1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 typedef int (*remote_function_f)(void *); 53 54 struct remote_function_call { 55 struct task_struct *p; 56 remote_function_f func; 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 /* -EAGAIN */ 68 if (task_cpu(p) != smp_processor_id()) 69 return; 70 71 /* 72 * Now that we're on right CPU with IRQs disabled, we can test 73 * if we hit the right task without races. 74 */ 75 76 tfc->ret = -ESRCH; /* No such (running) process */ 77 if (p != current) 78 return; 79 } 80 81 tfc->ret = tfc->func(tfc->info); 82 } 83 84 /** 85 * task_function_call - call a function on the cpu on which a task runs 86 * @p: the task to evaluate 87 * @func: the function to be called 88 * @info: the function call argument 89 * 90 * Calls the function @func when the task is currently running. This might 91 * be on the current CPU, which just calls the function directly 92 * 93 * returns: @func return value, or 94 * -ESRCH - when the process isn't running 95 * -EAGAIN - when the process moved away 96 */ 97 static int 98 task_function_call(struct task_struct *p, remote_function_f func, void *info) 99 { 100 struct remote_function_call data = { 101 .p = p, 102 .func = func, 103 .info = info, 104 .ret = -EAGAIN, 105 }; 106 int ret; 107 108 do { 109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 110 if (!ret) 111 ret = data.ret; 112 } while (ret == -EAGAIN); 113 114 return ret; 115 } 116 117 /** 118 * cpu_function_call - call a function on the cpu 119 * @func: the function to be called 120 * @info: the function call argument 121 * 122 * Calls the function @func on the remote cpu. 123 * 124 * returns: @func return value or -ENXIO when the cpu is offline 125 */ 126 static int cpu_function_call(int cpu, remote_function_f func, void *info) 127 { 128 struct remote_function_call data = { 129 .p = NULL, 130 .func = func, 131 .info = info, 132 .ret = -ENXIO, /* No such CPU */ 133 }; 134 135 smp_call_function_single(cpu, remote_function, &data, 1); 136 137 return data.ret; 138 } 139 140 static inline struct perf_cpu_context * 141 __get_cpu_context(struct perf_event_context *ctx) 142 { 143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 144 } 145 146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 147 struct perf_event_context *ctx) 148 { 149 raw_spin_lock(&cpuctx->ctx.lock); 150 if (ctx) 151 raw_spin_lock(&ctx->lock); 152 } 153 154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 155 struct perf_event_context *ctx) 156 { 157 if (ctx) 158 raw_spin_unlock(&ctx->lock); 159 raw_spin_unlock(&cpuctx->ctx.lock); 160 } 161 162 #define TASK_TOMBSTONE ((void *)-1L) 163 164 static bool is_kernel_event(struct perf_event *event) 165 { 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 167 } 168 169 /* 170 * On task ctx scheduling... 171 * 172 * When !ctx->nr_events a task context will not be scheduled. This means 173 * we can disable the scheduler hooks (for performance) without leaving 174 * pending task ctx state. 175 * 176 * This however results in two special cases: 177 * 178 * - removing the last event from a task ctx; this is relatively straight 179 * forward and is done in __perf_remove_from_context. 180 * 181 * - adding the first event to a task ctx; this is tricky because we cannot 182 * rely on ctx->is_active and therefore cannot use event_function_call(). 183 * See perf_install_in_context(). 184 * 185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 186 */ 187 188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 189 struct perf_event_context *, void *); 190 191 struct event_function_struct { 192 struct perf_event *event; 193 event_f func; 194 void *data; 195 }; 196 197 static int event_function(void *info) 198 { 199 struct event_function_struct *efs = info; 200 struct perf_event *event = efs->event; 201 struct perf_event_context *ctx = event->ctx; 202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 203 struct perf_event_context *task_ctx = cpuctx->task_ctx; 204 int ret = 0; 205 206 WARN_ON_ONCE(!irqs_disabled()); 207 208 perf_ctx_lock(cpuctx, task_ctx); 209 /* 210 * Since we do the IPI call without holding ctx->lock things can have 211 * changed, double check we hit the task we set out to hit. 212 */ 213 if (ctx->task) { 214 if (ctx->task != current) { 215 ret = -ESRCH; 216 goto unlock; 217 } 218 219 /* 220 * We only use event_function_call() on established contexts, 221 * and event_function() is only ever called when active (or 222 * rather, we'll have bailed in task_function_call() or the 223 * above ctx->task != current test), therefore we must have 224 * ctx->is_active here. 225 */ 226 WARN_ON_ONCE(!ctx->is_active); 227 /* 228 * And since we have ctx->is_active, cpuctx->task_ctx must 229 * match. 230 */ 231 WARN_ON_ONCE(task_ctx != ctx); 232 } else { 233 WARN_ON_ONCE(&cpuctx->ctx != ctx); 234 } 235 236 efs->func(event, cpuctx, ctx, efs->data); 237 unlock: 238 perf_ctx_unlock(cpuctx, task_ctx); 239 240 return ret; 241 } 242 243 static void event_function_local(struct perf_event *event, event_f func, void *data) 244 { 245 struct event_function_struct efs = { 246 .event = event, 247 .func = func, 248 .data = data, 249 }; 250 251 int ret = event_function(&efs); 252 WARN_ON_ONCE(ret); 253 } 254 255 static void event_function_call(struct perf_event *event, event_f func, void *data) 256 { 257 struct perf_event_context *ctx = event->ctx; 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 259 struct event_function_struct efs = { 260 .event = event, 261 .func = func, 262 .data = data, 263 }; 264 265 if (!event->parent) { 266 /* 267 * If this is a !child event, we must hold ctx::mutex to 268 * stabilize the the event->ctx relation. See 269 * perf_event_ctx_lock(). 270 */ 271 lockdep_assert_held(&ctx->mutex); 272 } 273 274 if (!task) { 275 cpu_function_call(event->cpu, event_function, &efs); 276 return; 277 } 278 279 if (task == TASK_TOMBSTONE) 280 return; 281 282 again: 283 if (!task_function_call(task, event_function, &efs)) 284 return; 285 286 raw_spin_lock_irq(&ctx->lock); 287 /* 288 * Reload the task pointer, it might have been changed by 289 * a concurrent perf_event_context_sched_out(). 290 */ 291 task = ctx->task; 292 if (task == TASK_TOMBSTONE) { 293 raw_spin_unlock_irq(&ctx->lock); 294 return; 295 } 296 if (ctx->is_active) { 297 raw_spin_unlock_irq(&ctx->lock); 298 goto again; 299 } 300 func(event, NULL, ctx, data); 301 raw_spin_unlock_irq(&ctx->lock); 302 } 303 304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 305 PERF_FLAG_FD_OUTPUT |\ 306 PERF_FLAG_PID_CGROUP |\ 307 PERF_FLAG_FD_CLOEXEC) 308 309 /* 310 * branch priv levels that need permission checks 311 */ 312 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 313 (PERF_SAMPLE_BRANCH_KERNEL |\ 314 PERF_SAMPLE_BRANCH_HV) 315 316 enum event_type_t { 317 EVENT_FLEXIBLE = 0x1, 318 EVENT_PINNED = 0x2, 319 EVENT_TIME = 0x4, 320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 321 }; 322 323 /* 324 * perf_sched_events : >0 events exist 325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 326 */ 327 328 static void perf_sched_delayed(struct work_struct *work); 329 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 331 static DEFINE_MUTEX(perf_sched_mutex); 332 static atomic_t perf_sched_count; 333 334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 335 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 336 337 static atomic_t nr_mmap_events __read_mostly; 338 static atomic_t nr_comm_events __read_mostly; 339 static atomic_t nr_task_events __read_mostly; 340 static atomic_t nr_freq_events __read_mostly; 341 static atomic_t nr_switch_events __read_mostly; 342 343 static LIST_HEAD(pmus); 344 static DEFINE_MUTEX(pmus_lock); 345 static struct srcu_struct pmus_srcu; 346 347 /* 348 * perf event paranoia level: 349 * -1 - not paranoid at all 350 * 0 - disallow raw tracepoint access for unpriv 351 * 1 - disallow cpu events for unpriv 352 * 2 - disallow kernel profiling for unpriv 353 */ 354 int sysctl_perf_event_paranoid __read_mostly = 1; 355 356 /* Minimum for 512 kiB + 1 user control page */ 357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 358 359 /* 360 * max perf event sample rate 361 */ 362 #define DEFAULT_MAX_SAMPLE_RATE 100000 363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 365 366 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 367 368 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 369 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 370 371 static int perf_sample_allowed_ns __read_mostly = 372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 373 374 static void update_perf_cpu_limits(void) 375 { 376 u64 tmp = perf_sample_period_ns; 377 378 tmp *= sysctl_perf_cpu_time_max_percent; 379 do_div(tmp, 100); 380 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 381 } 382 383 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 384 385 int perf_proc_update_handler(struct ctl_table *table, int write, 386 void __user *buffer, size_t *lenp, 387 loff_t *ppos) 388 { 389 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 390 391 if (ret || !write) 392 return ret; 393 394 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 395 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 396 update_perf_cpu_limits(); 397 398 return 0; 399 } 400 401 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 402 403 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 404 void __user *buffer, size_t *lenp, 405 loff_t *ppos) 406 { 407 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 408 409 if (ret || !write) 410 return ret; 411 412 update_perf_cpu_limits(); 413 414 return 0; 415 } 416 417 /* 418 * perf samples are done in some very critical code paths (NMIs). 419 * If they take too much CPU time, the system can lock up and not 420 * get any real work done. This will drop the sample rate when 421 * we detect that events are taking too long. 422 */ 423 #define NR_ACCUMULATED_SAMPLES 128 424 static DEFINE_PER_CPU(u64, running_sample_length); 425 426 static void perf_duration_warn(struct irq_work *w) 427 { 428 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 429 u64 avg_local_sample_len; 430 u64 local_samples_len; 431 432 local_samples_len = __this_cpu_read(running_sample_length); 433 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 434 435 printk_ratelimited(KERN_WARNING 436 "perf interrupt took too long (%lld > %lld), lowering " 437 "kernel.perf_event_max_sample_rate to %d\n", 438 avg_local_sample_len, allowed_ns >> 1, 439 sysctl_perf_event_sample_rate); 440 } 441 442 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 443 444 void perf_sample_event_took(u64 sample_len_ns) 445 { 446 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 447 u64 avg_local_sample_len; 448 u64 local_samples_len; 449 450 if (allowed_ns == 0) 451 return; 452 453 /* decay the counter by 1 average sample */ 454 local_samples_len = __this_cpu_read(running_sample_length); 455 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 456 local_samples_len += sample_len_ns; 457 __this_cpu_write(running_sample_length, local_samples_len); 458 459 /* 460 * note: this will be biased artifically low until we have 461 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 462 * from having to maintain a count. 463 */ 464 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 465 466 if (avg_local_sample_len <= allowed_ns) 467 return; 468 469 if (max_samples_per_tick <= 1) 470 return; 471 472 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 473 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 474 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 475 476 update_perf_cpu_limits(); 477 478 if (!irq_work_queue(&perf_duration_work)) { 479 early_printk("perf interrupt took too long (%lld > %lld), lowering " 480 "kernel.perf_event_max_sample_rate to %d\n", 481 avg_local_sample_len, allowed_ns >> 1, 482 sysctl_perf_event_sample_rate); 483 } 484 } 485 486 static atomic64_t perf_event_id; 487 488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 489 enum event_type_t event_type); 490 491 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 492 enum event_type_t event_type, 493 struct task_struct *task); 494 495 static void update_context_time(struct perf_event_context *ctx); 496 static u64 perf_event_time(struct perf_event *event); 497 498 void __weak perf_event_print_debug(void) { } 499 500 extern __weak const char *perf_pmu_name(void) 501 { 502 return "pmu"; 503 } 504 505 static inline u64 perf_clock(void) 506 { 507 return local_clock(); 508 } 509 510 static inline u64 perf_event_clock(struct perf_event *event) 511 { 512 return event->clock(); 513 } 514 515 #ifdef CONFIG_CGROUP_PERF 516 517 static inline bool 518 perf_cgroup_match(struct perf_event *event) 519 { 520 struct perf_event_context *ctx = event->ctx; 521 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 522 523 /* @event doesn't care about cgroup */ 524 if (!event->cgrp) 525 return true; 526 527 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 528 if (!cpuctx->cgrp) 529 return false; 530 531 /* 532 * Cgroup scoping is recursive. An event enabled for a cgroup is 533 * also enabled for all its descendant cgroups. If @cpuctx's 534 * cgroup is a descendant of @event's (the test covers identity 535 * case), it's a match. 536 */ 537 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 538 event->cgrp->css.cgroup); 539 } 540 541 static inline void perf_detach_cgroup(struct perf_event *event) 542 { 543 css_put(&event->cgrp->css); 544 event->cgrp = NULL; 545 } 546 547 static inline int is_cgroup_event(struct perf_event *event) 548 { 549 return event->cgrp != NULL; 550 } 551 552 static inline u64 perf_cgroup_event_time(struct perf_event *event) 553 { 554 struct perf_cgroup_info *t; 555 556 t = per_cpu_ptr(event->cgrp->info, event->cpu); 557 return t->time; 558 } 559 560 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 561 { 562 struct perf_cgroup_info *info; 563 u64 now; 564 565 now = perf_clock(); 566 567 info = this_cpu_ptr(cgrp->info); 568 569 info->time += now - info->timestamp; 570 info->timestamp = now; 571 } 572 573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 574 { 575 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 576 if (cgrp_out) 577 __update_cgrp_time(cgrp_out); 578 } 579 580 static inline void update_cgrp_time_from_event(struct perf_event *event) 581 { 582 struct perf_cgroup *cgrp; 583 584 /* 585 * ensure we access cgroup data only when needed and 586 * when we know the cgroup is pinned (css_get) 587 */ 588 if (!is_cgroup_event(event)) 589 return; 590 591 cgrp = perf_cgroup_from_task(current, event->ctx); 592 /* 593 * Do not update time when cgroup is not active 594 */ 595 if (cgrp == event->cgrp) 596 __update_cgrp_time(event->cgrp); 597 } 598 599 static inline void 600 perf_cgroup_set_timestamp(struct task_struct *task, 601 struct perf_event_context *ctx) 602 { 603 struct perf_cgroup *cgrp; 604 struct perf_cgroup_info *info; 605 606 /* 607 * ctx->lock held by caller 608 * ensure we do not access cgroup data 609 * unless we have the cgroup pinned (css_get) 610 */ 611 if (!task || !ctx->nr_cgroups) 612 return; 613 614 cgrp = perf_cgroup_from_task(task, ctx); 615 info = this_cpu_ptr(cgrp->info); 616 info->timestamp = ctx->timestamp; 617 } 618 619 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 620 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 621 622 /* 623 * reschedule events based on the cgroup constraint of task. 624 * 625 * mode SWOUT : schedule out everything 626 * mode SWIN : schedule in based on cgroup for next 627 */ 628 static void perf_cgroup_switch(struct task_struct *task, int mode) 629 { 630 struct perf_cpu_context *cpuctx; 631 struct pmu *pmu; 632 unsigned long flags; 633 634 /* 635 * disable interrupts to avoid geting nr_cgroup 636 * changes via __perf_event_disable(). Also 637 * avoids preemption. 638 */ 639 local_irq_save(flags); 640 641 /* 642 * we reschedule only in the presence of cgroup 643 * constrained events. 644 */ 645 646 list_for_each_entry_rcu(pmu, &pmus, entry) { 647 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 648 if (cpuctx->unique_pmu != pmu) 649 continue; /* ensure we process each cpuctx once */ 650 651 /* 652 * perf_cgroup_events says at least one 653 * context on this CPU has cgroup events. 654 * 655 * ctx->nr_cgroups reports the number of cgroup 656 * events for a context. 657 */ 658 if (cpuctx->ctx.nr_cgroups > 0) { 659 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 660 perf_pmu_disable(cpuctx->ctx.pmu); 661 662 if (mode & PERF_CGROUP_SWOUT) { 663 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 664 /* 665 * must not be done before ctxswout due 666 * to event_filter_match() in event_sched_out() 667 */ 668 cpuctx->cgrp = NULL; 669 } 670 671 if (mode & PERF_CGROUP_SWIN) { 672 WARN_ON_ONCE(cpuctx->cgrp); 673 /* 674 * set cgrp before ctxsw in to allow 675 * event_filter_match() to not have to pass 676 * task around 677 * we pass the cpuctx->ctx to perf_cgroup_from_task() 678 * because cgorup events are only per-cpu 679 */ 680 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 681 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 682 } 683 perf_pmu_enable(cpuctx->ctx.pmu); 684 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 685 } 686 } 687 688 local_irq_restore(flags); 689 } 690 691 static inline void perf_cgroup_sched_out(struct task_struct *task, 692 struct task_struct *next) 693 { 694 struct perf_cgroup *cgrp1; 695 struct perf_cgroup *cgrp2 = NULL; 696 697 rcu_read_lock(); 698 /* 699 * we come here when we know perf_cgroup_events > 0 700 * we do not need to pass the ctx here because we know 701 * we are holding the rcu lock 702 */ 703 cgrp1 = perf_cgroup_from_task(task, NULL); 704 cgrp2 = perf_cgroup_from_task(next, NULL); 705 706 /* 707 * only schedule out current cgroup events if we know 708 * that we are switching to a different cgroup. Otherwise, 709 * do no touch the cgroup events. 710 */ 711 if (cgrp1 != cgrp2) 712 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 713 714 rcu_read_unlock(); 715 } 716 717 static inline void perf_cgroup_sched_in(struct task_struct *prev, 718 struct task_struct *task) 719 { 720 struct perf_cgroup *cgrp1; 721 struct perf_cgroup *cgrp2 = NULL; 722 723 rcu_read_lock(); 724 /* 725 * we come here when we know perf_cgroup_events > 0 726 * we do not need to pass the ctx here because we know 727 * we are holding the rcu lock 728 */ 729 cgrp1 = perf_cgroup_from_task(task, NULL); 730 cgrp2 = perf_cgroup_from_task(prev, NULL); 731 732 /* 733 * only need to schedule in cgroup events if we are changing 734 * cgroup during ctxsw. Cgroup events were not scheduled 735 * out of ctxsw out if that was not the case. 736 */ 737 if (cgrp1 != cgrp2) 738 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 739 740 rcu_read_unlock(); 741 } 742 743 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 744 struct perf_event_attr *attr, 745 struct perf_event *group_leader) 746 { 747 struct perf_cgroup *cgrp; 748 struct cgroup_subsys_state *css; 749 struct fd f = fdget(fd); 750 int ret = 0; 751 752 if (!f.file) 753 return -EBADF; 754 755 css = css_tryget_online_from_dir(f.file->f_path.dentry, 756 &perf_event_cgrp_subsys); 757 if (IS_ERR(css)) { 758 ret = PTR_ERR(css); 759 goto out; 760 } 761 762 cgrp = container_of(css, struct perf_cgroup, css); 763 event->cgrp = cgrp; 764 765 /* 766 * all events in a group must monitor 767 * the same cgroup because a task belongs 768 * to only one perf cgroup at a time 769 */ 770 if (group_leader && group_leader->cgrp != cgrp) { 771 perf_detach_cgroup(event); 772 ret = -EINVAL; 773 } 774 out: 775 fdput(f); 776 return ret; 777 } 778 779 static inline void 780 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 781 { 782 struct perf_cgroup_info *t; 783 t = per_cpu_ptr(event->cgrp->info, event->cpu); 784 event->shadow_ctx_time = now - t->timestamp; 785 } 786 787 static inline void 788 perf_cgroup_defer_enabled(struct perf_event *event) 789 { 790 /* 791 * when the current task's perf cgroup does not match 792 * the event's, we need to remember to call the 793 * perf_mark_enable() function the first time a task with 794 * a matching perf cgroup is scheduled in. 795 */ 796 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 797 event->cgrp_defer_enabled = 1; 798 } 799 800 static inline void 801 perf_cgroup_mark_enabled(struct perf_event *event, 802 struct perf_event_context *ctx) 803 { 804 struct perf_event *sub; 805 u64 tstamp = perf_event_time(event); 806 807 if (!event->cgrp_defer_enabled) 808 return; 809 810 event->cgrp_defer_enabled = 0; 811 812 event->tstamp_enabled = tstamp - event->total_time_enabled; 813 list_for_each_entry(sub, &event->sibling_list, group_entry) { 814 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 815 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 816 sub->cgrp_defer_enabled = 0; 817 } 818 } 819 } 820 #else /* !CONFIG_CGROUP_PERF */ 821 822 static inline bool 823 perf_cgroup_match(struct perf_event *event) 824 { 825 return true; 826 } 827 828 static inline void perf_detach_cgroup(struct perf_event *event) 829 {} 830 831 static inline int is_cgroup_event(struct perf_event *event) 832 { 833 return 0; 834 } 835 836 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 837 { 838 return 0; 839 } 840 841 static inline void update_cgrp_time_from_event(struct perf_event *event) 842 { 843 } 844 845 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 846 { 847 } 848 849 static inline void perf_cgroup_sched_out(struct task_struct *task, 850 struct task_struct *next) 851 { 852 } 853 854 static inline void perf_cgroup_sched_in(struct task_struct *prev, 855 struct task_struct *task) 856 { 857 } 858 859 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 860 struct perf_event_attr *attr, 861 struct perf_event *group_leader) 862 { 863 return -EINVAL; 864 } 865 866 static inline void 867 perf_cgroup_set_timestamp(struct task_struct *task, 868 struct perf_event_context *ctx) 869 { 870 } 871 872 void 873 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 874 { 875 } 876 877 static inline void 878 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 879 { 880 } 881 882 static inline u64 perf_cgroup_event_time(struct perf_event *event) 883 { 884 return 0; 885 } 886 887 static inline void 888 perf_cgroup_defer_enabled(struct perf_event *event) 889 { 890 } 891 892 static inline void 893 perf_cgroup_mark_enabled(struct perf_event *event, 894 struct perf_event_context *ctx) 895 { 896 } 897 #endif 898 899 /* 900 * set default to be dependent on timer tick just 901 * like original code 902 */ 903 #define PERF_CPU_HRTIMER (1000 / HZ) 904 /* 905 * function must be called with interrupts disbled 906 */ 907 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 908 { 909 struct perf_cpu_context *cpuctx; 910 int rotations = 0; 911 912 WARN_ON(!irqs_disabled()); 913 914 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 915 rotations = perf_rotate_context(cpuctx); 916 917 raw_spin_lock(&cpuctx->hrtimer_lock); 918 if (rotations) 919 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 920 else 921 cpuctx->hrtimer_active = 0; 922 raw_spin_unlock(&cpuctx->hrtimer_lock); 923 924 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 925 } 926 927 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 928 { 929 struct hrtimer *timer = &cpuctx->hrtimer; 930 struct pmu *pmu = cpuctx->ctx.pmu; 931 u64 interval; 932 933 /* no multiplexing needed for SW PMU */ 934 if (pmu->task_ctx_nr == perf_sw_context) 935 return; 936 937 /* 938 * check default is sane, if not set then force to 939 * default interval (1/tick) 940 */ 941 interval = pmu->hrtimer_interval_ms; 942 if (interval < 1) 943 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 944 945 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 946 947 raw_spin_lock_init(&cpuctx->hrtimer_lock); 948 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 949 timer->function = perf_mux_hrtimer_handler; 950 } 951 952 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 953 { 954 struct hrtimer *timer = &cpuctx->hrtimer; 955 struct pmu *pmu = cpuctx->ctx.pmu; 956 unsigned long flags; 957 958 /* not for SW PMU */ 959 if (pmu->task_ctx_nr == perf_sw_context) 960 return 0; 961 962 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 963 if (!cpuctx->hrtimer_active) { 964 cpuctx->hrtimer_active = 1; 965 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 966 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 967 } 968 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 969 970 return 0; 971 } 972 973 void perf_pmu_disable(struct pmu *pmu) 974 { 975 int *count = this_cpu_ptr(pmu->pmu_disable_count); 976 if (!(*count)++) 977 pmu->pmu_disable(pmu); 978 } 979 980 void perf_pmu_enable(struct pmu *pmu) 981 { 982 int *count = this_cpu_ptr(pmu->pmu_disable_count); 983 if (!--(*count)) 984 pmu->pmu_enable(pmu); 985 } 986 987 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 988 989 /* 990 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 991 * perf_event_task_tick() are fully serialized because they're strictly cpu 992 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 993 * disabled, while perf_event_task_tick is called from IRQ context. 994 */ 995 static void perf_event_ctx_activate(struct perf_event_context *ctx) 996 { 997 struct list_head *head = this_cpu_ptr(&active_ctx_list); 998 999 WARN_ON(!irqs_disabled()); 1000 1001 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1002 1003 list_add(&ctx->active_ctx_list, head); 1004 } 1005 1006 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1007 { 1008 WARN_ON(!irqs_disabled()); 1009 1010 WARN_ON(list_empty(&ctx->active_ctx_list)); 1011 1012 list_del_init(&ctx->active_ctx_list); 1013 } 1014 1015 static void get_ctx(struct perf_event_context *ctx) 1016 { 1017 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1018 } 1019 1020 static void free_ctx(struct rcu_head *head) 1021 { 1022 struct perf_event_context *ctx; 1023 1024 ctx = container_of(head, struct perf_event_context, rcu_head); 1025 kfree(ctx->task_ctx_data); 1026 kfree(ctx); 1027 } 1028 1029 static void put_ctx(struct perf_event_context *ctx) 1030 { 1031 if (atomic_dec_and_test(&ctx->refcount)) { 1032 if (ctx->parent_ctx) 1033 put_ctx(ctx->parent_ctx); 1034 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1035 put_task_struct(ctx->task); 1036 call_rcu(&ctx->rcu_head, free_ctx); 1037 } 1038 } 1039 1040 /* 1041 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1042 * perf_pmu_migrate_context() we need some magic. 1043 * 1044 * Those places that change perf_event::ctx will hold both 1045 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1046 * 1047 * Lock ordering is by mutex address. There are two other sites where 1048 * perf_event_context::mutex nests and those are: 1049 * 1050 * - perf_event_exit_task_context() [ child , 0 ] 1051 * perf_event_exit_event() 1052 * put_event() [ parent, 1 ] 1053 * 1054 * - perf_event_init_context() [ parent, 0 ] 1055 * inherit_task_group() 1056 * inherit_group() 1057 * inherit_event() 1058 * perf_event_alloc() 1059 * perf_init_event() 1060 * perf_try_init_event() [ child , 1 ] 1061 * 1062 * While it appears there is an obvious deadlock here -- the parent and child 1063 * nesting levels are inverted between the two. This is in fact safe because 1064 * life-time rules separate them. That is an exiting task cannot fork, and a 1065 * spawning task cannot (yet) exit. 1066 * 1067 * But remember that that these are parent<->child context relations, and 1068 * migration does not affect children, therefore these two orderings should not 1069 * interact. 1070 * 1071 * The change in perf_event::ctx does not affect children (as claimed above) 1072 * because the sys_perf_event_open() case will install a new event and break 1073 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1074 * concerned with cpuctx and that doesn't have children. 1075 * 1076 * The places that change perf_event::ctx will issue: 1077 * 1078 * perf_remove_from_context(); 1079 * synchronize_rcu(); 1080 * perf_install_in_context(); 1081 * 1082 * to affect the change. The remove_from_context() + synchronize_rcu() should 1083 * quiesce the event, after which we can install it in the new location. This 1084 * means that only external vectors (perf_fops, prctl) can perturb the event 1085 * while in transit. Therefore all such accessors should also acquire 1086 * perf_event_context::mutex to serialize against this. 1087 * 1088 * However; because event->ctx can change while we're waiting to acquire 1089 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1090 * function. 1091 * 1092 * Lock order: 1093 * task_struct::perf_event_mutex 1094 * perf_event_context::mutex 1095 * perf_event::child_mutex; 1096 * perf_event_context::lock 1097 * perf_event::mmap_mutex 1098 * mmap_sem 1099 */ 1100 static struct perf_event_context * 1101 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1102 { 1103 struct perf_event_context *ctx; 1104 1105 again: 1106 rcu_read_lock(); 1107 ctx = ACCESS_ONCE(event->ctx); 1108 if (!atomic_inc_not_zero(&ctx->refcount)) { 1109 rcu_read_unlock(); 1110 goto again; 1111 } 1112 rcu_read_unlock(); 1113 1114 mutex_lock_nested(&ctx->mutex, nesting); 1115 if (event->ctx != ctx) { 1116 mutex_unlock(&ctx->mutex); 1117 put_ctx(ctx); 1118 goto again; 1119 } 1120 1121 return ctx; 1122 } 1123 1124 static inline struct perf_event_context * 1125 perf_event_ctx_lock(struct perf_event *event) 1126 { 1127 return perf_event_ctx_lock_nested(event, 0); 1128 } 1129 1130 static void perf_event_ctx_unlock(struct perf_event *event, 1131 struct perf_event_context *ctx) 1132 { 1133 mutex_unlock(&ctx->mutex); 1134 put_ctx(ctx); 1135 } 1136 1137 /* 1138 * This must be done under the ctx->lock, such as to serialize against 1139 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1140 * calling scheduler related locks and ctx->lock nests inside those. 1141 */ 1142 static __must_check struct perf_event_context * 1143 unclone_ctx(struct perf_event_context *ctx) 1144 { 1145 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1146 1147 lockdep_assert_held(&ctx->lock); 1148 1149 if (parent_ctx) 1150 ctx->parent_ctx = NULL; 1151 ctx->generation++; 1152 1153 return parent_ctx; 1154 } 1155 1156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1157 { 1158 /* 1159 * only top level events have the pid namespace they were created in 1160 */ 1161 if (event->parent) 1162 event = event->parent; 1163 1164 return task_tgid_nr_ns(p, event->ns); 1165 } 1166 1167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1168 { 1169 /* 1170 * only top level events have the pid namespace they were created in 1171 */ 1172 if (event->parent) 1173 event = event->parent; 1174 1175 return task_pid_nr_ns(p, event->ns); 1176 } 1177 1178 /* 1179 * If we inherit events we want to return the parent event id 1180 * to userspace. 1181 */ 1182 static u64 primary_event_id(struct perf_event *event) 1183 { 1184 u64 id = event->id; 1185 1186 if (event->parent) 1187 id = event->parent->id; 1188 1189 return id; 1190 } 1191 1192 /* 1193 * Get the perf_event_context for a task and lock it. 1194 * 1195 * This has to cope with with the fact that until it is locked, 1196 * the context could get moved to another task. 1197 */ 1198 static struct perf_event_context * 1199 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1200 { 1201 struct perf_event_context *ctx; 1202 1203 retry: 1204 /* 1205 * One of the few rules of preemptible RCU is that one cannot do 1206 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1207 * part of the read side critical section was irqs-enabled -- see 1208 * rcu_read_unlock_special(). 1209 * 1210 * Since ctx->lock nests under rq->lock we must ensure the entire read 1211 * side critical section has interrupts disabled. 1212 */ 1213 local_irq_save(*flags); 1214 rcu_read_lock(); 1215 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1216 if (ctx) { 1217 /* 1218 * If this context is a clone of another, it might 1219 * get swapped for another underneath us by 1220 * perf_event_task_sched_out, though the 1221 * rcu_read_lock() protects us from any context 1222 * getting freed. Lock the context and check if it 1223 * got swapped before we could get the lock, and retry 1224 * if so. If we locked the right context, then it 1225 * can't get swapped on us any more. 1226 */ 1227 raw_spin_lock(&ctx->lock); 1228 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1229 raw_spin_unlock(&ctx->lock); 1230 rcu_read_unlock(); 1231 local_irq_restore(*flags); 1232 goto retry; 1233 } 1234 1235 if (ctx->task == TASK_TOMBSTONE || 1236 !atomic_inc_not_zero(&ctx->refcount)) { 1237 raw_spin_unlock(&ctx->lock); 1238 ctx = NULL; 1239 } else { 1240 WARN_ON_ONCE(ctx->task != task); 1241 } 1242 } 1243 rcu_read_unlock(); 1244 if (!ctx) 1245 local_irq_restore(*flags); 1246 return ctx; 1247 } 1248 1249 /* 1250 * Get the context for a task and increment its pin_count so it 1251 * can't get swapped to another task. This also increments its 1252 * reference count so that the context can't get freed. 1253 */ 1254 static struct perf_event_context * 1255 perf_pin_task_context(struct task_struct *task, int ctxn) 1256 { 1257 struct perf_event_context *ctx; 1258 unsigned long flags; 1259 1260 ctx = perf_lock_task_context(task, ctxn, &flags); 1261 if (ctx) { 1262 ++ctx->pin_count; 1263 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1264 } 1265 return ctx; 1266 } 1267 1268 static void perf_unpin_context(struct perf_event_context *ctx) 1269 { 1270 unsigned long flags; 1271 1272 raw_spin_lock_irqsave(&ctx->lock, flags); 1273 --ctx->pin_count; 1274 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1275 } 1276 1277 /* 1278 * Update the record of the current time in a context. 1279 */ 1280 static void update_context_time(struct perf_event_context *ctx) 1281 { 1282 u64 now = perf_clock(); 1283 1284 ctx->time += now - ctx->timestamp; 1285 ctx->timestamp = now; 1286 } 1287 1288 static u64 perf_event_time(struct perf_event *event) 1289 { 1290 struct perf_event_context *ctx = event->ctx; 1291 1292 if (is_cgroup_event(event)) 1293 return perf_cgroup_event_time(event); 1294 1295 return ctx ? ctx->time : 0; 1296 } 1297 1298 /* 1299 * Update the total_time_enabled and total_time_running fields for a event. 1300 */ 1301 static void update_event_times(struct perf_event *event) 1302 { 1303 struct perf_event_context *ctx = event->ctx; 1304 u64 run_end; 1305 1306 lockdep_assert_held(&ctx->lock); 1307 1308 if (event->state < PERF_EVENT_STATE_INACTIVE || 1309 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1310 return; 1311 1312 /* 1313 * in cgroup mode, time_enabled represents 1314 * the time the event was enabled AND active 1315 * tasks were in the monitored cgroup. This is 1316 * independent of the activity of the context as 1317 * there may be a mix of cgroup and non-cgroup events. 1318 * 1319 * That is why we treat cgroup events differently 1320 * here. 1321 */ 1322 if (is_cgroup_event(event)) 1323 run_end = perf_cgroup_event_time(event); 1324 else if (ctx->is_active) 1325 run_end = ctx->time; 1326 else 1327 run_end = event->tstamp_stopped; 1328 1329 event->total_time_enabled = run_end - event->tstamp_enabled; 1330 1331 if (event->state == PERF_EVENT_STATE_INACTIVE) 1332 run_end = event->tstamp_stopped; 1333 else 1334 run_end = perf_event_time(event); 1335 1336 event->total_time_running = run_end - event->tstamp_running; 1337 1338 } 1339 1340 /* 1341 * Update total_time_enabled and total_time_running for all events in a group. 1342 */ 1343 static void update_group_times(struct perf_event *leader) 1344 { 1345 struct perf_event *event; 1346 1347 update_event_times(leader); 1348 list_for_each_entry(event, &leader->sibling_list, group_entry) 1349 update_event_times(event); 1350 } 1351 1352 static struct list_head * 1353 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1354 { 1355 if (event->attr.pinned) 1356 return &ctx->pinned_groups; 1357 else 1358 return &ctx->flexible_groups; 1359 } 1360 1361 /* 1362 * Add a event from the lists for its context. 1363 * Must be called with ctx->mutex and ctx->lock held. 1364 */ 1365 static void 1366 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1367 { 1368 lockdep_assert_held(&ctx->lock); 1369 1370 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1371 event->attach_state |= PERF_ATTACH_CONTEXT; 1372 1373 /* 1374 * If we're a stand alone event or group leader, we go to the context 1375 * list, group events are kept attached to the group so that 1376 * perf_group_detach can, at all times, locate all siblings. 1377 */ 1378 if (event->group_leader == event) { 1379 struct list_head *list; 1380 1381 if (is_software_event(event)) 1382 event->group_flags |= PERF_GROUP_SOFTWARE; 1383 1384 list = ctx_group_list(event, ctx); 1385 list_add_tail(&event->group_entry, list); 1386 } 1387 1388 if (is_cgroup_event(event)) 1389 ctx->nr_cgroups++; 1390 1391 list_add_rcu(&event->event_entry, &ctx->event_list); 1392 ctx->nr_events++; 1393 if (event->attr.inherit_stat) 1394 ctx->nr_stat++; 1395 1396 ctx->generation++; 1397 } 1398 1399 /* 1400 * Initialize event state based on the perf_event_attr::disabled. 1401 */ 1402 static inline void perf_event__state_init(struct perf_event *event) 1403 { 1404 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1405 PERF_EVENT_STATE_INACTIVE; 1406 } 1407 1408 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1409 { 1410 int entry = sizeof(u64); /* value */ 1411 int size = 0; 1412 int nr = 1; 1413 1414 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1415 size += sizeof(u64); 1416 1417 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1418 size += sizeof(u64); 1419 1420 if (event->attr.read_format & PERF_FORMAT_ID) 1421 entry += sizeof(u64); 1422 1423 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1424 nr += nr_siblings; 1425 size += sizeof(u64); 1426 } 1427 1428 size += entry * nr; 1429 event->read_size = size; 1430 } 1431 1432 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1433 { 1434 struct perf_sample_data *data; 1435 u16 size = 0; 1436 1437 if (sample_type & PERF_SAMPLE_IP) 1438 size += sizeof(data->ip); 1439 1440 if (sample_type & PERF_SAMPLE_ADDR) 1441 size += sizeof(data->addr); 1442 1443 if (sample_type & PERF_SAMPLE_PERIOD) 1444 size += sizeof(data->period); 1445 1446 if (sample_type & PERF_SAMPLE_WEIGHT) 1447 size += sizeof(data->weight); 1448 1449 if (sample_type & PERF_SAMPLE_READ) 1450 size += event->read_size; 1451 1452 if (sample_type & PERF_SAMPLE_DATA_SRC) 1453 size += sizeof(data->data_src.val); 1454 1455 if (sample_type & PERF_SAMPLE_TRANSACTION) 1456 size += sizeof(data->txn); 1457 1458 event->header_size = size; 1459 } 1460 1461 /* 1462 * Called at perf_event creation and when events are attached/detached from a 1463 * group. 1464 */ 1465 static void perf_event__header_size(struct perf_event *event) 1466 { 1467 __perf_event_read_size(event, 1468 event->group_leader->nr_siblings); 1469 __perf_event_header_size(event, event->attr.sample_type); 1470 } 1471 1472 static void perf_event__id_header_size(struct perf_event *event) 1473 { 1474 struct perf_sample_data *data; 1475 u64 sample_type = event->attr.sample_type; 1476 u16 size = 0; 1477 1478 if (sample_type & PERF_SAMPLE_TID) 1479 size += sizeof(data->tid_entry); 1480 1481 if (sample_type & PERF_SAMPLE_TIME) 1482 size += sizeof(data->time); 1483 1484 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1485 size += sizeof(data->id); 1486 1487 if (sample_type & PERF_SAMPLE_ID) 1488 size += sizeof(data->id); 1489 1490 if (sample_type & PERF_SAMPLE_STREAM_ID) 1491 size += sizeof(data->stream_id); 1492 1493 if (sample_type & PERF_SAMPLE_CPU) 1494 size += sizeof(data->cpu_entry); 1495 1496 event->id_header_size = size; 1497 } 1498 1499 static bool perf_event_validate_size(struct perf_event *event) 1500 { 1501 /* 1502 * The values computed here will be over-written when we actually 1503 * attach the event. 1504 */ 1505 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1506 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1507 perf_event__id_header_size(event); 1508 1509 /* 1510 * Sum the lot; should not exceed the 64k limit we have on records. 1511 * Conservative limit to allow for callchains and other variable fields. 1512 */ 1513 if (event->read_size + event->header_size + 1514 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1515 return false; 1516 1517 return true; 1518 } 1519 1520 static void perf_group_attach(struct perf_event *event) 1521 { 1522 struct perf_event *group_leader = event->group_leader, *pos; 1523 1524 /* 1525 * We can have double attach due to group movement in perf_event_open. 1526 */ 1527 if (event->attach_state & PERF_ATTACH_GROUP) 1528 return; 1529 1530 event->attach_state |= PERF_ATTACH_GROUP; 1531 1532 if (group_leader == event) 1533 return; 1534 1535 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1536 1537 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1538 !is_software_event(event)) 1539 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1540 1541 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1542 group_leader->nr_siblings++; 1543 1544 perf_event__header_size(group_leader); 1545 1546 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1547 perf_event__header_size(pos); 1548 } 1549 1550 /* 1551 * Remove a event from the lists for its context. 1552 * Must be called with ctx->mutex and ctx->lock held. 1553 */ 1554 static void 1555 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1556 { 1557 struct perf_cpu_context *cpuctx; 1558 1559 WARN_ON_ONCE(event->ctx != ctx); 1560 lockdep_assert_held(&ctx->lock); 1561 1562 /* 1563 * We can have double detach due to exit/hot-unplug + close. 1564 */ 1565 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1566 return; 1567 1568 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1569 1570 if (is_cgroup_event(event)) { 1571 ctx->nr_cgroups--; 1572 /* 1573 * Because cgroup events are always per-cpu events, this will 1574 * always be called from the right CPU. 1575 */ 1576 cpuctx = __get_cpu_context(ctx); 1577 /* 1578 * If there are no more cgroup events then clear cgrp to avoid 1579 * stale pointer in update_cgrp_time_from_cpuctx(). 1580 */ 1581 if (!ctx->nr_cgroups) 1582 cpuctx->cgrp = NULL; 1583 } 1584 1585 ctx->nr_events--; 1586 if (event->attr.inherit_stat) 1587 ctx->nr_stat--; 1588 1589 list_del_rcu(&event->event_entry); 1590 1591 if (event->group_leader == event) 1592 list_del_init(&event->group_entry); 1593 1594 update_group_times(event); 1595 1596 /* 1597 * If event was in error state, then keep it 1598 * that way, otherwise bogus counts will be 1599 * returned on read(). The only way to get out 1600 * of error state is by explicit re-enabling 1601 * of the event 1602 */ 1603 if (event->state > PERF_EVENT_STATE_OFF) 1604 event->state = PERF_EVENT_STATE_OFF; 1605 1606 ctx->generation++; 1607 } 1608 1609 static void perf_group_detach(struct perf_event *event) 1610 { 1611 struct perf_event *sibling, *tmp; 1612 struct list_head *list = NULL; 1613 1614 /* 1615 * We can have double detach due to exit/hot-unplug + close. 1616 */ 1617 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1618 return; 1619 1620 event->attach_state &= ~PERF_ATTACH_GROUP; 1621 1622 /* 1623 * If this is a sibling, remove it from its group. 1624 */ 1625 if (event->group_leader != event) { 1626 list_del_init(&event->group_entry); 1627 event->group_leader->nr_siblings--; 1628 goto out; 1629 } 1630 1631 if (!list_empty(&event->group_entry)) 1632 list = &event->group_entry; 1633 1634 /* 1635 * If this was a group event with sibling events then 1636 * upgrade the siblings to singleton events by adding them 1637 * to whatever list we are on. 1638 */ 1639 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1640 if (list) 1641 list_move_tail(&sibling->group_entry, list); 1642 sibling->group_leader = sibling; 1643 1644 /* Inherit group flags from the previous leader */ 1645 sibling->group_flags = event->group_flags; 1646 1647 WARN_ON_ONCE(sibling->ctx != event->ctx); 1648 } 1649 1650 out: 1651 perf_event__header_size(event->group_leader); 1652 1653 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1654 perf_event__header_size(tmp); 1655 } 1656 1657 static bool is_orphaned_event(struct perf_event *event) 1658 { 1659 return event->state == PERF_EVENT_STATE_DEAD; 1660 } 1661 1662 static inline int pmu_filter_match(struct perf_event *event) 1663 { 1664 struct pmu *pmu = event->pmu; 1665 return pmu->filter_match ? pmu->filter_match(event) : 1; 1666 } 1667 1668 static inline int 1669 event_filter_match(struct perf_event *event) 1670 { 1671 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1672 && perf_cgroup_match(event) && pmu_filter_match(event); 1673 } 1674 1675 static void 1676 event_sched_out(struct perf_event *event, 1677 struct perf_cpu_context *cpuctx, 1678 struct perf_event_context *ctx) 1679 { 1680 u64 tstamp = perf_event_time(event); 1681 u64 delta; 1682 1683 WARN_ON_ONCE(event->ctx != ctx); 1684 lockdep_assert_held(&ctx->lock); 1685 1686 /* 1687 * An event which could not be activated because of 1688 * filter mismatch still needs to have its timings 1689 * maintained, otherwise bogus information is return 1690 * via read() for time_enabled, time_running: 1691 */ 1692 if (event->state == PERF_EVENT_STATE_INACTIVE 1693 && !event_filter_match(event)) { 1694 delta = tstamp - event->tstamp_stopped; 1695 event->tstamp_running += delta; 1696 event->tstamp_stopped = tstamp; 1697 } 1698 1699 if (event->state != PERF_EVENT_STATE_ACTIVE) 1700 return; 1701 1702 perf_pmu_disable(event->pmu); 1703 1704 event->tstamp_stopped = tstamp; 1705 event->pmu->del(event, 0); 1706 event->oncpu = -1; 1707 event->state = PERF_EVENT_STATE_INACTIVE; 1708 if (event->pending_disable) { 1709 event->pending_disable = 0; 1710 event->state = PERF_EVENT_STATE_OFF; 1711 } 1712 1713 if (!is_software_event(event)) 1714 cpuctx->active_oncpu--; 1715 if (!--ctx->nr_active) 1716 perf_event_ctx_deactivate(ctx); 1717 if (event->attr.freq && event->attr.sample_freq) 1718 ctx->nr_freq--; 1719 if (event->attr.exclusive || !cpuctx->active_oncpu) 1720 cpuctx->exclusive = 0; 1721 1722 perf_pmu_enable(event->pmu); 1723 } 1724 1725 static void 1726 group_sched_out(struct perf_event *group_event, 1727 struct perf_cpu_context *cpuctx, 1728 struct perf_event_context *ctx) 1729 { 1730 struct perf_event *event; 1731 int state = group_event->state; 1732 1733 event_sched_out(group_event, cpuctx, ctx); 1734 1735 /* 1736 * Schedule out siblings (if any): 1737 */ 1738 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1739 event_sched_out(event, cpuctx, ctx); 1740 1741 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1742 cpuctx->exclusive = 0; 1743 } 1744 1745 #define DETACH_GROUP 0x01UL 1746 1747 /* 1748 * Cross CPU call to remove a performance event 1749 * 1750 * We disable the event on the hardware level first. After that we 1751 * remove it from the context list. 1752 */ 1753 static void 1754 __perf_remove_from_context(struct perf_event *event, 1755 struct perf_cpu_context *cpuctx, 1756 struct perf_event_context *ctx, 1757 void *info) 1758 { 1759 unsigned long flags = (unsigned long)info; 1760 1761 event_sched_out(event, cpuctx, ctx); 1762 if (flags & DETACH_GROUP) 1763 perf_group_detach(event); 1764 list_del_event(event, ctx); 1765 1766 if (!ctx->nr_events && ctx->is_active) { 1767 ctx->is_active = 0; 1768 if (ctx->task) { 1769 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1770 cpuctx->task_ctx = NULL; 1771 } 1772 } 1773 } 1774 1775 /* 1776 * Remove the event from a task's (or a CPU's) list of events. 1777 * 1778 * If event->ctx is a cloned context, callers must make sure that 1779 * every task struct that event->ctx->task could possibly point to 1780 * remains valid. This is OK when called from perf_release since 1781 * that only calls us on the top-level context, which can't be a clone. 1782 * When called from perf_event_exit_task, it's OK because the 1783 * context has been detached from its task. 1784 */ 1785 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1786 { 1787 lockdep_assert_held(&event->ctx->mutex); 1788 1789 event_function_call(event, __perf_remove_from_context, (void *)flags); 1790 } 1791 1792 /* 1793 * Cross CPU call to disable a performance event 1794 */ 1795 static void __perf_event_disable(struct perf_event *event, 1796 struct perf_cpu_context *cpuctx, 1797 struct perf_event_context *ctx, 1798 void *info) 1799 { 1800 if (event->state < PERF_EVENT_STATE_INACTIVE) 1801 return; 1802 1803 update_context_time(ctx); 1804 update_cgrp_time_from_event(event); 1805 update_group_times(event); 1806 if (event == event->group_leader) 1807 group_sched_out(event, cpuctx, ctx); 1808 else 1809 event_sched_out(event, cpuctx, ctx); 1810 event->state = PERF_EVENT_STATE_OFF; 1811 } 1812 1813 /* 1814 * Disable a event. 1815 * 1816 * If event->ctx is a cloned context, callers must make sure that 1817 * every task struct that event->ctx->task could possibly point to 1818 * remains valid. This condition is satisifed when called through 1819 * perf_event_for_each_child or perf_event_for_each because they 1820 * hold the top-level event's child_mutex, so any descendant that 1821 * goes to exit will block in perf_event_exit_event(). 1822 * 1823 * When called from perf_pending_event it's OK because event->ctx 1824 * is the current context on this CPU and preemption is disabled, 1825 * hence we can't get into perf_event_task_sched_out for this context. 1826 */ 1827 static void _perf_event_disable(struct perf_event *event) 1828 { 1829 struct perf_event_context *ctx = event->ctx; 1830 1831 raw_spin_lock_irq(&ctx->lock); 1832 if (event->state <= PERF_EVENT_STATE_OFF) { 1833 raw_spin_unlock_irq(&ctx->lock); 1834 return; 1835 } 1836 raw_spin_unlock_irq(&ctx->lock); 1837 1838 event_function_call(event, __perf_event_disable, NULL); 1839 } 1840 1841 void perf_event_disable_local(struct perf_event *event) 1842 { 1843 event_function_local(event, __perf_event_disable, NULL); 1844 } 1845 1846 /* 1847 * Strictly speaking kernel users cannot create groups and therefore this 1848 * interface does not need the perf_event_ctx_lock() magic. 1849 */ 1850 void perf_event_disable(struct perf_event *event) 1851 { 1852 struct perf_event_context *ctx; 1853 1854 ctx = perf_event_ctx_lock(event); 1855 _perf_event_disable(event); 1856 perf_event_ctx_unlock(event, ctx); 1857 } 1858 EXPORT_SYMBOL_GPL(perf_event_disable); 1859 1860 static void perf_set_shadow_time(struct perf_event *event, 1861 struct perf_event_context *ctx, 1862 u64 tstamp) 1863 { 1864 /* 1865 * use the correct time source for the time snapshot 1866 * 1867 * We could get by without this by leveraging the 1868 * fact that to get to this function, the caller 1869 * has most likely already called update_context_time() 1870 * and update_cgrp_time_xx() and thus both timestamp 1871 * are identical (or very close). Given that tstamp is, 1872 * already adjusted for cgroup, we could say that: 1873 * tstamp - ctx->timestamp 1874 * is equivalent to 1875 * tstamp - cgrp->timestamp. 1876 * 1877 * Then, in perf_output_read(), the calculation would 1878 * work with no changes because: 1879 * - event is guaranteed scheduled in 1880 * - no scheduled out in between 1881 * - thus the timestamp would be the same 1882 * 1883 * But this is a bit hairy. 1884 * 1885 * So instead, we have an explicit cgroup call to remain 1886 * within the time time source all along. We believe it 1887 * is cleaner and simpler to understand. 1888 */ 1889 if (is_cgroup_event(event)) 1890 perf_cgroup_set_shadow_time(event, tstamp); 1891 else 1892 event->shadow_ctx_time = tstamp - ctx->timestamp; 1893 } 1894 1895 #define MAX_INTERRUPTS (~0ULL) 1896 1897 static void perf_log_throttle(struct perf_event *event, int enable); 1898 static void perf_log_itrace_start(struct perf_event *event); 1899 1900 static int 1901 event_sched_in(struct perf_event *event, 1902 struct perf_cpu_context *cpuctx, 1903 struct perf_event_context *ctx) 1904 { 1905 u64 tstamp = perf_event_time(event); 1906 int ret = 0; 1907 1908 lockdep_assert_held(&ctx->lock); 1909 1910 if (event->state <= PERF_EVENT_STATE_OFF) 1911 return 0; 1912 1913 event->state = PERF_EVENT_STATE_ACTIVE; 1914 event->oncpu = smp_processor_id(); 1915 1916 /* 1917 * Unthrottle events, since we scheduled we might have missed several 1918 * ticks already, also for a heavily scheduling task there is little 1919 * guarantee it'll get a tick in a timely manner. 1920 */ 1921 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1922 perf_log_throttle(event, 1); 1923 event->hw.interrupts = 0; 1924 } 1925 1926 /* 1927 * The new state must be visible before we turn it on in the hardware: 1928 */ 1929 smp_wmb(); 1930 1931 perf_pmu_disable(event->pmu); 1932 1933 perf_set_shadow_time(event, ctx, tstamp); 1934 1935 perf_log_itrace_start(event); 1936 1937 if (event->pmu->add(event, PERF_EF_START)) { 1938 event->state = PERF_EVENT_STATE_INACTIVE; 1939 event->oncpu = -1; 1940 ret = -EAGAIN; 1941 goto out; 1942 } 1943 1944 event->tstamp_running += tstamp - event->tstamp_stopped; 1945 1946 if (!is_software_event(event)) 1947 cpuctx->active_oncpu++; 1948 if (!ctx->nr_active++) 1949 perf_event_ctx_activate(ctx); 1950 if (event->attr.freq && event->attr.sample_freq) 1951 ctx->nr_freq++; 1952 1953 if (event->attr.exclusive) 1954 cpuctx->exclusive = 1; 1955 1956 out: 1957 perf_pmu_enable(event->pmu); 1958 1959 return ret; 1960 } 1961 1962 static int 1963 group_sched_in(struct perf_event *group_event, 1964 struct perf_cpu_context *cpuctx, 1965 struct perf_event_context *ctx) 1966 { 1967 struct perf_event *event, *partial_group = NULL; 1968 struct pmu *pmu = ctx->pmu; 1969 u64 now = ctx->time; 1970 bool simulate = false; 1971 1972 if (group_event->state == PERF_EVENT_STATE_OFF) 1973 return 0; 1974 1975 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 1976 1977 if (event_sched_in(group_event, cpuctx, ctx)) { 1978 pmu->cancel_txn(pmu); 1979 perf_mux_hrtimer_restart(cpuctx); 1980 return -EAGAIN; 1981 } 1982 1983 /* 1984 * Schedule in siblings as one group (if any): 1985 */ 1986 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1987 if (event_sched_in(event, cpuctx, ctx)) { 1988 partial_group = event; 1989 goto group_error; 1990 } 1991 } 1992 1993 if (!pmu->commit_txn(pmu)) 1994 return 0; 1995 1996 group_error: 1997 /* 1998 * Groups can be scheduled in as one unit only, so undo any 1999 * partial group before returning: 2000 * The events up to the failed event are scheduled out normally, 2001 * tstamp_stopped will be updated. 2002 * 2003 * The failed events and the remaining siblings need to have 2004 * their timings updated as if they had gone thru event_sched_in() 2005 * and event_sched_out(). This is required to get consistent timings 2006 * across the group. This also takes care of the case where the group 2007 * could never be scheduled by ensuring tstamp_stopped is set to mark 2008 * the time the event was actually stopped, such that time delta 2009 * calculation in update_event_times() is correct. 2010 */ 2011 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2012 if (event == partial_group) 2013 simulate = true; 2014 2015 if (simulate) { 2016 event->tstamp_running += now - event->tstamp_stopped; 2017 event->tstamp_stopped = now; 2018 } else { 2019 event_sched_out(event, cpuctx, ctx); 2020 } 2021 } 2022 event_sched_out(group_event, cpuctx, ctx); 2023 2024 pmu->cancel_txn(pmu); 2025 2026 perf_mux_hrtimer_restart(cpuctx); 2027 2028 return -EAGAIN; 2029 } 2030 2031 /* 2032 * Work out whether we can put this event group on the CPU now. 2033 */ 2034 static int group_can_go_on(struct perf_event *event, 2035 struct perf_cpu_context *cpuctx, 2036 int can_add_hw) 2037 { 2038 /* 2039 * Groups consisting entirely of software events can always go on. 2040 */ 2041 if (event->group_flags & PERF_GROUP_SOFTWARE) 2042 return 1; 2043 /* 2044 * If an exclusive group is already on, no other hardware 2045 * events can go on. 2046 */ 2047 if (cpuctx->exclusive) 2048 return 0; 2049 /* 2050 * If this group is exclusive and there are already 2051 * events on the CPU, it can't go on. 2052 */ 2053 if (event->attr.exclusive && cpuctx->active_oncpu) 2054 return 0; 2055 /* 2056 * Otherwise, try to add it if all previous groups were able 2057 * to go on. 2058 */ 2059 return can_add_hw; 2060 } 2061 2062 static void add_event_to_ctx(struct perf_event *event, 2063 struct perf_event_context *ctx) 2064 { 2065 u64 tstamp = perf_event_time(event); 2066 2067 list_add_event(event, ctx); 2068 perf_group_attach(event); 2069 event->tstamp_enabled = tstamp; 2070 event->tstamp_running = tstamp; 2071 event->tstamp_stopped = tstamp; 2072 } 2073 2074 static void ctx_sched_out(struct perf_event_context *ctx, 2075 struct perf_cpu_context *cpuctx, 2076 enum event_type_t event_type); 2077 static void 2078 ctx_sched_in(struct perf_event_context *ctx, 2079 struct perf_cpu_context *cpuctx, 2080 enum event_type_t event_type, 2081 struct task_struct *task); 2082 2083 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2084 struct perf_event_context *ctx) 2085 { 2086 if (!cpuctx->task_ctx) 2087 return; 2088 2089 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2090 return; 2091 2092 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2093 } 2094 2095 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2096 struct perf_event_context *ctx, 2097 struct task_struct *task) 2098 { 2099 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2100 if (ctx) 2101 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2102 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2103 if (ctx) 2104 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2105 } 2106 2107 static void ctx_resched(struct perf_cpu_context *cpuctx, 2108 struct perf_event_context *task_ctx) 2109 { 2110 perf_pmu_disable(cpuctx->ctx.pmu); 2111 if (task_ctx) 2112 task_ctx_sched_out(cpuctx, task_ctx); 2113 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2114 perf_event_sched_in(cpuctx, task_ctx, current); 2115 perf_pmu_enable(cpuctx->ctx.pmu); 2116 } 2117 2118 /* 2119 * Cross CPU call to install and enable a performance event 2120 * 2121 * Very similar to remote_function() + event_function() but cannot assume that 2122 * things like ctx->is_active and cpuctx->task_ctx are set. 2123 */ 2124 static int __perf_install_in_context(void *info) 2125 { 2126 struct perf_event *event = info; 2127 struct perf_event_context *ctx = event->ctx; 2128 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2129 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2130 bool activate = true; 2131 int ret = 0; 2132 2133 raw_spin_lock(&cpuctx->ctx.lock); 2134 if (ctx->task) { 2135 raw_spin_lock(&ctx->lock); 2136 task_ctx = ctx; 2137 2138 /* If we're on the wrong CPU, try again */ 2139 if (task_cpu(ctx->task) != smp_processor_id()) { 2140 ret = -ESRCH; 2141 goto unlock; 2142 } 2143 2144 /* 2145 * If we're on the right CPU, see if the task we target is 2146 * current, if not we don't have to activate the ctx, a future 2147 * context switch will do that for us. 2148 */ 2149 if (ctx->task != current) 2150 activate = false; 2151 else 2152 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2153 2154 } else if (task_ctx) { 2155 raw_spin_lock(&task_ctx->lock); 2156 } 2157 2158 if (activate) { 2159 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2160 add_event_to_ctx(event, ctx); 2161 ctx_resched(cpuctx, task_ctx); 2162 } else { 2163 add_event_to_ctx(event, ctx); 2164 } 2165 2166 unlock: 2167 perf_ctx_unlock(cpuctx, task_ctx); 2168 2169 return ret; 2170 } 2171 2172 /* 2173 * Attach a performance event to a context. 2174 * 2175 * Very similar to event_function_call, see comment there. 2176 */ 2177 static void 2178 perf_install_in_context(struct perf_event_context *ctx, 2179 struct perf_event *event, 2180 int cpu) 2181 { 2182 struct task_struct *task = READ_ONCE(ctx->task); 2183 2184 lockdep_assert_held(&ctx->mutex); 2185 2186 event->ctx = ctx; 2187 if (event->cpu != -1) 2188 event->cpu = cpu; 2189 2190 if (!task) { 2191 cpu_function_call(cpu, __perf_install_in_context, event); 2192 return; 2193 } 2194 2195 /* 2196 * Should not happen, we validate the ctx is still alive before calling. 2197 */ 2198 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2199 return; 2200 2201 /* 2202 * Installing events is tricky because we cannot rely on ctx->is_active 2203 * to be set in case this is the nr_events 0 -> 1 transition. 2204 */ 2205 again: 2206 /* 2207 * Cannot use task_function_call() because we need to run on the task's 2208 * CPU regardless of whether its current or not. 2209 */ 2210 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2211 return; 2212 2213 raw_spin_lock_irq(&ctx->lock); 2214 task = ctx->task; 2215 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2216 /* 2217 * Cannot happen because we already checked above (which also 2218 * cannot happen), and we hold ctx->mutex, which serializes us 2219 * against perf_event_exit_task_context(). 2220 */ 2221 raw_spin_unlock_irq(&ctx->lock); 2222 return; 2223 } 2224 raw_spin_unlock_irq(&ctx->lock); 2225 /* 2226 * Since !ctx->is_active doesn't mean anything, we must IPI 2227 * unconditionally. 2228 */ 2229 goto again; 2230 } 2231 2232 /* 2233 * Put a event into inactive state and update time fields. 2234 * Enabling the leader of a group effectively enables all 2235 * the group members that aren't explicitly disabled, so we 2236 * have to update their ->tstamp_enabled also. 2237 * Note: this works for group members as well as group leaders 2238 * since the non-leader members' sibling_lists will be empty. 2239 */ 2240 static void __perf_event_mark_enabled(struct perf_event *event) 2241 { 2242 struct perf_event *sub; 2243 u64 tstamp = perf_event_time(event); 2244 2245 event->state = PERF_EVENT_STATE_INACTIVE; 2246 event->tstamp_enabled = tstamp - event->total_time_enabled; 2247 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2248 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2249 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2250 } 2251 } 2252 2253 /* 2254 * Cross CPU call to enable a performance event 2255 */ 2256 static void __perf_event_enable(struct perf_event *event, 2257 struct perf_cpu_context *cpuctx, 2258 struct perf_event_context *ctx, 2259 void *info) 2260 { 2261 struct perf_event *leader = event->group_leader; 2262 struct perf_event_context *task_ctx; 2263 2264 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2265 event->state <= PERF_EVENT_STATE_ERROR) 2266 return; 2267 2268 if (ctx->is_active) 2269 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2270 2271 __perf_event_mark_enabled(event); 2272 2273 if (!ctx->is_active) 2274 return; 2275 2276 if (!event_filter_match(event)) { 2277 if (is_cgroup_event(event)) 2278 perf_cgroup_defer_enabled(event); 2279 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2280 return; 2281 } 2282 2283 /* 2284 * If the event is in a group and isn't the group leader, 2285 * then don't put it on unless the group is on. 2286 */ 2287 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2288 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2289 return; 2290 } 2291 2292 task_ctx = cpuctx->task_ctx; 2293 if (ctx->task) 2294 WARN_ON_ONCE(task_ctx != ctx); 2295 2296 ctx_resched(cpuctx, task_ctx); 2297 } 2298 2299 /* 2300 * Enable a event. 2301 * 2302 * If event->ctx is a cloned context, callers must make sure that 2303 * every task struct that event->ctx->task could possibly point to 2304 * remains valid. This condition is satisfied when called through 2305 * perf_event_for_each_child or perf_event_for_each as described 2306 * for perf_event_disable. 2307 */ 2308 static void _perf_event_enable(struct perf_event *event) 2309 { 2310 struct perf_event_context *ctx = event->ctx; 2311 2312 raw_spin_lock_irq(&ctx->lock); 2313 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2314 event->state < PERF_EVENT_STATE_ERROR) { 2315 raw_spin_unlock_irq(&ctx->lock); 2316 return; 2317 } 2318 2319 /* 2320 * If the event is in error state, clear that first. 2321 * 2322 * That way, if we see the event in error state below, we know that it 2323 * has gone back into error state, as distinct from the task having 2324 * been scheduled away before the cross-call arrived. 2325 */ 2326 if (event->state == PERF_EVENT_STATE_ERROR) 2327 event->state = PERF_EVENT_STATE_OFF; 2328 raw_spin_unlock_irq(&ctx->lock); 2329 2330 event_function_call(event, __perf_event_enable, NULL); 2331 } 2332 2333 /* 2334 * See perf_event_disable(); 2335 */ 2336 void perf_event_enable(struct perf_event *event) 2337 { 2338 struct perf_event_context *ctx; 2339 2340 ctx = perf_event_ctx_lock(event); 2341 _perf_event_enable(event); 2342 perf_event_ctx_unlock(event, ctx); 2343 } 2344 EXPORT_SYMBOL_GPL(perf_event_enable); 2345 2346 static int _perf_event_refresh(struct perf_event *event, int refresh) 2347 { 2348 /* 2349 * not supported on inherited events 2350 */ 2351 if (event->attr.inherit || !is_sampling_event(event)) 2352 return -EINVAL; 2353 2354 atomic_add(refresh, &event->event_limit); 2355 _perf_event_enable(event); 2356 2357 return 0; 2358 } 2359 2360 /* 2361 * See perf_event_disable() 2362 */ 2363 int perf_event_refresh(struct perf_event *event, int refresh) 2364 { 2365 struct perf_event_context *ctx; 2366 int ret; 2367 2368 ctx = perf_event_ctx_lock(event); 2369 ret = _perf_event_refresh(event, refresh); 2370 perf_event_ctx_unlock(event, ctx); 2371 2372 return ret; 2373 } 2374 EXPORT_SYMBOL_GPL(perf_event_refresh); 2375 2376 static void ctx_sched_out(struct perf_event_context *ctx, 2377 struct perf_cpu_context *cpuctx, 2378 enum event_type_t event_type) 2379 { 2380 int is_active = ctx->is_active; 2381 struct perf_event *event; 2382 2383 lockdep_assert_held(&ctx->lock); 2384 2385 if (likely(!ctx->nr_events)) { 2386 /* 2387 * See __perf_remove_from_context(). 2388 */ 2389 WARN_ON_ONCE(ctx->is_active); 2390 if (ctx->task) 2391 WARN_ON_ONCE(cpuctx->task_ctx); 2392 return; 2393 } 2394 2395 ctx->is_active &= ~event_type; 2396 if (!(ctx->is_active & EVENT_ALL)) 2397 ctx->is_active = 0; 2398 2399 if (ctx->task) { 2400 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2401 if (!ctx->is_active) 2402 cpuctx->task_ctx = NULL; 2403 } 2404 2405 is_active ^= ctx->is_active; /* changed bits */ 2406 2407 if (is_active & EVENT_TIME) { 2408 /* update (and stop) ctx time */ 2409 update_context_time(ctx); 2410 update_cgrp_time_from_cpuctx(cpuctx); 2411 } 2412 2413 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2414 return; 2415 2416 perf_pmu_disable(ctx->pmu); 2417 if (is_active & EVENT_PINNED) { 2418 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2419 group_sched_out(event, cpuctx, ctx); 2420 } 2421 2422 if (is_active & EVENT_FLEXIBLE) { 2423 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2424 group_sched_out(event, cpuctx, ctx); 2425 } 2426 perf_pmu_enable(ctx->pmu); 2427 } 2428 2429 /* 2430 * Test whether two contexts are equivalent, i.e. whether they have both been 2431 * cloned from the same version of the same context. 2432 * 2433 * Equivalence is measured using a generation number in the context that is 2434 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2435 * and list_del_event(). 2436 */ 2437 static int context_equiv(struct perf_event_context *ctx1, 2438 struct perf_event_context *ctx2) 2439 { 2440 lockdep_assert_held(&ctx1->lock); 2441 lockdep_assert_held(&ctx2->lock); 2442 2443 /* Pinning disables the swap optimization */ 2444 if (ctx1->pin_count || ctx2->pin_count) 2445 return 0; 2446 2447 /* If ctx1 is the parent of ctx2 */ 2448 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2449 return 1; 2450 2451 /* If ctx2 is the parent of ctx1 */ 2452 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2453 return 1; 2454 2455 /* 2456 * If ctx1 and ctx2 have the same parent; we flatten the parent 2457 * hierarchy, see perf_event_init_context(). 2458 */ 2459 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2460 ctx1->parent_gen == ctx2->parent_gen) 2461 return 1; 2462 2463 /* Unmatched */ 2464 return 0; 2465 } 2466 2467 static void __perf_event_sync_stat(struct perf_event *event, 2468 struct perf_event *next_event) 2469 { 2470 u64 value; 2471 2472 if (!event->attr.inherit_stat) 2473 return; 2474 2475 /* 2476 * Update the event value, we cannot use perf_event_read() 2477 * because we're in the middle of a context switch and have IRQs 2478 * disabled, which upsets smp_call_function_single(), however 2479 * we know the event must be on the current CPU, therefore we 2480 * don't need to use it. 2481 */ 2482 switch (event->state) { 2483 case PERF_EVENT_STATE_ACTIVE: 2484 event->pmu->read(event); 2485 /* fall-through */ 2486 2487 case PERF_EVENT_STATE_INACTIVE: 2488 update_event_times(event); 2489 break; 2490 2491 default: 2492 break; 2493 } 2494 2495 /* 2496 * In order to keep per-task stats reliable we need to flip the event 2497 * values when we flip the contexts. 2498 */ 2499 value = local64_read(&next_event->count); 2500 value = local64_xchg(&event->count, value); 2501 local64_set(&next_event->count, value); 2502 2503 swap(event->total_time_enabled, next_event->total_time_enabled); 2504 swap(event->total_time_running, next_event->total_time_running); 2505 2506 /* 2507 * Since we swizzled the values, update the user visible data too. 2508 */ 2509 perf_event_update_userpage(event); 2510 perf_event_update_userpage(next_event); 2511 } 2512 2513 static void perf_event_sync_stat(struct perf_event_context *ctx, 2514 struct perf_event_context *next_ctx) 2515 { 2516 struct perf_event *event, *next_event; 2517 2518 if (!ctx->nr_stat) 2519 return; 2520 2521 update_context_time(ctx); 2522 2523 event = list_first_entry(&ctx->event_list, 2524 struct perf_event, event_entry); 2525 2526 next_event = list_first_entry(&next_ctx->event_list, 2527 struct perf_event, event_entry); 2528 2529 while (&event->event_entry != &ctx->event_list && 2530 &next_event->event_entry != &next_ctx->event_list) { 2531 2532 __perf_event_sync_stat(event, next_event); 2533 2534 event = list_next_entry(event, event_entry); 2535 next_event = list_next_entry(next_event, event_entry); 2536 } 2537 } 2538 2539 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2540 struct task_struct *next) 2541 { 2542 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2543 struct perf_event_context *next_ctx; 2544 struct perf_event_context *parent, *next_parent; 2545 struct perf_cpu_context *cpuctx; 2546 int do_switch = 1; 2547 2548 if (likely(!ctx)) 2549 return; 2550 2551 cpuctx = __get_cpu_context(ctx); 2552 if (!cpuctx->task_ctx) 2553 return; 2554 2555 rcu_read_lock(); 2556 next_ctx = next->perf_event_ctxp[ctxn]; 2557 if (!next_ctx) 2558 goto unlock; 2559 2560 parent = rcu_dereference(ctx->parent_ctx); 2561 next_parent = rcu_dereference(next_ctx->parent_ctx); 2562 2563 /* If neither context have a parent context; they cannot be clones. */ 2564 if (!parent && !next_parent) 2565 goto unlock; 2566 2567 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2568 /* 2569 * Looks like the two contexts are clones, so we might be 2570 * able to optimize the context switch. We lock both 2571 * contexts and check that they are clones under the 2572 * lock (including re-checking that neither has been 2573 * uncloned in the meantime). It doesn't matter which 2574 * order we take the locks because no other cpu could 2575 * be trying to lock both of these tasks. 2576 */ 2577 raw_spin_lock(&ctx->lock); 2578 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2579 if (context_equiv(ctx, next_ctx)) { 2580 WRITE_ONCE(ctx->task, next); 2581 WRITE_ONCE(next_ctx->task, task); 2582 2583 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2584 2585 /* 2586 * RCU_INIT_POINTER here is safe because we've not 2587 * modified the ctx and the above modification of 2588 * ctx->task and ctx->task_ctx_data are immaterial 2589 * since those values are always verified under 2590 * ctx->lock which we're now holding. 2591 */ 2592 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2593 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2594 2595 do_switch = 0; 2596 2597 perf_event_sync_stat(ctx, next_ctx); 2598 } 2599 raw_spin_unlock(&next_ctx->lock); 2600 raw_spin_unlock(&ctx->lock); 2601 } 2602 unlock: 2603 rcu_read_unlock(); 2604 2605 if (do_switch) { 2606 raw_spin_lock(&ctx->lock); 2607 task_ctx_sched_out(cpuctx, ctx); 2608 raw_spin_unlock(&ctx->lock); 2609 } 2610 } 2611 2612 void perf_sched_cb_dec(struct pmu *pmu) 2613 { 2614 this_cpu_dec(perf_sched_cb_usages); 2615 } 2616 2617 void perf_sched_cb_inc(struct pmu *pmu) 2618 { 2619 this_cpu_inc(perf_sched_cb_usages); 2620 } 2621 2622 /* 2623 * This function provides the context switch callback to the lower code 2624 * layer. It is invoked ONLY when the context switch callback is enabled. 2625 */ 2626 static void perf_pmu_sched_task(struct task_struct *prev, 2627 struct task_struct *next, 2628 bool sched_in) 2629 { 2630 struct perf_cpu_context *cpuctx; 2631 struct pmu *pmu; 2632 unsigned long flags; 2633 2634 if (prev == next) 2635 return; 2636 2637 local_irq_save(flags); 2638 2639 rcu_read_lock(); 2640 2641 list_for_each_entry_rcu(pmu, &pmus, entry) { 2642 if (pmu->sched_task) { 2643 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2644 2645 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2646 2647 perf_pmu_disable(pmu); 2648 2649 pmu->sched_task(cpuctx->task_ctx, sched_in); 2650 2651 perf_pmu_enable(pmu); 2652 2653 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2654 } 2655 } 2656 2657 rcu_read_unlock(); 2658 2659 local_irq_restore(flags); 2660 } 2661 2662 static void perf_event_switch(struct task_struct *task, 2663 struct task_struct *next_prev, bool sched_in); 2664 2665 #define for_each_task_context_nr(ctxn) \ 2666 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2667 2668 /* 2669 * Called from scheduler to remove the events of the current task, 2670 * with interrupts disabled. 2671 * 2672 * We stop each event and update the event value in event->count. 2673 * 2674 * This does not protect us against NMI, but disable() 2675 * sets the disabled bit in the control field of event _before_ 2676 * accessing the event control register. If a NMI hits, then it will 2677 * not restart the event. 2678 */ 2679 void __perf_event_task_sched_out(struct task_struct *task, 2680 struct task_struct *next) 2681 { 2682 int ctxn; 2683 2684 if (__this_cpu_read(perf_sched_cb_usages)) 2685 perf_pmu_sched_task(task, next, false); 2686 2687 if (atomic_read(&nr_switch_events)) 2688 perf_event_switch(task, next, false); 2689 2690 for_each_task_context_nr(ctxn) 2691 perf_event_context_sched_out(task, ctxn, next); 2692 2693 /* 2694 * if cgroup events exist on this CPU, then we need 2695 * to check if we have to switch out PMU state. 2696 * cgroup event are system-wide mode only 2697 */ 2698 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2699 perf_cgroup_sched_out(task, next); 2700 } 2701 2702 /* 2703 * Called with IRQs disabled 2704 */ 2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2706 enum event_type_t event_type) 2707 { 2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2709 } 2710 2711 static void 2712 ctx_pinned_sched_in(struct perf_event_context *ctx, 2713 struct perf_cpu_context *cpuctx) 2714 { 2715 struct perf_event *event; 2716 2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2718 if (event->state <= PERF_EVENT_STATE_OFF) 2719 continue; 2720 if (!event_filter_match(event)) 2721 continue; 2722 2723 /* may need to reset tstamp_enabled */ 2724 if (is_cgroup_event(event)) 2725 perf_cgroup_mark_enabled(event, ctx); 2726 2727 if (group_can_go_on(event, cpuctx, 1)) 2728 group_sched_in(event, cpuctx, ctx); 2729 2730 /* 2731 * If this pinned group hasn't been scheduled, 2732 * put it in error state. 2733 */ 2734 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2735 update_group_times(event); 2736 event->state = PERF_EVENT_STATE_ERROR; 2737 } 2738 } 2739 } 2740 2741 static void 2742 ctx_flexible_sched_in(struct perf_event_context *ctx, 2743 struct perf_cpu_context *cpuctx) 2744 { 2745 struct perf_event *event; 2746 int can_add_hw = 1; 2747 2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2749 /* Ignore events in OFF or ERROR state */ 2750 if (event->state <= PERF_EVENT_STATE_OFF) 2751 continue; 2752 /* 2753 * Listen to the 'cpu' scheduling filter constraint 2754 * of events: 2755 */ 2756 if (!event_filter_match(event)) 2757 continue; 2758 2759 /* may need to reset tstamp_enabled */ 2760 if (is_cgroup_event(event)) 2761 perf_cgroup_mark_enabled(event, ctx); 2762 2763 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2764 if (group_sched_in(event, cpuctx, ctx)) 2765 can_add_hw = 0; 2766 } 2767 } 2768 } 2769 2770 static void 2771 ctx_sched_in(struct perf_event_context *ctx, 2772 struct perf_cpu_context *cpuctx, 2773 enum event_type_t event_type, 2774 struct task_struct *task) 2775 { 2776 int is_active = ctx->is_active; 2777 u64 now; 2778 2779 lockdep_assert_held(&ctx->lock); 2780 2781 if (likely(!ctx->nr_events)) 2782 return; 2783 2784 ctx->is_active |= (event_type | EVENT_TIME); 2785 if (ctx->task) { 2786 if (!is_active) 2787 cpuctx->task_ctx = ctx; 2788 else 2789 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2790 } 2791 2792 is_active ^= ctx->is_active; /* changed bits */ 2793 2794 if (is_active & EVENT_TIME) { 2795 /* start ctx time */ 2796 now = perf_clock(); 2797 ctx->timestamp = now; 2798 perf_cgroup_set_timestamp(task, ctx); 2799 } 2800 2801 /* 2802 * First go through the list and put on any pinned groups 2803 * in order to give them the best chance of going on. 2804 */ 2805 if (is_active & EVENT_PINNED) 2806 ctx_pinned_sched_in(ctx, cpuctx); 2807 2808 /* Then walk through the lower prio flexible groups */ 2809 if (is_active & EVENT_FLEXIBLE) 2810 ctx_flexible_sched_in(ctx, cpuctx); 2811 } 2812 2813 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2814 enum event_type_t event_type, 2815 struct task_struct *task) 2816 { 2817 struct perf_event_context *ctx = &cpuctx->ctx; 2818 2819 ctx_sched_in(ctx, cpuctx, event_type, task); 2820 } 2821 2822 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2823 struct task_struct *task) 2824 { 2825 struct perf_cpu_context *cpuctx; 2826 2827 cpuctx = __get_cpu_context(ctx); 2828 if (cpuctx->task_ctx == ctx) 2829 return; 2830 2831 perf_ctx_lock(cpuctx, ctx); 2832 perf_pmu_disable(ctx->pmu); 2833 /* 2834 * We want to keep the following priority order: 2835 * cpu pinned (that don't need to move), task pinned, 2836 * cpu flexible, task flexible. 2837 */ 2838 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2839 perf_event_sched_in(cpuctx, ctx, task); 2840 perf_pmu_enable(ctx->pmu); 2841 perf_ctx_unlock(cpuctx, ctx); 2842 } 2843 2844 /* 2845 * Called from scheduler to add the events of the current task 2846 * with interrupts disabled. 2847 * 2848 * We restore the event value and then enable it. 2849 * 2850 * This does not protect us against NMI, but enable() 2851 * sets the enabled bit in the control field of event _before_ 2852 * accessing the event control register. If a NMI hits, then it will 2853 * keep the event running. 2854 */ 2855 void __perf_event_task_sched_in(struct task_struct *prev, 2856 struct task_struct *task) 2857 { 2858 struct perf_event_context *ctx; 2859 int ctxn; 2860 2861 /* 2862 * If cgroup events exist on this CPU, then we need to check if we have 2863 * to switch in PMU state; cgroup event are system-wide mode only. 2864 * 2865 * Since cgroup events are CPU events, we must schedule these in before 2866 * we schedule in the task events. 2867 */ 2868 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2869 perf_cgroup_sched_in(prev, task); 2870 2871 for_each_task_context_nr(ctxn) { 2872 ctx = task->perf_event_ctxp[ctxn]; 2873 if (likely(!ctx)) 2874 continue; 2875 2876 perf_event_context_sched_in(ctx, task); 2877 } 2878 2879 if (atomic_read(&nr_switch_events)) 2880 perf_event_switch(task, prev, true); 2881 2882 if (__this_cpu_read(perf_sched_cb_usages)) 2883 perf_pmu_sched_task(prev, task, true); 2884 } 2885 2886 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2887 { 2888 u64 frequency = event->attr.sample_freq; 2889 u64 sec = NSEC_PER_SEC; 2890 u64 divisor, dividend; 2891 2892 int count_fls, nsec_fls, frequency_fls, sec_fls; 2893 2894 count_fls = fls64(count); 2895 nsec_fls = fls64(nsec); 2896 frequency_fls = fls64(frequency); 2897 sec_fls = 30; 2898 2899 /* 2900 * We got @count in @nsec, with a target of sample_freq HZ 2901 * the target period becomes: 2902 * 2903 * @count * 10^9 2904 * period = ------------------- 2905 * @nsec * sample_freq 2906 * 2907 */ 2908 2909 /* 2910 * Reduce accuracy by one bit such that @a and @b converge 2911 * to a similar magnitude. 2912 */ 2913 #define REDUCE_FLS(a, b) \ 2914 do { \ 2915 if (a##_fls > b##_fls) { \ 2916 a >>= 1; \ 2917 a##_fls--; \ 2918 } else { \ 2919 b >>= 1; \ 2920 b##_fls--; \ 2921 } \ 2922 } while (0) 2923 2924 /* 2925 * Reduce accuracy until either term fits in a u64, then proceed with 2926 * the other, so that finally we can do a u64/u64 division. 2927 */ 2928 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2929 REDUCE_FLS(nsec, frequency); 2930 REDUCE_FLS(sec, count); 2931 } 2932 2933 if (count_fls + sec_fls > 64) { 2934 divisor = nsec * frequency; 2935 2936 while (count_fls + sec_fls > 64) { 2937 REDUCE_FLS(count, sec); 2938 divisor >>= 1; 2939 } 2940 2941 dividend = count * sec; 2942 } else { 2943 dividend = count * sec; 2944 2945 while (nsec_fls + frequency_fls > 64) { 2946 REDUCE_FLS(nsec, frequency); 2947 dividend >>= 1; 2948 } 2949 2950 divisor = nsec * frequency; 2951 } 2952 2953 if (!divisor) 2954 return dividend; 2955 2956 return div64_u64(dividend, divisor); 2957 } 2958 2959 static DEFINE_PER_CPU(int, perf_throttled_count); 2960 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2961 2962 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2963 { 2964 struct hw_perf_event *hwc = &event->hw; 2965 s64 period, sample_period; 2966 s64 delta; 2967 2968 period = perf_calculate_period(event, nsec, count); 2969 2970 delta = (s64)(period - hwc->sample_period); 2971 delta = (delta + 7) / 8; /* low pass filter */ 2972 2973 sample_period = hwc->sample_period + delta; 2974 2975 if (!sample_period) 2976 sample_period = 1; 2977 2978 hwc->sample_period = sample_period; 2979 2980 if (local64_read(&hwc->period_left) > 8*sample_period) { 2981 if (disable) 2982 event->pmu->stop(event, PERF_EF_UPDATE); 2983 2984 local64_set(&hwc->period_left, 0); 2985 2986 if (disable) 2987 event->pmu->start(event, PERF_EF_RELOAD); 2988 } 2989 } 2990 2991 /* 2992 * combine freq adjustment with unthrottling to avoid two passes over the 2993 * events. At the same time, make sure, having freq events does not change 2994 * the rate of unthrottling as that would introduce bias. 2995 */ 2996 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2997 int needs_unthr) 2998 { 2999 struct perf_event *event; 3000 struct hw_perf_event *hwc; 3001 u64 now, period = TICK_NSEC; 3002 s64 delta; 3003 3004 /* 3005 * only need to iterate over all events iff: 3006 * - context have events in frequency mode (needs freq adjust) 3007 * - there are events to unthrottle on this cpu 3008 */ 3009 if (!(ctx->nr_freq || needs_unthr)) 3010 return; 3011 3012 raw_spin_lock(&ctx->lock); 3013 perf_pmu_disable(ctx->pmu); 3014 3015 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3016 if (event->state != PERF_EVENT_STATE_ACTIVE) 3017 continue; 3018 3019 if (!event_filter_match(event)) 3020 continue; 3021 3022 perf_pmu_disable(event->pmu); 3023 3024 hwc = &event->hw; 3025 3026 if (hwc->interrupts == MAX_INTERRUPTS) { 3027 hwc->interrupts = 0; 3028 perf_log_throttle(event, 1); 3029 event->pmu->start(event, 0); 3030 } 3031 3032 if (!event->attr.freq || !event->attr.sample_freq) 3033 goto next; 3034 3035 /* 3036 * stop the event and update event->count 3037 */ 3038 event->pmu->stop(event, PERF_EF_UPDATE); 3039 3040 now = local64_read(&event->count); 3041 delta = now - hwc->freq_count_stamp; 3042 hwc->freq_count_stamp = now; 3043 3044 /* 3045 * restart the event 3046 * reload only if value has changed 3047 * we have stopped the event so tell that 3048 * to perf_adjust_period() to avoid stopping it 3049 * twice. 3050 */ 3051 if (delta > 0) 3052 perf_adjust_period(event, period, delta, false); 3053 3054 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3055 next: 3056 perf_pmu_enable(event->pmu); 3057 } 3058 3059 perf_pmu_enable(ctx->pmu); 3060 raw_spin_unlock(&ctx->lock); 3061 } 3062 3063 /* 3064 * Round-robin a context's events: 3065 */ 3066 static void rotate_ctx(struct perf_event_context *ctx) 3067 { 3068 /* 3069 * Rotate the first entry last of non-pinned groups. Rotation might be 3070 * disabled by the inheritance code. 3071 */ 3072 if (!ctx->rotate_disable) 3073 list_rotate_left(&ctx->flexible_groups); 3074 } 3075 3076 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3077 { 3078 struct perf_event_context *ctx = NULL; 3079 int rotate = 0; 3080 3081 if (cpuctx->ctx.nr_events) { 3082 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3083 rotate = 1; 3084 } 3085 3086 ctx = cpuctx->task_ctx; 3087 if (ctx && ctx->nr_events) { 3088 if (ctx->nr_events != ctx->nr_active) 3089 rotate = 1; 3090 } 3091 3092 if (!rotate) 3093 goto done; 3094 3095 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3096 perf_pmu_disable(cpuctx->ctx.pmu); 3097 3098 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3099 if (ctx) 3100 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3101 3102 rotate_ctx(&cpuctx->ctx); 3103 if (ctx) 3104 rotate_ctx(ctx); 3105 3106 perf_event_sched_in(cpuctx, ctx, current); 3107 3108 perf_pmu_enable(cpuctx->ctx.pmu); 3109 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3110 done: 3111 3112 return rotate; 3113 } 3114 3115 void perf_event_task_tick(void) 3116 { 3117 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3118 struct perf_event_context *ctx, *tmp; 3119 int throttled; 3120 3121 WARN_ON(!irqs_disabled()); 3122 3123 __this_cpu_inc(perf_throttled_seq); 3124 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3125 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3126 3127 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3128 perf_adjust_freq_unthr_context(ctx, throttled); 3129 } 3130 3131 static int event_enable_on_exec(struct perf_event *event, 3132 struct perf_event_context *ctx) 3133 { 3134 if (!event->attr.enable_on_exec) 3135 return 0; 3136 3137 event->attr.enable_on_exec = 0; 3138 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3139 return 0; 3140 3141 __perf_event_mark_enabled(event); 3142 3143 return 1; 3144 } 3145 3146 /* 3147 * Enable all of a task's events that have been marked enable-on-exec. 3148 * This expects task == current. 3149 */ 3150 static void perf_event_enable_on_exec(int ctxn) 3151 { 3152 struct perf_event_context *ctx, *clone_ctx = NULL; 3153 struct perf_cpu_context *cpuctx; 3154 struct perf_event *event; 3155 unsigned long flags; 3156 int enabled = 0; 3157 3158 local_irq_save(flags); 3159 ctx = current->perf_event_ctxp[ctxn]; 3160 if (!ctx || !ctx->nr_events) 3161 goto out; 3162 3163 cpuctx = __get_cpu_context(ctx); 3164 perf_ctx_lock(cpuctx, ctx); 3165 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3166 list_for_each_entry(event, &ctx->event_list, event_entry) 3167 enabled |= event_enable_on_exec(event, ctx); 3168 3169 /* 3170 * Unclone and reschedule this context if we enabled any event. 3171 */ 3172 if (enabled) { 3173 clone_ctx = unclone_ctx(ctx); 3174 ctx_resched(cpuctx, ctx); 3175 } 3176 perf_ctx_unlock(cpuctx, ctx); 3177 3178 out: 3179 local_irq_restore(flags); 3180 3181 if (clone_ctx) 3182 put_ctx(clone_ctx); 3183 } 3184 3185 void perf_event_exec(void) 3186 { 3187 int ctxn; 3188 3189 rcu_read_lock(); 3190 for_each_task_context_nr(ctxn) 3191 perf_event_enable_on_exec(ctxn); 3192 rcu_read_unlock(); 3193 } 3194 3195 struct perf_read_data { 3196 struct perf_event *event; 3197 bool group; 3198 int ret; 3199 }; 3200 3201 /* 3202 * Cross CPU call to read the hardware event 3203 */ 3204 static void __perf_event_read(void *info) 3205 { 3206 struct perf_read_data *data = info; 3207 struct perf_event *sub, *event = data->event; 3208 struct perf_event_context *ctx = event->ctx; 3209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3210 struct pmu *pmu = event->pmu; 3211 3212 /* 3213 * If this is a task context, we need to check whether it is 3214 * the current task context of this cpu. If not it has been 3215 * scheduled out before the smp call arrived. In that case 3216 * event->count would have been updated to a recent sample 3217 * when the event was scheduled out. 3218 */ 3219 if (ctx->task && cpuctx->task_ctx != ctx) 3220 return; 3221 3222 raw_spin_lock(&ctx->lock); 3223 if (ctx->is_active) { 3224 update_context_time(ctx); 3225 update_cgrp_time_from_event(event); 3226 } 3227 3228 update_event_times(event); 3229 if (event->state != PERF_EVENT_STATE_ACTIVE) 3230 goto unlock; 3231 3232 if (!data->group) { 3233 pmu->read(event); 3234 data->ret = 0; 3235 goto unlock; 3236 } 3237 3238 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3239 3240 pmu->read(event); 3241 3242 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3243 update_event_times(sub); 3244 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3245 /* 3246 * Use sibling's PMU rather than @event's since 3247 * sibling could be on different (eg: software) PMU. 3248 */ 3249 sub->pmu->read(sub); 3250 } 3251 } 3252 3253 data->ret = pmu->commit_txn(pmu); 3254 3255 unlock: 3256 raw_spin_unlock(&ctx->lock); 3257 } 3258 3259 static inline u64 perf_event_count(struct perf_event *event) 3260 { 3261 if (event->pmu->count) 3262 return event->pmu->count(event); 3263 3264 return __perf_event_count(event); 3265 } 3266 3267 /* 3268 * NMI-safe method to read a local event, that is an event that 3269 * is: 3270 * - either for the current task, or for this CPU 3271 * - does not have inherit set, for inherited task events 3272 * will not be local and we cannot read them atomically 3273 * - must not have a pmu::count method 3274 */ 3275 u64 perf_event_read_local(struct perf_event *event) 3276 { 3277 unsigned long flags; 3278 u64 val; 3279 3280 /* 3281 * Disabling interrupts avoids all counter scheduling (context 3282 * switches, timer based rotation and IPIs). 3283 */ 3284 local_irq_save(flags); 3285 3286 /* If this is a per-task event, it must be for current */ 3287 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3288 event->hw.target != current); 3289 3290 /* If this is a per-CPU event, it must be for this CPU */ 3291 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3292 event->cpu != smp_processor_id()); 3293 3294 /* 3295 * It must not be an event with inherit set, we cannot read 3296 * all child counters from atomic context. 3297 */ 3298 WARN_ON_ONCE(event->attr.inherit); 3299 3300 /* 3301 * It must not have a pmu::count method, those are not 3302 * NMI safe. 3303 */ 3304 WARN_ON_ONCE(event->pmu->count); 3305 3306 /* 3307 * If the event is currently on this CPU, its either a per-task event, 3308 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3309 * oncpu == -1). 3310 */ 3311 if (event->oncpu == smp_processor_id()) 3312 event->pmu->read(event); 3313 3314 val = local64_read(&event->count); 3315 local_irq_restore(flags); 3316 3317 return val; 3318 } 3319 3320 static int perf_event_read(struct perf_event *event, bool group) 3321 { 3322 int ret = 0; 3323 3324 /* 3325 * If event is enabled and currently active on a CPU, update the 3326 * value in the event structure: 3327 */ 3328 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3329 struct perf_read_data data = { 3330 .event = event, 3331 .group = group, 3332 .ret = 0, 3333 }; 3334 smp_call_function_single(event->oncpu, 3335 __perf_event_read, &data, 1); 3336 ret = data.ret; 3337 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3338 struct perf_event_context *ctx = event->ctx; 3339 unsigned long flags; 3340 3341 raw_spin_lock_irqsave(&ctx->lock, flags); 3342 /* 3343 * may read while context is not active 3344 * (e.g., thread is blocked), in that case 3345 * we cannot update context time 3346 */ 3347 if (ctx->is_active) { 3348 update_context_time(ctx); 3349 update_cgrp_time_from_event(event); 3350 } 3351 if (group) 3352 update_group_times(event); 3353 else 3354 update_event_times(event); 3355 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3356 } 3357 3358 return ret; 3359 } 3360 3361 /* 3362 * Initialize the perf_event context in a task_struct: 3363 */ 3364 static void __perf_event_init_context(struct perf_event_context *ctx) 3365 { 3366 raw_spin_lock_init(&ctx->lock); 3367 mutex_init(&ctx->mutex); 3368 INIT_LIST_HEAD(&ctx->active_ctx_list); 3369 INIT_LIST_HEAD(&ctx->pinned_groups); 3370 INIT_LIST_HEAD(&ctx->flexible_groups); 3371 INIT_LIST_HEAD(&ctx->event_list); 3372 atomic_set(&ctx->refcount, 1); 3373 } 3374 3375 static struct perf_event_context * 3376 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3377 { 3378 struct perf_event_context *ctx; 3379 3380 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3381 if (!ctx) 3382 return NULL; 3383 3384 __perf_event_init_context(ctx); 3385 if (task) { 3386 ctx->task = task; 3387 get_task_struct(task); 3388 } 3389 ctx->pmu = pmu; 3390 3391 return ctx; 3392 } 3393 3394 static struct task_struct * 3395 find_lively_task_by_vpid(pid_t vpid) 3396 { 3397 struct task_struct *task; 3398 int err; 3399 3400 rcu_read_lock(); 3401 if (!vpid) 3402 task = current; 3403 else 3404 task = find_task_by_vpid(vpid); 3405 if (task) 3406 get_task_struct(task); 3407 rcu_read_unlock(); 3408 3409 if (!task) 3410 return ERR_PTR(-ESRCH); 3411 3412 /* Reuse ptrace permission checks for now. */ 3413 err = -EACCES; 3414 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 3415 goto errout; 3416 3417 return task; 3418 errout: 3419 put_task_struct(task); 3420 return ERR_PTR(err); 3421 3422 } 3423 3424 /* 3425 * Returns a matching context with refcount and pincount. 3426 */ 3427 static struct perf_event_context * 3428 find_get_context(struct pmu *pmu, struct task_struct *task, 3429 struct perf_event *event) 3430 { 3431 struct perf_event_context *ctx, *clone_ctx = NULL; 3432 struct perf_cpu_context *cpuctx; 3433 void *task_ctx_data = NULL; 3434 unsigned long flags; 3435 int ctxn, err; 3436 int cpu = event->cpu; 3437 3438 if (!task) { 3439 /* Must be root to operate on a CPU event: */ 3440 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3441 return ERR_PTR(-EACCES); 3442 3443 /* 3444 * We could be clever and allow to attach a event to an 3445 * offline CPU and activate it when the CPU comes up, but 3446 * that's for later. 3447 */ 3448 if (!cpu_online(cpu)) 3449 return ERR_PTR(-ENODEV); 3450 3451 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3452 ctx = &cpuctx->ctx; 3453 get_ctx(ctx); 3454 ++ctx->pin_count; 3455 3456 return ctx; 3457 } 3458 3459 err = -EINVAL; 3460 ctxn = pmu->task_ctx_nr; 3461 if (ctxn < 0) 3462 goto errout; 3463 3464 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3465 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3466 if (!task_ctx_data) { 3467 err = -ENOMEM; 3468 goto errout; 3469 } 3470 } 3471 3472 retry: 3473 ctx = perf_lock_task_context(task, ctxn, &flags); 3474 if (ctx) { 3475 clone_ctx = unclone_ctx(ctx); 3476 ++ctx->pin_count; 3477 3478 if (task_ctx_data && !ctx->task_ctx_data) { 3479 ctx->task_ctx_data = task_ctx_data; 3480 task_ctx_data = NULL; 3481 } 3482 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3483 3484 if (clone_ctx) 3485 put_ctx(clone_ctx); 3486 } else { 3487 ctx = alloc_perf_context(pmu, task); 3488 err = -ENOMEM; 3489 if (!ctx) 3490 goto errout; 3491 3492 if (task_ctx_data) { 3493 ctx->task_ctx_data = task_ctx_data; 3494 task_ctx_data = NULL; 3495 } 3496 3497 err = 0; 3498 mutex_lock(&task->perf_event_mutex); 3499 /* 3500 * If it has already passed perf_event_exit_task(). 3501 * we must see PF_EXITING, it takes this mutex too. 3502 */ 3503 if (task->flags & PF_EXITING) 3504 err = -ESRCH; 3505 else if (task->perf_event_ctxp[ctxn]) 3506 err = -EAGAIN; 3507 else { 3508 get_ctx(ctx); 3509 ++ctx->pin_count; 3510 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3511 } 3512 mutex_unlock(&task->perf_event_mutex); 3513 3514 if (unlikely(err)) { 3515 put_ctx(ctx); 3516 3517 if (err == -EAGAIN) 3518 goto retry; 3519 goto errout; 3520 } 3521 } 3522 3523 kfree(task_ctx_data); 3524 return ctx; 3525 3526 errout: 3527 kfree(task_ctx_data); 3528 return ERR_PTR(err); 3529 } 3530 3531 static void perf_event_free_filter(struct perf_event *event); 3532 static void perf_event_free_bpf_prog(struct perf_event *event); 3533 3534 static void free_event_rcu(struct rcu_head *head) 3535 { 3536 struct perf_event *event; 3537 3538 event = container_of(head, struct perf_event, rcu_head); 3539 if (event->ns) 3540 put_pid_ns(event->ns); 3541 perf_event_free_filter(event); 3542 kfree(event); 3543 } 3544 3545 static void ring_buffer_attach(struct perf_event *event, 3546 struct ring_buffer *rb); 3547 3548 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3549 { 3550 if (event->parent) 3551 return; 3552 3553 if (is_cgroup_event(event)) 3554 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3555 } 3556 3557 #ifdef CONFIG_NO_HZ_FULL 3558 static DEFINE_SPINLOCK(nr_freq_lock); 3559 #endif 3560 3561 static void unaccount_freq_event_nohz(void) 3562 { 3563 #ifdef CONFIG_NO_HZ_FULL 3564 spin_lock(&nr_freq_lock); 3565 if (atomic_dec_and_test(&nr_freq_events)) 3566 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3567 spin_unlock(&nr_freq_lock); 3568 #endif 3569 } 3570 3571 static void unaccount_freq_event(void) 3572 { 3573 if (tick_nohz_full_enabled()) 3574 unaccount_freq_event_nohz(); 3575 else 3576 atomic_dec(&nr_freq_events); 3577 } 3578 3579 static void unaccount_event(struct perf_event *event) 3580 { 3581 bool dec = false; 3582 3583 if (event->parent) 3584 return; 3585 3586 if (event->attach_state & PERF_ATTACH_TASK) 3587 dec = true; 3588 if (event->attr.mmap || event->attr.mmap_data) 3589 atomic_dec(&nr_mmap_events); 3590 if (event->attr.comm) 3591 atomic_dec(&nr_comm_events); 3592 if (event->attr.task) 3593 atomic_dec(&nr_task_events); 3594 if (event->attr.freq) 3595 unaccount_freq_event(); 3596 if (event->attr.context_switch) { 3597 dec = true; 3598 atomic_dec(&nr_switch_events); 3599 } 3600 if (is_cgroup_event(event)) 3601 dec = true; 3602 if (has_branch_stack(event)) 3603 dec = true; 3604 3605 if (dec) { 3606 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3607 schedule_delayed_work(&perf_sched_work, HZ); 3608 } 3609 3610 unaccount_event_cpu(event, event->cpu); 3611 } 3612 3613 static void perf_sched_delayed(struct work_struct *work) 3614 { 3615 mutex_lock(&perf_sched_mutex); 3616 if (atomic_dec_and_test(&perf_sched_count)) 3617 static_branch_disable(&perf_sched_events); 3618 mutex_unlock(&perf_sched_mutex); 3619 } 3620 3621 /* 3622 * The following implement mutual exclusion of events on "exclusive" pmus 3623 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3624 * at a time, so we disallow creating events that might conflict, namely: 3625 * 3626 * 1) cpu-wide events in the presence of per-task events, 3627 * 2) per-task events in the presence of cpu-wide events, 3628 * 3) two matching events on the same context. 3629 * 3630 * The former two cases are handled in the allocation path (perf_event_alloc(), 3631 * _free_event()), the latter -- before the first perf_install_in_context(). 3632 */ 3633 static int exclusive_event_init(struct perf_event *event) 3634 { 3635 struct pmu *pmu = event->pmu; 3636 3637 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3638 return 0; 3639 3640 /* 3641 * Prevent co-existence of per-task and cpu-wide events on the 3642 * same exclusive pmu. 3643 * 3644 * Negative pmu::exclusive_cnt means there are cpu-wide 3645 * events on this "exclusive" pmu, positive means there are 3646 * per-task events. 3647 * 3648 * Since this is called in perf_event_alloc() path, event::ctx 3649 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3650 * to mean "per-task event", because unlike other attach states it 3651 * never gets cleared. 3652 */ 3653 if (event->attach_state & PERF_ATTACH_TASK) { 3654 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3655 return -EBUSY; 3656 } else { 3657 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3658 return -EBUSY; 3659 } 3660 3661 return 0; 3662 } 3663 3664 static void exclusive_event_destroy(struct perf_event *event) 3665 { 3666 struct pmu *pmu = event->pmu; 3667 3668 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3669 return; 3670 3671 /* see comment in exclusive_event_init() */ 3672 if (event->attach_state & PERF_ATTACH_TASK) 3673 atomic_dec(&pmu->exclusive_cnt); 3674 else 3675 atomic_inc(&pmu->exclusive_cnt); 3676 } 3677 3678 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3679 { 3680 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3681 (e1->cpu == e2->cpu || 3682 e1->cpu == -1 || 3683 e2->cpu == -1)) 3684 return true; 3685 return false; 3686 } 3687 3688 /* Called under the same ctx::mutex as perf_install_in_context() */ 3689 static bool exclusive_event_installable(struct perf_event *event, 3690 struct perf_event_context *ctx) 3691 { 3692 struct perf_event *iter_event; 3693 struct pmu *pmu = event->pmu; 3694 3695 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3696 return true; 3697 3698 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3699 if (exclusive_event_match(iter_event, event)) 3700 return false; 3701 } 3702 3703 return true; 3704 } 3705 3706 static void _free_event(struct perf_event *event) 3707 { 3708 irq_work_sync(&event->pending); 3709 3710 unaccount_event(event); 3711 3712 if (event->rb) { 3713 /* 3714 * Can happen when we close an event with re-directed output. 3715 * 3716 * Since we have a 0 refcount, perf_mmap_close() will skip 3717 * over us; possibly making our ring_buffer_put() the last. 3718 */ 3719 mutex_lock(&event->mmap_mutex); 3720 ring_buffer_attach(event, NULL); 3721 mutex_unlock(&event->mmap_mutex); 3722 } 3723 3724 if (is_cgroup_event(event)) 3725 perf_detach_cgroup(event); 3726 3727 if (!event->parent) { 3728 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3729 put_callchain_buffers(); 3730 } 3731 3732 perf_event_free_bpf_prog(event); 3733 3734 if (event->destroy) 3735 event->destroy(event); 3736 3737 if (event->ctx) 3738 put_ctx(event->ctx); 3739 3740 if (event->pmu) { 3741 exclusive_event_destroy(event); 3742 module_put(event->pmu->module); 3743 } 3744 3745 call_rcu(&event->rcu_head, free_event_rcu); 3746 } 3747 3748 /* 3749 * Used to free events which have a known refcount of 1, such as in error paths 3750 * where the event isn't exposed yet and inherited events. 3751 */ 3752 static void free_event(struct perf_event *event) 3753 { 3754 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3755 "unexpected event refcount: %ld; ptr=%p\n", 3756 atomic_long_read(&event->refcount), event)) { 3757 /* leak to avoid use-after-free */ 3758 return; 3759 } 3760 3761 _free_event(event); 3762 } 3763 3764 /* 3765 * Remove user event from the owner task. 3766 */ 3767 static void perf_remove_from_owner(struct perf_event *event) 3768 { 3769 struct task_struct *owner; 3770 3771 rcu_read_lock(); 3772 /* 3773 * Matches the smp_store_release() in perf_event_exit_task(). If we 3774 * observe !owner it means the list deletion is complete and we can 3775 * indeed free this event, otherwise we need to serialize on 3776 * owner->perf_event_mutex. 3777 */ 3778 owner = lockless_dereference(event->owner); 3779 if (owner) { 3780 /* 3781 * Since delayed_put_task_struct() also drops the last 3782 * task reference we can safely take a new reference 3783 * while holding the rcu_read_lock(). 3784 */ 3785 get_task_struct(owner); 3786 } 3787 rcu_read_unlock(); 3788 3789 if (owner) { 3790 /* 3791 * If we're here through perf_event_exit_task() we're already 3792 * holding ctx->mutex which would be an inversion wrt. the 3793 * normal lock order. 3794 * 3795 * However we can safely take this lock because its the child 3796 * ctx->mutex. 3797 */ 3798 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3799 3800 /* 3801 * We have to re-check the event->owner field, if it is cleared 3802 * we raced with perf_event_exit_task(), acquiring the mutex 3803 * ensured they're done, and we can proceed with freeing the 3804 * event. 3805 */ 3806 if (event->owner) { 3807 list_del_init(&event->owner_entry); 3808 smp_store_release(&event->owner, NULL); 3809 } 3810 mutex_unlock(&owner->perf_event_mutex); 3811 put_task_struct(owner); 3812 } 3813 } 3814 3815 static void put_event(struct perf_event *event) 3816 { 3817 if (!atomic_long_dec_and_test(&event->refcount)) 3818 return; 3819 3820 _free_event(event); 3821 } 3822 3823 /* 3824 * Kill an event dead; while event:refcount will preserve the event 3825 * object, it will not preserve its functionality. Once the last 'user' 3826 * gives up the object, we'll destroy the thing. 3827 */ 3828 int perf_event_release_kernel(struct perf_event *event) 3829 { 3830 struct perf_event_context *ctx = event->ctx; 3831 struct perf_event *child, *tmp; 3832 3833 /* 3834 * If we got here through err_file: fput(event_file); we will not have 3835 * attached to a context yet. 3836 */ 3837 if (!ctx) { 3838 WARN_ON_ONCE(event->attach_state & 3839 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 3840 goto no_ctx; 3841 } 3842 3843 if (!is_kernel_event(event)) 3844 perf_remove_from_owner(event); 3845 3846 ctx = perf_event_ctx_lock(event); 3847 WARN_ON_ONCE(ctx->parent_ctx); 3848 perf_remove_from_context(event, DETACH_GROUP); 3849 3850 raw_spin_lock_irq(&ctx->lock); 3851 /* 3852 * Mark this even as STATE_DEAD, there is no external reference to it 3853 * anymore. 3854 * 3855 * Anybody acquiring event->child_mutex after the below loop _must_ 3856 * also see this, most importantly inherit_event() which will avoid 3857 * placing more children on the list. 3858 * 3859 * Thus this guarantees that we will in fact observe and kill _ALL_ 3860 * child events. 3861 */ 3862 event->state = PERF_EVENT_STATE_DEAD; 3863 raw_spin_unlock_irq(&ctx->lock); 3864 3865 perf_event_ctx_unlock(event, ctx); 3866 3867 again: 3868 mutex_lock(&event->child_mutex); 3869 list_for_each_entry(child, &event->child_list, child_list) { 3870 3871 /* 3872 * Cannot change, child events are not migrated, see the 3873 * comment with perf_event_ctx_lock_nested(). 3874 */ 3875 ctx = lockless_dereference(child->ctx); 3876 /* 3877 * Since child_mutex nests inside ctx::mutex, we must jump 3878 * through hoops. We start by grabbing a reference on the ctx. 3879 * 3880 * Since the event cannot get freed while we hold the 3881 * child_mutex, the context must also exist and have a !0 3882 * reference count. 3883 */ 3884 get_ctx(ctx); 3885 3886 /* 3887 * Now that we have a ctx ref, we can drop child_mutex, and 3888 * acquire ctx::mutex without fear of it going away. Then we 3889 * can re-acquire child_mutex. 3890 */ 3891 mutex_unlock(&event->child_mutex); 3892 mutex_lock(&ctx->mutex); 3893 mutex_lock(&event->child_mutex); 3894 3895 /* 3896 * Now that we hold ctx::mutex and child_mutex, revalidate our 3897 * state, if child is still the first entry, it didn't get freed 3898 * and we can continue doing so. 3899 */ 3900 tmp = list_first_entry_or_null(&event->child_list, 3901 struct perf_event, child_list); 3902 if (tmp == child) { 3903 perf_remove_from_context(child, DETACH_GROUP); 3904 list_del(&child->child_list); 3905 free_event(child); 3906 /* 3907 * This matches the refcount bump in inherit_event(); 3908 * this can't be the last reference. 3909 */ 3910 put_event(event); 3911 } 3912 3913 mutex_unlock(&event->child_mutex); 3914 mutex_unlock(&ctx->mutex); 3915 put_ctx(ctx); 3916 goto again; 3917 } 3918 mutex_unlock(&event->child_mutex); 3919 3920 no_ctx: 3921 put_event(event); /* Must be the 'last' reference */ 3922 return 0; 3923 } 3924 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3925 3926 /* 3927 * Called when the last reference to the file is gone. 3928 */ 3929 static int perf_release(struct inode *inode, struct file *file) 3930 { 3931 perf_event_release_kernel(file->private_data); 3932 return 0; 3933 } 3934 3935 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3936 { 3937 struct perf_event *child; 3938 u64 total = 0; 3939 3940 *enabled = 0; 3941 *running = 0; 3942 3943 mutex_lock(&event->child_mutex); 3944 3945 (void)perf_event_read(event, false); 3946 total += perf_event_count(event); 3947 3948 *enabled += event->total_time_enabled + 3949 atomic64_read(&event->child_total_time_enabled); 3950 *running += event->total_time_running + 3951 atomic64_read(&event->child_total_time_running); 3952 3953 list_for_each_entry(child, &event->child_list, child_list) { 3954 (void)perf_event_read(child, false); 3955 total += perf_event_count(child); 3956 *enabled += child->total_time_enabled; 3957 *running += child->total_time_running; 3958 } 3959 mutex_unlock(&event->child_mutex); 3960 3961 return total; 3962 } 3963 EXPORT_SYMBOL_GPL(perf_event_read_value); 3964 3965 static int __perf_read_group_add(struct perf_event *leader, 3966 u64 read_format, u64 *values) 3967 { 3968 struct perf_event *sub; 3969 int n = 1; /* skip @nr */ 3970 int ret; 3971 3972 ret = perf_event_read(leader, true); 3973 if (ret) 3974 return ret; 3975 3976 /* 3977 * Since we co-schedule groups, {enabled,running} times of siblings 3978 * will be identical to those of the leader, so we only publish one 3979 * set. 3980 */ 3981 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3982 values[n++] += leader->total_time_enabled + 3983 atomic64_read(&leader->child_total_time_enabled); 3984 } 3985 3986 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3987 values[n++] += leader->total_time_running + 3988 atomic64_read(&leader->child_total_time_running); 3989 } 3990 3991 /* 3992 * Write {count,id} tuples for every sibling. 3993 */ 3994 values[n++] += perf_event_count(leader); 3995 if (read_format & PERF_FORMAT_ID) 3996 values[n++] = primary_event_id(leader); 3997 3998 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3999 values[n++] += perf_event_count(sub); 4000 if (read_format & PERF_FORMAT_ID) 4001 values[n++] = primary_event_id(sub); 4002 } 4003 4004 return 0; 4005 } 4006 4007 static int perf_read_group(struct perf_event *event, 4008 u64 read_format, char __user *buf) 4009 { 4010 struct perf_event *leader = event->group_leader, *child; 4011 struct perf_event_context *ctx = leader->ctx; 4012 int ret; 4013 u64 *values; 4014 4015 lockdep_assert_held(&ctx->mutex); 4016 4017 values = kzalloc(event->read_size, GFP_KERNEL); 4018 if (!values) 4019 return -ENOMEM; 4020 4021 values[0] = 1 + leader->nr_siblings; 4022 4023 /* 4024 * By locking the child_mutex of the leader we effectively 4025 * lock the child list of all siblings.. XXX explain how. 4026 */ 4027 mutex_lock(&leader->child_mutex); 4028 4029 ret = __perf_read_group_add(leader, read_format, values); 4030 if (ret) 4031 goto unlock; 4032 4033 list_for_each_entry(child, &leader->child_list, child_list) { 4034 ret = __perf_read_group_add(child, read_format, values); 4035 if (ret) 4036 goto unlock; 4037 } 4038 4039 mutex_unlock(&leader->child_mutex); 4040 4041 ret = event->read_size; 4042 if (copy_to_user(buf, values, event->read_size)) 4043 ret = -EFAULT; 4044 goto out; 4045 4046 unlock: 4047 mutex_unlock(&leader->child_mutex); 4048 out: 4049 kfree(values); 4050 return ret; 4051 } 4052 4053 static int perf_read_one(struct perf_event *event, 4054 u64 read_format, char __user *buf) 4055 { 4056 u64 enabled, running; 4057 u64 values[4]; 4058 int n = 0; 4059 4060 values[n++] = perf_event_read_value(event, &enabled, &running); 4061 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4062 values[n++] = enabled; 4063 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4064 values[n++] = running; 4065 if (read_format & PERF_FORMAT_ID) 4066 values[n++] = primary_event_id(event); 4067 4068 if (copy_to_user(buf, values, n * sizeof(u64))) 4069 return -EFAULT; 4070 4071 return n * sizeof(u64); 4072 } 4073 4074 static bool is_event_hup(struct perf_event *event) 4075 { 4076 bool no_children; 4077 4078 if (event->state > PERF_EVENT_STATE_EXIT) 4079 return false; 4080 4081 mutex_lock(&event->child_mutex); 4082 no_children = list_empty(&event->child_list); 4083 mutex_unlock(&event->child_mutex); 4084 return no_children; 4085 } 4086 4087 /* 4088 * Read the performance event - simple non blocking version for now 4089 */ 4090 static ssize_t 4091 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4092 { 4093 u64 read_format = event->attr.read_format; 4094 int ret; 4095 4096 /* 4097 * Return end-of-file for a read on a event that is in 4098 * error state (i.e. because it was pinned but it couldn't be 4099 * scheduled on to the CPU at some point). 4100 */ 4101 if (event->state == PERF_EVENT_STATE_ERROR) 4102 return 0; 4103 4104 if (count < event->read_size) 4105 return -ENOSPC; 4106 4107 WARN_ON_ONCE(event->ctx->parent_ctx); 4108 if (read_format & PERF_FORMAT_GROUP) 4109 ret = perf_read_group(event, read_format, buf); 4110 else 4111 ret = perf_read_one(event, read_format, buf); 4112 4113 return ret; 4114 } 4115 4116 static ssize_t 4117 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4118 { 4119 struct perf_event *event = file->private_data; 4120 struct perf_event_context *ctx; 4121 int ret; 4122 4123 ctx = perf_event_ctx_lock(event); 4124 ret = __perf_read(event, buf, count); 4125 perf_event_ctx_unlock(event, ctx); 4126 4127 return ret; 4128 } 4129 4130 static unsigned int perf_poll(struct file *file, poll_table *wait) 4131 { 4132 struct perf_event *event = file->private_data; 4133 struct ring_buffer *rb; 4134 unsigned int events = POLLHUP; 4135 4136 poll_wait(file, &event->waitq, wait); 4137 4138 if (is_event_hup(event)) 4139 return events; 4140 4141 /* 4142 * Pin the event->rb by taking event->mmap_mutex; otherwise 4143 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4144 */ 4145 mutex_lock(&event->mmap_mutex); 4146 rb = event->rb; 4147 if (rb) 4148 events = atomic_xchg(&rb->poll, 0); 4149 mutex_unlock(&event->mmap_mutex); 4150 return events; 4151 } 4152 4153 static void _perf_event_reset(struct perf_event *event) 4154 { 4155 (void)perf_event_read(event, false); 4156 local64_set(&event->count, 0); 4157 perf_event_update_userpage(event); 4158 } 4159 4160 /* 4161 * Holding the top-level event's child_mutex means that any 4162 * descendant process that has inherited this event will block 4163 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4164 * task existence requirements of perf_event_enable/disable. 4165 */ 4166 static void perf_event_for_each_child(struct perf_event *event, 4167 void (*func)(struct perf_event *)) 4168 { 4169 struct perf_event *child; 4170 4171 WARN_ON_ONCE(event->ctx->parent_ctx); 4172 4173 mutex_lock(&event->child_mutex); 4174 func(event); 4175 list_for_each_entry(child, &event->child_list, child_list) 4176 func(child); 4177 mutex_unlock(&event->child_mutex); 4178 } 4179 4180 static void perf_event_for_each(struct perf_event *event, 4181 void (*func)(struct perf_event *)) 4182 { 4183 struct perf_event_context *ctx = event->ctx; 4184 struct perf_event *sibling; 4185 4186 lockdep_assert_held(&ctx->mutex); 4187 4188 event = event->group_leader; 4189 4190 perf_event_for_each_child(event, func); 4191 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4192 perf_event_for_each_child(sibling, func); 4193 } 4194 4195 static void __perf_event_period(struct perf_event *event, 4196 struct perf_cpu_context *cpuctx, 4197 struct perf_event_context *ctx, 4198 void *info) 4199 { 4200 u64 value = *((u64 *)info); 4201 bool active; 4202 4203 if (event->attr.freq) { 4204 event->attr.sample_freq = value; 4205 } else { 4206 event->attr.sample_period = value; 4207 event->hw.sample_period = value; 4208 } 4209 4210 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4211 if (active) { 4212 perf_pmu_disable(ctx->pmu); 4213 event->pmu->stop(event, PERF_EF_UPDATE); 4214 } 4215 4216 local64_set(&event->hw.period_left, 0); 4217 4218 if (active) { 4219 event->pmu->start(event, PERF_EF_RELOAD); 4220 perf_pmu_enable(ctx->pmu); 4221 } 4222 } 4223 4224 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4225 { 4226 u64 value; 4227 4228 if (!is_sampling_event(event)) 4229 return -EINVAL; 4230 4231 if (copy_from_user(&value, arg, sizeof(value))) 4232 return -EFAULT; 4233 4234 if (!value) 4235 return -EINVAL; 4236 4237 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4238 return -EINVAL; 4239 4240 event_function_call(event, __perf_event_period, &value); 4241 4242 return 0; 4243 } 4244 4245 static const struct file_operations perf_fops; 4246 4247 static inline int perf_fget_light(int fd, struct fd *p) 4248 { 4249 struct fd f = fdget(fd); 4250 if (!f.file) 4251 return -EBADF; 4252 4253 if (f.file->f_op != &perf_fops) { 4254 fdput(f); 4255 return -EBADF; 4256 } 4257 *p = f; 4258 return 0; 4259 } 4260 4261 static int perf_event_set_output(struct perf_event *event, 4262 struct perf_event *output_event); 4263 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4264 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4265 4266 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4267 { 4268 void (*func)(struct perf_event *); 4269 u32 flags = arg; 4270 4271 switch (cmd) { 4272 case PERF_EVENT_IOC_ENABLE: 4273 func = _perf_event_enable; 4274 break; 4275 case PERF_EVENT_IOC_DISABLE: 4276 func = _perf_event_disable; 4277 break; 4278 case PERF_EVENT_IOC_RESET: 4279 func = _perf_event_reset; 4280 break; 4281 4282 case PERF_EVENT_IOC_REFRESH: 4283 return _perf_event_refresh(event, arg); 4284 4285 case PERF_EVENT_IOC_PERIOD: 4286 return perf_event_period(event, (u64 __user *)arg); 4287 4288 case PERF_EVENT_IOC_ID: 4289 { 4290 u64 id = primary_event_id(event); 4291 4292 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4293 return -EFAULT; 4294 return 0; 4295 } 4296 4297 case PERF_EVENT_IOC_SET_OUTPUT: 4298 { 4299 int ret; 4300 if (arg != -1) { 4301 struct perf_event *output_event; 4302 struct fd output; 4303 ret = perf_fget_light(arg, &output); 4304 if (ret) 4305 return ret; 4306 output_event = output.file->private_data; 4307 ret = perf_event_set_output(event, output_event); 4308 fdput(output); 4309 } else { 4310 ret = perf_event_set_output(event, NULL); 4311 } 4312 return ret; 4313 } 4314 4315 case PERF_EVENT_IOC_SET_FILTER: 4316 return perf_event_set_filter(event, (void __user *)arg); 4317 4318 case PERF_EVENT_IOC_SET_BPF: 4319 return perf_event_set_bpf_prog(event, arg); 4320 4321 default: 4322 return -ENOTTY; 4323 } 4324 4325 if (flags & PERF_IOC_FLAG_GROUP) 4326 perf_event_for_each(event, func); 4327 else 4328 perf_event_for_each_child(event, func); 4329 4330 return 0; 4331 } 4332 4333 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4334 { 4335 struct perf_event *event = file->private_data; 4336 struct perf_event_context *ctx; 4337 long ret; 4338 4339 ctx = perf_event_ctx_lock(event); 4340 ret = _perf_ioctl(event, cmd, arg); 4341 perf_event_ctx_unlock(event, ctx); 4342 4343 return ret; 4344 } 4345 4346 #ifdef CONFIG_COMPAT 4347 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4348 unsigned long arg) 4349 { 4350 switch (_IOC_NR(cmd)) { 4351 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4352 case _IOC_NR(PERF_EVENT_IOC_ID): 4353 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4354 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4355 cmd &= ~IOCSIZE_MASK; 4356 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4357 } 4358 break; 4359 } 4360 return perf_ioctl(file, cmd, arg); 4361 } 4362 #else 4363 # define perf_compat_ioctl NULL 4364 #endif 4365 4366 int perf_event_task_enable(void) 4367 { 4368 struct perf_event_context *ctx; 4369 struct perf_event *event; 4370 4371 mutex_lock(¤t->perf_event_mutex); 4372 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4373 ctx = perf_event_ctx_lock(event); 4374 perf_event_for_each_child(event, _perf_event_enable); 4375 perf_event_ctx_unlock(event, ctx); 4376 } 4377 mutex_unlock(¤t->perf_event_mutex); 4378 4379 return 0; 4380 } 4381 4382 int perf_event_task_disable(void) 4383 { 4384 struct perf_event_context *ctx; 4385 struct perf_event *event; 4386 4387 mutex_lock(¤t->perf_event_mutex); 4388 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4389 ctx = perf_event_ctx_lock(event); 4390 perf_event_for_each_child(event, _perf_event_disable); 4391 perf_event_ctx_unlock(event, ctx); 4392 } 4393 mutex_unlock(¤t->perf_event_mutex); 4394 4395 return 0; 4396 } 4397 4398 static int perf_event_index(struct perf_event *event) 4399 { 4400 if (event->hw.state & PERF_HES_STOPPED) 4401 return 0; 4402 4403 if (event->state != PERF_EVENT_STATE_ACTIVE) 4404 return 0; 4405 4406 return event->pmu->event_idx(event); 4407 } 4408 4409 static void calc_timer_values(struct perf_event *event, 4410 u64 *now, 4411 u64 *enabled, 4412 u64 *running) 4413 { 4414 u64 ctx_time; 4415 4416 *now = perf_clock(); 4417 ctx_time = event->shadow_ctx_time + *now; 4418 *enabled = ctx_time - event->tstamp_enabled; 4419 *running = ctx_time - event->tstamp_running; 4420 } 4421 4422 static void perf_event_init_userpage(struct perf_event *event) 4423 { 4424 struct perf_event_mmap_page *userpg; 4425 struct ring_buffer *rb; 4426 4427 rcu_read_lock(); 4428 rb = rcu_dereference(event->rb); 4429 if (!rb) 4430 goto unlock; 4431 4432 userpg = rb->user_page; 4433 4434 /* Allow new userspace to detect that bit 0 is deprecated */ 4435 userpg->cap_bit0_is_deprecated = 1; 4436 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4437 userpg->data_offset = PAGE_SIZE; 4438 userpg->data_size = perf_data_size(rb); 4439 4440 unlock: 4441 rcu_read_unlock(); 4442 } 4443 4444 void __weak arch_perf_update_userpage( 4445 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4446 { 4447 } 4448 4449 /* 4450 * Callers need to ensure there can be no nesting of this function, otherwise 4451 * the seqlock logic goes bad. We can not serialize this because the arch 4452 * code calls this from NMI context. 4453 */ 4454 void perf_event_update_userpage(struct perf_event *event) 4455 { 4456 struct perf_event_mmap_page *userpg; 4457 struct ring_buffer *rb; 4458 u64 enabled, running, now; 4459 4460 rcu_read_lock(); 4461 rb = rcu_dereference(event->rb); 4462 if (!rb) 4463 goto unlock; 4464 4465 /* 4466 * compute total_time_enabled, total_time_running 4467 * based on snapshot values taken when the event 4468 * was last scheduled in. 4469 * 4470 * we cannot simply called update_context_time() 4471 * because of locking issue as we can be called in 4472 * NMI context 4473 */ 4474 calc_timer_values(event, &now, &enabled, &running); 4475 4476 userpg = rb->user_page; 4477 /* 4478 * Disable preemption so as to not let the corresponding user-space 4479 * spin too long if we get preempted. 4480 */ 4481 preempt_disable(); 4482 ++userpg->lock; 4483 barrier(); 4484 userpg->index = perf_event_index(event); 4485 userpg->offset = perf_event_count(event); 4486 if (userpg->index) 4487 userpg->offset -= local64_read(&event->hw.prev_count); 4488 4489 userpg->time_enabled = enabled + 4490 atomic64_read(&event->child_total_time_enabled); 4491 4492 userpg->time_running = running + 4493 atomic64_read(&event->child_total_time_running); 4494 4495 arch_perf_update_userpage(event, userpg, now); 4496 4497 barrier(); 4498 ++userpg->lock; 4499 preempt_enable(); 4500 unlock: 4501 rcu_read_unlock(); 4502 } 4503 4504 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4505 { 4506 struct perf_event *event = vma->vm_file->private_data; 4507 struct ring_buffer *rb; 4508 int ret = VM_FAULT_SIGBUS; 4509 4510 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4511 if (vmf->pgoff == 0) 4512 ret = 0; 4513 return ret; 4514 } 4515 4516 rcu_read_lock(); 4517 rb = rcu_dereference(event->rb); 4518 if (!rb) 4519 goto unlock; 4520 4521 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4522 goto unlock; 4523 4524 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4525 if (!vmf->page) 4526 goto unlock; 4527 4528 get_page(vmf->page); 4529 vmf->page->mapping = vma->vm_file->f_mapping; 4530 vmf->page->index = vmf->pgoff; 4531 4532 ret = 0; 4533 unlock: 4534 rcu_read_unlock(); 4535 4536 return ret; 4537 } 4538 4539 static void ring_buffer_attach(struct perf_event *event, 4540 struct ring_buffer *rb) 4541 { 4542 struct ring_buffer *old_rb = NULL; 4543 unsigned long flags; 4544 4545 if (event->rb) { 4546 /* 4547 * Should be impossible, we set this when removing 4548 * event->rb_entry and wait/clear when adding event->rb_entry. 4549 */ 4550 WARN_ON_ONCE(event->rcu_pending); 4551 4552 old_rb = event->rb; 4553 spin_lock_irqsave(&old_rb->event_lock, flags); 4554 list_del_rcu(&event->rb_entry); 4555 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4556 4557 event->rcu_batches = get_state_synchronize_rcu(); 4558 event->rcu_pending = 1; 4559 } 4560 4561 if (rb) { 4562 if (event->rcu_pending) { 4563 cond_synchronize_rcu(event->rcu_batches); 4564 event->rcu_pending = 0; 4565 } 4566 4567 spin_lock_irqsave(&rb->event_lock, flags); 4568 list_add_rcu(&event->rb_entry, &rb->event_list); 4569 spin_unlock_irqrestore(&rb->event_lock, flags); 4570 } 4571 4572 rcu_assign_pointer(event->rb, rb); 4573 4574 if (old_rb) { 4575 ring_buffer_put(old_rb); 4576 /* 4577 * Since we detached before setting the new rb, so that we 4578 * could attach the new rb, we could have missed a wakeup. 4579 * Provide it now. 4580 */ 4581 wake_up_all(&event->waitq); 4582 } 4583 } 4584 4585 static void ring_buffer_wakeup(struct perf_event *event) 4586 { 4587 struct ring_buffer *rb; 4588 4589 rcu_read_lock(); 4590 rb = rcu_dereference(event->rb); 4591 if (rb) { 4592 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4593 wake_up_all(&event->waitq); 4594 } 4595 rcu_read_unlock(); 4596 } 4597 4598 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4599 { 4600 struct ring_buffer *rb; 4601 4602 rcu_read_lock(); 4603 rb = rcu_dereference(event->rb); 4604 if (rb) { 4605 if (!atomic_inc_not_zero(&rb->refcount)) 4606 rb = NULL; 4607 } 4608 rcu_read_unlock(); 4609 4610 return rb; 4611 } 4612 4613 void ring_buffer_put(struct ring_buffer *rb) 4614 { 4615 if (!atomic_dec_and_test(&rb->refcount)) 4616 return; 4617 4618 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4619 4620 call_rcu(&rb->rcu_head, rb_free_rcu); 4621 } 4622 4623 static void perf_mmap_open(struct vm_area_struct *vma) 4624 { 4625 struct perf_event *event = vma->vm_file->private_data; 4626 4627 atomic_inc(&event->mmap_count); 4628 atomic_inc(&event->rb->mmap_count); 4629 4630 if (vma->vm_pgoff) 4631 atomic_inc(&event->rb->aux_mmap_count); 4632 4633 if (event->pmu->event_mapped) 4634 event->pmu->event_mapped(event); 4635 } 4636 4637 /* 4638 * A buffer can be mmap()ed multiple times; either directly through the same 4639 * event, or through other events by use of perf_event_set_output(). 4640 * 4641 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4642 * the buffer here, where we still have a VM context. This means we need 4643 * to detach all events redirecting to us. 4644 */ 4645 static void perf_mmap_close(struct vm_area_struct *vma) 4646 { 4647 struct perf_event *event = vma->vm_file->private_data; 4648 4649 struct ring_buffer *rb = ring_buffer_get(event); 4650 struct user_struct *mmap_user = rb->mmap_user; 4651 int mmap_locked = rb->mmap_locked; 4652 unsigned long size = perf_data_size(rb); 4653 4654 if (event->pmu->event_unmapped) 4655 event->pmu->event_unmapped(event); 4656 4657 /* 4658 * rb->aux_mmap_count will always drop before rb->mmap_count and 4659 * event->mmap_count, so it is ok to use event->mmap_mutex to 4660 * serialize with perf_mmap here. 4661 */ 4662 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4663 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4664 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4665 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4666 4667 rb_free_aux(rb); 4668 mutex_unlock(&event->mmap_mutex); 4669 } 4670 4671 atomic_dec(&rb->mmap_count); 4672 4673 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4674 goto out_put; 4675 4676 ring_buffer_attach(event, NULL); 4677 mutex_unlock(&event->mmap_mutex); 4678 4679 /* If there's still other mmap()s of this buffer, we're done. */ 4680 if (atomic_read(&rb->mmap_count)) 4681 goto out_put; 4682 4683 /* 4684 * No other mmap()s, detach from all other events that might redirect 4685 * into the now unreachable buffer. Somewhat complicated by the 4686 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4687 */ 4688 again: 4689 rcu_read_lock(); 4690 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4691 if (!atomic_long_inc_not_zero(&event->refcount)) { 4692 /* 4693 * This event is en-route to free_event() which will 4694 * detach it and remove it from the list. 4695 */ 4696 continue; 4697 } 4698 rcu_read_unlock(); 4699 4700 mutex_lock(&event->mmap_mutex); 4701 /* 4702 * Check we didn't race with perf_event_set_output() which can 4703 * swizzle the rb from under us while we were waiting to 4704 * acquire mmap_mutex. 4705 * 4706 * If we find a different rb; ignore this event, a next 4707 * iteration will no longer find it on the list. We have to 4708 * still restart the iteration to make sure we're not now 4709 * iterating the wrong list. 4710 */ 4711 if (event->rb == rb) 4712 ring_buffer_attach(event, NULL); 4713 4714 mutex_unlock(&event->mmap_mutex); 4715 put_event(event); 4716 4717 /* 4718 * Restart the iteration; either we're on the wrong list or 4719 * destroyed its integrity by doing a deletion. 4720 */ 4721 goto again; 4722 } 4723 rcu_read_unlock(); 4724 4725 /* 4726 * It could be there's still a few 0-ref events on the list; they'll 4727 * get cleaned up by free_event() -- they'll also still have their 4728 * ref on the rb and will free it whenever they are done with it. 4729 * 4730 * Aside from that, this buffer is 'fully' detached and unmapped, 4731 * undo the VM accounting. 4732 */ 4733 4734 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4735 vma->vm_mm->pinned_vm -= mmap_locked; 4736 free_uid(mmap_user); 4737 4738 out_put: 4739 ring_buffer_put(rb); /* could be last */ 4740 } 4741 4742 static const struct vm_operations_struct perf_mmap_vmops = { 4743 .open = perf_mmap_open, 4744 .close = perf_mmap_close, /* non mergable */ 4745 .fault = perf_mmap_fault, 4746 .page_mkwrite = perf_mmap_fault, 4747 }; 4748 4749 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4750 { 4751 struct perf_event *event = file->private_data; 4752 unsigned long user_locked, user_lock_limit; 4753 struct user_struct *user = current_user(); 4754 unsigned long locked, lock_limit; 4755 struct ring_buffer *rb = NULL; 4756 unsigned long vma_size; 4757 unsigned long nr_pages; 4758 long user_extra = 0, extra = 0; 4759 int ret = 0, flags = 0; 4760 4761 /* 4762 * Don't allow mmap() of inherited per-task counters. This would 4763 * create a performance issue due to all children writing to the 4764 * same rb. 4765 */ 4766 if (event->cpu == -1 && event->attr.inherit) 4767 return -EINVAL; 4768 4769 if (!(vma->vm_flags & VM_SHARED)) 4770 return -EINVAL; 4771 4772 vma_size = vma->vm_end - vma->vm_start; 4773 4774 if (vma->vm_pgoff == 0) { 4775 nr_pages = (vma_size / PAGE_SIZE) - 1; 4776 } else { 4777 /* 4778 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4779 * mapped, all subsequent mappings should have the same size 4780 * and offset. Must be above the normal perf buffer. 4781 */ 4782 u64 aux_offset, aux_size; 4783 4784 if (!event->rb) 4785 return -EINVAL; 4786 4787 nr_pages = vma_size / PAGE_SIZE; 4788 4789 mutex_lock(&event->mmap_mutex); 4790 ret = -EINVAL; 4791 4792 rb = event->rb; 4793 if (!rb) 4794 goto aux_unlock; 4795 4796 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4797 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4798 4799 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4800 goto aux_unlock; 4801 4802 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4803 goto aux_unlock; 4804 4805 /* already mapped with a different offset */ 4806 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4807 goto aux_unlock; 4808 4809 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4810 goto aux_unlock; 4811 4812 /* already mapped with a different size */ 4813 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4814 goto aux_unlock; 4815 4816 if (!is_power_of_2(nr_pages)) 4817 goto aux_unlock; 4818 4819 if (!atomic_inc_not_zero(&rb->mmap_count)) 4820 goto aux_unlock; 4821 4822 if (rb_has_aux(rb)) { 4823 atomic_inc(&rb->aux_mmap_count); 4824 ret = 0; 4825 goto unlock; 4826 } 4827 4828 atomic_set(&rb->aux_mmap_count, 1); 4829 user_extra = nr_pages; 4830 4831 goto accounting; 4832 } 4833 4834 /* 4835 * If we have rb pages ensure they're a power-of-two number, so we 4836 * can do bitmasks instead of modulo. 4837 */ 4838 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4839 return -EINVAL; 4840 4841 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4842 return -EINVAL; 4843 4844 WARN_ON_ONCE(event->ctx->parent_ctx); 4845 again: 4846 mutex_lock(&event->mmap_mutex); 4847 if (event->rb) { 4848 if (event->rb->nr_pages != nr_pages) { 4849 ret = -EINVAL; 4850 goto unlock; 4851 } 4852 4853 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4854 /* 4855 * Raced against perf_mmap_close() through 4856 * perf_event_set_output(). Try again, hope for better 4857 * luck. 4858 */ 4859 mutex_unlock(&event->mmap_mutex); 4860 goto again; 4861 } 4862 4863 goto unlock; 4864 } 4865 4866 user_extra = nr_pages + 1; 4867 4868 accounting: 4869 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4870 4871 /* 4872 * Increase the limit linearly with more CPUs: 4873 */ 4874 user_lock_limit *= num_online_cpus(); 4875 4876 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4877 4878 if (user_locked > user_lock_limit) 4879 extra = user_locked - user_lock_limit; 4880 4881 lock_limit = rlimit(RLIMIT_MEMLOCK); 4882 lock_limit >>= PAGE_SHIFT; 4883 locked = vma->vm_mm->pinned_vm + extra; 4884 4885 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4886 !capable(CAP_IPC_LOCK)) { 4887 ret = -EPERM; 4888 goto unlock; 4889 } 4890 4891 WARN_ON(!rb && event->rb); 4892 4893 if (vma->vm_flags & VM_WRITE) 4894 flags |= RING_BUFFER_WRITABLE; 4895 4896 if (!rb) { 4897 rb = rb_alloc(nr_pages, 4898 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4899 event->cpu, flags); 4900 4901 if (!rb) { 4902 ret = -ENOMEM; 4903 goto unlock; 4904 } 4905 4906 atomic_set(&rb->mmap_count, 1); 4907 rb->mmap_user = get_current_user(); 4908 rb->mmap_locked = extra; 4909 4910 ring_buffer_attach(event, rb); 4911 4912 perf_event_init_userpage(event); 4913 perf_event_update_userpage(event); 4914 } else { 4915 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4916 event->attr.aux_watermark, flags); 4917 if (!ret) 4918 rb->aux_mmap_locked = extra; 4919 } 4920 4921 unlock: 4922 if (!ret) { 4923 atomic_long_add(user_extra, &user->locked_vm); 4924 vma->vm_mm->pinned_vm += extra; 4925 4926 atomic_inc(&event->mmap_count); 4927 } else if (rb) { 4928 atomic_dec(&rb->mmap_count); 4929 } 4930 aux_unlock: 4931 mutex_unlock(&event->mmap_mutex); 4932 4933 /* 4934 * Since pinned accounting is per vm we cannot allow fork() to copy our 4935 * vma. 4936 */ 4937 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4938 vma->vm_ops = &perf_mmap_vmops; 4939 4940 if (event->pmu->event_mapped) 4941 event->pmu->event_mapped(event); 4942 4943 return ret; 4944 } 4945 4946 static int perf_fasync(int fd, struct file *filp, int on) 4947 { 4948 struct inode *inode = file_inode(filp); 4949 struct perf_event *event = filp->private_data; 4950 int retval; 4951 4952 inode_lock(inode); 4953 retval = fasync_helper(fd, filp, on, &event->fasync); 4954 inode_unlock(inode); 4955 4956 if (retval < 0) 4957 return retval; 4958 4959 return 0; 4960 } 4961 4962 static const struct file_operations perf_fops = { 4963 .llseek = no_llseek, 4964 .release = perf_release, 4965 .read = perf_read, 4966 .poll = perf_poll, 4967 .unlocked_ioctl = perf_ioctl, 4968 .compat_ioctl = perf_compat_ioctl, 4969 .mmap = perf_mmap, 4970 .fasync = perf_fasync, 4971 }; 4972 4973 /* 4974 * Perf event wakeup 4975 * 4976 * If there's data, ensure we set the poll() state and publish everything 4977 * to user-space before waking everybody up. 4978 */ 4979 4980 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 4981 { 4982 /* only the parent has fasync state */ 4983 if (event->parent) 4984 event = event->parent; 4985 return &event->fasync; 4986 } 4987 4988 void perf_event_wakeup(struct perf_event *event) 4989 { 4990 ring_buffer_wakeup(event); 4991 4992 if (event->pending_kill) { 4993 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 4994 event->pending_kill = 0; 4995 } 4996 } 4997 4998 static void perf_pending_event(struct irq_work *entry) 4999 { 5000 struct perf_event *event = container_of(entry, 5001 struct perf_event, pending); 5002 int rctx; 5003 5004 rctx = perf_swevent_get_recursion_context(); 5005 /* 5006 * If we 'fail' here, that's OK, it means recursion is already disabled 5007 * and we won't recurse 'further'. 5008 */ 5009 5010 if (event->pending_disable) { 5011 event->pending_disable = 0; 5012 perf_event_disable_local(event); 5013 } 5014 5015 if (event->pending_wakeup) { 5016 event->pending_wakeup = 0; 5017 perf_event_wakeup(event); 5018 } 5019 5020 if (rctx >= 0) 5021 perf_swevent_put_recursion_context(rctx); 5022 } 5023 5024 /* 5025 * We assume there is only KVM supporting the callbacks. 5026 * Later on, we might change it to a list if there is 5027 * another virtualization implementation supporting the callbacks. 5028 */ 5029 struct perf_guest_info_callbacks *perf_guest_cbs; 5030 5031 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5032 { 5033 perf_guest_cbs = cbs; 5034 return 0; 5035 } 5036 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5037 5038 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5039 { 5040 perf_guest_cbs = NULL; 5041 return 0; 5042 } 5043 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5044 5045 static void 5046 perf_output_sample_regs(struct perf_output_handle *handle, 5047 struct pt_regs *regs, u64 mask) 5048 { 5049 int bit; 5050 5051 for_each_set_bit(bit, (const unsigned long *) &mask, 5052 sizeof(mask) * BITS_PER_BYTE) { 5053 u64 val; 5054 5055 val = perf_reg_value(regs, bit); 5056 perf_output_put(handle, val); 5057 } 5058 } 5059 5060 static void perf_sample_regs_user(struct perf_regs *regs_user, 5061 struct pt_regs *regs, 5062 struct pt_regs *regs_user_copy) 5063 { 5064 if (user_mode(regs)) { 5065 regs_user->abi = perf_reg_abi(current); 5066 regs_user->regs = regs; 5067 } else if (current->mm) { 5068 perf_get_regs_user(regs_user, regs, regs_user_copy); 5069 } else { 5070 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5071 regs_user->regs = NULL; 5072 } 5073 } 5074 5075 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5076 struct pt_regs *regs) 5077 { 5078 regs_intr->regs = regs; 5079 regs_intr->abi = perf_reg_abi(current); 5080 } 5081 5082 5083 /* 5084 * Get remaining task size from user stack pointer. 5085 * 5086 * It'd be better to take stack vma map and limit this more 5087 * precisly, but there's no way to get it safely under interrupt, 5088 * so using TASK_SIZE as limit. 5089 */ 5090 static u64 perf_ustack_task_size(struct pt_regs *regs) 5091 { 5092 unsigned long addr = perf_user_stack_pointer(regs); 5093 5094 if (!addr || addr >= TASK_SIZE) 5095 return 0; 5096 5097 return TASK_SIZE - addr; 5098 } 5099 5100 static u16 5101 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5102 struct pt_regs *regs) 5103 { 5104 u64 task_size; 5105 5106 /* No regs, no stack pointer, no dump. */ 5107 if (!regs) 5108 return 0; 5109 5110 /* 5111 * Check if we fit in with the requested stack size into the: 5112 * - TASK_SIZE 5113 * If we don't, we limit the size to the TASK_SIZE. 5114 * 5115 * - remaining sample size 5116 * If we don't, we customize the stack size to 5117 * fit in to the remaining sample size. 5118 */ 5119 5120 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5121 stack_size = min(stack_size, (u16) task_size); 5122 5123 /* Current header size plus static size and dynamic size. */ 5124 header_size += 2 * sizeof(u64); 5125 5126 /* Do we fit in with the current stack dump size? */ 5127 if ((u16) (header_size + stack_size) < header_size) { 5128 /* 5129 * If we overflow the maximum size for the sample, 5130 * we customize the stack dump size to fit in. 5131 */ 5132 stack_size = USHRT_MAX - header_size - sizeof(u64); 5133 stack_size = round_up(stack_size, sizeof(u64)); 5134 } 5135 5136 return stack_size; 5137 } 5138 5139 static void 5140 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5141 struct pt_regs *regs) 5142 { 5143 /* Case of a kernel thread, nothing to dump */ 5144 if (!regs) { 5145 u64 size = 0; 5146 perf_output_put(handle, size); 5147 } else { 5148 unsigned long sp; 5149 unsigned int rem; 5150 u64 dyn_size; 5151 5152 /* 5153 * We dump: 5154 * static size 5155 * - the size requested by user or the best one we can fit 5156 * in to the sample max size 5157 * data 5158 * - user stack dump data 5159 * dynamic size 5160 * - the actual dumped size 5161 */ 5162 5163 /* Static size. */ 5164 perf_output_put(handle, dump_size); 5165 5166 /* Data. */ 5167 sp = perf_user_stack_pointer(regs); 5168 rem = __output_copy_user(handle, (void *) sp, dump_size); 5169 dyn_size = dump_size - rem; 5170 5171 perf_output_skip(handle, rem); 5172 5173 /* Dynamic size. */ 5174 perf_output_put(handle, dyn_size); 5175 } 5176 } 5177 5178 static void __perf_event_header__init_id(struct perf_event_header *header, 5179 struct perf_sample_data *data, 5180 struct perf_event *event) 5181 { 5182 u64 sample_type = event->attr.sample_type; 5183 5184 data->type = sample_type; 5185 header->size += event->id_header_size; 5186 5187 if (sample_type & PERF_SAMPLE_TID) { 5188 /* namespace issues */ 5189 data->tid_entry.pid = perf_event_pid(event, current); 5190 data->tid_entry.tid = perf_event_tid(event, current); 5191 } 5192 5193 if (sample_type & PERF_SAMPLE_TIME) 5194 data->time = perf_event_clock(event); 5195 5196 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5197 data->id = primary_event_id(event); 5198 5199 if (sample_type & PERF_SAMPLE_STREAM_ID) 5200 data->stream_id = event->id; 5201 5202 if (sample_type & PERF_SAMPLE_CPU) { 5203 data->cpu_entry.cpu = raw_smp_processor_id(); 5204 data->cpu_entry.reserved = 0; 5205 } 5206 } 5207 5208 void perf_event_header__init_id(struct perf_event_header *header, 5209 struct perf_sample_data *data, 5210 struct perf_event *event) 5211 { 5212 if (event->attr.sample_id_all) 5213 __perf_event_header__init_id(header, data, event); 5214 } 5215 5216 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5217 struct perf_sample_data *data) 5218 { 5219 u64 sample_type = data->type; 5220 5221 if (sample_type & PERF_SAMPLE_TID) 5222 perf_output_put(handle, data->tid_entry); 5223 5224 if (sample_type & PERF_SAMPLE_TIME) 5225 perf_output_put(handle, data->time); 5226 5227 if (sample_type & PERF_SAMPLE_ID) 5228 perf_output_put(handle, data->id); 5229 5230 if (sample_type & PERF_SAMPLE_STREAM_ID) 5231 perf_output_put(handle, data->stream_id); 5232 5233 if (sample_type & PERF_SAMPLE_CPU) 5234 perf_output_put(handle, data->cpu_entry); 5235 5236 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5237 perf_output_put(handle, data->id); 5238 } 5239 5240 void perf_event__output_id_sample(struct perf_event *event, 5241 struct perf_output_handle *handle, 5242 struct perf_sample_data *sample) 5243 { 5244 if (event->attr.sample_id_all) 5245 __perf_event__output_id_sample(handle, sample); 5246 } 5247 5248 static void perf_output_read_one(struct perf_output_handle *handle, 5249 struct perf_event *event, 5250 u64 enabled, u64 running) 5251 { 5252 u64 read_format = event->attr.read_format; 5253 u64 values[4]; 5254 int n = 0; 5255 5256 values[n++] = perf_event_count(event); 5257 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5258 values[n++] = enabled + 5259 atomic64_read(&event->child_total_time_enabled); 5260 } 5261 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5262 values[n++] = running + 5263 atomic64_read(&event->child_total_time_running); 5264 } 5265 if (read_format & PERF_FORMAT_ID) 5266 values[n++] = primary_event_id(event); 5267 5268 __output_copy(handle, values, n * sizeof(u64)); 5269 } 5270 5271 /* 5272 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5273 */ 5274 static void perf_output_read_group(struct perf_output_handle *handle, 5275 struct perf_event *event, 5276 u64 enabled, u64 running) 5277 { 5278 struct perf_event *leader = event->group_leader, *sub; 5279 u64 read_format = event->attr.read_format; 5280 u64 values[5]; 5281 int n = 0; 5282 5283 values[n++] = 1 + leader->nr_siblings; 5284 5285 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5286 values[n++] = enabled; 5287 5288 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5289 values[n++] = running; 5290 5291 if (leader != event) 5292 leader->pmu->read(leader); 5293 5294 values[n++] = perf_event_count(leader); 5295 if (read_format & PERF_FORMAT_ID) 5296 values[n++] = primary_event_id(leader); 5297 5298 __output_copy(handle, values, n * sizeof(u64)); 5299 5300 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5301 n = 0; 5302 5303 if ((sub != event) && 5304 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5305 sub->pmu->read(sub); 5306 5307 values[n++] = perf_event_count(sub); 5308 if (read_format & PERF_FORMAT_ID) 5309 values[n++] = primary_event_id(sub); 5310 5311 __output_copy(handle, values, n * sizeof(u64)); 5312 } 5313 } 5314 5315 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5316 PERF_FORMAT_TOTAL_TIME_RUNNING) 5317 5318 static void perf_output_read(struct perf_output_handle *handle, 5319 struct perf_event *event) 5320 { 5321 u64 enabled = 0, running = 0, now; 5322 u64 read_format = event->attr.read_format; 5323 5324 /* 5325 * compute total_time_enabled, total_time_running 5326 * based on snapshot values taken when the event 5327 * was last scheduled in. 5328 * 5329 * we cannot simply called update_context_time() 5330 * because of locking issue as we are called in 5331 * NMI context 5332 */ 5333 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5334 calc_timer_values(event, &now, &enabled, &running); 5335 5336 if (event->attr.read_format & PERF_FORMAT_GROUP) 5337 perf_output_read_group(handle, event, enabled, running); 5338 else 5339 perf_output_read_one(handle, event, enabled, running); 5340 } 5341 5342 void perf_output_sample(struct perf_output_handle *handle, 5343 struct perf_event_header *header, 5344 struct perf_sample_data *data, 5345 struct perf_event *event) 5346 { 5347 u64 sample_type = data->type; 5348 5349 perf_output_put(handle, *header); 5350 5351 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5352 perf_output_put(handle, data->id); 5353 5354 if (sample_type & PERF_SAMPLE_IP) 5355 perf_output_put(handle, data->ip); 5356 5357 if (sample_type & PERF_SAMPLE_TID) 5358 perf_output_put(handle, data->tid_entry); 5359 5360 if (sample_type & PERF_SAMPLE_TIME) 5361 perf_output_put(handle, data->time); 5362 5363 if (sample_type & PERF_SAMPLE_ADDR) 5364 perf_output_put(handle, data->addr); 5365 5366 if (sample_type & PERF_SAMPLE_ID) 5367 perf_output_put(handle, data->id); 5368 5369 if (sample_type & PERF_SAMPLE_STREAM_ID) 5370 perf_output_put(handle, data->stream_id); 5371 5372 if (sample_type & PERF_SAMPLE_CPU) 5373 perf_output_put(handle, data->cpu_entry); 5374 5375 if (sample_type & PERF_SAMPLE_PERIOD) 5376 perf_output_put(handle, data->period); 5377 5378 if (sample_type & PERF_SAMPLE_READ) 5379 perf_output_read(handle, event); 5380 5381 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5382 if (data->callchain) { 5383 int size = 1; 5384 5385 if (data->callchain) 5386 size += data->callchain->nr; 5387 5388 size *= sizeof(u64); 5389 5390 __output_copy(handle, data->callchain, size); 5391 } else { 5392 u64 nr = 0; 5393 perf_output_put(handle, nr); 5394 } 5395 } 5396 5397 if (sample_type & PERF_SAMPLE_RAW) { 5398 if (data->raw) { 5399 u32 raw_size = data->raw->size; 5400 u32 real_size = round_up(raw_size + sizeof(u32), 5401 sizeof(u64)) - sizeof(u32); 5402 u64 zero = 0; 5403 5404 perf_output_put(handle, real_size); 5405 __output_copy(handle, data->raw->data, raw_size); 5406 if (real_size - raw_size) 5407 __output_copy(handle, &zero, real_size - raw_size); 5408 } else { 5409 struct { 5410 u32 size; 5411 u32 data; 5412 } raw = { 5413 .size = sizeof(u32), 5414 .data = 0, 5415 }; 5416 perf_output_put(handle, raw); 5417 } 5418 } 5419 5420 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5421 if (data->br_stack) { 5422 size_t size; 5423 5424 size = data->br_stack->nr 5425 * sizeof(struct perf_branch_entry); 5426 5427 perf_output_put(handle, data->br_stack->nr); 5428 perf_output_copy(handle, data->br_stack->entries, size); 5429 } else { 5430 /* 5431 * we always store at least the value of nr 5432 */ 5433 u64 nr = 0; 5434 perf_output_put(handle, nr); 5435 } 5436 } 5437 5438 if (sample_type & PERF_SAMPLE_REGS_USER) { 5439 u64 abi = data->regs_user.abi; 5440 5441 /* 5442 * If there are no regs to dump, notice it through 5443 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5444 */ 5445 perf_output_put(handle, abi); 5446 5447 if (abi) { 5448 u64 mask = event->attr.sample_regs_user; 5449 perf_output_sample_regs(handle, 5450 data->regs_user.regs, 5451 mask); 5452 } 5453 } 5454 5455 if (sample_type & PERF_SAMPLE_STACK_USER) { 5456 perf_output_sample_ustack(handle, 5457 data->stack_user_size, 5458 data->regs_user.regs); 5459 } 5460 5461 if (sample_type & PERF_SAMPLE_WEIGHT) 5462 perf_output_put(handle, data->weight); 5463 5464 if (sample_type & PERF_SAMPLE_DATA_SRC) 5465 perf_output_put(handle, data->data_src.val); 5466 5467 if (sample_type & PERF_SAMPLE_TRANSACTION) 5468 perf_output_put(handle, data->txn); 5469 5470 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5471 u64 abi = data->regs_intr.abi; 5472 /* 5473 * If there are no regs to dump, notice it through 5474 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5475 */ 5476 perf_output_put(handle, abi); 5477 5478 if (abi) { 5479 u64 mask = event->attr.sample_regs_intr; 5480 5481 perf_output_sample_regs(handle, 5482 data->regs_intr.regs, 5483 mask); 5484 } 5485 } 5486 5487 if (!event->attr.watermark) { 5488 int wakeup_events = event->attr.wakeup_events; 5489 5490 if (wakeup_events) { 5491 struct ring_buffer *rb = handle->rb; 5492 int events = local_inc_return(&rb->events); 5493 5494 if (events >= wakeup_events) { 5495 local_sub(wakeup_events, &rb->events); 5496 local_inc(&rb->wakeup); 5497 } 5498 } 5499 } 5500 } 5501 5502 void perf_prepare_sample(struct perf_event_header *header, 5503 struct perf_sample_data *data, 5504 struct perf_event *event, 5505 struct pt_regs *regs) 5506 { 5507 u64 sample_type = event->attr.sample_type; 5508 5509 header->type = PERF_RECORD_SAMPLE; 5510 header->size = sizeof(*header) + event->header_size; 5511 5512 header->misc = 0; 5513 header->misc |= perf_misc_flags(regs); 5514 5515 __perf_event_header__init_id(header, data, event); 5516 5517 if (sample_type & PERF_SAMPLE_IP) 5518 data->ip = perf_instruction_pointer(regs); 5519 5520 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5521 int size = 1; 5522 5523 data->callchain = perf_callchain(event, regs); 5524 5525 if (data->callchain) 5526 size += data->callchain->nr; 5527 5528 header->size += size * sizeof(u64); 5529 } 5530 5531 if (sample_type & PERF_SAMPLE_RAW) { 5532 int size = sizeof(u32); 5533 5534 if (data->raw) 5535 size += data->raw->size; 5536 else 5537 size += sizeof(u32); 5538 5539 header->size += round_up(size, sizeof(u64)); 5540 } 5541 5542 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5543 int size = sizeof(u64); /* nr */ 5544 if (data->br_stack) { 5545 size += data->br_stack->nr 5546 * sizeof(struct perf_branch_entry); 5547 } 5548 header->size += size; 5549 } 5550 5551 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5552 perf_sample_regs_user(&data->regs_user, regs, 5553 &data->regs_user_copy); 5554 5555 if (sample_type & PERF_SAMPLE_REGS_USER) { 5556 /* regs dump ABI info */ 5557 int size = sizeof(u64); 5558 5559 if (data->regs_user.regs) { 5560 u64 mask = event->attr.sample_regs_user; 5561 size += hweight64(mask) * sizeof(u64); 5562 } 5563 5564 header->size += size; 5565 } 5566 5567 if (sample_type & PERF_SAMPLE_STACK_USER) { 5568 /* 5569 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5570 * processed as the last one or have additional check added 5571 * in case new sample type is added, because we could eat 5572 * up the rest of the sample size. 5573 */ 5574 u16 stack_size = event->attr.sample_stack_user; 5575 u16 size = sizeof(u64); 5576 5577 stack_size = perf_sample_ustack_size(stack_size, header->size, 5578 data->regs_user.regs); 5579 5580 /* 5581 * If there is something to dump, add space for the dump 5582 * itself and for the field that tells the dynamic size, 5583 * which is how many have been actually dumped. 5584 */ 5585 if (stack_size) 5586 size += sizeof(u64) + stack_size; 5587 5588 data->stack_user_size = stack_size; 5589 header->size += size; 5590 } 5591 5592 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5593 /* regs dump ABI info */ 5594 int size = sizeof(u64); 5595 5596 perf_sample_regs_intr(&data->regs_intr, regs); 5597 5598 if (data->regs_intr.regs) { 5599 u64 mask = event->attr.sample_regs_intr; 5600 5601 size += hweight64(mask) * sizeof(u64); 5602 } 5603 5604 header->size += size; 5605 } 5606 } 5607 5608 void perf_event_output(struct perf_event *event, 5609 struct perf_sample_data *data, 5610 struct pt_regs *regs) 5611 { 5612 struct perf_output_handle handle; 5613 struct perf_event_header header; 5614 5615 /* protect the callchain buffers */ 5616 rcu_read_lock(); 5617 5618 perf_prepare_sample(&header, data, event, regs); 5619 5620 if (perf_output_begin(&handle, event, header.size)) 5621 goto exit; 5622 5623 perf_output_sample(&handle, &header, data, event); 5624 5625 perf_output_end(&handle); 5626 5627 exit: 5628 rcu_read_unlock(); 5629 } 5630 5631 /* 5632 * read event_id 5633 */ 5634 5635 struct perf_read_event { 5636 struct perf_event_header header; 5637 5638 u32 pid; 5639 u32 tid; 5640 }; 5641 5642 static void 5643 perf_event_read_event(struct perf_event *event, 5644 struct task_struct *task) 5645 { 5646 struct perf_output_handle handle; 5647 struct perf_sample_data sample; 5648 struct perf_read_event read_event = { 5649 .header = { 5650 .type = PERF_RECORD_READ, 5651 .misc = 0, 5652 .size = sizeof(read_event) + event->read_size, 5653 }, 5654 .pid = perf_event_pid(event, task), 5655 .tid = perf_event_tid(event, task), 5656 }; 5657 int ret; 5658 5659 perf_event_header__init_id(&read_event.header, &sample, event); 5660 ret = perf_output_begin(&handle, event, read_event.header.size); 5661 if (ret) 5662 return; 5663 5664 perf_output_put(&handle, read_event); 5665 perf_output_read(&handle, event); 5666 perf_event__output_id_sample(event, &handle, &sample); 5667 5668 perf_output_end(&handle); 5669 } 5670 5671 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5672 5673 static void 5674 perf_event_aux_ctx(struct perf_event_context *ctx, 5675 perf_event_aux_output_cb output, 5676 void *data) 5677 { 5678 struct perf_event *event; 5679 5680 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5681 if (event->state < PERF_EVENT_STATE_INACTIVE) 5682 continue; 5683 if (!event_filter_match(event)) 5684 continue; 5685 output(event, data); 5686 } 5687 } 5688 5689 static void 5690 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5691 struct perf_event_context *task_ctx) 5692 { 5693 rcu_read_lock(); 5694 preempt_disable(); 5695 perf_event_aux_ctx(task_ctx, output, data); 5696 preempt_enable(); 5697 rcu_read_unlock(); 5698 } 5699 5700 static void 5701 perf_event_aux(perf_event_aux_output_cb output, void *data, 5702 struct perf_event_context *task_ctx) 5703 { 5704 struct perf_cpu_context *cpuctx; 5705 struct perf_event_context *ctx; 5706 struct pmu *pmu; 5707 int ctxn; 5708 5709 /* 5710 * If we have task_ctx != NULL we only notify 5711 * the task context itself. The task_ctx is set 5712 * only for EXIT events before releasing task 5713 * context. 5714 */ 5715 if (task_ctx) { 5716 perf_event_aux_task_ctx(output, data, task_ctx); 5717 return; 5718 } 5719 5720 rcu_read_lock(); 5721 list_for_each_entry_rcu(pmu, &pmus, entry) { 5722 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5723 if (cpuctx->unique_pmu != pmu) 5724 goto next; 5725 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5726 ctxn = pmu->task_ctx_nr; 5727 if (ctxn < 0) 5728 goto next; 5729 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5730 if (ctx) 5731 perf_event_aux_ctx(ctx, output, data); 5732 next: 5733 put_cpu_ptr(pmu->pmu_cpu_context); 5734 } 5735 rcu_read_unlock(); 5736 } 5737 5738 /* 5739 * task tracking -- fork/exit 5740 * 5741 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5742 */ 5743 5744 struct perf_task_event { 5745 struct task_struct *task; 5746 struct perf_event_context *task_ctx; 5747 5748 struct { 5749 struct perf_event_header header; 5750 5751 u32 pid; 5752 u32 ppid; 5753 u32 tid; 5754 u32 ptid; 5755 u64 time; 5756 } event_id; 5757 }; 5758 5759 static int perf_event_task_match(struct perf_event *event) 5760 { 5761 return event->attr.comm || event->attr.mmap || 5762 event->attr.mmap2 || event->attr.mmap_data || 5763 event->attr.task; 5764 } 5765 5766 static void perf_event_task_output(struct perf_event *event, 5767 void *data) 5768 { 5769 struct perf_task_event *task_event = data; 5770 struct perf_output_handle handle; 5771 struct perf_sample_data sample; 5772 struct task_struct *task = task_event->task; 5773 int ret, size = task_event->event_id.header.size; 5774 5775 if (!perf_event_task_match(event)) 5776 return; 5777 5778 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5779 5780 ret = perf_output_begin(&handle, event, 5781 task_event->event_id.header.size); 5782 if (ret) 5783 goto out; 5784 5785 task_event->event_id.pid = perf_event_pid(event, task); 5786 task_event->event_id.ppid = perf_event_pid(event, current); 5787 5788 task_event->event_id.tid = perf_event_tid(event, task); 5789 task_event->event_id.ptid = perf_event_tid(event, current); 5790 5791 task_event->event_id.time = perf_event_clock(event); 5792 5793 perf_output_put(&handle, task_event->event_id); 5794 5795 perf_event__output_id_sample(event, &handle, &sample); 5796 5797 perf_output_end(&handle); 5798 out: 5799 task_event->event_id.header.size = size; 5800 } 5801 5802 static void perf_event_task(struct task_struct *task, 5803 struct perf_event_context *task_ctx, 5804 int new) 5805 { 5806 struct perf_task_event task_event; 5807 5808 if (!atomic_read(&nr_comm_events) && 5809 !atomic_read(&nr_mmap_events) && 5810 !atomic_read(&nr_task_events)) 5811 return; 5812 5813 task_event = (struct perf_task_event){ 5814 .task = task, 5815 .task_ctx = task_ctx, 5816 .event_id = { 5817 .header = { 5818 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5819 .misc = 0, 5820 .size = sizeof(task_event.event_id), 5821 }, 5822 /* .pid */ 5823 /* .ppid */ 5824 /* .tid */ 5825 /* .ptid */ 5826 /* .time */ 5827 }, 5828 }; 5829 5830 perf_event_aux(perf_event_task_output, 5831 &task_event, 5832 task_ctx); 5833 } 5834 5835 void perf_event_fork(struct task_struct *task) 5836 { 5837 perf_event_task(task, NULL, 1); 5838 } 5839 5840 /* 5841 * comm tracking 5842 */ 5843 5844 struct perf_comm_event { 5845 struct task_struct *task; 5846 char *comm; 5847 int comm_size; 5848 5849 struct { 5850 struct perf_event_header header; 5851 5852 u32 pid; 5853 u32 tid; 5854 } event_id; 5855 }; 5856 5857 static int perf_event_comm_match(struct perf_event *event) 5858 { 5859 return event->attr.comm; 5860 } 5861 5862 static void perf_event_comm_output(struct perf_event *event, 5863 void *data) 5864 { 5865 struct perf_comm_event *comm_event = data; 5866 struct perf_output_handle handle; 5867 struct perf_sample_data sample; 5868 int size = comm_event->event_id.header.size; 5869 int ret; 5870 5871 if (!perf_event_comm_match(event)) 5872 return; 5873 5874 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5875 ret = perf_output_begin(&handle, event, 5876 comm_event->event_id.header.size); 5877 5878 if (ret) 5879 goto out; 5880 5881 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5882 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5883 5884 perf_output_put(&handle, comm_event->event_id); 5885 __output_copy(&handle, comm_event->comm, 5886 comm_event->comm_size); 5887 5888 perf_event__output_id_sample(event, &handle, &sample); 5889 5890 perf_output_end(&handle); 5891 out: 5892 comm_event->event_id.header.size = size; 5893 } 5894 5895 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5896 { 5897 char comm[TASK_COMM_LEN]; 5898 unsigned int size; 5899 5900 memset(comm, 0, sizeof(comm)); 5901 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5902 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5903 5904 comm_event->comm = comm; 5905 comm_event->comm_size = size; 5906 5907 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5908 5909 perf_event_aux(perf_event_comm_output, 5910 comm_event, 5911 NULL); 5912 } 5913 5914 void perf_event_comm(struct task_struct *task, bool exec) 5915 { 5916 struct perf_comm_event comm_event; 5917 5918 if (!atomic_read(&nr_comm_events)) 5919 return; 5920 5921 comm_event = (struct perf_comm_event){ 5922 .task = task, 5923 /* .comm */ 5924 /* .comm_size */ 5925 .event_id = { 5926 .header = { 5927 .type = PERF_RECORD_COMM, 5928 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5929 /* .size */ 5930 }, 5931 /* .pid */ 5932 /* .tid */ 5933 }, 5934 }; 5935 5936 perf_event_comm_event(&comm_event); 5937 } 5938 5939 /* 5940 * mmap tracking 5941 */ 5942 5943 struct perf_mmap_event { 5944 struct vm_area_struct *vma; 5945 5946 const char *file_name; 5947 int file_size; 5948 int maj, min; 5949 u64 ino; 5950 u64 ino_generation; 5951 u32 prot, flags; 5952 5953 struct { 5954 struct perf_event_header header; 5955 5956 u32 pid; 5957 u32 tid; 5958 u64 start; 5959 u64 len; 5960 u64 pgoff; 5961 } event_id; 5962 }; 5963 5964 static int perf_event_mmap_match(struct perf_event *event, 5965 void *data) 5966 { 5967 struct perf_mmap_event *mmap_event = data; 5968 struct vm_area_struct *vma = mmap_event->vma; 5969 int executable = vma->vm_flags & VM_EXEC; 5970 5971 return (!executable && event->attr.mmap_data) || 5972 (executable && (event->attr.mmap || event->attr.mmap2)); 5973 } 5974 5975 static void perf_event_mmap_output(struct perf_event *event, 5976 void *data) 5977 { 5978 struct perf_mmap_event *mmap_event = data; 5979 struct perf_output_handle handle; 5980 struct perf_sample_data sample; 5981 int size = mmap_event->event_id.header.size; 5982 int ret; 5983 5984 if (!perf_event_mmap_match(event, data)) 5985 return; 5986 5987 if (event->attr.mmap2) { 5988 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5989 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5990 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5991 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5992 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5993 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5994 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5995 } 5996 5997 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5998 ret = perf_output_begin(&handle, event, 5999 mmap_event->event_id.header.size); 6000 if (ret) 6001 goto out; 6002 6003 mmap_event->event_id.pid = perf_event_pid(event, current); 6004 mmap_event->event_id.tid = perf_event_tid(event, current); 6005 6006 perf_output_put(&handle, mmap_event->event_id); 6007 6008 if (event->attr.mmap2) { 6009 perf_output_put(&handle, mmap_event->maj); 6010 perf_output_put(&handle, mmap_event->min); 6011 perf_output_put(&handle, mmap_event->ino); 6012 perf_output_put(&handle, mmap_event->ino_generation); 6013 perf_output_put(&handle, mmap_event->prot); 6014 perf_output_put(&handle, mmap_event->flags); 6015 } 6016 6017 __output_copy(&handle, mmap_event->file_name, 6018 mmap_event->file_size); 6019 6020 perf_event__output_id_sample(event, &handle, &sample); 6021 6022 perf_output_end(&handle); 6023 out: 6024 mmap_event->event_id.header.size = size; 6025 } 6026 6027 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6028 { 6029 struct vm_area_struct *vma = mmap_event->vma; 6030 struct file *file = vma->vm_file; 6031 int maj = 0, min = 0; 6032 u64 ino = 0, gen = 0; 6033 u32 prot = 0, flags = 0; 6034 unsigned int size; 6035 char tmp[16]; 6036 char *buf = NULL; 6037 char *name; 6038 6039 if (file) { 6040 struct inode *inode; 6041 dev_t dev; 6042 6043 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6044 if (!buf) { 6045 name = "//enomem"; 6046 goto cpy_name; 6047 } 6048 /* 6049 * d_path() works from the end of the rb backwards, so we 6050 * need to add enough zero bytes after the string to handle 6051 * the 64bit alignment we do later. 6052 */ 6053 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6054 if (IS_ERR(name)) { 6055 name = "//toolong"; 6056 goto cpy_name; 6057 } 6058 inode = file_inode(vma->vm_file); 6059 dev = inode->i_sb->s_dev; 6060 ino = inode->i_ino; 6061 gen = inode->i_generation; 6062 maj = MAJOR(dev); 6063 min = MINOR(dev); 6064 6065 if (vma->vm_flags & VM_READ) 6066 prot |= PROT_READ; 6067 if (vma->vm_flags & VM_WRITE) 6068 prot |= PROT_WRITE; 6069 if (vma->vm_flags & VM_EXEC) 6070 prot |= PROT_EXEC; 6071 6072 if (vma->vm_flags & VM_MAYSHARE) 6073 flags = MAP_SHARED; 6074 else 6075 flags = MAP_PRIVATE; 6076 6077 if (vma->vm_flags & VM_DENYWRITE) 6078 flags |= MAP_DENYWRITE; 6079 if (vma->vm_flags & VM_MAYEXEC) 6080 flags |= MAP_EXECUTABLE; 6081 if (vma->vm_flags & VM_LOCKED) 6082 flags |= MAP_LOCKED; 6083 if (vma->vm_flags & VM_HUGETLB) 6084 flags |= MAP_HUGETLB; 6085 6086 goto got_name; 6087 } else { 6088 if (vma->vm_ops && vma->vm_ops->name) { 6089 name = (char *) vma->vm_ops->name(vma); 6090 if (name) 6091 goto cpy_name; 6092 } 6093 6094 name = (char *)arch_vma_name(vma); 6095 if (name) 6096 goto cpy_name; 6097 6098 if (vma->vm_start <= vma->vm_mm->start_brk && 6099 vma->vm_end >= vma->vm_mm->brk) { 6100 name = "[heap]"; 6101 goto cpy_name; 6102 } 6103 if (vma->vm_start <= vma->vm_mm->start_stack && 6104 vma->vm_end >= vma->vm_mm->start_stack) { 6105 name = "[stack]"; 6106 goto cpy_name; 6107 } 6108 6109 name = "//anon"; 6110 goto cpy_name; 6111 } 6112 6113 cpy_name: 6114 strlcpy(tmp, name, sizeof(tmp)); 6115 name = tmp; 6116 got_name: 6117 /* 6118 * Since our buffer works in 8 byte units we need to align our string 6119 * size to a multiple of 8. However, we must guarantee the tail end is 6120 * zero'd out to avoid leaking random bits to userspace. 6121 */ 6122 size = strlen(name)+1; 6123 while (!IS_ALIGNED(size, sizeof(u64))) 6124 name[size++] = '\0'; 6125 6126 mmap_event->file_name = name; 6127 mmap_event->file_size = size; 6128 mmap_event->maj = maj; 6129 mmap_event->min = min; 6130 mmap_event->ino = ino; 6131 mmap_event->ino_generation = gen; 6132 mmap_event->prot = prot; 6133 mmap_event->flags = flags; 6134 6135 if (!(vma->vm_flags & VM_EXEC)) 6136 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6137 6138 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6139 6140 perf_event_aux(perf_event_mmap_output, 6141 mmap_event, 6142 NULL); 6143 6144 kfree(buf); 6145 } 6146 6147 void perf_event_mmap(struct vm_area_struct *vma) 6148 { 6149 struct perf_mmap_event mmap_event; 6150 6151 if (!atomic_read(&nr_mmap_events)) 6152 return; 6153 6154 mmap_event = (struct perf_mmap_event){ 6155 .vma = vma, 6156 /* .file_name */ 6157 /* .file_size */ 6158 .event_id = { 6159 .header = { 6160 .type = PERF_RECORD_MMAP, 6161 .misc = PERF_RECORD_MISC_USER, 6162 /* .size */ 6163 }, 6164 /* .pid */ 6165 /* .tid */ 6166 .start = vma->vm_start, 6167 .len = vma->vm_end - vma->vm_start, 6168 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6169 }, 6170 /* .maj (attr_mmap2 only) */ 6171 /* .min (attr_mmap2 only) */ 6172 /* .ino (attr_mmap2 only) */ 6173 /* .ino_generation (attr_mmap2 only) */ 6174 /* .prot (attr_mmap2 only) */ 6175 /* .flags (attr_mmap2 only) */ 6176 }; 6177 6178 perf_event_mmap_event(&mmap_event); 6179 } 6180 6181 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6182 unsigned long size, u64 flags) 6183 { 6184 struct perf_output_handle handle; 6185 struct perf_sample_data sample; 6186 struct perf_aux_event { 6187 struct perf_event_header header; 6188 u64 offset; 6189 u64 size; 6190 u64 flags; 6191 } rec = { 6192 .header = { 6193 .type = PERF_RECORD_AUX, 6194 .misc = 0, 6195 .size = sizeof(rec), 6196 }, 6197 .offset = head, 6198 .size = size, 6199 .flags = flags, 6200 }; 6201 int ret; 6202 6203 perf_event_header__init_id(&rec.header, &sample, event); 6204 ret = perf_output_begin(&handle, event, rec.header.size); 6205 6206 if (ret) 6207 return; 6208 6209 perf_output_put(&handle, rec); 6210 perf_event__output_id_sample(event, &handle, &sample); 6211 6212 perf_output_end(&handle); 6213 } 6214 6215 /* 6216 * Lost/dropped samples logging 6217 */ 6218 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6219 { 6220 struct perf_output_handle handle; 6221 struct perf_sample_data sample; 6222 int ret; 6223 6224 struct { 6225 struct perf_event_header header; 6226 u64 lost; 6227 } lost_samples_event = { 6228 .header = { 6229 .type = PERF_RECORD_LOST_SAMPLES, 6230 .misc = 0, 6231 .size = sizeof(lost_samples_event), 6232 }, 6233 .lost = lost, 6234 }; 6235 6236 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6237 6238 ret = perf_output_begin(&handle, event, 6239 lost_samples_event.header.size); 6240 if (ret) 6241 return; 6242 6243 perf_output_put(&handle, lost_samples_event); 6244 perf_event__output_id_sample(event, &handle, &sample); 6245 perf_output_end(&handle); 6246 } 6247 6248 /* 6249 * context_switch tracking 6250 */ 6251 6252 struct perf_switch_event { 6253 struct task_struct *task; 6254 struct task_struct *next_prev; 6255 6256 struct { 6257 struct perf_event_header header; 6258 u32 next_prev_pid; 6259 u32 next_prev_tid; 6260 } event_id; 6261 }; 6262 6263 static int perf_event_switch_match(struct perf_event *event) 6264 { 6265 return event->attr.context_switch; 6266 } 6267 6268 static void perf_event_switch_output(struct perf_event *event, void *data) 6269 { 6270 struct perf_switch_event *se = data; 6271 struct perf_output_handle handle; 6272 struct perf_sample_data sample; 6273 int ret; 6274 6275 if (!perf_event_switch_match(event)) 6276 return; 6277 6278 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6279 if (event->ctx->task) { 6280 se->event_id.header.type = PERF_RECORD_SWITCH; 6281 se->event_id.header.size = sizeof(se->event_id.header); 6282 } else { 6283 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6284 se->event_id.header.size = sizeof(se->event_id); 6285 se->event_id.next_prev_pid = 6286 perf_event_pid(event, se->next_prev); 6287 se->event_id.next_prev_tid = 6288 perf_event_tid(event, se->next_prev); 6289 } 6290 6291 perf_event_header__init_id(&se->event_id.header, &sample, event); 6292 6293 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6294 if (ret) 6295 return; 6296 6297 if (event->ctx->task) 6298 perf_output_put(&handle, se->event_id.header); 6299 else 6300 perf_output_put(&handle, se->event_id); 6301 6302 perf_event__output_id_sample(event, &handle, &sample); 6303 6304 perf_output_end(&handle); 6305 } 6306 6307 static void perf_event_switch(struct task_struct *task, 6308 struct task_struct *next_prev, bool sched_in) 6309 { 6310 struct perf_switch_event switch_event; 6311 6312 /* N.B. caller checks nr_switch_events != 0 */ 6313 6314 switch_event = (struct perf_switch_event){ 6315 .task = task, 6316 .next_prev = next_prev, 6317 .event_id = { 6318 .header = { 6319 /* .type */ 6320 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6321 /* .size */ 6322 }, 6323 /* .next_prev_pid */ 6324 /* .next_prev_tid */ 6325 }, 6326 }; 6327 6328 perf_event_aux(perf_event_switch_output, 6329 &switch_event, 6330 NULL); 6331 } 6332 6333 /* 6334 * IRQ throttle logging 6335 */ 6336 6337 static void perf_log_throttle(struct perf_event *event, int enable) 6338 { 6339 struct perf_output_handle handle; 6340 struct perf_sample_data sample; 6341 int ret; 6342 6343 struct { 6344 struct perf_event_header header; 6345 u64 time; 6346 u64 id; 6347 u64 stream_id; 6348 } throttle_event = { 6349 .header = { 6350 .type = PERF_RECORD_THROTTLE, 6351 .misc = 0, 6352 .size = sizeof(throttle_event), 6353 }, 6354 .time = perf_event_clock(event), 6355 .id = primary_event_id(event), 6356 .stream_id = event->id, 6357 }; 6358 6359 if (enable) 6360 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6361 6362 perf_event_header__init_id(&throttle_event.header, &sample, event); 6363 6364 ret = perf_output_begin(&handle, event, 6365 throttle_event.header.size); 6366 if (ret) 6367 return; 6368 6369 perf_output_put(&handle, throttle_event); 6370 perf_event__output_id_sample(event, &handle, &sample); 6371 perf_output_end(&handle); 6372 } 6373 6374 static void perf_log_itrace_start(struct perf_event *event) 6375 { 6376 struct perf_output_handle handle; 6377 struct perf_sample_data sample; 6378 struct perf_aux_event { 6379 struct perf_event_header header; 6380 u32 pid; 6381 u32 tid; 6382 } rec; 6383 int ret; 6384 6385 if (event->parent) 6386 event = event->parent; 6387 6388 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6389 event->hw.itrace_started) 6390 return; 6391 6392 rec.header.type = PERF_RECORD_ITRACE_START; 6393 rec.header.misc = 0; 6394 rec.header.size = sizeof(rec); 6395 rec.pid = perf_event_pid(event, current); 6396 rec.tid = perf_event_tid(event, current); 6397 6398 perf_event_header__init_id(&rec.header, &sample, event); 6399 ret = perf_output_begin(&handle, event, rec.header.size); 6400 6401 if (ret) 6402 return; 6403 6404 perf_output_put(&handle, rec); 6405 perf_event__output_id_sample(event, &handle, &sample); 6406 6407 perf_output_end(&handle); 6408 } 6409 6410 /* 6411 * Generic event overflow handling, sampling. 6412 */ 6413 6414 static int __perf_event_overflow(struct perf_event *event, 6415 int throttle, struct perf_sample_data *data, 6416 struct pt_regs *regs) 6417 { 6418 int events = atomic_read(&event->event_limit); 6419 struct hw_perf_event *hwc = &event->hw; 6420 u64 seq; 6421 int ret = 0; 6422 6423 /* 6424 * Non-sampling counters might still use the PMI to fold short 6425 * hardware counters, ignore those. 6426 */ 6427 if (unlikely(!is_sampling_event(event))) 6428 return 0; 6429 6430 seq = __this_cpu_read(perf_throttled_seq); 6431 if (seq != hwc->interrupts_seq) { 6432 hwc->interrupts_seq = seq; 6433 hwc->interrupts = 1; 6434 } else { 6435 hwc->interrupts++; 6436 if (unlikely(throttle 6437 && hwc->interrupts >= max_samples_per_tick)) { 6438 __this_cpu_inc(perf_throttled_count); 6439 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6440 hwc->interrupts = MAX_INTERRUPTS; 6441 perf_log_throttle(event, 0); 6442 ret = 1; 6443 } 6444 } 6445 6446 if (event->attr.freq) { 6447 u64 now = perf_clock(); 6448 s64 delta = now - hwc->freq_time_stamp; 6449 6450 hwc->freq_time_stamp = now; 6451 6452 if (delta > 0 && delta < 2*TICK_NSEC) 6453 perf_adjust_period(event, delta, hwc->last_period, true); 6454 } 6455 6456 /* 6457 * XXX event_limit might not quite work as expected on inherited 6458 * events 6459 */ 6460 6461 event->pending_kill = POLL_IN; 6462 if (events && atomic_dec_and_test(&event->event_limit)) { 6463 ret = 1; 6464 event->pending_kill = POLL_HUP; 6465 event->pending_disable = 1; 6466 irq_work_queue(&event->pending); 6467 } 6468 6469 if (event->overflow_handler) 6470 event->overflow_handler(event, data, regs); 6471 else 6472 perf_event_output(event, data, regs); 6473 6474 if (*perf_event_fasync(event) && event->pending_kill) { 6475 event->pending_wakeup = 1; 6476 irq_work_queue(&event->pending); 6477 } 6478 6479 return ret; 6480 } 6481 6482 int perf_event_overflow(struct perf_event *event, 6483 struct perf_sample_data *data, 6484 struct pt_regs *regs) 6485 { 6486 return __perf_event_overflow(event, 1, data, regs); 6487 } 6488 6489 /* 6490 * Generic software event infrastructure 6491 */ 6492 6493 struct swevent_htable { 6494 struct swevent_hlist *swevent_hlist; 6495 struct mutex hlist_mutex; 6496 int hlist_refcount; 6497 6498 /* Recursion avoidance in each contexts */ 6499 int recursion[PERF_NR_CONTEXTS]; 6500 }; 6501 6502 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6503 6504 /* 6505 * We directly increment event->count and keep a second value in 6506 * event->hw.period_left to count intervals. This period event 6507 * is kept in the range [-sample_period, 0] so that we can use the 6508 * sign as trigger. 6509 */ 6510 6511 u64 perf_swevent_set_period(struct perf_event *event) 6512 { 6513 struct hw_perf_event *hwc = &event->hw; 6514 u64 period = hwc->last_period; 6515 u64 nr, offset; 6516 s64 old, val; 6517 6518 hwc->last_period = hwc->sample_period; 6519 6520 again: 6521 old = val = local64_read(&hwc->period_left); 6522 if (val < 0) 6523 return 0; 6524 6525 nr = div64_u64(period + val, period); 6526 offset = nr * period; 6527 val -= offset; 6528 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6529 goto again; 6530 6531 return nr; 6532 } 6533 6534 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6535 struct perf_sample_data *data, 6536 struct pt_regs *regs) 6537 { 6538 struct hw_perf_event *hwc = &event->hw; 6539 int throttle = 0; 6540 6541 if (!overflow) 6542 overflow = perf_swevent_set_period(event); 6543 6544 if (hwc->interrupts == MAX_INTERRUPTS) 6545 return; 6546 6547 for (; overflow; overflow--) { 6548 if (__perf_event_overflow(event, throttle, 6549 data, regs)) { 6550 /* 6551 * We inhibit the overflow from happening when 6552 * hwc->interrupts == MAX_INTERRUPTS. 6553 */ 6554 break; 6555 } 6556 throttle = 1; 6557 } 6558 } 6559 6560 static void perf_swevent_event(struct perf_event *event, u64 nr, 6561 struct perf_sample_data *data, 6562 struct pt_regs *regs) 6563 { 6564 struct hw_perf_event *hwc = &event->hw; 6565 6566 local64_add(nr, &event->count); 6567 6568 if (!regs) 6569 return; 6570 6571 if (!is_sampling_event(event)) 6572 return; 6573 6574 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6575 data->period = nr; 6576 return perf_swevent_overflow(event, 1, data, regs); 6577 } else 6578 data->period = event->hw.last_period; 6579 6580 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6581 return perf_swevent_overflow(event, 1, data, regs); 6582 6583 if (local64_add_negative(nr, &hwc->period_left)) 6584 return; 6585 6586 perf_swevent_overflow(event, 0, data, regs); 6587 } 6588 6589 static int perf_exclude_event(struct perf_event *event, 6590 struct pt_regs *regs) 6591 { 6592 if (event->hw.state & PERF_HES_STOPPED) 6593 return 1; 6594 6595 if (regs) { 6596 if (event->attr.exclude_user && user_mode(regs)) 6597 return 1; 6598 6599 if (event->attr.exclude_kernel && !user_mode(regs)) 6600 return 1; 6601 } 6602 6603 return 0; 6604 } 6605 6606 static int perf_swevent_match(struct perf_event *event, 6607 enum perf_type_id type, 6608 u32 event_id, 6609 struct perf_sample_data *data, 6610 struct pt_regs *regs) 6611 { 6612 if (event->attr.type != type) 6613 return 0; 6614 6615 if (event->attr.config != event_id) 6616 return 0; 6617 6618 if (perf_exclude_event(event, regs)) 6619 return 0; 6620 6621 return 1; 6622 } 6623 6624 static inline u64 swevent_hash(u64 type, u32 event_id) 6625 { 6626 u64 val = event_id | (type << 32); 6627 6628 return hash_64(val, SWEVENT_HLIST_BITS); 6629 } 6630 6631 static inline struct hlist_head * 6632 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6633 { 6634 u64 hash = swevent_hash(type, event_id); 6635 6636 return &hlist->heads[hash]; 6637 } 6638 6639 /* For the read side: events when they trigger */ 6640 static inline struct hlist_head * 6641 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6642 { 6643 struct swevent_hlist *hlist; 6644 6645 hlist = rcu_dereference(swhash->swevent_hlist); 6646 if (!hlist) 6647 return NULL; 6648 6649 return __find_swevent_head(hlist, type, event_id); 6650 } 6651 6652 /* For the event head insertion and removal in the hlist */ 6653 static inline struct hlist_head * 6654 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6655 { 6656 struct swevent_hlist *hlist; 6657 u32 event_id = event->attr.config; 6658 u64 type = event->attr.type; 6659 6660 /* 6661 * Event scheduling is always serialized against hlist allocation 6662 * and release. Which makes the protected version suitable here. 6663 * The context lock guarantees that. 6664 */ 6665 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6666 lockdep_is_held(&event->ctx->lock)); 6667 if (!hlist) 6668 return NULL; 6669 6670 return __find_swevent_head(hlist, type, event_id); 6671 } 6672 6673 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6674 u64 nr, 6675 struct perf_sample_data *data, 6676 struct pt_regs *regs) 6677 { 6678 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6679 struct perf_event *event; 6680 struct hlist_head *head; 6681 6682 rcu_read_lock(); 6683 head = find_swevent_head_rcu(swhash, type, event_id); 6684 if (!head) 6685 goto end; 6686 6687 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6688 if (perf_swevent_match(event, type, event_id, data, regs)) 6689 perf_swevent_event(event, nr, data, regs); 6690 } 6691 end: 6692 rcu_read_unlock(); 6693 } 6694 6695 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6696 6697 int perf_swevent_get_recursion_context(void) 6698 { 6699 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6700 6701 return get_recursion_context(swhash->recursion); 6702 } 6703 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6704 6705 inline void perf_swevent_put_recursion_context(int rctx) 6706 { 6707 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6708 6709 put_recursion_context(swhash->recursion, rctx); 6710 } 6711 6712 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6713 { 6714 struct perf_sample_data data; 6715 6716 if (WARN_ON_ONCE(!regs)) 6717 return; 6718 6719 perf_sample_data_init(&data, addr, 0); 6720 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6721 } 6722 6723 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6724 { 6725 int rctx; 6726 6727 preempt_disable_notrace(); 6728 rctx = perf_swevent_get_recursion_context(); 6729 if (unlikely(rctx < 0)) 6730 goto fail; 6731 6732 ___perf_sw_event(event_id, nr, regs, addr); 6733 6734 perf_swevent_put_recursion_context(rctx); 6735 fail: 6736 preempt_enable_notrace(); 6737 } 6738 6739 static void perf_swevent_read(struct perf_event *event) 6740 { 6741 } 6742 6743 static int perf_swevent_add(struct perf_event *event, int flags) 6744 { 6745 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6746 struct hw_perf_event *hwc = &event->hw; 6747 struct hlist_head *head; 6748 6749 if (is_sampling_event(event)) { 6750 hwc->last_period = hwc->sample_period; 6751 perf_swevent_set_period(event); 6752 } 6753 6754 hwc->state = !(flags & PERF_EF_START); 6755 6756 head = find_swevent_head(swhash, event); 6757 if (WARN_ON_ONCE(!head)) 6758 return -EINVAL; 6759 6760 hlist_add_head_rcu(&event->hlist_entry, head); 6761 perf_event_update_userpage(event); 6762 6763 return 0; 6764 } 6765 6766 static void perf_swevent_del(struct perf_event *event, int flags) 6767 { 6768 hlist_del_rcu(&event->hlist_entry); 6769 } 6770 6771 static void perf_swevent_start(struct perf_event *event, int flags) 6772 { 6773 event->hw.state = 0; 6774 } 6775 6776 static void perf_swevent_stop(struct perf_event *event, int flags) 6777 { 6778 event->hw.state = PERF_HES_STOPPED; 6779 } 6780 6781 /* Deref the hlist from the update side */ 6782 static inline struct swevent_hlist * 6783 swevent_hlist_deref(struct swevent_htable *swhash) 6784 { 6785 return rcu_dereference_protected(swhash->swevent_hlist, 6786 lockdep_is_held(&swhash->hlist_mutex)); 6787 } 6788 6789 static void swevent_hlist_release(struct swevent_htable *swhash) 6790 { 6791 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6792 6793 if (!hlist) 6794 return; 6795 6796 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6797 kfree_rcu(hlist, rcu_head); 6798 } 6799 6800 static void swevent_hlist_put_cpu(int cpu) 6801 { 6802 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6803 6804 mutex_lock(&swhash->hlist_mutex); 6805 6806 if (!--swhash->hlist_refcount) 6807 swevent_hlist_release(swhash); 6808 6809 mutex_unlock(&swhash->hlist_mutex); 6810 } 6811 6812 static void swevent_hlist_put(void) 6813 { 6814 int cpu; 6815 6816 for_each_possible_cpu(cpu) 6817 swevent_hlist_put_cpu(cpu); 6818 } 6819 6820 static int swevent_hlist_get_cpu(int cpu) 6821 { 6822 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6823 int err = 0; 6824 6825 mutex_lock(&swhash->hlist_mutex); 6826 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6827 struct swevent_hlist *hlist; 6828 6829 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6830 if (!hlist) { 6831 err = -ENOMEM; 6832 goto exit; 6833 } 6834 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6835 } 6836 swhash->hlist_refcount++; 6837 exit: 6838 mutex_unlock(&swhash->hlist_mutex); 6839 6840 return err; 6841 } 6842 6843 static int swevent_hlist_get(void) 6844 { 6845 int err, cpu, failed_cpu; 6846 6847 get_online_cpus(); 6848 for_each_possible_cpu(cpu) { 6849 err = swevent_hlist_get_cpu(cpu); 6850 if (err) { 6851 failed_cpu = cpu; 6852 goto fail; 6853 } 6854 } 6855 put_online_cpus(); 6856 6857 return 0; 6858 fail: 6859 for_each_possible_cpu(cpu) { 6860 if (cpu == failed_cpu) 6861 break; 6862 swevent_hlist_put_cpu(cpu); 6863 } 6864 6865 put_online_cpus(); 6866 return err; 6867 } 6868 6869 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6870 6871 static void sw_perf_event_destroy(struct perf_event *event) 6872 { 6873 u64 event_id = event->attr.config; 6874 6875 WARN_ON(event->parent); 6876 6877 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6878 swevent_hlist_put(); 6879 } 6880 6881 static int perf_swevent_init(struct perf_event *event) 6882 { 6883 u64 event_id = event->attr.config; 6884 6885 if (event->attr.type != PERF_TYPE_SOFTWARE) 6886 return -ENOENT; 6887 6888 /* 6889 * no branch sampling for software events 6890 */ 6891 if (has_branch_stack(event)) 6892 return -EOPNOTSUPP; 6893 6894 switch (event_id) { 6895 case PERF_COUNT_SW_CPU_CLOCK: 6896 case PERF_COUNT_SW_TASK_CLOCK: 6897 return -ENOENT; 6898 6899 default: 6900 break; 6901 } 6902 6903 if (event_id >= PERF_COUNT_SW_MAX) 6904 return -ENOENT; 6905 6906 if (!event->parent) { 6907 int err; 6908 6909 err = swevent_hlist_get(); 6910 if (err) 6911 return err; 6912 6913 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6914 event->destroy = sw_perf_event_destroy; 6915 } 6916 6917 return 0; 6918 } 6919 6920 static struct pmu perf_swevent = { 6921 .task_ctx_nr = perf_sw_context, 6922 6923 .capabilities = PERF_PMU_CAP_NO_NMI, 6924 6925 .event_init = perf_swevent_init, 6926 .add = perf_swevent_add, 6927 .del = perf_swevent_del, 6928 .start = perf_swevent_start, 6929 .stop = perf_swevent_stop, 6930 .read = perf_swevent_read, 6931 }; 6932 6933 #ifdef CONFIG_EVENT_TRACING 6934 6935 static int perf_tp_filter_match(struct perf_event *event, 6936 struct perf_sample_data *data) 6937 { 6938 void *record = data->raw->data; 6939 6940 /* only top level events have filters set */ 6941 if (event->parent) 6942 event = event->parent; 6943 6944 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6945 return 1; 6946 return 0; 6947 } 6948 6949 static int perf_tp_event_match(struct perf_event *event, 6950 struct perf_sample_data *data, 6951 struct pt_regs *regs) 6952 { 6953 if (event->hw.state & PERF_HES_STOPPED) 6954 return 0; 6955 /* 6956 * All tracepoints are from kernel-space. 6957 */ 6958 if (event->attr.exclude_kernel) 6959 return 0; 6960 6961 if (!perf_tp_filter_match(event, data)) 6962 return 0; 6963 6964 return 1; 6965 } 6966 6967 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6968 struct pt_regs *regs, struct hlist_head *head, int rctx, 6969 struct task_struct *task) 6970 { 6971 struct perf_sample_data data; 6972 struct perf_event *event; 6973 6974 struct perf_raw_record raw = { 6975 .size = entry_size, 6976 .data = record, 6977 }; 6978 6979 perf_sample_data_init(&data, addr, 0); 6980 data.raw = &raw; 6981 6982 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6983 if (perf_tp_event_match(event, &data, regs)) 6984 perf_swevent_event(event, count, &data, regs); 6985 } 6986 6987 /* 6988 * If we got specified a target task, also iterate its context and 6989 * deliver this event there too. 6990 */ 6991 if (task && task != current) { 6992 struct perf_event_context *ctx; 6993 struct trace_entry *entry = record; 6994 6995 rcu_read_lock(); 6996 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6997 if (!ctx) 6998 goto unlock; 6999 7000 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7001 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7002 continue; 7003 if (event->attr.config != entry->type) 7004 continue; 7005 if (perf_tp_event_match(event, &data, regs)) 7006 perf_swevent_event(event, count, &data, regs); 7007 } 7008 unlock: 7009 rcu_read_unlock(); 7010 } 7011 7012 perf_swevent_put_recursion_context(rctx); 7013 } 7014 EXPORT_SYMBOL_GPL(perf_tp_event); 7015 7016 static void tp_perf_event_destroy(struct perf_event *event) 7017 { 7018 perf_trace_destroy(event); 7019 } 7020 7021 static int perf_tp_event_init(struct perf_event *event) 7022 { 7023 int err; 7024 7025 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7026 return -ENOENT; 7027 7028 /* 7029 * no branch sampling for tracepoint events 7030 */ 7031 if (has_branch_stack(event)) 7032 return -EOPNOTSUPP; 7033 7034 err = perf_trace_init(event); 7035 if (err) 7036 return err; 7037 7038 event->destroy = tp_perf_event_destroy; 7039 7040 return 0; 7041 } 7042 7043 static struct pmu perf_tracepoint = { 7044 .task_ctx_nr = perf_sw_context, 7045 7046 .event_init = perf_tp_event_init, 7047 .add = perf_trace_add, 7048 .del = perf_trace_del, 7049 .start = perf_swevent_start, 7050 .stop = perf_swevent_stop, 7051 .read = perf_swevent_read, 7052 }; 7053 7054 static inline void perf_tp_register(void) 7055 { 7056 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7057 } 7058 7059 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7060 { 7061 char *filter_str; 7062 int ret; 7063 7064 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7065 return -EINVAL; 7066 7067 filter_str = strndup_user(arg, PAGE_SIZE); 7068 if (IS_ERR(filter_str)) 7069 return PTR_ERR(filter_str); 7070 7071 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 7072 7073 kfree(filter_str); 7074 return ret; 7075 } 7076 7077 static void perf_event_free_filter(struct perf_event *event) 7078 { 7079 ftrace_profile_free_filter(event); 7080 } 7081 7082 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7083 { 7084 struct bpf_prog *prog; 7085 7086 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7087 return -EINVAL; 7088 7089 if (event->tp_event->prog) 7090 return -EEXIST; 7091 7092 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7093 /* bpf programs can only be attached to u/kprobes */ 7094 return -EINVAL; 7095 7096 prog = bpf_prog_get(prog_fd); 7097 if (IS_ERR(prog)) 7098 return PTR_ERR(prog); 7099 7100 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7101 /* valid fd, but invalid bpf program type */ 7102 bpf_prog_put(prog); 7103 return -EINVAL; 7104 } 7105 7106 event->tp_event->prog = prog; 7107 7108 return 0; 7109 } 7110 7111 static void perf_event_free_bpf_prog(struct perf_event *event) 7112 { 7113 struct bpf_prog *prog; 7114 7115 if (!event->tp_event) 7116 return; 7117 7118 prog = event->tp_event->prog; 7119 if (prog) { 7120 event->tp_event->prog = NULL; 7121 bpf_prog_put(prog); 7122 } 7123 } 7124 7125 #else 7126 7127 static inline void perf_tp_register(void) 7128 { 7129 } 7130 7131 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7132 { 7133 return -ENOENT; 7134 } 7135 7136 static void perf_event_free_filter(struct perf_event *event) 7137 { 7138 } 7139 7140 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7141 { 7142 return -ENOENT; 7143 } 7144 7145 static void perf_event_free_bpf_prog(struct perf_event *event) 7146 { 7147 } 7148 #endif /* CONFIG_EVENT_TRACING */ 7149 7150 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7151 void perf_bp_event(struct perf_event *bp, void *data) 7152 { 7153 struct perf_sample_data sample; 7154 struct pt_regs *regs = data; 7155 7156 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7157 7158 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7159 perf_swevent_event(bp, 1, &sample, regs); 7160 } 7161 #endif 7162 7163 /* 7164 * hrtimer based swevent callback 7165 */ 7166 7167 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7168 { 7169 enum hrtimer_restart ret = HRTIMER_RESTART; 7170 struct perf_sample_data data; 7171 struct pt_regs *regs; 7172 struct perf_event *event; 7173 u64 period; 7174 7175 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7176 7177 if (event->state != PERF_EVENT_STATE_ACTIVE) 7178 return HRTIMER_NORESTART; 7179 7180 event->pmu->read(event); 7181 7182 perf_sample_data_init(&data, 0, event->hw.last_period); 7183 regs = get_irq_regs(); 7184 7185 if (regs && !perf_exclude_event(event, regs)) { 7186 if (!(event->attr.exclude_idle && is_idle_task(current))) 7187 if (__perf_event_overflow(event, 1, &data, regs)) 7188 ret = HRTIMER_NORESTART; 7189 } 7190 7191 period = max_t(u64, 10000, event->hw.sample_period); 7192 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7193 7194 return ret; 7195 } 7196 7197 static void perf_swevent_start_hrtimer(struct perf_event *event) 7198 { 7199 struct hw_perf_event *hwc = &event->hw; 7200 s64 period; 7201 7202 if (!is_sampling_event(event)) 7203 return; 7204 7205 period = local64_read(&hwc->period_left); 7206 if (period) { 7207 if (period < 0) 7208 period = 10000; 7209 7210 local64_set(&hwc->period_left, 0); 7211 } else { 7212 period = max_t(u64, 10000, hwc->sample_period); 7213 } 7214 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7215 HRTIMER_MODE_REL_PINNED); 7216 } 7217 7218 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7219 { 7220 struct hw_perf_event *hwc = &event->hw; 7221 7222 if (is_sampling_event(event)) { 7223 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7224 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7225 7226 hrtimer_cancel(&hwc->hrtimer); 7227 } 7228 } 7229 7230 static void perf_swevent_init_hrtimer(struct perf_event *event) 7231 { 7232 struct hw_perf_event *hwc = &event->hw; 7233 7234 if (!is_sampling_event(event)) 7235 return; 7236 7237 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7238 hwc->hrtimer.function = perf_swevent_hrtimer; 7239 7240 /* 7241 * Since hrtimers have a fixed rate, we can do a static freq->period 7242 * mapping and avoid the whole period adjust feedback stuff. 7243 */ 7244 if (event->attr.freq) { 7245 long freq = event->attr.sample_freq; 7246 7247 event->attr.sample_period = NSEC_PER_SEC / freq; 7248 hwc->sample_period = event->attr.sample_period; 7249 local64_set(&hwc->period_left, hwc->sample_period); 7250 hwc->last_period = hwc->sample_period; 7251 event->attr.freq = 0; 7252 } 7253 } 7254 7255 /* 7256 * Software event: cpu wall time clock 7257 */ 7258 7259 static void cpu_clock_event_update(struct perf_event *event) 7260 { 7261 s64 prev; 7262 u64 now; 7263 7264 now = local_clock(); 7265 prev = local64_xchg(&event->hw.prev_count, now); 7266 local64_add(now - prev, &event->count); 7267 } 7268 7269 static void cpu_clock_event_start(struct perf_event *event, int flags) 7270 { 7271 local64_set(&event->hw.prev_count, local_clock()); 7272 perf_swevent_start_hrtimer(event); 7273 } 7274 7275 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7276 { 7277 perf_swevent_cancel_hrtimer(event); 7278 cpu_clock_event_update(event); 7279 } 7280 7281 static int cpu_clock_event_add(struct perf_event *event, int flags) 7282 { 7283 if (flags & PERF_EF_START) 7284 cpu_clock_event_start(event, flags); 7285 perf_event_update_userpage(event); 7286 7287 return 0; 7288 } 7289 7290 static void cpu_clock_event_del(struct perf_event *event, int flags) 7291 { 7292 cpu_clock_event_stop(event, flags); 7293 } 7294 7295 static void cpu_clock_event_read(struct perf_event *event) 7296 { 7297 cpu_clock_event_update(event); 7298 } 7299 7300 static int cpu_clock_event_init(struct perf_event *event) 7301 { 7302 if (event->attr.type != PERF_TYPE_SOFTWARE) 7303 return -ENOENT; 7304 7305 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7306 return -ENOENT; 7307 7308 /* 7309 * no branch sampling for software events 7310 */ 7311 if (has_branch_stack(event)) 7312 return -EOPNOTSUPP; 7313 7314 perf_swevent_init_hrtimer(event); 7315 7316 return 0; 7317 } 7318 7319 static struct pmu perf_cpu_clock = { 7320 .task_ctx_nr = perf_sw_context, 7321 7322 .capabilities = PERF_PMU_CAP_NO_NMI, 7323 7324 .event_init = cpu_clock_event_init, 7325 .add = cpu_clock_event_add, 7326 .del = cpu_clock_event_del, 7327 .start = cpu_clock_event_start, 7328 .stop = cpu_clock_event_stop, 7329 .read = cpu_clock_event_read, 7330 }; 7331 7332 /* 7333 * Software event: task time clock 7334 */ 7335 7336 static void task_clock_event_update(struct perf_event *event, u64 now) 7337 { 7338 u64 prev; 7339 s64 delta; 7340 7341 prev = local64_xchg(&event->hw.prev_count, now); 7342 delta = now - prev; 7343 local64_add(delta, &event->count); 7344 } 7345 7346 static void task_clock_event_start(struct perf_event *event, int flags) 7347 { 7348 local64_set(&event->hw.prev_count, event->ctx->time); 7349 perf_swevent_start_hrtimer(event); 7350 } 7351 7352 static void task_clock_event_stop(struct perf_event *event, int flags) 7353 { 7354 perf_swevent_cancel_hrtimer(event); 7355 task_clock_event_update(event, event->ctx->time); 7356 } 7357 7358 static int task_clock_event_add(struct perf_event *event, int flags) 7359 { 7360 if (flags & PERF_EF_START) 7361 task_clock_event_start(event, flags); 7362 perf_event_update_userpage(event); 7363 7364 return 0; 7365 } 7366 7367 static void task_clock_event_del(struct perf_event *event, int flags) 7368 { 7369 task_clock_event_stop(event, PERF_EF_UPDATE); 7370 } 7371 7372 static void task_clock_event_read(struct perf_event *event) 7373 { 7374 u64 now = perf_clock(); 7375 u64 delta = now - event->ctx->timestamp; 7376 u64 time = event->ctx->time + delta; 7377 7378 task_clock_event_update(event, time); 7379 } 7380 7381 static int task_clock_event_init(struct perf_event *event) 7382 { 7383 if (event->attr.type != PERF_TYPE_SOFTWARE) 7384 return -ENOENT; 7385 7386 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7387 return -ENOENT; 7388 7389 /* 7390 * no branch sampling for software events 7391 */ 7392 if (has_branch_stack(event)) 7393 return -EOPNOTSUPP; 7394 7395 perf_swevent_init_hrtimer(event); 7396 7397 return 0; 7398 } 7399 7400 static struct pmu perf_task_clock = { 7401 .task_ctx_nr = perf_sw_context, 7402 7403 .capabilities = PERF_PMU_CAP_NO_NMI, 7404 7405 .event_init = task_clock_event_init, 7406 .add = task_clock_event_add, 7407 .del = task_clock_event_del, 7408 .start = task_clock_event_start, 7409 .stop = task_clock_event_stop, 7410 .read = task_clock_event_read, 7411 }; 7412 7413 static void perf_pmu_nop_void(struct pmu *pmu) 7414 { 7415 } 7416 7417 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 7418 { 7419 } 7420 7421 static int perf_pmu_nop_int(struct pmu *pmu) 7422 { 7423 return 0; 7424 } 7425 7426 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 7427 7428 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 7429 { 7430 __this_cpu_write(nop_txn_flags, flags); 7431 7432 if (flags & ~PERF_PMU_TXN_ADD) 7433 return; 7434 7435 perf_pmu_disable(pmu); 7436 } 7437 7438 static int perf_pmu_commit_txn(struct pmu *pmu) 7439 { 7440 unsigned int flags = __this_cpu_read(nop_txn_flags); 7441 7442 __this_cpu_write(nop_txn_flags, 0); 7443 7444 if (flags & ~PERF_PMU_TXN_ADD) 7445 return 0; 7446 7447 perf_pmu_enable(pmu); 7448 return 0; 7449 } 7450 7451 static void perf_pmu_cancel_txn(struct pmu *pmu) 7452 { 7453 unsigned int flags = __this_cpu_read(nop_txn_flags); 7454 7455 __this_cpu_write(nop_txn_flags, 0); 7456 7457 if (flags & ~PERF_PMU_TXN_ADD) 7458 return; 7459 7460 perf_pmu_enable(pmu); 7461 } 7462 7463 static int perf_event_idx_default(struct perf_event *event) 7464 { 7465 return 0; 7466 } 7467 7468 /* 7469 * Ensures all contexts with the same task_ctx_nr have the same 7470 * pmu_cpu_context too. 7471 */ 7472 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7473 { 7474 struct pmu *pmu; 7475 7476 if (ctxn < 0) 7477 return NULL; 7478 7479 list_for_each_entry(pmu, &pmus, entry) { 7480 if (pmu->task_ctx_nr == ctxn) 7481 return pmu->pmu_cpu_context; 7482 } 7483 7484 return NULL; 7485 } 7486 7487 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7488 { 7489 int cpu; 7490 7491 for_each_possible_cpu(cpu) { 7492 struct perf_cpu_context *cpuctx; 7493 7494 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7495 7496 if (cpuctx->unique_pmu == old_pmu) 7497 cpuctx->unique_pmu = pmu; 7498 } 7499 } 7500 7501 static void free_pmu_context(struct pmu *pmu) 7502 { 7503 struct pmu *i; 7504 7505 mutex_lock(&pmus_lock); 7506 /* 7507 * Like a real lame refcount. 7508 */ 7509 list_for_each_entry(i, &pmus, entry) { 7510 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7511 update_pmu_context(i, pmu); 7512 goto out; 7513 } 7514 } 7515 7516 free_percpu(pmu->pmu_cpu_context); 7517 out: 7518 mutex_unlock(&pmus_lock); 7519 } 7520 static struct idr pmu_idr; 7521 7522 static ssize_t 7523 type_show(struct device *dev, struct device_attribute *attr, char *page) 7524 { 7525 struct pmu *pmu = dev_get_drvdata(dev); 7526 7527 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7528 } 7529 static DEVICE_ATTR_RO(type); 7530 7531 static ssize_t 7532 perf_event_mux_interval_ms_show(struct device *dev, 7533 struct device_attribute *attr, 7534 char *page) 7535 { 7536 struct pmu *pmu = dev_get_drvdata(dev); 7537 7538 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7539 } 7540 7541 static DEFINE_MUTEX(mux_interval_mutex); 7542 7543 static ssize_t 7544 perf_event_mux_interval_ms_store(struct device *dev, 7545 struct device_attribute *attr, 7546 const char *buf, size_t count) 7547 { 7548 struct pmu *pmu = dev_get_drvdata(dev); 7549 int timer, cpu, ret; 7550 7551 ret = kstrtoint(buf, 0, &timer); 7552 if (ret) 7553 return ret; 7554 7555 if (timer < 1) 7556 return -EINVAL; 7557 7558 /* same value, noting to do */ 7559 if (timer == pmu->hrtimer_interval_ms) 7560 return count; 7561 7562 mutex_lock(&mux_interval_mutex); 7563 pmu->hrtimer_interval_ms = timer; 7564 7565 /* update all cpuctx for this PMU */ 7566 get_online_cpus(); 7567 for_each_online_cpu(cpu) { 7568 struct perf_cpu_context *cpuctx; 7569 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7570 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7571 7572 cpu_function_call(cpu, 7573 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7574 } 7575 put_online_cpus(); 7576 mutex_unlock(&mux_interval_mutex); 7577 7578 return count; 7579 } 7580 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7581 7582 static struct attribute *pmu_dev_attrs[] = { 7583 &dev_attr_type.attr, 7584 &dev_attr_perf_event_mux_interval_ms.attr, 7585 NULL, 7586 }; 7587 ATTRIBUTE_GROUPS(pmu_dev); 7588 7589 static int pmu_bus_running; 7590 static struct bus_type pmu_bus = { 7591 .name = "event_source", 7592 .dev_groups = pmu_dev_groups, 7593 }; 7594 7595 static void pmu_dev_release(struct device *dev) 7596 { 7597 kfree(dev); 7598 } 7599 7600 static int pmu_dev_alloc(struct pmu *pmu) 7601 { 7602 int ret = -ENOMEM; 7603 7604 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7605 if (!pmu->dev) 7606 goto out; 7607 7608 pmu->dev->groups = pmu->attr_groups; 7609 device_initialize(pmu->dev); 7610 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7611 if (ret) 7612 goto free_dev; 7613 7614 dev_set_drvdata(pmu->dev, pmu); 7615 pmu->dev->bus = &pmu_bus; 7616 pmu->dev->release = pmu_dev_release; 7617 ret = device_add(pmu->dev); 7618 if (ret) 7619 goto free_dev; 7620 7621 out: 7622 return ret; 7623 7624 free_dev: 7625 put_device(pmu->dev); 7626 goto out; 7627 } 7628 7629 static struct lock_class_key cpuctx_mutex; 7630 static struct lock_class_key cpuctx_lock; 7631 7632 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7633 { 7634 int cpu, ret; 7635 7636 mutex_lock(&pmus_lock); 7637 ret = -ENOMEM; 7638 pmu->pmu_disable_count = alloc_percpu(int); 7639 if (!pmu->pmu_disable_count) 7640 goto unlock; 7641 7642 pmu->type = -1; 7643 if (!name) 7644 goto skip_type; 7645 pmu->name = name; 7646 7647 if (type < 0) { 7648 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7649 if (type < 0) { 7650 ret = type; 7651 goto free_pdc; 7652 } 7653 } 7654 pmu->type = type; 7655 7656 if (pmu_bus_running) { 7657 ret = pmu_dev_alloc(pmu); 7658 if (ret) 7659 goto free_idr; 7660 } 7661 7662 skip_type: 7663 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7664 if (pmu->pmu_cpu_context) 7665 goto got_cpu_context; 7666 7667 ret = -ENOMEM; 7668 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7669 if (!pmu->pmu_cpu_context) 7670 goto free_dev; 7671 7672 for_each_possible_cpu(cpu) { 7673 struct perf_cpu_context *cpuctx; 7674 7675 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7676 __perf_event_init_context(&cpuctx->ctx); 7677 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7678 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7679 cpuctx->ctx.pmu = pmu; 7680 7681 __perf_mux_hrtimer_init(cpuctx, cpu); 7682 7683 cpuctx->unique_pmu = pmu; 7684 } 7685 7686 got_cpu_context: 7687 if (!pmu->start_txn) { 7688 if (pmu->pmu_enable) { 7689 /* 7690 * If we have pmu_enable/pmu_disable calls, install 7691 * transaction stubs that use that to try and batch 7692 * hardware accesses. 7693 */ 7694 pmu->start_txn = perf_pmu_start_txn; 7695 pmu->commit_txn = perf_pmu_commit_txn; 7696 pmu->cancel_txn = perf_pmu_cancel_txn; 7697 } else { 7698 pmu->start_txn = perf_pmu_nop_txn; 7699 pmu->commit_txn = perf_pmu_nop_int; 7700 pmu->cancel_txn = perf_pmu_nop_void; 7701 } 7702 } 7703 7704 if (!pmu->pmu_enable) { 7705 pmu->pmu_enable = perf_pmu_nop_void; 7706 pmu->pmu_disable = perf_pmu_nop_void; 7707 } 7708 7709 if (!pmu->event_idx) 7710 pmu->event_idx = perf_event_idx_default; 7711 7712 list_add_rcu(&pmu->entry, &pmus); 7713 atomic_set(&pmu->exclusive_cnt, 0); 7714 ret = 0; 7715 unlock: 7716 mutex_unlock(&pmus_lock); 7717 7718 return ret; 7719 7720 free_dev: 7721 device_del(pmu->dev); 7722 put_device(pmu->dev); 7723 7724 free_idr: 7725 if (pmu->type >= PERF_TYPE_MAX) 7726 idr_remove(&pmu_idr, pmu->type); 7727 7728 free_pdc: 7729 free_percpu(pmu->pmu_disable_count); 7730 goto unlock; 7731 } 7732 EXPORT_SYMBOL_GPL(perf_pmu_register); 7733 7734 void perf_pmu_unregister(struct pmu *pmu) 7735 { 7736 mutex_lock(&pmus_lock); 7737 list_del_rcu(&pmu->entry); 7738 mutex_unlock(&pmus_lock); 7739 7740 /* 7741 * We dereference the pmu list under both SRCU and regular RCU, so 7742 * synchronize against both of those. 7743 */ 7744 synchronize_srcu(&pmus_srcu); 7745 synchronize_rcu(); 7746 7747 free_percpu(pmu->pmu_disable_count); 7748 if (pmu->type >= PERF_TYPE_MAX) 7749 idr_remove(&pmu_idr, pmu->type); 7750 device_del(pmu->dev); 7751 put_device(pmu->dev); 7752 free_pmu_context(pmu); 7753 } 7754 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7755 7756 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7757 { 7758 struct perf_event_context *ctx = NULL; 7759 int ret; 7760 7761 if (!try_module_get(pmu->module)) 7762 return -ENODEV; 7763 7764 if (event->group_leader != event) { 7765 /* 7766 * This ctx->mutex can nest when we're called through 7767 * inheritance. See the perf_event_ctx_lock_nested() comment. 7768 */ 7769 ctx = perf_event_ctx_lock_nested(event->group_leader, 7770 SINGLE_DEPTH_NESTING); 7771 BUG_ON(!ctx); 7772 } 7773 7774 event->pmu = pmu; 7775 ret = pmu->event_init(event); 7776 7777 if (ctx) 7778 perf_event_ctx_unlock(event->group_leader, ctx); 7779 7780 if (ret) 7781 module_put(pmu->module); 7782 7783 return ret; 7784 } 7785 7786 static struct pmu *perf_init_event(struct perf_event *event) 7787 { 7788 struct pmu *pmu = NULL; 7789 int idx; 7790 int ret; 7791 7792 idx = srcu_read_lock(&pmus_srcu); 7793 7794 rcu_read_lock(); 7795 pmu = idr_find(&pmu_idr, event->attr.type); 7796 rcu_read_unlock(); 7797 if (pmu) { 7798 ret = perf_try_init_event(pmu, event); 7799 if (ret) 7800 pmu = ERR_PTR(ret); 7801 goto unlock; 7802 } 7803 7804 list_for_each_entry_rcu(pmu, &pmus, entry) { 7805 ret = perf_try_init_event(pmu, event); 7806 if (!ret) 7807 goto unlock; 7808 7809 if (ret != -ENOENT) { 7810 pmu = ERR_PTR(ret); 7811 goto unlock; 7812 } 7813 } 7814 pmu = ERR_PTR(-ENOENT); 7815 unlock: 7816 srcu_read_unlock(&pmus_srcu, idx); 7817 7818 return pmu; 7819 } 7820 7821 static void account_event_cpu(struct perf_event *event, int cpu) 7822 { 7823 if (event->parent) 7824 return; 7825 7826 if (is_cgroup_event(event)) 7827 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7828 } 7829 7830 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 7831 static void account_freq_event_nohz(void) 7832 { 7833 #ifdef CONFIG_NO_HZ_FULL 7834 /* Lock so we don't race with concurrent unaccount */ 7835 spin_lock(&nr_freq_lock); 7836 if (atomic_inc_return(&nr_freq_events) == 1) 7837 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 7838 spin_unlock(&nr_freq_lock); 7839 #endif 7840 } 7841 7842 static void account_freq_event(void) 7843 { 7844 if (tick_nohz_full_enabled()) 7845 account_freq_event_nohz(); 7846 else 7847 atomic_inc(&nr_freq_events); 7848 } 7849 7850 7851 static void account_event(struct perf_event *event) 7852 { 7853 bool inc = false; 7854 7855 if (event->parent) 7856 return; 7857 7858 if (event->attach_state & PERF_ATTACH_TASK) 7859 inc = true; 7860 if (event->attr.mmap || event->attr.mmap_data) 7861 atomic_inc(&nr_mmap_events); 7862 if (event->attr.comm) 7863 atomic_inc(&nr_comm_events); 7864 if (event->attr.task) 7865 atomic_inc(&nr_task_events); 7866 if (event->attr.freq) 7867 account_freq_event(); 7868 if (event->attr.context_switch) { 7869 atomic_inc(&nr_switch_events); 7870 inc = true; 7871 } 7872 if (has_branch_stack(event)) 7873 inc = true; 7874 if (is_cgroup_event(event)) 7875 inc = true; 7876 7877 if (inc) { 7878 if (atomic_inc_not_zero(&perf_sched_count)) 7879 goto enabled; 7880 7881 mutex_lock(&perf_sched_mutex); 7882 if (!atomic_read(&perf_sched_count)) { 7883 static_branch_enable(&perf_sched_events); 7884 /* 7885 * Guarantee that all CPUs observe they key change and 7886 * call the perf scheduling hooks before proceeding to 7887 * install events that need them. 7888 */ 7889 synchronize_sched(); 7890 } 7891 /* 7892 * Now that we have waited for the sync_sched(), allow further 7893 * increments to by-pass the mutex. 7894 */ 7895 atomic_inc(&perf_sched_count); 7896 mutex_unlock(&perf_sched_mutex); 7897 } 7898 enabled: 7899 7900 account_event_cpu(event, event->cpu); 7901 } 7902 7903 /* 7904 * Allocate and initialize a event structure 7905 */ 7906 static struct perf_event * 7907 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7908 struct task_struct *task, 7909 struct perf_event *group_leader, 7910 struct perf_event *parent_event, 7911 perf_overflow_handler_t overflow_handler, 7912 void *context, int cgroup_fd) 7913 { 7914 struct pmu *pmu; 7915 struct perf_event *event; 7916 struct hw_perf_event *hwc; 7917 long err = -EINVAL; 7918 7919 if ((unsigned)cpu >= nr_cpu_ids) { 7920 if (!task || cpu != -1) 7921 return ERR_PTR(-EINVAL); 7922 } 7923 7924 event = kzalloc(sizeof(*event), GFP_KERNEL); 7925 if (!event) 7926 return ERR_PTR(-ENOMEM); 7927 7928 /* 7929 * Single events are their own group leaders, with an 7930 * empty sibling list: 7931 */ 7932 if (!group_leader) 7933 group_leader = event; 7934 7935 mutex_init(&event->child_mutex); 7936 INIT_LIST_HEAD(&event->child_list); 7937 7938 INIT_LIST_HEAD(&event->group_entry); 7939 INIT_LIST_HEAD(&event->event_entry); 7940 INIT_LIST_HEAD(&event->sibling_list); 7941 INIT_LIST_HEAD(&event->rb_entry); 7942 INIT_LIST_HEAD(&event->active_entry); 7943 INIT_HLIST_NODE(&event->hlist_entry); 7944 7945 7946 init_waitqueue_head(&event->waitq); 7947 init_irq_work(&event->pending, perf_pending_event); 7948 7949 mutex_init(&event->mmap_mutex); 7950 7951 atomic_long_set(&event->refcount, 1); 7952 event->cpu = cpu; 7953 event->attr = *attr; 7954 event->group_leader = group_leader; 7955 event->pmu = NULL; 7956 event->oncpu = -1; 7957 7958 event->parent = parent_event; 7959 7960 event->ns = get_pid_ns(task_active_pid_ns(current)); 7961 event->id = atomic64_inc_return(&perf_event_id); 7962 7963 event->state = PERF_EVENT_STATE_INACTIVE; 7964 7965 if (task) { 7966 event->attach_state = PERF_ATTACH_TASK; 7967 /* 7968 * XXX pmu::event_init needs to know what task to account to 7969 * and we cannot use the ctx information because we need the 7970 * pmu before we get a ctx. 7971 */ 7972 event->hw.target = task; 7973 } 7974 7975 event->clock = &local_clock; 7976 if (parent_event) 7977 event->clock = parent_event->clock; 7978 7979 if (!overflow_handler && parent_event) { 7980 overflow_handler = parent_event->overflow_handler; 7981 context = parent_event->overflow_handler_context; 7982 } 7983 7984 event->overflow_handler = overflow_handler; 7985 event->overflow_handler_context = context; 7986 7987 perf_event__state_init(event); 7988 7989 pmu = NULL; 7990 7991 hwc = &event->hw; 7992 hwc->sample_period = attr->sample_period; 7993 if (attr->freq && attr->sample_freq) 7994 hwc->sample_period = 1; 7995 hwc->last_period = hwc->sample_period; 7996 7997 local64_set(&hwc->period_left, hwc->sample_period); 7998 7999 /* 8000 * we currently do not support PERF_FORMAT_GROUP on inherited events 8001 */ 8002 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8003 goto err_ns; 8004 8005 if (!has_branch_stack(event)) 8006 event->attr.branch_sample_type = 0; 8007 8008 if (cgroup_fd != -1) { 8009 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8010 if (err) 8011 goto err_ns; 8012 } 8013 8014 pmu = perf_init_event(event); 8015 if (!pmu) 8016 goto err_ns; 8017 else if (IS_ERR(pmu)) { 8018 err = PTR_ERR(pmu); 8019 goto err_ns; 8020 } 8021 8022 err = exclusive_event_init(event); 8023 if (err) 8024 goto err_pmu; 8025 8026 if (!event->parent) { 8027 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8028 err = get_callchain_buffers(); 8029 if (err) 8030 goto err_per_task; 8031 } 8032 } 8033 8034 /* symmetric to unaccount_event() in _free_event() */ 8035 account_event(event); 8036 8037 return event; 8038 8039 err_per_task: 8040 exclusive_event_destroy(event); 8041 8042 err_pmu: 8043 if (event->destroy) 8044 event->destroy(event); 8045 module_put(pmu->module); 8046 err_ns: 8047 if (is_cgroup_event(event)) 8048 perf_detach_cgroup(event); 8049 if (event->ns) 8050 put_pid_ns(event->ns); 8051 kfree(event); 8052 8053 return ERR_PTR(err); 8054 } 8055 8056 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8057 struct perf_event_attr *attr) 8058 { 8059 u32 size; 8060 int ret; 8061 8062 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8063 return -EFAULT; 8064 8065 /* 8066 * zero the full structure, so that a short copy will be nice. 8067 */ 8068 memset(attr, 0, sizeof(*attr)); 8069 8070 ret = get_user(size, &uattr->size); 8071 if (ret) 8072 return ret; 8073 8074 if (size > PAGE_SIZE) /* silly large */ 8075 goto err_size; 8076 8077 if (!size) /* abi compat */ 8078 size = PERF_ATTR_SIZE_VER0; 8079 8080 if (size < PERF_ATTR_SIZE_VER0) 8081 goto err_size; 8082 8083 /* 8084 * If we're handed a bigger struct than we know of, 8085 * ensure all the unknown bits are 0 - i.e. new 8086 * user-space does not rely on any kernel feature 8087 * extensions we dont know about yet. 8088 */ 8089 if (size > sizeof(*attr)) { 8090 unsigned char __user *addr; 8091 unsigned char __user *end; 8092 unsigned char val; 8093 8094 addr = (void __user *)uattr + sizeof(*attr); 8095 end = (void __user *)uattr + size; 8096 8097 for (; addr < end; addr++) { 8098 ret = get_user(val, addr); 8099 if (ret) 8100 return ret; 8101 if (val) 8102 goto err_size; 8103 } 8104 size = sizeof(*attr); 8105 } 8106 8107 ret = copy_from_user(attr, uattr, size); 8108 if (ret) 8109 return -EFAULT; 8110 8111 if (attr->__reserved_1) 8112 return -EINVAL; 8113 8114 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 8115 return -EINVAL; 8116 8117 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 8118 return -EINVAL; 8119 8120 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 8121 u64 mask = attr->branch_sample_type; 8122 8123 /* only using defined bits */ 8124 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8125 return -EINVAL; 8126 8127 /* at least one branch bit must be set */ 8128 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8129 return -EINVAL; 8130 8131 /* propagate priv level, when not set for branch */ 8132 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8133 8134 /* exclude_kernel checked on syscall entry */ 8135 if (!attr->exclude_kernel) 8136 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8137 8138 if (!attr->exclude_user) 8139 mask |= PERF_SAMPLE_BRANCH_USER; 8140 8141 if (!attr->exclude_hv) 8142 mask |= PERF_SAMPLE_BRANCH_HV; 8143 /* 8144 * adjust user setting (for HW filter setup) 8145 */ 8146 attr->branch_sample_type = mask; 8147 } 8148 /* privileged levels capture (kernel, hv): check permissions */ 8149 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 8150 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8151 return -EACCES; 8152 } 8153 8154 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 8155 ret = perf_reg_validate(attr->sample_regs_user); 8156 if (ret) 8157 return ret; 8158 } 8159 8160 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 8161 if (!arch_perf_have_user_stack_dump()) 8162 return -ENOSYS; 8163 8164 /* 8165 * We have __u32 type for the size, but so far 8166 * we can only use __u16 as maximum due to the 8167 * __u16 sample size limit. 8168 */ 8169 if (attr->sample_stack_user >= USHRT_MAX) 8170 ret = -EINVAL; 8171 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 8172 ret = -EINVAL; 8173 } 8174 8175 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 8176 ret = perf_reg_validate(attr->sample_regs_intr); 8177 out: 8178 return ret; 8179 8180 err_size: 8181 put_user(sizeof(*attr), &uattr->size); 8182 ret = -E2BIG; 8183 goto out; 8184 } 8185 8186 static int 8187 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 8188 { 8189 struct ring_buffer *rb = NULL; 8190 int ret = -EINVAL; 8191 8192 if (!output_event) 8193 goto set; 8194 8195 /* don't allow circular references */ 8196 if (event == output_event) 8197 goto out; 8198 8199 /* 8200 * Don't allow cross-cpu buffers 8201 */ 8202 if (output_event->cpu != event->cpu) 8203 goto out; 8204 8205 /* 8206 * If its not a per-cpu rb, it must be the same task. 8207 */ 8208 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8209 goto out; 8210 8211 /* 8212 * Mixing clocks in the same buffer is trouble you don't need. 8213 */ 8214 if (output_event->clock != event->clock) 8215 goto out; 8216 8217 /* 8218 * If both events generate aux data, they must be on the same PMU 8219 */ 8220 if (has_aux(event) && has_aux(output_event) && 8221 event->pmu != output_event->pmu) 8222 goto out; 8223 8224 set: 8225 mutex_lock(&event->mmap_mutex); 8226 /* Can't redirect output if we've got an active mmap() */ 8227 if (atomic_read(&event->mmap_count)) 8228 goto unlock; 8229 8230 if (output_event) { 8231 /* get the rb we want to redirect to */ 8232 rb = ring_buffer_get(output_event); 8233 if (!rb) 8234 goto unlock; 8235 } 8236 8237 ring_buffer_attach(event, rb); 8238 8239 ret = 0; 8240 unlock: 8241 mutex_unlock(&event->mmap_mutex); 8242 8243 out: 8244 return ret; 8245 } 8246 8247 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8248 { 8249 if (b < a) 8250 swap(a, b); 8251 8252 mutex_lock(a); 8253 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8254 } 8255 8256 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8257 { 8258 bool nmi_safe = false; 8259 8260 switch (clk_id) { 8261 case CLOCK_MONOTONIC: 8262 event->clock = &ktime_get_mono_fast_ns; 8263 nmi_safe = true; 8264 break; 8265 8266 case CLOCK_MONOTONIC_RAW: 8267 event->clock = &ktime_get_raw_fast_ns; 8268 nmi_safe = true; 8269 break; 8270 8271 case CLOCK_REALTIME: 8272 event->clock = &ktime_get_real_ns; 8273 break; 8274 8275 case CLOCK_BOOTTIME: 8276 event->clock = &ktime_get_boot_ns; 8277 break; 8278 8279 case CLOCK_TAI: 8280 event->clock = &ktime_get_tai_ns; 8281 break; 8282 8283 default: 8284 return -EINVAL; 8285 } 8286 8287 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8288 return -EINVAL; 8289 8290 return 0; 8291 } 8292 8293 /** 8294 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8295 * 8296 * @attr_uptr: event_id type attributes for monitoring/sampling 8297 * @pid: target pid 8298 * @cpu: target cpu 8299 * @group_fd: group leader event fd 8300 */ 8301 SYSCALL_DEFINE5(perf_event_open, 8302 struct perf_event_attr __user *, attr_uptr, 8303 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8304 { 8305 struct perf_event *group_leader = NULL, *output_event = NULL; 8306 struct perf_event *event, *sibling; 8307 struct perf_event_attr attr; 8308 struct perf_event_context *ctx, *uninitialized_var(gctx); 8309 struct file *event_file = NULL; 8310 struct fd group = {NULL, 0}; 8311 struct task_struct *task = NULL; 8312 struct pmu *pmu; 8313 int event_fd; 8314 int move_group = 0; 8315 int err; 8316 int f_flags = O_RDWR; 8317 int cgroup_fd = -1; 8318 8319 /* for future expandability... */ 8320 if (flags & ~PERF_FLAG_ALL) 8321 return -EINVAL; 8322 8323 err = perf_copy_attr(attr_uptr, &attr); 8324 if (err) 8325 return err; 8326 8327 if (!attr.exclude_kernel) { 8328 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8329 return -EACCES; 8330 } 8331 8332 if (attr.freq) { 8333 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8334 return -EINVAL; 8335 } else { 8336 if (attr.sample_period & (1ULL << 63)) 8337 return -EINVAL; 8338 } 8339 8340 /* 8341 * In cgroup mode, the pid argument is used to pass the fd 8342 * opened to the cgroup directory in cgroupfs. The cpu argument 8343 * designates the cpu on which to monitor threads from that 8344 * cgroup. 8345 */ 8346 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8347 return -EINVAL; 8348 8349 if (flags & PERF_FLAG_FD_CLOEXEC) 8350 f_flags |= O_CLOEXEC; 8351 8352 event_fd = get_unused_fd_flags(f_flags); 8353 if (event_fd < 0) 8354 return event_fd; 8355 8356 if (group_fd != -1) { 8357 err = perf_fget_light(group_fd, &group); 8358 if (err) 8359 goto err_fd; 8360 group_leader = group.file->private_data; 8361 if (flags & PERF_FLAG_FD_OUTPUT) 8362 output_event = group_leader; 8363 if (flags & PERF_FLAG_FD_NO_GROUP) 8364 group_leader = NULL; 8365 } 8366 8367 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8368 task = find_lively_task_by_vpid(pid); 8369 if (IS_ERR(task)) { 8370 err = PTR_ERR(task); 8371 goto err_group_fd; 8372 } 8373 } 8374 8375 if (task && group_leader && 8376 group_leader->attr.inherit != attr.inherit) { 8377 err = -EINVAL; 8378 goto err_task; 8379 } 8380 8381 get_online_cpus(); 8382 8383 if (flags & PERF_FLAG_PID_CGROUP) 8384 cgroup_fd = pid; 8385 8386 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8387 NULL, NULL, cgroup_fd); 8388 if (IS_ERR(event)) { 8389 err = PTR_ERR(event); 8390 goto err_cpus; 8391 } 8392 8393 if (is_sampling_event(event)) { 8394 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8395 err = -ENOTSUPP; 8396 goto err_alloc; 8397 } 8398 } 8399 8400 /* 8401 * Special case software events and allow them to be part of 8402 * any hardware group. 8403 */ 8404 pmu = event->pmu; 8405 8406 if (attr.use_clockid) { 8407 err = perf_event_set_clock(event, attr.clockid); 8408 if (err) 8409 goto err_alloc; 8410 } 8411 8412 if (group_leader && 8413 (is_software_event(event) != is_software_event(group_leader))) { 8414 if (is_software_event(event)) { 8415 /* 8416 * If event and group_leader are not both a software 8417 * event, and event is, then group leader is not. 8418 * 8419 * Allow the addition of software events to !software 8420 * groups, this is safe because software events never 8421 * fail to schedule. 8422 */ 8423 pmu = group_leader->pmu; 8424 } else if (is_software_event(group_leader) && 8425 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8426 /* 8427 * In case the group is a pure software group, and we 8428 * try to add a hardware event, move the whole group to 8429 * the hardware context. 8430 */ 8431 move_group = 1; 8432 } 8433 } 8434 8435 /* 8436 * Get the target context (task or percpu): 8437 */ 8438 ctx = find_get_context(pmu, task, event); 8439 if (IS_ERR(ctx)) { 8440 err = PTR_ERR(ctx); 8441 goto err_alloc; 8442 } 8443 8444 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8445 err = -EBUSY; 8446 goto err_context; 8447 } 8448 8449 if (task) { 8450 put_task_struct(task); 8451 task = NULL; 8452 } 8453 8454 /* 8455 * Look up the group leader (we will attach this event to it): 8456 */ 8457 if (group_leader) { 8458 err = -EINVAL; 8459 8460 /* 8461 * Do not allow a recursive hierarchy (this new sibling 8462 * becoming part of another group-sibling): 8463 */ 8464 if (group_leader->group_leader != group_leader) 8465 goto err_context; 8466 8467 /* All events in a group should have the same clock */ 8468 if (group_leader->clock != event->clock) 8469 goto err_context; 8470 8471 /* 8472 * Do not allow to attach to a group in a different 8473 * task or CPU context: 8474 */ 8475 if (move_group) { 8476 /* 8477 * Make sure we're both on the same task, or both 8478 * per-cpu events. 8479 */ 8480 if (group_leader->ctx->task != ctx->task) 8481 goto err_context; 8482 8483 /* 8484 * Make sure we're both events for the same CPU; 8485 * grouping events for different CPUs is broken; since 8486 * you can never concurrently schedule them anyhow. 8487 */ 8488 if (group_leader->cpu != event->cpu) 8489 goto err_context; 8490 } else { 8491 if (group_leader->ctx != ctx) 8492 goto err_context; 8493 } 8494 8495 /* 8496 * Only a group leader can be exclusive or pinned 8497 */ 8498 if (attr.exclusive || attr.pinned) 8499 goto err_context; 8500 } 8501 8502 if (output_event) { 8503 err = perf_event_set_output(event, output_event); 8504 if (err) 8505 goto err_context; 8506 } 8507 8508 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8509 f_flags); 8510 if (IS_ERR(event_file)) { 8511 err = PTR_ERR(event_file); 8512 goto err_context; 8513 } 8514 8515 if (move_group) { 8516 gctx = group_leader->ctx; 8517 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8518 if (gctx->task == TASK_TOMBSTONE) { 8519 err = -ESRCH; 8520 goto err_locked; 8521 } 8522 } else { 8523 mutex_lock(&ctx->mutex); 8524 } 8525 8526 if (ctx->task == TASK_TOMBSTONE) { 8527 err = -ESRCH; 8528 goto err_locked; 8529 } 8530 8531 if (!perf_event_validate_size(event)) { 8532 err = -E2BIG; 8533 goto err_locked; 8534 } 8535 8536 /* 8537 * Must be under the same ctx::mutex as perf_install_in_context(), 8538 * because we need to serialize with concurrent event creation. 8539 */ 8540 if (!exclusive_event_installable(event, ctx)) { 8541 /* exclusive and group stuff are assumed mutually exclusive */ 8542 WARN_ON_ONCE(move_group); 8543 8544 err = -EBUSY; 8545 goto err_locked; 8546 } 8547 8548 WARN_ON_ONCE(ctx->parent_ctx); 8549 8550 if (move_group) { 8551 /* 8552 * See perf_event_ctx_lock() for comments on the details 8553 * of swizzling perf_event::ctx. 8554 */ 8555 perf_remove_from_context(group_leader, 0); 8556 8557 list_for_each_entry(sibling, &group_leader->sibling_list, 8558 group_entry) { 8559 perf_remove_from_context(sibling, 0); 8560 put_ctx(gctx); 8561 } 8562 8563 /* 8564 * Wait for everybody to stop referencing the events through 8565 * the old lists, before installing it on new lists. 8566 */ 8567 synchronize_rcu(); 8568 8569 /* 8570 * Install the group siblings before the group leader. 8571 * 8572 * Because a group leader will try and install the entire group 8573 * (through the sibling list, which is still in-tact), we can 8574 * end up with siblings installed in the wrong context. 8575 * 8576 * By installing siblings first we NO-OP because they're not 8577 * reachable through the group lists. 8578 */ 8579 list_for_each_entry(sibling, &group_leader->sibling_list, 8580 group_entry) { 8581 perf_event__state_init(sibling); 8582 perf_install_in_context(ctx, sibling, sibling->cpu); 8583 get_ctx(ctx); 8584 } 8585 8586 /* 8587 * Removing from the context ends up with disabled 8588 * event. What we want here is event in the initial 8589 * startup state, ready to be add into new context. 8590 */ 8591 perf_event__state_init(group_leader); 8592 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8593 get_ctx(ctx); 8594 8595 /* 8596 * Now that all events are installed in @ctx, nothing 8597 * references @gctx anymore, so drop the last reference we have 8598 * on it. 8599 */ 8600 put_ctx(gctx); 8601 } 8602 8603 /* 8604 * Precalculate sample_data sizes; do while holding ctx::mutex such 8605 * that we're serialized against further additions and before 8606 * perf_install_in_context() which is the point the event is active and 8607 * can use these values. 8608 */ 8609 perf_event__header_size(event); 8610 perf_event__id_header_size(event); 8611 8612 event->owner = current; 8613 8614 perf_install_in_context(ctx, event, event->cpu); 8615 perf_unpin_context(ctx); 8616 8617 if (move_group) 8618 mutex_unlock(&gctx->mutex); 8619 mutex_unlock(&ctx->mutex); 8620 8621 put_online_cpus(); 8622 8623 mutex_lock(¤t->perf_event_mutex); 8624 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8625 mutex_unlock(¤t->perf_event_mutex); 8626 8627 /* 8628 * Drop the reference on the group_event after placing the 8629 * new event on the sibling_list. This ensures destruction 8630 * of the group leader will find the pointer to itself in 8631 * perf_group_detach(). 8632 */ 8633 fdput(group); 8634 fd_install(event_fd, event_file); 8635 return event_fd; 8636 8637 err_locked: 8638 if (move_group) 8639 mutex_unlock(&gctx->mutex); 8640 mutex_unlock(&ctx->mutex); 8641 /* err_file: */ 8642 fput(event_file); 8643 err_context: 8644 perf_unpin_context(ctx); 8645 put_ctx(ctx); 8646 err_alloc: 8647 /* 8648 * If event_file is set, the fput() above will have called ->release() 8649 * and that will take care of freeing the event. 8650 */ 8651 if (!event_file) 8652 free_event(event); 8653 err_cpus: 8654 put_online_cpus(); 8655 err_task: 8656 if (task) 8657 put_task_struct(task); 8658 err_group_fd: 8659 fdput(group); 8660 err_fd: 8661 put_unused_fd(event_fd); 8662 return err; 8663 } 8664 8665 /** 8666 * perf_event_create_kernel_counter 8667 * 8668 * @attr: attributes of the counter to create 8669 * @cpu: cpu in which the counter is bound 8670 * @task: task to profile (NULL for percpu) 8671 */ 8672 struct perf_event * 8673 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8674 struct task_struct *task, 8675 perf_overflow_handler_t overflow_handler, 8676 void *context) 8677 { 8678 struct perf_event_context *ctx; 8679 struct perf_event *event; 8680 int err; 8681 8682 /* 8683 * Get the target context (task or percpu): 8684 */ 8685 8686 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8687 overflow_handler, context, -1); 8688 if (IS_ERR(event)) { 8689 err = PTR_ERR(event); 8690 goto err; 8691 } 8692 8693 /* Mark owner so we could distinguish it from user events. */ 8694 event->owner = TASK_TOMBSTONE; 8695 8696 ctx = find_get_context(event->pmu, task, event); 8697 if (IS_ERR(ctx)) { 8698 err = PTR_ERR(ctx); 8699 goto err_free; 8700 } 8701 8702 WARN_ON_ONCE(ctx->parent_ctx); 8703 mutex_lock(&ctx->mutex); 8704 if (ctx->task == TASK_TOMBSTONE) { 8705 err = -ESRCH; 8706 goto err_unlock; 8707 } 8708 8709 if (!exclusive_event_installable(event, ctx)) { 8710 err = -EBUSY; 8711 goto err_unlock; 8712 } 8713 8714 perf_install_in_context(ctx, event, cpu); 8715 perf_unpin_context(ctx); 8716 mutex_unlock(&ctx->mutex); 8717 8718 return event; 8719 8720 err_unlock: 8721 mutex_unlock(&ctx->mutex); 8722 perf_unpin_context(ctx); 8723 put_ctx(ctx); 8724 err_free: 8725 free_event(event); 8726 err: 8727 return ERR_PTR(err); 8728 } 8729 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8730 8731 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8732 { 8733 struct perf_event_context *src_ctx; 8734 struct perf_event_context *dst_ctx; 8735 struct perf_event *event, *tmp; 8736 LIST_HEAD(events); 8737 8738 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8739 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8740 8741 /* 8742 * See perf_event_ctx_lock() for comments on the details 8743 * of swizzling perf_event::ctx. 8744 */ 8745 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8746 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8747 event_entry) { 8748 perf_remove_from_context(event, 0); 8749 unaccount_event_cpu(event, src_cpu); 8750 put_ctx(src_ctx); 8751 list_add(&event->migrate_entry, &events); 8752 } 8753 8754 /* 8755 * Wait for the events to quiesce before re-instating them. 8756 */ 8757 synchronize_rcu(); 8758 8759 /* 8760 * Re-instate events in 2 passes. 8761 * 8762 * Skip over group leaders and only install siblings on this first 8763 * pass, siblings will not get enabled without a leader, however a 8764 * leader will enable its siblings, even if those are still on the old 8765 * context. 8766 */ 8767 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8768 if (event->group_leader == event) 8769 continue; 8770 8771 list_del(&event->migrate_entry); 8772 if (event->state >= PERF_EVENT_STATE_OFF) 8773 event->state = PERF_EVENT_STATE_INACTIVE; 8774 account_event_cpu(event, dst_cpu); 8775 perf_install_in_context(dst_ctx, event, dst_cpu); 8776 get_ctx(dst_ctx); 8777 } 8778 8779 /* 8780 * Once all the siblings are setup properly, install the group leaders 8781 * to make it go. 8782 */ 8783 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8784 list_del(&event->migrate_entry); 8785 if (event->state >= PERF_EVENT_STATE_OFF) 8786 event->state = PERF_EVENT_STATE_INACTIVE; 8787 account_event_cpu(event, dst_cpu); 8788 perf_install_in_context(dst_ctx, event, dst_cpu); 8789 get_ctx(dst_ctx); 8790 } 8791 mutex_unlock(&dst_ctx->mutex); 8792 mutex_unlock(&src_ctx->mutex); 8793 } 8794 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8795 8796 static void sync_child_event(struct perf_event *child_event, 8797 struct task_struct *child) 8798 { 8799 struct perf_event *parent_event = child_event->parent; 8800 u64 child_val; 8801 8802 if (child_event->attr.inherit_stat) 8803 perf_event_read_event(child_event, child); 8804 8805 child_val = perf_event_count(child_event); 8806 8807 /* 8808 * Add back the child's count to the parent's count: 8809 */ 8810 atomic64_add(child_val, &parent_event->child_count); 8811 atomic64_add(child_event->total_time_enabled, 8812 &parent_event->child_total_time_enabled); 8813 atomic64_add(child_event->total_time_running, 8814 &parent_event->child_total_time_running); 8815 } 8816 8817 static void 8818 perf_event_exit_event(struct perf_event *child_event, 8819 struct perf_event_context *child_ctx, 8820 struct task_struct *child) 8821 { 8822 struct perf_event *parent_event = child_event->parent; 8823 8824 /* 8825 * Do not destroy the 'original' grouping; because of the context 8826 * switch optimization the original events could've ended up in a 8827 * random child task. 8828 * 8829 * If we were to destroy the original group, all group related 8830 * operations would cease to function properly after this random 8831 * child dies. 8832 * 8833 * Do destroy all inherited groups, we don't care about those 8834 * and being thorough is better. 8835 */ 8836 raw_spin_lock_irq(&child_ctx->lock); 8837 WARN_ON_ONCE(child_ctx->is_active); 8838 8839 if (parent_event) 8840 perf_group_detach(child_event); 8841 list_del_event(child_event, child_ctx); 8842 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 8843 raw_spin_unlock_irq(&child_ctx->lock); 8844 8845 /* 8846 * Parent events are governed by their filedesc, retain them. 8847 */ 8848 if (!parent_event) { 8849 perf_event_wakeup(child_event); 8850 return; 8851 } 8852 /* 8853 * Child events can be cleaned up. 8854 */ 8855 8856 sync_child_event(child_event, child); 8857 8858 /* 8859 * Remove this event from the parent's list 8860 */ 8861 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8862 mutex_lock(&parent_event->child_mutex); 8863 list_del_init(&child_event->child_list); 8864 mutex_unlock(&parent_event->child_mutex); 8865 8866 /* 8867 * Kick perf_poll() for is_event_hup(). 8868 */ 8869 perf_event_wakeup(parent_event); 8870 free_event(child_event); 8871 put_event(parent_event); 8872 } 8873 8874 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8875 { 8876 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8877 struct perf_event *child_event, *next; 8878 8879 WARN_ON_ONCE(child != current); 8880 8881 child_ctx = perf_pin_task_context(child, ctxn); 8882 if (!child_ctx) 8883 return; 8884 8885 /* 8886 * In order to reduce the amount of tricky in ctx tear-down, we hold 8887 * ctx::mutex over the entire thing. This serializes against almost 8888 * everything that wants to access the ctx. 8889 * 8890 * The exception is sys_perf_event_open() / 8891 * perf_event_create_kernel_count() which does find_get_context() 8892 * without ctx::mutex (it cannot because of the move_group double mutex 8893 * lock thing). See the comments in perf_install_in_context(). 8894 */ 8895 mutex_lock(&child_ctx->mutex); 8896 8897 /* 8898 * In a single ctx::lock section, de-schedule the events and detach the 8899 * context from the task such that we cannot ever get it scheduled back 8900 * in. 8901 */ 8902 raw_spin_lock_irq(&child_ctx->lock); 8903 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 8904 8905 /* 8906 * Now that the context is inactive, destroy the task <-> ctx relation 8907 * and mark the context dead. 8908 */ 8909 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 8910 put_ctx(child_ctx); /* cannot be last */ 8911 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 8912 put_task_struct(current); /* cannot be last */ 8913 8914 clone_ctx = unclone_ctx(child_ctx); 8915 raw_spin_unlock_irq(&child_ctx->lock); 8916 8917 if (clone_ctx) 8918 put_ctx(clone_ctx); 8919 8920 /* 8921 * Report the task dead after unscheduling the events so that we 8922 * won't get any samples after PERF_RECORD_EXIT. We can however still 8923 * get a few PERF_RECORD_READ events. 8924 */ 8925 perf_event_task(child, child_ctx, 0); 8926 8927 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8928 perf_event_exit_event(child_event, child_ctx, child); 8929 8930 mutex_unlock(&child_ctx->mutex); 8931 8932 put_ctx(child_ctx); 8933 } 8934 8935 /* 8936 * When a child task exits, feed back event values to parent events. 8937 */ 8938 void perf_event_exit_task(struct task_struct *child) 8939 { 8940 struct perf_event *event, *tmp; 8941 int ctxn; 8942 8943 mutex_lock(&child->perf_event_mutex); 8944 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8945 owner_entry) { 8946 list_del_init(&event->owner_entry); 8947 8948 /* 8949 * Ensure the list deletion is visible before we clear 8950 * the owner, closes a race against perf_release() where 8951 * we need to serialize on the owner->perf_event_mutex. 8952 */ 8953 smp_store_release(&event->owner, NULL); 8954 } 8955 mutex_unlock(&child->perf_event_mutex); 8956 8957 for_each_task_context_nr(ctxn) 8958 perf_event_exit_task_context(child, ctxn); 8959 8960 /* 8961 * The perf_event_exit_task_context calls perf_event_task 8962 * with child's task_ctx, which generates EXIT events for 8963 * child contexts and sets child->perf_event_ctxp[] to NULL. 8964 * At this point we need to send EXIT events to cpu contexts. 8965 */ 8966 perf_event_task(child, NULL, 0); 8967 } 8968 8969 static void perf_free_event(struct perf_event *event, 8970 struct perf_event_context *ctx) 8971 { 8972 struct perf_event *parent = event->parent; 8973 8974 if (WARN_ON_ONCE(!parent)) 8975 return; 8976 8977 mutex_lock(&parent->child_mutex); 8978 list_del_init(&event->child_list); 8979 mutex_unlock(&parent->child_mutex); 8980 8981 put_event(parent); 8982 8983 raw_spin_lock_irq(&ctx->lock); 8984 perf_group_detach(event); 8985 list_del_event(event, ctx); 8986 raw_spin_unlock_irq(&ctx->lock); 8987 free_event(event); 8988 } 8989 8990 /* 8991 * Free an unexposed, unused context as created by inheritance by 8992 * perf_event_init_task below, used by fork() in case of fail. 8993 * 8994 * Not all locks are strictly required, but take them anyway to be nice and 8995 * help out with the lockdep assertions. 8996 */ 8997 void perf_event_free_task(struct task_struct *task) 8998 { 8999 struct perf_event_context *ctx; 9000 struct perf_event *event, *tmp; 9001 int ctxn; 9002 9003 for_each_task_context_nr(ctxn) { 9004 ctx = task->perf_event_ctxp[ctxn]; 9005 if (!ctx) 9006 continue; 9007 9008 mutex_lock(&ctx->mutex); 9009 again: 9010 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9011 group_entry) 9012 perf_free_event(event, ctx); 9013 9014 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9015 group_entry) 9016 perf_free_event(event, ctx); 9017 9018 if (!list_empty(&ctx->pinned_groups) || 9019 !list_empty(&ctx->flexible_groups)) 9020 goto again; 9021 9022 mutex_unlock(&ctx->mutex); 9023 9024 put_ctx(ctx); 9025 } 9026 } 9027 9028 void perf_event_delayed_put(struct task_struct *task) 9029 { 9030 int ctxn; 9031 9032 for_each_task_context_nr(ctxn) 9033 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9034 } 9035 9036 struct file *perf_event_get(unsigned int fd) 9037 { 9038 struct file *file; 9039 9040 file = fget_raw(fd); 9041 if (!file) 9042 return ERR_PTR(-EBADF); 9043 9044 if (file->f_op != &perf_fops) { 9045 fput(file); 9046 return ERR_PTR(-EBADF); 9047 } 9048 9049 return file; 9050 } 9051 9052 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 9053 { 9054 if (!event) 9055 return ERR_PTR(-EINVAL); 9056 9057 return &event->attr; 9058 } 9059 9060 /* 9061 * inherit a event from parent task to child task: 9062 */ 9063 static struct perf_event * 9064 inherit_event(struct perf_event *parent_event, 9065 struct task_struct *parent, 9066 struct perf_event_context *parent_ctx, 9067 struct task_struct *child, 9068 struct perf_event *group_leader, 9069 struct perf_event_context *child_ctx) 9070 { 9071 enum perf_event_active_state parent_state = parent_event->state; 9072 struct perf_event *child_event; 9073 unsigned long flags; 9074 9075 /* 9076 * Instead of creating recursive hierarchies of events, 9077 * we link inherited events back to the original parent, 9078 * which has a filp for sure, which we use as the reference 9079 * count: 9080 */ 9081 if (parent_event->parent) 9082 parent_event = parent_event->parent; 9083 9084 child_event = perf_event_alloc(&parent_event->attr, 9085 parent_event->cpu, 9086 child, 9087 group_leader, parent_event, 9088 NULL, NULL, -1); 9089 if (IS_ERR(child_event)) 9090 return child_event; 9091 9092 /* 9093 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 9094 * must be under the same lock in order to serialize against 9095 * perf_event_release_kernel(), such that either we must observe 9096 * is_orphaned_event() or they will observe us on the child_list. 9097 */ 9098 mutex_lock(&parent_event->child_mutex); 9099 if (is_orphaned_event(parent_event) || 9100 !atomic_long_inc_not_zero(&parent_event->refcount)) { 9101 mutex_unlock(&parent_event->child_mutex); 9102 free_event(child_event); 9103 return NULL; 9104 } 9105 9106 get_ctx(child_ctx); 9107 9108 /* 9109 * Make the child state follow the state of the parent event, 9110 * not its attr.disabled bit. We hold the parent's mutex, 9111 * so we won't race with perf_event_{en, dis}able_family. 9112 */ 9113 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 9114 child_event->state = PERF_EVENT_STATE_INACTIVE; 9115 else 9116 child_event->state = PERF_EVENT_STATE_OFF; 9117 9118 if (parent_event->attr.freq) { 9119 u64 sample_period = parent_event->hw.sample_period; 9120 struct hw_perf_event *hwc = &child_event->hw; 9121 9122 hwc->sample_period = sample_period; 9123 hwc->last_period = sample_period; 9124 9125 local64_set(&hwc->period_left, sample_period); 9126 } 9127 9128 child_event->ctx = child_ctx; 9129 child_event->overflow_handler = parent_event->overflow_handler; 9130 child_event->overflow_handler_context 9131 = parent_event->overflow_handler_context; 9132 9133 /* 9134 * Precalculate sample_data sizes 9135 */ 9136 perf_event__header_size(child_event); 9137 perf_event__id_header_size(child_event); 9138 9139 /* 9140 * Link it up in the child's context: 9141 */ 9142 raw_spin_lock_irqsave(&child_ctx->lock, flags); 9143 add_event_to_ctx(child_event, child_ctx); 9144 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 9145 9146 /* 9147 * Link this into the parent event's child list 9148 */ 9149 list_add_tail(&child_event->child_list, &parent_event->child_list); 9150 mutex_unlock(&parent_event->child_mutex); 9151 9152 return child_event; 9153 } 9154 9155 static int inherit_group(struct perf_event *parent_event, 9156 struct task_struct *parent, 9157 struct perf_event_context *parent_ctx, 9158 struct task_struct *child, 9159 struct perf_event_context *child_ctx) 9160 { 9161 struct perf_event *leader; 9162 struct perf_event *sub; 9163 struct perf_event *child_ctr; 9164 9165 leader = inherit_event(parent_event, parent, parent_ctx, 9166 child, NULL, child_ctx); 9167 if (IS_ERR(leader)) 9168 return PTR_ERR(leader); 9169 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 9170 child_ctr = inherit_event(sub, parent, parent_ctx, 9171 child, leader, child_ctx); 9172 if (IS_ERR(child_ctr)) 9173 return PTR_ERR(child_ctr); 9174 } 9175 return 0; 9176 } 9177 9178 static int 9179 inherit_task_group(struct perf_event *event, struct task_struct *parent, 9180 struct perf_event_context *parent_ctx, 9181 struct task_struct *child, int ctxn, 9182 int *inherited_all) 9183 { 9184 int ret; 9185 struct perf_event_context *child_ctx; 9186 9187 if (!event->attr.inherit) { 9188 *inherited_all = 0; 9189 return 0; 9190 } 9191 9192 child_ctx = child->perf_event_ctxp[ctxn]; 9193 if (!child_ctx) { 9194 /* 9195 * This is executed from the parent task context, so 9196 * inherit events that have been marked for cloning. 9197 * First allocate and initialize a context for the 9198 * child. 9199 */ 9200 9201 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 9202 if (!child_ctx) 9203 return -ENOMEM; 9204 9205 child->perf_event_ctxp[ctxn] = child_ctx; 9206 } 9207 9208 ret = inherit_group(event, parent, parent_ctx, 9209 child, child_ctx); 9210 9211 if (ret) 9212 *inherited_all = 0; 9213 9214 return ret; 9215 } 9216 9217 /* 9218 * Initialize the perf_event context in task_struct 9219 */ 9220 static int perf_event_init_context(struct task_struct *child, int ctxn) 9221 { 9222 struct perf_event_context *child_ctx, *parent_ctx; 9223 struct perf_event_context *cloned_ctx; 9224 struct perf_event *event; 9225 struct task_struct *parent = current; 9226 int inherited_all = 1; 9227 unsigned long flags; 9228 int ret = 0; 9229 9230 if (likely(!parent->perf_event_ctxp[ctxn])) 9231 return 0; 9232 9233 /* 9234 * If the parent's context is a clone, pin it so it won't get 9235 * swapped under us. 9236 */ 9237 parent_ctx = perf_pin_task_context(parent, ctxn); 9238 if (!parent_ctx) 9239 return 0; 9240 9241 /* 9242 * No need to check if parent_ctx != NULL here; since we saw 9243 * it non-NULL earlier, the only reason for it to become NULL 9244 * is if we exit, and since we're currently in the middle of 9245 * a fork we can't be exiting at the same time. 9246 */ 9247 9248 /* 9249 * Lock the parent list. No need to lock the child - not PID 9250 * hashed yet and not running, so nobody can access it. 9251 */ 9252 mutex_lock(&parent_ctx->mutex); 9253 9254 /* 9255 * We dont have to disable NMIs - we are only looking at 9256 * the list, not manipulating it: 9257 */ 9258 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9259 ret = inherit_task_group(event, parent, parent_ctx, 9260 child, ctxn, &inherited_all); 9261 if (ret) 9262 break; 9263 } 9264 9265 /* 9266 * We can't hold ctx->lock when iterating the ->flexible_group list due 9267 * to allocations, but we need to prevent rotation because 9268 * rotate_ctx() will change the list from interrupt context. 9269 */ 9270 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9271 parent_ctx->rotate_disable = 1; 9272 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9273 9274 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9275 ret = inherit_task_group(event, parent, parent_ctx, 9276 child, ctxn, &inherited_all); 9277 if (ret) 9278 break; 9279 } 9280 9281 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9282 parent_ctx->rotate_disable = 0; 9283 9284 child_ctx = child->perf_event_ctxp[ctxn]; 9285 9286 if (child_ctx && inherited_all) { 9287 /* 9288 * Mark the child context as a clone of the parent 9289 * context, or of whatever the parent is a clone of. 9290 * 9291 * Note that if the parent is a clone, the holding of 9292 * parent_ctx->lock avoids it from being uncloned. 9293 */ 9294 cloned_ctx = parent_ctx->parent_ctx; 9295 if (cloned_ctx) { 9296 child_ctx->parent_ctx = cloned_ctx; 9297 child_ctx->parent_gen = parent_ctx->parent_gen; 9298 } else { 9299 child_ctx->parent_ctx = parent_ctx; 9300 child_ctx->parent_gen = parent_ctx->generation; 9301 } 9302 get_ctx(child_ctx->parent_ctx); 9303 } 9304 9305 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9306 mutex_unlock(&parent_ctx->mutex); 9307 9308 perf_unpin_context(parent_ctx); 9309 put_ctx(parent_ctx); 9310 9311 return ret; 9312 } 9313 9314 /* 9315 * Initialize the perf_event context in task_struct 9316 */ 9317 int perf_event_init_task(struct task_struct *child) 9318 { 9319 int ctxn, ret; 9320 9321 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9322 mutex_init(&child->perf_event_mutex); 9323 INIT_LIST_HEAD(&child->perf_event_list); 9324 9325 for_each_task_context_nr(ctxn) { 9326 ret = perf_event_init_context(child, ctxn); 9327 if (ret) { 9328 perf_event_free_task(child); 9329 return ret; 9330 } 9331 } 9332 9333 return 0; 9334 } 9335 9336 static void __init perf_event_init_all_cpus(void) 9337 { 9338 struct swevent_htable *swhash; 9339 int cpu; 9340 9341 for_each_possible_cpu(cpu) { 9342 swhash = &per_cpu(swevent_htable, cpu); 9343 mutex_init(&swhash->hlist_mutex); 9344 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9345 } 9346 } 9347 9348 static void perf_event_init_cpu(int cpu) 9349 { 9350 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9351 9352 mutex_lock(&swhash->hlist_mutex); 9353 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 9354 struct swevent_hlist *hlist; 9355 9356 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9357 WARN_ON(!hlist); 9358 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9359 } 9360 mutex_unlock(&swhash->hlist_mutex); 9361 } 9362 9363 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9364 static void __perf_event_exit_context(void *__info) 9365 { 9366 struct perf_event_context *ctx = __info; 9367 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 9368 struct perf_event *event; 9369 9370 raw_spin_lock(&ctx->lock); 9371 list_for_each_entry(event, &ctx->event_list, event_entry) 9372 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 9373 raw_spin_unlock(&ctx->lock); 9374 } 9375 9376 static void perf_event_exit_cpu_context(int cpu) 9377 { 9378 struct perf_event_context *ctx; 9379 struct pmu *pmu; 9380 int idx; 9381 9382 idx = srcu_read_lock(&pmus_srcu); 9383 list_for_each_entry_rcu(pmu, &pmus, entry) { 9384 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9385 9386 mutex_lock(&ctx->mutex); 9387 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9388 mutex_unlock(&ctx->mutex); 9389 } 9390 srcu_read_unlock(&pmus_srcu, idx); 9391 } 9392 9393 static void perf_event_exit_cpu(int cpu) 9394 { 9395 perf_event_exit_cpu_context(cpu); 9396 } 9397 #else 9398 static inline void perf_event_exit_cpu(int cpu) { } 9399 #endif 9400 9401 static int 9402 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9403 { 9404 int cpu; 9405 9406 for_each_online_cpu(cpu) 9407 perf_event_exit_cpu(cpu); 9408 9409 return NOTIFY_OK; 9410 } 9411 9412 /* 9413 * Run the perf reboot notifier at the very last possible moment so that 9414 * the generic watchdog code runs as long as possible. 9415 */ 9416 static struct notifier_block perf_reboot_notifier = { 9417 .notifier_call = perf_reboot, 9418 .priority = INT_MIN, 9419 }; 9420 9421 static int 9422 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9423 { 9424 unsigned int cpu = (long)hcpu; 9425 9426 switch (action & ~CPU_TASKS_FROZEN) { 9427 9428 case CPU_UP_PREPARE: 9429 perf_event_init_cpu(cpu); 9430 break; 9431 9432 case CPU_DOWN_PREPARE: 9433 perf_event_exit_cpu(cpu); 9434 break; 9435 default: 9436 break; 9437 } 9438 9439 return NOTIFY_OK; 9440 } 9441 9442 void __init perf_event_init(void) 9443 { 9444 int ret; 9445 9446 idr_init(&pmu_idr); 9447 9448 perf_event_init_all_cpus(); 9449 init_srcu_struct(&pmus_srcu); 9450 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9451 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9452 perf_pmu_register(&perf_task_clock, NULL, -1); 9453 perf_tp_register(); 9454 perf_cpu_notifier(perf_cpu_notify); 9455 register_reboot_notifier(&perf_reboot_notifier); 9456 9457 ret = init_hw_breakpoint(); 9458 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9459 9460 /* 9461 * Build time assertion that we keep the data_head at the intended 9462 * location. IOW, validation we got the __reserved[] size right. 9463 */ 9464 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9465 != 1024); 9466 } 9467 9468 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9469 char *page) 9470 { 9471 struct perf_pmu_events_attr *pmu_attr = 9472 container_of(attr, struct perf_pmu_events_attr, attr); 9473 9474 if (pmu_attr->event_str) 9475 return sprintf(page, "%s\n", pmu_attr->event_str); 9476 9477 return 0; 9478 } 9479 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 9480 9481 static int __init perf_event_sysfs_init(void) 9482 { 9483 struct pmu *pmu; 9484 int ret; 9485 9486 mutex_lock(&pmus_lock); 9487 9488 ret = bus_register(&pmu_bus); 9489 if (ret) 9490 goto unlock; 9491 9492 list_for_each_entry(pmu, &pmus, entry) { 9493 if (!pmu->name || pmu->type < 0) 9494 continue; 9495 9496 ret = pmu_dev_alloc(pmu); 9497 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9498 } 9499 pmu_bus_running = 1; 9500 ret = 0; 9501 9502 unlock: 9503 mutex_unlock(&pmus_lock); 9504 9505 return ret; 9506 } 9507 device_initcall(perf_event_sysfs_init); 9508 9509 #ifdef CONFIG_CGROUP_PERF 9510 static struct cgroup_subsys_state * 9511 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9512 { 9513 struct perf_cgroup *jc; 9514 9515 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9516 if (!jc) 9517 return ERR_PTR(-ENOMEM); 9518 9519 jc->info = alloc_percpu(struct perf_cgroup_info); 9520 if (!jc->info) { 9521 kfree(jc); 9522 return ERR_PTR(-ENOMEM); 9523 } 9524 9525 return &jc->css; 9526 } 9527 9528 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9529 { 9530 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9531 9532 free_percpu(jc->info); 9533 kfree(jc); 9534 } 9535 9536 static int __perf_cgroup_move(void *info) 9537 { 9538 struct task_struct *task = info; 9539 rcu_read_lock(); 9540 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9541 rcu_read_unlock(); 9542 return 0; 9543 } 9544 9545 static void perf_cgroup_attach(struct cgroup_taskset *tset) 9546 { 9547 struct task_struct *task; 9548 struct cgroup_subsys_state *css; 9549 9550 cgroup_taskset_for_each(task, css, tset) 9551 task_function_call(task, __perf_cgroup_move, task); 9552 } 9553 9554 struct cgroup_subsys perf_event_cgrp_subsys = { 9555 .css_alloc = perf_cgroup_css_alloc, 9556 .css_free = perf_cgroup_css_free, 9557 .attach = perf_cgroup_attach, 9558 }; 9559 #endif /* CONFIG_CGROUP_PERF */ 9560