event->group_leader;
2429 	struct perf_event_context *task_ctx;
2430 
2431 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2432 	    event->state <= PERF_EVENT_STATE_ERROR)
2433 		return;
2434 
2435 	if (ctx->is_active)
2436 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2437 
2438 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2439 
2440 	if (!ctx->is_active)
2441 		return;
2442 
2443 	if (!event_filter_match(event)) {
2444 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2445 		return;
2446 	}
2447 
2448 	/*
2449 	 * If the event is in a group and isn't the group leader,
2450 	 * then don't put it on unless the group is on.
2451 	 */
2452 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2453 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2454 		return;
2455 	}
2456 
2457 	task_ctx = cpuctx->task_ctx;
2458 	if (ctx->task)
2459 		WARN_ON_ONCE(task_ctx != ctx);
2460 
2461 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2462 }
2463 
2464 /*
2465  * Enable a event.
2466  *
2467  * If event->ctx is a cloned context, callers must make sure that
2468  * every task struct that event->ctx->task could possibly point to
2469  * remains valid.  This condition is satisfied when called through
2470  * perf_event_for_each_child or perf_event_for_each as described
2471  * for perf_event_disable.
2472  */
2473 static void _perf_event_enable(struct perf_event *event)
2474 {
2475 	struct perf_event_context *ctx = event->ctx;
2476 
2477 	raw_spin_lock_irq(&ctx->lock);
2478 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479 	    event->state <  PERF_EVENT_STATE_ERROR) {
2480 		raw_spin_unlock_irq(&ctx->lock);
2481 		return;
2482 	}
2483 
2484 	/*
2485 	 * If the event is in error state, clear that first.
2486 	 *
2487 	 * That way, if we see the event in error state below, we know that it
2488 	 * has gone back into error state, as distinct from the task having
2489 	 * been scheduled away before the cross-call arrived.
2490 	 */
2491 	if (event->state == PERF_EVENT_STATE_ERROR)
2492 		event->state = PERF_EVENT_STATE_OFF;
2493 	raw_spin_unlock_irq(&ctx->lock);
2494 
2495 	event_function_call(event, __perf_event_enable, NULL);
2496 }
2497 
2498 /*
2499  * See perf_event_disable();
2500  */
2501 void perf_event_enable(struct perf_event *event)
2502 {
2503 	struct perf_event_context *ctx;
2504 
2505 	ctx = perf_event_ctx_lock(event);
2506 	_perf_event_enable(event);
2507 	perf_event_ctx_unlock(event, ctx);
2508 }
2509 EXPORT_SYMBOL_GPL(perf_event_enable);
2510 
2511 struct stop_event_data {
2512 	struct perf_event	*event;
2513 	unsigned int		restart;
2514 };
2515 
2516 static int __perf_event_stop(void *info)
2517 {
2518 	struct stop_event_data *sd = info;
2519 	struct perf_event *event = sd->event;
2520 
2521 	/* if it's already INACTIVE, do nothing */
2522 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2523 		return 0;
2524 
2525 	/* matches smp_wmb() in event_sched_in() */
2526 	smp_rmb();
2527 
2528 	/*
2529 	 * There is a window with interrupts enabled before we get here,
2530 	 * so we need to check again lest we try to stop another CPU's event.
2531 	 */
2532 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2533 		return -EAGAIN;
2534 
2535 	event->pmu->stop(event, PERF_EF_UPDATE);
2536 
2537 	/*
2538 	 * May race with the actual stop (through perf_pmu_output_stop()),
2539 	 * but it is only used for events with AUX ring buffer, and such
2540 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2541 	 * see comments in perf_aux_output_begin().
2542 	 *
2543 	 * Since this is happening on a event-local CPU, no trace is lost
2544 	 * while restarting.
2545 	 */
2546 	if (sd->restart)
2547 		event->pmu->start(event, 0);
2548 
2549 	return 0;
2550 }
2551 
2552 static int perf_event_stop(struct perf_event *event, int restart)
2553 {
2554 	struct stop_event_data sd = {
2555 		.event		= event,
2556 		.restart	= restart,
2557 	};
2558 	int ret = 0;
2559 
2560 	do {
2561 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2562 			return 0;
2563 
2564 		/* matches smp_wmb() in event_sched_in() */
2565 		smp_rmb();
2566 
2567 		/*
2568 		 * We only want to restart ACTIVE events, so if the event goes
2569 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2570 		 * fall through with ret==-ENXIO.
2571 		 */
2572 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2573 					__perf_event_stop, &sd);
2574 	} while (ret == -EAGAIN);
2575 
2576 	return ret;
2577 }
2578 
2579 /*
2580  * In order to contain the amount of racy and tricky in the address filter
2581  * configuration management, it is a two part process:
2582  *
2583  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2584  *      we update the addresses of corresponding vmas in
2585  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2586  * (p2) when an event is scheduled in (pmu::add), it calls
2587  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2588  *      if the generation has changed since the previous call.
2589  *
2590  * If (p1) happens while the event is active, we restart it to force (p2).
2591  *
2592  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2593  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2594  *     ioctl;
2595  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2596  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2597  *     for reading;
2598  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2599  *     of exec.
2600  */
2601 void perf_event_addr_filters_sync(struct perf_event *event)
2602 {
2603 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2604 
2605 	if (!has_addr_filter(event))
2606 		return;
2607 
2608 	raw_spin_lock(&ifh->lock);
2609 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2610 		event->pmu->addr_filters_sync(event);
2611 		event->hw.addr_filters_gen = event->addr_filters_gen;
2612 	}
2613 	raw_spin_unlock(&ifh->lock);
2614 }
2615 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2616 
2617 static int _perf_event_refresh(struct perf_event *event, int refresh)
2618 {
2619 	/*
2620 	 * not supported on inherited events
2621 	 */
2622 	if (event->attr.inherit || !is_sampling_event(event))
2623 		return -EINVAL;
2624 
2625 	atomic_add(refresh, &event->event_limit);
2626 	_perf_event_enable(event);
2627 
2628 	return 0;
2629 }
2630 
2631 /*
2632  * See perf_event_disable()
2633  */
2634 int perf_event_refresh(struct perf_event *event, int refresh)
2635 {
2636 	struct perf_event_context *ctx;
2637 	int ret;
2638 
2639 	ctx = perf_event_ctx_lock(event);
2640 	ret = _perf_event_refresh(event, refresh);
2641 	perf_event_ctx_unlock(event, ctx);
2642 
2643 	return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(perf_event_refresh);
2646 
2647 static void ctx_sched_out(struct perf_event_context *ctx,
2648 			  struct perf_cpu_context *cpuctx,
2649 			  enum event_type_t event_type)
2650 {
2651 	int is_active = ctx->is_active;
2652 	struct perf_event *event;
2653 
2654 	lockdep_assert_held(&ctx->lock);
2655 
2656 	if (likely(!ctx->nr_events)) {
2657 		/*
2658 		 * See __perf_remove_from_context().
2659 		 */
2660 		WARN_ON_ONCE(ctx->is_active);
2661 		if (ctx->task)
2662 			WARN_ON_ONCE(cpuctx->task_ctx);
2663 		return;
2664 	}
2665 
2666 	ctx->is_active &= ~event_type;
2667 	if (!(ctx->is_active & EVENT_ALL))
2668 		ctx->is_active = 0;
2669 
2670 	if (ctx->task) {
2671 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2672 		if (!ctx->is_active)
2673 			cpuctx->task_ctx = NULL;
2674 	}
2675 
2676 	/*
2677 	 * Always update time if it was set; not only when it changes.
2678 	 * Otherwise we can 'forget' to update time for any but the last
2679 	 * context we sched out. For example:
2680 	 *
2681 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2682 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2683 	 *
2684 	 * would only update time for the pinned events.
2685 	 */
2686 	if (is_active & EVENT_TIME) {
2687 		/* update (and stop) ctx time */
2688 		update_context_time(ctx);
2689 		update_cgrp_time_from_cpuctx(cpuctx);
2690 	}
2691 
2692 	is_active ^= ctx->is_active; /* changed bits */
2693 
2694 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2695 		return;
2696 
2697 	perf_pmu_disable(ctx->pmu);
2698 	if (is_active & EVENT_PINNED) {
2699 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2700 			group_sched_out(event, cpuctx, ctx);
2701 	}
2702 
2703 	if (is_active & EVENT_FLEXIBLE) {
2704 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2705 			group_sched_out(event, cpuctx, ctx);
2706 	}
2707 	perf_pmu_enable(ctx->pmu);
2708 }
2709 
2710 /*
2711  * Test whether two contexts are equivalent, i.e. whether they have both been
2712  * cloned from the same version of the same context.
2713  *
2714  * Equivalence is measured using a generation number in the context that is
2715  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2716  * and list_del_event().
2717  */
2718 static int context_equiv(struct perf_event_context *ctx1,
2719 			 struct perf_event_context *ctx2)
2720 {
2721 	lockdep_assert_held(&ctx1->lock);
2722 	lockdep_assert_held(&ctx2->lock);
2723 
2724 	/* Pinning disables the swap optimization */
2725 	if (ctx1->pin_count || ctx2->pin_count)
2726 		return 0;
2727 
2728 	/* If ctx1 is the parent of ctx2 */
2729 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2730 		return 1;
2731 
2732 	/* If ctx2 is the parent of ctx1 */
2733 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2734 		return 1;
2735 
2736 	/*
2737 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2738 	 * hierarchy, see perf_event_init_context().
2739 	 */
2740 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2741 			ctx1->parent_gen == ctx2->parent_gen)
2742 		return 1;
2743 
2744 	/* Unmatched */
2745 	return 0;
2746 }
2747 
2748 static void __perf_event_sync_stat(struct perf_event *event,
2749 				     struct perf_event *next_event)
2750 {
2751 	u64 value;
2752 
2753 	if (!event->attr.inherit_stat)
2754 		return;
2755 
2756 	/*
2757 	 * Update the event value, we cannot use perf_event_read()
2758 	 * because we're in the middle of a context switch and have IRQs
2759 	 * disabled, which upsets smp_call_function_single(), however
2760 	 * we know the event must be on the current CPU, therefore we
2761 	 * don't need to use it.
2762 	 */
2763 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2764 		event->pmu->read(event);
2765 
2766 	perf_event_update_time(event);
2767 
2768 	/*
2769 	 * In order to keep per-task stats reliable we need to flip the event
2770 	 * values when we flip the contexts.
2771 	 */
2772 	value = local64_read(&next_event->count);
2773 	value = local64_xchg(&event->count, value);
2774 	local64_set(&next_event->count, value);
2775 
2776 	swap(event->total_time_enabled, next_event->total_time_enabled);
2777 	swap(event->total_time_running, next_event->total_time_running);
2778 
2779 	/*
2780 	 * Since we swizzled the values, update the user visible data too.
2781 	 */
2782 	perf_event_update_userpage(event);
2783 	perf_event_update_userpage(next_event);
2784 }
2785 
2786 static void perf_event_sync_stat(struct perf_event_context *ctx,
2787 				   struct perf_event_context *next_ctx)
2788 {
2789 	struct perf_event *event, *next_event;
2790 
2791 	if (!ctx->nr_stat)
2792 		return;
2793 
2794 	update_context_time(ctx);
2795 
2796 	event = list_first_entry(&ctx->event_list,
2797 				   struct perf_event, event_entry);
2798 
2799 	next_event = list_first_entry(&next_ctx->event_list,
2800 					struct perf_event, event_entry);
2801 
2802 	while (&event->event_entry != &ctx->event_list &&
2803 	       &next_event->event_entry != &next_ctx->event_list) {
2804 
2805 		__perf_event_sync_stat(event, next_event);
2806 
2807 		event = list_next_entry(event, event_entry);
2808 		next_event = list_next_entry(next_event, event_entry);
2809 	}
2810 }
2811 
2812 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2813 					 struct task_struct *next)
2814 {
2815 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2816 	struct perf_event_context *next_ctx;
2817 	struct perf_event_context *parent, *next_parent;
2818 	struct perf_cpu_context *cpuctx;
2819 	int do_switch = 1;
2820 
2821 	if (likely(!ctx))
2822 		return;
2823 
2824 	cpuctx = __get_cpu_context(ctx);
2825 	if (!cpuctx->task_ctx)
2826 		return;
2827 
2828 	rcu_read_lock();
2829 	next_ctx = next->perf_event_ctxp[ctxn];
2830 	if (!next_ctx)
2831 		goto unlock;
2832 
2833 	parent = rcu_dereference(ctx->parent_ctx);
2834 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2835 
2836 	/* If neither context have a parent context; they cannot be clones. */
2837 	if (!parent && !next_parent)
2838 		goto unlock;
2839 
2840 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2841 		/*
2842 		 * Looks like the two contexts are clones, so we might be
2843 		 * able to optimize the context switch.  We lock both
2844 		 * contexts and check that they are clones under the
2845 		 * lock (including re-checking that neither has been
2846 		 * uncloned in the meantime).  It doesn't matter which
2847 		 * order we take the locks because no other cpu could
2848 		 * be trying to lock both of these tasks.
2849 		 */
2850 		raw_spin_lock(&ctx->lock);
2851 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2852 		if (context_equiv(ctx, next_ctx)) {
2853 			WRITE_ONCE(ctx->task, next);
2854 			WRITE_ONCE(next_ctx->task, task);
2855 
2856 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2857 
2858 			/*
2859 			 * RCU_INIT_POINTER here is safe because we've not
2860 			 * modified the ctx and the above modification of
2861 			 * ctx->task and ctx->task_ctx_data are immaterial
2862 			 * since those values are always verified under
2863 			 * ctx->lock which we're now holding.
2864 			 */
2865 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2866 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2867 
2868 			do_switch = 0;
2869 
2870 			perf_event_sync_stat(ctx, next_ctx);
2871 		}
2872 		raw_spin_unlock(&next_ctx->lock);
2873 		raw_spin_unlock(&ctx->lock);
2874 	}
2875 unlock:
2876 	rcu_read_unlock();
2877 
2878 	if (do_switch) {
2879 		raw_spin_lock(&ctx->lock);
2880 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2881 		raw_spin_unlock(&ctx->lock);
2882 	}
2883 }
2884 
2885 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2886 
2887 void perf_sched_cb_dec(struct pmu *pmu)
2888 {
2889 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2890 
2891 	this_cpu_dec(perf_sched_cb_usages);
2892 
2893 	if (!--cpuctx->sched_cb_usage)
2894 		list_del(&cpuctx->sched_cb_entry);
2895 }
2896 
2897 
2898 void perf_sched_cb_inc(struct pmu *pmu)
2899 {
2900 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901 
2902 	if (!cpuctx->sched_cb_usage++)
2903 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2904 
2905 	this_cpu_inc(perf_sched_cb_usages);
2906 }
2907 
2908 /*
2909  * This function provides the context switch callback to the lower code
2910  * layer. It is invoked ONLY when the context switch callback is enabled.
2911  *
2912  * This callback is relevant even to per-cpu events; for example multi event
2913  * PEBS requires this to provide PID/TID information. This requires we flush
2914  * all queued PEBS records before we context switch to a new task.
2915  */
2916 static void perf_pmu_sched_task(struct task_struct *prev,
2917 				struct task_struct *next,
2918 				bool sched_in)
2919 {
2920 	struct perf_cpu_context *cpuctx;
2921 	struct pmu *pmu;
2922 
2923 	if (prev == next)
2924 		return;
2925 
2926 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2927 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2928 
2929 		if (WARN_ON_ONCE(!pmu->sched_task))
2930 			continue;
2931 
2932 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 		perf_pmu_disable(pmu);
2934 
2935 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2936 
2937 		perf_pmu_enable(pmu);
2938 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2939 	}
2940 }
2941 
2942 static void perf_event_switch(struct task_struct *task,
2943 			      struct task_struct *next_prev, bool sched_in);
2944 
2945 #define for_each_task_context_nr(ctxn)					\
2946 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2947 
2948 /*
2949  * Called from scheduler to remove the events of the current task,
2950  * with interrupts disabled.
2951  *
2952  * We stop each event and update the event value in event->count.
2953  *
2954  * This does not protect us against NMI, but disable()
2955  * sets the disabled bit in the control field of event _before_
2956  * accessing the event control register. If a NMI hits, then it will
2957  * not restart the event.
2958  */
2959 void __perf_event_task_sched_out(struct task_struct *task,
2960 				 struct task_struct *next)
2961 {
2962 	int ctxn;
2963 
2964 	if (__this_cpu_read(perf_sched_cb_usages))
2965 		perf_pmu_sched_task(task, next, false);
2966 
2967 	if (atomic_read(&nr_switch_events))
2968 		perf_event_switch(task, next, false);
2969 
2970 	for_each_task_context_nr(ctxn)
2971 		perf_event_context_sched_out(task, ctxn, next);
2972 
2973 	/*
2974 	 * if cgroup events exist on this CPU, then we need
2975 	 * to check if we have to switch out PMU state.
2976 	 * cgroup event are system-wide mode only
2977 	 */
2978 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2979 		perf_cgroup_sched_out(task, next);
2980 }
2981 
2982 /*
2983  * Called with IRQs disabled
2984  */
2985 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2986 			      enum event_type_t event_type)
2987 {
2988 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2989 }
2990 
2991 static void
2992 ctx_pinned_sched_in(struct perf_event_context *ctx,
2993 		    struct perf_cpu_context *cpuctx)
2994 {
2995 	struct perf_event *event;
2996 
2997 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2998 		if (event->state <= PERF_EVENT_STATE_OFF)
2999 			continue;
3000 		if (!event_filter_match(event))
3001 			continue;
3002 
3003 		if (group_can_go_on(event, cpuctx, 1))
3004 			group_sched_in(event, cpuctx, ctx);
3005 
3006 		/*
3007 		 * If this pinned group hasn't been scheduled,
3008 		 * put it in error state.
3009 		 */
3010 		if (event->state == PERF_EVENT_STATE_INACTIVE)
3011 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3012 	}
3013 }
3014 
3015 static void
3016 ctx_flexible_sched_in(struct perf_event_context *ctx,
3017 		      struct perf_cpu_context *cpuctx)
3018 {
3019 	struct perf_event *event;
3020 	int can_add_hw = 1;
3021 
3022 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3023 		/* Ignore events in OFF or ERROR state */
3024 		if (event->state <= PERF_EVENT_STATE_OFF)
3025 			continue;
3026 		/*
3027 		 * Listen to the 'cpu' scheduling filter constraint
3028 		 * of events:
3029 		 */
3030 		if (!event_filter_match(event))
3031 			continue;
3032 
3033 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3034 			if (group_sched_in(event, cpuctx, ctx))
3035 				can_add_hw = 0;
3036 		}
3037 	}
3038 }
3039 
3040 static void
3041 ctx_sched_in(struct perf_event_context *ctx,
3042 	     struct perf_cpu_context *cpuctx,
3043 	     enum event_type_t event_type,
3044 	     struct task_struct *task)
3045 {
3046 	int is_active = ctx->is_active;
3047 	u64 now;
3048 
3049 	lockdep_assert_held(&ctx->lock);
3050 
3051 	if (likely(!ctx->nr_events))
3052 		return;
3053 
3054 	ctx->is_active |= (event_type | EVENT_TIME);
3055 	if (ctx->task) {
3056 		if (!is_active)
3057 			cpuctx->task_ctx = ctx;
3058 		else
3059 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3060 	}
3061 
3062 	is_active ^= ctx->is_active; /* changed bits */
3063 
3064 	if (is_active & EVENT_TIME) {
3065 		/* start ctx time */
3066 		now = perf_clock();
3067 		ctx->timestamp = now;
3068 		perf_cgroup_set_timestamp(task, ctx);
3069 	}
3070 
3071 	/*
3072 	 * First go through the list and put on any pinned groups
3073 	 * in order to give them the best chance of going on.
3074 	 */
3075 	if (is_active & EVENT_PINNED)
3076 		ctx_pinned_sched_in(ctx, cpuctx);
3077 
3078 	/* Then walk through the lower prio flexible groups */
3079 	if (is_active & EVENT_FLEXIBLE)
3080 		ctx_flexible_sched_in(ctx, cpuctx);
3081 }
3082 
3083 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3084 			     enum event_type_t event_type,
3085 			     struct task_struct *task)
3086 {
3087 	struct perf_event_context *ctx = &cpuctx->ctx;
3088 
3089 	ctx_sched_in(ctx, cpuctx, event_type, task);
3090 }
3091 
3092 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3093 					struct task_struct *task)
3094 {
3095 	struct perf_cpu_context *cpuctx;
3096 
3097 	cpuctx = __get_cpu_context(ctx);
3098 	if (cpuctx->task_ctx == ctx)
3099 		return;
3100 
3101 	perf_ctx_lock(cpuctx, ctx);
3102 	/*
3103 	 * We must check ctx->nr_events while holding ctx->lock, such
3104 	 * that we serialize against perf_install_in_context().
3105 	 */
3106 	if (!ctx->nr_events)
3107 		goto unlock;
3108 
3109 	perf_pmu_disable(ctx->pmu);
3110 	/*
3111 	 * We want to keep the following priority order:
3112 	 * cpu pinned (that don't need to move), task pinned,
3113 	 * cpu flexible, task flexible.
3114 	 *
3115 	 * However, if task's ctx is not carrying any pinned
3116 	 * events, no need to flip the cpuctx's events around.
3117 	 */
3118 	if (!list_empty(&ctx->pinned_groups))
3119 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3120 	perf_event_sched_in(cpuctx, ctx, task);
3121 	perf_pmu_enable(ctx->pmu);
3122 
3123 unlock:
3124 	perf_ctx_unlock(cpuctx, ctx);
3125 }
3126 
3127 /*
3128  * Called from scheduler to add the events of the current task
3129  * with interrupts disabled.
3130  *
3131  * We restore the event value and then enable it.
3132  *
3133  * This does not protect us against NMI, but enable()
3134  * sets the enabled bit in the control field of event _before_
3135  * accessing the event control register. If a NMI hits, then it will
3136  * keep the event running.
3137  */
3138 void __perf_event_task_sched_in(struct task_struct *prev,
3139 				struct task_struct *task)
3140 {
3141 	struct perf_event_context *ctx;
3142 	int ctxn;
3143 
3144 	/*
3145 	 * If cgroup events exist on this CPU, then we need to check if we have
3146 	 * to switch in PMU state; cgroup event are system-wide mode only.
3147 	 *
3148 	 * Since cgroup events are CPU events, we must schedule these in before
3149 	 * we schedule in the task events.
3150 	 */
3151 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3152 		perf_cgroup_sched_in(prev, task);
3153 
3154 	for_each_task_context_nr(ctxn) {
3155 		ctx = task->perf_event_ctxp[ctxn];
3156 		if (likely(!ctx))
3157 			continue;
3158 
3159 		perf_event_context_sched_in(ctx, task);
3160 	}
3161 
3162 	if (atomic_read(&nr_switch_events))
3163 		perf_event_switch(task, prev, true);
3164 
3165 	if (__this_cpu_read(perf_sched_cb_usages))
3166 		perf_pmu_sched_task(prev, task, true);
3167 }
3168 
3169 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3170 {
3171 	u64 frequency = event->attr.sample_freq;
3172 	u64 sec = NSEC_PER_SEC;
3173 	u64 divisor, dividend;
3174 
3175 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3176 
3177 	count_fls = fls64(count);
3178 	nsec_fls = fls64(nsec);
3179 	frequency_fls = fls64(frequency);
3180 	sec_fls = 30;
3181 
3182 	/*
3183 	 * We got @count in @nsec, with a target of sample_freq HZ
3184 	 * the target period becomes:
3185 	 *
3186 	 *             @count * 10^9
3187 	 * period = -------------------
3188 	 *          @nsec * sample_freq
3189 	 *
3190 	 */
3191 
3192 	/*
3193 	 * Reduce accuracy by one bit such that @a and @b converge
3194 	 * to a similar magnitude.
3195 	 */
3196 #define REDUCE_FLS(a, b)		\
3197 do {					\
3198 	if (a##_fls > b##_fls) {	\
3199 		a >>= 1;		\
3200 		a##_fls--;		\
3201 	} else {			\
3202 		b >>= 1;		\
3203 		b##_fls--;		\
3204 	}				\
3205 } while (0)
3206 
3207 	/*
3208 	 * Reduce accuracy until either term fits in a u64, then proceed with
3209 	 * the other, so that finally we can do a u64/u64 division.
3210 	 */
3211 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3212 		REDUCE_FLS(nsec, frequency);
3213 		REDUCE_FLS(sec, count);
3214 	}
3215 
3216 	if (count_fls + sec_fls > 64) {
3217 		divisor = nsec * frequency;
3218 
3219 		while (count_fls + sec_fls > 64) {
3220 			REDUCE_FLS(count, sec);
3221 			divisor >>= 1;
3222 		}
3223 
3224 		dividend = count * sec;
3225 	} else {
3226 		dividend = count * sec;
3227 
3228 		while (nsec_fls + frequency_fls > 64) {
3229 			REDUCE_FLS(nsec, frequency);
3230 			dividend >>= 1;
3231 		}
3232 
3233 		divisor = nsec * frequency;
3234 	}
3235 
3236 	if (!divisor)
3237 		return dividend;
3238 
3239 	return div64_u64(dividend, divisor);
3240 }
3241 
3242 static DEFINE_PER_CPU(int, perf_throttled_count);
3243 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3244 
3245 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3246 {
3247 	struct hw_perf_event *hwc = &event->hw;
3248 	s64 period, sample_period;
3249 	s64 delta;
3250 
3251 	period = perf_calculate_period(event, nsec, count);
3252 
3253 	delta = (s64)(period - hwc->sample_period);
3254 	delta = (delta + 7) / 8; /* low pass filter */
3255 
3256 	sample_period = hwc->sample_period + delta;
3257 
3258 	if (!sample_period)
3259 		sample_period = 1;
3260 
3261 	hwc->sample_period = sample_period;
3262 
3263 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3264 		if (disable)
3265 			event->pmu->stop(event, PERF_EF_UPDATE);
3266 
3267 		local64_set(&hwc->period_left, 0);
3268 
3269 		if (disable)
3270 			event->pmu->start(event, PERF_EF_RELOAD);
3271 	}
3272 }
3273 
3274 /*
3275  * combine freq adjustment with unthrottling to avoid two passes over the
3276  * events. At the same time, make sure, having freq events does not change
3277  * the rate of unthrottling as that would introduce bias.
3278  */
3279 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3280 					   int needs_unthr)
3281 {
3282 	struct perf_event *event;
3283 	struct hw_perf_event *hwc;
3284 	u64 now, period = TICK_NSEC;
3285 	s64 delta;
3286 
3287 	/*
3288 	 * only need to iterate over all events iff:
3289 	 * - context have events in frequency mode (needs freq adjust)
3290 	 * - there are events to unthrottle on this cpu
3291 	 */
3292 	if (!(ctx->nr_freq || needs_unthr))
3293 		return;
3294 
3295 	raw_spin_lock(&ctx->lock);
3296 	perf_pmu_disable(ctx->pmu);
3297 
3298 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3299 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3300 			continue;
3301 
3302 		if (!event_filter_match(event))
3303 			continue;
3304 
3305 		perf_pmu_disable(event->pmu);
3306 
3307 		hwc = &event->hw;
3308 
3309 		if (hwc->interrupts == MAX_INTERRUPTS) {
3310 			hwc->interrupts = 0;
3311 			perf_log_throttle(event, 1);
3312 			event->pmu->start(event, 0);
3313 		}
3314 
3315 		if (!event->attr.freq || !event->attr.sample_freq)
3316 			goto next;
3317 
3318 		/*
3319 		 * stop the event and update event->count
3320 		 */
3321 		event->pmu->stop(event, PERF_EF_UPDATE);
3322 
3323 		now = local64_read(&event->count);
3324 		delta = now - hwc->freq_count_stamp;
3325 		hwc->freq_count_stamp = now;
3326 
3327 		/*
3328 		 * restart the event
3329 		 * reload only if value has changed
3330 		 * we have stopped the event so tell that
3331 		 * to perf_adjust_period() to avoid stopping it
3332 		 * twice.
3333 		 */
3334 		if (delta > 0)
3335 			perf_adjust_period(event, period, delta, false);
3336 
3337 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3338 	next:
3339 		perf_pmu_enable(event->pmu);
3340 	}
3341 
3342 	perf_pmu_enable(ctx->pmu);
3343 	raw_spin_unlock(&ctx->lock);
3344 }
3345 
3346 /*
3347  * Round-robin a context's events:
3348  */
3349 static void rotate_ctx(struct perf_event_context *ctx)
3350 {
3351 	/*
3352 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3353 	 * disabled by the inheritance code.
3354 	 */
3355 	if (!ctx->rotate_disable)
3356 		list_rotate_left(&ctx->flexible_groups);
3357 }
3358 
3359 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3360 {
3361 	struct perf_event_context *ctx = NULL;
3362 	int rotate = 0;
3363 
3364 	if (cpuctx->ctx.nr_events) {
3365 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3366 			rotate = 1;
3367 	}
3368 
3369 	ctx = cpuctx->task_ctx;
3370 	if (ctx && ctx->nr_events) {
3371 		if (ctx->nr_events != ctx->nr_active)
3372 			rotate = 1;
3373 	}
3374 
3375 	if (!rotate)
3376 		goto done;
3377 
3378 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3379 	perf_pmu_disable(cpuctx->ctx.pmu);
3380 
3381 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3382 	if (ctx)
3383 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3384 
3385 	rotate_ctx(&cpuctx->ctx);
3386 	if (ctx)
3387 		rotate_ctx(ctx);
3388 
3389 	perf_event_sched_in(cpuctx, ctx, current);
3390 
3391 	perf_pmu_enable(cpuctx->ctx.pmu);
3392 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3393 done:
3394 
3395 	return rotate;
3396 }
3397 
3398 void perf_event_task_tick(void)
3399 {
3400 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3401 	struct perf_event_context *ctx, *tmp;
3402 	int throttled;
3403 
3404 	lockdep_assert_irqs_disabled();
3405 
3406 	__this_cpu_inc(perf_throttled_seq);
3407 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3408 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3409 
3410 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3411 		perf_adjust_freq_unthr_context(ctx, throttled);
3412 }
3413 
3414 static int event_enable_on_exec(struct perf_event *event,
3415 				struct perf_event_context *ctx)
3416 {
3417 	if (!event->attr.enable_on_exec)
3418 		return 0;
3419 
3420 	event->attr.enable_on_exec = 0;
3421 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3422 		return 0;
3423 
3424 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3425 
3426 	return 1;
3427 }
3428 
3429 /*
3430  * Enable all of a task's events that have been marked enable-on-exec.
3431  * This expects task == current.
3432  */
3433 static void perf_event_enable_on_exec(int ctxn)
3434 {
3435 	struct perf_event_context *ctx, *clone_ctx = NULL;
3436 	enum event_type_t event_type = 0;
3437 	struct perf_cpu_context *cpuctx;
3438 	struct perf_event *event;
3439 	unsigned long flags;
3440 	int enabled = 0;
3441 
3442 	local_irq_save(flags);
3443 	ctx = current->perf_event_ctxp[ctxn];
3444 	if (!ctx || !ctx->nr_events)
3445 		goto out;
3446 
3447 	cpuctx = __get_cpu_context(ctx);
3448 	perf_ctx_lock(cpuctx, ctx);
3449 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3450 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3451 		enabled |= event_enable_on_exec(event, ctx);
3452 		event_type |= get_event_type(event);
3453 	}
3454 
3455 	/*
3456 	 * Unclone and reschedule this context if we enabled any event.
3457 	 */
3458 	if (enabled) {
3459 		clone_ctx = unclone_ctx(ctx);
3460 		ctx_resched(cpuctx, ctx, event_type);
3461 	} else {
3462 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3463 	}
3464 	perf_ctx_unlock(cpuctx, ctx);
3465 
3466 out:
3467 	local_irq_restore(flags);
3468 
3469 	if (clone_ctx)
3470 		put_ctx(clone_ctx);
3471 }
3472 
3473 struct perf_read_data {
3474 	struct perf_event *event;
3475 	bool group;
3476 	int ret;
3477 };
3478 
3479 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3480 {
3481 	u16 local_pkg, event_pkg;
3482 
3483 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3484 		int local_cpu = smp_processor_id();
3485 
3486 		event_pkg = topology_physical_package_id(event_cpu);
3487 		local_pkg = topology_physical_package_id(local_cpu);
3488 
3489 		if (event_pkg == local_pkg)
3490 			return local_cpu;
3491 	}
3492 
3493 	return event_cpu;
3494 }
3495 
3496 /*
3497  * Cross CPU call to read the hardware event
3498  */
3499 static void __perf_event_read(void *info)
3500 {
3501 	struct perf_read_data *data = info;
3502 	struct perf_event *sub, *event = data->event;
3503 	struct perf_event_context *ctx = event->ctx;
3504 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3505 	struct pmu *pmu = event->pmu;
3506 
3507 	/*
3508 	 * If this is a task context, we need to check whether it is
3509 	 * the current task context of this cpu.  If not it has been
3510 	 * scheduled out before the smp call arrived.  In that case
3511 	 * event->count would have been updated to a recent sample
3512 	 * when the event was scheduled out.
3513 	 */
3514 	if (ctx->task && cpuctx->task_ctx != ctx)
3515 		return;
3516 
3517 	raw_spin_lock(&ctx->lock);
3518 	if (ctx->is_active & EVENT_TIME) {
3519 		update_context_time(ctx);
3520 		update_cgrp_time_from_event(event);
3521 	}
3522 
3523 	perf_event_update_time(event);
3524 	if (data->group)
3525 		perf_event_update_sibling_time(event);
3526 
3527 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3528 		goto unlock;
3529 
3530 	if (!data->group) {
3531 		pmu->read(event);
3532 		data->ret = 0;
3533 		goto unlock;
3534 	}
3535 
3536 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3537 
3538 	pmu->read(event);
3539 
3540 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3541 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3542 			/*
3543 			 * Use sibling's PMU rather than @event's since
3544 			 * sibling could be on different (eg: software) PMU.
3545 			 */
3546 			sub->pmu->read(sub);
3547 		}
3548 	}
3549 
3550 	data->ret = pmu->commit_txn(pmu);
3551 
3552 unlock:
3553 	raw_spin_unlock(&ctx->lock);
3554 }
3555 
3556 static inline u64 perf_event_count(struct perf_event *event)
3557 {
3558 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3559 }
3560 
3561 /*
3562  * NMI-safe method to read a local event, that is an event that
3563  * is:
3564  *   - either for the current task, or for this CPU
3565  *   - does not have inherit set, for inherited task events
3566  *     will not be local and we cannot read them atomically
3567  *   - must not have a pmu::count method
3568  */
3569 int perf_event_read_local(struct perf_event *event, u64 *value,
3570 			  u64 *enabled, u64 *running)
3571 {
3572 	unsigned long flags;
3573 	int ret = 0;
3574 
3575 	/*
3576 	 * Disabling interrupts avoids all counter scheduling (context
3577 	 * switches, timer based rotation and IPIs).
3578 	 */
3579 	local_irq_save(flags);
3580 
3581 	/*
3582 	 * It must not be an event with inherit set, we cannot read
3583 	 * all child counters from atomic context.
3584 	 */
3585 	if (event->attr.inherit) {
3586 		ret = -EOPNOTSUPP;
3587 		goto out;
3588 	}
3589 
3590 	/* If this is a per-task event, it must be for current */
3591 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3592 	    event->hw.target != current) {
3593 		ret = -EINVAL;
3594 		goto out;
3595 	}
3596 
3597 	/* If this is a per-CPU event, it must be for this CPU */
3598 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3599 	    event->cpu != smp_processor_id()) {
3600 		ret = -EINVAL;
3601 		goto out;
3602 	}
3603 
3604 
3605 	/*
3606 	 * If the event is currently on this CPU, its either a per-task event,
3607 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3608 	 * oncpu == -1).
3609 	 */
3610 	if (event->oncpu == smp_processor_id())
3611 		event->pmu->read(event);
3612 
3613 	*value = local64_read(&event->count);
3614 	if (enabled || running) {
3615 		u64 now = event->shadow_ctx_time + perf_clock();
3616 		u64 __enabled, __running;
3617 
3618 		__perf_update_times(event, now, &__enabled, &__running);
3619 		if (enabled)
3620 			*enabled = __enabled;
3621 		if (running)
3622 			*running = __running;
3623 	}
3624 out:
3625 	local_irq_restore(flags);
3626 
3627 	return ret;
3628 }
3629 
3630 static int perf_event_read(struct perf_event *event, bool group)
3631 {
3632 	enum perf_event_state state = READ_ONCE(event->state);
3633 	int event_cpu, ret = 0;
3634 
3635 	/*
3636 	 * If event is enabled and currently active on a CPU, update the
3637 	 * value in the event structure:
3638 	 */
3639 again:
3640 	if (state == PERF_EVENT_STATE_ACTIVE) {
3641 		struct perf_read_data data;
3642 
3643 		/*
3644 		 * Orders the ->state and ->oncpu loads such that if we see
3645 		 * ACTIVE we must also see the right ->oncpu.
3646 		 *
3647 		 * Matches the smp_wmb() from event_sched_in().
3648 		 */
3649 		smp_rmb();
3650 
3651 		event_cpu = READ_ONCE(event->oncpu);
3652 		if ((unsigned)event_cpu >= nr_cpu_ids)
3653 			return 0;
3654 
3655 		data = (struct perf_read_data){
3656 			.event = event,
3657 			.group = group,
3658 			.ret = 0,
3659 		};
3660 
3661 		preempt_disable();
3662 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3663 
3664 		/*
3665 		 * Purposely ignore the smp_call_function_single() return
3666 		 * value.
3667 		 *
3668 		 * If event_cpu isn't a valid CPU it means the event got
3669 		 * scheduled out and that will have updated the event count.
3670 		 *
3671 		 * Therefore, either way, we'll have an up-to-date event count
3672 		 * after this.
3673 		 */
3674 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3675 		preempt_enable();
3676 		ret = data.ret;
3677 
3678 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
3679 		struct perf_event_context *ctx = event->ctx;
3680 		unsigned long flags;
3681 
3682 		raw_spin_lock_irqsave(&ctx->lock, flags);
3683 		state = event->state;
3684 		if (state != PERF_EVENT_STATE_INACTIVE) {
3685 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
3686 			goto again;
3687 		}
3688 
3689 		/*
3690 		 * May read while context is not active (e.g., thread is
3691 		 * blocked), in that case we cannot update context time
3692 		 */
3693 		if (ctx->is_active & EVENT_TIME) {
3694 			update_context_time(ctx);
3695 			update_cgrp_time_from_event(event);
3696 		}
3697 
3698 		perf_event_update_time(event);
3699 		if (group)
3700 			perf_event_update_sibling_time(event);
3701 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3702 	}
3703 
3704 	return ret;
3705 }
3706 
3707 /*
3708  * Initialize the perf_event context in a task_struct:
3709  */
3710 static void __perf_event_init_context(struct perf_event_context *ctx)
3711 {
3712 	raw_spin_lock_init(&ctx->lock);
3713 	mutex_init(&ctx->mutex);
3714 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3715 	INIT_LIST_HEAD(&ctx->pinned_groups);
3716 	INIT_LIST_HEAD(&ctx->flexible_groups);
3717 	INIT_LIST_HEAD(&ctx->event_list);
3718 	atomic_set(&ctx->refcount, 1);
3719 }
3720 
3721 static struct perf_event_context *
3722 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3723 {
3724 	struct perf_event_context *ctx;
3725 
3726 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3727 	if (!ctx)
3728 		return NULL;
3729 
3730 	__perf_event_init_context(ctx);
3731 	if (task) {
3732 		ctx->task = task;
3733 		get_task_struct(task);
3734 	}
3735 	ctx->pmu = pmu;
3736 
3737 	return ctx;
3738 }
3739 
3740 static struct task_struct *
3741 find_lively_task_by_vpid(pid_t vpid)
3742 {
3743 	struct task_struct *task;
3744 
3745 	rcu_read_lock();
3746 	if (!vpid)
3747 		task = current;
3748 	else
3749 		task = find_task_by_vpid(vpid);
3750 	if (task)
3751 		get_task_struct(task);
3752 	rcu_read_unlock();
3753 
3754 	if (!task)
3755 		return ERR_PTR(-ESRCH);
3756 
3757 	return task;
3758 }
3759 
3760 /*
3761  * Returns a matching context with refcount and pincount.
3762  */
3763 static struct perf_event_context *
3764 find_get_context(struct pmu *pmu, struct task_struct *task,
3765 		struct perf_event *event)
3766 {
3767 	struct perf_event_context *ctx, *clone_ctx = NULL;
3768 	struct perf_cpu_context *cpuctx;
3769 	void *task_ctx_data = NULL;
3770 	unsigned long flags;
3771 	int ctxn, err;
3772 	int cpu = event->cpu;
3773 
3774 	if (!task) {
3775 		/* Must be root to operate on a CPU event: */
3776 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3777 			return ERR_PTR(-EACCES);
3778 
3779 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3780 		ctx = &cpuctx->ctx;
3781 		get_ctx(ctx);
3782 		++ctx->pin_count;
3783 
3784 		return ctx;
3785 	}
3786 
3787 	err = -EINVAL;
3788 	ctxn = pmu->task_ctx_nr;
3789 	if (ctxn < 0)
3790 		goto errout;
3791 
3792 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3793 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3794 		if (!task_ctx_data) {
3795 			err = -ENOMEM;
3796 			goto errout;
3797 		}
3798 	}
3799 
3800 retry:
3801 	ctx = perf_lock_task_context(task, ctxn, &flags);
3802 	if (ctx) {
3803 		clone_ctx = unclone_ctx(ctx);
3804 		++ctx->pin_count;
3805 
3806 		if (task_ctx_data && !ctx->task_ctx_data) {
3807 			ctx->task_ctx_data = task_ctx_data;
3808 			task_ctx_data = NULL;
3809 		}
3810 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3811 
3812 		if (clone_ctx)
3813 			put_ctx(clone_ctx);
3814 	} else {
3815 		ctx = alloc_perf_context(pmu, task);
3816 		err = -ENOMEM;
3817 		if (!ctx)
3818 			goto errout;
3819 
3820 		if (task_ctx_data) {
3821 			ctx->task_ctx_data = task_ctx_data;
3822 			task_ctx_data = NULL;
3823 		}
3824 
3825 		err = 0;
3826 		mutex_lock(&task->perf_event_mutex);
3827 		/*
3828 		 * If it has already passed perf_event_exit_task().
3829 		 * we must see PF_EXITING, it takes this mutex too.
3830 		 */
3831 		if (task->flags & PF_EXITING)
3832 			err = -ESRCH;
3833 		else if (task->perf_event_ctxp[ctxn])
3834 			err = -EAGAIN;
3835 		else {
3836 			get_ctx(ctx);
3837 			++ctx->pin_count;
3838 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3839 		}
3840 		mutex_unlock(&task->perf_event_mutex);
3841 
3842 		if (unlikely(err)) {
3843 			put_ctx(ctx);
3844 
3845 			if (err == -EAGAIN)
3846 				goto retry;
3847 			goto errout;
3848 		}
3849 	}
3850 
3851 	kfree(task_ctx_data);
3852 	return ctx;
3853 
3854 errout:
3855 	kfree(task_ctx_data);
3856 	return ERR_PTR(err);
3857 }
3858 
3859 static void perf_event_free_filter(struct perf_event *event);
3860 static void perf_event_free_bpf_prog(struct perf_event *event);
3861 
3862 static void free_event_rcu(struct rcu_head *head)
3863 {
3864 	struct perf_event *event;
3865 
3866 	event = container_of(head, struct perf_event, rcu_head);
3867 	if (event->ns)
3868 		put_pid_ns(event->ns);
3869 	perf_event_free_filter(event);
3870 	kfree(event);
3871 }
3872 
3873 static void ring_buffer_attach(struct perf_event *event,
3874 			       struct ring_buffer *rb);
3875 
3876 static void detach_sb_event(struct perf_event *event)
3877 {
3878 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3879 
3880 	raw_spin_lock(&pel->lock);
3881 	list_del_rcu(&event->sb_list);
3882 	raw_spin_unlock(&pel->lock);
3883 }
3884 
3885 static bool is_sb_event(struct perf_event *event)
3886 {
3887 	struct perf_event_attr *attr = &event->attr;
3888 
3889 	if (event->parent)
3890 		return false;
3891 
3892 	if (event->attach_state & PERF_ATTACH_TASK)
3893 		return false;
3894 
3895 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3896 	    attr->comm || attr->comm_exec ||
3897 	    attr->task ||
3898 	    attr->context_switch)
3899 		return true;
3900 	return false;
3901 }
3902 
3903 static void unaccount_pmu_sb_event(struct perf_event *event)
3904 {
3905 	if (is_sb_event(event))
3906 		detach_sb_event(event);
3907 }
3908 
3909 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3910 {
3911 	if (event->parent)
3912 		return;
3913 
3914 	if (is_cgroup_event(event))
3915 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3916 }
3917 
3918 #ifdef CONFIG_NO_HZ_FULL
3919 static DEFINE_SPINLOCK(nr_freq_lock);
3920 #endif
3921 
3922 static void unaccount_freq_event_nohz(void)
3923 {
3924 #ifdef CONFIG_NO_HZ_FULL
3925 	spin_lock(&nr_freq_lock);
3926 	if (atomic_dec_and_test(&nr_freq_events))
3927 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3928 	spin_unlock(&nr_freq_lock);
3929 #endif
3930 }
3931 
3932 static void unaccount_freq_event(void)
3933 {
3934 	if (tick_nohz_full_enabled())
3935 		unaccount_freq_event_nohz();
3936 	else
3937 		atomic_dec(&nr_freq_events);
3938 }
3939 
3940 static void unaccount_event(struct perf_event *event)
3941 {
3942 	bool dec = false;
3943 
3944 	if (event->parent)
3945 		return;
3946 
3947 	if (event->attach_state & PERF_ATTACH_TASK)
3948 		dec = true;
3949 	if (event->attr.mmap || event->attr.mmap_data)
3950 		atomic_dec(&nr_mmap_events);
3951 	if (event->attr.comm)
3952 		atomic_dec(&nr_comm_events);
3953 	if (event->attr.namespaces)
3954 		atomic_dec(&nr_namespaces_events);
3955 	if (event->attr.task)
3956 		atomic_dec(&nr_task_events);
3957 	if (event->attr.freq)
3958 		unaccount_freq_event();
3959 	if (event->attr.context_switch) {
3960 		dec = true;
3961 		atomic_dec(&nr_switch_events);
3962 	}
3963 	if (is_cgroup_event(event))
3964 		dec = true;
3965 	if (has_branch_stack(event))
3966 		dec = true;
3967 
3968 	if (dec) {
3969 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3970 			schedule_delayed_work(&perf_sched_work, HZ);
3971 	}
3972 
3973 	unaccount_event_cpu(event, event->cpu);
3974 
3975 	unaccount_pmu_sb_event(event);
3976 }
3977 
3978 static void perf_sched_delayed(struct work_struct *work)
3979 {
3980 	mutex_lock(&perf_sched_mutex);
3981 	if (atomic_dec_and_test(&perf_sched_count))
3982 		static_branch_disable(&perf_sched_events);
3983 	mutex_unlock(&perf_sched_mutex);
3984 }
3985 
3986 /*
3987  * The following implement mutual exclusion of events on "exclusive" pmus
3988  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3989  * at a time, so we disallow creating events that might conflict, namely:
3990  *
3991  *  1) cpu-wide events in the presence of per-task events,
3992  *  2) per-task events in the presence of cpu-wide events,
3993  *  3) two matching events on the same context.
3994  *
3995  * The former two cases are handled in the allocation path (perf_event_alloc(),
3996  * _free_event()), the latter -- before the first perf_install_in_context().
3997  */
3998 static int exclusive_event_init(struct perf_event *event)
3999 {
4000 	struct pmu *pmu = event->pmu;
4001 
4002 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4003 		return 0;
4004 
4005 	/*
4006 	 * Prevent co-existence of per-task and cpu-wide events on the
4007 	 * same exclusive pmu.
4008 	 *
4009 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4010 	 * events on this "exclusive" pmu, positive means there are
4011 	 * per-task events.
4012 	 *
4013 	 * Since this is called in perf_event_alloc() path, event::ctx
4014 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4015 	 * to mean "per-task event", because unlike other attach states it
4016 	 * never gets cleared.
4017 	 */
4018 	if (event->attach_state & PERF_ATTACH_TASK) {
4019 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4020 			return -EBUSY;
4021 	} else {
4022 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4023 			return -EBUSY;
4024 	}
4025 
4026 	return 0;
4027 }
4028 
4029 static void exclusive_event_destroy(struct perf_event *event)
4030 {
4031 	struct pmu *pmu = event->pmu;
4032 
4033 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4034 		return;
4035 
4036 	/* see comment in exclusive_event_init() */
4037 	if (event->attach_state & PERF_ATTACH_TASK)
4038 		atomic_dec(&pmu->exclusive_cnt);
4039 	else
4040 		atomic_inc(&pmu->exclusive_cnt);
4041 }
4042 
4043 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4044 {
4045 	if ((e1->pmu == e2->pmu) &&
4046 	    (e1->cpu == e2->cpu ||
4047 	     e1->cpu == -1 ||
4048 	     e2->cpu == -1))
4049 		return true;
4050 	return false;
4051 }
4052 
4053 /* Called under the same ctx::mutex as perf_install_in_context() */
4054 static bool exclusive_event_installable(struct perf_event *event,
4055 					struct perf_event_context *ctx)
4056 {
4057 	struct perf_event *iter_event;
4058 	struct pmu *pmu = event->pmu;
4059 
4060 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4061 		return true;
4062 
4063 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4064 		if (exclusive_event_match(iter_event, event))
4065 			return false;
4066 	}
4067 
4068 	return true;
4069 }
4070 
4071 static void perf_addr_filters_splice(struct perf_event *event,
4072 				       struct list_head *head);
4073 
4074 static void _free_event(struct perf_event *event)
4075 {
4076 	irq_work_sync(&event->pending);
4077 
4078 	unaccount_event(event);
4079 
4080 	if (event->rb) {
4081 		/*
4082 		 * Can happen when we close an event with re-directed output.
4083 		 *
4084 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4085 		 * over us; possibly making our ring_buffer_put() the last.
4086 		 */
4087 		mutex_lock(&event->mmap_mutex);
4088 		ring_buffer_attach(event, NULL);
4089 		mutex_unlock(&event->mmap_mutex);
4090 	}
4091 
4092 	if (is_cgroup_event(event))
4093 		perf_detach_cgroup(event);
4094 
4095 	if (!event->parent) {
4096 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4097 			put_callchain_buffers();
4098 	}
4099 
4100 	perf_event_free_bpf_prog(event);
4101 	perf_addr_filters_splice(event, NULL);
4102 	kfree(event->addr_filters_offs);
4103 
4104 	if (event->destroy)
4105 		event->destroy(event);
4106 
4107 	if (event->ctx)
4108 		put_ctx(event->ctx);
4109 
4110 	exclusive_event_destroy(event);
4111 	module_put(event->pmu->module);
4112 
4113 	call_rcu(&event->rcu_head, free_event_rcu);
4114 }
4115 
4116 /*
4117  * Used to free events which have a known refcount of 1, such as in error paths
4118  * where the event isn't exposed yet and inherited events.
4119  */
4120 static void free_event(struct perf_event *event)
4121 {
4122 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4123 				"unexpected event refcount: %ld; ptr=%p\n",
4124 				atomic_long_read(&event->refcount), event)) {
4125 		/* leak to avoid use-after-free */
4126 		return;
4127 	}
4128 
4129 	_free_event(event);
4130 }
4131 
4132 /*
4133  * Remove user event from the owner task.
4134  */
4135 static void perf_remove_from_owner(struct perf_event *event)
4136 {
4137 	struct task_struct *owner;
4138 
4139 	rcu_read_lock();
4140 	/*
4141 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4142 	 * observe !owner it means the list deletion is complete and we can
4143 	 * indeed free this event, otherwise we need to serialize on
4144 	 * owner->perf_event_mutex.
4145 	 */
4146 	owner = READ_ONCE(event->owner);
4147 	if (owner) {
4148 		/*
4149 		 * Since delayed_put_task_struct() also drops the last
4150 		 * task reference we can safely take a new reference
4151 		 * while holding the rcu_read_lock().
4152 		 */
4153 		get_task_struct(owner);
4154 	}
4155 	rcu_read_unlock();
4156 
4157 	if (owner) {
4158 		/*
4159 		 * If we're here through perf_event_exit_task() we're already
4160 		 * holding ctx->mutex which would be an inversion wrt. the
4161 		 * normal lock order.
4162 		 *
4163 		 * However we can safely take this lock because its the child
4164 		 * ctx->mutex.
4165 		 */
4166 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4167 
4168 		/*
4169 		 * We have to re-check the event->owner field, if it is cleared
4170 		 * we raced with perf_event_exit_task(), acquiring the mutex
4171 		 * ensured they're done, and we can proceed with freeing the
4172 		 * event.
4173 		 */
4174 		if (event->owner) {
4175 			list_del_init(&event->owner_entry);
4176 			smp_store_release(&event->owner, NULL);
4177 		}
4178 		mutex_unlock(&owner->perf_event_mutex);
4179 		put_task_struct(owner);
4180 	}
4181 }
4182 
4183 static void put_event(struct perf_event *event)
4184 {
4185 	if (!atomic_long_dec_and_test(&event->refcount))
4186 		return;
4187 
4188 	_free_event(event);
4189 }
4190 
4191 /*
4192  * Kill an event dead; while event:refcount will preserve the event
4193  * object, it will not preserve its functionality. Once the last 'user'
4194  * gives up the object, we'll destroy the thing.
4195  */
4196 int perf_event_release_kernel(struct perf_event *event)
4197 {
4198 	struct perf_event_context *ctx = event->ctx;
4199 	struct perf_event *child, *tmp;
4200 
4201 	/*
4202 	 * If we got here through err_file: fput(event_file); we will not have
4203 	 * attached to a context yet.
4204 	 */
4205 	if (!ctx) {
4206 		WARN_ON_ONCE(event->attach_state &
4207 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4208 		goto no_ctx;
4209 	}
4210 
4211 	if (!is_kernel_event(event))
4212 		perf_remove_from_owner(event);
4213 
4214 	ctx = perf_event_ctx_lock(event);
4215 	WARN_ON_ONCE(ctx->parent_ctx);
4216 	perf_remove_from_context(event, DETACH_GROUP);
4217 
4218 	raw_spin_lock_irq(&ctx->lock);
4219 	/*
4220 	 * Mark this event as STATE_DEAD, there is no external reference to it
4221 	 * anymore.
4222 	 *
4223 	 * Anybody acquiring event->child_mutex after the below loop _must_
4224 	 * also see this, most importantly inherit_event() which will avoid
4225 	 * placing more children on the list.
4226 	 *
4227 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4228 	 * child events.
4229 	 */
4230 	event->state = PERF_EVENT_STATE_DEAD;
4231 	raw_spin_unlock_irq(&ctx->lock);
4232 
4233 	perf_event_ctx_unlock(event, ctx);
4234 
4235 again:
4236 	mutex_lock(&event->child_mutex);
4237 	list_for_each_entry(child, &event->child_list, child_list) {
4238 
4239 		/*
4240 		 * Cannot change, child events are not migrated, see the
4241 		 * comment with perf_event_ctx_lock_nested().
4242 		 */
4243 		ctx = READ_ONCE(child->ctx);
4244 		/*
4245 		 * Since child_mutex nests inside ctx::mutex, we must jump
4246 		 * through hoops. We start by grabbing a reference on the ctx.
4247 		 *
4248 		 * Since the event cannot get freed while we hold the
4249 		 * child_mutex, the context must also exist and have a !0
4250 		 * reference count.
4251 		 */
4252 		get_ctx(ctx);
4253 
4254 		/*
4255 		 * Now that we have a ctx ref, we can drop child_mutex, and
4256 		 * acquire ctx::mutex without fear of it going away. Then we
4257 		 * can re-acquire child_mutex.
4258 		 */
4259 		mutex_unlock(&event->child_mutex);
4260 		mutex_lock(&ctx->mutex);
4261 		mutex_lock(&event->child_mutex);
4262 
4263 		/*
4264 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4265 		 * state, if child is still the first entry, it didn't get freed
4266 		 * and we can continue doing so.
4267 		 */
4268 		tmp = list_first_entry_or_null(&event->child_list,
4269 					       struct perf_event, child_list);
4270 		if (tmp == child) {
4271 			perf_remove_from_context(child, DETACH_GROUP);
4272 			list_del(&child->child_list);
4273 			free_event(child);
4274 			/*
4275 			 * This matches the refcount bump in inherit_event();
4276 			 * this can't be the last reference.
4277 			 */
4278 			put_event(event);
4279 		}
4280 
4281 		mutex_unlock(&event->child_mutex);
4282 		mutex_unlock(&ctx->mutex);
4283 		put_ctx(ctx);
4284 		goto again;
4285 	}
4286 	mutex_unlock(&event->child_mutex);
4287 
4288 no_ctx:
4289 	put_event(event); /* Must be the 'last' reference */
4290 	return 0;
4291 }
4292 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4293 
4294 /*
4295  * Called when the last reference to the file is gone.
4296  */
4297 static int perf_release(struct inode *inode, struct file *file)
4298 {
4299 	perf_event_release_kernel(file->private_data);
4300 	return 0;
4301 }
4302 
4303 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4304 {
4305 	struct perf_event *child;
4306 	u64 total = 0;
4307 
4308 	*enabled = 0;
4309 	*running = 0;
4310 
4311 	mutex_lock(&event->child_mutex);
4312 
4313 	(void)perf_event_read(event, false);
4314 	total += perf_event_count(event);
4315 
4316 	*enabled += event->total_time_enabled +
4317 			atomic64_read(&event->child_total_time_enabled);
4318 	*running += event->total_time_running +
4319 			atomic64_read(&event->child_total_time_running);
4320 
4321 	list_for_each_entry(child, &event->child_list, child_list) {
4322 		(void)perf_event_read(child, false);
4323 		total += perf_event_count(child);
4324 		*enabled += child->total_time_enabled;
4325 		*running += child->total_time_running;
4326 	}
4327 	mutex_unlock(&event->child_mutex);
4328 
4329 	return total;
4330 }
4331 
4332 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4333 {
4334 	struct perf_event_context *ctx;
4335 	u64 count;
4336 
4337 	ctx = perf_event_ctx_lock(event);
4338 	count = __perf_event_read_value(event, enabled, running);
4339 	perf_event_ctx_unlock(event, ctx);
4340 
4341 	return count;
4342 }
4343 EXPORT_SYMBOL_GPL(perf_event_read_value);
4344 
4345 static int __perf_read_group_add(struct perf_event *leader,
4346 					u64 read_format, u64 *values)
4347 {
4348 	struct perf_event_context *ctx = leader->ctx;
4349 	struct perf_event *sub;
4350 	unsigned long flags;
4351 	int n = 1; /* skip @nr */
4352 	int ret;
4353 
4354 	ret = perf_event_read(leader, true);
4355 	if (ret)
4356 		return ret;
4357 
4358 	raw_spin_lock_irqsave(&ctx->lock, flags);
4359 
4360 	/*
4361 	 * Since we co-schedule groups, {enabled,running} times of siblings
4362 	 * will be identical to those of the leader, so we only publish one
4363 	 * set.
4364 	 */
4365 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4366 		values[n++] += leader->total_time_enabled +
4367 			atomic64_read(&leader->child_total_time_enabled);
4368 	}
4369 
4370 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4371 		values[n++] += leader->total_time_running +
4372 			atomic64_read(&leader->child_total_time_running);
4373 	}
4374 
4375 	/*
4376 	 * Write {count,id} tuples for every sibling.
4377 	 */
4378 	values[n++] += perf_event_count(leader);
4379 	if (read_format & PERF_FORMAT_ID)
4380 		values[n++] = primary_event_id(leader);
4381 
4382 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4383 		values[n++] += perf_event_count(sub);
4384 		if (read_format & PERF_FORMAT_ID)
4385 			values[n++] = primary_event_id(sub);
4386 	}
4387 
4388 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4389 	return 0;
4390 }
4391 
4392 static int perf_read_group(struct perf_event *event,
4393 				   u64 read_format, char __user *buf)
4394 {
4395 	struct perf_event *leader = event->group_leader, *child;
4396 	struct perf_event_context *ctx = leader->ctx;
4397 	int ret;
4398 	u64 *values;
4399 
4400 	lockdep_assert_held(&ctx->mutex);
4401 
4402 	values = kzalloc(event->read_size, GFP_KERNEL);
4403 	if (!values)
4404 		return -ENOMEM;
4405 
4406 	values[0] = 1 + leader->nr_siblings;
4407 
4408 	/*
4409 	 * By locking the child_mutex of the leader we effectively
4410 	 * lock the child list of all siblings.. XXX explain how.
4411 	 */
4412 	mutex_lock(&leader->child_mutex);
4413 
4414 	ret = __perf_read_group_add(leader, read_format, values);
4415 	if (ret)
4416 		goto unlock;
4417 
4418 	list_for_each_entry(child, &leader->child_list, child_list) {
4419 		ret = __perf_read_group_add(child, read_format, values);
4420 		if (ret)
4421 			goto unlock;
4422 	}
4423 
4424 	mutex_unlock(&leader->child_mutex);
4425 
4426 	ret = event->read_size;
4427 	if (copy_to_user(buf, values, event->read_size))
4428 		ret = -EFAULT;
4429 	goto out;
4430 
4431 unlock:
4432 	mutex_unlock(&leader->child_mutex);
4433 out:
4434 	kfree(values);
4435 	return ret;
4436 }
4437 
4438 static int perf_read_one(struct perf_event *event,
4439 				 u64 read_format, char __user *buf)
4440 {
4441 	u64 enabled, running;
4442 	u64 values[4];
4443 	int n = 0;
4444 
4445 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4446 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4447 		values[n++] = enabled;
4448 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4449 		values[n++] = running;
4450 	if (read_format & PERF_FORMAT_ID)
4451 		values[n++] = primary_event_id(event);
4452 
4453 	if (copy_to_user(buf, values, n * sizeof(u64)))
4454 		return -EFAULT;
4455 
4456 	return n * sizeof(u64);
4457 }
4458 
4459 static bool is_event_hup(struct perf_event *event)
4460 {
4461 	bool no_children;
4462 
4463 	if (event->state > PERF_EVENT_STATE_EXIT)
4464 		return false;
4465 
4466 	mutex_lock(&event->child_mutex);
4467 	no_children = list_empty(&event->child_list);
4468 	mutex_unlock(&event->child_mutex);
4469 	return no_children;
4470 }
4471 
4472 /*
4473  * Read the performance event - simple non blocking version for now
4474  */
4475 static ssize_t
4476 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4477 {
4478 	u64 read_format = event->attr.read_format;
4479 	int ret;
4480 
4481 	/*
4482 	 * Return end-of-file for a read on a event that is in
4483 	 * error state (i.e. because it was pinned but it couldn't be
4484 	 * scheduled on to the CPU at some point).
4485 	 */
4486 	if (event->state == PERF_EVENT_STATE_ERROR)
4487 		return 0;
4488 
4489 	if (count < event->read_size)
4490 		return -ENOSPC;
4491 
4492 	WARN_ON_ONCE(event->ctx->parent_ctx);
4493 	if (read_format & PERF_FORMAT_GROUP)
4494 		ret = perf_read_group(event, read_format, buf);
4495 	else
4496 		ret = perf_read_one(event, read_format, buf);
4497 
4498 	return ret;
4499 }
4500 
4501 static ssize_t
4502 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4503 {
4504 	struct perf_event *event = file->private_data;
4505 	struct perf_event_context *ctx;
4506 	int ret;
4507 
4508 	ctx = perf_event_ctx_lock(event);
4509 	ret = __perf_read(event, buf, count);
4510 	perf_event_ctx_unlock(event, ctx);
4511 
4512 	return ret;
4513 }
4514 
4515 static unsigned int perf_poll(struct file *file, poll_table *wait)
4516 {
4517 	struct perf_event *event = file->private_data;
4518 	struct ring_buffer *rb;
4519 	unsigned int events = POLLHUP;
4520 
4521 	poll_wait(file, &event->waitq, wait);
4522 
4523 	if (is_event_hup(event))
4524 		return events;
4525 
4526 	/*
4527 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4528 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4529 	 */
4530 	mutex_lock(&event->mmap_mutex);
4531 	rb = event->rb;
4532 	if (rb)
4533 		events = atomic_xchg(&rb->poll, 0);
4534 	mutex_unlock(&event->mmap_mutex);
4535 	return events;
4536 }
4537 
4538 static void _perf_event_reset(struct perf_event *event)
4539 {
4540 	(void)perf_event_read(event, false);
4541 	local64_set(&event->count, 0);
4542 	perf_event_update_userpage(event);
4543 }
4544 
4545 /*
4546  * Holding the top-level event's child_mutex means that any
4547  * descendant process that has inherited this event will block
4548  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4549  * task existence requirements of perf_event_enable/disable.
4550  */
4551 static void perf_event_for_each_child(struct perf_event *event,
4552 					void (*func)(struct perf_event *))
4553 {
4554 	struct perf_event *child;
4555 
4556 	WARN_ON_ONCE(event->ctx->parent_ctx);
4557 
4558 	mutex_lock(&event->child_mutex);
4559 	func(event);
4560 	list_for_each_entry(child, &event->child_list, child_list)
4561 		func(child);
4562 	mutex_unlock(&event->child_mutex);
4563 }
4564 
4565 static void perf_event_for_each(struct perf_event *event,
4566 				  void (*func)(struct perf_event *))
4567 {
4568 	struct perf_event_context *ctx = event->ctx;
4569 	struct perf_event *sibling;
4570 
4571 	lockdep_assert_held(&ctx->mutex);
4572 
4573 	event = event->group_leader;
4574 
4575 	perf_event_for_each_child(event, func);
4576 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4577 		perf_event_for_each_child(sibling, func);
4578 }
4579 
4580 static void __perf_event_period(struct perf_event *event,
4581 				struct perf_cpu_context *cpuctx,
4582 				struct perf_event_context *ctx,
4583 				void *info)
4584 {
4585 	u64 value = *((u64 *)info);
4586 	bool active;
4587 
4588 	if (event->attr.freq) {
4589 		event->attr.sample_freq = value;
4590 	} else {
4591 		event->attr.sample_period = value;
4592 		event->hw.sample_period = value;
4593 	}
4594 
4595 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4596 	if (active) {
4597 		perf_pmu_disable(ctx->pmu);
4598 		/*
4599 		 * We could be throttled; unthrottle now to avoid the tick
4600 		 * trying to unthrottle while we already re-started the event.
4601 		 */
4602 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4603 			event->hw.interrupts = 0;
4604 			perf_log_throttle(event, 1);
4605 		}
4606 		event->pmu->stop(event, PERF_EF_UPDATE);
4607 	}
4608 
4609 	local64_set(&event->hw.period_left, 0);
4610 
4611 	if (active) {
4612 		event->pmu->start(event, PERF_EF_RELOAD);
4613 		perf_pmu_enable(ctx->pmu);
4614 	}
4615 }
4616 
4617 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4618 {
4619 	u64 value;
4620 
4621 	if (!is_sampling_event(event))
4622 		return -EINVAL;
4623 
4624 	if (copy_from_user(&value, arg, sizeof(value)))
4625 		return -EFAULT;
4626 
4627 	if (!value)
4628 		return -EINVAL;
4629 
4630 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4631 		return -EINVAL;
4632 
4633 	event_function_call(event, __perf_event_period, &value);
4634 
4635 	return 0;
4636 }
4637 
4638 static const struct file_operations perf_fops;
4639 
4640 static inline int perf_fget_light(int fd, struct fd *p)
4641 {
4642 	struct fd f = fdget(fd);
4643 	if (!f.file)
4644 		return -EBADF;
4645 
4646 	if (f.file->f_op != &perf_fops) {
4647 		fdput(f);
4648 		return -EBADF;
4649 	}
4650 	*p = f;
4651 	return 0;
4652 }
4653 
4654 static int perf_event_set_output(struct perf_event *event,
4655 				 struct perf_event *output_event);
4656 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4657 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4658 
4659 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4660 {
4661 	void (*func)(struct perf_event *);
4662 	u32 flags = arg;
4663 
4664 	switch (cmd) {
4665 	case PERF_EVENT_IOC_ENABLE:
4666 		func = _perf_event_enable;
4667 		break;
4668 	case PERF_EVENT_IOC_DISABLE:
4669 		func = _perf_event_disable;
4670 		break;
4671 	case PERF_EVENT_IOC_RESET:
4672 		func = _perf_event_reset;
4673 		break;
4674 
4675 	case PERF_EVENT_IOC_REFRESH:
4676 		return _perf_event_refresh(event, arg);
4677 
4678 	case PERF_EVENT_IOC_PERIOD:
4679 		return perf_event_period(event, (u64 __user *)arg);
4680 
4681 	case PERF_EVENT_IOC_ID:
4682 	{
4683 		u64 id = primary_event_id(event);
4684 
4685 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4686 			return -EFAULT;
4687 		return 0;
4688 	}
4689 
4690 	case PERF_EVENT_IOC_SET_OUTPUT:
4691 	{
4692 		int ret;
4693 		if (arg != -1) {
4694 			struct perf_event *output_event;
4695 			struct fd output;
4696 			ret = perf_fget_light(arg, &output);
4697 			if (ret)
4698 				return ret;
4699 			output_event = output.file->private_data;
4700 			ret = perf_event_set_output(event, output_event);
4701 			fdput(output);
4702 		} else {
4703 			ret = perf_event_set_output(event, NULL);
4704 		}
4705 		return ret;
4706 	}
4707 
4708 	case PERF_EVENT_IOC_SET_FILTER:
4709 		return perf_event_set_filter(event, (void __user *)arg);
4710 
4711 	case PERF_EVENT_IOC_SET_BPF:
4712 		return perf_event_set_bpf_prog(event, arg);
4713 
4714 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4715 		struct ring_buffer *rb;
4716 
4717 		rcu_read_lock();
4718 		rb = rcu_dereference(event->rb);
4719 		if (!rb || !rb->nr_pages) {
4720 			rcu_read_unlock();
4721 			return -EINVAL;
4722 		}
4723 		rb_toggle_paused(rb, !!arg);
4724 		rcu_read_unlock();
4725 		return 0;
4726 	}
4727 	default:
4728 		return -ENOTTY;
4729 	}
4730 
4731 	if (flags & PERF_IOC_FLAG_GROUP)
4732 		perf_event_for_each(event, func);
4733 	else
4734 		perf_event_for_each_child(event, func);
4735 
4736 	return 0;
4737 }
4738 
4739 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4740 {
4741 	struct perf_event *event = file->private_data;
4742 	struct perf_event_context *ctx;
4743 	long ret;
4744 
4745 	ctx = perf_event_ctx_lock(event);
4746 	ret = _perf_ioctl(event, cmd, arg);
4747 	perf_event_ctx_unlock(event, ctx);
4748 
4749 	return ret;
4750 }
4751 
4752 #ifdef CONFIG_COMPAT
4753 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4754 				unsigned long arg)
4755 {
4756 	switch (_IOC_NR(cmd)) {
4757 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4758 	case _IOC_NR(PERF_EVENT_IOC_ID):
4759 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4760 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4761 			cmd &= ~IOCSIZE_MASK;
4762 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4763 		}
4764 		break;
4765 	}
4766 	return perf_ioctl(file, cmd, arg);
4767 }
4768 #else
4769 # define perf_compat_ioctl NULL
4770 #endif
4771 
4772 int perf_event_task_enable(void)
4773 {
4774 	struct perf_event_context *ctx;
4775 	struct perf_event *event;
4776 
4777 	mutex_lock(&current->perf_event_mutex);
4778 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4779 		ctx = perf_event_ctx_lock(event);
4780 		perf_event_for_each_child(event, _perf_event_enable);
4781 		perf_event_ctx_unlock(event, ctx);
4782 	}
4783 	mutex_unlock(&current->perf_event_mutex);
4784 
4785 	return 0;
4786 }
4787 
4788 int perf_event_task_disable(void)
4789 {
4790 	struct perf_event_context *ctx;
4791 	struct perf_event *event;
4792 
4793 	mutex_lock(&current->perf_event_mutex);
4794 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4795 		ctx = perf_event_ctx_lock(event);
4796 		perf_event_for_each_child(event, _perf_event_disable);
4797 		perf_event_ctx_unlock(event, ctx);
4798 	}
4799 	mutex_unlock(&current->perf_event_mutex);
4800 
4801 	return 0;
4802 }
4803 
4804 static int perf_event_index(struct perf_event *event)
4805 {
4806 	if (event->hw.state & PERF_HES_STOPPED)
4807 		return 0;
4808 
4809 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4810 		return 0;
4811 
4812 	return event->pmu->event_idx(event);
4813 }
4814 
4815 static void calc_timer_values(struct perf_event *event,
4816 				u64 *now,
4817 				u64 *enabled,
4818 				u64 *running)
4819 {
4820 	u64 ctx_time;
4821 
4822 	*now = perf_clock();
4823 	ctx_time = event->shadow_ctx_time + *now;
4824 	__perf_update_times(event, ctx_time, enabled, running);
4825 }
4826 
4827 static void perf_event_init_userpage(struct perf_event *event)
4828 {
4829 	struct perf_event_mmap_page *userpg;
4830 	struct ring_buffer *rb;
4831 
4832 	rcu_read_lock();
4833 	rb = rcu_dereference(event->rb);
4834 	if (!rb)
4835 		goto unlock;
4836 
4837 	userpg = rb->user_page;
4838 
4839 	/* Allow new userspace to detect that bit 0 is deprecated */
4840 	userpg->cap_bit0_is_deprecated = 1;
4841 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4842 	userpg->data_offset = PAGE_SIZE;
4843 	userpg->data_size = perf_data_size(rb);
4844 
4845 unlock:
4846 	rcu_read_unlock();
4847 }
4848 
4849 void __weak arch_perf_update_userpage(
4850 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4851 {
4852 }
4853 
4854 /*
4855  * Callers need to ensure there can be no nesting of this function, otherwise
4856  * the seqlock logic goes bad. We can not serialize this because the arch
4857  * code calls this from NMI context.
4858  */
4859 void perf_event_update_userpage(struct perf_event *event)
4860 {
4861 	struct perf_event_mmap_page *userpg;
4862 	struct ring_buffer *rb;
4863 	u64 enabled, running, now;
4864 
4865 	rcu_read_lock();
4866 	rb = rcu_dereference(event->rb);
4867 	if (!rb)
4868 		goto unlock;
4869 
4870 	/*
4871 	 * compute total_time_enabled, total_time_running
4872 	 * based on snapshot values taken when the event
4873 	 * was last scheduled in.
4874 	 *
4875 	 * we cannot simply called update_context_time()
4876 	 * because of locking issue as we can be called in
4877 	 * NMI context
4878 	 */
4879 	calc_timer_values(event, &now, &enabled, &running);
4880 
4881 	userpg = rb->user_page;
4882 	/*
4883 	 * Disable preemption so as to not let the corresponding user-space
4884 	 * spin too long if we get preempted.
4885 	 */
4886 	preempt_disable();
4887 	++userpg->lock;
4888 	barrier();
4889 	userpg->index = perf_event_index(event);
4890 	userpg->offset = perf_event_count(event);
4891 	if (userpg->index)
4892 		userpg->offset -= local64_read(&event->hw.prev_count);
4893 
4894 	userpg->time_enabled = enabled +
4895 			atomic64_read(&event->child_total_time_enabled);
4896 
4897 	userpg->time_running = running +
4898 			atomic64_read(&event->child_total_time_running);
4899 
4900 	arch_perf_update_userpage(event, userpg, now);
4901 
4902 	barrier();
4903 	++userpg->lock;
4904 	preempt_enable();
4905 unlock:
4906 	rcu_read_unlock();
4907 }
4908 
4909 static int perf_mmap_fault(struct vm_fault *vmf)
4910 {
4911 	struct perf_event *event = vmf->vma->vm_file->private_data;
4912 	struct ring_buffer *rb;
4913 	int ret = VM_FAULT_SIGBUS;
4914 
4915 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4916 		if (vmf->pgoff == 0)
4917 			ret = 0;
4918 		return ret;
4919 	}
4920 
4921 	rcu_read_lock();
4922 	rb = rcu_dereference(event->rb);
4923 	if (!rb)
4924 		goto unlock;
4925 
4926 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4927 		goto unlock;
4928 
4929 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4930 	if (!vmf->page)
4931 		goto unlock;
4932 
4933 	get_page(vmf->page);
4934 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4935 	vmf->page->index   = vmf->pgoff;
4936 
4937 	ret = 0;
4938 unlock:
4939 	rcu_read_unlock();
4940 
4941 	return ret;
4942 }
4943 
4944 static void ring_buffer_attach(struct perf_event *event,
4945 			       struct ring_buffer *rb)
4946 {
4947 	struct ring_buffer *old_rb = NULL;
4948 	unsigned long flags;
4949 
4950 	if (event->rb) {
4951 		/*
4952 		 * Should be impossible, we set this when removing
4953 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4954 		 */
4955 		WARN_ON_ONCE(event->rcu_pending);
4956 
4957 		old_rb = event->rb;
4958 		spin_lock_irqsave(&old_rb->event_lock, flags);
4959 		list_del_rcu(&event->rb_entry);
4960 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4961 
4962 		event->rcu_batches = get_state_synchronize_rcu();
4963 		event->rcu_pending = 1;
4964 	}
4965 
4966 	if (rb) {
4967 		if (event->rcu_pending) {
4968 			cond_synchronize_rcu(event->rcu_batches);
4969 			event->rcu_pending = 0;
4970 		}
4971 
4972 		spin_lock_irqsave(&rb->event_lock, flags);
4973 		list_add_rcu(&event->rb_entry, &rb->event_list);
4974 		spin_unlock_irqrestore(&rb->event_lock, flags);
4975 	}
4976 
4977 	/*
4978 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4979 	 * before swizzling the event::rb pointer; if it's getting
4980 	 * unmapped, its aux_mmap_count will be 0 and it won't
4981 	 * restart. See the comment in __perf_pmu_output_stop().
4982 	 *
4983 	 * Data will inevitably be lost when set_output is done in
4984 	 * mid-air, but then again, whoever does it like this is
4985 	 * not in for the data anyway.
4986 	 */
4987 	if (has_aux(event))
4988 		perf_event_stop(event, 0);
4989 
4990 	rcu_assign_pointer(event->rb, rb);
4991 
4992 	if (old_rb) {
4993 		ring_buffer_put(old_rb);
4994 		/*
4995 		 * Since we detached before setting the new rb, so that we
4996 		 * could attach the new rb, we could have missed a wakeup.
4997 		 * Provide it now.
4998 		 */
4999 		wake_up_all(&event->waitq);
5000 	}
5001 }
5002 
5003 static void ring_buffer_wakeup(struct perf_event *event)
5004 {
5005 	struct ring_buffer *rb;
5006 
5007 	rcu_read_lock();
5008 	rb = rcu_dereference(event->rb);
5009 	if (rb) {
5010 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5011 			wake_up_all(&event->waitq);
5012 	}
5013 	rcu_read_unlock();
5014 }
5015 
5016 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5017 {
5018 	struct ring_buffer *rb;
5019 
5020 	rcu_read_lock();
5021 	rb = rcu_dereference(event->rb);
5022 	if (rb) {
5023 		if (!atomic_inc_not_zero(&rb->refcount))
5024 			rb = NULL;
5025 	}
5026 	rcu_read_unlock();
5027 
5028 	return rb;
5029 }
5030 
5031 void ring_buffer_put(struct ring_buffer *rb)
5032 {
5033 	if (!atomic_dec_and_test(&rb->refcount))
5034 		return;
5035 
5036 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5037 
5038 	call_rcu(&rb->rcu_head, rb_free_rcu);
5039 }
5040 
5041 static void perf_mmap_open(struct vm_area_struct *vma)
5042 {
5043 	struct perf_event *event = vma->vm_file->private_data;
5044 
5045 	atomic_inc(&event->mmap_count);
5046 	atomic_inc(&event->rb->mmap_count);
5047 
5048 	if (vma->vm_pgoff)
5049 		atomic_inc(&event->rb->aux_mmap_count);
5050 
5051 	if (event->pmu->event_mapped)
5052 		event->pmu->event_mapped(event, vma->vm_mm);
5053 }
5054 
5055 static void perf_pmu_output_stop(struct perf_event *event);
5056 
5057 /*
5058  * A buffer can be mmap()ed multiple times; either directly through the same
5059  * event, or through other events by use of perf_event_set_output().
5060  *
5061  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5062  * the buffer here, where we still have a VM context. This means we need
5063  * to detach all events redirecting to us.
5064  */
5065 static void perf_mmap_close(struct vm_area_struct *vma)
5066 {
5067 	struct perf_event *event = vma->vm_file->private_data;
5068 
5069 	struct ring_buffer *rb = ring_buffer_get(event);
5070 	struct user_struct *mmap_user = rb->mmap_user;
5071 	int mmap_locked = rb->mmap_locked;
5072 	unsigned long size = perf_data_size(rb);
5073 
5074 	if (event->pmu->event_unmapped)
5075 		event->pmu->event_unmapped(event, vma->vm_mm);
5076 
5077 	/*
5078 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5079 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5080 	 * serialize with perf_mmap here.
5081 	 */
5082 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5083 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5084 		/*
5085 		 * Stop all AUX events that are writing to this buffer,
5086 		 * so that we can free its AUX pages and corresponding PMU
5087 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5088 		 * they won't start any more (see perf_aux_output_begin()).
5089 		 */
5090 		perf_pmu_output_stop(event);
5091 
5092 		/* now it's safe to free the pages */
5093 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5094 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5095 
5096 		/* this has to be the last one */
5097 		rb_free_aux(rb);
5098 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5099 
5100 		mutex_unlock(&event->mmap_mutex);
5101 	}
5102 
5103 	atomic_dec(&rb->mmap_count);
5104 
5105 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5106 		goto out_put;
5107 
5108 	ring_buffer_attach(event, NULL);
5109 	mutex_unlock(&event->mmap_mutex);
5110 
5111 	/* If there's still other mmap()s of this buffer, we're done. */
5112 	if (atomic_read(&rb->mmap_count))
5113 		goto out_put;
5114 
5115 	/*
5116 	 * No other mmap()s, detach from all other events that might redirect
5117 	 * into the now unreachable buffer. Somewhat complicated by the
5118 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5119 	 */
5120 again:
5121 	rcu_read_lock();
5122 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5123 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5124 			/*
5125 			 * This event is en-route to free_event() which will
5126 			 * detach it and remove it from the list.
5127 			 */
5128 			continue;
5129 		}
5130 		rcu_read_unlock();
5131 
5132 		mutex_lock(&event->mmap_mutex);
5133 		/*
5134 		 * Check we didn't race with perf_event_set_output() which can
5135 		 * swizzle the rb from under us while we were waiting to
5136 		 * acquire mmap_mutex.
5137 		 *
5138 		 * If we find a different rb; ignore this event, a next
5139 		 * iteration will no longer find it on the list. We have to
5140 		 * still restart the iteration to make sure we're not now
5141 		 * iterating the wrong list.
5142 		 */
5143 		if (event->rb == rb)
5144 			ring_buffer_attach(event, NULL);
5145 
5146 		mutex_unlock(&event->mmap_mutex);
5147 		put_event(event);
5148 
5149 		/*
5150 		 * Restart the iteration; either we're on the wrong list or
5151 		 * destroyed its integrity by doing a deletion.
5152 		 */
5153 		goto again;
5154 	}
5155 	rcu_read_unlock();
5156 
5157 	/*
5158 	 * It could be there's still a few 0-ref events on the list; they'll
5159 	 * get cleaned up by free_event() -- they'll also still have their
5160 	 * ref on the rb and will free it whenever they are done with it.
5161 	 *
5162 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5163 	 * undo the VM accounting.
5164 	 */
5165 
5166 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5167 	vma->vm_mm->pinned_vm -= mmap_locked;
5168 	free_uid(mmap_user);
5169 
5170 out_put:
5171 	ring_buffer_put(rb); /* could be last */
5172 }
5173 
5174 static const struct vm_operations_struct perf_mmap_vmops = {
5175 	.open		= perf_mmap_open,
5176 	.close		= perf_mmap_close, /* non mergable */
5177 	.fault		= perf_mmap_fault,
5178 	.page_mkwrite	= perf_mmap_fault,
5179 };
5180 
5181 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5182 {
5183 	struct perf_event *event = file->private_data;
5184 	unsigned long user_locked, user_lock_limit;
5185 	struct user_struct *user = current_user();
5186 	unsigned long locked, lock_limit;
5187 	struct ring_buffer *rb = NULL;
5188 	unsigned long vma_size;
5189 	unsigned long nr_pages;
5190 	long user_extra = 0, extra = 0;
5191 	int ret = 0, flags = 0;
5192 
5193 	/*
5194 	 * Don't allow mmap() of inherited per-task counters. This would
5195 	 * create a performance issue due to all children writing to the
5196 	 * same rb.
5197 	 */
5198 	if (event->cpu == -1 && event->attr.inherit)
5199 		return -EINVAL;
5200 
5201 	if (!(vma->vm_flags & VM_SHARED))
5202 		return -EINVAL;
5203 
5204 	vma_size = vma->vm_end - vma->vm_start;
5205 
5206 	if (vma->vm_pgoff == 0) {
5207 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5208 	} else {
5209 		/*
5210 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5211 		 * mapped, all subsequent mappings should have the same size
5212 		 * and offset. Must be above the normal perf buffer.
5213 		 */
5214 		u64 aux_offset, aux_size;
5215 
5216 		if (!event->rb)
5217 			return -EINVAL;
5218 
5219 		nr_pages = vma_size / PAGE_SIZE;
5220 
5221 		mutex_lock(&event->mmap_mutex);
5222 		ret = -EINVAL;
5223 
5224 		rb = event->rb;
5225 		if (!rb)
5226 			goto aux_unlock;
5227 
5228 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5229 		aux_size = READ_ONCE(rb->user_page->aux_size);
5230 
5231 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5232 			goto aux_unlock;
5233 
5234 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5235 			goto aux_unlock;
5236 
5237 		/* already mapped with a different offset */
5238 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5239 			goto aux_unlock;
5240 
5241 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5242 			goto aux_unlock;
5243 
5244 		/* already mapped with a different size */
5245 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5246 			goto aux_unlock;
5247 
5248 		if (!is_power_of_2(nr_pages))
5249 			goto aux_unlock;
5250 
5251 		if (!atomic_inc_not_zero(&rb->mmap_count))
5252 			goto aux_unlock;
5253 
5254 		if (rb_has_aux(rb)) {
5255 			atomic_inc(&rb->aux_mmap_count);
5256 			ret = 0;
5257 			goto unlock;
5258 		}
5259 
5260 		atomic_set(&rb->aux_mmap_count, 1);
5261 		user_extra = nr_pages;
5262 
5263 		goto accounting;
5264 	}
5265 
5266 	/*
5267 	 * If we have rb pages ensure they're a power-of-two number, so we
5268 	 * can do bitmasks instead of modulo.
5269 	 */
5270 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5271 		return -EINVAL;
5272 
5273 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5274 		return -EINVAL;
5275 
5276 	WARN_ON_ONCE(event->ctx->parent_ctx);
5277 again:
5278 	mutex_lock(&event->mmap_mutex);
5279 	if (event->rb) {
5280 		if (event->rb->nr_pages != nr_pages) {
5281 			ret = -EINVAL;
5282 			goto unlock;
5283 		}
5284 
5285 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5286 			/*
5287 			 * Raced against perf_mmap_close() through
5288 			 * perf_event_set_output(). Try again, hope for better
5289 			 * luck.
5290 			 */
5291 			mutex_unlock(&event->mmap_mutex);
5292 			goto again;
5293 		}
5294 
5295 		goto unlock;
5296 	}
5297 
5298 	user_extra = nr_pages + 1;
5299 
5300 accounting:
5301 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5302 
5303 	/*
5304 	 * Increase the limit linearly with more CPUs:
5305 	 */
5306 	user_lock_limit *= num_online_cpus();
5307 
5308 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5309 
5310 	if (user_locked > user_lock_limit)
5311 		extra = user_locked - user_lock_limit;
5312 
5313 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5314 	lock_limit >>= PAGE_SHIFT;
5315 	locked = vma->vm_mm->pinned_vm + extra;
5316 
5317 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5318 		!capable(CAP_IPC_LOCK)) {
5319 		ret = -EPERM;
5320 		goto unlock;
5321 	}
5322 
5323 	WARN_ON(!rb && event->rb);
5324 
5325 	if (vma->vm_flags & VM_WRITE)
5326 		flags |= RING_BUFFER_WRITABLE;
5327 
5328 	if (!rb) {
5329 		rb = rb_alloc(nr_pages,
5330 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5331 			      event->cpu, flags);
5332 
5333 		if (!rb) {
5334 			ret = -ENOMEM;
5335 			goto unlock;
5336 		}
5337 
5338 		atomic_set(&rb->mmap_count, 1);
5339 		rb->mmap_user = get_current_user();
5340 		rb->mmap_locked = extra;
5341 
5342 		ring_buffer_attach(event, rb);
5343 
5344 		perf_event_init_userpage(event);
5345 		perf_event_update_userpage(event);
5346 	} else {
5347 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5348 				   event->attr.aux_watermark, flags);
5349 		if (!ret)
5350 			rb->aux_mmap_locked = extra;
5351 	}
5352 
5353 unlock:
5354 	if (!ret) {
5355 		atomic_long_add(user_extra, &user->locked_vm);
5356 		vma->vm_mm->pinned_vm += extra;
5357 
5358 		atomic_inc(&event->mmap_count);
5359 	} else if (rb) {
5360 		atomic_dec(&rb->mmap_count);
5361 	}
5362 aux_unlock:
5363 	mutex_unlock(&event->mmap_mutex);
5364 
5365 	/*
5366 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5367 	 * vma.
5368 	 */
5369 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5370 	vma->vm_ops = &perf_mmap_vmops;
5371 
5372 	if (event->pmu->event_mapped)
5373 		event->pmu->event_mapped(event, vma->vm_mm);
5374 
5375 	return ret;
5376 }
5377 
5378 static int perf_fasync(int fd, struct file *filp, int on)
5379 {
5380 	struct inode *inode = file_inode(filp);
5381 	struct perf_event *event = filp->private_data;
5382 	int retval;
5383 
5384 	inode_lock(inode);
5385 	retval = fasync_helper(fd, filp, on, &event->fasync);
5386 	inode_unlock(inode);
5387 
5388 	if (retval < 0)
5389 		return retval;
5390 
5391 	return 0;
5392 }
5393 
5394 static const struct file_operations perf_fops = {
5395 	.llseek			= no_llseek,
5396 	.release		= perf_release,
5397 	.read			= perf_read,
5398 	.poll			= perf_poll,
5399 	.unlocked_ioctl		= perf_ioctl,
5400 	.compat_ioctl		= perf_compat_ioctl,
5401 	.mmap			= perf_mmap,
5402 	.fasync			= perf_fasync,
5403 };
5404 
5405 /*
5406  * Perf event wakeup
5407  *
5408  * If there's data, ensure we set the poll() state and publish everything
5409  * to user-space before waking everybody up.
5410  */
5411 
5412 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5413 {
5414 	/* only the parent has fasync state */
5415 	if (event->parent)
5416 		event = event->parent;
5417 	return &event->fasync;
5418 }
5419 
5420 void perf_event_wakeup(struct perf_event *event)
5421 {
5422 	ring_buffer_wakeup(event);
5423 
5424 	if (event->pending_kill) {
5425 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5426 		event->pending_kill = 0;
5427 	}
5428 }
5429 
5430 static void perf_pending_event(struct irq_work *entry)
5431 {
5432 	struct perf_event *event = container_of(entry,
5433 			struct perf_event, pending);
5434 	int rctx;
5435 
5436 	rctx = perf_swevent_get_recursion_context();
5437 	/*
5438 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5439 	 * and we won't recurse 'further'.
5440 	 */
5441 
5442 	if (event->pending_disable) {
5443 		event->pending_disable = 0;
5444 		perf_event_disable_local(event);
5445 	}
5446 
5447 	if (event->pending_wakeup) {
5448 		event->pending_wakeup = 0;
5449 		perf_event_wakeup(event);
5450 	}
5451 
5452 	if (rctx >= 0)
5453 		perf_swevent_put_recursion_context(rctx);
5454 }
5455 
5456 /*
5457  * We assume there is only KVM supporting the callbacks.
5458  * Later on, we might change it to a list if there is
5459  * another virtualization implementation supporting the callbacks.
5460  */
5461 struct perf_guest_info_callbacks *perf_guest_cbs;
5462 
5463 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5464 {
5465 	perf_guest_cbs = cbs;
5466 	return 0;
5467 }
5468 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5469 
5470 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5471 {
5472 	perf_guest_cbs = NULL;
5473 	return 0;
5474 }
5475 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5476 
5477 static void
5478 perf_output_sample_regs(struct perf_output_handle *handle,
5479 			struct pt_regs *regs, u64 mask)
5480 {
5481 	int bit;
5482 	DECLARE_BITMAP(_mask, 64);
5483 
5484 	bitmap_from_u64(_mask, mask);
5485 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5486 		u64 val;
5487 
5488 		val = perf_reg_value(regs, bit);
5489 		perf_output_put(handle, val);
5490 	}
5491 }
5492 
5493 static void perf_sample_regs_user(struct perf_regs *regs_user,
5494 				  struct pt_regs *regs,
5495 				  struct pt_regs *regs_user_copy)
5496 {
5497 	if (user_mode(regs)) {
5498 		regs_user->abi = perf_reg_abi(current);
5499 		regs_user->regs = regs;
5500 	} else if (current->mm) {
5501 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5502 	} else {
5503 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5504 		regs_user->regs = NULL;
5505 	}
5506 }
5507 
5508 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5509 				  struct pt_regs *regs)
5510 {
5511 	regs_intr->regs = regs;
5512 	regs_intr->abi  = perf_reg_abi(current);
5513 }
5514 
5515 
5516 /*
5517  * Get remaining task size from user stack pointer.
5518  *
5519  * It'd be better to take stack vma map and limit this more
5520  * precisly, but there's no way to get it safely under interrupt,
5521  * so using TASK_SIZE as limit.
5522  */
5523 static u64 perf_ustack_task_size(struct pt_regs *regs)
5524 {
5525 	unsigned long addr = perf_user_stack_pointer(regs);
5526 
5527 	if (!addr || addr >= TASK_SIZE)
5528 		return 0;
5529 
5530 	return TASK_SIZE - addr;
5531 }
5532 
5533 static u16
5534 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5535 			struct pt_regs *regs)
5536 {
5537 	u64 task_size;
5538 
5539 	/* No regs, no stack pointer, no dump. */
5540 	if (!regs)
5541 		return 0;
5542 
5543 	/*
5544 	 * Check if we fit in with the requested stack size into the:
5545 	 * - TASK_SIZE
5546 	 *   If we don't, we limit the size to the TASK_SIZE.
5547 	 *
5548 	 * - remaining sample size
5549 	 *   If we don't, we customize the stack size to
5550 	 *   fit in to the remaining sample size.
5551 	 */
5552 
5553 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5554 	stack_size = min(stack_size, (u16) task_size);
5555 
5556 	/* Current header size plus static size and dynamic size. */
5557 	header_size += 2 * sizeof(u64);
5558 
5559 	/* Do we fit in with the current stack dump size? */
5560 	if ((u16) (header_size + stack_size) < header_size) {
5561 		/*
5562 		 * If we overflow the maximum size for the sample,
5563 		 * we customize the stack dump size to fit in.
5564 		 */
5565 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5566 		stack_size = round_up(stack_size, sizeof(u64));
5567 	}
5568 
5569 	return stack_size;
5570 }
5571 
5572 static void
5573 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5574 			  struct pt_regs *regs)
5575 {
5576 	/* Case of a kernel thread, nothing to dump */
5577 	if (!regs) {
5578 		u64 size = 0;
5579 		perf_output_put(handle, size);
5580 	} else {
5581 		unsigned long sp;
5582 		unsigned int rem;
5583 		u64 dyn_size;
5584 
5585 		/*
5586 		 * We dump:
5587 		 * static size
5588 		 *   - the size requested by user or the best one we can fit
5589 		 *     in to the sample max size
5590 		 * data
5591 		 *   - user stack dump data
5592 		 * dynamic size
5593 		 *   - the actual dumped size
5594 		 */
5595 
5596 		/* Static size. */
5597 		perf_output_put(handle, dump_size);
5598 
5599 		/* Data. */
5600 		sp = perf_user_stack_pointer(regs);
5601 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5602 		dyn_size = dump_size - rem;
5603 
5604 		perf_output_skip(handle, rem);
5605 
5606 		/* Dynamic size. */
5607 		perf_output_put(handle, dyn_size);
5608 	}
5609 }
5610 
5611 static void __perf_event_header__init_id(struct perf_event_header *header,
5612 					 struct perf_sample_data *data,
5613 					 struct perf_event *event)
5614 {
5615 	u64 sample_type = event->attr.sample_type;
5616 
5617 	data->type = sample_type;
5618 	header->size += event->id_header_size;
5619 
5620 	if (sample_type & PERF_SAMPLE_TID) {
5621 		/* namespace issues */
5622 		data->tid_entry.pid = perf_event_pid(event, current);
5623 		data->tid_entry.tid = perf_event_tid(event, current);
5624 	}
5625 
5626 	if (sample_type & PERF_SAMPLE_TIME)
5627 		data->time = perf_event_clock(event);
5628 
5629 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5630 		data->id = primary_event_id(event);
5631 
5632 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5633 		data->stream_id = event->id;
5634 
5635 	if (sample_type & PERF_SAMPLE_CPU) {
5636 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5637 		data->cpu_entry.reserved = 0;
5638 	}
5639 }
5640 
5641 void perf_event_header__init_id(struct perf_event_header *header,
5642 				struct perf_sample_data *data,
5643 				struct perf_event *event)
5644 {
5645 	if (event->attr.sample_id_all)
5646 		__perf_event_header__init_id(header, data, event);
5647 }
5648 
5649 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5650 					   struct perf_sample_data *data)
5651 {
5652 	u64 sample_type = data->type;
5653 
5654 	if (sample_type & PERF_SAMPLE_TID)
5655 		perf_output_put(handle, data->tid_entry);
5656 
5657 	if (sample_type & PERF_SAMPLE_TIME)
5658 		perf_output_put(handle, data->time);
5659 
5660 	if (sample_type & PERF_SAMPLE_ID)
5661 		perf_output_put(handle, data->id);
5662 
5663 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5664 		perf_output_put(handle, data->stream_id);
5665 
5666 	if (sample_type & PERF_SAMPLE_CPU)
5667 		perf_output_put(handle, data->cpu_entry);
5668 
5669 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5670 		perf_output_put(handle, data->id);
5671 }
5672 
5673 void perf_event__output_id_sample(struct perf_event *event,
5674 				  struct perf_output_handle *handle,
5675 				  struct perf_sample_data *sample)
5676 {
5677 	if (event->attr.sample_id_all)
5678 		__perf_event__output_id_sample(handle, sample);
5679 }
5680 
5681 static void perf_output_read_one(struct perf_output_handle *handle,
5682 				 struct perf_event *event,
5683 				 u64 enabled, u64 running)
5684 {
5685 	u64 read_format = event->attr.read_format;
5686 	u64 values[4];
5687 	int n = 0;
5688 
5689 	values[n++] = perf_event_count(event);
5690 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5691 		values[n++] = enabled +
5692 			atomic64_read(&event->child_total_time_enabled);
5693 	}
5694 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5695 		values[n++] = running +
5696 			atomic64_read(&event->child_total_time_running);
5697 	}
5698 	if (read_format & PERF_FORMAT_ID)
5699 		values[n++] = primary_event_id(event);
5700 
5701 	__output_copy(handle, values, n * sizeof(u64));
5702 }
5703 
5704 static void perf_output_read_group(struct perf_output_handle *handle,
5705 			    struct perf_event *event,
5706 			    u64 enabled, u64 running)
5707 {
5708 	struct perf_event *leader = event->group_leader, *sub;
5709 	u64 read_format = event->attr.read_format;
5710 	u64 values[5];
5711 	int n = 0;
5712 
5713 	values[n++] = 1 + leader->nr_siblings;
5714 
5715 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5716 		values[n++] = enabled;
5717 
5718 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5719 		values[n++] = running;
5720 
5721 	if (leader != event)
5722 		leader->pmu->read(leader);
5723 
5724 	values[n++] = perf_event_count(leader);
5725 	if (read_format & PERF_FORMAT_ID)
5726 		values[n++] = primary_event_id(leader);
5727 
5728 	__output_copy(handle, values, n * sizeof(u64));
5729 
5730 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5731 		n = 0;
5732 
5733 		if ((sub != event) &&
5734 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5735 			sub->pmu->read(sub);
5736 
5737 		values[n++] = perf_event_count(sub);
5738 		if (read_format & PERF_FORMAT_ID)
5739 			values[n++] = primary_event_id(sub);
5740 
5741 		__output_copy(handle, values, n * sizeof(u64));
5742 	}
5743 }
5744 
5745 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5746 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5747 
5748 /*
5749  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5750  *
5751  * The problem is that its both hard and excessively expensive to iterate the
5752  * child list, not to mention that its impossible to IPI the children running
5753  * on another CPU, from interrupt/NMI context.
5754  */
5755 static void perf_output_read(struct perf_output_handle *handle,
5756 			     struct perf_event *event)
5757 {
5758 	u64 enabled = 0, running = 0, now;
5759 	u64 read_format = event->attr.read_format;
5760 
5761 	/*
5762 	 * compute total_time_enabled, total_time_running
5763 	 * based on snapshot values taken when the event
5764 	 * was last scheduled in.
5765 	 *
5766 	 * we cannot simply called update_context_time()
5767 	 * because of locking issue as we are called in
5768 	 * NMI context
5769 	 */
5770 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5771 		calc_timer_values(event, &now, &enabled, &running);
5772 
5773 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5774 		perf_output_read_group(handle, event, enabled, running);
5775 	else
5776 		perf_output_read_one(handle, event, enabled, running);
5777 }
5778 
5779 void perf_output_sample(struct perf_output_handle *handle,
5780 			struct perf_event_header *header,
5781 			struct perf_sample_data *data,
5782 			struct perf_event *event)
5783 {
5784 	u64 sample_type = data->type;
5785 
5786 	perf_output_put(handle, *header);
5787 
5788 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5789 		perf_output_put(handle, data->id);
5790 
5791 	if (sample_type & PERF_SAMPLE_IP)
5792 		perf_output_put(handle, data->ip);
5793 
5794 	if (sample_type & PERF_SAMPLE_TID)
5795 		perf_output_put(handle, data->tid_entry);
5796 
5797 	if (sample_type & PERF_SAMPLE_TIME)
5798 		perf_output_put(handle, data->time);
5799 
5800 	if (sample_type & PERF_SAMPLE_ADDR)
5801 		perf_output_put(handle, data->addr);
5802 
5803 	if (sample_type & PERF_SAMPLE_ID)
5804 		perf_output_put(handle, data->id);
5805 
5806 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5807 		perf_output_put(handle, data->stream_id);
5808 
5809 	if (sample_type & PERF_SAMPLE_CPU)
5810 		perf_output_put(handle, data->cpu_entry);
5811 
5812 	if (sample_type & PERF_SAMPLE_PERIOD)
5813 		perf_output_put(handle, data->period);
5814 
5815 	if (sample_type & PERF_SAMPLE_READ)
5816 		perf_output_read(handle, event);
5817 
5818 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5819 		if (data->callchain) {
5820 			int size = 1;
5821 
5822 			if (data->callchain)
5823 				size += data->callchain->nr;
5824 
5825 			size *= sizeof(u64);
5826 
5827 			__output_copy(handle, data->callchain, size);
5828 		} else {
5829 			u64 nr = 0;
5830 			perf_output_put(handle, nr);
5831 		}
5832 	}
5833 
5834 	if (sample_type & PERF_SAMPLE_RAW) {
5835 		struct perf_raw_record *raw = data->raw;
5836 
5837 		if (raw) {
5838 			struct perf_raw_frag *frag = &raw->frag;
5839 
5840 			perf_output_put(handle, raw->size);
5841 			do {
5842 				if (frag->copy) {
5843 					__output_custom(handle, frag->copy,
5844 							frag->data, frag->size);
5845 				} else {
5846 					__output_copy(handle, frag->data,
5847 						      frag->size);
5848 				}
5849 				if (perf_raw_frag_last(frag))
5850 					break;
5851 				frag = frag->next;
5852 			} while (1);
5853 			if (frag->pad)
5854 				__output_skip(handle, NULL, frag->pad);
5855 		} else {
5856 			struct {
5857 				u32	size;
5858 				u32	data;
5859 			} raw = {
5860 				.size = sizeof(u32),
5861 				.data = 0,
5862 			};
5863 			perf_output_put(handle, raw);
5864 		}
5865 	}
5866 
5867 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5868 		if (data->br_stack) {
5869 			size_t size;
5870 
5871 			size = data->br_stack->nr
5872 			     * sizeof(struct perf_branch_entry);
5873 
5874 			perf_output_put(handle, data->br_stack->nr);
5875 			perf_output_copy(handle, data->br_stack->entries, size);
5876 		} else {
5877 			/*
5878 			 * we always store at least the value of nr
5879 			 */
5880 			u64 nr = 0;
5881 			perf_output_put(handle, nr);
5882 		}
5883 	}
5884 
5885 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5886 		u64 abi = data->regs_user.abi;
5887 
5888 		/*
5889 		 * If there are no regs to dump, notice it through
5890 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5891 		 */
5892 		perf_output_put(handle, abi);
5893 
5894 		if (abi) {
5895 			u64 mask = event->attr.sample_regs_user;
5896 			perf_output_sample_regs(handle,
5897 						data->regs_user.regs,
5898 						mask);
5899 		}
5900 	}
5901 
5902 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5903 		perf_output_sample_ustack(handle,
5904 					  data->stack_user_size,
5905 					  data->regs_user.regs);
5906 	}
5907 
5908 	if (sample_type & PERF_SAMPLE_WEIGHT)
5909 		perf_output_put(handle, data->weight);
5910 
5911 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5912 		perf_output_put(handle, data->data_src.val);
5913 
5914 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5915 		perf_output_put(handle, data->txn);
5916 
5917 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5918 		u64 abi = data->regs_intr.abi;
5919 		/*
5920 		 * If there are no regs to dump, notice it through
5921 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5922 		 */
5923 		perf_output_put(handle, abi);
5924 
5925 		if (abi) {
5926 			u64 mask = event->attr.sample_regs_intr;
5927 
5928 			perf_output_sample_regs(handle,
5929 						data->regs_intr.regs,
5930 						mask);
5931 		}
5932 	}
5933 
5934 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5935 		perf_output_put(handle, data->phys_addr);
5936 
5937 	if (!event->attr.watermark) {
5938 		int wakeup_events = event->attr.wakeup_events;
5939 
5940 		if (wakeup_events) {
5941 			struct ring_buffer *rb = handle->rb;
5942 			int events = local_inc_return(&rb->events);
5943 
5944 			if (events >= wakeup_events) {
5945 				local_sub(wakeup_events, &rb->events);
5946 				local_inc(&rb->wakeup);
5947 			}
5948 		}
5949 	}
5950 }
5951 
5952 static u64 perf_virt_to_phys(u64 virt)
5953 {
5954 	u64 phys_addr = 0;
5955 	struct page *p = NULL;
5956 
5957 	if (!virt)
5958 		return 0;
5959 
5960 	if (virt >= TASK_SIZE) {
5961 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
5962 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
5963 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
5964 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5965 	} else {
5966 		/*
5967 		 * Walking the pages tables for user address.
5968 		 * Interrupts are disabled, so it prevents any tear down
5969 		 * of the page tables.
5970 		 * Try IRQ-safe __get_user_pages_fast first.
5971 		 * If failed, leave phys_addr as 0.
5972 		 */
5973 		if ((current->mm != NULL) &&
5974 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5975 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5976 
5977 		if (p)
5978 			put_page(p);
5979 	}
5980 
5981 	return phys_addr;
5982 }
5983 
5984 void perf_prepare_sample(struct perf_event_header *header,
5985 			 struct perf_sample_data *data,
5986 			 struct perf_event *event,
5987 			 struct pt_regs *regs)
5988 {
5989 	u64 sample_type = event->attr.sample_type;
5990 
5991 	header->type = PERF_RECORD_SAMPLE;
5992 	header->size = sizeof(*header) + event->header_size;
5993 
5994 	header->misc = 0;
5995 	header->misc |= perf_misc_flags(regs);
5996 
5997 	__perf_event_header__init_id(header, data, event);
5998 
5999 	if (sample_type & PERF_SAMPLE_IP)
6000 		data->ip = perf_instruction_pointer(regs);
6001 
6002 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6003 		int size = 1;
6004 
6005 		data->callchain = perf_callchain(event, regs);
6006 
6007 		if (data->callchain)
6008 			size += data->callchain->nr;
6009 
6010 		header->size += size * sizeof(u64);
6011 	}
6012 
6013 	if (sample_type & PERF_SAMPLE_RAW) {
6014 		struct perf_raw_record *raw = data->raw;
6015 		int size;
6016 
6017 		if (raw) {
6018 			struct perf_raw_frag *frag = &raw->frag;
6019 			u32 sum = 0;
6020 
6021 			do {
6022 				sum += frag->size;
6023 				if (perf_raw_frag_last(frag))
6024 					break;
6025 				frag = frag->next;
6026 			} while (1);
6027 
6028 			size = round_up(sum + sizeof(u32), sizeof(u64));
6029 			raw->size = size - sizeof(u32);
6030 			frag->pad = raw->size - sum;
6031 		} else {
6032 			size = sizeof(u64);
6033 		}
6034 
6035 		header->size += size;
6036 	}
6037 
6038 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6039 		int size = sizeof(u64); /* nr */
6040 		if (data->br_stack) {
6041 			size += data->br_stack->nr
6042 			      * sizeof(struct perf_branch_entry);
6043 		}
6044 		header->size += size;
6045 	}
6046 
6047 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6048 		perf_sample_regs_user(&data->regs_user, regs,
6049 				      &data->regs_user_copy);
6050 
6051 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6052 		/* regs dump ABI info */
6053 		int size = sizeof(u64);
6054 
6055 		if (data->regs_user.regs) {
6056 			u64 mask = event->attr.sample_regs_user;
6057 			size += hweight64(mask) * sizeof(u64);
6058 		}
6059 
6060 		header->size += size;
6061 	}
6062 
6063 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6064 		/*
6065 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6066 		 * processed as the last one or have additional check added
6067 		 * in case new sample type is added, because we could eat
6068 		 * up the rest of the sample size.
6069 		 */
6070 		u16 stack_size = event->attr.sample_stack_user;
6071 		u16 size = sizeof(u64);
6072 
6073 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6074 						     data->regs_user.regs);
6075 
6076 		/*
6077 		 * If there is something to dump, add space for the dump
6078 		 * itself and for the field that tells the dynamic size,
6079 		 * which is how many have been actually dumped.
6080 		 */
6081 		if (stack_size)
6082 			size += sizeof(u64) + stack_size;
6083 
6084 		data->stack_user_size = stack_size;
6085 		header->size += size;
6086 	}
6087 
6088 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6089 		/* regs dump ABI info */
6090 		int size = sizeof(u64);
6091 
6092 		perf_sample_regs_intr(&data->regs_intr, regs);
6093 
6094 		if (data->regs_intr.regs) {
6095 			u64 mask = event->attr.sample_regs_intr;
6096 
6097 			size += hweight64(mask) * sizeof(u64);
6098 		}
6099 
6100 		header->size += size;
6101 	}
6102 
6103 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6104 		data->phys_addr = perf_virt_to_phys(data->addr);
6105 }
6106 
6107 static void __always_inline
6108 __perf_event_output(struct perf_event *event,
6109 		    struct perf_sample_data *data,
6110 		    struct pt_regs *regs,
6111 		    int (*output_begin)(struct perf_output_handle *,
6112 					struct perf_event *,
6113 					unsigned int))
6114 {
6115 	struct perf_output_handle handle;
6116 	struct perf_event_header header;
6117 
6118 	/* protect the callchain buffers */
6119 	rcu_read_lock();
6120 
6121 	perf_prepare_sample(&header, data, event, regs);
6122 
6123 	if (output_begin(&handle, event, header.size))
6124 		goto exit;
6125 
6126 	perf_output_sample(&handle, &header, data, event);
6127 
6128 	perf_output_end(&handle);
6129 
6130 exit:
6131 	rcu_read_unlock();
6132 }
6133 
6134 void
6135 perf_event_output_forward(struct perf_event *event,
6136 			 struct perf_sample_data *data,
6137 			 struct pt_regs *regs)
6138 {
6139 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6140 }
6141 
6142 void
6143 perf_event_output_backward(struct perf_event *event,
6144 			   struct perf_sample_data *data,
6145 			   struct pt_regs *regs)
6146 {
6147 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6148 }
6149 
6150 void
6151 perf_event_output(struct perf_event *event,
6152 		  struct perf_sample_data *data,
6153 		  struct pt_regs *regs)
6154 {
6155 	__perf_event_output(event, data, regs, perf_output_begin);
6156 }
6157 
6158 /*
6159  * read event_id
6160  */
6161 
6162 struct perf_read_event {
6163 	struct perf_event_header	header;
6164 
6165 	u32				pid;
6166 	u32				tid;
6167 };
6168 
6169 static void
6170 perf_event_read_event(struct perf_event *event,
6171 			struct task_struct *task)
6172 {
6173 	struct perf_output_handle handle;
6174 	struct perf_sample_data sample;
6175 	struct perf_read_event read_event = {
6176 		.header = {
6177 			.type = PERF_RECORD_READ,
6178 			.misc = 0,
6179 			.size = sizeof(read_event) + event->read_size,
6180 		},
6181 		.pid = perf_event_pid(event, task),
6182 		.tid = perf_event_tid(event, task),
6183 	};
6184 	int ret;
6185 
6186 	perf_event_header__init_id(&read_event.header, &sample, event);
6187 	ret = perf_output_begin(&handle, event, read_event.header.size);
6188 	if (ret)
6189 		return;
6190 
6191 	perf_output_put(&handle, read_event);
6192 	perf_output_read(&handle, event);
6193 	perf_event__output_id_sample(event, &handle, &sample);
6194 
6195 	perf_output_end(&handle);
6196 }
6197 
6198 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6199 
6200 static void
6201 perf_iterate_ctx(struct perf_event_context *ctx,
6202 		   perf_iterate_f output,
6203 		   void *data, bool all)
6204 {
6205 	struct perf_event *event;
6206 
6207 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6208 		if (!all) {
6209 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6210 				continue;
6211 			if (!event_filter_match(event))
6212 				continue;
6213 		}
6214 
6215 		output(event, data);
6216 	}
6217 }
6218 
6219 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6220 {
6221 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6222 	struct perf_event *event;
6223 
6224 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6225 		/*
6226 		 * Skip events that are not fully formed yet; ensure that
6227 		 * if we observe event->ctx, both event and ctx will be
6228 		 * complete enough. See perf_install_in_context().
6229 		 */
6230 		if (!smp_load_acquire(&event->ctx))
6231 			continue;
6232 
6233 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6234 			continue;
6235 		if (!event_filter_match(event))
6236 			continue;
6237 		output(event, data);
6238 	}
6239 }
6240 
6241 /*
6242  * Iterate all events that need to receive side-band events.
6243  *
6244  * For new callers; ensure that account_pmu_sb_event() includes
6245  * your event, otherwise it might not get delivered.
6246  */
6247 static void
6248 perf_iterate_sb(perf_iterate_f output, void *data,
6249 	       struct perf_event_context *task_ctx)
6250 {
6251 	struct perf_event_context *ctx;
6252 	int ctxn;
6253 
6254 	rcu_read_lock();
6255 	preempt_disable();
6256 
6257 	/*
6258 	 * If we have task_ctx != NULL we only notify the task context itself.
6259 	 * The task_ctx is set only for EXIT events before releasing task
6260 	 * context.
6261 	 */
6262 	if (task_ctx) {
6263 		perf_iterate_ctx(task_ctx, output, data, false);
6264 		goto done;
6265 	}
6266 
6267 	perf_iterate_sb_cpu(output, data);
6268 
6269 	for_each_task_context_nr(ctxn) {
6270 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6271 		if (ctx)
6272 			perf_iterate_ctx(ctx, output, data, false);
6273 	}
6274 done:
6275 	preempt_enable();
6276 	rcu_read_unlock();
6277 }
6278 
6279 /*
6280  * Clear all file-based filters at exec, they'll have to be
6281  * re-instated when/if these objects are mmapped again.
6282  */
6283 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6284 {
6285 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6286 	struct perf_addr_filter *filter;
6287 	unsigned int restart = 0, count = 0;
6288 	unsigned long flags;
6289 
6290 	if (!has_addr_filter(event))
6291 		return;
6292 
6293 	raw_spin_lock_irqsave(&ifh->lock, flags);
6294 	list_for_each_entry(filter, &ifh->list, entry) {
6295 		if (filter->inode) {
6296 			event->addr_filters_offs[count] = 0;
6297 			restart++;
6298 		}
6299 
6300 		count++;
6301 	}
6302 
6303 	if (restart)
6304 		event->addr_filters_gen++;
6305 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6306 
6307 	if (restart)
6308 		perf_event_stop(event, 1);
6309 }
6310 
6311 void perf_event_exec(void)
6312 {
6313 	struct perf_event_context *ctx;
6314 	int ctxn;
6315 
6316 	rcu_read_lock();
6317 	for_each_task_context_nr(ctxn) {
6318 		ctx = current->perf_event_ctxp[ctxn];
6319 		if (!ctx)
6320 			continue;
6321 
6322 		perf_event_enable_on_exec(ctxn);
6323 
6324 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6325 				   true);
6326 	}
6327 	rcu_read_unlock();
6328 }
6329 
6330 struct remote_output {
6331 	struct ring_buffer	*rb;
6332 	int			err;
6333 };
6334 
6335 static void __perf_event_output_stop(struct perf_event *event, void *data)
6336 {
6337 	struct perf_event *parent = event->parent;
6338 	struct remote_output *ro = data;
6339 	struct ring_buffer *rb = ro->rb;
6340 	struct stop_event_data sd = {
6341 		.event	= event,
6342 	};
6343 
6344 	if (!has_aux(event))
6345 		return;
6346 
6347 	if (!parent)
6348 		parent = event;
6349 
6350 	/*
6351 	 * In case of inheritance, it will be the parent that links to the
6352 	 * ring-buffer, but it will be the child that's actually using it.
6353 	 *
6354 	 * We are using event::rb to determine if the event should be stopped,
6355 	 * however this may race with ring_buffer_attach() (through set_output),
6356 	 * which will make us skip the event that actually needs to be stopped.
6357 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6358 	 * its rb pointer.
6359 	 */
6360 	if (rcu_dereference(parent->rb) == rb)
6361 		ro->err = __perf_event_stop(&sd);
6362 }
6363 
6364 static int __perf_pmu_output_stop(void *info)
6365 {
6366 	struct perf_event *event = info;
6367 	struct pmu *pmu = event->pmu;
6368 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6369 	struct remote_output ro = {
6370 		.rb	= event->rb,
6371 	};
6372 
6373 	rcu_read_lock();
6374 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6375 	if (cpuctx->task_ctx)
6376 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6377 				   &ro, false);
6378 	rcu_read_unlock();
6379 
6380 	return ro.err;
6381 }
6382 
6383 static void perf_pmu_output_stop(struct perf_event *event)
6384 {
6385 	struct perf_event *iter;
6386 	int err, cpu;
6387 
6388 restart:
6389 	rcu_read_lock();
6390 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6391 		/*
6392 		 * For per-CPU events, we need to make sure that neither they
6393 		 * nor their children are running; for cpu==-1 events it's
6394 		 * sufficient to stop the event itself if it's active, since
6395 		 * it can't have children.
6396 		 */
6397 		cpu = iter->cpu;
6398 		if (cpu == -1)
6399 			cpu = READ_ONCE(iter->oncpu);
6400 
6401 		if (cpu == -1)
6402 			continue;
6403 
6404 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6405 		if (err == -EAGAIN) {
6406 			rcu_read_unlock();
6407 			goto restart;
6408 		}
6409 	}
6410 	rcu_read_unlock();
6411 }
6412 
6413 /*
6414  * task tracking -- fork/exit
6415  *
6416  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6417  */
6418 
6419 struct perf_task_event {
6420 	struct task_struct		*task;
6421 	struct perf_event_context	*task_ctx;
6422 
6423 	struct {
6424 		struct perf_event_header	header;
6425 
6426 		u32				pid;
6427 		u32				ppid;
6428 		u32				tid;
6429 		u32				ptid;
6430 		u64				time;
6431 	} event_id;
6432 };
6433 
6434 static int perf_event_task_match(struct perf_event *event)
6435 {
6436 	return event->attr.comm  || event->attr.mmap ||
6437 	       event->attr.mmap2 || event->attr.mmap_data ||
6438 	       event->attr.task;
6439 }
6440 
6441 static void perf_event_task_output(struct perf_event *event,
6442 				   void *data)
6443 {
6444 	struct perf_task_event *task_event = data;
6445 	struct perf_output_handle handle;
6446 	struct perf_sample_data	sample;
6447 	struct task_struct *task = task_event->task;
6448 	int ret, size = task_event->event_id.header.size;
6449 
6450 	if (!perf_event_task_match(event))
6451 		return;
6452 
6453 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6454 
6455 	ret = perf_output_begin(&handle, event,
6456 				task_event->event_id.header.size);
6457 	if (ret)
6458 		goto out;
6459 
6460 	task_event->event_id.pid = perf_event_pid(event, task);
6461 	task_event->event_id.ppid = perf_event_pid(event, current);
6462 
6463 	task_event->event_id.tid = perf_event_tid(event, task);
6464 	task_event->event_id.ptid = perf_event_tid(event, current);
6465 
6466 	task_event->event_id.time = perf_event_clock(event);
6467 
6468 	perf_output_put(&handle, task_event->event_id);
6469 
6470 	perf_event__output_id_sample(event, &handle, &sample);
6471 
6472 	perf_output_end(&handle);
6473 out:
6474 	task_event->event_id.header.size = size;
6475 }
6476 
6477 static void perf_event_task(struct task_struct *task,
6478 			      struct perf_event_context *task_ctx,
6479 			      int new)
6480 {
6481 	struct perf_task_event task_event;
6482 
6483 	if (!atomic_read(&nr_comm_events) &&
6484 	    !atomic_read(&nr_mmap_events) &&
6485 	    !atomic_read(&nr_task_events))
6486 		return;
6487 
6488 	task_event = (struct perf_task_event){
6489 		.task	  = task,
6490 		.task_ctx = task_ctx,
6491 		.event_id    = {
6492 			.header = {
6493 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6494 				.misc = 0,
6495 				.size = sizeof(task_event.event_id),
6496 			},
6497 			/* .pid  */
6498 			/* .ppid */
6499 			/* .tid  */
6500 			/* .ptid */
6501 			/* .time */
6502 		},
6503 	};
6504 
6505 	perf_iterate_sb(perf_event_task_output,
6506 		       &task_event,
6507 		       task_ctx);
6508 }
6509 
6510 void perf_event_fork(struct task_struct *task)
6511 {
6512 	perf_event_task(task, NULL, 1);
6513 	perf_event_namespaces(task);
6514 }
6515 
6516 /*
6517  * comm tracking
6518  */
6519 
6520 struct perf_comm_event {
6521 	struct task_struct	*task;
6522 	char			*comm;
6523 	int			comm_size;
6524 
6525 	struct {
6526 		struct perf_event_header	header;
6527 
6528 		u32				pid;
6529 		u32				tid;
6530 	} event_id;
6531 };
6532 
6533 static int perf_event_comm_match(struct perf_event *event)
6534 {
6535 	return event->attr.comm;
6536 }
6537 
6538 static void perf_event_comm_output(struct perf_event *event,
6539 				   void *data)
6540 {
6541 	struct perf_comm_event *comm_event = data;
6542 	struct perf_output_handle handle;
6543 	struct perf_sample_data sample;
6544 	int size = comm_event->event_id.header.size;
6545 	int ret;
6546 
6547 	if (!perf_event_comm_match(event))
6548 		return;
6549 
6550 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6551 	ret = perf_output_begin(&handle, event,
6552 				comm_event->event_id.header.size);
6553 
6554 	if (ret)
6555 		goto out;
6556 
6557 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6558 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6559 
6560 	perf_output_put(&handle, comm_event->event_id);
6561 	__output_copy(&handle, comm_event->comm,
6562 				   comm_event->comm_size);
6563 
6564 	perf_event__output_id_sample(event, &handle, &sample);
6565 
6566 	perf_output_end(&handle);
6567 out:
6568 	comm_event->event_id.header.size = size;
6569 }
6570 
6571 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6572 {
6573 	char comm[TASK_COMM_LEN];
6574 	unsigned int size;
6575 
6576 	memset(comm, 0, sizeof(comm));
6577 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6578 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6579 
6580 	comm_event->comm = comm;
6581 	comm_event->comm_size = size;
6582 
6583 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6584 
6585 	perf_iterate_sb(perf_event_comm_output,
6586 		       comm_event,
6587 		       NULL);
6588 }
6589 
6590 void perf_event_comm(struct task_struct *task, bool exec)
6591 {
6592 	struct perf_comm_event comm_event;
6593 
6594 	if (!atomic_read(&nr_comm_events))
6595 		return;
6596 
6597 	comm_event = (struct perf_comm_event){
6598 		.task	= task,
6599 		/* .comm      */
6600 		/* .comm_size */
6601 		.event_id  = {
6602 			.header = {
6603 				.type = PERF_RECORD_COMM,
6604 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6605 				/* .size */
6606 			},
6607 			/* .pid */
6608 			/* .tid */
6609 		},
6610 	};
6611 
6612 	perf_event_comm_event(&comm_event);
6613 }
6614 
6615 /*
6616  * namespaces tracking
6617  */
6618 
6619 struct perf_namespaces_event {
6620 	struct task_struct		*task;
6621 
6622 	struct {
6623 		struct perf_event_header	header;
6624 
6625 		u32				pid;
6626 		u32				tid;
6627 		u64				nr_namespaces;
6628 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6629 	} event_id;
6630 };
6631 
6632 static int perf_event_namespaces_match(struct perf_event *event)
6633 {
6634 	return event->attr.namespaces;
6635 }
6636 
6637 static void perf_event_namespaces_output(struct perf_event *event,
6638 					 void *data)
6639 {
6640 	struct perf_namespaces_event *namespaces_event = data;
6641 	struct perf_output_handle handle;
6642 	struct perf_sample_data sample;
6643 	int ret;
6644 
6645 	if (!perf_event_namespaces_match(event))
6646 		return;
6647 
6648 	perf_event_header__init_id(&namespaces_event->event_id.header,
6649 				   &sample, event);
6650 	ret = perf_output_begin(&handle, event,
6651 				namespaces_event->event_id.header.size);
6652 	if (ret)
6653 		return;
6654 
6655 	namespaces_event->event_id.pid = perf_event_pid(event,
6656 							namespaces_event->task);
6657 	namespaces_event->event_id.tid = perf_event_tid(event,
6658 							namespaces_event->task);
6659 
6660 	perf_output_put(&handle, namespaces_event->event_id);
6661 
6662 	perf_event__output_id_sample(event, &handle, &sample);
6663 
6664 	perf_output_end(&handle);
6665 }
6666 
6667 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6668 				   struct task_struct *task,
6669 				   const struct proc_ns_operations *ns_ops)
6670 {
6671 	struct path ns_path;
6672 	struct inode *ns_inode;
6673 	void *error;
6674 
6675 	error = ns_get_path(&ns_path, task, ns_ops);
6676 	if (!error) {
6677 		ns_inode = ns_path.dentry->d_inode;
6678 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6679 		ns_link_info->ino = ns_inode->i_ino;
6680 	}
6681 }
6682 
6683 void perf_event_namespaces(struct task_struct *task)
6684 {
6685 	struct perf_namespaces_event namespaces_event;
6686 	struct perf_ns_link_info *ns_link_info;
6687 
6688 	if (!atomic_read(&nr_namespaces_events))
6689 		return;
6690 
6691 	namespaces_event = (struct perf_namespaces_event){
6692 		.task	= task,
6693 		.event_id  = {
6694 			.header = {
6695 				.type = PERF_RECORD_NAMESPACES,
6696 				.misc = 0,
6697 				.size = sizeof(namespaces_event.event_id),
6698 			},
6699 			/* .pid */
6700 			/* .tid */
6701 			.nr_namespaces = NR_NAMESPACES,
6702 			/* .link_info[NR_NAMESPACES] */
6703 		},
6704 	};
6705 
6706 	ns_link_info = namespaces_event.event_id.link_info;
6707 
6708 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6709 			       task, &mntns_operations);
6710 
6711 #ifdef CONFIG_USER_NS
6712 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6713 			       task, &userns_operations);
6714 #endif
6715 #ifdef CONFIG_NET_NS
6716 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6717 			       task, &netns_operations);
6718 #endif
6719 #ifdef CONFIG_UTS_NS
6720 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6721 			       task, &utsns_operations);
6722 #endif
6723 #ifdef CONFIG_IPC_NS
6724 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6725 			       task, &ipcns_operations);
6726 #endif
6727 #ifdef CONFIG_PID_NS
6728 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6729 			       task, &pidns_operations);
6730 #endif
6731 #ifdef CONFIG_CGROUPS
6732 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6733 			       task, &cgroupns_operations);
6734 #endif
6735 
6736 	perf_iterate_sb(perf_event_namespaces_output,
6737 			&namespaces_event,
6738 			NULL);
6739 }
6740 
6741 /*
6742  * mmap tracking
6743  */
6744 
6745 struct perf_mmap_event {
6746 	struct vm_area_struct	*vma;
6747 
6748 	const char		*file_name;
6749 	int			file_size;
6750 	int			maj, min;
6751 	u64			ino;
6752 	u64			ino_generation;
6753 	u32			prot, flags;
6754 
6755 	struct {
6756 		struct perf_event_header	header;
6757 
6758 		u32				pid;
6759 		u32				tid;
6760 		u64				start;
6761 		u64				len;
6762 		u64				pgoff;
6763 	} event_id;
6764 };
6765 
6766 static int perf_event_mmap_match(struct perf_event *event,
6767 				 void *data)
6768 {
6769 	struct perf_mmap_event *mmap_event = data;
6770 	struct vm_area_struct *vma = mmap_event->vma;
6771 	int executable = vma->vm_flags & VM_EXEC;
6772 
6773 	return (!executable && event->attr.mmap_data) ||
6774 	       (executable && (event->attr.mmap || event->attr.mmap2));
6775 }
6776 
6777 static void perf_event_mmap_output(struct perf_event *event,
6778 				   void *data)
6779 {
6780 	struct perf_mmap_event *mmap_event = data;
6781 	struct perf_output_handle handle;
6782 	struct perf_sample_data sample;
6783 	int size = mmap_event->event_id.header.size;
6784 	int ret;
6785 
6786 	if (!perf_event_mmap_match(event, data))
6787 		return;
6788 
6789 	if (event->attr.mmap2) {
6790 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6791 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6792 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6793 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6794 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6795 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6796 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6797 	}
6798 
6799 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6800 	ret = perf_output_begin(&handle, event,
6801 				mmap_event->event_id.header.size);
6802 	if (ret)
6803 		goto out;
6804 
6805 	mmap_event->event_id.pid = perf_event_pid(event, current);
6806 	mmap_event->event_id.tid = perf_event_tid(event, current);
6807 
6808 	perf_output_put(&handle, mmap_event->event_id);
6809 
6810 	if (event->attr.mmap2) {
6811 		perf_output_put(&handle, mmap_event->maj);
6812 		perf_output_put(&handle, mmap_event->min);
6813 		perf_output_put(&handle, mmap_event->ino);
6814 		perf_output_put(&handle, mmap_event->ino_generation);
6815 		perf_output_put(&handle, mmap_event->prot);
6816 		perf_output_put(&handle, mmap_event->flags);
6817 	}
6818 
6819 	__output_copy(&handle, mmap_event->file_name,
6820 				   mmap_event->file_size);
6821 
6822 	perf_event__output_id_sample(event, &handle, &sample);
6823 
6824 	perf_output_end(&handle);
6825 out:
6826 	mmap_event->event_id.header.size = size;
6827 }
6828 
6829 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6830 {
6831 	struct vm_area_struct *vma = mmap_event->vma;
6832 	struct file *file = vma->vm_file;
6833 	int maj = 0, min = 0;
6834 	u64 ino = 0, gen = 0;
6835 	u32 prot = 0, flags = 0;
6836 	unsigned int size;
6837 	char tmp[16];
6838 	char *buf = NULL;
6839 	char *name;
6840 
6841 	if (vma->vm_flags & VM_READ)
6842 		prot |= PROT_READ;
6843 	if (vma->vm_flags & VM_WRITE)
6844 		prot |= PROT_WRITE;
6845 	if (vma->vm_flags & VM_EXEC)
6846 		prot |= PROT_EXEC;
6847 
6848 	if (vma->vm_flags & VM_MAYSHARE)
6849 		flags = MAP_SHARED;
6850 	else
6851 		flags = MAP_PRIVATE;
6852 
6853 	if (vma->vm_flags & VM_DENYWRITE)
6854 		flags |= MAP_DENYWRITE;
6855 	if (vma->vm_flags & VM_MAYEXEC)
6856 		flags |= MAP_EXECUTABLE;
6857 	if (vma->vm_flags & VM_LOCKED)
6858 		flags |= MAP_LOCKED;
6859 	if (vma->vm_flags & VM_HUGETLB)
6860 		flags |= MAP_HUGETLB;
6861 
6862 	if (file) {
6863 		struct inode *inode;
6864 		dev_t dev;
6865 
6866 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6867 		if (!buf) {
6868 			name = "//enomem";
6869 			goto cpy_name;
6870 		}
6871 		/*
6872 		 * d_path() works from the end of the rb backwards, so we
6873 		 * need to add enough zero bytes after the string to handle
6874 		 * the 64bit alignment we do later.
6875 		 */
6876 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6877 		if (IS_ERR(name)) {
6878 			name = "//toolong";
6879 			goto cpy_name;
6880 		}
6881 		inode = file_inode(vma->vm_file);
6882 		dev = inode->i_sb->s_dev;
6883 		ino = inode->i_ino;
6884 		gen = inode->i_generation;
6885 		maj = MAJOR(dev);
6886 		min = MINOR(dev);
6887 
6888 		goto got_name;
6889 	} else {
6890 		if (vma->vm_ops && vma->vm_ops->name) {
6891 			name = (char *) vma->vm_ops->name(vma);
6892 			if (name)
6893 				goto cpy_name;
6894 		}
6895 
6896 		name = (char *)arch_vma_name(vma);
6897 		if (name)
6898 			goto cpy_name;
6899 
6900 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6901 				vma->vm_end >= vma->vm_mm->brk) {
6902 			name = "[heap]";
6903 			goto cpy_name;
6904 		}
6905 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6906 				vma->vm_end >= vma->vm_mm->start_stack) {
6907 			name = "[stack]";
6908 			goto cpy_name;
6909 		}
6910 
6911 		name = "//anon";
6912 		goto cpy_name;
6913 	}
6914 
6915 cpy_name:
6916 	strlcpy(tmp, name, sizeof(tmp));
6917 	name = tmp;
6918 got_name:
6919 	/*
6920 	 * Since our buffer works in 8 byte units we need to align our string
6921 	 * size to a multiple of 8. However, we must guarantee the tail end is
6922 	 * zero'd out to avoid leaking random bits to userspace.
6923 	 */
6924 	size = strlen(name)+1;
6925 	while (!IS_ALIGNED(size, sizeof(u64)))
6926 		name[size++] = '\0';
6927 
6928 	mmap_event->file_name = name;
6929 	mmap_event->file_size = size;
6930 	mmap_event->maj = maj;
6931 	mmap_event->min = min;
6932 	mmap_event->ino = ino;
6933 	mmap_event->ino_generation = gen;
6934 	mmap_event->prot = prot;
6935 	mmap_event->flags = flags;
6936 
6937 	if (!(vma->vm_flags & VM_EXEC))
6938 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6939 
6940 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6941 
6942 	perf_iterate_sb(perf_event_mmap_output,
6943 		       mmap_event,
6944 		       NULL);
6945 
6946 	kfree(buf);
6947 }
6948 
6949 /*
6950  * Check whether inode and address range match filter criteria.
6951  */
6952 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6953 				     struct file *file, unsigned long offset,
6954 				     unsigned long size)
6955 {
6956 	if (filter->inode != file_inode(file))
6957 		return false;
6958 
6959 	if (filter->offset > offset + size)
6960 		return false;
6961 
6962 	if (filter->offset + filter->size < offset)
6963 		return false;
6964 
6965 	return true;
6966 }
6967 
6968 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6969 {
6970 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6971 	struct vm_area_struct *vma = data;
6972 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6973 	struct file *file = vma->vm_file;
6974 	struct perf_addr_filter *filter;
6975 	unsigned int restart = 0, count = 0;
6976 
6977 	if (!has_addr_filter(event))
6978 		return;
6979 
6980 	if (!file)
6981 		return;
6982 
6983 	raw_spin_lock_irqsave(&ifh->lock, flags);
6984 	list_for_each_entry(filter, &ifh->list, entry) {
6985 		if (perf_addr_filter_match(filter, file, off,
6986 					     vma->vm_end - vma->vm_start)) {
6987 			event->addr_filters_offs[count] = vma->vm_start;
6988 			restart++;
6989 		}
6990 
6991 		count++;
6992 	}
6993 
6994 	if (restart)
6995 		event->addr_filters_gen++;
6996 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6997 
6998 	if (restart)
6999 		perf_event_stop(event, 1);
7000 }
7001 
7002 /*
7003  * Adjust all task's events' filters to the new vma
7004  */
7005 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7006 {
7007 	struct perf_event_context *ctx;
7008 	int ctxn;
7009 
7010 	/*
7011 	 * Data tracing isn't supported yet and as such there is no need
7012 	 * to keep track of anything that isn't related to executable code:
7013 	 */
7014 	if (!(vma->vm_flags & VM_EXEC))
7015 		return;
7016 
7017 	rcu_read_lock();
7018 	for_each_task_context_nr(ctxn) {
7019 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7020 		if (!ctx)
7021 			continue;
7022 
7023 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7024 	}
7025 	rcu_read_unlock();
7026 }
7027 
7028 void perf_event_mmap(struct vm_area_struct *vma)
7029 {
7030 	struct perf_mmap_event mmap_event;
7031 
7032 	if (!atomic_read(&nr_mmap_events))
7033 		return;
7034 
7035 	mmap_event = (struct perf_mmap_event){
7036 		.vma	= vma,
7037 		/* .file_name */
7038 		/* .file_size */
7039 		.event_id  = {
7040 			.header = {
7041 				.type = PERF_RECORD_MMAP,
7042 				.misc = PERF_RECORD_MISC_USER,
7043 				/* .size */
7044 			},
7045 			/* .pid */
7046 			/* .tid */
7047 			.start  = vma->vm_start,
7048 			.len    = vma->vm_end - vma->vm_start,
7049 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7050 		},
7051 		/* .maj (attr_mmap2 only) */
7052 		/* .min (attr_mmap2 only) */
7053 		/* .ino (attr_mmap2 only) */
7054 		/* .ino_generation (attr_mmap2 only) */
7055 		/* .prot (attr_mmap2 only) */
7056 		/* .flags (attr_mmap2 only) */
7057 	};
7058 
7059 	perf_addr_filters_adjust(vma);
7060 	perf_event_mmap_event(&mmap_event);
7061 }
7062 
7063 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7064 			  unsigned long size, u64 flags)
7065 {
7066 	struct perf_output_handle handle;
7067 	struct perf_sample_data sample;
7068 	struct perf_aux_event {
7069 		struct perf_event_header	header;
7070 		u64				offset;
7071 		u64				size;
7072 		u64				flags;
7073 	} rec = {
7074 		.header = {
7075 			.type = PERF_RECORD_AUX,
7076 			.misc = 0,
7077 			.size = sizeof(rec),
7078 		},
7079 		.offset		= head,
7080 		.size		= size,
7081 		.flags		= flags,
7082 	};
7083 	int ret;
7084 
7085 	perf_event_header__init_id(&rec.header, &sample, event);
7086 	ret = perf_output_begin(&handle, event, rec.header.size);
7087 
7088 	if (ret)
7089 		return;
7090 
7091 	perf_output_put(&handle, rec);
7092 	perf_event__output_id_sample(event, &handle, &sample);
7093 
7094 	perf_output_end(&handle);
7095 }
7096 
7097 /*
7098  * Lost/dropped samples logging
7099  */
7100 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7101 {
7102 	struct perf_output_handle handle;
7103 	struct perf_sample_data sample;
7104 	int ret;
7105 
7106 	struct {
7107 		struct perf_event_header	header;
7108 		u64				lost;
7109 	} lost_samples_event = {
7110 		.header = {
7111 			.type = PERF_RECORD_LOST_SAMPLES,
7112 			.misc = 0,
7113 			.size = sizeof(lost_samples_event),
7114 		},
7115 		.lost		= lost,
7116 	};
7117 
7118 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7119 
7120 	ret = perf_output_begin(&handle, event,
7121 				lost_samples_event.header.size);
7122 	if (ret)
7123 		return;
7124 
7125 	perf_output_put(&handle, lost_samples_event);
7126 	perf_event__output_id_sample(event, &handle, &sample);
7127 	perf_output_end(&handle);
7128 }
7129 
7130 /*
7131  * context_switch tracking
7132  */
7133 
7134 struct perf_switch_event {
7135 	struct task_struct	*task;
7136 	struct task_struct	*next_prev;
7137 
7138 	struct {
7139 		struct perf_event_header	header;
7140 		u32				next_prev_pid;
7141 		u32				next_prev_tid;
7142 	} event_id;
7143 };
7144 
7145 static int perf_event_switch_match(struct perf_event *event)
7146 {
7147 	return event->attr.context_switch;
7148 }
7149 
7150 static void perf_event_switch_output(struct perf_event *event, void *data)
7151 {
7152 	struct perf_switch_event *se = data;
7153 	struct perf_output_handle handle;
7154 	struct perf_sample_data sample;
7155 	int ret;
7156 
7157 	if (!perf_event_switch_match(event))
7158 		return;
7159 
7160 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7161 	if (event->ctx->task) {
7162 		se->event_id.header.type = PERF_RECORD_SWITCH;
7163 		se->event_id.header.size = sizeof(se->event_id.header);
7164 	} else {
7165 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7166 		se->event_id.header.size = sizeof(se->event_id);
7167 		se->event_id.next_prev_pid =
7168 					perf_event_pid(event, se->next_prev);
7169 		se->event_id.next_prev_tid =
7170 					perf_event_tid(event, se->next_prev);
7171 	}
7172 
7173 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7174 
7175 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7176 	if (ret)
7177 		return;
7178 
7179 	if (event->ctx->task)
7180 		perf_output_put(&handle, se->event_id.header);
7181 	else
7182 		perf_output_put(&handle, se->event_id);
7183 
7184 	perf_event__output_id_sample(event, &handle, &sample);
7185 
7186 	perf_output_end(&handle);
7187 }
7188 
7189 static void perf_event_switch(struct task_struct *task,
7190 			      struct task_struct *next_prev, bool sched_in)
7191 {
7192 	struct perf_switch_event switch_event;
7193 
7194 	/* N.B. caller checks nr_switch_events != 0 */
7195 
7196 	switch_event = (struct perf_switch_event){
7197 		.task		= task,
7198 		.next_prev	= next_prev,
7199 		.event_id	= {
7200 			.header = {
7201 				/* .type */
7202 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7203 				/* .size */
7204 			},
7205 			/* .next_prev_pid */
7206 			/* .next_prev_tid */
7207 		},
7208 	};
7209 
7210 	perf_iterate_sb(perf_event_switch_output,
7211 		       &switch_event,
7212 		       NULL);
7213 }
7214 
7215 /*
7216  * IRQ throttle logging
7217  */
7218 
7219 static void perf_log_throttle(struct perf_event *event, int enable)
7220 {
7221 	struct perf_output_handle handle;
7222 	struct perf_sample_data sample;
7223 	int ret;
7224 
7225 	struct {
7226 		struct perf_event_header	header;
7227 		u64				time;
7228 		u64				id;
7229 		u64				stream_id;
7230 	} throttle_event = {
7231 		.header = {
7232 			.type = PERF_RECORD_THROTTLE,
7233 			.misc = 0,
7234 			.size = sizeof(throttle_event),
7235 		},
7236 		.time		= perf_event_clock(event),
7237 		.id		= primary_event_id(event),
7238 		.stream_id	= event->id,
7239 	};
7240 
7241 	if (enable)
7242 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7243 
7244 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7245 
7246 	ret = perf_output_begin(&handle, event,
7247 				throttle_event.header.size);
7248 	if (ret)
7249 		return;
7250 
7251 	perf_output_put(&handle, throttle_event);
7252 	perf_event__output_id_sample(event, &handle, &sample);
7253 	perf_output_end(&handle);
7254 }
7255 
7256 void perf_event_itrace_started(struct perf_event *event)
7257 {
7258 	event->attach_state |= PERF_ATTACH_ITRACE;
7259 }
7260 
7261 static void perf_log_itrace_start(struct perf_event *event)
7262 {
7263 	struct perf_output_handle handle;
7264 	struct perf_sample_data sample;
7265 	struct perf_aux_event {
7266 		struct perf_event_header        header;
7267 		u32				pid;
7268 		u32				tid;
7269 	} rec;
7270 	int ret;
7271 
7272 	if (event->parent)
7273 		event = event->parent;
7274 
7275 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7276 	    event->attach_state & PERF_ATTACH_ITRACE)
7277 		return;
7278 
7279 	rec.header.type	= PERF_RECORD_ITRACE_START;
7280 	rec.header.misc	= 0;
7281 	rec.header.size	= sizeof(rec);
7282 	rec.pid	= perf_event_pid(event, current);
7283 	rec.tid	= perf_event_tid(event, current);
7284 
7285 	perf_event_header__init_id(&rec.header, &sample, event);
7286 	ret = perf_output_begin(&handle, event, rec.header.size);
7287 
7288 	if (ret)
7289 		return;
7290 
7291 	perf_output_put(&handle, rec);
7292 	perf_event__output_id_sample(event, &handle, &sample);
7293 
7294 	perf_output_end(&handle);
7295 }
7296 
7297 static int
7298 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7299 {
7300 	struct hw_perf_event *hwc = &event->hw;
7301 	int ret = 0;
7302 	u64 seq;
7303 
7304 	seq = __this_cpu_read(perf_throttled_seq);
7305 	if (seq != hwc->interrupts_seq) {
7306 		hwc->interrupts_seq = seq;
7307 		hwc->interrupts = 1;
7308 	} else {
7309 		hwc->interrupts++;
7310 		if (unlikely(throttle
7311 			     && hwc->interrupts >= max_samples_per_tick)) {
7312 			__this_cpu_inc(perf_throttled_count);
7313 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7314 			hwc->interrupts = MAX_INTERRUPTS;
7315 			perf_log_throttle(event, 0);
7316 			ret = 1;
7317 		}
7318 	}
7319 
7320 	if (event->attr.freq) {
7321 		u64 now = perf_clock();
7322 		s64 delta = now - hwc->freq_time_stamp;
7323 
7324 		hwc->freq_time_stamp = now;
7325 
7326 		if (delta > 0 && delta < 2*TICK_NSEC)
7327 			perf_adjust_period(event, delta, hwc->last_period, true);
7328 	}
7329 
7330 	return ret;
7331 }
7332 
7333 int perf_event_account_interrupt(struct perf_event *event)
7334 {
7335 	return __perf_event_account_interrupt(event, 1);
7336 }
7337 
7338 /*
7339  * Generic event overflow handling, sampling.
7340  */
7341 
7342 static int __perf_event_overflow(struct perf_event *event,
7343 				   int throttle, struct perf_sample_data *data,
7344 				   struct pt_regs *regs)
7345 {
7346 	int events = atomic_read(&event->event_limit);
7347 	int ret = 0;
7348 
7349 	/*
7350 	 * Non-sampling counters might still use the PMI to fold short
7351 	 * hardware counters, ignore those.
7352 	 */
7353 	if (unlikely(!is_sampling_event(event)))
7354 		return 0;
7355 
7356 	ret = __perf_event_account_interrupt(event, throttle);
7357 
7358 	/*
7359 	 * XXX event_limit might not quite work as expected on inherited
7360 	 * events
7361 	 */
7362 
7363 	event->pending_kill = POLL_IN;
7364 	if (events && atomic_dec_and_test(&event->event_limit)) {
7365 		ret = 1;
7366 		event->pending_kill = POLL_HUP;
7367 
7368 		perf_event_disable_inatomic(event);
7369 	}
7370 
7371 	READ_ONCE(event->overflow_handler)(event, data, regs);
7372 
7373 	if (*perf_event_fasync(event) && event->pending_kill) {
7374 		event->pending_wakeup = 1;
7375 		irq_work_queue(&event->pending);
7376 	}
7377 
7378 	return ret;
7379 }
7380 
7381 int perf_event_overflow(struct perf_event *event,
7382 			  struct perf_sample_data *data,
7383 			  struct pt_regs *regs)
7384 {
7385 	return __perf_event_overflow(event, 1, data, regs);
7386 }
7387 
7388 /*
7389  * Generic software event infrastructure
7390  */
7391 
7392 struct swevent_htable {
7393 	struct swevent_hlist		*swevent_hlist;
7394 	struct mutex			hlist_mutex;
7395 	int				hlist_refcount;
7396 
7397 	/* Recursion avoidance in each contexts */
7398 	int				recursion[PERF_NR_CONTEXTS];
7399 };
7400 
7401 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7402 
7403 /*
7404  * We directly increment event->count and keep a second value in
7405  * event->hw.period_left to count intervals. This period event
7406  * is kept in the range [-sample_period, 0] so that we can use the
7407  * sign as trigger.
7408  */
7409 
7410 u64 perf_swevent_set_period(struct perf_event *event)
7411 {
7412 	struct hw_perf_event *hwc = &event->hw;
7413 	u64 period = hwc->last_period;
7414 	u64 nr, offset;
7415 	s64 old, val;
7416 
7417 	hwc->last_period = hwc->sample_period;
7418 
7419 again:
7420 	old = val = local64_read(&hwc->period_left);
7421 	if (val < 0)
7422 		return 0;
7423 
7424 	nr = div64_u64(period + val, period);
7425 	offset = nr * period;
7426 	val -= offset;
7427 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7428 		goto again;
7429 
7430 	return nr;
7431 }
7432 
7433 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7434 				    struct perf_sample_data *data,
7435 				    struct pt_regs *regs)
7436 {
7437 	struct hw_perf_event *hwc = &event->hw;
7438 	int throttle = 0;
7439 
7440 	if (!overflow)
7441 		overflow = perf_swevent_set_period(event);
7442 
7443 	if (hwc->interrupts == MAX_INTERRUPTS)
7444 		return;
7445 
7446 	for (; overflow; overflow--) {
7447 		if (__perf_event_overflow(event, throttle,
7448 					    data, regs)) {
7449 			/*
7450 			 * We inhibit the overflow from happening when
7451 			 * hwc->interrupts == MAX_INTERRUPTS.
7452 			 */
7453 			break;
7454 		}
7455 		throttle = 1;
7456 	}
7457 }
7458 
7459 static void perf_swevent_event(struct perf_event *event, u64 nr,
7460 			       struct perf_sample_data *data,
7461 			       struct pt_regs *regs)
7462 {
7463 	struct hw_perf_event *hwc = &event->hw;
7464 
7465 	local64_add(nr, &event->count);
7466 
7467 	if (!regs)
7468 		return;
7469 
7470 	if (!is_sampling_event(event))
7471 		return;
7472 
7473 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7474 		data->period = nr;
7475 		return perf_swevent_overflow(event, 1, data, regs);
7476 	} else
7477 		data->period = event->hw.last_period;
7478 
7479 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7480 		return perf_swevent_overflow(event, 1, data, regs);
7481 
7482 	if (local64_add_negative(nr, &hwc->period_left))
7483 		return;
7484 
7485 	perf_swevent_overflow(event, 0, data, regs);
7486 }
7487 
7488 static int perf_exclude_event(struct perf_event *event,
7489 			      struct pt_regs *regs)
7490 {
7491 	if (event->hw.state & PERF_HES_STOPPED)
7492 		return 1;
7493 
7494 	if (regs) {
7495 		if (event->attr.exclude_user && user_mode(regs))
7496 			return 1;
7497 
7498 		if (event->attr.exclude_kernel && !user_mode(regs))
7499 			return 1;
7500 	}
7501 
7502 	return 0;
7503 }
7504 
7505 static int perf_swevent_match(struct perf_event *event,
7506 				enum perf_type_id type,
7507 				u32 event_id,
7508 				struct perf_sample_data *data,
7509 				struct pt_regs *regs)
7510 {
7511 	if (event->attr.type != type)
7512 		return 0;
7513 
7514 	if (event->attr.config != event_id)
7515 		return 0;
7516 
7517 	if (perf_exclude_event(event, regs))
7518 		return 0;
7519 
7520 	return 1;
7521 }
7522 
7523 static inline u64 swevent_hash(u64 type, u32 event_id)
7524 {
7525 	u64 val = event_id | (type << 32);
7526 
7527 	return hash_64(val, SWEVENT_HLIST_BITS);
7528 }
7529 
7530 static inline struct hlist_head *
7531 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7532 {
7533 	u64 hash = swevent_hash(type, event_id);
7534 
7535 	return &hlist->heads[hash];
7536 }
7537 
7538 /* For the read side: events when they trigger */
7539 static inline struct hlist_head *
7540 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7541 {
7542 	struct swevent_hlist *hlist;
7543 
7544 	hlist = rcu_dereference(swhash->swevent_hlist);
7545 	if (!hlist)
7546 		return NULL;
7547 
7548 	return __find_swevent_head(hlist, type, event_id);
7549 }
7550 
7551 /* For the event head insertion and removal in the hlist */
7552 static inline struct hlist_head *
7553 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7554 {
7555 	struct swevent_hlist *hlist;
7556 	u32 event_id = event->attr.config;
7557 	u64 type = event->attr.type;
7558 
7559 	/*
7560 	 * Event scheduling is always serialized against hlist allocation
7561 	 * and release. Which makes the protected version suitable here.
7562 	 * The context lock guarantees that.
7563 	 */
7564 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7565 					  lockdep_is_held(&event->ctx->lock));
7566 	if (!hlist)
7567 		return NULL;
7568 
7569 	return __find_swevent_head(hlist, type, event_id);
7570 }
7571 
7572 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7573 				    u64 nr,
7574 				    struct perf_sample_data *data,
7575 				    struct pt_regs *regs)
7576 {
7577 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7578 	struct perf_event *event;
7579 	struct hlist_head *head;
7580 
7581 	rcu_read_lock();
7582 	head = find_swevent_head_rcu(swhash, type, event_id);
7583 	if (!head)
7584 		goto end;
7585 
7586 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7587 		if (perf_swevent_match(event, type, event_id, data, regs))
7588 			perf_swevent_event(event, nr, data, regs);
7589 	}
7590 end:
7591 	rcu_read_unlock();
7592 }
7593 
7594 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7595 
7596 int perf_swevent_get_recursion_context(void)
7597 {
7598 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7599 
7600 	return get_recursion_context(swhash->recursion);
7601 }
7602 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7603 
7604 void perf_swevent_put_recursion_context(int rctx)
7605 {
7606 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7607 
7608 	put_recursion_context(swhash->recursion, rctx);
7609 }
7610 
7611 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7612 {
7613 	struct perf_sample_data data;
7614 
7615 	if (WARN_ON_ONCE(!regs))
7616 		return;
7617 
7618 	perf_sample_data_init(&data, addr, 0);
7619 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7620 }
7621 
7622 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7623 {
7624 	int rctx;
7625 
7626 	preempt_disable_notrace();
7627 	rctx = perf_swevent_get_recursion_context();
7628 	if (unlikely(rctx < 0))
7629 		goto fail;
7630 
7631 	___perf_sw_event(event_id, nr, regs, addr);
7632 
7633 	perf_swevent_put_recursion_context(rctx);
7634 fail:
7635 	preempt_enable_notrace();
7636 }
7637 
7638 static void perf_swevent_read(struct perf_event *event)
7639 {
7640 }
7641 
7642 static int perf_swevent_add(struct perf_event *event, int flags)
7643 {
7644 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7645 	struct hw_perf_event *hwc = &event->hw;
7646 	struct hlist_head *head;
7647 
7648 	if (is_sampling_event(event)) {
7649 		hwc->last_period = hwc->sample_period;
7650 		perf_swevent_set_period(event);
7651 	}
7652 
7653 	hwc->state = !(flags & PERF_EF_START);
7654 
7655 	head = find_swevent_head(swhash, event);
7656 	if (WARN_ON_ONCE(!head))
7657 		return -EINVAL;
7658 
7659 	hlist_add_head_rcu(&event->hlist_entry, head);
7660 	perf_event_update_userpage(event);
7661 
7662 	return 0;
7663 }
7664 
7665 static void perf_swevent_del(struct perf_event *event, int flags)
7666 {
7667 	hlist_del_rcu(&event->hlist_entry);
7668 }
7669 
7670 static void perf_swevent_start(struct perf_event *event, int flags)
7671 {
7672 	event->hw.state = 0;
7673 }
7674 
7675 static void perf_swevent_stop(struct perf_event *event, int flags)
7676 {
7677 	event->hw.state = PERF_HES_STOPPED;
7678 }
7679 
7680 /* Deref the hlist from the update side */
7681 static inline struct swevent_hlist *
7682 swevent_hlist_deref(struct swevent_htable *swhash)
7683 {
7684 	return rcu_dereference_protected(swhash->swevent_hlist,
7685 					 lockdep_is_held(&swhash->hlist_mutex));
7686 }
7687 
7688 static void swevent_hlist_release(struct swevent_htable *swhash)
7689 {
7690 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7691 
7692 	if (!hlist)
7693 		return;
7694 
7695 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7696 	kfree_rcu(hlist, rcu_head);
7697 }
7698 
7699 static void swevent_hlist_put_cpu(int cpu)
7700 {
7701 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7702 
7703 	mutex_lock(&swhash->hlist_mutex);
7704 
7705 	if (!--swhash->hlist_refcount)
7706 		swevent_hlist_release(swhash);
7707 
7708 	mutex_unlock(&swhash->hlist_mutex);
7709 }
7710 
7711 static void swevent_hlist_put(void)
7712 {
7713 	int cpu;
7714 
7715 	for_each_possible_cpu(cpu)
7716 		swevent_hlist_put_cpu(cpu);
7717 }
7718 
7719 static int swevent_hlist_get_cpu(int cpu)
7720 {
7721 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7722 	int err = 0;
7723 
7724 	mutex_lock(&swhash->hlist_mutex);
7725 	if (!swevent_hlist_deref(swhash) &&
7726 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7727 		struct swevent_hlist *hlist;
7728 
7729 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7730 		if (!hlist) {
7731 			err = -ENOMEM;
7732 			goto exit;
7733 		}
7734 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7735 	}
7736 	swhash->hlist_refcount++;
7737 exit:
7738 	mutex_unlock(&swhash->hlist_mutex);
7739 
7740 	return err;
7741 }
7742 
7743 static int swevent_hlist_get(void)
7744 {
7745 	int err, cpu, failed_cpu;
7746 
7747 	mutex_lock(&pmus_lock);
7748 	for_each_possible_cpu(cpu) {
7749 		err = swevent_hlist_get_cpu(cpu);
7750 		if (err) {
7751 			failed_cpu = cpu;
7752 			goto fail;
7753 		}
7754 	}
7755 	mutex_unlock(&pmus_lock);
7756 	return 0;
7757 fail:
7758 	for_each_possible_cpu(cpu) {
7759 		if (cpu == failed_cpu)
7760 			break;
7761 		swevent_hlist_put_cpu(cpu);
7762 	}
7763 	mutex_unlock(&pmus_lock);
7764 	return err;
7765 }
7766 
7767 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7768 
7769 static void sw_perf_event_destroy(struct perf_event *event)
7770 {
7771 	u64 event_id = event->attr.config;
7772 
7773 	WARN_ON(event->parent);
7774 
7775 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7776 	swevent_hlist_put();
7777 }
7778 
7779 static int perf_swevent_init(struct perf_event *event)
7780 {
7781 	u64 event_id = event->attr.config;
7782 
7783 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7784 		return -ENOENT;
7785 
7786 	/*
7787 	 * no branch sampling for software events
7788 	 */
7789 	if (has_branch_stack(event))
7790 		return -EOPNOTSUPP;
7791 
7792 	switch (event_id) {
7793 	case PERF_COUNT_SW_CPU_CLOCK:
7794 	case PERF_COUNT_SW_TASK_CLOCK:
7795 		return -ENOENT;
7796 
7797 	default:
7798 		break;
7799 	}
7800 
7801 	if (event_id >= PERF_COUNT_SW_MAX)
7802 		return -ENOENT;
7803 
7804 	if (!event->parent) {
7805 		int err;
7806 
7807 		err = swevent_hlist_get();
7808 		if (err)
7809 			return err;
7810 
7811 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7812 		event->destroy = sw_perf_event_destroy;
7813 	}
7814 
7815 	return 0;
7816 }
7817 
7818 static struct pmu perf_swevent = {
7819 	.task_ctx_nr	= perf_sw_context,
7820 
7821 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7822 
7823 	.event_init	= perf_swevent_init,
7824 	.add		= perf_swevent_add,
7825 	.del		= perf_swevent_del,
7826 	.start		= perf_swevent_start,
7827 	.stop		= perf_swevent_stop,
7828 	.read		= perf_swevent_read,
7829 };
7830 
7831 #ifdef CONFIG_EVENT_TRACING
7832 
7833 static int perf_tp_filter_match(struct perf_event *event,
7834 				struct perf_sample_data *data)
7835 {
7836 	void *record = data->raw->frag.data;
7837 
7838 	/* only top level events have filters set */
7839 	if (event->parent)
7840 		event = event->parent;
7841 
7842 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7843 		return 1;
7844 	return 0;
7845 }
7846 
7847 static int perf_tp_event_match(struct perf_event *event,
7848 				struct perf_sample_data *data,
7849 				struct pt_regs *regs)
7850 {
7851 	if (event->hw.state & PERF_HES_STOPPED)
7852 		return 0;
7853 	/*
7854 	 * All tracepoints are from kernel-space.
7855 	 */
7856 	if (event->attr.exclude_kernel)
7857 		return 0;
7858 
7859 	if (!perf_tp_filter_match(event, data))
7860 		return 0;
7861 
7862 	return 1;
7863 }
7864 
7865 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7866 			       struct trace_event_call *call, u64 count,
7867 			       struct pt_regs *regs, struct hlist_head *head,
7868 			       struct task_struct *task)
7869 {
7870 	struct bpf_prog *prog = call->prog;
7871 
7872 	if (prog) {
7873 		*(struct pt_regs **)raw_data = regs;
7874 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7875 			perf_swevent_put_recursion_context(rctx);
7876 			return;
7877 		}
7878 	}
7879 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7880 		      rctx, task, NULL);
7881 }
7882 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7883 
7884 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7885 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7886 		   struct task_struct *task, struct perf_event *event)
7887 {
7888 	struct perf_sample_data data;
7889 
7890 	struct perf_raw_record raw = {
7891 		.frag = {
7892 			.size = entry_size,
7893 			.data = record,
7894 		},
7895 	};
7896 
7897 	perf_sample_data_init(&data, 0, 0);
7898 	data.raw = &raw;
7899 
7900 	perf_trace_buf_update(record, event_type);
7901 
7902 	/* Use the given event instead of the hlist */
7903 	if (event) {
7904 		if (perf_tp_event_match(event, &data, regs))
7905 			perf_swevent_event(event, count, &data, regs);
7906 	} else {
7907 		hlist_for_each_entry_rcu(event, head, hlist_entry) {
7908 			if (perf_tp_event_match(event, &data, regs))
7909 				perf_swevent_event(event, count, &data, regs);
7910 		}
7911 	}
7912 
7913 	/*
7914 	 * If we got specified a target task, also iterate its context and
7915 	 * deliver this event there too.
7916 	 */
7917 	if (task && task != current) {
7918 		struct perf_event_context *ctx;
7919 		struct trace_entry *entry = record;
7920 
7921 		rcu_read_lock();
7922 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7923 		if (!ctx)
7924 			goto unlock;
7925 
7926 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7927 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7928 				continue;
7929 			if (event->attr.config != entry->type)
7930 				continue;
7931 			if (perf_tp_event_match(event, &data, regs))
7932 				perf_swevent_event(event, count, &data, regs);
7933 		}
7934 unlock:
7935 		rcu_read_unlock();
7936 	}
7937 
7938 	perf_swevent_put_recursion_context(rctx);
7939 }
7940 EXPORT_SYMBOL_GPL(perf_tp_event);
7941 
7942 static void tp_perf_event_destroy(struct perf_event *event)
7943 {
7944 	perf_trace_destroy(event);
7945 }
7946 
7947 static int perf_tp_event_init(struct perf_event *event)
7948 {
7949 	int err;
7950 
7951 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7952 		return -ENOENT;
7953 
7954 	/*
7955 	 * no branch sampling for tracepoint events
7956 	 */
7957 	if (has_branch_stack(event))
7958 		return -EOPNOTSUPP;
7959 
7960 	err = perf_trace_init(event);
7961 	if (err)
7962 		return err;
7963 
7964 	event->destroy = tp_perf_event_destroy;
7965 
7966 	return 0;
7967 }
7968 
7969 static struct pmu perf_tracepoint = {
7970 	.task_ctx_nr	= perf_sw_context,
7971 
7972 	.event_init	= perf_tp_event_init,
7973 	.add		= perf_trace_add,
7974 	.del		= perf_trace_del,
7975 	.start		= perf_swevent_start,
7976 	.stop		= perf_swevent_stop,
7977 	.read		= perf_swevent_read,
7978 };
7979 
7980 static inline void perf_tp_register(void)
7981 {
7982 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7983 }
7984 
7985 static void perf_event_free_filter(struct perf_event *event)
7986 {
7987 	ftrace_profile_free_filter(event);
7988 }
7989 
7990 #ifdef CONFIG_BPF_SYSCALL
7991 static void bpf_overflow_handler(struct perf_event *event,
7992 				 struct perf_sample_data *data,
7993 				 struct pt_regs *regs)
7994 {
7995 	struct bpf_perf_event_data_kern ctx = {
7996 		.data = data,
7997 		.regs = regs,
7998 		.event = event,
7999 	};
8000 	int ret = 0;
8001 
8002 	preempt_disable();
8003 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8004 		goto out;
8005 	rcu_read_lock();
8006 	ret = BPF_PROG_RUN(event->prog, &ctx);
8007 	rcu_read_unlock();
8008 out:
8009 	__this_cpu_dec(bpf_prog_active);
8010 	preempt_enable();
8011 	if (!ret)
8012 		return;
8013 
8014 	event->orig_overflow_handler(event, data, regs);
8015 }
8016 
8017 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8018 {
8019 	struct bpf_prog *prog;
8020 
8021 	if (event->overflow_handler_context)
8022 		/* hw breakpoint or kernel counter */
8023 		return -EINVAL;
8024 
8025 	if (event->prog)
8026 		return -EEXIST;
8027 
8028 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8029 	if (IS_ERR(prog))
8030 		return PTR_ERR(prog);
8031 
8032 	event->prog = prog;
8033 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8034 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8035 	return 0;
8036 }
8037 
8038 static void perf_event_free_bpf_handler(struct perf_event *event)
8039 {
8040 	struct bpf_prog *prog = event->prog;
8041 
8042 	if (!prog)
8043 		return;
8044 
8045 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8046 	event->prog = NULL;
8047 	bpf_prog_put(prog);
8048 }
8049 #else
8050 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8051 {
8052 	return -EOPNOTSUPP;
8053 }
8054 static void perf_event_free_bpf_handler(struct perf_event *event)
8055 {
8056 }
8057 #endif
8058 
8059 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8060 {
8061 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8062 	struct bpf_prog *prog;
8063 
8064 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8065 		return perf_event_set_bpf_handler(event, prog_fd);
8066 
8067 	if (event->tp_event->prog)
8068 		return -EEXIST;
8069 
8070 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8071 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8072 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8073 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8074 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8075 		return -EINVAL;
8076 
8077 	prog = bpf_prog_get(prog_fd);
8078 	if (IS_ERR(prog))
8079 		return PTR_ERR(prog);
8080 
8081 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8082 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8083 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8084 		/* valid fd, but invalid bpf program type */
8085 		bpf_prog_put(prog);
8086 		return -EINVAL;
8087 	}
8088 
8089 	if (is_tracepoint || is_syscall_tp) {
8090 		int off = trace_event_get_offsets(event->tp_event);
8091 
8092 		if (prog->aux->max_ctx_offset > off) {
8093 			bpf_prog_put(prog);
8094 			return -EACCES;
8095 		}
8096 	}
8097 	event->tp_event->prog = prog;
8098 	event->tp_event->bpf_prog_owner = event;
8099 
8100 	return 0;
8101 }
8102 
8103 static void perf_event_free_bpf_prog(struct perf_event *event)
8104 {
8105 	struct bpf_prog *prog;
8106 
8107 	perf_event_free_bpf_handler(event);
8108 
8109 	if (!event->tp_event)
8110 		return;
8111 
8112 	prog = event->tp_event->prog;
8113 	if (prog && event->tp_event->bpf_prog_owner == event) {
8114 		event->tp_event->prog = NULL;
8115 		bpf_prog_put(prog);
8116 	}
8117 }
8118 
8119 #else
8120 
8121 static inline void perf_tp_register(void)
8122 {
8123 }
8124 
8125 static void perf_event_free_filter(struct perf_event *event)
8126 {
8127 }
8128 
8129 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8130 {
8131 	return -ENOENT;
8132 }
8133 
8134 static void perf_event_free_bpf_prog(struct perf_event *event)
8135 {
8136 }
8137 #endif /* CONFIG_EVENT_TRACING */
8138 
8139 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8140 void perf_bp_event(struct perf_event *bp, void *data)
8141 {
8142 	struct perf_sample_data sample;
8143 	struct pt_regs *regs = data;
8144 
8145 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8146 
8147 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8148 		perf_swevent_event(bp, 1, &sample, regs);
8149 }
8150 #endif
8151 
8152 /*
8153  * Allocate a new address filter
8154  */
8155 static struct perf_addr_filter *
8156 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8157 {
8158 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8159 	struct perf_addr_filter *filter;
8160 
8161 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8162 	if (!filter)
8163 		return NULL;
8164 
8165 	INIT_LIST_HEAD(&filter->entry);
8166 	list_add_tail(&filter->entry, filters);
8167 
8168 	return filter;
8169 }
8170 
8171 static void free_filters_list(struct list_head *filters)
8172 {
8173 	struct perf_addr_filter *filter, *iter;
8174 
8175 	list_for_each_entry_safe(filter, iter, filters, entry) {
8176 		if (filter->inode)
8177 			iput(filter->inode);
8178 		list_del(&filter->entry);
8179 		kfree(filter);
8180 	}
8181 }
8182 
8183 /*
8184  * Free existing address filters and optionally install new ones
8185  */
8186 static void perf_addr_filters_splice(struct perf_event *event,
8187 				     struct list_head *head)
8188 {
8189 	unsigned long flags;
8190 	LIST_HEAD(list);
8191 
8192 	if (!has_addr_filter(event))
8193 		return;
8194 
8195 	/* don't bother with children, they don't have their own filters */
8196 	if (event->parent)
8197 		return;
8198 
8199 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8200 
8201 	list_splice_init(&event->addr_filters.list, &list);
8202 	if (head)
8203 		list_splice(head, &event->addr_filters.list);
8204 
8205 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8206 
8207 	free_filters_list(&list);
8208 }
8209 
8210 /*
8211  * Scan through mm's vmas and see if one of them matches the
8212  * @filter; if so, adjust filter's address range.
8213  * Called with mm::mmap_sem down for reading.
8214  */
8215 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8216 					    struct mm_struct *mm)
8217 {
8218 	struct vm_area_struct *vma;
8219 
8220 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8221 		struct file *file = vma->vm_file;
8222 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8223 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8224 
8225 		if (!file)
8226 			continue;
8227 
8228 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8229 			continue;
8230 
8231 		return vma->vm_start;
8232 	}
8233 
8234 	return 0;
8235 }
8236 
8237 /*
8238  * Update event's address range filters based on the
8239  * task's existing mappings, if any.
8240  */
8241 static void perf_event_addr_filters_apply(struct perf_event *event)
8242 {
8243 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8244 	struct task_struct *task = READ_ONCE(event->ctx->task);
8245 	struct perf_addr_filter *filter;
8246 	struct mm_struct *mm = NULL;
8247 	unsigned int count = 0;
8248 	unsigned long flags;
8249 
8250 	/*
8251 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8252 	 * will stop on the parent's child_mutex that our caller is also holding
8253 	 */
8254 	if (task == TASK_TOMBSTONE)
8255 		return;
8256 
8257 	if (!ifh->nr_file_filters)
8258 		return;
8259 
8260 	mm = get_task_mm(event->ctx->task);
8261 	if (!mm)
8262 		goto restart;
8263 
8264 	down_read(&mm->mmap_sem);
8265 
8266 	raw_spin_lock_irqsave(&ifh->lock, flags);
8267 	list_for_each_entry(filter, &ifh->list, entry) {
8268 		event->addr_filters_offs[count] = 0;
8269 
8270 		/*
8271 		 * Adjust base offset if the filter is associated to a binary
8272 		 * that needs to be mapped:
8273 		 */
8274 		if (filter->inode)
8275 			event->addr_filters_offs[count] =
8276 				perf_addr_filter_apply(filter, mm);
8277 
8278 		count++;
8279 	}
8280 
8281 	event->addr_filters_gen++;
8282 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8283 
8284 	up_read(&mm->mmap_sem);
8285 
8286 	mmput(mm);
8287 
8288 restart:
8289 	perf_event_stop(event, 1);
8290 }
8291 
8292 /*
8293  * Address range filtering: limiting the data to certain
8294  * instruction address ranges. Filters are ioctl()ed to us from
8295  * userspace as ascii strings.
8296  *
8297  * Filter string format:
8298  *
8299  * ACTION RANGE_SPEC
8300  * where ACTION is one of the
8301  *  * "filter": limit the trace to this region
8302  *  * "start": start tracing from this address
8303  *  * "stop": stop tracing at this address/region;
8304  * RANGE_SPEC is
8305  *  * for kernel addresses: <start address>[/<size>]
8306  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8307  *
8308  * if <size> is not specified, the range is treated as a single address.
8309  */
8310 enum {
8311 	IF_ACT_NONE = -1,
8312 	IF_ACT_FILTER,
8313 	IF_ACT_START,
8314 	IF_ACT_STOP,
8315 	IF_SRC_FILE,
8316 	IF_SRC_KERNEL,
8317 	IF_SRC_FILEADDR,
8318 	IF_SRC_KERNELADDR,
8319 };
8320 
8321 enum {
8322 	IF_STATE_ACTION = 0,
8323 	IF_STATE_SOURCE,
8324 	IF_STATE_END,
8325 };
8326 
8327 static const match_table_t if_tokens = {
8328 	{ IF_ACT_FILTER,	"filter" },
8329 	{ IF_ACT_START,		"start" },
8330 	{ IF_ACT_STOP,		"stop" },
8331 	{ IF_SRC_FILE,		"%u/%u@%s" },
8332 	{ IF_SRC_KERNEL,	"%u/%u" },
8333 	{ IF_SRC_FILEADDR,	"%u@%s" },
8334 	{ IF_SRC_KERNELADDR,	"%u" },
8335 	{ IF_ACT_NONE,		NULL },
8336 };
8337 
8338 /*
8339  * Address filter string parser
8340  */
8341 static int
8342 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8343 			     struct list_head *filters)
8344 {
8345 	struct perf_addr_filter *filter = NULL;
8346 	char *start, *orig, *filename = NULL;
8347 	struct path path;
8348 	substring_t args[MAX_OPT_ARGS];
8349 	int state = IF_STATE_ACTION, token;
8350 	unsigned int kernel = 0;
8351 	int ret = -EINVAL;
8352 
8353 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8354 	if (!fstr)
8355 		return -ENOMEM;
8356 
8357 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8358 		ret = -EINVAL;
8359 
8360 		if (!*start)
8361 			continue;
8362 
8363 		/* filter definition begins */
8364 		if (state == IF_STATE_ACTION) {
8365 			filter = perf_addr_filter_new(event, filters);
8366 			if (!filter)
8367 				goto fail;
8368 		}
8369 
8370 		token = match_token(start, if_tokens, args);
8371 		switch (token) {
8372 		case IF_ACT_FILTER:
8373 		case IF_ACT_START:
8374 			filter->filter = 1;
8375 
8376 		case IF_ACT_STOP:
8377 			if (state != IF_STATE_ACTION)
8378 				goto fail;
8379 
8380 			state = IF_STATE_SOURCE;
8381 			break;
8382 
8383 		case IF_SRC_KERNELADDR:
8384 		case IF_SRC_KERNEL:
8385 			kernel = 1;
8386 
8387 		case IF_SRC_FILEADDR:
8388 		case IF_SRC_FILE:
8389 			if (state != IF_STATE_SOURCE)
8390 				goto fail;
8391 
8392 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8393 				filter->range = 1;
8394 
8395 			*args[0].to = 0;
8396 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8397 			if (ret)
8398 				goto fail;
8399 
8400 			if (filter->range) {
8401 				*args[1].to = 0;
8402 				ret = kstrtoul(args[1].from, 0, &filter->size);
8403 				if (ret)
8404 					goto fail;
8405 			}
8406 
8407 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8408 				int fpos = filter->range ? 2 : 1;
8409 
8410 				filename = match_strdup(&args[fpos]);
8411 				if (!filename) {
8412 					ret = -ENOMEM;
8413 					goto fail;
8414 				}
8415 			}
8416 
8417 			state = IF_STATE_END;
8418 			break;
8419 
8420 		default:
8421 			goto fail;
8422 		}
8423 
8424 		/*
8425 		 * Filter definition is fully parsed, validate and install it.
8426 		 * Make sure that it doesn't contradict itself or the event's
8427 		 * attribute.
8428 		 */
8429 		if (state == IF_STATE_END) {
8430 			ret = -EINVAL;
8431 			if (kernel && event->attr.exclude_kernel)
8432 				goto fail;
8433 
8434 			if (!kernel) {
8435 				if (!filename)
8436 					goto fail;
8437 
8438 				/*
8439 				 * For now, we only support file-based filters
8440 				 * in per-task events; doing so for CPU-wide
8441 				 * events requires additional context switching
8442 				 * trickery, since same object code will be
8443 				 * mapped at different virtual addresses in
8444 				 * different processes.
8445 				 */
8446 				ret = -EOPNOTSUPP;
8447 				if (!event->ctx->task)
8448 					goto fail_free_name;
8449 
8450 				/* look up the path and grab its inode */
8451 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8452 				if (ret)
8453 					goto fail_free_name;
8454 
8455 				filter->inode = igrab(d_inode(path.dentry));
8456 				path_put(&path);
8457 				kfree(filename);
8458 				filename = NULL;
8459 
8460 				ret = -EINVAL;
8461 				if (!filter->inode ||
8462 				    !S_ISREG(filter->inode->i_mode))
8463 					/* free_filters_list() will iput() */
8464 					goto fail;
8465 
8466 				event->addr_filters.nr_file_filters++;
8467 			}
8468 
8469 			/* ready to consume more filters */
8470 			state = IF_STATE_ACTION;
8471 			filter = NULL;
8472 		}
8473 	}
8474 
8475 	if (state != IF_STATE_ACTION)
8476 		goto fail;
8477 
8478 	kfree(orig);
8479 
8480 	return 0;
8481 
8482 fail_free_name:
8483 	kfree(filename);
8484 fail:
8485 	free_filters_list(filters);
8486 	kfree(orig);
8487 
8488 	return ret;
8489 }
8490 
8491 static int
8492 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8493 {
8494 	LIST_HEAD(filters);
8495 	int ret;
8496 
8497 	/*
8498 	 * Since this is called in perf_ioctl() path, we're already holding
8499 	 * ctx::mutex.
8500 	 */
8501 	lockdep_assert_held(&event->ctx->mutex);
8502 
8503 	if (WARN_ON_ONCE(event->parent))
8504 		return -EINVAL;
8505 
8506 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8507 	if (ret)
8508 		goto fail_clear_files;
8509 
8510 	ret = event->pmu->addr_filters_validate(&filters);
8511 	if (ret)
8512 		goto fail_free_filters;
8513 
8514 	/* remove existing filters, if any */
8515 	perf_addr_filters_splice(event, &filters);
8516 
8517 	/* install new filters */
8518 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8519 
8520 	return ret;
8521 
8522 fail_free_filters:
8523 	free_filters_list(&filters);
8524 
8525 fail_clear_files:
8526 	event->addr_filters.nr_file_filters = 0;
8527 
8528 	return ret;
8529 }
8530 
8531 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8532 {
8533 	char *filter_str;
8534 	int ret = -EINVAL;
8535 
8536 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8537 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8538 	    !has_addr_filter(event))
8539 		return -EINVAL;
8540 
8541 	filter_str = strndup_user(arg, PAGE_SIZE);
8542 	if (IS_ERR(filter_str))
8543 		return PTR_ERR(filter_str);
8544 
8545 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8546 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8547 		ret = ftrace_profile_set_filter(event, event->attr.config,
8548 						filter_str);
8549 	else if (has_addr_filter(event))
8550 		ret = perf_event_set_addr_filter(event, filter_str);
8551 
8552 	kfree(filter_str);
8553 	return ret;
8554 }
8555 
8556 /*
8557  * hrtimer based swevent callback
8558  */
8559 
8560 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8561 {
8562 	enum hrtimer_restart ret = HRTIMER_RESTART;
8563 	struct perf_sample_data data;
8564 	struct pt_regs *regs;
8565 	struct perf_event *event;
8566 	u64 period;
8567 
8568 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8569 
8570 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8571 		return HRTIMER_NORESTART;
8572 
8573 	event->pmu->read(event);
8574 
8575 	perf_sample_data_init(&data, 0, event->hw.last_period);
8576 	regs = get_irq_regs();
8577 
8578 	if (regs && !perf_exclude_event(event, regs)) {
8579 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8580 			if (__perf_event_overflow(event, 1, &data, regs))
8581 				ret = HRTIMER_NORESTART;
8582 	}
8583 
8584 	period = max_t(u64, 10000, event->hw.sample_period);
8585 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8586 
8587 	return ret;
8588 }
8589 
8590 static void perf_swevent_start_hrtimer(struct perf_event *event)
8591 {
8592 	struct hw_perf_event *hwc = &event->hw;
8593 	s64 period;
8594 
8595 	if (!is_sampling_event(event))
8596 		return;
8597 
8598 	period = local64_read(&hwc->period_left);
8599 	if (period) {
8600 		if (period < 0)
8601 			period = 10000;
8602 
8603 		local64_set(&hwc->period_left, 0);
8604 	} else {
8605 		period = max_t(u64, 10000, hwc->sample_period);
8606 	}
8607 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8608 		      HRTIMER_MODE_REL_PINNED);
8609 }
8610 
8611 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8612 {
8613 	struct hw_perf_event *hwc = &event->hw;
8614 
8615 	if (is_sampling_event(event)) {
8616 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8617 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8618 
8619 		hrtimer_cancel(&hwc->hrtimer);
8620 	}
8621 }
8622 
8623 static void perf_swevent_init_hrtimer(struct perf_event *event)
8624 {
8625 	struct hw_perf_event *hwc = &event->hw;
8626 
8627 	if (!is_sampling_event(event))
8628 		return;
8629 
8630 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8631 	hwc->hrtimer.function = perf_swevent_hrtimer;
8632 
8633 	/*
8634 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8635 	 * mapping and avoid the whole period adjust feedback stuff.
8636 	 */
8637 	if (event->attr.freq) {
8638 		long freq = event->attr.sample_freq;
8639 
8640 		event->attr.sample_period = NSEC_PER_SEC / freq;
8641 		hwc->sample_period = event->attr.sample_period;
8642 		local64_set(&hwc->period_left, hwc->sample_period);
8643 		hwc->last_period = hwc->sample_period;
8644 		event->attr.freq = 0;
8645 	}
8646 }
8647 
8648 /*
8649  * Software event: cpu wall time clock
8650  */
8651 
8652 static void cpu_clock_event_update(struct perf_event *event)
8653 {
8654 	s64 prev;
8655 	u64 now;
8656 
8657 	now = local_clock();
8658 	prev = local64_xchg(&event->hw.prev_count, now);
8659 	local64_add(now - prev, &event->count);
8660 }
8661 
8662 static void cpu_clock_event_start(struct perf_event *event, int flags)
8663 {
8664 	local64_set(&event->hw.prev_count, local_clock());
8665 	perf_swevent_start_hrtimer(event);
8666 }
8667 
8668 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8669 {
8670 	perf_swevent_cancel_hrtimer(event);
8671 	cpu_clock_event_update(event);
8672 }
8673 
8674 static int cpu_clock_event_add(struct perf_event *event, int flags)
8675 {
8676 	if (flags & PERF_EF_START)
8677 		cpu_clock_event_start(event, flags);
8678 	perf_event_update_userpage(event);
8679 
8680 	return 0;
8681 }
8682 
8683 static void cpu_clock_event_del(struct perf_event *event, int flags)
8684 {
8685 	cpu_clock_event_stop(event, flags);
8686 }
8687 
8688 static void cpu_clock_event_read(struct perf_event *event)
8689 {
8690 	cpu_clock_event_update(event);
8691 }
8692 
8693 static int cpu_clock_event_init(struct perf_event *event)
8694 {
8695 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8696 		return -ENOENT;
8697 
8698 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8699 		return -ENOENT;
8700 
8701 	/*
8702 	 * no branch sampling for software events
8703 	 */
8704 	if (has_branch_stack(event))
8705 		return -EOPNOTSUPP;
8706 
8707 	perf_swevent_init_hrtimer(event);
8708 
8709 	return 0;
8710 }
8711 
8712 static struct pmu perf_cpu_clock = {
8713 	.task_ctx_nr	= perf_sw_context,
8714 
8715 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8716 
8717 	.event_init	= cpu_clock_event_init,
8718 	.add		= cpu_clock_event_add,
8719 	.del		= cpu_clock_event_del,
8720 	.start		= cpu_clock_event_start,
8721 	.stop		= cpu_clock_event_stop,
8722 	.read		= cpu_clock_event_read,
8723 };
8724 
8725 /*
8726  * Software event: task time clock
8727  */
8728 
8729 static void task_clock_event_update(struct perf_event *event, u64 now)
8730 {
8731 	u64 prev;
8732 	s64 delta;
8733 
8734 	prev = local64_xchg(&event->hw.prev_count, now);
8735 	delta = now - prev;
8736 	local64_add(delta, &event->count);
8737 }
8738 
8739 static void task_clock_event_start(struct perf_event *event, int flags)
8740 {
8741 	local64_set(&event->hw.prev_count, event->ctx->time);
8742 	perf_swevent_start_hrtimer(event);
8743 }
8744 
8745 static void task_clock_event_stop(struct perf_event *event, int flags)
8746 {
8747 	perf_swevent_cancel_hrtimer(event);
8748 	task_clock_event_update(event, event->ctx->time);
8749 }
8750 
8751 static int task_clock_event_add(struct perf_event *event, int flags)
8752 {
8753 	if (flags & PERF_EF_START)
8754 		task_clock_event_start(event, flags);
8755 	perf_event_update_userpage(event);
8756 
8757 	return 0;
8758 }
8759 
8760 static void task_clock_event_del(struct perf_event *event, int flags)
8761 {
8762 	task_clock_event_stop(event, PERF_EF_UPDATE);
8763 }
8764 
8765 static void task_clock_event_read(struct perf_event *event)
8766 {
8767 	u64 now = perf_clock();
8768 	u64 delta = now - event->ctx->timestamp;
8769 	u64 time = event->ctx->time + delta;
8770 
8771 	task_clock_event_update(event, time);
8772 }
8773 
8774 static int task_clock_event_init(struct perf_event *event)
8775 {
8776 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8777 		return -ENOENT;
8778 
8779 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8780 		return -ENOENT;
8781 
8782 	/*
8783 	 * no branch sampling for software events
8784 	 */
8785 	if (has_branch_stack(event))
8786 		return -EOPNOTSUPP;
8787 
8788 	perf_swevent_init_hrtimer(event);
8789 
8790 	return 0;
8791 }
8792 
8793 static struct pmu perf_task_clock = {
8794 	.task_ctx_nr	= perf_sw_context,
8795 
8796 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8797 
8798 	.event_init	= task_clock_event_init,
8799 	.add		= task_clock_event_add,
8800 	.del		= task_clock_event_del,
8801 	.start		= task_clock_event_start,
8802 	.stop		= task_clock_event_stop,
8803 	.read		= task_clock_event_read,
8804 };
8805 
8806 static void perf_pmu_nop_void(struct pmu *pmu)
8807 {
8808 }
8809 
8810 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8811 {
8812 }
8813 
8814 static int perf_pmu_nop_int(struct pmu *pmu)
8815 {
8816 	return 0;
8817 }
8818 
8819 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8820 
8821 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8822 {
8823 	__this_cpu_write(nop_txn_flags, flags);
8824 
8825 	if (flags & ~PERF_PMU_TXN_ADD)
8826 		return;
8827 
8828 	perf_pmu_disable(pmu);
8829 }
8830 
8831 static int perf_pmu_commit_txn(struct pmu *pmu)
8832 {
8833 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8834 
8835 	__this_cpu_write(nop_txn_flags, 0);
8836 
8837 	if (flags & ~PERF_PMU_TXN_ADD)
8838 		return 0;
8839 
8840 	perf_pmu_enable(pmu);
8841 	return 0;
8842 }
8843 
8844 static void perf_pmu_cancel_txn(struct pmu *pmu)
8845 {
8846 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8847 
8848 	__this_cpu_write(nop_txn_flags, 0);
8849 
8850 	if (flags & ~PERF_PMU_TXN_ADD)
8851 		return;
8852 
8853 	perf_pmu_enable(pmu);
8854 }
8855 
8856 static int perf_event_idx_default(struct perf_event *event)
8857 {
8858 	return 0;
8859 }
8860 
8861 /*
8862  * Ensures all contexts with the same task_ctx_nr have the same
8863  * pmu_cpu_context too.
8864  */
8865 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8866 {
8867 	struct pmu *pmu;
8868 
8869 	if (ctxn < 0)
8870 		return NULL;
8871 
8872 	list_for_each_entry(pmu, &pmus, entry) {
8873 		if (pmu->task_ctx_nr == ctxn)
8874 			return pmu->pmu_cpu_context;
8875 	}
8876 
8877 	return NULL;
8878 }
8879 
8880 static void free_pmu_context(struct pmu *pmu)
8881 {
8882 	/*
8883 	 * Static contexts such as perf_sw_context have a global lifetime
8884 	 * and may be shared between different PMUs. Avoid freeing them
8885 	 * when a single PMU is going away.
8886 	 */
8887 	if (pmu->task_ctx_nr > perf_invalid_context)
8888 		return;
8889 
8890 	mutex_lock(&pmus_lock);
8891 	free_percpu(pmu->pmu_cpu_context);
8892 	mutex_unlock(&pmus_lock);
8893 }
8894 
8895 /*
8896  * Let userspace know that this PMU supports address range filtering:
8897  */
8898 static ssize_t nr_addr_filters_show(struct device *dev,
8899 				    struct device_attribute *attr,
8900 				    char *page)
8901 {
8902 	struct pmu *pmu = dev_get_drvdata(dev);
8903 
8904 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8905 }
8906 DEVICE_ATTR_RO(nr_addr_filters);
8907 
8908 static struct idr pmu_idr;
8909 
8910 static ssize_t
8911 type_show(struct device *dev, struct device_attribute *attr, char *page)
8912 {
8913 	struct pmu *pmu = dev_get_drvdata(dev);
8914 
8915 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8916 }
8917 static DEVICE_ATTR_RO(type);
8918 
8919 static ssize_t
8920 perf_event_mux_interval_ms_show(struct device *dev,
8921 				struct device_attribute *attr,
8922 				char *page)
8923 {
8924 	struct pmu *pmu = dev_get_drvdata(dev);
8925 
8926 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8927 }
8928 
8929 static DEFINE_MUTEX(mux_interval_mutex);
8930 
8931 static ssize_t
8932 perf_event_mux_interval_ms_store(struct device *dev,
8933 				 struct device_attribute *attr,
8934 				 const char *buf, size_t count)
8935 {
8936 	struct pmu *pmu = dev_get_drvdata(dev);
8937 	int timer, cpu, ret;
8938 
8939 	ret = kstrtoint(buf, 0, &timer);
8940 	if (ret)
8941 		return ret;
8942 
8943 	if (timer < 1)
8944 		return -EINVAL;
8945 
8946 	/* same value, noting to do */
8947 	if (timer == pmu->hrtimer_interval_ms)
8948 		return count;
8949 
8950 	mutex_lock(&mux_interval_mutex);
8951 	pmu->hrtimer_interval_ms = timer;
8952 
8953 	/* update all cpuctx for this PMU */
8954 	cpus_read_lock();
8955 	for_each_online_cpu(cpu) {
8956 		struct perf_cpu_context *cpuctx;
8957 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8958 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8959 
8960 		cpu_function_call(cpu,
8961 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8962 	}
8963 	cpus_read_unlock();
8964 	mutex_unlock(&mux_interval_mutex);
8965 
8966 	return count;
8967 }
8968 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8969 
8970 static struct attribute *pmu_dev_attrs[] = {
8971 	&dev_attr_type.attr,
8972 	&dev_attr_perf_event_mux_interval_ms.attr,
8973 	NULL,
8974 };
8975 ATTRIBUTE_GROUPS(pmu_dev);
8976 
8977 static int pmu_bus_running;
8978 static struct bus_type pmu_bus = {
8979 	.name		= "event_source",
8980 	.dev_groups	= pmu_dev_groups,
8981 };
8982 
8983 static void pmu_dev_release(struct device *dev)
8984 {
8985 	kfree(dev);
8986 }
8987 
8988 static int pmu_dev_alloc(struct pmu *pmu)
8989 {
8990 	int ret = -ENOMEM;
8991 
8992 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8993 	if (!pmu->dev)
8994 		goto out;
8995 
8996 	pmu->dev->groups = pmu->attr_groups;
8997 	device_initialize(pmu->dev);
8998 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8999 	if (ret)
9000 		goto free_dev;
9001 
9002 	dev_set_drvdata(pmu->dev, pmu);
9003 	pmu->dev->bus = &pmu_bus;
9004 	pmu->dev->release = pmu_dev_release;
9005 	ret = device_add(pmu->dev);
9006 	if (ret)
9007 		goto free_dev;
9008 
9009 	/* For PMUs with address filters, throw in an extra attribute: */
9010 	if (pmu->nr_addr_filters)
9011 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9012 
9013 	if (ret)
9014 		goto del_dev;
9015 
9016 out:
9017 	return ret;
9018 
9019 del_dev:
9020 	device_del(pmu->dev);
9021 
9022 free_dev:
9023 	put_device(pmu->dev);
9024 	goto out;
9025 }
9026 
9027 static struct lock_class_key cpuctx_mutex;
9028 static struct lock_class_key cpuctx_lock;
9029 
9030 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9031 {
9032 	int cpu, ret;
9033 
9034 	mutex_lock(&pmus_lock);
9035 	ret = -ENOMEM;
9036 	pmu->pmu_disable_count = alloc_percpu(int);
9037 	if (!pmu->pmu_disable_count)
9038 		goto unlock;
9039 
9040 	pmu->type = -1;
9041 	if (!name)
9042 		goto skip_type;
9043 	pmu->name = name;
9044 
9045 	if (type < 0) {
9046 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9047 		if (type < 0) {
9048 			ret = type;
9049 			goto free_pdc;
9050 		}
9051 	}
9052 	pmu->type = type;
9053 
9054 	if (pmu_bus_running) {
9055 		ret = pmu_dev_alloc(pmu);
9056 		if (ret)
9057 			goto free_idr;
9058 	}
9059 
9060 skip_type:
9061 	if (pmu->task_ctx_nr == perf_hw_context) {
9062 		static int hw_context_taken = 0;
9063 
9064 		/*
9065 		 * Other than systems with heterogeneous CPUs, it never makes
9066 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9067 		 * uncore must use perf_invalid_context.
9068 		 */
9069 		if (WARN_ON_ONCE(hw_context_taken &&
9070 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9071 			pmu->task_ctx_nr = perf_invalid_context;
9072 
9073 		hw_context_taken = 1;
9074 	}
9075 
9076 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9077 	if (pmu->pmu_cpu_context)
9078 		goto got_cpu_context;
9079 
9080 	ret = -ENOMEM;
9081 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9082 	if (!pmu->pmu_cpu_context)
9083 		goto free_dev;
9084 
9085 	for_each_possible_cpu(cpu) {
9086 		struct perf_cpu_context *cpuctx;
9087 
9088 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9089 		__perf_event_init_context(&cpuctx->ctx);
9090 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9091 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9092 		cpuctx->ctx.pmu = pmu;
9093 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9094 
9095 		__perf_mux_hrtimer_init(cpuctx, cpu);
9096 	}
9097 
9098 got_cpu_context:
9099 	if (!pmu->start_txn) {
9100 		if (pmu->pmu_enable) {
9101 			/*
9102 			 * If we have pmu_enable/pmu_disable calls, install
9103 			 * transaction stubs that use that to try and batch
9104 			 * hardware accesses.
9105 			 */
9106 			pmu->start_txn  = perf_pmu_start_txn;
9107 			pmu->commit_txn = perf_pmu_commit_txn;
9108 			pmu->cancel_txn = perf_pmu_cancel_txn;
9109 		} else {
9110 			pmu->start_txn  = perf_pmu_nop_txn;
9111 			pmu->commit_txn = perf_pmu_nop_int;
9112 			pmu->cancel_txn = perf_pmu_nop_void;
9113 		}
9114 	}
9115 
9116 	if (!pmu->pmu_enable) {
9117 		pmu->pmu_enable  = perf_pmu_nop_void;
9118 		pmu->pmu_disable = perf_pmu_nop_void;
9119 	}
9120 
9121 	if (!pmu->event_idx)
9122 		pmu->event_idx = perf_event_idx_default;
9123 
9124 	list_add_rcu(&pmu->entry, &pmus);
9125 	atomic_set(&pmu->exclusive_cnt, 0);
9126 	ret = 0;
9127 unlock:
9128 	mutex_unlock(&pmus_lock);
9129 
9130 	return ret;
9131 
9132 free_dev:
9133 	device_del(pmu->dev);
9134 	put_device(pmu->dev);
9135 
9136 free_idr:
9137 	if (pmu->type >= PERF_TYPE_MAX)
9138 		idr_remove(&pmu_idr, pmu->type);
9139 
9140 free_pdc:
9141 	free_percpu(pmu->pmu_disable_count);
9142 	goto unlock;
9143 }
9144 EXPORT_SYMBOL_GPL(perf_pmu_register);
9145 
9146 void perf_pmu_unregister(struct pmu *pmu)
9147 {
9148 	int remove_device;
9149 
9150 	mutex_lock(&pmus_lock);
9151 	remove_device = pmu_bus_running;
9152 	list_del_rcu(&pmu->entry);
9153 	mutex_unlock(&pmus_lock);
9154 
9155 	/*
9156 	 * We dereference the pmu list under both SRCU and regular RCU, so
9157 	 * synchronize against both of those.
9158 	 */
9159 	synchronize_srcu(&pmus_srcu);
9160 	synchronize_rcu();
9161 
9162 	free_percpu(pmu->pmu_disable_count);
9163 	if (pmu->type >= PERF_TYPE_MAX)
9164 		idr_remove(&pmu_idr, pmu->type);
9165 	if (remove_device) {
9166 		if (pmu->nr_addr_filters)
9167 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9168 		device_del(pmu->dev);
9169 		put_device(pmu->dev);
9170 	}
9171 	free_pmu_context(pmu);
9172 }
9173 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9174 
9175 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9176 {
9177 	struct perf_event_context *ctx = NULL;
9178 	int ret;
9179 
9180 	if (!try_module_get(pmu->module))
9181 		return -ENODEV;
9182 
9183 	if (event->group_leader != event) {
9184 		/*
9185 		 * This ctx->mutex can nest when we're called through
9186 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9187 		 */
9188 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9189 						 SINGLE_DEPTH_NESTING);
9190 		BUG_ON(!ctx);
9191 	}
9192 
9193 	event->pmu = pmu;
9194 	ret = pmu->event_init(event);
9195 
9196 	if (ctx)
9197 		perf_event_ctx_unlock(event->group_leader, ctx);
9198 
9199 	if (ret)
9200 		module_put(pmu->module);
9201 
9202 	return ret;
9203 }
9204 
9205 static struct pmu *perf_init_event(struct perf_event *event)
9206 {
9207 	struct pmu *pmu;
9208 	int idx;
9209 	int ret;
9210 
9211 	idx = srcu_read_lock(&pmus_srcu);
9212 
9213 	/* Try parent's PMU first: */
9214 	if (event->parent && event->parent->pmu) {
9215 		pmu = event->parent->pmu;
9216 		ret = perf_try_init_event(pmu, event);
9217 		if (!ret)
9218 			goto unlock;
9219 	}
9220 
9221 	rcu_read_lock();
9222 	pmu = idr_find(&pmu_idr, event->attr.type);
9223 	rcu_read_unlock();
9224 	if (pmu) {
9225 		ret = perf_try_init_event(pmu, event);
9226 		if (ret)
9227 			pmu = ERR_PTR(ret);
9228 		goto unlock;
9229 	}
9230 
9231 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9232 		ret = perf_try_init_event(pmu, event);
9233 		if (!ret)
9234 			goto unlock;
9235 
9236 		if (ret != -ENOENT) {
9237 			pmu = ERR_PTR(ret);
9238 			goto unlock;
9239 		}
9240 	}
9241 	pmu = ERR_PTR(-ENOENT);
9242 unlock:
9243 	srcu_read_unlock(&pmus_srcu, idx);
9244 
9245 	return pmu;
9246 }
9247 
9248 static void attach_sb_event(struct perf_event *event)
9249 {
9250 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9251 
9252 	raw_spin_lock(&pel->lock);
9253 	list_add_rcu(&event->sb_list, &pel->list);
9254 	raw_spin_unlock(&pel->lock);
9255 }
9256 
9257 /*
9258  * We keep a list of all !task (and therefore per-cpu) events
9259  * that need to receive side-band records.
9260  *
9261  * This avoids having to scan all the various PMU per-cpu contexts
9262  * looking for them.
9263  */
9264 static void account_pmu_sb_event(struct perf_event *event)
9265 {
9266 	if (is_sb_event(event))
9267 		attach_sb_event(event);
9268 }
9269 
9270 static void account_event_cpu(struct perf_event *event, int cpu)
9271 {
9272 	if (event->parent)
9273 		return;
9274 
9275 	if (is_cgroup_event(event))
9276 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9277 }
9278 
9279 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9280 static void account_freq_event_nohz(void)
9281 {
9282 #ifdef CONFIG_NO_HZ_FULL
9283 	/* Lock so we don't race with concurrent unaccount */
9284 	spin_lock(&nr_freq_lock);
9285 	if (atomic_inc_return(&nr_freq_events) == 1)
9286 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9287 	spin_unlock(&nr_freq_lock);
9288 #endif
9289 }
9290 
9291 static void account_freq_event(void)
9292 {
9293 	if (tick_nohz_full_enabled())
9294 		account_freq_event_nohz();
9295 	else
9296 		atomic_inc(&nr_freq_events);
9297 }
9298 
9299 
9300 static void account_event(struct perf_event *event)
9301 {
9302 	bool inc = false;
9303 
9304 	if (event->parent)
9305 		return;
9306 
9307 	if (event->attach_state & PERF_ATTACH_TASK)
9308 		inc = true;
9309 	if (event->attr.mmap || event->attr.mmap_data)
9310 		atomic_inc(&nr_mmap_events);
9311 	if (event->attr.comm)
9312 		atomic_inc(&nr_comm_events);
9313 	if (event->attr.namespaces)
9314 		atomic_inc(&nr_namespaces_events);
9315 	if (event->attr.task)
9316 		atomic_inc(&nr_task_events);
9317 	if (event->attr.freq)
9318 		account_freq_event();
9319 	if (event->attr.context_switch) {
9320 		atomic_inc(&nr_switch_events);
9321 		inc = true;
9322 	}
9323 	if (has_branch_stack(event))
9324 		inc = true;
9325 	if (is_cgroup_event(event))
9326 		inc = true;
9327 
9328 	if (inc) {
9329 		/*
9330 		 * We need the mutex here because static_branch_enable()
9331 		 * must complete *before* the perf_sched_count increment
9332 		 * becomes visible.
9333 		 */
9334 		if (atomic_inc_not_zero(&perf_sched_count))
9335 			goto enabled;
9336 
9337 		mutex_lock(&perf_sched_mutex);
9338 		if (!atomic_read(&perf_sched_count)) {
9339 			static_branch_enable(&perf_sched_events);
9340 			/*
9341 			 * Guarantee that all CPUs observe they key change and
9342 			 * call the perf scheduling hooks before proceeding to
9343 			 * install events that need them.
9344 			 */
9345 			synchronize_sched();
9346 		}
9347 		/*
9348 		 * Now that we have waited for the sync_sched(), allow further
9349 		 * increments to by-pass the mutex.
9350 		 */
9351 		atomic_inc(&perf_sched_count);
9352 		mutex_unlock(&perf_sched_mutex);
9353 	}
9354 enabled:
9355 
9356 	account_event_cpu(event, event->cpu);
9357 
9358 	account_pmu_sb_event(event);
9359 }
9360 
9361 /*
9362  * Allocate and initialize a event structure
9363  */
9364 static struct perf_event *
9365 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9366 		 struct task_struct *task,
9367 		 struct perf_event *group_leader,
9368 		 struct perf_event *parent_event,
9369 		 perf_overflow_handler_t overflow_handler,
9370 		 void *context, int cgroup_fd)
9371 {
9372 	struct pmu *pmu;
9373 	struct perf_event *event;
9374 	struct hw_perf_event *hwc;
9375 	long err = -EINVAL;
9376 
9377 	if ((unsigned)cpu >= nr_cpu_ids) {
9378 		if (!task || cpu != -1)
9379 			return ERR_PTR(-EINVAL);
9380 	}
9381 
9382 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9383 	if (!event)
9384 		return ERR_PTR(-ENOMEM);
9385 
9386 	/*
9387 	 * Single events are their own group leaders, with an
9388 	 * empty sibling list:
9389 	 */
9390 	if (!group_leader)
9391 		group_leader = event;
9392 
9393 	mutex_init(&event->child_mutex);
9394 	INIT_LIST_HEAD(&event->child_list);
9395 
9396 	INIT_LIST_HEAD(&event->group_entry);
9397 	INIT_LIST_HEAD(&event->event_entry);
9398 	INIT_LIST_HEAD(&event->sibling_list);
9399 	INIT_LIST_HEAD(&event->rb_entry);
9400 	INIT_LIST_HEAD(&event->active_entry);
9401 	INIT_LIST_HEAD(&event->addr_filters.list);
9402 	INIT_HLIST_NODE(&event->hlist_entry);
9403 
9404 
9405 	init_waitqueue_head(&event->waitq);
9406 	init_irq_work(&event->pending, perf_pending_event);
9407 
9408 	mutex_init(&event->mmap_mutex);
9409 	raw_spin_lock_init(&event->addr_filters.lock);
9410 
9411 	atomic_long_set(&event->refcount, 1);
9412 	event->cpu		= cpu;
9413 	event->attr		= *attr;
9414 	event->group_leader	= group_leader;
9415 	event->pmu		= NULL;
9416 	event->oncpu		= -1;
9417 
9418 	event->parent		= parent_event;
9419 
9420 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9421 	event->id		= atomic64_inc_return(&perf_event_id);
9422 
9423 	event->state		= PERF_EVENT_STATE_INACTIVE;
9424 
9425 	if (task) {
9426 		event->attach_state = PERF_ATTACH_TASK;
9427 		/*
9428 		 * XXX pmu::event_init needs to know what task to account to
9429 		 * and we cannot use the ctx information because we need the
9430 		 * pmu before we get a ctx.
9431 		 */
9432 		event->hw.target = task;
9433 	}
9434 
9435 	event->clock = &local_clock;
9436 	if (parent_event)
9437 		event->clock = parent_event->clock;
9438 
9439 	if (!overflow_handler && parent_event) {
9440 		overflow_handler = parent_event->overflow_handler;
9441 		context = parent_event->overflow_handler_context;
9442 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9443 		if (overflow_handler == bpf_overflow_handler) {
9444 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9445 
9446 			if (IS_ERR(prog)) {
9447 				err = PTR_ERR(prog);
9448 				goto err_ns;
9449 			}
9450 			event->prog = prog;
9451 			event->orig_overflow_handler =
9452 				parent_event->orig_overflow_handler;
9453 		}
9454 #endif
9455 	}
9456 
9457 	if (overflow_handler) {
9458 		event->overflow_handler	= overflow_handler;
9459 		event->overflow_handler_context = context;
9460 	} else if (is_write_backward(event)){
9461 		event->overflow_handler = perf_event_output_backward;
9462 		event->overflow_handler_context = NULL;
9463 	} else {
9464 		event->overflow_handler = perf_event_output_forward;
9465 		event->overflow_handler_context = NULL;
9466 	}
9467 
9468 	perf_event__state_init(event);
9469 
9470 	pmu = NULL;
9471 
9472 	hwc = &event->hw;
9473 	hwc->sample_period = attr->sample_period;
9474 	if (attr->freq && attr->sample_freq)
9475 		hwc->sample_period = 1;
9476 	hwc->last_period = hwc->sample_period;
9477 
9478 	local64_set(&hwc->period_left, hwc->sample_period);
9479 
9480 	/*
9481 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9482 	 * See perf_output_read().
9483 	 */
9484 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9485 		goto err_ns;
9486 
9487 	if (!has_branch_stack(event))
9488 		event->attr.branch_sample_type = 0;
9489 
9490 	if (cgroup_fd != -1) {
9491 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9492 		if (err)
9493 			goto err_ns;
9494 	}
9495 
9496 	pmu = perf_init_event(event);
9497 	if (IS_ERR(pmu)) {
9498 		err = PTR_ERR(pmu);
9499 		goto err_ns;
9500 	}
9501 
9502 	err = exclusive_event_init(event);
9503 	if (err)
9504 		goto err_pmu;
9505 
9506 	if (has_addr_filter(event)) {
9507 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9508 						   sizeof(unsigned long),
9509 						   GFP_KERNEL);
9510 		if (!event->addr_filters_offs) {
9511 			err = -ENOMEM;
9512 			goto err_per_task;
9513 		}
9514 
9515 		/* force hw sync on the address filters */
9516 		event->addr_filters_gen = 1;
9517 	}
9518 
9519 	if (!event->parent) {
9520 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9521 			err = get_callchain_buffers(attr->sample_max_stack);
9522 			if (err)
9523 				goto err_addr_filters;
9524 		}
9525 	}
9526 
9527 	/* symmetric to unaccount_event() in _free_event() */
9528 	account_event(event);
9529 
9530 	return event;
9531 
9532 err_addr_filters:
9533 	kfree(event->addr_filters_offs);
9534 
9535 err_per_task:
9536 	exclusive_event_destroy(event);
9537 
9538 err_pmu:
9539 	if (event->destroy)
9540 		event->destroy(event);
9541 	module_put(pmu->module);
9542 err_ns:
9543 	if (is_cgroup_event(event))
9544 		perf_detach_cgroup(event);
9545 	if (event->ns)
9546 		put_pid_ns(event->ns);
9547 	kfree(event);
9548 
9549 	return ERR_PTR(err);
9550 }
9551 
9552 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9553 			  struct perf_event_attr *attr)
9554 {
9555 	u32 size;
9556 	int ret;
9557 
9558 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9559 		return -EFAULT;
9560 
9561 	/*
9562 	 * zero the full structure, so that a short copy will be nice.
9563 	 */
9564 	memset(attr, 0, sizeof(*attr));
9565 
9566 	ret = get_user(size, &uattr->size);
9567 	if (ret)
9568 		return ret;
9569 
9570 	if (size > PAGE_SIZE)	/* silly large */
9571 		goto err_size;
9572 
9573 	if (!size)		/* abi compat */
9574 		size = PERF_ATTR_SIZE_VER0;
9575 
9576 	if (size < PERF_ATTR_SIZE_VER0)
9577 		goto err_size;
9578 
9579 	/*
9580 	 * If we're handed a bigger struct than we know of,
9581 	 * ensure all the unknown bits are 0 - i.e. new
9582 	 * user-space does not rely on any kernel feature
9583 	 * extensions we dont know about yet.
9584 	 */
9585 	if (size > sizeof(*attr)) {
9586 		unsigned char __user *addr;
9587 		unsigned char __user *end;
9588 		unsigned char val;
9589 
9590 		addr = (void __user *)uattr + sizeof(*attr);
9591 		end  = (void __user *)uattr + size;
9592 
9593 		for (; addr < end; addr++) {
9594 			ret = get_user(val, addr);
9595 			if (ret)
9596 				return ret;
9597 			if (val)
9598 				goto err_size;
9599 		}
9600 		size = sizeof(*attr);
9601 	}
9602 
9603 	ret = copy_from_user(attr, uattr, size);
9604 	if (ret)
9605 		return -EFAULT;
9606 
9607 	attr->size = size;
9608 
9609 	if (attr->__reserved_1)
9610 		return -EINVAL;
9611 
9612 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9613 		return -EINVAL;
9614 
9615 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9616 		return -EINVAL;
9617 
9618 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9619 		u64 mask = attr->branch_sample_type;
9620 
9621 		/* only using defined bits */
9622 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9623 			return -EINVAL;
9624 
9625 		/* at least one branch bit must be set */
9626 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9627 			return -EINVAL;
9628 
9629 		/* propagate priv level, when not set for branch */
9630 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9631 
9632 			/* exclude_kernel checked on syscall entry */
9633 			if (!attr->exclude_kernel)
9634 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9635 
9636 			if (!attr->exclude_user)
9637 				mask |= PERF_SAMPLE_BRANCH_USER;
9638 
9639 			if (!attr->exclude_hv)
9640 				mask |= PERF_SAMPLE_BRANCH_HV;
9641 			/*
9642 			 * adjust user setting (for HW filter setup)
9643 			 */
9644 			attr->branch_sample_type = mask;
9645 		}
9646 		/* privileged levels capture (kernel, hv): check permissions */
9647 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9648 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9649 			return -EACCES;
9650 	}
9651 
9652 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9653 		ret = perf_reg_validate(attr->sample_regs_user);
9654 		if (ret)
9655 			return ret;
9656 	}
9657 
9658 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9659 		if (!arch_perf_have_user_stack_dump())
9660 			return -ENOSYS;
9661 
9662 		/*
9663 		 * We have __u32 type for the size, but so far
9664 		 * we can only use __u16 as maximum due to the
9665 		 * __u16 sample size limit.
9666 		 */
9667 		if (attr->sample_stack_user >= USHRT_MAX)
9668 			ret = -EINVAL;
9669 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9670 			ret = -EINVAL;
9671 	}
9672 
9673 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9674 		ret = perf_reg_validate(attr->sample_regs_intr);
9675 out:
9676 	return ret;
9677 
9678 err_size:
9679 	put_user(sizeof(*attr), &uattr->size);
9680 	ret = -E2BIG;
9681 	goto out;
9682 }
9683 
9684 static int
9685 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9686 {
9687 	struct ring_buffer *rb = NULL;
9688 	int ret = -EINVAL;
9689 
9690 	if (!output_event)
9691 		goto set;
9692 
9693 	/* don't allow circular references */
9694 	if (event == output_event)
9695 		goto out;
9696 
9697 	/*
9698 	 * Don't allow cross-cpu buffers
9699 	 */
9700 	if (output_event->cpu != event->cpu)
9701 		goto out;
9702 
9703 	/*
9704 	 * If its not a per-cpu rb, it must be the same task.
9705 	 */
9706 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9707 		goto out;
9708 
9709 	/*
9710 	 * Mixing clocks in the same buffer is trouble you don't need.
9711 	 */
9712 	if (output_event->clock != event->clock)
9713 		goto out;
9714 
9715 	/*
9716 	 * Either writing ring buffer from beginning or from end.
9717 	 * Mixing is not allowed.
9718 	 */
9719 	if (is_write_backward(output_event) != is_write_backward(event))
9720 		goto out;
9721 
9722 	/*
9723 	 * If both events generate aux data, they must be on the same PMU
9724 	 */
9725 	if (has_aux(event) && has_aux(output_event) &&
9726 	    event->pmu != output_event->pmu)
9727 		goto out;
9728 
9729 set:
9730 	mutex_lock(&event->mmap_mutex);
9731 	/* Can't redirect output if we've got an active mmap() */
9732 	if (atomic_read(&event->mmap_count))
9733 		goto unlock;
9734 
9735 	if (output_event) {
9736 		/* get the rb we want to redirect to */
9737 		rb = ring_buffer_get(output_event);
9738 		if (!rb)
9739 			goto unlock;
9740 	}
9741 
9742 	ring_buffer_attach(event, rb);
9743 
9744 	ret = 0;
9745 unlock:
9746 	mutex_unlock(&event->mmap_mutex);
9747 
9748 out:
9749 	return ret;
9750 }
9751 
9752 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9753 {
9754 	if (b < a)
9755 		swap(a, b);
9756 
9757 	mutex_lock(a);
9758 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9759 }
9760 
9761 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9762 {
9763 	bool nmi_safe = false;
9764 
9765 	switch (clk_id) {
9766 	case CLOCK_MONOTONIC:
9767 		event->clock = &ktime_get_mono_fast_ns;
9768 		nmi_safe = true;
9769 		break;
9770 
9771 	case CLOCK_MONOTONIC_RAW:
9772 		event->clock = &ktime_get_raw_fast_ns;
9773 		nmi_safe = true;
9774 		break;
9775 
9776 	case CLOCK_REALTIME:
9777 		event->clock = &ktime_get_real_ns;
9778 		break;
9779 
9780 	case CLOCK_BOOTTIME:
9781 		event->clock = &ktime_get_boot_ns;
9782 		break;
9783 
9784 	case CLOCK_TAI:
9785 		event->clock = &ktime_get_tai_ns;
9786 		break;
9787 
9788 	default:
9789 		return -EINVAL;
9790 	}
9791 
9792 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9793 		return -EINVAL;
9794 
9795 	return 0;
9796 }
9797 
9798 /*
9799  * Variation on perf_event_ctx_lock_nested(), except we take two context
9800  * mutexes.
9801  */
9802 static struct perf_event_context *
9803 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9804 			     struct perf_event_context *ctx)
9805 {
9806 	struct perf_event_context *gctx;
9807 
9808 again:
9809 	rcu_read_lock();
9810 	gctx = READ_ONCE(group_leader->ctx);
9811 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9812 		rcu_read_unlock();
9813 		goto again;
9814 	}
9815 	rcu_read_unlock();
9816 
9817 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9818 
9819 	if (group_leader->ctx != gctx) {
9820 		mutex_unlock(&ctx->mutex);
9821 		mutex_unlock(&gctx->mutex);
9822 		put_ctx(gctx);
9823 		goto again;
9824 	}
9825 
9826 	return gctx;
9827 }
9828 
9829 /**
9830  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9831  *
9832  * @attr_uptr:	event_id type attributes for monitoring/sampling
9833  * @pid:		target pid
9834  * @cpu:		target cpu
9835  * @group_fd:		group leader event fd
9836  */
9837 SYSCALL_DEFINE5(perf_event_open,
9838 		struct perf_event_attr __user *, attr_uptr,
9839 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9840 {
9841 	struct perf_event *group_leader = NULL, *output_event = NULL;
9842 	struct perf_event *event, *sibling;
9843 	struct perf_event_attr attr;
9844 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9845 	struct file *event_file = NULL;
9846 	struct fd group = {NULL, 0};
9847 	struct task_struct *task = NULL;
9848 	struct pmu *pmu;
9849 	int event_fd;
9850 	int move_group = 0;
9851 	int err;
9852 	int f_flags = O_RDWR;
9853 	int cgroup_fd = -1;
9854 
9855 	/* for future expandability... */
9856 	if (flags & ~PERF_FLAG_ALL)
9857 		return -EINVAL;
9858 
9859 	err = perf_copy_attr(attr_uptr, &attr);
9860 	if (err)
9861 		return err;
9862 
9863 	if (!attr.exclude_kernel) {
9864 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9865 			return -EACCES;
9866 	}
9867 
9868 	if (attr.namespaces) {
9869 		if (!capable(CAP_SYS_ADMIN))
9870 			return -EACCES;
9871 	}
9872 
9873 	if (attr.freq) {
9874 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9875 			return -EINVAL;
9876 	} else {
9877 		if (attr.sample_period & (1ULL << 63))
9878 			return -EINVAL;
9879 	}
9880 
9881 	/* Only privileged users can get physical addresses */
9882 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9883 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9884 		return -EACCES;
9885 
9886 	if (!attr.sample_max_stack)
9887 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9888 
9889 	/*
9890 	 * In cgroup mode, the pid argument is used to pass the fd
9891 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9892 	 * designates the cpu on which to monitor threads from that
9893 	 * cgroup.
9894 	 */
9895 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9896 		return -EINVAL;
9897 
9898 	if (flags & PERF_FLAG_FD_CLOEXEC)
9899 		f_flags |= O_CLOEXEC;
9900 
9901 	event_fd = get_unused_fd_flags(f_flags);
9902 	if (event_fd < 0)
9903 		return event_fd;
9904 
9905 	if (group_fd != -1) {
9906 		err = perf_fget_light(group_fd, &group);
9907 		if (err)
9908 			goto err_fd;
9909 		group_leader = group.file->private_data;
9910 		if (flags & PERF_FLAG_FD_OUTPUT)
9911 			output_event = group_leader;
9912 		if (flags & PERF_FLAG_FD_NO_GROUP)
9913 			group_leader = NULL;
9914 	}
9915 
9916 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9917 		task = find_lively_task_by_vpid(pid);
9918 		if (IS_ERR(task)) {
9919 			err = PTR_ERR(task);
9920 			goto err_group_fd;
9921 		}
9922 	}
9923 
9924 	if (task && group_leader &&
9925 	    group_leader->attr.inherit != attr.inherit) {
9926 		err = -EINVAL;
9927 		goto err_task;
9928 	}
9929 
9930 	if (task) {
9931 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9932 		if (err)
9933 			goto err_task;
9934 
9935 		/*
9936 		 * Reuse ptrace permission checks for now.
9937 		 *
9938 		 * We must hold cred_guard_mutex across this and any potential
9939 		 * perf_install_in_context() call for this new event to
9940 		 * serialize against exec() altering our credentials (and the
9941 		 * perf_event_exit_task() that could imply).
9942 		 */
9943 		err = -EACCES;
9944 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9945 			goto err_cred;
9946 	}
9947 
9948 	if (flags & PERF_FLAG_PID_CGROUP)
9949 		cgroup_fd = pid;
9950 
9951 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9952 				 NULL, NULL, cgroup_fd);
9953 	if (IS_ERR(event)) {
9954 		err = PTR_ERR(event);
9955 		goto err_cred;
9956 	}
9957 
9958 	if (is_sampling_event(event)) {
9959 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9960 			err = -EOPNOTSUPP;
9961 			goto err_alloc;
9962 		}
9963 	}
9964 
9965 	/*
9966 	 * Special case software events and allow them to be part of
9967 	 * any hardware group.
9968 	 */
9969 	pmu = event->pmu;
9970 
9971 	if (attr.use_clockid) {
9972 		err = perf_event_set_clock(event, attr.clockid);
9973 		if (err)
9974 			goto err_alloc;
9975 	}
9976 
9977 	if (pmu->task_ctx_nr == perf_sw_context)
9978 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9979 
9980 	if (group_leader &&
9981 	    (is_software_event(event) != is_software_event(group_leader))) {
9982 		if (is_software_event(event)) {
9983 			/*
9984 			 * If event and group_leader are not both a software
9985 			 * event, and event is, then group leader is not.
9986 			 *
9987 			 * Allow the addition of software events to !software
9988 			 * groups, this is safe because software events never
9989 			 * fail to schedule.
9990 			 */
9991 			pmu = group_leader->pmu;
9992 		} else if (is_software_event(group_leader) &&
9993 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9994 			/*
9995 			 * In case the group is a pure software group, and we
9996 			 * try to add a hardware event, move the whole group to
9997 			 * the hardware context.
9998 			 */
9999 			move_group = 1;
10000 		}
10001 	}
10002 
10003 	/*
10004 	 * Get the target context (task or percpu):
10005 	 */
10006 	ctx = find_get_context(pmu, task, event);
10007 	if (IS_ERR(ctx)) {
10008 		err = PTR_ERR(ctx);
10009 		goto err_alloc;
10010 	}
10011 
10012 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10013 		err = -EBUSY;
10014 		goto err_context;
10015 	}
10016 
10017 	/*
10018 	 * Look up the group leader (we will attach this event to it):
10019 	 */
10020 	if (group_leader) {
10021 		err = -EINVAL;
10022 
10023 		/*
10024 		 * Do not allow a recursive hierarchy (this new sibling
10025 		 * becoming part of another group-sibling):
10026 		 */
10027 		if (group_leader->group_leader != group_leader)
10028 			goto err_context;
10029 
10030 		/* All events in a group should have the same clock */
10031 		if (group_leader->clock != event->clock)
10032 			goto err_context;
10033 
10034 		/*
10035 		 * Make sure we're both events for the same CPU;
10036 		 * grouping events for different CPUs is broken; since
10037 		 * you can never concurrently schedule them anyhow.
10038 		 */
10039 		if (group_leader->cpu != event->cpu)
10040 			goto err_context;
10041 
10042 		/*
10043 		 * Make sure we're both on the same task, or both
10044 		 * per-CPU events.
10045 		 */
10046 		if (group_leader->ctx->task != ctx->task)
10047 			goto err_context;
10048 
10049 		/*
10050 		 * Do not allow to attach to a group in a different task
10051 		 * or CPU context. If we're moving SW events, we'll fix
10052 		 * this up later, so allow that.
10053 		 */
10054 		if (!move_group && group_leader->ctx != ctx)
10055 			goto err_context;
10056 
10057 		/*
10058 		 * Only a group leader can be exclusive or pinned
10059 		 */
10060 		if (attr.exclusive || attr.pinned)
10061 			goto err_context;
10062 	}
10063 
10064 	if (output_event) {
10065 		err = perf_event_set_output(event, output_event);
10066 		if (err)
10067 			goto err_context;
10068 	}
10069 
10070 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10071 					f_flags);
10072 	if (IS_ERR(event_file)) {
10073 		err = PTR_ERR(event_file);
10074 		event_file = NULL;
10075 		goto err_context;
10076 	}
10077 
10078 	if (move_group) {
10079 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10080 
10081 		if (gctx->task == TASK_TOMBSTONE) {
10082 			err = -ESRCH;
10083 			goto err_locked;
10084 		}
10085 
10086 		/*
10087 		 * Check if we raced against another sys_perf_event_open() call
10088 		 * moving the software group underneath us.
10089 		 */
10090 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10091 			/*
10092 			 * If someone moved the group out from under us, check
10093 			 * if this new event wound up on the same ctx, if so
10094 			 * its the regular !move_group case, otherwise fail.
10095 			 */
10096 			if (gctx != ctx) {
10097 				err = -EINVAL;
10098 				goto err_locked;
10099 			} else {
10100 				perf_event_ctx_unlock(group_leader, gctx);
10101 				move_group = 0;
10102 			}
10103 		}
10104 	} else {
10105 		mutex_lock(&ctx->mutex);
10106 	}
10107 
10108 	if (ctx->task == TASK_TOMBSTONE) {
10109 		err = -ESRCH;
10110 		goto err_locked;
10111 	}
10112 
10113 	if (!perf_event_validate_size(event)) {
10114 		err = -E2BIG;
10115 		goto err_locked;
10116 	}
10117 
10118 	if (!task) {
10119 		/*
10120 		 * Check if the @cpu we're creating an event for is online.
10121 		 *
10122 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10123 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10124 		 */
10125 		struct perf_cpu_context *cpuctx =
10126 			container_of(ctx, struct perf_cpu_context, ctx);
10127 
10128 		if (!cpuctx->online) {
10129 			err = -ENODEV;
10130 			goto err_locked;
10131 		}
10132 	}
10133 
10134 
10135 	/*
10136 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10137 	 * because we need to serialize with concurrent event creation.
10138 	 */
10139 	if (!exclusive_event_installable(event, ctx)) {
10140 		/* exclusive and group stuff are assumed mutually exclusive */
10141 		WARN_ON_ONCE(move_group);
10142 
10143 		err = -EBUSY;
10144 		goto err_locked;
10145 	}
10146 
10147 	WARN_ON_ONCE(ctx->parent_ctx);
10148 
10149 	/*
10150 	 * This is the point on no return; we cannot fail hereafter. This is
10151 	 * where we start modifying current state.
10152 	 */
10153 
10154 	if (move_group) {
10155 		/*
10156 		 * See perf_event_ctx_lock() for comments on the details
10157 		 * of swizzling perf_event::ctx.
10158 		 */
10159 		perf_remove_from_context(group_leader, 0);
10160 		put_ctx(gctx);
10161 
10162 		list_for_each_entry(sibling, &group_leader->sibling_list,
10163 				    group_entry) {
10164 			perf_remove_from_context(sibling, 0);
10165 			put_ctx(gctx);
10166 		}
10167 
10168 		/*
10169 		 * Wait for everybody to stop referencing the events through
10170 		 * the old lists, before installing it on new lists.
10171 		 */
10172 		synchronize_rcu();
10173 
10174 		/*
10175 		 * Install the group siblings before the group leader.
10176 		 *
10177 		 * Because a group leader will try and install the entire group
10178 		 * (through the sibling list, which is still in-tact), we can
10179 		 * end up with siblings installed in the wrong context.
10180 		 *
10181 		 * By installing siblings first we NO-OP because they're not
10182 		 * reachable through the group lists.
10183 		 */
10184 		list_for_each_entry(sibling, &group_leader->sibling_list,
10185 				    group_entry) {
10186 			perf_event__state_init(sibling);
10187 			perf_install_in_context(ctx, sibling, sibling->cpu);
10188 			get_ctx(ctx);
10189 		}
10190 
10191 		/*
10192 		 * Removing from the context ends up with disabled
10193 		 * event. What we want here is event in the initial
10194 		 * startup state, ready to be add into new context.
10195 		 */
10196 		perf_event__state_init(group_leader);
10197 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10198 		get_ctx(ctx);
10199 	}
10200 
10201 	/*
10202 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10203 	 * that we're serialized against further additions and before
10204 	 * perf_install_in_context() which is the point the event is active and
10205 	 * can use these values.
10206 	 */
10207 	perf_event__header_size(event);
10208 	perf_event__id_header_size(event);
10209 
10210 	event->owner = current;
10211 
10212 	perf_install_in_context(ctx, event, event->cpu);
10213 	perf_unpin_context(ctx);
10214 
10215 	if (move_group)
10216 		perf_event_ctx_unlock(group_leader, gctx);
10217 	mutex_unlock(&ctx->mutex);
10218 
10219 	if (task) {
10220 		mutex_unlock(&task->signal->cred_guard_mutex);
10221 		put_task_struct(task);
10222 	}
10223 
10224 	mutex_lock(&current->perf_event_mutex);
10225 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10226 	mutex_unlock(&current->perf_event_mutex);
10227 
10228 	/*
10229 	 * Drop the reference on the group_event after placing the
10230 	 * new event on the sibling_list. This ensures destruction
10231 	 * of the group leader will find the pointer to itself in
10232 	 * perf_group_detach().
10233 	 */
10234 	fdput(group);
10235 	fd_install(event_fd, event_file);
10236 	return event_fd;
10237 
10238 err_locked:
10239 	if (move_group)
10240 		perf_event_ctx_unlock(group_leader, gctx);
10241 	mutex_unlock(&ctx->mutex);
10242 /* err_file: */
10243 	fput(event_file);
10244 err_context:
10245 	perf_unpin_context(ctx);
10246 	put_ctx(ctx);
10247 err_alloc:
10248 	/*
10249 	 * If event_file is set, the fput() above will have called ->release()
10250 	 * and that will take care of freeing the event.
10251 	 */
10252 	if (!event_file)
10253 		free_event(event);
10254 err_cred:
10255 	if (task)
10256 		mutex_unlock(&task->signal->cred_guard_mutex);
10257 err_task:
10258 	if (task)
10259 		put_task_struct(task);
10260 err_group_fd:
10261 	fdput(group);
10262 err_fd:
10263 	put_unused_fd(event_fd);
10264 	return err;
10265 }
10266 
10267 /**
10268  * perf_event_create_kernel_counter
10269  *
10270  * @attr: attributes of the counter to create
10271  * @cpu: cpu in which the counter is bound
10272  * @task: task to profile (NULL for percpu)
10273  */
10274 struct perf_event *
10275 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10276 				 struct task_struct *task,
10277 				 perf_overflow_handler_t overflow_handler,
10278 				 void *context)
10279 {
10280 	struct perf_event_context *ctx;
10281 	struct perf_event *event;
10282 	int err;
10283 
10284 	/*
10285 	 * Get the target context (task or percpu):
10286 	 */
10287 
10288 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10289 				 overflow_handler, context, -1);
10290 	if (IS_ERR(event)) {
10291 		err = PTR_ERR(event);
10292 		goto err;
10293 	}
10294 
10295 	/* Mark owner so we could distinguish it from user events. */
10296 	event->owner = TASK_TOMBSTONE;
10297 
10298 	ctx = find_get_context(event->pmu, task, event);
10299 	if (IS_ERR(ctx)) {
10300 		err = PTR_ERR(ctx);
10301 		goto err_free;
10302 	}
10303 
10304 	WARN_ON_ONCE(ctx->parent_ctx);
10305 	mutex_lock(&ctx->mutex);
10306 	if (ctx->task == TASK_TOMBSTONE) {
10307 		err = -ESRCH;
10308 		goto err_unlock;
10309 	}
10310 
10311 	if (!task) {
10312 		/*
10313 		 * Check if the @cpu we're creating an event for is online.
10314 		 *
10315 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10316 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10317 		 */
10318 		struct perf_cpu_context *cpuctx =
10319 			container_of(ctx, struct perf_cpu_context, ctx);
10320 		if (!cpuctx->online) {
10321 			err = -ENODEV;
10322 			goto err_unlock;
10323 		}
10324 	}
10325 
10326 	if (!exclusive_event_installable(event, ctx)) {
10327 		err = -EBUSY;
10328 		goto err_unlock;
10329 	}
10330 
10331 	perf_install_in_context(ctx, event, cpu);
10332 	perf_unpin_context(ctx);
10333 	mutex_unlock(&ctx->mutex);
10334 
10335 	return event;
10336 
10337 err_unlock:
10338 	mutex_unlock(&ctx->mutex);
10339 	perf_unpin_context(ctx);
10340 	put_ctx(ctx);
10341 err_free:
10342 	free_event(event);
10343 err:
10344 	return ERR_PTR(err);
10345 }
10346 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10347 
10348 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10349 {
10350 	struct perf_event_context *src_ctx;
10351 	struct perf_event_context *dst_ctx;
10352 	struct perf_event *event, *tmp;
10353 	LIST_HEAD(events);
10354 
10355 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10356 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10357 
10358 	/*
10359 	 * See perf_event_ctx_lock() for comments on the details
10360 	 * of swizzling perf_event::ctx.
10361 	 */
10362 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10363 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10364 				 event_entry) {
10365 		perf_remove_from_context(event, 0);
10366 		unaccount_event_cpu(event, src_cpu);
10367 		put_ctx(src_ctx);
10368 		list_add(&event->migrate_entry, &events);
10369 	}
10370 
10371 	/*
10372 	 * Wait for the events to quiesce before re-instating them.
10373 	 */
10374 	synchronize_rcu();
10375 
10376 	/*
10377 	 * Re-instate events in 2 passes.
10378 	 *
10379 	 * Skip over group leaders and only install siblings on this first
10380 	 * pass, siblings will not get enabled without a leader, however a
10381 	 * leader will enable its siblings, even if those are still on the old
10382 	 * context.
10383 	 */
10384 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10385 		if (event->group_leader == event)
10386 			continue;
10387 
10388 		list_del(&event->migrate_entry);
10389 		if (event->state >= PERF_EVENT_STATE_OFF)
10390 			event->state = PERF_EVENT_STATE_INACTIVE;
10391 		account_event_cpu(event, dst_cpu);
10392 		perf_install_in_context(dst_ctx, event, dst_cpu);
10393 		get_ctx(dst_ctx);
10394 	}
10395 
10396 	/*
10397 	 * Once all the siblings are setup properly, install the group leaders
10398 	 * to make it go.
10399 	 */
10400 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10401 		list_del(&event->migrate_entry);
10402 		if (event->state >= PERF_EVENT_STATE_OFF)
10403 			event->state = PERF_EVENT_STATE_INACTIVE;
10404 		account_event_cpu(event, dst_cpu);
10405 		perf_install_in_context(dst_ctx, event, dst_cpu);
10406 		get_ctx(dst_ctx);
10407 	}
10408 	mutex_unlock(&dst_ctx->mutex);
10409 	mutex_unlock(&src_ctx->mutex);
10410 }
10411 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10412 
10413 static void sync_child_event(struct perf_event *child_event,
10414 			       struct task_struct *child)
10415 {
10416 	struct perf_event *parent_event = child_event->parent;
10417 	u64 child_val;
10418 
10419 	if (child_event->attr.inherit_stat)
10420 		perf_event_read_event(child_event, child);
10421 
10422 	child_val = perf_event_count(child_event);
10423 
10424 	/*
10425 	 * Add back the child's count to the parent's count:
10426 	 */
10427 	atomic64_add(child_val, &parent_event->child_count);
10428 	atomic64_add(child_event->total_time_enabled,
10429 		     &parent_event->child_total_time_enabled);
10430 	atomic64_add(child_event->total_time_running,
10431 		     &parent_event->child_total_time_running);
10432 }
10433 
10434 static void
10435 perf_event_exit_event(struct perf_event *child_event,
10436 		      struct perf_event_context *child_ctx,
10437 		      struct task_struct *child)
10438 {
10439 	struct perf_event *parent_event = child_event->parent;
10440 
10441 	/*
10442 	 * Do not destroy the 'original' grouping; because of the context
10443 	 * switch optimization the original events could've ended up in a
10444 	 * random child task.
10445 	 *
10446 	 * If we were to destroy the original group, all group related
10447 	 * operations would cease to function properly after this random
10448 	 * child dies.
10449 	 *
10450 	 * Do destroy all inherited groups, we don't care about those
10451 	 * and being thorough is better.
10452 	 */
10453 	raw_spin_lock_irq(&child_ctx->lock);
10454 	WARN_ON_ONCE(child_ctx->is_active);
10455 
10456 	if (parent_event)
10457 		perf_group_detach(child_event);
10458 	list_del_event(child_event, child_ctx);
10459 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10460 	raw_spin_unlock_irq(&child_ctx->lock);
10461 
10462 	/*
10463 	 * Parent events are governed by their filedesc, retain them.
10464 	 */
10465 	if (!parent_event) {
10466 		perf_event_wakeup(child_event);
10467 		return;
10468 	}
10469 	/*
10470 	 * Child events can be cleaned up.
10471 	 */
10472 
10473 	sync_child_event(child_event, child);
10474 
10475 	/*
10476 	 * Remove this event from the parent's list
10477 	 */
10478 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10479 	mutex_lock(&parent_event->child_mutex);
10480 	list_del_init(&child_event->child_list);
10481 	mutex_unlock(&parent_event->child_mutex);
10482 
10483 	/*
10484 	 * Kick perf_poll() for is_event_hup().
10485 	 */
10486 	perf_event_wakeup(parent_event);
10487 	free_event(child_event);
10488 	put_event(parent_event);
10489 }
10490 
10491 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10492 {
10493 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10494 	struct perf_event *child_event, *next;
10495 
10496 	WARN_ON_ONCE(child != current);
10497 
10498 	child_ctx = perf_pin_task_context(child, ctxn);
10499 	if (!child_ctx)
10500 		return;
10501 
10502 	/*
10503 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10504 	 * ctx::mutex over the entire thing. This serializes against almost
10505 	 * everything that wants to access the ctx.
10506 	 *
10507 	 * The exception is sys_perf_event_open() /
10508 	 * perf_event_create_kernel_count() which does find_get_context()
10509 	 * without ctx::mutex (it cannot because of the move_group double mutex
10510 	 * lock thing). See the comments in perf_install_in_context().
10511 	 */
10512 	mutex_lock(&child_ctx->mutex);
10513 
10514 	/*
10515 	 * In a single ctx::lock section, de-schedule the events and detach the
10516 	 * context from the task such that we cannot ever get it scheduled back
10517 	 * in.
10518 	 */
10519 	raw_spin_lock_irq(&child_ctx->lock);
10520 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10521 
10522 	/*
10523 	 * Now that the context is inactive, destroy the task <-> ctx relation
10524 	 * and mark the context dead.
10525 	 */
10526 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10527 	put_ctx(child_ctx); /* cannot be last */
10528 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10529 	put_task_struct(current); /* cannot be last */
10530 
10531 	clone_ctx = unclone_ctx(child_ctx);
10532 	raw_spin_unlock_irq(&child_ctx->lock);
10533 
10534 	if (clone_ctx)
10535 		put_ctx(clone_ctx);
10536 
10537 	/*
10538 	 * Report the task dead after unscheduling the events so that we
10539 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10540 	 * get a few PERF_RECORD_READ events.
10541 	 */
10542 	perf_event_task(child, child_ctx, 0);
10543 
10544 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10545 		perf_event_exit_event(child_event, child_ctx, child);
10546 
10547 	mutex_unlock(&child_ctx->mutex);
10548 
10549 	put_ctx(child_ctx);
10550 }
10551 
10552 /*
10553  * When a child task exits, feed back event values to parent events.
10554  *
10555  * Can be called with cred_guard_mutex held when called from
10556  * install_exec_creds().
10557  */
10558 void perf_event_exit_task(struct task_struct *child)
10559 {
10560 	struct perf_event *event, *tmp;
10561 	int ctxn;
10562 
10563 	mutex_lock(&child->perf_event_mutex);
10564 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10565 				 owner_entry) {
10566 		list_del_init(&event->owner_entry);
10567 
10568 		/*
10569 		 * Ensure the list deletion is visible before we clear
10570 		 * the owner, closes a race against perf_release() where
10571 		 * we need to serialize on the owner->perf_event_mutex.
10572 		 */
10573 		smp_store_release(&event->owner, NULL);
10574 	}
10575 	mutex_unlock(&child->perf_event_mutex);
10576 
10577 	for_each_task_context_nr(ctxn)
10578 		perf_event_exit_task_context(child, ctxn);
10579 
10580 	/*
10581 	 * The perf_event_exit_task_context calls perf_event_task
10582 	 * with child's task_ctx, which generates EXIT events for
10583 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10584 	 * At this point we need to send EXIT events to cpu contexts.
10585 	 */
10586 	perf_event_task(child, NULL, 0);
10587 }
10588 
10589 static void perf_free_event(struct perf_event *event,
10590 			    struct perf_event_context *ctx)
10591 {
10592 	struct perf_event *parent = event->parent;
10593 
10594 	if (WARN_ON_ONCE(!parent))
10595 		return;
10596 
10597 	mutex_lock(&parent->child_mutex);
10598 	list_del_init(&event->child_list);
10599 	mutex_unlock(&parent->child_mutex);
10600 
10601 	put_event(parent);
10602 
10603 	raw_spin_lock_irq(&ctx->lock);
10604 	perf_group_detach(event);
10605 	list_del_event(event, ctx);
10606 	raw_spin_unlock_irq(&ctx->lock);
10607 	free_event(event);
10608 }
10609 
10610 /*
10611  * Free an unexposed, unused context as created by inheritance by
10612  * perf_event_init_task below, used by fork() in case of fail.
10613  *
10614  * Not all locks are strictly required, but take them anyway to be nice and
10615  * help out with the lockdep assertions.
10616  */
10617 void perf_event_free_task(struct task_struct *task)
10618 {
10619 	struct perf_event_context *ctx;
10620 	struct perf_event *event, *tmp;
10621 	int ctxn;
10622 
10623 	for_each_task_context_nr(ctxn) {
10624 		ctx = task->perf_event_ctxp[ctxn];
10625 		if (!ctx)
10626 			continue;
10627 
10628 		mutex_lock(&ctx->mutex);
10629 		raw_spin_lock_irq(&ctx->lock);
10630 		/*
10631 		 * Destroy the task <-> ctx relation and mark the context dead.
10632 		 *
10633 		 * This is important because even though the task hasn't been
10634 		 * exposed yet the context has been (through child_list).
10635 		 */
10636 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10637 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10638 		put_task_struct(task); /* cannot be last */
10639 		raw_spin_unlock_irq(&ctx->lock);
10640 
10641 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10642 			perf_free_event(event, ctx);
10643 
10644 		mutex_unlock(&ctx->mutex);
10645 		put_ctx(ctx);
10646 	}
10647 }
10648 
10649 void perf_event_delayed_put(struct task_struct *task)
10650 {
10651 	int ctxn;
10652 
10653 	for_each_task_context_nr(ctxn)
10654 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10655 }
10656 
10657 struct file *perf_event_get(unsigned int fd)
10658 {
10659 	struct file *file;
10660 
10661 	file = fget_raw(fd);
10662 	if (!file)
10663 		return ERR_PTR(-EBADF);
10664 
10665 	if (file->f_op != &perf_fops) {
10666 		fput(file);
10667 		return ERR_PTR(-EBADF);
10668 	}
10669 
10670 	return file;
10671 }
10672 
10673 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10674 {
10675 	if (!event)
10676 		return ERR_PTR(-EINVAL);
10677 
10678 	return &event->attr;
10679 }
10680 
10681 /*
10682  * Inherit a event from parent task to child task.
10683  *
10684  * Returns:
10685  *  - valid pointer on success
10686  *  - NULL for orphaned events
10687  *  - IS_ERR() on error
10688  */
10689 static struct perf_event *
10690 inherit_event(struct perf_event *parent_event,
10691 	      struct task_struct *parent,
10692 	      struct perf_event_context *parent_ctx,
10693 	      struct task_struct *child,
10694 	      struct perf_event *group_leader,
10695 	      struct perf_event_context *child_ctx)
10696 {
10697 	enum perf_event_state parent_state = parent_event->state;
10698 	struct perf_event *child_event;
10699 	unsigned long flags;
10700 
10701 	/*
10702 	 * Instead of creating recursive hierarchies of events,
10703 	 * we link inherited events back to the original parent,
10704 	 * which has a filp for sure, which we use as the reference
10705 	 * count:
10706 	 */
10707 	if (parent_event->parent)
10708 		parent_event = parent_event->parent;
10709 
10710 	child_event = perf_event_alloc(&parent_event->attr,
10711 					   parent_event->cpu,
10712 					   child,
10713 					   group_leader, parent_event,
10714 					   NULL, NULL, -1);
10715 	if (IS_ERR(child_event))
10716 		return child_event;
10717 
10718 	/*
10719 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10720 	 * must be under the same lock in order to serialize against
10721 	 * perf_event_release_kernel(), such that either we must observe
10722 	 * is_orphaned_event() or they will observe us on the child_list.
10723 	 */
10724 	mutex_lock(&parent_event->child_mutex);
10725 	if (is_orphaned_event(parent_event) ||
10726 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10727 		mutex_unlock(&parent_event->child_mutex);
10728 		free_event(child_event);
10729 		return NULL;
10730 	}
10731 
10732 	get_ctx(child_ctx);
10733 
10734 	/*
10735 	 * Make the child state follow the state of the parent event,
10736 	 * not its attr.disabled bit.  We hold the parent's mutex,
10737 	 * so we won't race with perf_event_{en, dis}able_family.
10738 	 */
10739 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10740 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10741 	else
10742 		child_event->state = PERF_EVENT_STATE_OFF;
10743 
10744 	if (parent_event->attr.freq) {
10745 		u64 sample_period = parent_event->hw.sample_period;
10746 		struct hw_perf_event *hwc = &child_event->hw;
10747 
10748 		hwc->sample_period = sample_period;
10749 		hwc->last_period   = sample_period;
10750 
10751 		local64_set(&hwc->period_left, sample_period);
10752 	}
10753 
10754 	child_event->ctx = child_ctx;
10755 	child_event->overflow_handler = parent_event->overflow_handler;
10756 	child_event->overflow_handler_context
10757 		= parent_event->overflow_handler_context;
10758 
10759 	/*
10760 	 * Precalculate sample_data sizes
10761 	 */
10762 	perf_event__header_size(child_event);
10763 	perf_event__id_header_size(child_event);
10764 
10765 	/*
10766 	 * Link it up in the child's context:
10767 	 */
10768 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10769 	add_event_to_ctx(child_event, child_ctx);
10770 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10771 
10772 	/*
10773 	 * Link this into the parent event's child list
10774 	 */
10775 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10776 	mutex_unlock(&parent_event->child_mutex);
10777 
10778 	return child_event;
10779 }
10780 
10781 /*
10782  * Inherits an event group.
10783  *
10784  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10785  * This matches with perf_event_release_kernel() removing all child events.
10786  *
10787  * Returns:
10788  *  - 0 on success
10789  *  - <0 on error
10790  */
10791 static int inherit_group(struct perf_event *parent_event,
10792 	      struct task_struct *parent,
10793 	      struct perf_event_context *parent_ctx,
10794 	      struct task_struct *child,
10795 	      struct perf_event_context *child_ctx)
10796 {
10797 	struct perf_event *leader;
10798 	struct perf_event *sub;
10799 	struct perf_event *child_ctr;
10800 
10801 	leader = inherit_event(parent_event, parent, parent_ctx,
10802 				 child, NULL, child_ctx);
10803 	if (IS_ERR(leader))
10804 		return PTR_ERR(leader);
10805 	/*
10806 	 * @leader can be NULL here because of is_orphaned_event(). In this
10807 	 * case inherit_event() will create individual events, similar to what
10808 	 * perf_group_detach() would do anyway.
10809 	 */
10810 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10811 		child_ctr = inherit_event(sub, parent, parent_ctx,
10812 					    child, leader, child_ctx);
10813 		if (IS_ERR(child_ctr))
10814 			return PTR_ERR(child_ctr);
10815 	}
10816 	return 0;
10817 }
10818 
10819 /*
10820  * Creates the child task context and tries to inherit the event-group.
10821  *
10822  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10823  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10824  * consistent with perf_event_release_kernel() removing all child events.
10825  *
10826  * Returns:
10827  *  - 0 on success
10828  *  - <0 on error
10829  */
10830 static int
10831 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10832 		   struct perf_event_context *parent_ctx,
10833 		   struct task_struct *child, int ctxn,
10834 		   int *inherited_all)
10835 {
10836 	int ret;
10837 	struct perf_event_context *child_ctx;
10838 
10839 	if (!event->attr.inherit) {
10840 		*inherited_all = 0;
10841 		return 0;
10842 	}
10843 
10844 	child_ctx = child->perf_event_ctxp[ctxn];
10845 	if (!child_ctx) {
10846 		/*
10847 		 * This is executed from the parent task context, so
10848 		 * inherit events that have been marked for cloning.
10849 		 * First allocate and initialize a context for the
10850 		 * child.
10851 		 */
10852 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10853 		if (!child_ctx)
10854 			return -ENOMEM;
10855 
10856 		child->perf_event_ctxp[ctxn] = child_ctx;
10857 	}
10858 
10859 	ret = inherit_group(event, parent, parent_ctx,
10860 			    child, child_ctx);
10861 
10862 	if (ret)
10863 		*inherited_all = 0;
10864 
10865 	return ret;
10866 }
10867 
10868 /*
10869  * Initialize the perf_event context in task_struct
10870  */
10871 static int perf_event_init_context(struct task_struct *child, int ctxn)
10872 {
10873 	struct perf_event_context *child_ctx, *parent_ctx;
10874 	struct perf_event_context *cloned_ctx;
10875 	struct perf_event *event;
10876 	struct task_struct *parent = current;
10877 	int inherited_all = 1;
10878 	unsigned long flags;
10879 	int ret = 0;
10880 
10881 	if (likely(!parent->perf_event_ctxp[ctxn]))
10882 		return 0;
10883 
10884 	/*
10885 	 * If the parent's context is a clone, pin it so it won't get
10886 	 * swapped under us.
10887 	 */
10888 	parent_ctx = perf_pin_task_context(parent, ctxn);
10889 	if (!parent_ctx)
10890 		return 0;
10891 
10892 	/*
10893 	 * No need to check if parent_ctx != NULL here; since we saw
10894 	 * it non-NULL earlier, the only reason for it to become NULL
10895 	 * is if we exit, and since we're currently in the middle of
10896 	 * a fork we can't be exiting at the same time.
10897 	 */
10898 
10899 	/*
10900 	 * Lock the parent list. No need to lock the child - not PID
10901 	 * hashed yet and not running, so nobody can access it.
10902 	 */
10903 	mutex_lock(&parent_ctx->mutex);
10904 
10905 	/*
10906 	 * We dont have to disable NMIs - we are only looking at
10907 	 * the list, not manipulating it:
10908 	 */
10909 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10910 		ret = inherit_task_group(event, parent, parent_ctx,
10911 					 child, ctxn, &inherited_all);
10912 		if (ret)
10913 			goto out_unlock;
10914 	}
10915 
10916 	/*
10917 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10918 	 * to allocations, but we need to prevent rotation because
10919 	 * rotate_ctx() will change the list from interrupt context.
10920 	 */
10921 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10922 	parent_ctx->rotate_disable = 1;
10923 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10924 
10925 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10926 		ret = inherit_task_group(event, parent, parent_ctx,
10927 					 child, ctxn, &inherited_all);
10928 		if (ret)
10929 			goto out_unlock;
10930 	}
10931 
10932 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10933 	parent_ctx->rotate_disable = 0;
10934 
10935 	child_ctx = child->perf_event_ctxp[ctxn];
10936 
10937 	if (child_ctx && inherited_all) {
10938 		/*
10939 		 * Mark the child context as a clone of the parent
10940 		 * context, or of whatever the parent is a clone of.
10941 		 *
10942 		 * Note that if the parent is a clone, the holding of
10943 		 * parent_ctx->lock avoids it from being uncloned.
10944 		 */
10945 		cloned_ctx = parent_ctx->parent_ctx;
10946 		if (cloned_ctx) {
10947 			child_ctx->parent_ctx = cloned_ctx;
10948 			child_ctx->parent_gen = parent_ctx->parent_gen;
10949 		} else {
10950 			child_ctx->parent_ctx = parent_ctx;
10951 			child_ctx->parent_gen = parent_ctx->generation;
10952 		}
10953 		get_ctx(child_ctx->parent_ctx);
10954 	}
10955 
10956 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10957 out_unlock:
10958 	mutex_unlock(&parent_ctx->mutex);
10959 
10960 	perf_unpin_context(parent_ctx);
10961 	put_ctx(parent_ctx);
10962 
10963 	return ret;
10964 }
10965 
10966 /*
10967  * Initialize the perf_event context in task_struct
10968  */
10969 int perf_event_init_task(struct task_struct *child)
10970 {
10971 	int ctxn, ret;
10972 
10973 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10974 	mutex_init(&child->perf_event_mutex);
10975 	INIT_LIST_HEAD(&child->perf_event_list);
10976 
10977 	for_each_task_context_nr(ctxn) {
10978 		ret = perf_event_init_context(child, ctxn);
10979 		if (ret) {
10980 			perf_event_free_task(child);
10981 			return ret;
10982 		}
10983 	}
10984 
10985 	return 0;
10986 }
10987 
10988 static void __init perf_event_init_all_cpus(void)
10989 {
10990 	struct swevent_htable *swhash;
10991 	int cpu;
10992 
10993 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10994 
10995 	for_each_possible_cpu(cpu) {
10996 		swhash = &per_cpu(swevent_htable, cpu);
10997 		mutex_init(&swhash->hlist_mutex);
10998 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10999 
11000 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11001 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11002 
11003 #ifdef CONFIG_CGROUP_PERF
11004 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11005 #endif
11006 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11007 	}
11008 }
11009 
11010 void perf_swevent_init_cpu(unsigned int cpu)
11011 {
11012 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11013 
11014 	mutex_lock(&swhash->hlist_mutex);
11015 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11016 		struct swevent_hlist *hlist;
11017 
11018 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11019 		WARN_ON(!hlist);
11020 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11021 	}
11022 	mutex_unlock(&swhash->hlist_mutex);
11023 }
11024 
11025 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11026 static void __perf_event_exit_context(void *__info)
11027 {
11028 	struct perf_event_context *ctx = __info;
11029 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11030 	struct perf_event *event;
11031 
11032 	raw_spin_lock(&ctx->lock);
11033 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11034 	list_for_each_entry(event, &ctx->event_list, event_entry)
11035 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11036 	raw_spin_unlock(&ctx->lock);
11037 }
11038 
11039 static void perf_event_exit_cpu_context(int cpu)
11040 {
11041 	struct perf_cpu_context *cpuctx;
11042 	struct perf_event_context *ctx;
11043 	struct pmu *pmu;
11044 
11045 	mutex_lock(&pmus_lock);
11046 	list_for_each_entry(pmu, &pmus, entry) {
11047 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11048 		ctx = &cpuctx->ctx;
11049 
11050 		mutex_lock(&ctx->mutex);
11051 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11052 		cpuctx->online = 0;
11053 		mutex_unlock(&ctx->mutex);
11054 	}
11055 	cpumask_clear_cpu(cpu, perf_online_mask);
11056 	mutex_unlock(&pmus_lock);
11057 }
11058 #else
11059 
11060 static void perf_event_exit_cpu_context(int cpu) { }
11061 
11062 #endif
11063 
11064 int perf_event_init_cpu(unsigned int cpu)
11065 {
11066 	struct perf_cpu_context *cpuctx;
11067 	struct perf_event_context *ctx;
11068 	struct pmu *pmu;
11069 
11070 	perf_swevent_init_cpu(cpu);
11071 
11072 	mutex_lock(&pmus_lock);
11073 	cpumask_set_cpu(cpu, perf_online_mask);
11074 	list_for_each_entry(pmu, &pmus, entry) {
11075 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11076 		ctx = &cpuctx->ctx;
11077 
11078 		mutex_lock(&ctx->mutex);
11079 		cpuctx->online = 1;
11080 		mutex_unlock(&ctx->mutex);
11081 	}
11082 	mutex_unlock(&pmus_lock);
11083 
11084 	return 0;
11085 }
11086 
11087 int perf_event_exit_cpu(unsigned int cpu)
11088 {
11089 	perf_event_exit_cpu_context(cpu);
11090 	return 0;
11091 }
11092 
11093 static int
11094 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11095 {
11096 	int cpu;
11097 
11098 	for_each_online_cpu(cpu)
11099 		perf_event_exit_cpu(cpu);
11100 
11101 	return NOTIFY_OK;
11102 }
11103 
11104 /*
11105  * Run the perf reboot notifier at the very last possible moment so that
11106  * the generic watchdog code runs as long as possible.
11107  */
11108 static struct notifier_block perf_reboot_notifier = {
11109 	.notifier_call = perf_reboot,
11110 	.priority = INT_MIN,
11111 };
11112 
11113 void __init perf_event_init(void)
11114 {
11115 	int ret;
11116 
11117 	idr_init(&pmu_idr);
11118 
11119 	perf_event_init_all_cpus();
11120 	init_srcu_struct(&pmus_srcu);
11121 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11122 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11123 	perf_pmu_register(&perf_task_clock, NULL, -1);
11124 	perf_tp_register();
11125 	perf_event_init_cpu(smp_processor_id());
11126 	register_reboot_notifier(&perf_reboot_notifier);
11127 
11128 	ret = init_hw_breakpoint();
11129 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11130 
11131 	/*
11132 	 * Build time assertion that we keep the data_head at the intended
11133 	 * location.  IOW, validation we got the __reserved[] size right.
11134 	 */
11135 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11136 		     != 1024);
11137 }
11138 
11139 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11140 			      char *page)
11141 {
11142 	struct perf_pmu_events_attr *pmu_attr =
11143 		container_of(attr, struct perf_pmu_events_attr, attr);
11144 
11145 	if (pmu_attr->event_str)
11146 		return sprintf(page, "%s\n", pmu_attr->event_str);
11147 
11148 	return 0;
11149 }
11150 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11151 
11152 static int __init perf_event_sysfs_init(void)
11153 {
11154 	struct pmu *pmu;
11155 	int ret;
11156 
11157 	mutex_lock(&pmus_lock);
11158 
11159 	ret = bus_register(&pmu_bus);
11160 	if (ret)
11161 		goto unlock;
11162 
11163 	list_for_each_entry(pmu, &pmus, entry) {
11164 		if (!pmu->name || pmu->type < 0)
11165 			continue;
11166 
11167 		ret = pmu_dev_alloc(pmu);
11168 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11169 	}
11170 	pmu_bus_running = 1;
11171 	ret = 0;
11172 
11173 unlock:
11174 	mutex_unlock(&pmus_lock);
11175 
11176 	return ret;
11177 }
11178 device_initcall(perf_event_sysfs_init);
11179 
11180 #ifdef CONFIG_CGROUP_PERF
11181 static struct cgroup_subsys_state *
11182 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11183 {
11184 	struct perf_cgroup *jc;
11185 
11186 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11187 	if (!jc)
11188 		return ERR_PTR(-ENOMEM);
11189 
11190 	jc->info = alloc_percpu(struct perf_cgroup_info);
11191 	if (!jc->info) {
11192 		kfree(jc);
11193 		return ERR_PTR(-ENOMEM);
11194 	}
11195 
11196 	return &jc->css;
11197 }
11198 
11199 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11200 {
11201 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11202 
11203 	free_percpu(jc->info);
11204 	kfree(jc);
11205 }
11206 
11207 static int __perf_cgroup_move(void *info)
11208 {
11209 	struct task_struct *task = info;
11210 	rcu_read_lock();
11211 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11212 	rcu_read_unlock();
11213 	return 0;
11214 }
11215 
11216 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11217 {
11218 	struct task_struct *task;
11219 	struct cgroup_subsys_state *css;
11220 
11221 	cgroup_taskset_for_each(task, css, tset)
11222 		task_function_call(task, __perf_cgroup_move, task);
11223 }
11224 
11225 struct cgroup_subsys perf_event_cgrp_subsys = {
11226 	.css_alloc	= perf_cgroup_css_alloc,
11227 	.css_free	= perf_cgroup_css_free,
11228 	.attach		= perf_cgroup_attach,
11229 	/*
11230 	 * Implicitly enable on dfl hierarchy so that perf events can
11231 	 * always be filtered by cgroup2 path as long as perf_event
11232 	 * controller is not mounted on a legacy hierarchy.
11233 	 */
11234 	.implicit_on_dfl = true,
11235 	.threaded	= true,
11236 };
11237 #endif /* CONFIG_CGROUP_PERF */
11238