xref: /linux/kernel/events/core.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 typedef int (*remote_function_f)(void *);
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	remote_function_f	func;
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		/* -EAGAIN */
68 		if (task_cpu(p) != smp_processor_id())
69 			return;
70 
71 		/*
72 		 * Now that we're on right CPU with IRQs disabled, we can test
73 		 * if we hit the right task without races.
74 		 */
75 
76 		tfc->ret = -ESRCH; /* No such (running) process */
77 		if (p != current)
78 			return;
79 	}
80 
81 	tfc->ret = tfc->func(tfc->info);
82 }
83 
84 /**
85  * task_function_call - call a function on the cpu on which a task runs
86  * @p:		the task to evaluate
87  * @func:	the function to be called
88  * @info:	the function call argument
89  *
90  * Calls the function @func when the task is currently running. This might
91  * be on the current CPU, which just calls the function directly
92  *
93  * returns: @func return value, or
94  *	    -ESRCH  - when the process isn't running
95  *	    -EAGAIN - when the process moved away
96  */
97 static int
98 task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 {
100 	struct remote_function_call data = {
101 		.p	= p,
102 		.func	= func,
103 		.info	= info,
104 		.ret	= -EAGAIN,
105 	};
106 	int ret;
107 
108 	do {
109 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 		if (!ret)
111 			ret = data.ret;
112 	} while (ret == -EAGAIN);
113 
114 	return ret;
115 }
116 
117 /**
118  * cpu_function_call - call a function on the cpu
119  * @func:	the function to be called
120  * @info:	the function call argument
121  *
122  * Calls the function @func on the remote cpu.
123  *
124  * returns: @func return value or -ENXIO when the cpu is offline
125  */
126 static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 {
128 	struct remote_function_call data = {
129 		.p	= NULL,
130 		.func	= func,
131 		.info	= info,
132 		.ret	= -ENXIO, /* No such CPU */
133 	};
134 
135 	smp_call_function_single(cpu, remote_function, &data, 1);
136 
137 	return data.ret;
138 }
139 
140 static inline struct perf_cpu_context *
141 __get_cpu_context(struct perf_event_context *ctx)
142 {
143 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144 }
145 
146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 			  struct perf_event_context *ctx)
148 {
149 	raw_spin_lock(&cpuctx->ctx.lock);
150 	if (ctx)
151 		raw_spin_lock(&ctx->lock);
152 }
153 
154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 			    struct perf_event_context *ctx)
156 {
157 	if (ctx)
158 		raw_spin_unlock(&ctx->lock);
159 	raw_spin_unlock(&cpuctx->ctx.lock);
160 }
161 
162 #define TASK_TOMBSTONE ((void *)-1L)
163 
164 static bool is_kernel_event(struct perf_event *event)
165 {
166 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 }
168 
169 /*
170  * On task ctx scheduling...
171  *
172  * When !ctx->nr_events a task context will not be scheduled. This means
173  * we can disable the scheduler hooks (for performance) without leaving
174  * pending task ctx state.
175  *
176  * This however results in two special cases:
177  *
178  *  - removing the last event from a task ctx; this is relatively straight
179  *    forward and is done in __perf_remove_from_context.
180  *
181  *  - adding the first event to a task ctx; this is tricky because we cannot
182  *    rely on ctx->is_active and therefore cannot use event_function_call().
183  *    See perf_install_in_context().
184  *
185  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186  */
187 
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 			struct perf_event_context *, void *);
190 
191 struct event_function_struct {
192 	struct perf_event *event;
193 	event_f func;
194 	void *data;
195 };
196 
197 static int event_function(void *info)
198 {
199 	struct event_function_struct *efs = info;
200 	struct perf_event *event = efs->event;
201 	struct perf_event_context *ctx = event->ctx;
202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 	int ret = 0;
205 
206 	WARN_ON_ONCE(!irqs_disabled());
207 
208 	perf_ctx_lock(cpuctx, task_ctx);
209 	/*
210 	 * Since we do the IPI call without holding ctx->lock things can have
211 	 * changed, double check we hit the task we set out to hit.
212 	 */
213 	if (ctx->task) {
214 		if (ctx->task != current) {
215 			ret = -ESRCH;
216 			goto unlock;
217 		}
218 
219 		/*
220 		 * We only use event_function_call() on established contexts,
221 		 * and event_function() is only ever called when active (or
222 		 * rather, we'll have bailed in task_function_call() or the
223 		 * above ctx->task != current test), therefore we must have
224 		 * ctx->is_active here.
225 		 */
226 		WARN_ON_ONCE(!ctx->is_active);
227 		/*
228 		 * And since we have ctx->is_active, cpuctx->task_ctx must
229 		 * match.
230 		 */
231 		WARN_ON_ONCE(task_ctx != ctx);
232 	} else {
233 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 	}
235 
236 	efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 	perf_ctx_unlock(cpuctx, task_ctx);
239 
240 	return ret;
241 }
242 
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 	struct event_function_struct efs = {
246 		.event = event,
247 		.func = func,
248 		.data = data,
249 	};
250 
251 	int ret = event_function(&efs);
252 	WARN_ON_ONCE(ret);
253 }
254 
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 	struct perf_event_context *ctx = event->ctx;
258 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 	struct event_function_struct efs = {
260 		.event = event,
261 		.func = func,
262 		.data = data,
263 	};
264 
265 	if (!event->parent) {
266 		/*
267 		 * If this is a !child event, we must hold ctx::mutex to
268 		 * stabilize the the event->ctx relation. See
269 		 * perf_event_ctx_lock().
270 		 */
271 		lockdep_assert_held(&ctx->mutex);
272 	}
273 
274 	if (!task) {
275 		cpu_function_call(event->cpu, event_function, &efs);
276 		return;
277 	}
278 
279 	if (task == TASK_TOMBSTONE)
280 		return;
281 
282 again:
283 	if (!task_function_call(task, event_function, &efs))
284 		return;
285 
286 	raw_spin_lock_irq(&ctx->lock);
287 	/*
288 	 * Reload the task pointer, it might have been changed by
289 	 * a concurrent perf_event_context_sched_out().
290 	 */
291 	task = ctx->task;
292 	if (task == TASK_TOMBSTONE) {
293 		raw_spin_unlock_irq(&ctx->lock);
294 		return;
295 	}
296 	if (ctx->is_active) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		goto again;
299 	}
300 	func(event, NULL, ctx, data);
301 	raw_spin_unlock_irq(&ctx->lock);
302 }
303 
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 		       PERF_FLAG_FD_OUTPUT  |\
306 		       PERF_FLAG_PID_CGROUP |\
307 		       PERF_FLAG_FD_CLOEXEC)
308 
309 /*
310  * branch priv levels that need permission checks
311  */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 	(PERF_SAMPLE_BRANCH_KERNEL |\
314 	 PERF_SAMPLE_BRANCH_HV)
315 
316 enum event_type_t {
317 	EVENT_FLEXIBLE = 0x1,
318 	EVENT_PINNED = 0x2,
319 	EVENT_TIME = 0x4,
320 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321 };
322 
323 /*
324  * perf_sched_events : >0 events exist
325  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326  */
327 
328 static void perf_sched_delayed(struct work_struct *work);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331 static DEFINE_MUTEX(perf_sched_mutex);
332 static atomic_t perf_sched_count;
333 
334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336 
337 static atomic_t nr_mmap_events __read_mostly;
338 static atomic_t nr_comm_events __read_mostly;
339 static atomic_t nr_task_events __read_mostly;
340 static atomic_t nr_freq_events __read_mostly;
341 static atomic_t nr_switch_events __read_mostly;
342 
343 static LIST_HEAD(pmus);
344 static DEFINE_MUTEX(pmus_lock);
345 static struct srcu_struct pmus_srcu;
346 
347 /*
348  * perf event paranoia level:
349  *  -1 - not paranoid at all
350  *   0 - disallow raw tracepoint access for unpriv
351  *   1 - disallow cpu events for unpriv
352  *   2 - disallow kernel profiling for unpriv
353  */
354 int sysctl_perf_event_paranoid __read_mostly = 1;
355 
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 
359 /*
360  * max perf event sample rate
361  */
362 #define DEFAULT_MAX_SAMPLE_RATE		100000
363 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
365 
366 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
367 
368 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
370 
371 static int perf_sample_allowed_ns __read_mostly =
372 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373 
374 static void update_perf_cpu_limits(void)
375 {
376 	u64 tmp = perf_sample_period_ns;
377 
378 	tmp *= sysctl_perf_cpu_time_max_percent;
379 	do_div(tmp, 100);
380 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
381 }
382 
383 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
384 
385 int perf_proc_update_handler(struct ctl_table *table, int write,
386 		void __user *buffer, size_t *lenp,
387 		loff_t *ppos)
388 {
389 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
390 
391 	if (ret || !write)
392 		return ret;
393 
394 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
395 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
396 	update_perf_cpu_limits();
397 
398 	return 0;
399 }
400 
401 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
402 
403 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
404 				void __user *buffer, size_t *lenp,
405 				loff_t *ppos)
406 {
407 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
408 
409 	if (ret || !write)
410 		return ret;
411 
412 	update_perf_cpu_limits();
413 
414 	return 0;
415 }
416 
417 /*
418  * perf samples are done in some very critical code paths (NMIs).
419  * If they take too much CPU time, the system can lock up and not
420  * get any real work done.  This will drop the sample rate when
421  * we detect that events are taking too long.
422  */
423 #define NR_ACCUMULATED_SAMPLES 128
424 static DEFINE_PER_CPU(u64, running_sample_length);
425 
426 static void perf_duration_warn(struct irq_work *w)
427 {
428 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
429 	u64 avg_local_sample_len;
430 	u64 local_samples_len;
431 
432 	local_samples_len = __this_cpu_read(running_sample_length);
433 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
434 
435 	printk_ratelimited(KERN_WARNING
436 			"perf interrupt took too long (%lld > %lld), lowering "
437 			"kernel.perf_event_max_sample_rate to %d\n",
438 			avg_local_sample_len, allowed_ns >> 1,
439 			sysctl_perf_event_sample_rate);
440 }
441 
442 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
443 
444 void perf_sample_event_took(u64 sample_len_ns)
445 {
446 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
447 	u64 avg_local_sample_len;
448 	u64 local_samples_len;
449 
450 	if (allowed_ns == 0)
451 		return;
452 
453 	/* decay the counter by 1 average sample */
454 	local_samples_len = __this_cpu_read(running_sample_length);
455 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
456 	local_samples_len += sample_len_ns;
457 	__this_cpu_write(running_sample_length, local_samples_len);
458 
459 	/*
460 	 * note: this will be biased artifically low until we have
461 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
462 	 * from having to maintain a count.
463 	 */
464 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
465 
466 	if (avg_local_sample_len <= allowed_ns)
467 		return;
468 
469 	if (max_samples_per_tick <= 1)
470 		return;
471 
472 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
473 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
474 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
475 
476 	update_perf_cpu_limits();
477 
478 	if (!irq_work_queue(&perf_duration_work)) {
479 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
480 			     "kernel.perf_event_max_sample_rate to %d\n",
481 			     avg_local_sample_len, allowed_ns >> 1,
482 			     sysctl_perf_event_sample_rate);
483 	}
484 }
485 
486 static atomic64_t perf_event_id;
487 
488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
489 			      enum event_type_t event_type);
490 
491 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
492 			     enum event_type_t event_type,
493 			     struct task_struct *task);
494 
495 static void update_context_time(struct perf_event_context *ctx);
496 static u64 perf_event_time(struct perf_event *event);
497 
498 void __weak perf_event_print_debug(void)	{ }
499 
500 extern __weak const char *perf_pmu_name(void)
501 {
502 	return "pmu";
503 }
504 
505 static inline u64 perf_clock(void)
506 {
507 	return local_clock();
508 }
509 
510 static inline u64 perf_event_clock(struct perf_event *event)
511 {
512 	return event->clock();
513 }
514 
515 #ifdef CONFIG_CGROUP_PERF
516 
517 static inline bool
518 perf_cgroup_match(struct perf_event *event)
519 {
520 	struct perf_event_context *ctx = event->ctx;
521 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
522 
523 	/* @event doesn't care about cgroup */
524 	if (!event->cgrp)
525 		return true;
526 
527 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
528 	if (!cpuctx->cgrp)
529 		return false;
530 
531 	/*
532 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
533 	 * also enabled for all its descendant cgroups.  If @cpuctx's
534 	 * cgroup is a descendant of @event's (the test covers identity
535 	 * case), it's a match.
536 	 */
537 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
538 				    event->cgrp->css.cgroup);
539 }
540 
541 static inline void perf_detach_cgroup(struct perf_event *event)
542 {
543 	css_put(&event->cgrp->css);
544 	event->cgrp = NULL;
545 }
546 
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 	return event->cgrp != NULL;
550 }
551 
552 static inline u64 perf_cgroup_event_time(struct perf_event *event)
553 {
554 	struct perf_cgroup_info *t;
555 
556 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
557 	return t->time;
558 }
559 
560 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
561 {
562 	struct perf_cgroup_info *info;
563 	u64 now;
564 
565 	now = perf_clock();
566 
567 	info = this_cpu_ptr(cgrp->info);
568 
569 	info->time += now - info->timestamp;
570 	info->timestamp = now;
571 }
572 
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
576 	if (cgrp_out)
577 		__update_cgrp_time(cgrp_out);
578 }
579 
580 static inline void update_cgrp_time_from_event(struct perf_event *event)
581 {
582 	struct perf_cgroup *cgrp;
583 
584 	/*
585 	 * ensure we access cgroup data only when needed and
586 	 * when we know the cgroup is pinned (css_get)
587 	 */
588 	if (!is_cgroup_event(event))
589 		return;
590 
591 	cgrp = perf_cgroup_from_task(current, event->ctx);
592 	/*
593 	 * Do not update time when cgroup is not active
594 	 */
595 	if (cgrp == event->cgrp)
596 		__update_cgrp_time(event->cgrp);
597 }
598 
599 static inline void
600 perf_cgroup_set_timestamp(struct task_struct *task,
601 			  struct perf_event_context *ctx)
602 {
603 	struct perf_cgroup *cgrp;
604 	struct perf_cgroup_info *info;
605 
606 	/*
607 	 * ctx->lock held by caller
608 	 * ensure we do not access cgroup data
609 	 * unless we have the cgroup pinned (css_get)
610 	 */
611 	if (!task || !ctx->nr_cgroups)
612 		return;
613 
614 	cgrp = perf_cgroup_from_task(task, ctx);
615 	info = this_cpu_ptr(cgrp->info);
616 	info->timestamp = ctx->timestamp;
617 }
618 
619 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
620 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
621 
622 /*
623  * reschedule events based on the cgroup constraint of task.
624  *
625  * mode SWOUT : schedule out everything
626  * mode SWIN : schedule in based on cgroup for next
627  */
628 static void perf_cgroup_switch(struct task_struct *task, int mode)
629 {
630 	struct perf_cpu_context *cpuctx;
631 	struct pmu *pmu;
632 	unsigned long flags;
633 
634 	/*
635 	 * disable interrupts to avoid geting nr_cgroup
636 	 * changes via __perf_event_disable(). Also
637 	 * avoids preemption.
638 	 */
639 	local_irq_save(flags);
640 
641 	/*
642 	 * we reschedule only in the presence of cgroup
643 	 * constrained events.
644 	 */
645 
646 	list_for_each_entry_rcu(pmu, &pmus, entry) {
647 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
648 		if (cpuctx->unique_pmu != pmu)
649 			continue; /* ensure we process each cpuctx once */
650 
651 		/*
652 		 * perf_cgroup_events says at least one
653 		 * context on this CPU has cgroup events.
654 		 *
655 		 * ctx->nr_cgroups reports the number of cgroup
656 		 * events for a context.
657 		 */
658 		if (cpuctx->ctx.nr_cgroups > 0) {
659 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
660 			perf_pmu_disable(cpuctx->ctx.pmu);
661 
662 			if (mode & PERF_CGROUP_SWOUT) {
663 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
664 				/*
665 				 * must not be done before ctxswout due
666 				 * to event_filter_match() in event_sched_out()
667 				 */
668 				cpuctx->cgrp = NULL;
669 			}
670 
671 			if (mode & PERF_CGROUP_SWIN) {
672 				WARN_ON_ONCE(cpuctx->cgrp);
673 				/*
674 				 * set cgrp before ctxsw in to allow
675 				 * event_filter_match() to not have to pass
676 				 * task around
677 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
678 				 * because cgorup events are only per-cpu
679 				 */
680 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
681 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
682 			}
683 			perf_pmu_enable(cpuctx->ctx.pmu);
684 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
685 		}
686 	}
687 
688 	local_irq_restore(flags);
689 }
690 
691 static inline void perf_cgroup_sched_out(struct task_struct *task,
692 					 struct task_struct *next)
693 {
694 	struct perf_cgroup *cgrp1;
695 	struct perf_cgroup *cgrp2 = NULL;
696 
697 	rcu_read_lock();
698 	/*
699 	 * we come here when we know perf_cgroup_events > 0
700 	 * we do not need to pass the ctx here because we know
701 	 * we are holding the rcu lock
702 	 */
703 	cgrp1 = perf_cgroup_from_task(task, NULL);
704 	cgrp2 = perf_cgroup_from_task(next, NULL);
705 
706 	/*
707 	 * only schedule out current cgroup events if we know
708 	 * that we are switching to a different cgroup. Otherwise,
709 	 * do no touch the cgroup events.
710 	 */
711 	if (cgrp1 != cgrp2)
712 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
713 
714 	rcu_read_unlock();
715 }
716 
717 static inline void perf_cgroup_sched_in(struct task_struct *prev,
718 					struct task_struct *task)
719 {
720 	struct perf_cgroup *cgrp1;
721 	struct perf_cgroup *cgrp2 = NULL;
722 
723 	rcu_read_lock();
724 	/*
725 	 * we come here when we know perf_cgroup_events > 0
726 	 * we do not need to pass the ctx here because we know
727 	 * we are holding the rcu lock
728 	 */
729 	cgrp1 = perf_cgroup_from_task(task, NULL);
730 	cgrp2 = perf_cgroup_from_task(prev, NULL);
731 
732 	/*
733 	 * only need to schedule in cgroup events if we are changing
734 	 * cgroup during ctxsw. Cgroup events were not scheduled
735 	 * out of ctxsw out if that was not the case.
736 	 */
737 	if (cgrp1 != cgrp2)
738 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
739 
740 	rcu_read_unlock();
741 }
742 
743 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
744 				      struct perf_event_attr *attr,
745 				      struct perf_event *group_leader)
746 {
747 	struct perf_cgroup *cgrp;
748 	struct cgroup_subsys_state *css;
749 	struct fd f = fdget(fd);
750 	int ret = 0;
751 
752 	if (!f.file)
753 		return -EBADF;
754 
755 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
756 					 &perf_event_cgrp_subsys);
757 	if (IS_ERR(css)) {
758 		ret = PTR_ERR(css);
759 		goto out;
760 	}
761 
762 	cgrp = container_of(css, struct perf_cgroup, css);
763 	event->cgrp = cgrp;
764 
765 	/*
766 	 * all events in a group must monitor
767 	 * the same cgroup because a task belongs
768 	 * to only one perf cgroup at a time
769 	 */
770 	if (group_leader && group_leader->cgrp != cgrp) {
771 		perf_detach_cgroup(event);
772 		ret = -EINVAL;
773 	}
774 out:
775 	fdput(f);
776 	return ret;
777 }
778 
779 static inline void
780 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
781 {
782 	struct perf_cgroup_info *t;
783 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
784 	event->shadow_ctx_time = now - t->timestamp;
785 }
786 
787 static inline void
788 perf_cgroup_defer_enabled(struct perf_event *event)
789 {
790 	/*
791 	 * when the current task's perf cgroup does not match
792 	 * the event's, we need to remember to call the
793 	 * perf_mark_enable() function the first time a task with
794 	 * a matching perf cgroup is scheduled in.
795 	 */
796 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
797 		event->cgrp_defer_enabled = 1;
798 }
799 
800 static inline void
801 perf_cgroup_mark_enabled(struct perf_event *event,
802 			 struct perf_event_context *ctx)
803 {
804 	struct perf_event *sub;
805 	u64 tstamp = perf_event_time(event);
806 
807 	if (!event->cgrp_defer_enabled)
808 		return;
809 
810 	event->cgrp_defer_enabled = 0;
811 
812 	event->tstamp_enabled = tstamp - event->total_time_enabled;
813 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
814 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
815 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
816 			sub->cgrp_defer_enabled = 0;
817 		}
818 	}
819 }
820 #else /* !CONFIG_CGROUP_PERF */
821 
822 static inline bool
823 perf_cgroup_match(struct perf_event *event)
824 {
825 	return true;
826 }
827 
828 static inline void perf_detach_cgroup(struct perf_event *event)
829 {}
830 
831 static inline int is_cgroup_event(struct perf_event *event)
832 {
833 	return 0;
834 }
835 
836 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
837 {
838 	return 0;
839 }
840 
841 static inline void update_cgrp_time_from_event(struct perf_event *event)
842 {
843 }
844 
845 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
846 {
847 }
848 
849 static inline void perf_cgroup_sched_out(struct task_struct *task,
850 					 struct task_struct *next)
851 {
852 }
853 
854 static inline void perf_cgroup_sched_in(struct task_struct *prev,
855 					struct task_struct *task)
856 {
857 }
858 
859 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
860 				      struct perf_event_attr *attr,
861 				      struct perf_event *group_leader)
862 {
863 	return -EINVAL;
864 }
865 
866 static inline void
867 perf_cgroup_set_timestamp(struct task_struct *task,
868 			  struct perf_event_context *ctx)
869 {
870 }
871 
872 void
873 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
874 {
875 }
876 
877 static inline void
878 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
879 {
880 }
881 
882 static inline u64 perf_cgroup_event_time(struct perf_event *event)
883 {
884 	return 0;
885 }
886 
887 static inline void
888 perf_cgroup_defer_enabled(struct perf_event *event)
889 {
890 }
891 
892 static inline void
893 perf_cgroup_mark_enabled(struct perf_event *event,
894 			 struct perf_event_context *ctx)
895 {
896 }
897 #endif
898 
899 /*
900  * set default to be dependent on timer tick just
901  * like original code
902  */
903 #define PERF_CPU_HRTIMER (1000 / HZ)
904 /*
905  * function must be called with interrupts disbled
906  */
907 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
908 {
909 	struct perf_cpu_context *cpuctx;
910 	int rotations = 0;
911 
912 	WARN_ON(!irqs_disabled());
913 
914 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
915 	rotations = perf_rotate_context(cpuctx);
916 
917 	raw_spin_lock(&cpuctx->hrtimer_lock);
918 	if (rotations)
919 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
920 	else
921 		cpuctx->hrtimer_active = 0;
922 	raw_spin_unlock(&cpuctx->hrtimer_lock);
923 
924 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
925 }
926 
927 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
928 {
929 	struct hrtimer *timer = &cpuctx->hrtimer;
930 	struct pmu *pmu = cpuctx->ctx.pmu;
931 	u64 interval;
932 
933 	/* no multiplexing needed for SW PMU */
934 	if (pmu->task_ctx_nr == perf_sw_context)
935 		return;
936 
937 	/*
938 	 * check default is sane, if not set then force to
939 	 * default interval (1/tick)
940 	 */
941 	interval = pmu->hrtimer_interval_ms;
942 	if (interval < 1)
943 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
944 
945 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
946 
947 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
948 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
949 	timer->function = perf_mux_hrtimer_handler;
950 }
951 
952 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
953 {
954 	struct hrtimer *timer = &cpuctx->hrtimer;
955 	struct pmu *pmu = cpuctx->ctx.pmu;
956 	unsigned long flags;
957 
958 	/* not for SW PMU */
959 	if (pmu->task_ctx_nr == perf_sw_context)
960 		return 0;
961 
962 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
963 	if (!cpuctx->hrtimer_active) {
964 		cpuctx->hrtimer_active = 1;
965 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
966 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
967 	}
968 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
969 
970 	return 0;
971 }
972 
973 void perf_pmu_disable(struct pmu *pmu)
974 {
975 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 	if (!(*count)++)
977 		pmu->pmu_disable(pmu);
978 }
979 
980 void perf_pmu_enable(struct pmu *pmu)
981 {
982 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
983 	if (!--(*count))
984 		pmu->pmu_enable(pmu);
985 }
986 
987 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
988 
989 /*
990  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
991  * perf_event_task_tick() are fully serialized because they're strictly cpu
992  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
993  * disabled, while perf_event_task_tick is called from IRQ context.
994  */
995 static void perf_event_ctx_activate(struct perf_event_context *ctx)
996 {
997 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
998 
999 	WARN_ON(!irqs_disabled());
1000 
1001 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1002 
1003 	list_add(&ctx->active_ctx_list, head);
1004 }
1005 
1006 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1007 {
1008 	WARN_ON(!irqs_disabled());
1009 
1010 	WARN_ON(list_empty(&ctx->active_ctx_list));
1011 
1012 	list_del_init(&ctx->active_ctx_list);
1013 }
1014 
1015 static void get_ctx(struct perf_event_context *ctx)
1016 {
1017 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1018 }
1019 
1020 static void free_ctx(struct rcu_head *head)
1021 {
1022 	struct perf_event_context *ctx;
1023 
1024 	ctx = container_of(head, struct perf_event_context, rcu_head);
1025 	kfree(ctx->task_ctx_data);
1026 	kfree(ctx);
1027 }
1028 
1029 static void put_ctx(struct perf_event_context *ctx)
1030 {
1031 	if (atomic_dec_and_test(&ctx->refcount)) {
1032 		if (ctx->parent_ctx)
1033 			put_ctx(ctx->parent_ctx);
1034 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1035 			put_task_struct(ctx->task);
1036 		call_rcu(&ctx->rcu_head, free_ctx);
1037 	}
1038 }
1039 
1040 /*
1041  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1042  * perf_pmu_migrate_context() we need some magic.
1043  *
1044  * Those places that change perf_event::ctx will hold both
1045  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1046  *
1047  * Lock ordering is by mutex address. There are two other sites where
1048  * perf_event_context::mutex nests and those are:
1049  *
1050  *  - perf_event_exit_task_context()	[ child , 0 ]
1051  *      perf_event_exit_event()
1052  *        put_event()			[ parent, 1 ]
1053  *
1054  *  - perf_event_init_context()		[ parent, 0 ]
1055  *      inherit_task_group()
1056  *        inherit_group()
1057  *          inherit_event()
1058  *            perf_event_alloc()
1059  *              perf_init_event()
1060  *                perf_try_init_event()	[ child , 1 ]
1061  *
1062  * While it appears there is an obvious deadlock here -- the parent and child
1063  * nesting levels are inverted between the two. This is in fact safe because
1064  * life-time rules separate them. That is an exiting task cannot fork, and a
1065  * spawning task cannot (yet) exit.
1066  *
1067  * But remember that that these are parent<->child context relations, and
1068  * migration does not affect children, therefore these two orderings should not
1069  * interact.
1070  *
1071  * The change in perf_event::ctx does not affect children (as claimed above)
1072  * because the sys_perf_event_open() case will install a new event and break
1073  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1074  * concerned with cpuctx and that doesn't have children.
1075  *
1076  * The places that change perf_event::ctx will issue:
1077  *
1078  *   perf_remove_from_context();
1079  *   synchronize_rcu();
1080  *   perf_install_in_context();
1081  *
1082  * to affect the change. The remove_from_context() + synchronize_rcu() should
1083  * quiesce the event, after which we can install it in the new location. This
1084  * means that only external vectors (perf_fops, prctl) can perturb the event
1085  * while in transit. Therefore all such accessors should also acquire
1086  * perf_event_context::mutex to serialize against this.
1087  *
1088  * However; because event->ctx can change while we're waiting to acquire
1089  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1090  * function.
1091  *
1092  * Lock order:
1093  *	task_struct::perf_event_mutex
1094  *	  perf_event_context::mutex
1095  *	    perf_event::child_mutex;
1096  *	      perf_event_context::lock
1097  *	    perf_event::mmap_mutex
1098  *	    mmap_sem
1099  */
1100 static struct perf_event_context *
1101 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1102 {
1103 	struct perf_event_context *ctx;
1104 
1105 again:
1106 	rcu_read_lock();
1107 	ctx = ACCESS_ONCE(event->ctx);
1108 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1109 		rcu_read_unlock();
1110 		goto again;
1111 	}
1112 	rcu_read_unlock();
1113 
1114 	mutex_lock_nested(&ctx->mutex, nesting);
1115 	if (event->ctx != ctx) {
1116 		mutex_unlock(&ctx->mutex);
1117 		put_ctx(ctx);
1118 		goto again;
1119 	}
1120 
1121 	return ctx;
1122 }
1123 
1124 static inline struct perf_event_context *
1125 perf_event_ctx_lock(struct perf_event *event)
1126 {
1127 	return perf_event_ctx_lock_nested(event, 0);
1128 }
1129 
1130 static void perf_event_ctx_unlock(struct perf_event *event,
1131 				  struct perf_event_context *ctx)
1132 {
1133 	mutex_unlock(&ctx->mutex);
1134 	put_ctx(ctx);
1135 }
1136 
1137 /*
1138  * This must be done under the ctx->lock, such as to serialize against
1139  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1140  * calling scheduler related locks and ctx->lock nests inside those.
1141  */
1142 static __must_check struct perf_event_context *
1143 unclone_ctx(struct perf_event_context *ctx)
1144 {
1145 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1146 
1147 	lockdep_assert_held(&ctx->lock);
1148 
1149 	if (parent_ctx)
1150 		ctx->parent_ctx = NULL;
1151 	ctx->generation++;
1152 
1153 	return parent_ctx;
1154 }
1155 
1156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1157 {
1158 	/*
1159 	 * only top level events have the pid namespace they were created in
1160 	 */
1161 	if (event->parent)
1162 		event = event->parent;
1163 
1164 	return task_tgid_nr_ns(p, event->ns);
1165 }
1166 
1167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1168 {
1169 	/*
1170 	 * only top level events have the pid namespace they were created in
1171 	 */
1172 	if (event->parent)
1173 		event = event->parent;
1174 
1175 	return task_pid_nr_ns(p, event->ns);
1176 }
1177 
1178 /*
1179  * If we inherit events we want to return the parent event id
1180  * to userspace.
1181  */
1182 static u64 primary_event_id(struct perf_event *event)
1183 {
1184 	u64 id = event->id;
1185 
1186 	if (event->parent)
1187 		id = event->parent->id;
1188 
1189 	return id;
1190 }
1191 
1192 /*
1193  * Get the perf_event_context for a task and lock it.
1194  *
1195  * This has to cope with with the fact that until it is locked,
1196  * the context could get moved to another task.
1197  */
1198 static struct perf_event_context *
1199 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1200 {
1201 	struct perf_event_context *ctx;
1202 
1203 retry:
1204 	/*
1205 	 * One of the few rules of preemptible RCU is that one cannot do
1206 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1207 	 * part of the read side critical section was irqs-enabled -- see
1208 	 * rcu_read_unlock_special().
1209 	 *
1210 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1211 	 * side critical section has interrupts disabled.
1212 	 */
1213 	local_irq_save(*flags);
1214 	rcu_read_lock();
1215 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1216 	if (ctx) {
1217 		/*
1218 		 * If this context is a clone of another, it might
1219 		 * get swapped for another underneath us by
1220 		 * perf_event_task_sched_out, though the
1221 		 * rcu_read_lock() protects us from any context
1222 		 * getting freed.  Lock the context and check if it
1223 		 * got swapped before we could get the lock, and retry
1224 		 * if so.  If we locked the right context, then it
1225 		 * can't get swapped on us any more.
1226 		 */
1227 		raw_spin_lock(&ctx->lock);
1228 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1229 			raw_spin_unlock(&ctx->lock);
1230 			rcu_read_unlock();
1231 			local_irq_restore(*flags);
1232 			goto retry;
1233 		}
1234 
1235 		if (ctx->task == TASK_TOMBSTONE ||
1236 		    !atomic_inc_not_zero(&ctx->refcount)) {
1237 			raw_spin_unlock(&ctx->lock);
1238 			ctx = NULL;
1239 		} else {
1240 			WARN_ON_ONCE(ctx->task != task);
1241 		}
1242 	}
1243 	rcu_read_unlock();
1244 	if (!ctx)
1245 		local_irq_restore(*flags);
1246 	return ctx;
1247 }
1248 
1249 /*
1250  * Get the context for a task and increment its pin_count so it
1251  * can't get swapped to another task.  This also increments its
1252  * reference count so that the context can't get freed.
1253  */
1254 static struct perf_event_context *
1255 perf_pin_task_context(struct task_struct *task, int ctxn)
1256 {
1257 	struct perf_event_context *ctx;
1258 	unsigned long flags;
1259 
1260 	ctx = perf_lock_task_context(task, ctxn, &flags);
1261 	if (ctx) {
1262 		++ctx->pin_count;
1263 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1264 	}
1265 	return ctx;
1266 }
1267 
1268 static void perf_unpin_context(struct perf_event_context *ctx)
1269 {
1270 	unsigned long flags;
1271 
1272 	raw_spin_lock_irqsave(&ctx->lock, flags);
1273 	--ctx->pin_count;
1274 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1275 }
1276 
1277 /*
1278  * Update the record of the current time in a context.
1279  */
1280 static void update_context_time(struct perf_event_context *ctx)
1281 {
1282 	u64 now = perf_clock();
1283 
1284 	ctx->time += now - ctx->timestamp;
1285 	ctx->timestamp = now;
1286 }
1287 
1288 static u64 perf_event_time(struct perf_event *event)
1289 {
1290 	struct perf_event_context *ctx = event->ctx;
1291 
1292 	if (is_cgroup_event(event))
1293 		return perf_cgroup_event_time(event);
1294 
1295 	return ctx ? ctx->time : 0;
1296 }
1297 
1298 /*
1299  * Update the total_time_enabled and total_time_running fields for a event.
1300  */
1301 static void update_event_times(struct perf_event *event)
1302 {
1303 	struct perf_event_context *ctx = event->ctx;
1304 	u64 run_end;
1305 
1306 	lockdep_assert_held(&ctx->lock);
1307 
1308 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1309 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1310 		return;
1311 
1312 	/*
1313 	 * in cgroup mode, time_enabled represents
1314 	 * the time the event was enabled AND active
1315 	 * tasks were in the monitored cgroup. This is
1316 	 * independent of the activity of the context as
1317 	 * there may be a mix of cgroup and non-cgroup events.
1318 	 *
1319 	 * That is why we treat cgroup events differently
1320 	 * here.
1321 	 */
1322 	if (is_cgroup_event(event))
1323 		run_end = perf_cgroup_event_time(event);
1324 	else if (ctx->is_active)
1325 		run_end = ctx->time;
1326 	else
1327 		run_end = event->tstamp_stopped;
1328 
1329 	event->total_time_enabled = run_end - event->tstamp_enabled;
1330 
1331 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1332 		run_end = event->tstamp_stopped;
1333 	else
1334 		run_end = perf_event_time(event);
1335 
1336 	event->total_time_running = run_end - event->tstamp_running;
1337 
1338 }
1339 
1340 /*
1341  * Update total_time_enabled and total_time_running for all events in a group.
1342  */
1343 static void update_group_times(struct perf_event *leader)
1344 {
1345 	struct perf_event *event;
1346 
1347 	update_event_times(leader);
1348 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1349 		update_event_times(event);
1350 }
1351 
1352 static struct list_head *
1353 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1354 {
1355 	if (event->attr.pinned)
1356 		return &ctx->pinned_groups;
1357 	else
1358 		return &ctx->flexible_groups;
1359 }
1360 
1361 /*
1362  * Add a event from the lists for its context.
1363  * Must be called with ctx->mutex and ctx->lock held.
1364  */
1365 static void
1366 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1367 {
1368 	lockdep_assert_held(&ctx->lock);
1369 
1370 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1371 	event->attach_state |= PERF_ATTACH_CONTEXT;
1372 
1373 	/*
1374 	 * If we're a stand alone event or group leader, we go to the context
1375 	 * list, group events are kept attached to the group so that
1376 	 * perf_group_detach can, at all times, locate all siblings.
1377 	 */
1378 	if (event->group_leader == event) {
1379 		struct list_head *list;
1380 
1381 		if (is_software_event(event))
1382 			event->group_flags |= PERF_GROUP_SOFTWARE;
1383 
1384 		list = ctx_group_list(event, ctx);
1385 		list_add_tail(&event->group_entry, list);
1386 	}
1387 
1388 	if (is_cgroup_event(event))
1389 		ctx->nr_cgroups++;
1390 
1391 	list_add_rcu(&event->event_entry, &ctx->event_list);
1392 	ctx->nr_events++;
1393 	if (event->attr.inherit_stat)
1394 		ctx->nr_stat++;
1395 
1396 	ctx->generation++;
1397 }
1398 
1399 /*
1400  * Initialize event state based on the perf_event_attr::disabled.
1401  */
1402 static inline void perf_event__state_init(struct perf_event *event)
1403 {
1404 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1405 					      PERF_EVENT_STATE_INACTIVE;
1406 }
1407 
1408 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1409 {
1410 	int entry = sizeof(u64); /* value */
1411 	int size = 0;
1412 	int nr = 1;
1413 
1414 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1415 		size += sizeof(u64);
1416 
1417 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1418 		size += sizeof(u64);
1419 
1420 	if (event->attr.read_format & PERF_FORMAT_ID)
1421 		entry += sizeof(u64);
1422 
1423 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1424 		nr += nr_siblings;
1425 		size += sizeof(u64);
1426 	}
1427 
1428 	size += entry * nr;
1429 	event->read_size = size;
1430 }
1431 
1432 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1433 {
1434 	struct perf_sample_data *data;
1435 	u16 size = 0;
1436 
1437 	if (sample_type & PERF_SAMPLE_IP)
1438 		size += sizeof(data->ip);
1439 
1440 	if (sample_type & PERF_SAMPLE_ADDR)
1441 		size += sizeof(data->addr);
1442 
1443 	if (sample_type & PERF_SAMPLE_PERIOD)
1444 		size += sizeof(data->period);
1445 
1446 	if (sample_type & PERF_SAMPLE_WEIGHT)
1447 		size += sizeof(data->weight);
1448 
1449 	if (sample_type & PERF_SAMPLE_READ)
1450 		size += event->read_size;
1451 
1452 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1453 		size += sizeof(data->data_src.val);
1454 
1455 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1456 		size += sizeof(data->txn);
1457 
1458 	event->header_size = size;
1459 }
1460 
1461 /*
1462  * Called at perf_event creation and when events are attached/detached from a
1463  * group.
1464  */
1465 static void perf_event__header_size(struct perf_event *event)
1466 {
1467 	__perf_event_read_size(event,
1468 			       event->group_leader->nr_siblings);
1469 	__perf_event_header_size(event, event->attr.sample_type);
1470 }
1471 
1472 static void perf_event__id_header_size(struct perf_event *event)
1473 {
1474 	struct perf_sample_data *data;
1475 	u64 sample_type = event->attr.sample_type;
1476 	u16 size = 0;
1477 
1478 	if (sample_type & PERF_SAMPLE_TID)
1479 		size += sizeof(data->tid_entry);
1480 
1481 	if (sample_type & PERF_SAMPLE_TIME)
1482 		size += sizeof(data->time);
1483 
1484 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1485 		size += sizeof(data->id);
1486 
1487 	if (sample_type & PERF_SAMPLE_ID)
1488 		size += sizeof(data->id);
1489 
1490 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1491 		size += sizeof(data->stream_id);
1492 
1493 	if (sample_type & PERF_SAMPLE_CPU)
1494 		size += sizeof(data->cpu_entry);
1495 
1496 	event->id_header_size = size;
1497 }
1498 
1499 static bool perf_event_validate_size(struct perf_event *event)
1500 {
1501 	/*
1502 	 * The values computed here will be over-written when we actually
1503 	 * attach the event.
1504 	 */
1505 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1506 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1507 	perf_event__id_header_size(event);
1508 
1509 	/*
1510 	 * Sum the lot; should not exceed the 64k limit we have on records.
1511 	 * Conservative limit to allow for callchains and other variable fields.
1512 	 */
1513 	if (event->read_size + event->header_size +
1514 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1515 		return false;
1516 
1517 	return true;
1518 }
1519 
1520 static void perf_group_attach(struct perf_event *event)
1521 {
1522 	struct perf_event *group_leader = event->group_leader, *pos;
1523 
1524 	/*
1525 	 * We can have double attach due to group movement in perf_event_open.
1526 	 */
1527 	if (event->attach_state & PERF_ATTACH_GROUP)
1528 		return;
1529 
1530 	event->attach_state |= PERF_ATTACH_GROUP;
1531 
1532 	if (group_leader == event)
1533 		return;
1534 
1535 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1536 
1537 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1538 			!is_software_event(event))
1539 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1540 
1541 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1542 	group_leader->nr_siblings++;
1543 
1544 	perf_event__header_size(group_leader);
1545 
1546 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1547 		perf_event__header_size(pos);
1548 }
1549 
1550 /*
1551  * Remove a event from the lists for its context.
1552  * Must be called with ctx->mutex and ctx->lock held.
1553  */
1554 static void
1555 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1556 {
1557 	struct perf_cpu_context *cpuctx;
1558 
1559 	WARN_ON_ONCE(event->ctx != ctx);
1560 	lockdep_assert_held(&ctx->lock);
1561 
1562 	/*
1563 	 * We can have double detach due to exit/hot-unplug + close.
1564 	 */
1565 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1566 		return;
1567 
1568 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1569 
1570 	if (is_cgroup_event(event)) {
1571 		ctx->nr_cgroups--;
1572 		/*
1573 		 * Because cgroup events are always per-cpu events, this will
1574 		 * always be called from the right CPU.
1575 		 */
1576 		cpuctx = __get_cpu_context(ctx);
1577 		/*
1578 		 * If there are no more cgroup events then clear cgrp to avoid
1579 		 * stale pointer in update_cgrp_time_from_cpuctx().
1580 		 */
1581 		if (!ctx->nr_cgroups)
1582 			cpuctx->cgrp = NULL;
1583 	}
1584 
1585 	ctx->nr_events--;
1586 	if (event->attr.inherit_stat)
1587 		ctx->nr_stat--;
1588 
1589 	list_del_rcu(&event->event_entry);
1590 
1591 	if (event->group_leader == event)
1592 		list_del_init(&event->group_entry);
1593 
1594 	update_group_times(event);
1595 
1596 	/*
1597 	 * If event was in error state, then keep it
1598 	 * that way, otherwise bogus counts will be
1599 	 * returned on read(). The only way to get out
1600 	 * of error state is by explicit re-enabling
1601 	 * of the event
1602 	 */
1603 	if (event->state > PERF_EVENT_STATE_OFF)
1604 		event->state = PERF_EVENT_STATE_OFF;
1605 
1606 	ctx->generation++;
1607 }
1608 
1609 static void perf_group_detach(struct perf_event *event)
1610 {
1611 	struct perf_event *sibling, *tmp;
1612 	struct list_head *list = NULL;
1613 
1614 	/*
1615 	 * We can have double detach due to exit/hot-unplug + close.
1616 	 */
1617 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1618 		return;
1619 
1620 	event->attach_state &= ~PERF_ATTACH_GROUP;
1621 
1622 	/*
1623 	 * If this is a sibling, remove it from its group.
1624 	 */
1625 	if (event->group_leader != event) {
1626 		list_del_init(&event->group_entry);
1627 		event->group_leader->nr_siblings--;
1628 		goto out;
1629 	}
1630 
1631 	if (!list_empty(&event->group_entry))
1632 		list = &event->group_entry;
1633 
1634 	/*
1635 	 * If this was a group event with sibling events then
1636 	 * upgrade the siblings to singleton events by adding them
1637 	 * to whatever list we are on.
1638 	 */
1639 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1640 		if (list)
1641 			list_move_tail(&sibling->group_entry, list);
1642 		sibling->group_leader = sibling;
1643 
1644 		/* Inherit group flags from the previous leader */
1645 		sibling->group_flags = event->group_flags;
1646 
1647 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1648 	}
1649 
1650 out:
1651 	perf_event__header_size(event->group_leader);
1652 
1653 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1654 		perf_event__header_size(tmp);
1655 }
1656 
1657 static bool is_orphaned_event(struct perf_event *event)
1658 {
1659 	return event->state == PERF_EVENT_STATE_DEAD;
1660 }
1661 
1662 static inline int pmu_filter_match(struct perf_event *event)
1663 {
1664 	struct pmu *pmu = event->pmu;
1665 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1666 }
1667 
1668 static inline int
1669 event_filter_match(struct perf_event *event)
1670 {
1671 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1672 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1673 }
1674 
1675 static void
1676 event_sched_out(struct perf_event *event,
1677 		  struct perf_cpu_context *cpuctx,
1678 		  struct perf_event_context *ctx)
1679 {
1680 	u64 tstamp = perf_event_time(event);
1681 	u64 delta;
1682 
1683 	WARN_ON_ONCE(event->ctx != ctx);
1684 	lockdep_assert_held(&ctx->lock);
1685 
1686 	/*
1687 	 * An event which could not be activated because of
1688 	 * filter mismatch still needs to have its timings
1689 	 * maintained, otherwise bogus information is return
1690 	 * via read() for time_enabled, time_running:
1691 	 */
1692 	if (event->state == PERF_EVENT_STATE_INACTIVE
1693 	    && !event_filter_match(event)) {
1694 		delta = tstamp - event->tstamp_stopped;
1695 		event->tstamp_running += delta;
1696 		event->tstamp_stopped = tstamp;
1697 	}
1698 
1699 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1700 		return;
1701 
1702 	perf_pmu_disable(event->pmu);
1703 
1704 	event->tstamp_stopped = tstamp;
1705 	event->pmu->del(event, 0);
1706 	event->oncpu = -1;
1707 	event->state = PERF_EVENT_STATE_INACTIVE;
1708 	if (event->pending_disable) {
1709 		event->pending_disable = 0;
1710 		event->state = PERF_EVENT_STATE_OFF;
1711 	}
1712 
1713 	if (!is_software_event(event))
1714 		cpuctx->active_oncpu--;
1715 	if (!--ctx->nr_active)
1716 		perf_event_ctx_deactivate(ctx);
1717 	if (event->attr.freq && event->attr.sample_freq)
1718 		ctx->nr_freq--;
1719 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1720 		cpuctx->exclusive = 0;
1721 
1722 	perf_pmu_enable(event->pmu);
1723 }
1724 
1725 static void
1726 group_sched_out(struct perf_event *group_event,
1727 		struct perf_cpu_context *cpuctx,
1728 		struct perf_event_context *ctx)
1729 {
1730 	struct perf_event *event;
1731 	int state = group_event->state;
1732 
1733 	event_sched_out(group_event, cpuctx, ctx);
1734 
1735 	/*
1736 	 * Schedule out siblings (if any):
1737 	 */
1738 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1739 		event_sched_out(event, cpuctx, ctx);
1740 
1741 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1742 		cpuctx->exclusive = 0;
1743 }
1744 
1745 #define DETACH_GROUP	0x01UL
1746 
1747 /*
1748  * Cross CPU call to remove a performance event
1749  *
1750  * We disable the event on the hardware level first. After that we
1751  * remove it from the context list.
1752  */
1753 static void
1754 __perf_remove_from_context(struct perf_event *event,
1755 			   struct perf_cpu_context *cpuctx,
1756 			   struct perf_event_context *ctx,
1757 			   void *info)
1758 {
1759 	unsigned long flags = (unsigned long)info;
1760 
1761 	event_sched_out(event, cpuctx, ctx);
1762 	if (flags & DETACH_GROUP)
1763 		perf_group_detach(event);
1764 	list_del_event(event, ctx);
1765 
1766 	if (!ctx->nr_events && ctx->is_active) {
1767 		ctx->is_active = 0;
1768 		if (ctx->task) {
1769 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1770 			cpuctx->task_ctx = NULL;
1771 		}
1772 	}
1773 }
1774 
1775 /*
1776  * Remove the event from a task's (or a CPU's) list of events.
1777  *
1778  * If event->ctx is a cloned context, callers must make sure that
1779  * every task struct that event->ctx->task could possibly point to
1780  * remains valid.  This is OK when called from perf_release since
1781  * that only calls us on the top-level context, which can't be a clone.
1782  * When called from perf_event_exit_task, it's OK because the
1783  * context has been detached from its task.
1784  */
1785 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1786 {
1787 	lockdep_assert_held(&event->ctx->mutex);
1788 
1789 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1790 }
1791 
1792 /*
1793  * Cross CPU call to disable a performance event
1794  */
1795 static void __perf_event_disable(struct perf_event *event,
1796 				 struct perf_cpu_context *cpuctx,
1797 				 struct perf_event_context *ctx,
1798 				 void *info)
1799 {
1800 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1801 		return;
1802 
1803 	update_context_time(ctx);
1804 	update_cgrp_time_from_event(event);
1805 	update_group_times(event);
1806 	if (event == event->group_leader)
1807 		group_sched_out(event, cpuctx, ctx);
1808 	else
1809 		event_sched_out(event, cpuctx, ctx);
1810 	event->state = PERF_EVENT_STATE_OFF;
1811 }
1812 
1813 /*
1814  * Disable a event.
1815  *
1816  * If event->ctx is a cloned context, callers must make sure that
1817  * every task struct that event->ctx->task could possibly point to
1818  * remains valid.  This condition is satisifed when called through
1819  * perf_event_for_each_child or perf_event_for_each because they
1820  * hold the top-level event's child_mutex, so any descendant that
1821  * goes to exit will block in perf_event_exit_event().
1822  *
1823  * When called from perf_pending_event it's OK because event->ctx
1824  * is the current context on this CPU and preemption is disabled,
1825  * hence we can't get into perf_event_task_sched_out for this context.
1826  */
1827 static void _perf_event_disable(struct perf_event *event)
1828 {
1829 	struct perf_event_context *ctx = event->ctx;
1830 
1831 	raw_spin_lock_irq(&ctx->lock);
1832 	if (event->state <= PERF_EVENT_STATE_OFF) {
1833 		raw_spin_unlock_irq(&ctx->lock);
1834 		return;
1835 	}
1836 	raw_spin_unlock_irq(&ctx->lock);
1837 
1838 	event_function_call(event, __perf_event_disable, NULL);
1839 }
1840 
1841 void perf_event_disable_local(struct perf_event *event)
1842 {
1843 	event_function_local(event, __perf_event_disable, NULL);
1844 }
1845 
1846 /*
1847  * Strictly speaking kernel users cannot create groups and therefore this
1848  * interface does not need the perf_event_ctx_lock() magic.
1849  */
1850 void perf_event_disable(struct perf_event *event)
1851 {
1852 	struct perf_event_context *ctx;
1853 
1854 	ctx = perf_event_ctx_lock(event);
1855 	_perf_event_disable(event);
1856 	perf_event_ctx_unlock(event, ctx);
1857 }
1858 EXPORT_SYMBOL_GPL(perf_event_disable);
1859 
1860 static void perf_set_shadow_time(struct perf_event *event,
1861 				 struct perf_event_context *ctx,
1862 				 u64 tstamp)
1863 {
1864 	/*
1865 	 * use the correct time source for the time snapshot
1866 	 *
1867 	 * We could get by without this by leveraging the
1868 	 * fact that to get to this function, the caller
1869 	 * has most likely already called update_context_time()
1870 	 * and update_cgrp_time_xx() and thus both timestamp
1871 	 * are identical (or very close). Given that tstamp is,
1872 	 * already adjusted for cgroup, we could say that:
1873 	 *    tstamp - ctx->timestamp
1874 	 * is equivalent to
1875 	 *    tstamp - cgrp->timestamp.
1876 	 *
1877 	 * Then, in perf_output_read(), the calculation would
1878 	 * work with no changes because:
1879 	 * - event is guaranteed scheduled in
1880 	 * - no scheduled out in between
1881 	 * - thus the timestamp would be the same
1882 	 *
1883 	 * But this is a bit hairy.
1884 	 *
1885 	 * So instead, we have an explicit cgroup call to remain
1886 	 * within the time time source all along. We believe it
1887 	 * is cleaner and simpler to understand.
1888 	 */
1889 	if (is_cgroup_event(event))
1890 		perf_cgroup_set_shadow_time(event, tstamp);
1891 	else
1892 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1893 }
1894 
1895 #define MAX_INTERRUPTS (~0ULL)
1896 
1897 static void perf_log_throttle(struct perf_event *event, int enable);
1898 static void perf_log_itrace_start(struct perf_event *event);
1899 
1900 static int
1901 event_sched_in(struct perf_event *event,
1902 		 struct perf_cpu_context *cpuctx,
1903 		 struct perf_event_context *ctx)
1904 {
1905 	u64 tstamp = perf_event_time(event);
1906 	int ret = 0;
1907 
1908 	lockdep_assert_held(&ctx->lock);
1909 
1910 	if (event->state <= PERF_EVENT_STATE_OFF)
1911 		return 0;
1912 
1913 	event->state = PERF_EVENT_STATE_ACTIVE;
1914 	event->oncpu = smp_processor_id();
1915 
1916 	/*
1917 	 * Unthrottle events, since we scheduled we might have missed several
1918 	 * ticks already, also for a heavily scheduling task there is little
1919 	 * guarantee it'll get a tick in a timely manner.
1920 	 */
1921 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1922 		perf_log_throttle(event, 1);
1923 		event->hw.interrupts = 0;
1924 	}
1925 
1926 	/*
1927 	 * The new state must be visible before we turn it on in the hardware:
1928 	 */
1929 	smp_wmb();
1930 
1931 	perf_pmu_disable(event->pmu);
1932 
1933 	perf_set_shadow_time(event, ctx, tstamp);
1934 
1935 	perf_log_itrace_start(event);
1936 
1937 	if (event->pmu->add(event, PERF_EF_START)) {
1938 		event->state = PERF_EVENT_STATE_INACTIVE;
1939 		event->oncpu = -1;
1940 		ret = -EAGAIN;
1941 		goto out;
1942 	}
1943 
1944 	event->tstamp_running += tstamp - event->tstamp_stopped;
1945 
1946 	if (!is_software_event(event))
1947 		cpuctx->active_oncpu++;
1948 	if (!ctx->nr_active++)
1949 		perf_event_ctx_activate(ctx);
1950 	if (event->attr.freq && event->attr.sample_freq)
1951 		ctx->nr_freq++;
1952 
1953 	if (event->attr.exclusive)
1954 		cpuctx->exclusive = 1;
1955 
1956 out:
1957 	perf_pmu_enable(event->pmu);
1958 
1959 	return ret;
1960 }
1961 
1962 static int
1963 group_sched_in(struct perf_event *group_event,
1964 	       struct perf_cpu_context *cpuctx,
1965 	       struct perf_event_context *ctx)
1966 {
1967 	struct perf_event *event, *partial_group = NULL;
1968 	struct pmu *pmu = ctx->pmu;
1969 	u64 now = ctx->time;
1970 	bool simulate = false;
1971 
1972 	if (group_event->state == PERF_EVENT_STATE_OFF)
1973 		return 0;
1974 
1975 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1976 
1977 	if (event_sched_in(group_event, cpuctx, ctx)) {
1978 		pmu->cancel_txn(pmu);
1979 		perf_mux_hrtimer_restart(cpuctx);
1980 		return -EAGAIN;
1981 	}
1982 
1983 	/*
1984 	 * Schedule in siblings as one group (if any):
1985 	 */
1986 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1987 		if (event_sched_in(event, cpuctx, ctx)) {
1988 			partial_group = event;
1989 			goto group_error;
1990 		}
1991 	}
1992 
1993 	if (!pmu->commit_txn(pmu))
1994 		return 0;
1995 
1996 group_error:
1997 	/*
1998 	 * Groups can be scheduled in as one unit only, so undo any
1999 	 * partial group before returning:
2000 	 * The events up to the failed event are scheduled out normally,
2001 	 * tstamp_stopped will be updated.
2002 	 *
2003 	 * The failed events and the remaining siblings need to have
2004 	 * their timings updated as if they had gone thru event_sched_in()
2005 	 * and event_sched_out(). This is required to get consistent timings
2006 	 * across the group. This also takes care of the case where the group
2007 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2008 	 * the time the event was actually stopped, such that time delta
2009 	 * calculation in update_event_times() is correct.
2010 	 */
2011 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2012 		if (event == partial_group)
2013 			simulate = true;
2014 
2015 		if (simulate) {
2016 			event->tstamp_running += now - event->tstamp_stopped;
2017 			event->tstamp_stopped = now;
2018 		} else {
2019 			event_sched_out(event, cpuctx, ctx);
2020 		}
2021 	}
2022 	event_sched_out(group_event, cpuctx, ctx);
2023 
2024 	pmu->cancel_txn(pmu);
2025 
2026 	perf_mux_hrtimer_restart(cpuctx);
2027 
2028 	return -EAGAIN;
2029 }
2030 
2031 /*
2032  * Work out whether we can put this event group on the CPU now.
2033  */
2034 static int group_can_go_on(struct perf_event *event,
2035 			   struct perf_cpu_context *cpuctx,
2036 			   int can_add_hw)
2037 {
2038 	/*
2039 	 * Groups consisting entirely of software events can always go on.
2040 	 */
2041 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2042 		return 1;
2043 	/*
2044 	 * If an exclusive group is already on, no other hardware
2045 	 * events can go on.
2046 	 */
2047 	if (cpuctx->exclusive)
2048 		return 0;
2049 	/*
2050 	 * If this group is exclusive and there are already
2051 	 * events on the CPU, it can't go on.
2052 	 */
2053 	if (event->attr.exclusive && cpuctx->active_oncpu)
2054 		return 0;
2055 	/*
2056 	 * Otherwise, try to add it if all previous groups were able
2057 	 * to go on.
2058 	 */
2059 	return can_add_hw;
2060 }
2061 
2062 static void add_event_to_ctx(struct perf_event *event,
2063 			       struct perf_event_context *ctx)
2064 {
2065 	u64 tstamp = perf_event_time(event);
2066 
2067 	list_add_event(event, ctx);
2068 	perf_group_attach(event);
2069 	event->tstamp_enabled = tstamp;
2070 	event->tstamp_running = tstamp;
2071 	event->tstamp_stopped = tstamp;
2072 }
2073 
2074 static void ctx_sched_out(struct perf_event_context *ctx,
2075 			  struct perf_cpu_context *cpuctx,
2076 			  enum event_type_t event_type);
2077 static void
2078 ctx_sched_in(struct perf_event_context *ctx,
2079 	     struct perf_cpu_context *cpuctx,
2080 	     enum event_type_t event_type,
2081 	     struct task_struct *task);
2082 
2083 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2084 			       struct perf_event_context *ctx)
2085 {
2086 	if (!cpuctx->task_ctx)
2087 		return;
2088 
2089 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2090 		return;
2091 
2092 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2093 }
2094 
2095 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2096 				struct perf_event_context *ctx,
2097 				struct task_struct *task)
2098 {
2099 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2100 	if (ctx)
2101 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2102 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2103 	if (ctx)
2104 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2105 }
2106 
2107 static void ctx_resched(struct perf_cpu_context *cpuctx,
2108 			struct perf_event_context *task_ctx)
2109 {
2110 	perf_pmu_disable(cpuctx->ctx.pmu);
2111 	if (task_ctx)
2112 		task_ctx_sched_out(cpuctx, task_ctx);
2113 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2114 	perf_event_sched_in(cpuctx, task_ctx, current);
2115 	perf_pmu_enable(cpuctx->ctx.pmu);
2116 }
2117 
2118 /*
2119  * Cross CPU call to install and enable a performance event
2120  *
2121  * Very similar to remote_function() + event_function() but cannot assume that
2122  * things like ctx->is_active and cpuctx->task_ctx are set.
2123  */
2124 static int  __perf_install_in_context(void *info)
2125 {
2126 	struct perf_event *event = info;
2127 	struct perf_event_context *ctx = event->ctx;
2128 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2129 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2130 	bool activate = true;
2131 	int ret = 0;
2132 
2133 	raw_spin_lock(&cpuctx->ctx.lock);
2134 	if (ctx->task) {
2135 		raw_spin_lock(&ctx->lock);
2136 		task_ctx = ctx;
2137 
2138 		/* If we're on the wrong CPU, try again */
2139 		if (task_cpu(ctx->task) != smp_processor_id()) {
2140 			ret = -ESRCH;
2141 			goto unlock;
2142 		}
2143 
2144 		/*
2145 		 * If we're on the right CPU, see if the task we target is
2146 		 * current, if not we don't have to activate the ctx, a future
2147 		 * context switch will do that for us.
2148 		 */
2149 		if (ctx->task != current)
2150 			activate = false;
2151 		else
2152 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2153 
2154 	} else if (task_ctx) {
2155 		raw_spin_lock(&task_ctx->lock);
2156 	}
2157 
2158 	if (activate) {
2159 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2160 		add_event_to_ctx(event, ctx);
2161 		ctx_resched(cpuctx, task_ctx);
2162 	} else {
2163 		add_event_to_ctx(event, ctx);
2164 	}
2165 
2166 unlock:
2167 	perf_ctx_unlock(cpuctx, task_ctx);
2168 
2169 	return ret;
2170 }
2171 
2172 /*
2173  * Attach a performance event to a context.
2174  *
2175  * Very similar to event_function_call, see comment there.
2176  */
2177 static void
2178 perf_install_in_context(struct perf_event_context *ctx,
2179 			struct perf_event *event,
2180 			int cpu)
2181 {
2182 	struct task_struct *task = READ_ONCE(ctx->task);
2183 
2184 	lockdep_assert_held(&ctx->mutex);
2185 
2186 	event->ctx = ctx;
2187 	if (event->cpu != -1)
2188 		event->cpu = cpu;
2189 
2190 	if (!task) {
2191 		cpu_function_call(cpu, __perf_install_in_context, event);
2192 		return;
2193 	}
2194 
2195 	/*
2196 	 * Should not happen, we validate the ctx is still alive before calling.
2197 	 */
2198 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2199 		return;
2200 
2201 	/*
2202 	 * Installing events is tricky because we cannot rely on ctx->is_active
2203 	 * to be set in case this is the nr_events 0 -> 1 transition.
2204 	 */
2205 again:
2206 	/*
2207 	 * Cannot use task_function_call() because we need to run on the task's
2208 	 * CPU regardless of whether its current or not.
2209 	 */
2210 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2211 		return;
2212 
2213 	raw_spin_lock_irq(&ctx->lock);
2214 	task = ctx->task;
2215 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2216 		/*
2217 		 * Cannot happen because we already checked above (which also
2218 		 * cannot happen), and we hold ctx->mutex, which serializes us
2219 		 * against perf_event_exit_task_context().
2220 		 */
2221 		raw_spin_unlock_irq(&ctx->lock);
2222 		return;
2223 	}
2224 	raw_spin_unlock_irq(&ctx->lock);
2225 	/*
2226 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2227 	 * unconditionally.
2228 	 */
2229 	goto again;
2230 }
2231 
2232 /*
2233  * Put a event into inactive state and update time fields.
2234  * Enabling the leader of a group effectively enables all
2235  * the group members that aren't explicitly disabled, so we
2236  * have to update their ->tstamp_enabled also.
2237  * Note: this works for group members as well as group leaders
2238  * since the non-leader members' sibling_lists will be empty.
2239  */
2240 static void __perf_event_mark_enabled(struct perf_event *event)
2241 {
2242 	struct perf_event *sub;
2243 	u64 tstamp = perf_event_time(event);
2244 
2245 	event->state = PERF_EVENT_STATE_INACTIVE;
2246 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2247 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2248 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2249 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2250 	}
2251 }
2252 
2253 /*
2254  * Cross CPU call to enable a performance event
2255  */
2256 static void __perf_event_enable(struct perf_event *event,
2257 				struct perf_cpu_context *cpuctx,
2258 				struct perf_event_context *ctx,
2259 				void *info)
2260 {
2261 	struct perf_event *leader = event->group_leader;
2262 	struct perf_event_context *task_ctx;
2263 
2264 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2265 	    event->state <= PERF_EVENT_STATE_ERROR)
2266 		return;
2267 
2268 	if (ctx->is_active)
2269 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2270 
2271 	__perf_event_mark_enabled(event);
2272 
2273 	if (!ctx->is_active)
2274 		return;
2275 
2276 	if (!event_filter_match(event)) {
2277 		if (is_cgroup_event(event))
2278 			perf_cgroup_defer_enabled(event);
2279 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2280 		return;
2281 	}
2282 
2283 	/*
2284 	 * If the event is in a group and isn't the group leader,
2285 	 * then don't put it on unless the group is on.
2286 	 */
2287 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2288 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2289 		return;
2290 	}
2291 
2292 	task_ctx = cpuctx->task_ctx;
2293 	if (ctx->task)
2294 		WARN_ON_ONCE(task_ctx != ctx);
2295 
2296 	ctx_resched(cpuctx, task_ctx);
2297 }
2298 
2299 /*
2300  * Enable a event.
2301  *
2302  * If event->ctx is a cloned context, callers must make sure that
2303  * every task struct that event->ctx->task could possibly point to
2304  * remains valid.  This condition is satisfied when called through
2305  * perf_event_for_each_child or perf_event_for_each as described
2306  * for perf_event_disable.
2307  */
2308 static void _perf_event_enable(struct perf_event *event)
2309 {
2310 	struct perf_event_context *ctx = event->ctx;
2311 
2312 	raw_spin_lock_irq(&ctx->lock);
2313 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2314 	    event->state <  PERF_EVENT_STATE_ERROR) {
2315 		raw_spin_unlock_irq(&ctx->lock);
2316 		return;
2317 	}
2318 
2319 	/*
2320 	 * If the event is in error state, clear that first.
2321 	 *
2322 	 * That way, if we see the event in error state below, we know that it
2323 	 * has gone back into error state, as distinct from the task having
2324 	 * been scheduled away before the cross-call arrived.
2325 	 */
2326 	if (event->state == PERF_EVENT_STATE_ERROR)
2327 		event->state = PERF_EVENT_STATE_OFF;
2328 	raw_spin_unlock_irq(&ctx->lock);
2329 
2330 	event_function_call(event, __perf_event_enable, NULL);
2331 }
2332 
2333 /*
2334  * See perf_event_disable();
2335  */
2336 void perf_event_enable(struct perf_event *event)
2337 {
2338 	struct perf_event_context *ctx;
2339 
2340 	ctx = perf_event_ctx_lock(event);
2341 	_perf_event_enable(event);
2342 	perf_event_ctx_unlock(event, ctx);
2343 }
2344 EXPORT_SYMBOL_GPL(perf_event_enable);
2345 
2346 static int _perf_event_refresh(struct perf_event *event, int refresh)
2347 {
2348 	/*
2349 	 * not supported on inherited events
2350 	 */
2351 	if (event->attr.inherit || !is_sampling_event(event))
2352 		return -EINVAL;
2353 
2354 	atomic_add(refresh, &event->event_limit);
2355 	_perf_event_enable(event);
2356 
2357 	return 0;
2358 }
2359 
2360 /*
2361  * See perf_event_disable()
2362  */
2363 int perf_event_refresh(struct perf_event *event, int refresh)
2364 {
2365 	struct perf_event_context *ctx;
2366 	int ret;
2367 
2368 	ctx = perf_event_ctx_lock(event);
2369 	ret = _perf_event_refresh(event, refresh);
2370 	perf_event_ctx_unlock(event, ctx);
2371 
2372 	return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(perf_event_refresh);
2375 
2376 static void ctx_sched_out(struct perf_event_context *ctx,
2377 			  struct perf_cpu_context *cpuctx,
2378 			  enum event_type_t event_type)
2379 {
2380 	int is_active = ctx->is_active;
2381 	struct perf_event *event;
2382 
2383 	lockdep_assert_held(&ctx->lock);
2384 
2385 	if (likely(!ctx->nr_events)) {
2386 		/*
2387 		 * See __perf_remove_from_context().
2388 		 */
2389 		WARN_ON_ONCE(ctx->is_active);
2390 		if (ctx->task)
2391 			WARN_ON_ONCE(cpuctx->task_ctx);
2392 		return;
2393 	}
2394 
2395 	ctx->is_active &= ~event_type;
2396 	if (!(ctx->is_active & EVENT_ALL))
2397 		ctx->is_active = 0;
2398 
2399 	if (ctx->task) {
2400 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2401 		if (!ctx->is_active)
2402 			cpuctx->task_ctx = NULL;
2403 	}
2404 
2405 	is_active ^= ctx->is_active; /* changed bits */
2406 
2407 	if (is_active & EVENT_TIME) {
2408 		/* update (and stop) ctx time */
2409 		update_context_time(ctx);
2410 		update_cgrp_time_from_cpuctx(cpuctx);
2411 	}
2412 
2413 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2414 		return;
2415 
2416 	perf_pmu_disable(ctx->pmu);
2417 	if (is_active & EVENT_PINNED) {
2418 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2419 			group_sched_out(event, cpuctx, ctx);
2420 	}
2421 
2422 	if (is_active & EVENT_FLEXIBLE) {
2423 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2424 			group_sched_out(event, cpuctx, ctx);
2425 	}
2426 	perf_pmu_enable(ctx->pmu);
2427 }
2428 
2429 /*
2430  * Test whether two contexts are equivalent, i.e. whether they have both been
2431  * cloned from the same version of the same context.
2432  *
2433  * Equivalence is measured using a generation number in the context that is
2434  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2435  * and list_del_event().
2436  */
2437 static int context_equiv(struct perf_event_context *ctx1,
2438 			 struct perf_event_context *ctx2)
2439 {
2440 	lockdep_assert_held(&ctx1->lock);
2441 	lockdep_assert_held(&ctx2->lock);
2442 
2443 	/* Pinning disables the swap optimization */
2444 	if (ctx1->pin_count || ctx2->pin_count)
2445 		return 0;
2446 
2447 	/* If ctx1 is the parent of ctx2 */
2448 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2449 		return 1;
2450 
2451 	/* If ctx2 is the parent of ctx1 */
2452 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2453 		return 1;
2454 
2455 	/*
2456 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2457 	 * hierarchy, see perf_event_init_context().
2458 	 */
2459 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2460 			ctx1->parent_gen == ctx2->parent_gen)
2461 		return 1;
2462 
2463 	/* Unmatched */
2464 	return 0;
2465 }
2466 
2467 static void __perf_event_sync_stat(struct perf_event *event,
2468 				     struct perf_event *next_event)
2469 {
2470 	u64 value;
2471 
2472 	if (!event->attr.inherit_stat)
2473 		return;
2474 
2475 	/*
2476 	 * Update the event value, we cannot use perf_event_read()
2477 	 * because we're in the middle of a context switch and have IRQs
2478 	 * disabled, which upsets smp_call_function_single(), however
2479 	 * we know the event must be on the current CPU, therefore we
2480 	 * don't need to use it.
2481 	 */
2482 	switch (event->state) {
2483 	case PERF_EVENT_STATE_ACTIVE:
2484 		event->pmu->read(event);
2485 		/* fall-through */
2486 
2487 	case PERF_EVENT_STATE_INACTIVE:
2488 		update_event_times(event);
2489 		break;
2490 
2491 	default:
2492 		break;
2493 	}
2494 
2495 	/*
2496 	 * In order to keep per-task stats reliable we need to flip the event
2497 	 * values when we flip the contexts.
2498 	 */
2499 	value = local64_read(&next_event->count);
2500 	value = local64_xchg(&event->count, value);
2501 	local64_set(&next_event->count, value);
2502 
2503 	swap(event->total_time_enabled, next_event->total_time_enabled);
2504 	swap(event->total_time_running, next_event->total_time_running);
2505 
2506 	/*
2507 	 * Since we swizzled the values, update the user visible data too.
2508 	 */
2509 	perf_event_update_userpage(event);
2510 	perf_event_update_userpage(next_event);
2511 }
2512 
2513 static void perf_event_sync_stat(struct perf_event_context *ctx,
2514 				   struct perf_event_context *next_ctx)
2515 {
2516 	struct perf_event *event, *next_event;
2517 
2518 	if (!ctx->nr_stat)
2519 		return;
2520 
2521 	update_context_time(ctx);
2522 
2523 	event = list_first_entry(&ctx->event_list,
2524 				   struct perf_event, event_entry);
2525 
2526 	next_event = list_first_entry(&next_ctx->event_list,
2527 					struct perf_event, event_entry);
2528 
2529 	while (&event->event_entry != &ctx->event_list &&
2530 	       &next_event->event_entry != &next_ctx->event_list) {
2531 
2532 		__perf_event_sync_stat(event, next_event);
2533 
2534 		event = list_next_entry(event, event_entry);
2535 		next_event = list_next_entry(next_event, event_entry);
2536 	}
2537 }
2538 
2539 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2540 					 struct task_struct *next)
2541 {
2542 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2543 	struct perf_event_context *next_ctx;
2544 	struct perf_event_context *parent, *next_parent;
2545 	struct perf_cpu_context *cpuctx;
2546 	int do_switch = 1;
2547 
2548 	if (likely(!ctx))
2549 		return;
2550 
2551 	cpuctx = __get_cpu_context(ctx);
2552 	if (!cpuctx->task_ctx)
2553 		return;
2554 
2555 	rcu_read_lock();
2556 	next_ctx = next->perf_event_ctxp[ctxn];
2557 	if (!next_ctx)
2558 		goto unlock;
2559 
2560 	parent = rcu_dereference(ctx->parent_ctx);
2561 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2562 
2563 	/* If neither context have a parent context; they cannot be clones. */
2564 	if (!parent && !next_parent)
2565 		goto unlock;
2566 
2567 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2568 		/*
2569 		 * Looks like the two contexts are clones, so we might be
2570 		 * able to optimize the context switch.  We lock both
2571 		 * contexts and check that they are clones under the
2572 		 * lock (including re-checking that neither has been
2573 		 * uncloned in the meantime).  It doesn't matter which
2574 		 * order we take the locks because no other cpu could
2575 		 * be trying to lock both of these tasks.
2576 		 */
2577 		raw_spin_lock(&ctx->lock);
2578 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2579 		if (context_equiv(ctx, next_ctx)) {
2580 			WRITE_ONCE(ctx->task, next);
2581 			WRITE_ONCE(next_ctx->task, task);
2582 
2583 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2584 
2585 			/*
2586 			 * RCU_INIT_POINTER here is safe because we've not
2587 			 * modified the ctx and the above modification of
2588 			 * ctx->task and ctx->task_ctx_data are immaterial
2589 			 * since those values are always verified under
2590 			 * ctx->lock which we're now holding.
2591 			 */
2592 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2593 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2594 
2595 			do_switch = 0;
2596 
2597 			perf_event_sync_stat(ctx, next_ctx);
2598 		}
2599 		raw_spin_unlock(&next_ctx->lock);
2600 		raw_spin_unlock(&ctx->lock);
2601 	}
2602 unlock:
2603 	rcu_read_unlock();
2604 
2605 	if (do_switch) {
2606 		raw_spin_lock(&ctx->lock);
2607 		task_ctx_sched_out(cpuctx, ctx);
2608 		raw_spin_unlock(&ctx->lock);
2609 	}
2610 }
2611 
2612 void perf_sched_cb_dec(struct pmu *pmu)
2613 {
2614 	this_cpu_dec(perf_sched_cb_usages);
2615 }
2616 
2617 void perf_sched_cb_inc(struct pmu *pmu)
2618 {
2619 	this_cpu_inc(perf_sched_cb_usages);
2620 }
2621 
2622 /*
2623  * This function provides the context switch callback to the lower code
2624  * layer. It is invoked ONLY when the context switch callback is enabled.
2625  */
2626 static void perf_pmu_sched_task(struct task_struct *prev,
2627 				struct task_struct *next,
2628 				bool sched_in)
2629 {
2630 	struct perf_cpu_context *cpuctx;
2631 	struct pmu *pmu;
2632 	unsigned long flags;
2633 
2634 	if (prev == next)
2635 		return;
2636 
2637 	local_irq_save(flags);
2638 
2639 	rcu_read_lock();
2640 
2641 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2642 		if (pmu->sched_task) {
2643 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2644 
2645 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2646 
2647 			perf_pmu_disable(pmu);
2648 
2649 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2650 
2651 			perf_pmu_enable(pmu);
2652 
2653 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2654 		}
2655 	}
2656 
2657 	rcu_read_unlock();
2658 
2659 	local_irq_restore(flags);
2660 }
2661 
2662 static void perf_event_switch(struct task_struct *task,
2663 			      struct task_struct *next_prev, bool sched_in);
2664 
2665 #define for_each_task_context_nr(ctxn)					\
2666 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2667 
2668 /*
2669  * Called from scheduler to remove the events of the current task,
2670  * with interrupts disabled.
2671  *
2672  * We stop each event and update the event value in event->count.
2673  *
2674  * This does not protect us against NMI, but disable()
2675  * sets the disabled bit in the control field of event _before_
2676  * accessing the event control register. If a NMI hits, then it will
2677  * not restart the event.
2678  */
2679 void __perf_event_task_sched_out(struct task_struct *task,
2680 				 struct task_struct *next)
2681 {
2682 	int ctxn;
2683 
2684 	if (__this_cpu_read(perf_sched_cb_usages))
2685 		perf_pmu_sched_task(task, next, false);
2686 
2687 	if (atomic_read(&nr_switch_events))
2688 		perf_event_switch(task, next, false);
2689 
2690 	for_each_task_context_nr(ctxn)
2691 		perf_event_context_sched_out(task, ctxn, next);
2692 
2693 	/*
2694 	 * if cgroup events exist on this CPU, then we need
2695 	 * to check if we have to switch out PMU state.
2696 	 * cgroup event are system-wide mode only
2697 	 */
2698 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2699 		perf_cgroup_sched_out(task, next);
2700 }
2701 
2702 /*
2703  * Called with IRQs disabled
2704  */
2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 			      enum event_type_t event_type)
2707 {
2708 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 }
2710 
2711 static void
2712 ctx_pinned_sched_in(struct perf_event_context *ctx,
2713 		    struct perf_cpu_context *cpuctx)
2714 {
2715 	struct perf_event *event;
2716 
2717 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 		if (event->state <= PERF_EVENT_STATE_OFF)
2719 			continue;
2720 		if (!event_filter_match(event))
2721 			continue;
2722 
2723 		/* may need to reset tstamp_enabled */
2724 		if (is_cgroup_event(event))
2725 			perf_cgroup_mark_enabled(event, ctx);
2726 
2727 		if (group_can_go_on(event, cpuctx, 1))
2728 			group_sched_in(event, cpuctx, ctx);
2729 
2730 		/*
2731 		 * If this pinned group hasn't been scheduled,
2732 		 * put it in error state.
2733 		 */
2734 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 			update_group_times(event);
2736 			event->state = PERF_EVENT_STATE_ERROR;
2737 		}
2738 	}
2739 }
2740 
2741 static void
2742 ctx_flexible_sched_in(struct perf_event_context *ctx,
2743 		      struct perf_cpu_context *cpuctx)
2744 {
2745 	struct perf_event *event;
2746 	int can_add_hw = 1;
2747 
2748 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 		/* Ignore events in OFF or ERROR state */
2750 		if (event->state <= PERF_EVENT_STATE_OFF)
2751 			continue;
2752 		/*
2753 		 * Listen to the 'cpu' scheduling filter constraint
2754 		 * of events:
2755 		 */
2756 		if (!event_filter_match(event))
2757 			continue;
2758 
2759 		/* may need to reset tstamp_enabled */
2760 		if (is_cgroup_event(event))
2761 			perf_cgroup_mark_enabled(event, ctx);
2762 
2763 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764 			if (group_sched_in(event, cpuctx, ctx))
2765 				can_add_hw = 0;
2766 		}
2767 	}
2768 }
2769 
2770 static void
2771 ctx_sched_in(struct perf_event_context *ctx,
2772 	     struct perf_cpu_context *cpuctx,
2773 	     enum event_type_t event_type,
2774 	     struct task_struct *task)
2775 {
2776 	int is_active = ctx->is_active;
2777 	u64 now;
2778 
2779 	lockdep_assert_held(&ctx->lock);
2780 
2781 	if (likely(!ctx->nr_events))
2782 		return;
2783 
2784 	ctx->is_active |= (event_type | EVENT_TIME);
2785 	if (ctx->task) {
2786 		if (!is_active)
2787 			cpuctx->task_ctx = ctx;
2788 		else
2789 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2790 	}
2791 
2792 	is_active ^= ctx->is_active; /* changed bits */
2793 
2794 	if (is_active & EVENT_TIME) {
2795 		/* start ctx time */
2796 		now = perf_clock();
2797 		ctx->timestamp = now;
2798 		perf_cgroup_set_timestamp(task, ctx);
2799 	}
2800 
2801 	/*
2802 	 * First go through the list and put on any pinned groups
2803 	 * in order to give them the best chance of going on.
2804 	 */
2805 	if (is_active & EVENT_PINNED)
2806 		ctx_pinned_sched_in(ctx, cpuctx);
2807 
2808 	/* Then walk through the lower prio flexible groups */
2809 	if (is_active & EVENT_FLEXIBLE)
2810 		ctx_flexible_sched_in(ctx, cpuctx);
2811 }
2812 
2813 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2814 			     enum event_type_t event_type,
2815 			     struct task_struct *task)
2816 {
2817 	struct perf_event_context *ctx = &cpuctx->ctx;
2818 
2819 	ctx_sched_in(ctx, cpuctx, event_type, task);
2820 }
2821 
2822 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2823 					struct task_struct *task)
2824 {
2825 	struct perf_cpu_context *cpuctx;
2826 
2827 	cpuctx = __get_cpu_context(ctx);
2828 	if (cpuctx->task_ctx == ctx)
2829 		return;
2830 
2831 	perf_ctx_lock(cpuctx, ctx);
2832 	perf_pmu_disable(ctx->pmu);
2833 	/*
2834 	 * We want to keep the following priority order:
2835 	 * cpu pinned (that don't need to move), task pinned,
2836 	 * cpu flexible, task flexible.
2837 	 */
2838 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2839 	perf_event_sched_in(cpuctx, ctx, task);
2840 	perf_pmu_enable(ctx->pmu);
2841 	perf_ctx_unlock(cpuctx, ctx);
2842 }
2843 
2844 /*
2845  * Called from scheduler to add the events of the current task
2846  * with interrupts disabled.
2847  *
2848  * We restore the event value and then enable it.
2849  *
2850  * This does not protect us against NMI, but enable()
2851  * sets the enabled bit in the control field of event _before_
2852  * accessing the event control register. If a NMI hits, then it will
2853  * keep the event running.
2854  */
2855 void __perf_event_task_sched_in(struct task_struct *prev,
2856 				struct task_struct *task)
2857 {
2858 	struct perf_event_context *ctx;
2859 	int ctxn;
2860 
2861 	/*
2862 	 * If cgroup events exist on this CPU, then we need to check if we have
2863 	 * to switch in PMU state; cgroup event are system-wide mode only.
2864 	 *
2865 	 * Since cgroup events are CPU events, we must schedule these in before
2866 	 * we schedule in the task events.
2867 	 */
2868 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2869 		perf_cgroup_sched_in(prev, task);
2870 
2871 	for_each_task_context_nr(ctxn) {
2872 		ctx = task->perf_event_ctxp[ctxn];
2873 		if (likely(!ctx))
2874 			continue;
2875 
2876 		perf_event_context_sched_in(ctx, task);
2877 	}
2878 
2879 	if (atomic_read(&nr_switch_events))
2880 		perf_event_switch(task, prev, true);
2881 
2882 	if (__this_cpu_read(perf_sched_cb_usages))
2883 		perf_pmu_sched_task(prev, task, true);
2884 }
2885 
2886 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2887 {
2888 	u64 frequency = event->attr.sample_freq;
2889 	u64 sec = NSEC_PER_SEC;
2890 	u64 divisor, dividend;
2891 
2892 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2893 
2894 	count_fls = fls64(count);
2895 	nsec_fls = fls64(nsec);
2896 	frequency_fls = fls64(frequency);
2897 	sec_fls = 30;
2898 
2899 	/*
2900 	 * We got @count in @nsec, with a target of sample_freq HZ
2901 	 * the target period becomes:
2902 	 *
2903 	 *             @count * 10^9
2904 	 * period = -------------------
2905 	 *          @nsec * sample_freq
2906 	 *
2907 	 */
2908 
2909 	/*
2910 	 * Reduce accuracy by one bit such that @a and @b converge
2911 	 * to a similar magnitude.
2912 	 */
2913 #define REDUCE_FLS(a, b)		\
2914 do {					\
2915 	if (a##_fls > b##_fls) {	\
2916 		a >>= 1;		\
2917 		a##_fls--;		\
2918 	} else {			\
2919 		b >>= 1;		\
2920 		b##_fls--;		\
2921 	}				\
2922 } while (0)
2923 
2924 	/*
2925 	 * Reduce accuracy until either term fits in a u64, then proceed with
2926 	 * the other, so that finally we can do a u64/u64 division.
2927 	 */
2928 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2929 		REDUCE_FLS(nsec, frequency);
2930 		REDUCE_FLS(sec, count);
2931 	}
2932 
2933 	if (count_fls + sec_fls > 64) {
2934 		divisor = nsec * frequency;
2935 
2936 		while (count_fls + sec_fls > 64) {
2937 			REDUCE_FLS(count, sec);
2938 			divisor >>= 1;
2939 		}
2940 
2941 		dividend = count * sec;
2942 	} else {
2943 		dividend = count * sec;
2944 
2945 		while (nsec_fls + frequency_fls > 64) {
2946 			REDUCE_FLS(nsec, frequency);
2947 			dividend >>= 1;
2948 		}
2949 
2950 		divisor = nsec * frequency;
2951 	}
2952 
2953 	if (!divisor)
2954 		return dividend;
2955 
2956 	return div64_u64(dividend, divisor);
2957 }
2958 
2959 static DEFINE_PER_CPU(int, perf_throttled_count);
2960 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2961 
2962 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2963 {
2964 	struct hw_perf_event *hwc = &event->hw;
2965 	s64 period, sample_period;
2966 	s64 delta;
2967 
2968 	period = perf_calculate_period(event, nsec, count);
2969 
2970 	delta = (s64)(period - hwc->sample_period);
2971 	delta = (delta + 7) / 8; /* low pass filter */
2972 
2973 	sample_period = hwc->sample_period + delta;
2974 
2975 	if (!sample_period)
2976 		sample_period = 1;
2977 
2978 	hwc->sample_period = sample_period;
2979 
2980 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2981 		if (disable)
2982 			event->pmu->stop(event, PERF_EF_UPDATE);
2983 
2984 		local64_set(&hwc->period_left, 0);
2985 
2986 		if (disable)
2987 			event->pmu->start(event, PERF_EF_RELOAD);
2988 	}
2989 }
2990 
2991 /*
2992  * combine freq adjustment with unthrottling to avoid two passes over the
2993  * events. At the same time, make sure, having freq events does not change
2994  * the rate of unthrottling as that would introduce bias.
2995  */
2996 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2997 					   int needs_unthr)
2998 {
2999 	struct perf_event *event;
3000 	struct hw_perf_event *hwc;
3001 	u64 now, period = TICK_NSEC;
3002 	s64 delta;
3003 
3004 	/*
3005 	 * only need to iterate over all events iff:
3006 	 * - context have events in frequency mode (needs freq adjust)
3007 	 * - there are events to unthrottle on this cpu
3008 	 */
3009 	if (!(ctx->nr_freq || needs_unthr))
3010 		return;
3011 
3012 	raw_spin_lock(&ctx->lock);
3013 	perf_pmu_disable(ctx->pmu);
3014 
3015 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3016 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3017 			continue;
3018 
3019 		if (!event_filter_match(event))
3020 			continue;
3021 
3022 		perf_pmu_disable(event->pmu);
3023 
3024 		hwc = &event->hw;
3025 
3026 		if (hwc->interrupts == MAX_INTERRUPTS) {
3027 			hwc->interrupts = 0;
3028 			perf_log_throttle(event, 1);
3029 			event->pmu->start(event, 0);
3030 		}
3031 
3032 		if (!event->attr.freq || !event->attr.sample_freq)
3033 			goto next;
3034 
3035 		/*
3036 		 * stop the event and update event->count
3037 		 */
3038 		event->pmu->stop(event, PERF_EF_UPDATE);
3039 
3040 		now = local64_read(&event->count);
3041 		delta = now - hwc->freq_count_stamp;
3042 		hwc->freq_count_stamp = now;
3043 
3044 		/*
3045 		 * restart the event
3046 		 * reload only if value has changed
3047 		 * we have stopped the event so tell that
3048 		 * to perf_adjust_period() to avoid stopping it
3049 		 * twice.
3050 		 */
3051 		if (delta > 0)
3052 			perf_adjust_period(event, period, delta, false);
3053 
3054 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3055 	next:
3056 		perf_pmu_enable(event->pmu);
3057 	}
3058 
3059 	perf_pmu_enable(ctx->pmu);
3060 	raw_spin_unlock(&ctx->lock);
3061 }
3062 
3063 /*
3064  * Round-robin a context's events:
3065  */
3066 static void rotate_ctx(struct perf_event_context *ctx)
3067 {
3068 	/*
3069 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3070 	 * disabled by the inheritance code.
3071 	 */
3072 	if (!ctx->rotate_disable)
3073 		list_rotate_left(&ctx->flexible_groups);
3074 }
3075 
3076 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3077 {
3078 	struct perf_event_context *ctx = NULL;
3079 	int rotate = 0;
3080 
3081 	if (cpuctx->ctx.nr_events) {
3082 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3083 			rotate = 1;
3084 	}
3085 
3086 	ctx = cpuctx->task_ctx;
3087 	if (ctx && ctx->nr_events) {
3088 		if (ctx->nr_events != ctx->nr_active)
3089 			rotate = 1;
3090 	}
3091 
3092 	if (!rotate)
3093 		goto done;
3094 
3095 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3096 	perf_pmu_disable(cpuctx->ctx.pmu);
3097 
3098 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3099 	if (ctx)
3100 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3101 
3102 	rotate_ctx(&cpuctx->ctx);
3103 	if (ctx)
3104 		rotate_ctx(ctx);
3105 
3106 	perf_event_sched_in(cpuctx, ctx, current);
3107 
3108 	perf_pmu_enable(cpuctx->ctx.pmu);
3109 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3110 done:
3111 
3112 	return rotate;
3113 }
3114 
3115 void perf_event_task_tick(void)
3116 {
3117 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3118 	struct perf_event_context *ctx, *tmp;
3119 	int throttled;
3120 
3121 	WARN_ON(!irqs_disabled());
3122 
3123 	__this_cpu_inc(perf_throttled_seq);
3124 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3125 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3126 
3127 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3128 		perf_adjust_freq_unthr_context(ctx, throttled);
3129 }
3130 
3131 static int event_enable_on_exec(struct perf_event *event,
3132 				struct perf_event_context *ctx)
3133 {
3134 	if (!event->attr.enable_on_exec)
3135 		return 0;
3136 
3137 	event->attr.enable_on_exec = 0;
3138 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3139 		return 0;
3140 
3141 	__perf_event_mark_enabled(event);
3142 
3143 	return 1;
3144 }
3145 
3146 /*
3147  * Enable all of a task's events that have been marked enable-on-exec.
3148  * This expects task == current.
3149  */
3150 static void perf_event_enable_on_exec(int ctxn)
3151 {
3152 	struct perf_event_context *ctx, *clone_ctx = NULL;
3153 	struct perf_cpu_context *cpuctx;
3154 	struct perf_event *event;
3155 	unsigned long flags;
3156 	int enabled = 0;
3157 
3158 	local_irq_save(flags);
3159 	ctx = current->perf_event_ctxp[ctxn];
3160 	if (!ctx || !ctx->nr_events)
3161 		goto out;
3162 
3163 	cpuctx = __get_cpu_context(ctx);
3164 	perf_ctx_lock(cpuctx, ctx);
3165 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3166 	list_for_each_entry(event, &ctx->event_list, event_entry)
3167 		enabled |= event_enable_on_exec(event, ctx);
3168 
3169 	/*
3170 	 * Unclone and reschedule this context if we enabled any event.
3171 	 */
3172 	if (enabled) {
3173 		clone_ctx = unclone_ctx(ctx);
3174 		ctx_resched(cpuctx, ctx);
3175 	}
3176 	perf_ctx_unlock(cpuctx, ctx);
3177 
3178 out:
3179 	local_irq_restore(flags);
3180 
3181 	if (clone_ctx)
3182 		put_ctx(clone_ctx);
3183 }
3184 
3185 void perf_event_exec(void)
3186 {
3187 	int ctxn;
3188 
3189 	rcu_read_lock();
3190 	for_each_task_context_nr(ctxn)
3191 		perf_event_enable_on_exec(ctxn);
3192 	rcu_read_unlock();
3193 }
3194 
3195 struct perf_read_data {
3196 	struct perf_event *event;
3197 	bool group;
3198 	int ret;
3199 };
3200 
3201 /*
3202  * Cross CPU call to read the hardware event
3203  */
3204 static void __perf_event_read(void *info)
3205 {
3206 	struct perf_read_data *data = info;
3207 	struct perf_event *sub, *event = data->event;
3208 	struct perf_event_context *ctx = event->ctx;
3209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3210 	struct pmu *pmu = event->pmu;
3211 
3212 	/*
3213 	 * If this is a task context, we need to check whether it is
3214 	 * the current task context of this cpu.  If not it has been
3215 	 * scheduled out before the smp call arrived.  In that case
3216 	 * event->count would have been updated to a recent sample
3217 	 * when the event was scheduled out.
3218 	 */
3219 	if (ctx->task && cpuctx->task_ctx != ctx)
3220 		return;
3221 
3222 	raw_spin_lock(&ctx->lock);
3223 	if (ctx->is_active) {
3224 		update_context_time(ctx);
3225 		update_cgrp_time_from_event(event);
3226 	}
3227 
3228 	update_event_times(event);
3229 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3230 		goto unlock;
3231 
3232 	if (!data->group) {
3233 		pmu->read(event);
3234 		data->ret = 0;
3235 		goto unlock;
3236 	}
3237 
3238 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3239 
3240 	pmu->read(event);
3241 
3242 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3243 		update_event_times(sub);
3244 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3245 			/*
3246 			 * Use sibling's PMU rather than @event's since
3247 			 * sibling could be on different (eg: software) PMU.
3248 			 */
3249 			sub->pmu->read(sub);
3250 		}
3251 	}
3252 
3253 	data->ret = pmu->commit_txn(pmu);
3254 
3255 unlock:
3256 	raw_spin_unlock(&ctx->lock);
3257 }
3258 
3259 static inline u64 perf_event_count(struct perf_event *event)
3260 {
3261 	if (event->pmu->count)
3262 		return event->pmu->count(event);
3263 
3264 	return __perf_event_count(event);
3265 }
3266 
3267 /*
3268  * NMI-safe method to read a local event, that is an event that
3269  * is:
3270  *   - either for the current task, or for this CPU
3271  *   - does not have inherit set, for inherited task events
3272  *     will not be local and we cannot read them atomically
3273  *   - must not have a pmu::count method
3274  */
3275 u64 perf_event_read_local(struct perf_event *event)
3276 {
3277 	unsigned long flags;
3278 	u64 val;
3279 
3280 	/*
3281 	 * Disabling interrupts avoids all counter scheduling (context
3282 	 * switches, timer based rotation and IPIs).
3283 	 */
3284 	local_irq_save(flags);
3285 
3286 	/* If this is a per-task event, it must be for current */
3287 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3288 		     event->hw.target != current);
3289 
3290 	/* If this is a per-CPU event, it must be for this CPU */
3291 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3292 		     event->cpu != smp_processor_id());
3293 
3294 	/*
3295 	 * It must not be an event with inherit set, we cannot read
3296 	 * all child counters from atomic context.
3297 	 */
3298 	WARN_ON_ONCE(event->attr.inherit);
3299 
3300 	/*
3301 	 * It must not have a pmu::count method, those are not
3302 	 * NMI safe.
3303 	 */
3304 	WARN_ON_ONCE(event->pmu->count);
3305 
3306 	/*
3307 	 * If the event is currently on this CPU, its either a per-task event,
3308 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3309 	 * oncpu == -1).
3310 	 */
3311 	if (event->oncpu == smp_processor_id())
3312 		event->pmu->read(event);
3313 
3314 	val = local64_read(&event->count);
3315 	local_irq_restore(flags);
3316 
3317 	return val;
3318 }
3319 
3320 static int perf_event_read(struct perf_event *event, bool group)
3321 {
3322 	int ret = 0;
3323 
3324 	/*
3325 	 * If event is enabled and currently active on a CPU, update the
3326 	 * value in the event structure:
3327 	 */
3328 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3329 		struct perf_read_data data = {
3330 			.event = event,
3331 			.group = group,
3332 			.ret = 0,
3333 		};
3334 		smp_call_function_single(event->oncpu,
3335 					 __perf_event_read, &data, 1);
3336 		ret = data.ret;
3337 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3338 		struct perf_event_context *ctx = event->ctx;
3339 		unsigned long flags;
3340 
3341 		raw_spin_lock_irqsave(&ctx->lock, flags);
3342 		/*
3343 		 * may read while context is not active
3344 		 * (e.g., thread is blocked), in that case
3345 		 * we cannot update context time
3346 		 */
3347 		if (ctx->is_active) {
3348 			update_context_time(ctx);
3349 			update_cgrp_time_from_event(event);
3350 		}
3351 		if (group)
3352 			update_group_times(event);
3353 		else
3354 			update_event_times(event);
3355 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3356 	}
3357 
3358 	return ret;
3359 }
3360 
3361 /*
3362  * Initialize the perf_event context in a task_struct:
3363  */
3364 static void __perf_event_init_context(struct perf_event_context *ctx)
3365 {
3366 	raw_spin_lock_init(&ctx->lock);
3367 	mutex_init(&ctx->mutex);
3368 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3369 	INIT_LIST_HEAD(&ctx->pinned_groups);
3370 	INIT_LIST_HEAD(&ctx->flexible_groups);
3371 	INIT_LIST_HEAD(&ctx->event_list);
3372 	atomic_set(&ctx->refcount, 1);
3373 }
3374 
3375 static struct perf_event_context *
3376 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3377 {
3378 	struct perf_event_context *ctx;
3379 
3380 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3381 	if (!ctx)
3382 		return NULL;
3383 
3384 	__perf_event_init_context(ctx);
3385 	if (task) {
3386 		ctx->task = task;
3387 		get_task_struct(task);
3388 	}
3389 	ctx->pmu = pmu;
3390 
3391 	return ctx;
3392 }
3393 
3394 static struct task_struct *
3395 find_lively_task_by_vpid(pid_t vpid)
3396 {
3397 	struct task_struct *task;
3398 	int err;
3399 
3400 	rcu_read_lock();
3401 	if (!vpid)
3402 		task = current;
3403 	else
3404 		task = find_task_by_vpid(vpid);
3405 	if (task)
3406 		get_task_struct(task);
3407 	rcu_read_unlock();
3408 
3409 	if (!task)
3410 		return ERR_PTR(-ESRCH);
3411 
3412 	/* Reuse ptrace permission checks for now. */
3413 	err = -EACCES;
3414 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3415 		goto errout;
3416 
3417 	return task;
3418 errout:
3419 	put_task_struct(task);
3420 	return ERR_PTR(err);
3421 
3422 }
3423 
3424 /*
3425  * Returns a matching context with refcount and pincount.
3426  */
3427 static struct perf_event_context *
3428 find_get_context(struct pmu *pmu, struct task_struct *task,
3429 		struct perf_event *event)
3430 {
3431 	struct perf_event_context *ctx, *clone_ctx = NULL;
3432 	struct perf_cpu_context *cpuctx;
3433 	void *task_ctx_data = NULL;
3434 	unsigned long flags;
3435 	int ctxn, err;
3436 	int cpu = event->cpu;
3437 
3438 	if (!task) {
3439 		/* Must be root to operate on a CPU event: */
3440 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3441 			return ERR_PTR(-EACCES);
3442 
3443 		/*
3444 		 * We could be clever and allow to attach a event to an
3445 		 * offline CPU and activate it when the CPU comes up, but
3446 		 * that's for later.
3447 		 */
3448 		if (!cpu_online(cpu))
3449 			return ERR_PTR(-ENODEV);
3450 
3451 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3452 		ctx = &cpuctx->ctx;
3453 		get_ctx(ctx);
3454 		++ctx->pin_count;
3455 
3456 		return ctx;
3457 	}
3458 
3459 	err = -EINVAL;
3460 	ctxn = pmu->task_ctx_nr;
3461 	if (ctxn < 0)
3462 		goto errout;
3463 
3464 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3465 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3466 		if (!task_ctx_data) {
3467 			err = -ENOMEM;
3468 			goto errout;
3469 		}
3470 	}
3471 
3472 retry:
3473 	ctx = perf_lock_task_context(task, ctxn, &flags);
3474 	if (ctx) {
3475 		clone_ctx = unclone_ctx(ctx);
3476 		++ctx->pin_count;
3477 
3478 		if (task_ctx_data && !ctx->task_ctx_data) {
3479 			ctx->task_ctx_data = task_ctx_data;
3480 			task_ctx_data = NULL;
3481 		}
3482 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3483 
3484 		if (clone_ctx)
3485 			put_ctx(clone_ctx);
3486 	} else {
3487 		ctx = alloc_perf_context(pmu, task);
3488 		err = -ENOMEM;
3489 		if (!ctx)
3490 			goto errout;
3491 
3492 		if (task_ctx_data) {
3493 			ctx->task_ctx_data = task_ctx_data;
3494 			task_ctx_data = NULL;
3495 		}
3496 
3497 		err = 0;
3498 		mutex_lock(&task->perf_event_mutex);
3499 		/*
3500 		 * If it has already passed perf_event_exit_task().
3501 		 * we must see PF_EXITING, it takes this mutex too.
3502 		 */
3503 		if (task->flags & PF_EXITING)
3504 			err = -ESRCH;
3505 		else if (task->perf_event_ctxp[ctxn])
3506 			err = -EAGAIN;
3507 		else {
3508 			get_ctx(ctx);
3509 			++ctx->pin_count;
3510 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3511 		}
3512 		mutex_unlock(&task->perf_event_mutex);
3513 
3514 		if (unlikely(err)) {
3515 			put_ctx(ctx);
3516 
3517 			if (err == -EAGAIN)
3518 				goto retry;
3519 			goto errout;
3520 		}
3521 	}
3522 
3523 	kfree(task_ctx_data);
3524 	return ctx;
3525 
3526 errout:
3527 	kfree(task_ctx_data);
3528 	return ERR_PTR(err);
3529 }
3530 
3531 static void perf_event_free_filter(struct perf_event *event);
3532 static void perf_event_free_bpf_prog(struct perf_event *event);
3533 
3534 static void free_event_rcu(struct rcu_head *head)
3535 {
3536 	struct perf_event *event;
3537 
3538 	event = container_of(head, struct perf_event, rcu_head);
3539 	if (event->ns)
3540 		put_pid_ns(event->ns);
3541 	perf_event_free_filter(event);
3542 	kfree(event);
3543 }
3544 
3545 static void ring_buffer_attach(struct perf_event *event,
3546 			       struct ring_buffer *rb);
3547 
3548 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3549 {
3550 	if (event->parent)
3551 		return;
3552 
3553 	if (is_cgroup_event(event))
3554 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3555 }
3556 
3557 #ifdef CONFIG_NO_HZ_FULL
3558 static DEFINE_SPINLOCK(nr_freq_lock);
3559 #endif
3560 
3561 static void unaccount_freq_event_nohz(void)
3562 {
3563 #ifdef CONFIG_NO_HZ_FULL
3564 	spin_lock(&nr_freq_lock);
3565 	if (atomic_dec_and_test(&nr_freq_events))
3566 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3567 	spin_unlock(&nr_freq_lock);
3568 #endif
3569 }
3570 
3571 static void unaccount_freq_event(void)
3572 {
3573 	if (tick_nohz_full_enabled())
3574 		unaccount_freq_event_nohz();
3575 	else
3576 		atomic_dec(&nr_freq_events);
3577 }
3578 
3579 static void unaccount_event(struct perf_event *event)
3580 {
3581 	bool dec = false;
3582 
3583 	if (event->parent)
3584 		return;
3585 
3586 	if (event->attach_state & PERF_ATTACH_TASK)
3587 		dec = true;
3588 	if (event->attr.mmap || event->attr.mmap_data)
3589 		atomic_dec(&nr_mmap_events);
3590 	if (event->attr.comm)
3591 		atomic_dec(&nr_comm_events);
3592 	if (event->attr.task)
3593 		atomic_dec(&nr_task_events);
3594 	if (event->attr.freq)
3595 		unaccount_freq_event();
3596 	if (event->attr.context_switch) {
3597 		dec = true;
3598 		atomic_dec(&nr_switch_events);
3599 	}
3600 	if (is_cgroup_event(event))
3601 		dec = true;
3602 	if (has_branch_stack(event))
3603 		dec = true;
3604 
3605 	if (dec) {
3606 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3607 			schedule_delayed_work(&perf_sched_work, HZ);
3608 	}
3609 
3610 	unaccount_event_cpu(event, event->cpu);
3611 }
3612 
3613 static void perf_sched_delayed(struct work_struct *work)
3614 {
3615 	mutex_lock(&perf_sched_mutex);
3616 	if (atomic_dec_and_test(&perf_sched_count))
3617 		static_branch_disable(&perf_sched_events);
3618 	mutex_unlock(&perf_sched_mutex);
3619 }
3620 
3621 /*
3622  * The following implement mutual exclusion of events on "exclusive" pmus
3623  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3624  * at a time, so we disallow creating events that might conflict, namely:
3625  *
3626  *  1) cpu-wide events in the presence of per-task events,
3627  *  2) per-task events in the presence of cpu-wide events,
3628  *  3) two matching events on the same context.
3629  *
3630  * The former two cases are handled in the allocation path (perf_event_alloc(),
3631  * _free_event()), the latter -- before the first perf_install_in_context().
3632  */
3633 static int exclusive_event_init(struct perf_event *event)
3634 {
3635 	struct pmu *pmu = event->pmu;
3636 
3637 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3638 		return 0;
3639 
3640 	/*
3641 	 * Prevent co-existence of per-task and cpu-wide events on the
3642 	 * same exclusive pmu.
3643 	 *
3644 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3645 	 * events on this "exclusive" pmu, positive means there are
3646 	 * per-task events.
3647 	 *
3648 	 * Since this is called in perf_event_alloc() path, event::ctx
3649 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3650 	 * to mean "per-task event", because unlike other attach states it
3651 	 * never gets cleared.
3652 	 */
3653 	if (event->attach_state & PERF_ATTACH_TASK) {
3654 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3655 			return -EBUSY;
3656 	} else {
3657 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3658 			return -EBUSY;
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 static void exclusive_event_destroy(struct perf_event *event)
3665 {
3666 	struct pmu *pmu = event->pmu;
3667 
3668 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3669 		return;
3670 
3671 	/* see comment in exclusive_event_init() */
3672 	if (event->attach_state & PERF_ATTACH_TASK)
3673 		atomic_dec(&pmu->exclusive_cnt);
3674 	else
3675 		atomic_inc(&pmu->exclusive_cnt);
3676 }
3677 
3678 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3679 {
3680 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3681 	    (e1->cpu == e2->cpu ||
3682 	     e1->cpu == -1 ||
3683 	     e2->cpu == -1))
3684 		return true;
3685 	return false;
3686 }
3687 
3688 /* Called under the same ctx::mutex as perf_install_in_context() */
3689 static bool exclusive_event_installable(struct perf_event *event,
3690 					struct perf_event_context *ctx)
3691 {
3692 	struct perf_event *iter_event;
3693 	struct pmu *pmu = event->pmu;
3694 
3695 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3696 		return true;
3697 
3698 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3699 		if (exclusive_event_match(iter_event, event))
3700 			return false;
3701 	}
3702 
3703 	return true;
3704 }
3705 
3706 static void _free_event(struct perf_event *event)
3707 {
3708 	irq_work_sync(&event->pending);
3709 
3710 	unaccount_event(event);
3711 
3712 	if (event->rb) {
3713 		/*
3714 		 * Can happen when we close an event with re-directed output.
3715 		 *
3716 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3717 		 * over us; possibly making our ring_buffer_put() the last.
3718 		 */
3719 		mutex_lock(&event->mmap_mutex);
3720 		ring_buffer_attach(event, NULL);
3721 		mutex_unlock(&event->mmap_mutex);
3722 	}
3723 
3724 	if (is_cgroup_event(event))
3725 		perf_detach_cgroup(event);
3726 
3727 	if (!event->parent) {
3728 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3729 			put_callchain_buffers();
3730 	}
3731 
3732 	perf_event_free_bpf_prog(event);
3733 
3734 	if (event->destroy)
3735 		event->destroy(event);
3736 
3737 	if (event->ctx)
3738 		put_ctx(event->ctx);
3739 
3740 	if (event->pmu) {
3741 		exclusive_event_destroy(event);
3742 		module_put(event->pmu->module);
3743 	}
3744 
3745 	call_rcu(&event->rcu_head, free_event_rcu);
3746 }
3747 
3748 /*
3749  * Used to free events which have a known refcount of 1, such as in error paths
3750  * where the event isn't exposed yet and inherited events.
3751  */
3752 static void free_event(struct perf_event *event)
3753 {
3754 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3755 				"unexpected event refcount: %ld; ptr=%p\n",
3756 				atomic_long_read(&event->refcount), event)) {
3757 		/* leak to avoid use-after-free */
3758 		return;
3759 	}
3760 
3761 	_free_event(event);
3762 }
3763 
3764 /*
3765  * Remove user event from the owner task.
3766  */
3767 static void perf_remove_from_owner(struct perf_event *event)
3768 {
3769 	struct task_struct *owner;
3770 
3771 	rcu_read_lock();
3772 	/*
3773 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3774 	 * observe !owner it means the list deletion is complete and we can
3775 	 * indeed free this event, otherwise we need to serialize on
3776 	 * owner->perf_event_mutex.
3777 	 */
3778 	owner = lockless_dereference(event->owner);
3779 	if (owner) {
3780 		/*
3781 		 * Since delayed_put_task_struct() also drops the last
3782 		 * task reference we can safely take a new reference
3783 		 * while holding the rcu_read_lock().
3784 		 */
3785 		get_task_struct(owner);
3786 	}
3787 	rcu_read_unlock();
3788 
3789 	if (owner) {
3790 		/*
3791 		 * If we're here through perf_event_exit_task() we're already
3792 		 * holding ctx->mutex which would be an inversion wrt. the
3793 		 * normal lock order.
3794 		 *
3795 		 * However we can safely take this lock because its the child
3796 		 * ctx->mutex.
3797 		 */
3798 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3799 
3800 		/*
3801 		 * We have to re-check the event->owner field, if it is cleared
3802 		 * we raced with perf_event_exit_task(), acquiring the mutex
3803 		 * ensured they're done, and we can proceed with freeing the
3804 		 * event.
3805 		 */
3806 		if (event->owner) {
3807 			list_del_init(&event->owner_entry);
3808 			smp_store_release(&event->owner, NULL);
3809 		}
3810 		mutex_unlock(&owner->perf_event_mutex);
3811 		put_task_struct(owner);
3812 	}
3813 }
3814 
3815 static void put_event(struct perf_event *event)
3816 {
3817 	if (!atomic_long_dec_and_test(&event->refcount))
3818 		return;
3819 
3820 	_free_event(event);
3821 }
3822 
3823 /*
3824  * Kill an event dead; while event:refcount will preserve the event
3825  * object, it will not preserve its functionality. Once the last 'user'
3826  * gives up the object, we'll destroy the thing.
3827  */
3828 int perf_event_release_kernel(struct perf_event *event)
3829 {
3830 	struct perf_event_context *ctx = event->ctx;
3831 	struct perf_event *child, *tmp;
3832 
3833 	/*
3834 	 * If we got here through err_file: fput(event_file); we will not have
3835 	 * attached to a context yet.
3836 	 */
3837 	if (!ctx) {
3838 		WARN_ON_ONCE(event->attach_state &
3839 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3840 		goto no_ctx;
3841 	}
3842 
3843 	if (!is_kernel_event(event))
3844 		perf_remove_from_owner(event);
3845 
3846 	ctx = perf_event_ctx_lock(event);
3847 	WARN_ON_ONCE(ctx->parent_ctx);
3848 	perf_remove_from_context(event, DETACH_GROUP);
3849 
3850 	raw_spin_lock_irq(&ctx->lock);
3851 	/*
3852 	 * Mark this even as STATE_DEAD, there is no external reference to it
3853 	 * anymore.
3854 	 *
3855 	 * Anybody acquiring event->child_mutex after the below loop _must_
3856 	 * also see this, most importantly inherit_event() which will avoid
3857 	 * placing more children on the list.
3858 	 *
3859 	 * Thus this guarantees that we will in fact observe and kill _ALL_
3860 	 * child events.
3861 	 */
3862 	event->state = PERF_EVENT_STATE_DEAD;
3863 	raw_spin_unlock_irq(&ctx->lock);
3864 
3865 	perf_event_ctx_unlock(event, ctx);
3866 
3867 again:
3868 	mutex_lock(&event->child_mutex);
3869 	list_for_each_entry(child, &event->child_list, child_list) {
3870 
3871 		/*
3872 		 * Cannot change, child events are not migrated, see the
3873 		 * comment with perf_event_ctx_lock_nested().
3874 		 */
3875 		ctx = lockless_dereference(child->ctx);
3876 		/*
3877 		 * Since child_mutex nests inside ctx::mutex, we must jump
3878 		 * through hoops. We start by grabbing a reference on the ctx.
3879 		 *
3880 		 * Since the event cannot get freed while we hold the
3881 		 * child_mutex, the context must also exist and have a !0
3882 		 * reference count.
3883 		 */
3884 		get_ctx(ctx);
3885 
3886 		/*
3887 		 * Now that we have a ctx ref, we can drop child_mutex, and
3888 		 * acquire ctx::mutex without fear of it going away. Then we
3889 		 * can re-acquire child_mutex.
3890 		 */
3891 		mutex_unlock(&event->child_mutex);
3892 		mutex_lock(&ctx->mutex);
3893 		mutex_lock(&event->child_mutex);
3894 
3895 		/*
3896 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
3897 		 * state, if child is still the first entry, it didn't get freed
3898 		 * and we can continue doing so.
3899 		 */
3900 		tmp = list_first_entry_or_null(&event->child_list,
3901 					       struct perf_event, child_list);
3902 		if (tmp == child) {
3903 			perf_remove_from_context(child, DETACH_GROUP);
3904 			list_del(&child->child_list);
3905 			free_event(child);
3906 			/*
3907 			 * This matches the refcount bump in inherit_event();
3908 			 * this can't be the last reference.
3909 			 */
3910 			put_event(event);
3911 		}
3912 
3913 		mutex_unlock(&event->child_mutex);
3914 		mutex_unlock(&ctx->mutex);
3915 		put_ctx(ctx);
3916 		goto again;
3917 	}
3918 	mutex_unlock(&event->child_mutex);
3919 
3920 no_ctx:
3921 	put_event(event); /* Must be the 'last' reference */
3922 	return 0;
3923 }
3924 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3925 
3926 /*
3927  * Called when the last reference to the file is gone.
3928  */
3929 static int perf_release(struct inode *inode, struct file *file)
3930 {
3931 	perf_event_release_kernel(file->private_data);
3932 	return 0;
3933 }
3934 
3935 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3936 {
3937 	struct perf_event *child;
3938 	u64 total = 0;
3939 
3940 	*enabled = 0;
3941 	*running = 0;
3942 
3943 	mutex_lock(&event->child_mutex);
3944 
3945 	(void)perf_event_read(event, false);
3946 	total += perf_event_count(event);
3947 
3948 	*enabled += event->total_time_enabled +
3949 			atomic64_read(&event->child_total_time_enabled);
3950 	*running += event->total_time_running +
3951 			atomic64_read(&event->child_total_time_running);
3952 
3953 	list_for_each_entry(child, &event->child_list, child_list) {
3954 		(void)perf_event_read(child, false);
3955 		total += perf_event_count(child);
3956 		*enabled += child->total_time_enabled;
3957 		*running += child->total_time_running;
3958 	}
3959 	mutex_unlock(&event->child_mutex);
3960 
3961 	return total;
3962 }
3963 EXPORT_SYMBOL_GPL(perf_event_read_value);
3964 
3965 static int __perf_read_group_add(struct perf_event *leader,
3966 					u64 read_format, u64 *values)
3967 {
3968 	struct perf_event *sub;
3969 	int n = 1; /* skip @nr */
3970 	int ret;
3971 
3972 	ret = perf_event_read(leader, true);
3973 	if (ret)
3974 		return ret;
3975 
3976 	/*
3977 	 * Since we co-schedule groups, {enabled,running} times of siblings
3978 	 * will be identical to those of the leader, so we only publish one
3979 	 * set.
3980 	 */
3981 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3982 		values[n++] += leader->total_time_enabled +
3983 			atomic64_read(&leader->child_total_time_enabled);
3984 	}
3985 
3986 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3987 		values[n++] += leader->total_time_running +
3988 			atomic64_read(&leader->child_total_time_running);
3989 	}
3990 
3991 	/*
3992 	 * Write {count,id} tuples for every sibling.
3993 	 */
3994 	values[n++] += perf_event_count(leader);
3995 	if (read_format & PERF_FORMAT_ID)
3996 		values[n++] = primary_event_id(leader);
3997 
3998 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3999 		values[n++] += perf_event_count(sub);
4000 		if (read_format & PERF_FORMAT_ID)
4001 			values[n++] = primary_event_id(sub);
4002 	}
4003 
4004 	return 0;
4005 }
4006 
4007 static int perf_read_group(struct perf_event *event,
4008 				   u64 read_format, char __user *buf)
4009 {
4010 	struct perf_event *leader = event->group_leader, *child;
4011 	struct perf_event_context *ctx = leader->ctx;
4012 	int ret;
4013 	u64 *values;
4014 
4015 	lockdep_assert_held(&ctx->mutex);
4016 
4017 	values = kzalloc(event->read_size, GFP_KERNEL);
4018 	if (!values)
4019 		return -ENOMEM;
4020 
4021 	values[0] = 1 + leader->nr_siblings;
4022 
4023 	/*
4024 	 * By locking the child_mutex of the leader we effectively
4025 	 * lock the child list of all siblings.. XXX explain how.
4026 	 */
4027 	mutex_lock(&leader->child_mutex);
4028 
4029 	ret = __perf_read_group_add(leader, read_format, values);
4030 	if (ret)
4031 		goto unlock;
4032 
4033 	list_for_each_entry(child, &leader->child_list, child_list) {
4034 		ret = __perf_read_group_add(child, read_format, values);
4035 		if (ret)
4036 			goto unlock;
4037 	}
4038 
4039 	mutex_unlock(&leader->child_mutex);
4040 
4041 	ret = event->read_size;
4042 	if (copy_to_user(buf, values, event->read_size))
4043 		ret = -EFAULT;
4044 	goto out;
4045 
4046 unlock:
4047 	mutex_unlock(&leader->child_mutex);
4048 out:
4049 	kfree(values);
4050 	return ret;
4051 }
4052 
4053 static int perf_read_one(struct perf_event *event,
4054 				 u64 read_format, char __user *buf)
4055 {
4056 	u64 enabled, running;
4057 	u64 values[4];
4058 	int n = 0;
4059 
4060 	values[n++] = perf_event_read_value(event, &enabled, &running);
4061 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4062 		values[n++] = enabled;
4063 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4064 		values[n++] = running;
4065 	if (read_format & PERF_FORMAT_ID)
4066 		values[n++] = primary_event_id(event);
4067 
4068 	if (copy_to_user(buf, values, n * sizeof(u64)))
4069 		return -EFAULT;
4070 
4071 	return n * sizeof(u64);
4072 }
4073 
4074 static bool is_event_hup(struct perf_event *event)
4075 {
4076 	bool no_children;
4077 
4078 	if (event->state > PERF_EVENT_STATE_EXIT)
4079 		return false;
4080 
4081 	mutex_lock(&event->child_mutex);
4082 	no_children = list_empty(&event->child_list);
4083 	mutex_unlock(&event->child_mutex);
4084 	return no_children;
4085 }
4086 
4087 /*
4088  * Read the performance event - simple non blocking version for now
4089  */
4090 static ssize_t
4091 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4092 {
4093 	u64 read_format = event->attr.read_format;
4094 	int ret;
4095 
4096 	/*
4097 	 * Return end-of-file for a read on a event that is in
4098 	 * error state (i.e. because it was pinned but it couldn't be
4099 	 * scheduled on to the CPU at some point).
4100 	 */
4101 	if (event->state == PERF_EVENT_STATE_ERROR)
4102 		return 0;
4103 
4104 	if (count < event->read_size)
4105 		return -ENOSPC;
4106 
4107 	WARN_ON_ONCE(event->ctx->parent_ctx);
4108 	if (read_format & PERF_FORMAT_GROUP)
4109 		ret = perf_read_group(event, read_format, buf);
4110 	else
4111 		ret = perf_read_one(event, read_format, buf);
4112 
4113 	return ret;
4114 }
4115 
4116 static ssize_t
4117 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4118 {
4119 	struct perf_event *event = file->private_data;
4120 	struct perf_event_context *ctx;
4121 	int ret;
4122 
4123 	ctx = perf_event_ctx_lock(event);
4124 	ret = __perf_read(event, buf, count);
4125 	perf_event_ctx_unlock(event, ctx);
4126 
4127 	return ret;
4128 }
4129 
4130 static unsigned int perf_poll(struct file *file, poll_table *wait)
4131 {
4132 	struct perf_event *event = file->private_data;
4133 	struct ring_buffer *rb;
4134 	unsigned int events = POLLHUP;
4135 
4136 	poll_wait(file, &event->waitq, wait);
4137 
4138 	if (is_event_hup(event))
4139 		return events;
4140 
4141 	/*
4142 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4143 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4144 	 */
4145 	mutex_lock(&event->mmap_mutex);
4146 	rb = event->rb;
4147 	if (rb)
4148 		events = atomic_xchg(&rb->poll, 0);
4149 	mutex_unlock(&event->mmap_mutex);
4150 	return events;
4151 }
4152 
4153 static void _perf_event_reset(struct perf_event *event)
4154 {
4155 	(void)perf_event_read(event, false);
4156 	local64_set(&event->count, 0);
4157 	perf_event_update_userpage(event);
4158 }
4159 
4160 /*
4161  * Holding the top-level event's child_mutex means that any
4162  * descendant process that has inherited this event will block
4163  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4164  * task existence requirements of perf_event_enable/disable.
4165  */
4166 static void perf_event_for_each_child(struct perf_event *event,
4167 					void (*func)(struct perf_event *))
4168 {
4169 	struct perf_event *child;
4170 
4171 	WARN_ON_ONCE(event->ctx->parent_ctx);
4172 
4173 	mutex_lock(&event->child_mutex);
4174 	func(event);
4175 	list_for_each_entry(child, &event->child_list, child_list)
4176 		func(child);
4177 	mutex_unlock(&event->child_mutex);
4178 }
4179 
4180 static void perf_event_for_each(struct perf_event *event,
4181 				  void (*func)(struct perf_event *))
4182 {
4183 	struct perf_event_context *ctx = event->ctx;
4184 	struct perf_event *sibling;
4185 
4186 	lockdep_assert_held(&ctx->mutex);
4187 
4188 	event = event->group_leader;
4189 
4190 	perf_event_for_each_child(event, func);
4191 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4192 		perf_event_for_each_child(sibling, func);
4193 }
4194 
4195 static void __perf_event_period(struct perf_event *event,
4196 				struct perf_cpu_context *cpuctx,
4197 				struct perf_event_context *ctx,
4198 				void *info)
4199 {
4200 	u64 value = *((u64 *)info);
4201 	bool active;
4202 
4203 	if (event->attr.freq) {
4204 		event->attr.sample_freq = value;
4205 	} else {
4206 		event->attr.sample_period = value;
4207 		event->hw.sample_period = value;
4208 	}
4209 
4210 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4211 	if (active) {
4212 		perf_pmu_disable(ctx->pmu);
4213 		event->pmu->stop(event, PERF_EF_UPDATE);
4214 	}
4215 
4216 	local64_set(&event->hw.period_left, 0);
4217 
4218 	if (active) {
4219 		event->pmu->start(event, PERF_EF_RELOAD);
4220 		perf_pmu_enable(ctx->pmu);
4221 	}
4222 }
4223 
4224 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4225 {
4226 	u64 value;
4227 
4228 	if (!is_sampling_event(event))
4229 		return -EINVAL;
4230 
4231 	if (copy_from_user(&value, arg, sizeof(value)))
4232 		return -EFAULT;
4233 
4234 	if (!value)
4235 		return -EINVAL;
4236 
4237 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4238 		return -EINVAL;
4239 
4240 	event_function_call(event, __perf_event_period, &value);
4241 
4242 	return 0;
4243 }
4244 
4245 static const struct file_operations perf_fops;
4246 
4247 static inline int perf_fget_light(int fd, struct fd *p)
4248 {
4249 	struct fd f = fdget(fd);
4250 	if (!f.file)
4251 		return -EBADF;
4252 
4253 	if (f.file->f_op != &perf_fops) {
4254 		fdput(f);
4255 		return -EBADF;
4256 	}
4257 	*p = f;
4258 	return 0;
4259 }
4260 
4261 static int perf_event_set_output(struct perf_event *event,
4262 				 struct perf_event *output_event);
4263 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4264 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4265 
4266 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4267 {
4268 	void (*func)(struct perf_event *);
4269 	u32 flags = arg;
4270 
4271 	switch (cmd) {
4272 	case PERF_EVENT_IOC_ENABLE:
4273 		func = _perf_event_enable;
4274 		break;
4275 	case PERF_EVENT_IOC_DISABLE:
4276 		func = _perf_event_disable;
4277 		break;
4278 	case PERF_EVENT_IOC_RESET:
4279 		func = _perf_event_reset;
4280 		break;
4281 
4282 	case PERF_EVENT_IOC_REFRESH:
4283 		return _perf_event_refresh(event, arg);
4284 
4285 	case PERF_EVENT_IOC_PERIOD:
4286 		return perf_event_period(event, (u64 __user *)arg);
4287 
4288 	case PERF_EVENT_IOC_ID:
4289 	{
4290 		u64 id = primary_event_id(event);
4291 
4292 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4293 			return -EFAULT;
4294 		return 0;
4295 	}
4296 
4297 	case PERF_EVENT_IOC_SET_OUTPUT:
4298 	{
4299 		int ret;
4300 		if (arg != -1) {
4301 			struct perf_event *output_event;
4302 			struct fd output;
4303 			ret = perf_fget_light(arg, &output);
4304 			if (ret)
4305 				return ret;
4306 			output_event = output.file->private_data;
4307 			ret = perf_event_set_output(event, output_event);
4308 			fdput(output);
4309 		} else {
4310 			ret = perf_event_set_output(event, NULL);
4311 		}
4312 		return ret;
4313 	}
4314 
4315 	case PERF_EVENT_IOC_SET_FILTER:
4316 		return perf_event_set_filter(event, (void __user *)arg);
4317 
4318 	case PERF_EVENT_IOC_SET_BPF:
4319 		return perf_event_set_bpf_prog(event, arg);
4320 
4321 	default:
4322 		return -ENOTTY;
4323 	}
4324 
4325 	if (flags & PERF_IOC_FLAG_GROUP)
4326 		perf_event_for_each(event, func);
4327 	else
4328 		perf_event_for_each_child(event, func);
4329 
4330 	return 0;
4331 }
4332 
4333 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4334 {
4335 	struct perf_event *event = file->private_data;
4336 	struct perf_event_context *ctx;
4337 	long ret;
4338 
4339 	ctx = perf_event_ctx_lock(event);
4340 	ret = _perf_ioctl(event, cmd, arg);
4341 	perf_event_ctx_unlock(event, ctx);
4342 
4343 	return ret;
4344 }
4345 
4346 #ifdef CONFIG_COMPAT
4347 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4348 				unsigned long arg)
4349 {
4350 	switch (_IOC_NR(cmd)) {
4351 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4352 	case _IOC_NR(PERF_EVENT_IOC_ID):
4353 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4354 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4355 			cmd &= ~IOCSIZE_MASK;
4356 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4357 		}
4358 		break;
4359 	}
4360 	return perf_ioctl(file, cmd, arg);
4361 }
4362 #else
4363 # define perf_compat_ioctl NULL
4364 #endif
4365 
4366 int perf_event_task_enable(void)
4367 {
4368 	struct perf_event_context *ctx;
4369 	struct perf_event *event;
4370 
4371 	mutex_lock(&current->perf_event_mutex);
4372 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4373 		ctx = perf_event_ctx_lock(event);
4374 		perf_event_for_each_child(event, _perf_event_enable);
4375 		perf_event_ctx_unlock(event, ctx);
4376 	}
4377 	mutex_unlock(&current->perf_event_mutex);
4378 
4379 	return 0;
4380 }
4381 
4382 int perf_event_task_disable(void)
4383 {
4384 	struct perf_event_context *ctx;
4385 	struct perf_event *event;
4386 
4387 	mutex_lock(&current->perf_event_mutex);
4388 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4389 		ctx = perf_event_ctx_lock(event);
4390 		perf_event_for_each_child(event, _perf_event_disable);
4391 		perf_event_ctx_unlock(event, ctx);
4392 	}
4393 	mutex_unlock(&current->perf_event_mutex);
4394 
4395 	return 0;
4396 }
4397 
4398 static int perf_event_index(struct perf_event *event)
4399 {
4400 	if (event->hw.state & PERF_HES_STOPPED)
4401 		return 0;
4402 
4403 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4404 		return 0;
4405 
4406 	return event->pmu->event_idx(event);
4407 }
4408 
4409 static void calc_timer_values(struct perf_event *event,
4410 				u64 *now,
4411 				u64 *enabled,
4412 				u64 *running)
4413 {
4414 	u64 ctx_time;
4415 
4416 	*now = perf_clock();
4417 	ctx_time = event->shadow_ctx_time + *now;
4418 	*enabled = ctx_time - event->tstamp_enabled;
4419 	*running = ctx_time - event->tstamp_running;
4420 }
4421 
4422 static void perf_event_init_userpage(struct perf_event *event)
4423 {
4424 	struct perf_event_mmap_page *userpg;
4425 	struct ring_buffer *rb;
4426 
4427 	rcu_read_lock();
4428 	rb = rcu_dereference(event->rb);
4429 	if (!rb)
4430 		goto unlock;
4431 
4432 	userpg = rb->user_page;
4433 
4434 	/* Allow new userspace to detect that bit 0 is deprecated */
4435 	userpg->cap_bit0_is_deprecated = 1;
4436 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4437 	userpg->data_offset = PAGE_SIZE;
4438 	userpg->data_size = perf_data_size(rb);
4439 
4440 unlock:
4441 	rcu_read_unlock();
4442 }
4443 
4444 void __weak arch_perf_update_userpage(
4445 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4446 {
4447 }
4448 
4449 /*
4450  * Callers need to ensure there can be no nesting of this function, otherwise
4451  * the seqlock logic goes bad. We can not serialize this because the arch
4452  * code calls this from NMI context.
4453  */
4454 void perf_event_update_userpage(struct perf_event *event)
4455 {
4456 	struct perf_event_mmap_page *userpg;
4457 	struct ring_buffer *rb;
4458 	u64 enabled, running, now;
4459 
4460 	rcu_read_lock();
4461 	rb = rcu_dereference(event->rb);
4462 	if (!rb)
4463 		goto unlock;
4464 
4465 	/*
4466 	 * compute total_time_enabled, total_time_running
4467 	 * based on snapshot values taken when the event
4468 	 * was last scheduled in.
4469 	 *
4470 	 * we cannot simply called update_context_time()
4471 	 * because of locking issue as we can be called in
4472 	 * NMI context
4473 	 */
4474 	calc_timer_values(event, &now, &enabled, &running);
4475 
4476 	userpg = rb->user_page;
4477 	/*
4478 	 * Disable preemption so as to not let the corresponding user-space
4479 	 * spin too long if we get preempted.
4480 	 */
4481 	preempt_disable();
4482 	++userpg->lock;
4483 	barrier();
4484 	userpg->index = perf_event_index(event);
4485 	userpg->offset = perf_event_count(event);
4486 	if (userpg->index)
4487 		userpg->offset -= local64_read(&event->hw.prev_count);
4488 
4489 	userpg->time_enabled = enabled +
4490 			atomic64_read(&event->child_total_time_enabled);
4491 
4492 	userpg->time_running = running +
4493 			atomic64_read(&event->child_total_time_running);
4494 
4495 	arch_perf_update_userpage(event, userpg, now);
4496 
4497 	barrier();
4498 	++userpg->lock;
4499 	preempt_enable();
4500 unlock:
4501 	rcu_read_unlock();
4502 }
4503 
4504 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4505 {
4506 	struct perf_event *event = vma->vm_file->private_data;
4507 	struct ring_buffer *rb;
4508 	int ret = VM_FAULT_SIGBUS;
4509 
4510 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4511 		if (vmf->pgoff == 0)
4512 			ret = 0;
4513 		return ret;
4514 	}
4515 
4516 	rcu_read_lock();
4517 	rb = rcu_dereference(event->rb);
4518 	if (!rb)
4519 		goto unlock;
4520 
4521 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4522 		goto unlock;
4523 
4524 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4525 	if (!vmf->page)
4526 		goto unlock;
4527 
4528 	get_page(vmf->page);
4529 	vmf->page->mapping = vma->vm_file->f_mapping;
4530 	vmf->page->index   = vmf->pgoff;
4531 
4532 	ret = 0;
4533 unlock:
4534 	rcu_read_unlock();
4535 
4536 	return ret;
4537 }
4538 
4539 static void ring_buffer_attach(struct perf_event *event,
4540 			       struct ring_buffer *rb)
4541 {
4542 	struct ring_buffer *old_rb = NULL;
4543 	unsigned long flags;
4544 
4545 	if (event->rb) {
4546 		/*
4547 		 * Should be impossible, we set this when removing
4548 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4549 		 */
4550 		WARN_ON_ONCE(event->rcu_pending);
4551 
4552 		old_rb = event->rb;
4553 		spin_lock_irqsave(&old_rb->event_lock, flags);
4554 		list_del_rcu(&event->rb_entry);
4555 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4556 
4557 		event->rcu_batches = get_state_synchronize_rcu();
4558 		event->rcu_pending = 1;
4559 	}
4560 
4561 	if (rb) {
4562 		if (event->rcu_pending) {
4563 			cond_synchronize_rcu(event->rcu_batches);
4564 			event->rcu_pending = 0;
4565 		}
4566 
4567 		spin_lock_irqsave(&rb->event_lock, flags);
4568 		list_add_rcu(&event->rb_entry, &rb->event_list);
4569 		spin_unlock_irqrestore(&rb->event_lock, flags);
4570 	}
4571 
4572 	rcu_assign_pointer(event->rb, rb);
4573 
4574 	if (old_rb) {
4575 		ring_buffer_put(old_rb);
4576 		/*
4577 		 * Since we detached before setting the new rb, so that we
4578 		 * could attach the new rb, we could have missed a wakeup.
4579 		 * Provide it now.
4580 		 */
4581 		wake_up_all(&event->waitq);
4582 	}
4583 }
4584 
4585 static void ring_buffer_wakeup(struct perf_event *event)
4586 {
4587 	struct ring_buffer *rb;
4588 
4589 	rcu_read_lock();
4590 	rb = rcu_dereference(event->rb);
4591 	if (rb) {
4592 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4593 			wake_up_all(&event->waitq);
4594 	}
4595 	rcu_read_unlock();
4596 }
4597 
4598 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4599 {
4600 	struct ring_buffer *rb;
4601 
4602 	rcu_read_lock();
4603 	rb = rcu_dereference(event->rb);
4604 	if (rb) {
4605 		if (!atomic_inc_not_zero(&rb->refcount))
4606 			rb = NULL;
4607 	}
4608 	rcu_read_unlock();
4609 
4610 	return rb;
4611 }
4612 
4613 void ring_buffer_put(struct ring_buffer *rb)
4614 {
4615 	if (!atomic_dec_and_test(&rb->refcount))
4616 		return;
4617 
4618 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4619 
4620 	call_rcu(&rb->rcu_head, rb_free_rcu);
4621 }
4622 
4623 static void perf_mmap_open(struct vm_area_struct *vma)
4624 {
4625 	struct perf_event *event = vma->vm_file->private_data;
4626 
4627 	atomic_inc(&event->mmap_count);
4628 	atomic_inc(&event->rb->mmap_count);
4629 
4630 	if (vma->vm_pgoff)
4631 		atomic_inc(&event->rb->aux_mmap_count);
4632 
4633 	if (event->pmu->event_mapped)
4634 		event->pmu->event_mapped(event);
4635 }
4636 
4637 /*
4638  * A buffer can be mmap()ed multiple times; either directly through the same
4639  * event, or through other events by use of perf_event_set_output().
4640  *
4641  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4642  * the buffer here, where we still have a VM context. This means we need
4643  * to detach all events redirecting to us.
4644  */
4645 static void perf_mmap_close(struct vm_area_struct *vma)
4646 {
4647 	struct perf_event *event = vma->vm_file->private_data;
4648 
4649 	struct ring_buffer *rb = ring_buffer_get(event);
4650 	struct user_struct *mmap_user = rb->mmap_user;
4651 	int mmap_locked = rb->mmap_locked;
4652 	unsigned long size = perf_data_size(rb);
4653 
4654 	if (event->pmu->event_unmapped)
4655 		event->pmu->event_unmapped(event);
4656 
4657 	/*
4658 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4659 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4660 	 * serialize with perf_mmap here.
4661 	 */
4662 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4663 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4664 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4665 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4666 
4667 		rb_free_aux(rb);
4668 		mutex_unlock(&event->mmap_mutex);
4669 	}
4670 
4671 	atomic_dec(&rb->mmap_count);
4672 
4673 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4674 		goto out_put;
4675 
4676 	ring_buffer_attach(event, NULL);
4677 	mutex_unlock(&event->mmap_mutex);
4678 
4679 	/* If there's still other mmap()s of this buffer, we're done. */
4680 	if (atomic_read(&rb->mmap_count))
4681 		goto out_put;
4682 
4683 	/*
4684 	 * No other mmap()s, detach from all other events that might redirect
4685 	 * into the now unreachable buffer. Somewhat complicated by the
4686 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4687 	 */
4688 again:
4689 	rcu_read_lock();
4690 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4691 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4692 			/*
4693 			 * This event is en-route to free_event() which will
4694 			 * detach it and remove it from the list.
4695 			 */
4696 			continue;
4697 		}
4698 		rcu_read_unlock();
4699 
4700 		mutex_lock(&event->mmap_mutex);
4701 		/*
4702 		 * Check we didn't race with perf_event_set_output() which can
4703 		 * swizzle the rb from under us while we were waiting to
4704 		 * acquire mmap_mutex.
4705 		 *
4706 		 * If we find a different rb; ignore this event, a next
4707 		 * iteration will no longer find it on the list. We have to
4708 		 * still restart the iteration to make sure we're not now
4709 		 * iterating the wrong list.
4710 		 */
4711 		if (event->rb == rb)
4712 			ring_buffer_attach(event, NULL);
4713 
4714 		mutex_unlock(&event->mmap_mutex);
4715 		put_event(event);
4716 
4717 		/*
4718 		 * Restart the iteration; either we're on the wrong list or
4719 		 * destroyed its integrity by doing a deletion.
4720 		 */
4721 		goto again;
4722 	}
4723 	rcu_read_unlock();
4724 
4725 	/*
4726 	 * It could be there's still a few 0-ref events on the list; they'll
4727 	 * get cleaned up by free_event() -- they'll also still have their
4728 	 * ref on the rb and will free it whenever they are done with it.
4729 	 *
4730 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4731 	 * undo the VM accounting.
4732 	 */
4733 
4734 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4735 	vma->vm_mm->pinned_vm -= mmap_locked;
4736 	free_uid(mmap_user);
4737 
4738 out_put:
4739 	ring_buffer_put(rb); /* could be last */
4740 }
4741 
4742 static const struct vm_operations_struct perf_mmap_vmops = {
4743 	.open		= perf_mmap_open,
4744 	.close		= perf_mmap_close, /* non mergable */
4745 	.fault		= perf_mmap_fault,
4746 	.page_mkwrite	= perf_mmap_fault,
4747 };
4748 
4749 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4750 {
4751 	struct perf_event *event = file->private_data;
4752 	unsigned long user_locked, user_lock_limit;
4753 	struct user_struct *user = current_user();
4754 	unsigned long locked, lock_limit;
4755 	struct ring_buffer *rb = NULL;
4756 	unsigned long vma_size;
4757 	unsigned long nr_pages;
4758 	long user_extra = 0, extra = 0;
4759 	int ret = 0, flags = 0;
4760 
4761 	/*
4762 	 * Don't allow mmap() of inherited per-task counters. This would
4763 	 * create a performance issue due to all children writing to the
4764 	 * same rb.
4765 	 */
4766 	if (event->cpu == -1 && event->attr.inherit)
4767 		return -EINVAL;
4768 
4769 	if (!(vma->vm_flags & VM_SHARED))
4770 		return -EINVAL;
4771 
4772 	vma_size = vma->vm_end - vma->vm_start;
4773 
4774 	if (vma->vm_pgoff == 0) {
4775 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4776 	} else {
4777 		/*
4778 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4779 		 * mapped, all subsequent mappings should have the same size
4780 		 * and offset. Must be above the normal perf buffer.
4781 		 */
4782 		u64 aux_offset, aux_size;
4783 
4784 		if (!event->rb)
4785 			return -EINVAL;
4786 
4787 		nr_pages = vma_size / PAGE_SIZE;
4788 
4789 		mutex_lock(&event->mmap_mutex);
4790 		ret = -EINVAL;
4791 
4792 		rb = event->rb;
4793 		if (!rb)
4794 			goto aux_unlock;
4795 
4796 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4797 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4798 
4799 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4800 			goto aux_unlock;
4801 
4802 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4803 			goto aux_unlock;
4804 
4805 		/* already mapped with a different offset */
4806 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4807 			goto aux_unlock;
4808 
4809 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4810 			goto aux_unlock;
4811 
4812 		/* already mapped with a different size */
4813 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4814 			goto aux_unlock;
4815 
4816 		if (!is_power_of_2(nr_pages))
4817 			goto aux_unlock;
4818 
4819 		if (!atomic_inc_not_zero(&rb->mmap_count))
4820 			goto aux_unlock;
4821 
4822 		if (rb_has_aux(rb)) {
4823 			atomic_inc(&rb->aux_mmap_count);
4824 			ret = 0;
4825 			goto unlock;
4826 		}
4827 
4828 		atomic_set(&rb->aux_mmap_count, 1);
4829 		user_extra = nr_pages;
4830 
4831 		goto accounting;
4832 	}
4833 
4834 	/*
4835 	 * If we have rb pages ensure they're a power-of-two number, so we
4836 	 * can do bitmasks instead of modulo.
4837 	 */
4838 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4839 		return -EINVAL;
4840 
4841 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4842 		return -EINVAL;
4843 
4844 	WARN_ON_ONCE(event->ctx->parent_ctx);
4845 again:
4846 	mutex_lock(&event->mmap_mutex);
4847 	if (event->rb) {
4848 		if (event->rb->nr_pages != nr_pages) {
4849 			ret = -EINVAL;
4850 			goto unlock;
4851 		}
4852 
4853 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4854 			/*
4855 			 * Raced against perf_mmap_close() through
4856 			 * perf_event_set_output(). Try again, hope for better
4857 			 * luck.
4858 			 */
4859 			mutex_unlock(&event->mmap_mutex);
4860 			goto again;
4861 		}
4862 
4863 		goto unlock;
4864 	}
4865 
4866 	user_extra = nr_pages + 1;
4867 
4868 accounting:
4869 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4870 
4871 	/*
4872 	 * Increase the limit linearly with more CPUs:
4873 	 */
4874 	user_lock_limit *= num_online_cpus();
4875 
4876 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4877 
4878 	if (user_locked > user_lock_limit)
4879 		extra = user_locked - user_lock_limit;
4880 
4881 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4882 	lock_limit >>= PAGE_SHIFT;
4883 	locked = vma->vm_mm->pinned_vm + extra;
4884 
4885 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4886 		!capable(CAP_IPC_LOCK)) {
4887 		ret = -EPERM;
4888 		goto unlock;
4889 	}
4890 
4891 	WARN_ON(!rb && event->rb);
4892 
4893 	if (vma->vm_flags & VM_WRITE)
4894 		flags |= RING_BUFFER_WRITABLE;
4895 
4896 	if (!rb) {
4897 		rb = rb_alloc(nr_pages,
4898 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4899 			      event->cpu, flags);
4900 
4901 		if (!rb) {
4902 			ret = -ENOMEM;
4903 			goto unlock;
4904 		}
4905 
4906 		atomic_set(&rb->mmap_count, 1);
4907 		rb->mmap_user = get_current_user();
4908 		rb->mmap_locked = extra;
4909 
4910 		ring_buffer_attach(event, rb);
4911 
4912 		perf_event_init_userpage(event);
4913 		perf_event_update_userpage(event);
4914 	} else {
4915 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4916 				   event->attr.aux_watermark, flags);
4917 		if (!ret)
4918 			rb->aux_mmap_locked = extra;
4919 	}
4920 
4921 unlock:
4922 	if (!ret) {
4923 		atomic_long_add(user_extra, &user->locked_vm);
4924 		vma->vm_mm->pinned_vm += extra;
4925 
4926 		atomic_inc(&event->mmap_count);
4927 	} else if (rb) {
4928 		atomic_dec(&rb->mmap_count);
4929 	}
4930 aux_unlock:
4931 	mutex_unlock(&event->mmap_mutex);
4932 
4933 	/*
4934 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4935 	 * vma.
4936 	 */
4937 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4938 	vma->vm_ops = &perf_mmap_vmops;
4939 
4940 	if (event->pmu->event_mapped)
4941 		event->pmu->event_mapped(event);
4942 
4943 	return ret;
4944 }
4945 
4946 static int perf_fasync(int fd, struct file *filp, int on)
4947 {
4948 	struct inode *inode = file_inode(filp);
4949 	struct perf_event *event = filp->private_data;
4950 	int retval;
4951 
4952 	inode_lock(inode);
4953 	retval = fasync_helper(fd, filp, on, &event->fasync);
4954 	inode_unlock(inode);
4955 
4956 	if (retval < 0)
4957 		return retval;
4958 
4959 	return 0;
4960 }
4961 
4962 static const struct file_operations perf_fops = {
4963 	.llseek			= no_llseek,
4964 	.release		= perf_release,
4965 	.read			= perf_read,
4966 	.poll			= perf_poll,
4967 	.unlocked_ioctl		= perf_ioctl,
4968 	.compat_ioctl		= perf_compat_ioctl,
4969 	.mmap			= perf_mmap,
4970 	.fasync			= perf_fasync,
4971 };
4972 
4973 /*
4974  * Perf event wakeup
4975  *
4976  * If there's data, ensure we set the poll() state and publish everything
4977  * to user-space before waking everybody up.
4978  */
4979 
4980 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4981 {
4982 	/* only the parent has fasync state */
4983 	if (event->parent)
4984 		event = event->parent;
4985 	return &event->fasync;
4986 }
4987 
4988 void perf_event_wakeup(struct perf_event *event)
4989 {
4990 	ring_buffer_wakeup(event);
4991 
4992 	if (event->pending_kill) {
4993 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4994 		event->pending_kill = 0;
4995 	}
4996 }
4997 
4998 static void perf_pending_event(struct irq_work *entry)
4999 {
5000 	struct perf_event *event = container_of(entry,
5001 			struct perf_event, pending);
5002 	int rctx;
5003 
5004 	rctx = perf_swevent_get_recursion_context();
5005 	/*
5006 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5007 	 * and we won't recurse 'further'.
5008 	 */
5009 
5010 	if (event->pending_disable) {
5011 		event->pending_disable = 0;
5012 		perf_event_disable_local(event);
5013 	}
5014 
5015 	if (event->pending_wakeup) {
5016 		event->pending_wakeup = 0;
5017 		perf_event_wakeup(event);
5018 	}
5019 
5020 	if (rctx >= 0)
5021 		perf_swevent_put_recursion_context(rctx);
5022 }
5023 
5024 /*
5025  * We assume there is only KVM supporting the callbacks.
5026  * Later on, we might change it to a list if there is
5027  * another virtualization implementation supporting the callbacks.
5028  */
5029 struct perf_guest_info_callbacks *perf_guest_cbs;
5030 
5031 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5032 {
5033 	perf_guest_cbs = cbs;
5034 	return 0;
5035 }
5036 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5037 
5038 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5039 {
5040 	perf_guest_cbs = NULL;
5041 	return 0;
5042 }
5043 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5044 
5045 static void
5046 perf_output_sample_regs(struct perf_output_handle *handle,
5047 			struct pt_regs *regs, u64 mask)
5048 {
5049 	int bit;
5050 
5051 	for_each_set_bit(bit, (const unsigned long *) &mask,
5052 			 sizeof(mask) * BITS_PER_BYTE) {
5053 		u64 val;
5054 
5055 		val = perf_reg_value(regs, bit);
5056 		perf_output_put(handle, val);
5057 	}
5058 }
5059 
5060 static void perf_sample_regs_user(struct perf_regs *regs_user,
5061 				  struct pt_regs *regs,
5062 				  struct pt_regs *regs_user_copy)
5063 {
5064 	if (user_mode(regs)) {
5065 		regs_user->abi = perf_reg_abi(current);
5066 		regs_user->regs = regs;
5067 	} else if (current->mm) {
5068 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5069 	} else {
5070 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5071 		regs_user->regs = NULL;
5072 	}
5073 }
5074 
5075 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5076 				  struct pt_regs *regs)
5077 {
5078 	regs_intr->regs = regs;
5079 	regs_intr->abi  = perf_reg_abi(current);
5080 }
5081 
5082 
5083 /*
5084  * Get remaining task size from user stack pointer.
5085  *
5086  * It'd be better to take stack vma map and limit this more
5087  * precisly, but there's no way to get it safely under interrupt,
5088  * so using TASK_SIZE as limit.
5089  */
5090 static u64 perf_ustack_task_size(struct pt_regs *regs)
5091 {
5092 	unsigned long addr = perf_user_stack_pointer(regs);
5093 
5094 	if (!addr || addr >= TASK_SIZE)
5095 		return 0;
5096 
5097 	return TASK_SIZE - addr;
5098 }
5099 
5100 static u16
5101 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5102 			struct pt_regs *regs)
5103 {
5104 	u64 task_size;
5105 
5106 	/* No regs, no stack pointer, no dump. */
5107 	if (!regs)
5108 		return 0;
5109 
5110 	/*
5111 	 * Check if we fit in with the requested stack size into the:
5112 	 * - TASK_SIZE
5113 	 *   If we don't, we limit the size to the TASK_SIZE.
5114 	 *
5115 	 * - remaining sample size
5116 	 *   If we don't, we customize the stack size to
5117 	 *   fit in to the remaining sample size.
5118 	 */
5119 
5120 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5121 	stack_size = min(stack_size, (u16) task_size);
5122 
5123 	/* Current header size plus static size and dynamic size. */
5124 	header_size += 2 * sizeof(u64);
5125 
5126 	/* Do we fit in with the current stack dump size? */
5127 	if ((u16) (header_size + stack_size) < header_size) {
5128 		/*
5129 		 * If we overflow the maximum size for the sample,
5130 		 * we customize the stack dump size to fit in.
5131 		 */
5132 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5133 		stack_size = round_up(stack_size, sizeof(u64));
5134 	}
5135 
5136 	return stack_size;
5137 }
5138 
5139 static void
5140 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5141 			  struct pt_regs *regs)
5142 {
5143 	/* Case of a kernel thread, nothing to dump */
5144 	if (!regs) {
5145 		u64 size = 0;
5146 		perf_output_put(handle, size);
5147 	} else {
5148 		unsigned long sp;
5149 		unsigned int rem;
5150 		u64 dyn_size;
5151 
5152 		/*
5153 		 * We dump:
5154 		 * static size
5155 		 *   - the size requested by user or the best one we can fit
5156 		 *     in to the sample max size
5157 		 * data
5158 		 *   - user stack dump data
5159 		 * dynamic size
5160 		 *   - the actual dumped size
5161 		 */
5162 
5163 		/* Static size. */
5164 		perf_output_put(handle, dump_size);
5165 
5166 		/* Data. */
5167 		sp = perf_user_stack_pointer(regs);
5168 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5169 		dyn_size = dump_size - rem;
5170 
5171 		perf_output_skip(handle, rem);
5172 
5173 		/* Dynamic size. */
5174 		perf_output_put(handle, dyn_size);
5175 	}
5176 }
5177 
5178 static void __perf_event_header__init_id(struct perf_event_header *header,
5179 					 struct perf_sample_data *data,
5180 					 struct perf_event *event)
5181 {
5182 	u64 sample_type = event->attr.sample_type;
5183 
5184 	data->type = sample_type;
5185 	header->size += event->id_header_size;
5186 
5187 	if (sample_type & PERF_SAMPLE_TID) {
5188 		/* namespace issues */
5189 		data->tid_entry.pid = perf_event_pid(event, current);
5190 		data->tid_entry.tid = perf_event_tid(event, current);
5191 	}
5192 
5193 	if (sample_type & PERF_SAMPLE_TIME)
5194 		data->time = perf_event_clock(event);
5195 
5196 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5197 		data->id = primary_event_id(event);
5198 
5199 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5200 		data->stream_id = event->id;
5201 
5202 	if (sample_type & PERF_SAMPLE_CPU) {
5203 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5204 		data->cpu_entry.reserved = 0;
5205 	}
5206 }
5207 
5208 void perf_event_header__init_id(struct perf_event_header *header,
5209 				struct perf_sample_data *data,
5210 				struct perf_event *event)
5211 {
5212 	if (event->attr.sample_id_all)
5213 		__perf_event_header__init_id(header, data, event);
5214 }
5215 
5216 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5217 					   struct perf_sample_data *data)
5218 {
5219 	u64 sample_type = data->type;
5220 
5221 	if (sample_type & PERF_SAMPLE_TID)
5222 		perf_output_put(handle, data->tid_entry);
5223 
5224 	if (sample_type & PERF_SAMPLE_TIME)
5225 		perf_output_put(handle, data->time);
5226 
5227 	if (sample_type & PERF_SAMPLE_ID)
5228 		perf_output_put(handle, data->id);
5229 
5230 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5231 		perf_output_put(handle, data->stream_id);
5232 
5233 	if (sample_type & PERF_SAMPLE_CPU)
5234 		perf_output_put(handle, data->cpu_entry);
5235 
5236 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5237 		perf_output_put(handle, data->id);
5238 }
5239 
5240 void perf_event__output_id_sample(struct perf_event *event,
5241 				  struct perf_output_handle *handle,
5242 				  struct perf_sample_data *sample)
5243 {
5244 	if (event->attr.sample_id_all)
5245 		__perf_event__output_id_sample(handle, sample);
5246 }
5247 
5248 static void perf_output_read_one(struct perf_output_handle *handle,
5249 				 struct perf_event *event,
5250 				 u64 enabled, u64 running)
5251 {
5252 	u64 read_format = event->attr.read_format;
5253 	u64 values[4];
5254 	int n = 0;
5255 
5256 	values[n++] = perf_event_count(event);
5257 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5258 		values[n++] = enabled +
5259 			atomic64_read(&event->child_total_time_enabled);
5260 	}
5261 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5262 		values[n++] = running +
5263 			atomic64_read(&event->child_total_time_running);
5264 	}
5265 	if (read_format & PERF_FORMAT_ID)
5266 		values[n++] = primary_event_id(event);
5267 
5268 	__output_copy(handle, values, n * sizeof(u64));
5269 }
5270 
5271 /*
5272  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5273  */
5274 static void perf_output_read_group(struct perf_output_handle *handle,
5275 			    struct perf_event *event,
5276 			    u64 enabled, u64 running)
5277 {
5278 	struct perf_event *leader = event->group_leader, *sub;
5279 	u64 read_format = event->attr.read_format;
5280 	u64 values[5];
5281 	int n = 0;
5282 
5283 	values[n++] = 1 + leader->nr_siblings;
5284 
5285 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5286 		values[n++] = enabled;
5287 
5288 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5289 		values[n++] = running;
5290 
5291 	if (leader != event)
5292 		leader->pmu->read(leader);
5293 
5294 	values[n++] = perf_event_count(leader);
5295 	if (read_format & PERF_FORMAT_ID)
5296 		values[n++] = primary_event_id(leader);
5297 
5298 	__output_copy(handle, values, n * sizeof(u64));
5299 
5300 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5301 		n = 0;
5302 
5303 		if ((sub != event) &&
5304 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5305 			sub->pmu->read(sub);
5306 
5307 		values[n++] = perf_event_count(sub);
5308 		if (read_format & PERF_FORMAT_ID)
5309 			values[n++] = primary_event_id(sub);
5310 
5311 		__output_copy(handle, values, n * sizeof(u64));
5312 	}
5313 }
5314 
5315 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5316 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5317 
5318 static void perf_output_read(struct perf_output_handle *handle,
5319 			     struct perf_event *event)
5320 {
5321 	u64 enabled = 0, running = 0, now;
5322 	u64 read_format = event->attr.read_format;
5323 
5324 	/*
5325 	 * compute total_time_enabled, total_time_running
5326 	 * based on snapshot values taken when the event
5327 	 * was last scheduled in.
5328 	 *
5329 	 * we cannot simply called update_context_time()
5330 	 * because of locking issue as we are called in
5331 	 * NMI context
5332 	 */
5333 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5334 		calc_timer_values(event, &now, &enabled, &running);
5335 
5336 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5337 		perf_output_read_group(handle, event, enabled, running);
5338 	else
5339 		perf_output_read_one(handle, event, enabled, running);
5340 }
5341 
5342 void perf_output_sample(struct perf_output_handle *handle,
5343 			struct perf_event_header *header,
5344 			struct perf_sample_data *data,
5345 			struct perf_event *event)
5346 {
5347 	u64 sample_type = data->type;
5348 
5349 	perf_output_put(handle, *header);
5350 
5351 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5352 		perf_output_put(handle, data->id);
5353 
5354 	if (sample_type & PERF_SAMPLE_IP)
5355 		perf_output_put(handle, data->ip);
5356 
5357 	if (sample_type & PERF_SAMPLE_TID)
5358 		perf_output_put(handle, data->tid_entry);
5359 
5360 	if (sample_type & PERF_SAMPLE_TIME)
5361 		perf_output_put(handle, data->time);
5362 
5363 	if (sample_type & PERF_SAMPLE_ADDR)
5364 		perf_output_put(handle, data->addr);
5365 
5366 	if (sample_type & PERF_SAMPLE_ID)
5367 		perf_output_put(handle, data->id);
5368 
5369 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5370 		perf_output_put(handle, data->stream_id);
5371 
5372 	if (sample_type & PERF_SAMPLE_CPU)
5373 		perf_output_put(handle, data->cpu_entry);
5374 
5375 	if (sample_type & PERF_SAMPLE_PERIOD)
5376 		perf_output_put(handle, data->period);
5377 
5378 	if (sample_type & PERF_SAMPLE_READ)
5379 		perf_output_read(handle, event);
5380 
5381 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5382 		if (data->callchain) {
5383 			int size = 1;
5384 
5385 			if (data->callchain)
5386 				size += data->callchain->nr;
5387 
5388 			size *= sizeof(u64);
5389 
5390 			__output_copy(handle, data->callchain, size);
5391 		} else {
5392 			u64 nr = 0;
5393 			perf_output_put(handle, nr);
5394 		}
5395 	}
5396 
5397 	if (sample_type & PERF_SAMPLE_RAW) {
5398 		if (data->raw) {
5399 			u32 raw_size = data->raw->size;
5400 			u32 real_size = round_up(raw_size + sizeof(u32),
5401 						 sizeof(u64)) - sizeof(u32);
5402 			u64 zero = 0;
5403 
5404 			perf_output_put(handle, real_size);
5405 			__output_copy(handle, data->raw->data, raw_size);
5406 			if (real_size - raw_size)
5407 				__output_copy(handle, &zero, real_size - raw_size);
5408 		} else {
5409 			struct {
5410 				u32	size;
5411 				u32	data;
5412 			} raw = {
5413 				.size = sizeof(u32),
5414 				.data = 0,
5415 			};
5416 			perf_output_put(handle, raw);
5417 		}
5418 	}
5419 
5420 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5421 		if (data->br_stack) {
5422 			size_t size;
5423 
5424 			size = data->br_stack->nr
5425 			     * sizeof(struct perf_branch_entry);
5426 
5427 			perf_output_put(handle, data->br_stack->nr);
5428 			perf_output_copy(handle, data->br_stack->entries, size);
5429 		} else {
5430 			/*
5431 			 * we always store at least the value of nr
5432 			 */
5433 			u64 nr = 0;
5434 			perf_output_put(handle, nr);
5435 		}
5436 	}
5437 
5438 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5439 		u64 abi = data->regs_user.abi;
5440 
5441 		/*
5442 		 * If there are no regs to dump, notice it through
5443 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5444 		 */
5445 		perf_output_put(handle, abi);
5446 
5447 		if (abi) {
5448 			u64 mask = event->attr.sample_regs_user;
5449 			perf_output_sample_regs(handle,
5450 						data->regs_user.regs,
5451 						mask);
5452 		}
5453 	}
5454 
5455 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5456 		perf_output_sample_ustack(handle,
5457 					  data->stack_user_size,
5458 					  data->regs_user.regs);
5459 	}
5460 
5461 	if (sample_type & PERF_SAMPLE_WEIGHT)
5462 		perf_output_put(handle, data->weight);
5463 
5464 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5465 		perf_output_put(handle, data->data_src.val);
5466 
5467 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5468 		perf_output_put(handle, data->txn);
5469 
5470 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5471 		u64 abi = data->regs_intr.abi;
5472 		/*
5473 		 * If there are no regs to dump, notice it through
5474 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5475 		 */
5476 		perf_output_put(handle, abi);
5477 
5478 		if (abi) {
5479 			u64 mask = event->attr.sample_regs_intr;
5480 
5481 			perf_output_sample_regs(handle,
5482 						data->regs_intr.regs,
5483 						mask);
5484 		}
5485 	}
5486 
5487 	if (!event->attr.watermark) {
5488 		int wakeup_events = event->attr.wakeup_events;
5489 
5490 		if (wakeup_events) {
5491 			struct ring_buffer *rb = handle->rb;
5492 			int events = local_inc_return(&rb->events);
5493 
5494 			if (events >= wakeup_events) {
5495 				local_sub(wakeup_events, &rb->events);
5496 				local_inc(&rb->wakeup);
5497 			}
5498 		}
5499 	}
5500 }
5501 
5502 void perf_prepare_sample(struct perf_event_header *header,
5503 			 struct perf_sample_data *data,
5504 			 struct perf_event *event,
5505 			 struct pt_regs *regs)
5506 {
5507 	u64 sample_type = event->attr.sample_type;
5508 
5509 	header->type = PERF_RECORD_SAMPLE;
5510 	header->size = sizeof(*header) + event->header_size;
5511 
5512 	header->misc = 0;
5513 	header->misc |= perf_misc_flags(regs);
5514 
5515 	__perf_event_header__init_id(header, data, event);
5516 
5517 	if (sample_type & PERF_SAMPLE_IP)
5518 		data->ip = perf_instruction_pointer(regs);
5519 
5520 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5521 		int size = 1;
5522 
5523 		data->callchain = perf_callchain(event, regs);
5524 
5525 		if (data->callchain)
5526 			size += data->callchain->nr;
5527 
5528 		header->size += size * sizeof(u64);
5529 	}
5530 
5531 	if (sample_type & PERF_SAMPLE_RAW) {
5532 		int size = sizeof(u32);
5533 
5534 		if (data->raw)
5535 			size += data->raw->size;
5536 		else
5537 			size += sizeof(u32);
5538 
5539 		header->size += round_up(size, sizeof(u64));
5540 	}
5541 
5542 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5543 		int size = sizeof(u64); /* nr */
5544 		if (data->br_stack) {
5545 			size += data->br_stack->nr
5546 			      * sizeof(struct perf_branch_entry);
5547 		}
5548 		header->size += size;
5549 	}
5550 
5551 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5552 		perf_sample_regs_user(&data->regs_user, regs,
5553 				      &data->regs_user_copy);
5554 
5555 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5556 		/* regs dump ABI info */
5557 		int size = sizeof(u64);
5558 
5559 		if (data->regs_user.regs) {
5560 			u64 mask = event->attr.sample_regs_user;
5561 			size += hweight64(mask) * sizeof(u64);
5562 		}
5563 
5564 		header->size += size;
5565 	}
5566 
5567 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5568 		/*
5569 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5570 		 * processed as the last one or have additional check added
5571 		 * in case new sample type is added, because we could eat
5572 		 * up the rest of the sample size.
5573 		 */
5574 		u16 stack_size = event->attr.sample_stack_user;
5575 		u16 size = sizeof(u64);
5576 
5577 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5578 						     data->regs_user.regs);
5579 
5580 		/*
5581 		 * If there is something to dump, add space for the dump
5582 		 * itself and for the field that tells the dynamic size,
5583 		 * which is how many have been actually dumped.
5584 		 */
5585 		if (stack_size)
5586 			size += sizeof(u64) + stack_size;
5587 
5588 		data->stack_user_size = stack_size;
5589 		header->size += size;
5590 	}
5591 
5592 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5593 		/* regs dump ABI info */
5594 		int size = sizeof(u64);
5595 
5596 		perf_sample_regs_intr(&data->regs_intr, regs);
5597 
5598 		if (data->regs_intr.regs) {
5599 			u64 mask = event->attr.sample_regs_intr;
5600 
5601 			size += hweight64(mask) * sizeof(u64);
5602 		}
5603 
5604 		header->size += size;
5605 	}
5606 }
5607 
5608 void perf_event_output(struct perf_event *event,
5609 			struct perf_sample_data *data,
5610 			struct pt_regs *regs)
5611 {
5612 	struct perf_output_handle handle;
5613 	struct perf_event_header header;
5614 
5615 	/* protect the callchain buffers */
5616 	rcu_read_lock();
5617 
5618 	perf_prepare_sample(&header, data, event, regs);
5619 
5620 	if (perf_output_begin(&handle, event, header.size))
5621 		goto exit;
5622 
5623 	perf_output_sample(&handle, &header, data, event);
5624 
5625 	perf_output_end(&handle);
5626 
5627 exit:
5628 	rcu_read_unlock();
5629 }
5630 
5631 /*
5632  * read event_id
5633  */
5634 
5635 struct perf_read_event {
5636 	struct perf_event_header	header;
5637 
5638 	u32				pid;
5639 	u32				tid;
5640 };
5641 
5642 static void
5643 perf_event_read_event(struct perf_event *event,
5644 			struct task_struct *task)
5645 {
5646 	struct perf_output_handle handle;
5647 	struct perf_sample_data sample;
5648 	struct perf_read_event read_event = {
5649 		.header = {
5650 			.type = PERF_RECORD_READ,
5651 			.misc = 0,
5652 			.size = sizeof(read_event) + event->read_size,
5653 		},
5654 		.pid = perf_event_pid(event, task),
5655 		.tid = perf_event_tid(event, task),
5656 	};
5657 	int ret;
5658 
5659 	perf_event_header__init_id(&read_event.header, &sample, event);
5660 	ret = perf_output_begin(&handle, event, read_event.header.size);
5661 	if (ret)
5662 		return;
5663 
5664 	perf_output_put(&handle, read_event);
5665 	perf_output_read(&handle, event);
5666 	perf_event__output_id_sample(event, &handle, &sample);
5667 
5668 	perf_output_end(&handle);
5669 }
5670 
5671 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5672 
5673 static void
5674 perf_event_aux_ctx(struct perf_event_context *ctx,
5675 		   perf_event_aux_output_cb output,
5676 		   void *data)
5677 {
5678 	struct perf_event *event;
5679 
5680 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5681 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5682 			continue;
5683 		if (!event_filter_match(event))
5684 			continue;
5685 		output(event, data);
5686 	}
5687 }
5688 
5689 static void
5690 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5691 			struct perf_event_context *task_ctx)
5692 {
5693 	rcu_read_lock();
5694 	preempt_disable();
5695 	perf_event_aux_ctx(task_ctx, output, data);
5696 	preempt_enable();
5697 	rcu_read_unlock();
5698 }
5699 
5700 static void
5701 perf_event_aux(perf_event_aux_output_cb output, void *data,
5702 	       struct perf_event_context *task_ctx)
5703 {
5704 	struct perf_cpu_context *cpuctx;
5705 	struct perf_event_context *ctx;
5706 	struct pmu *pmu;
5707 	int ctxn;
5708 
5709 	/*
5710 	 * If we have task_ctx != NULL we only notify
5711 	 * the task context itself. The task_ctx is set
5712 	 * only for EXIT events before releasing task
5713 	 * context.
5714 	 */
5715 	if (task_ctx) {
5716 		perf_event_aux_task_ctx(output, data, task_ctx);
5717 		return;
5718 	}
5719 
5720 	rcu_read_lock();
5721 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5722 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5723 		if (cpuctx->unique_pmu != pmu)
5724 			goto next;
5725 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5726 		ctxn = pmu->task_ctx_nr;
5727 		if (ctxn < 0)
5728 			goto next;
5729 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5730 		if (ctx)
5731 			perf_event_aux_ctx(ctx, output, data);
5732 next:
5733 		put_cpu_ptr(pmu->pmu_cpu_context);
5734 	}
5735 	rcu_read_unlock();
5736 }
5737 
5738 /*
5739  * task tracking -- fork/exit
5740  *
5741  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5742  */
5743 
5744 struct perf_task_event {
5745 	struct task_struct		*task;
5746 	struct perf_event_context	*task_ctx;
5747 
5748 	struct {
5749 		struct perf_event_header	header;
5750 
5751 		u32				pid;
5752 		u32				ppid;
5753 		u32				tid;
5754 		u32				ptid;
5755 		u64				time;
5756 	} event_id;
5757 };
5758 
5759 static int perf_event_task_match(struct perf_event *event)
5760 {
5761 	return event->attr.comm  || event->attr.mmap ||
5762 	       event->attr.mmap2 || event->attr.mmap_data ||
5763 	       event->attr.task;
5764 }
5765 
5766 static void perf_event_task_output(struct perf_event *event,
5767 				   void *data)
5768 {
5769 	struct perf_task_event *task_event = data;
5770 	struct perf_output_handle handle;
5771 	struct perf_sample_data	sample;
5772 	struct task_struct *task = task_event->task;
5773 	int ret, size = task_event->event_id.header.size;
5774 
5775 	if (!perf_event_task_match(event))
5776 		return;
5777 
5778 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5779 
5780 	ret = perf_output_begin(&handle, event,
5781 				task_event->event_id.header.size);
5782 	if (ret)
5783 		goto out;
5784 
5785 	task_event->event_id.pid = perf_event_pid(event, task);
5786 	task_event->event_id.ppid = perf_event_pid(event, current);
5787 
5788 	task_event->event_id.tid = perf_event_tid(event, task);
5789 	task_event->event_id.ptid = perf_event_tid(event, current);
5790 
5791 	task_event->event_id.time = perf_event_clock(event);
5792 
5793 	perf_output_put(&handle, task_event->event_id);
5794 
5795 	perf_event__output_id_sample(event, &handle, &sample);
5796 
5797 	perf_output_end(&handle);
5798 out:
5799 	task_event->event_id.header.size = size;
5800 }
5801 
5802 static void perf_event_task(struct task_struct *task,
5803 			      struct perf_event_context *task_ctx,
5804 			      int new)
5805 {
5806 	struct perf_task_event task_event;
5807 
5808 	if (!atomic_read(&nr_comm_events) &&
5809 	    !atomic_read(&nr_mmap_events) &&
5810 	    !atomic_read(&nr_task_events))
5811 		return;
5812 
5813 	task_event = (struct perf_task_event){
5814 		.task	  = task,
5815 		.task_ctx = task_ctx,
5816 		.event_id    = {
5817 			.header = {
5818 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5819 				.misc = 0,
5820 				.size = sizeof(task_event.event_id),
5821 			},
5822 			/* .pid  */
5823 			/* .ppid */
5824 			/* .tid  */
5825 			/* .ptid */
5826 			/* .time */
5827 		},
5828 	};
5829 
5830 	perf_event_aux(perf_event_task_output,
5831 		       &task_event,
5832 		       task_ctx);
5833 }
5834 
5835 void perf_event_fork(struct task_struct *task)
5836 {
5837 	perf_event_task(task, NULL, 1);
5838 }
5839 
5840 /*
5841  * comm tracking
5842  */
5843 
5844 struct perf_comm_event {
5845 	struct task_struct	*task;
5846 	char			*comm;
5847 	int			comm_size;
5848 
5849 	struct {
5850 		struct perf_event_header	header;
5851 
5852 		u32				pid;
5853 		u32				tid;
5854 	} event_id;
5855 };
5856 
5857 static int perf_event_comm_match(struct perf_event *event)
5858 {
5859 	return event->attr.comm;
5860 }
5861 
5862 static void perf_event_comm_output(struct perf_event *event,
5863 				   void *data)
5864 {
5865 	struct perf_comm_event *comm_event = data;
5866 	struct perf_output_handle handle;
5867 	struct perf_sample_data sample;
5868 	int size = comm_event->event_id.header.size;
5869 	int ret;
5870 
5871 	if (!perf_event_comm_match(event))
5872 		return;
5873 
5874 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5875 	ret = perf_output_begin(&handle, event,
5876 				comm_event->event_id.header.size);
5877 
5878 	if (ret)
5879 		goto out;
5880 
5881 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5882 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5883 
5884 	perf_output_put(&handle, comm_event->event_id);
5885 	__output_copy(&handle, comm_event->comm,
5886 				   comm_event->comm_size);
5887 
5888 	perf_event__output_id_sample(event, &handle, &sample);
5889 
5890 	perf_output_end(&handle);
5891 out:
5892 	comm_event->event_id.header.size = size;
5893 }
5894 
5895 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5896 {
5897 	char comm[TASK_COMM_LEN];
5898 	unsigned int size;
5899 
5900 	memset(comm, 0, sizeof(comm));
5901 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5902 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5903 
5904 	comm_event->comm = comm;
5905 	comm_event->comm_size = size;
5906 
5907 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5908 
5909 	perf_event_aux(perf_event_comm_output,
5910 		       comm_event,
5911 		       NULL);
5912 }
5913 
5914 void perf_event_comm(struct task_struct *task, bool exec)
5915 {
5916 	struct perf_comm_event comm_event;
5917 
5918 	if (!atomic_read(&nr_comm_events))
5919 		return;
5920 
5921 	comm_event = (struct perf_comm_event){
5922 		.task	= task,
5923 		/* .comm      */
5924 		/* .comm_size */
5925 		.event_id  = {
5926 			.header = {
5927 				.type = PERF_RECORD_COMM,
5928 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5929 				/* .size */
5930 			},
5931 			/* .pid */
5932 			/* .tid */
5933 		},
5934 	};
5935 
5936 	perf_event_comm_event(&comm_event);
5937 }
5938 
5939 /*
5940  * mmap tracking
5941  */
5942 
5943 struct perf_mmap_event {
5944 	struct vm_area_struct	*vma;
5945 
5946 	const char		*file_name;
5947 	int			file_size;
5948 	int			maj, min;
5949 	u64			ino;
5950 	u64			ino_generation;
5951 	u32			prot, flags;
5952 
5953 	struct {
5954 		struct perf_event_header	header;
5955 
5956 		u32				pid;
5957 		u32				tid;
5958 		u64				start;
5959 		u64				len;
5960 		u64				pgoff;
5961 	} event_id;
5962 };
5963 
5964 static int perf_event_mmap_match(struct perf_event *event,
5965 				 void *data)
5966 {
5967 	struct perf_mmap_event *mmap_event = data;
5968 	struct vm_area_struct *vma = mmap_event->vma;
5969 	int executable = vma->vm_flags & VM_EXEC;
5970 
5971 	return (!executable && event->attr.mmap_data) ||
5972 	       (executable && (event->attr.mmap || event->attr.mmap2));
5973 }
5974 
5975 static void perf_event_mmap_output(struct perf_event *event,
5976 				   void *data)
5977 {
5978 	struct perf_mmap_event *mmap_event = data;
5979 	struct perf_output_handle handle;
5980 	struct perf_sample_data sample;
5981 	int size = mmap_event->event_id.header.size;
5982 	int ret;
5983 
5984 	if (!perf_event_mmap_match(event, data))
5985 		return;
5986 
5987 	if (event->attr.mmap2) {
5988 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5989 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5990 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5991 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5992 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5993 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5994 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5995 	}
5996 
5997 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5998 	ret = perf_output_begin(&handle, event,
5999 				mmap_event->event_id.header.size);
6000 	if (ret)
6001 		goto out;
6002 
6003 	mmap_event->event_id.pid = perf_event_pid(event, current);
6004 	mmap_event->event_id.tid = perf_event_tid(event, current);
6005 
6006 	perf_output_put(&handle, mmap_event->event_id);
6007 
6008 	if (event->attr.mmap2) {
6009 		perf_output_put(&handle, mmap_event->maj);
6010 		perf_output_put(&handle, mmap_event->min);
6011 		perf_output_put(&handle, mmap_event->ino);
6012 		perf_output_put(&handle, mmap_event->ino_generation);
6013 		perf_output_put(&handle, mmap_event->prot);
6014 		perf_output_put(&handle, mmap_event->flags);
6015 	}
6016 
6017 	__output_copy(&handle, mmap_event->file_name,
6018 				   mmap_event->file_size);
6019 
6020 	perf_event__output_id_sample(event, &handle, &sample);
6021 
6022 	perf_output_end(&handle);
6023 out:
6024 	mmap_event->event_id.header.size = size;
6025 }
6026 
6027 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6028 {
6029 	struct vm_area_struct *vma = mmap_event->vma;
6030 	struct file *file = vma->vm_file;
6031 	int maj = 0, min = 0;
6032 	u64 ino = 0, gen = 0;
6033 	u32 prot = 0, flags = 0;
6034 	unsigned int size;
6035 	char tmp[16];
6036 	char *buf = NULL;
6037 	char *name;
6038 
6039 	if (file) {
6040 		struct inode *inode;
6041 		dev_t dev;
6042 
6043 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6044 		if (!buf) {
6045 			name = "//enomem";
6046 			goto cpy_name;
6047 		}
6048 		/*
6049 		 * d_path() works from the end of the rb backwards, so we
6050 		 * need to add enough zero bytes after the string to handle
6051 		 * the 64bit alignment we do later.
6052 		 */
6053 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6054 		if (IS_ERR(name)) {
6055 			name = "//toolong";
6056 			goto cpy_name;
6057 		}
6058 		inode = file_inode(vma->vm_file);
6059 		dev = inode->i_sb->s_dev;
6060 		ino = inode->i_ino;
6061 		gen = inode->i_generation;
6062 		maj = MAJOR(dev);
6063 		min = MINOR(dev);
6064 
6065 		if (vma->vm_flags & VM_READ)
6066 			prot |= PROT_READ;
6067 		if (vma->vm_flags & VM_WRITE)
6068 			prot |= PROT_WRITE;
6069 		if (vma->vm_flags & VM_EXEC)
6070 			prot |= PROT_EXEC;
6071 
6072 		if (vma->vm_flags & VM_MAYSHARE)
6073 			flags = MAP_SHARED;
6074 		else
6075 			flags = MAP_PRIVATE;
6076 
6077 		if (vma->vm_flags & VM_DENYWRITE)
6078 			flags |= MAP_DENYWRITE;
6079 		if (vma->vm_flags & VM_MAYEXEC)
6080 			flags |= MAP_EXECUTABLE;
6081 		if (vma->vm_flags & VM_LOCKED)
6082 			flags |= MAP_LOCKED;
6083 		if (vma->vm_flags & VM_HUGETLB)
6084 			flags |= MAP_HUGETLB;
6085 
6086 		goto got_name;
6087 	} else {
6088 		if (vma->vm_ops && vma->vm_ops->name) {
6089 			name = (char *) vma->vm_ops->name(vma);
6090 			if (name)
6091 				goto cpy_name;
6092 		}
6093 
6094 		name = (char *)arch_vma_name(vma);
6095 		if (name)
6096 			goto cpy_name;
6097 
6098 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6099 				vma->vm_end >= vma->vm_mm->brk) {
6100 			name = "[heap]";
6101 			goto cpy_name;
6102 		}
6103 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6104 				vma->vm_end >= vma->vm_mm->start_stack) {
6105 			name = "[stack]";
6106 			goto cpy_name;
6107 		}
6108 
6109 		name = "//anon";
6110 		goto cpy_name;
6111 	}
6112 
6113 cpy_name:
6114 	strlcpy(tmp, name, sizeof(tmp));
6115 	name = tmp;
6116 got_name:
6117 	/*
6118 	 * Since our buffer works in 8 byte units we need to align our string
6119 	 * size to a multiple of 8. However, we must guarantee the tail end is
6120 	 * zero'd out to avoid leaking random bits to userspace.
6121 	 */
6122 	size = strlen(name)+1;
6123 	while (!IS_ALIGNED(size, sizeof(u64)))
6124 		name[size++] = '\0';
6125 
6126 	mmap_event->file_name = name;
6127 	mmap_event->file_size = size;
6128 	mmap_event->maj = maj;
6129 	mmap_event->min = min;
6130 	mmap_event->ino = ino;
6131 	mmap_event->ino_generation = gen;
6132 	mmap_event->prot = prot;
6133 	mmap_event->flags = flags;
6134 
6135 	if (!(vma->vm_flags & VM_EXEC))
6136 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6137 
6138 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6139 
6140 	perf_event_aux(perf_event_mmap_output,
6141 		       mmap_event,
6142 		       NULL);
6143 
6144 	kfree(buf);
6145 }
6146 
6147 void perf_event_mmap(struct vm_area_struct *vma)
6148 {
6149 	struct perf_mmap_event mmap_event;
6150 
6151 	if (!atomic_read(&nr_mmap_events))
6152 		return;
6153 
6154 	mmap_event = (struct perf_mmap_event){
6155 		.vma	= vma,
6156 		/* .file_name */
6157 		/* .file_size */
6158 		.event_id  = {
6159 			.header = {
6160 				.type = PERF_RECORD_MMAP,
6161 				.misc = PERF_RECORD_MISC_USER,
6162 				/* .size */
6163 			},
6164 			/* .pid */
6165 			/* .tid */
6166 			.start  = vma->vm_start,
6167 			.len    = vma->vm_end - vma->vm_start,
6168 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6169 		},
6170 		/* .maj (attr_mmap2 only) */
6171 		/* .min (attr_mmap2 only) */
6172 		/* .ino (attr_mmap2 only) */
6173 		/* .ino_generation (attr_mmap2 only) */
6174 		/* .prot (attr_mmap2 only) */
6175 		/* .flags (attr_mmap2 only) */
6176 	};
6177 
6178 	perf_event_mmap_event(&mmap_event);
6179 }
6180 
6181 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6182 			  unsigned long size, u64 flags)
6183 {
6184 	struct perf_output_handle handle;
6185 	struct perf_sample_data sample;
6186 	struct perf_aux_event {
6187 		struct perf_event_header	header;
6188 		u64				offset;
6189 		u64				size;
6190 		u64				flags;
6191 	} rec = {
6192 		.header = {
6193 			.type = PERF_RECORD_AUX,
6194 			.misc = 0,
6195 			.size = sizeof(rec),
6196 		},
6197 		.offset		= head,
6198 		.size		= size,
6199 		.flags		= flags,
6200 	};
6201 	int ret;
6202 
6203 	perf_event_header__init_id(&rec.header, &sample, event);
6204 	ret = perf_output_begin(&handle, event, rec.header.size);
6205 
6206 	if (ret)
6207 		return;
6208 
6209 	perf_output_put(&handle, rec);
6210 	perf_event__output_id_sample(event, &handle, &sample);
6211 
6212 	perf_output_end(&handle);
6213 }
6214 
6215 /*
6216  * Lost/dropped samples logging
6217  */
6218 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6219 {
6220 	struct perf_output_handle handle;
6221 	struct perf_sample_data sample;
6222 	int ret;
6223 
6224 	struct {
6225 		struct perf_event_header	header;
6226 		u64				lost;
6227 	} lost_samples_event = {
6228 		.header = {
6229 			.type = PERF_RECORD_LOST_SAMPLES,
6230 			.misc = 0,
6231 			.size = sizeof(lost_samples_event),
6232 		},
6233 		.lost		= lost,
6234 	};
6235 
6236 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6237 
6238 	ret = perf_output_begin(&handle, event,
6239 				lost_samples_event.header.size);
6240 	if (ret)
6241 		return;
6242 
6243 	perf_output_put(&handle, lost_samples_event);
6244 	perf_event__output_id_sample(event, &handle, &sample);
6245 	perf_output_end(&handle);
6246 }
6247 
6248 /*
6249  * context_switch tracking
6250  */
6251 
6252 struct perf_switch_event {
6253 	struct task_struct	*task;
6254 	struct task_struct	*next_prev;
6255 
6256 	struct {
6257 		struct perf_event_header	header;
6258 		u32				next_prev_pid;
6259 		u32				next_prev_tid;
6260 	} event_id;
6261 };
6262 
6263 static int perf_event_switch_match(struct perf_event *event)
6264 {
6265 	return event->attr.context_switch;
6266 }
6267 
6268 static void perf_event_switch_output(struct perf_event *event, void *data)
6269 {
6270 	struct perf_switch_event *se = data;
6271 	struct perf_output_handle handle;
6272 	struct perf_sample_data sample;
6273 	int ret;
6274 
6275 	if (!perf_event_switch_match(event))
6276 		return;
6277 
6278 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6279 	if (event->ctx->task) {
6280 		se->event_id.header.type = PERF_RECORD_SWITCH;
6281 		se->event_id.header.size = sizeof(se->event_id.header);
6282 	} else {
6283 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6284 		se->event_id.header.size = sizeof(se->event_id);
6285 		se->event_id.next_prev_pid =
6286 					perf_event_pid(event, se->next_prev);
6287 		se->event_id.next_prev_tid =
6288 					perf_event_tid(event, se->next_prev);
6289 	}
6290 
6291 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6292 
6293 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6294 	if (ret)
6295 		return;
6296 
6297 	if (event->ctx->task)
6298 		perf_output_put(&handle, se->event_id.header);
6299 	else
6300 		perf_output_put(&handle, se->event_id);
6301 
6302 	perf_event__output_id_sample(event, &handle, &sample);
6303 
6304 	perf_output_end(&handle);
6305 }
6306 
6307 static void perf_event_switch(struct task_struct *task,
6308 			      struct task_struct *next_prev, bool sched_in)
6309 {
6310 	struct perf_switch_event switch_event;
6311 
6312 	/* N.B. caller checks nr_switch_events != 0 */
6313 
6314 	switch_event = (struct perf_switch_event){
6315 		.task		= task,
6316 		.next_prev	= next_prev,
6317 		.event_id	= {
6318 			.header = {
6319 				/* .type */
6320 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6321 				/* .size */
6322 			},
6323 			/* .next_prev_pid */
6324 			/* .next_prev_tid */
6325 		},
6326 	};
6327 
6328 	perf_event_aux(perf_event_switch_output,
6329 		       &switch_event,
6330 		       NULL);
6331 }
6332 
6333 /*
6334  * IRQ throttle logging
6335  */
6336 
6337 static void perf_log_throttle(struct perf_event *event, int enable)
6338 {
6339 	struct perf_output_handle handle;
6340 	struct perf_sample_data sample;
6341 	int ret;
6342 
6343 	struct {
6344 		struct perf_event_header	header;
6345 		u64				time;
6346 		u64				id;
6347 		u64				stream_id;
6348 	} throttle_event = {
6349 		.header = {
6350 			.type = PERF_RECORD_THROTTLE,
6351 			.misc = 0,
6352 			.size = sizeof(throttle_event),
6353 		},
6354 		.time		= perf_event_clock(event),
6355 		.id		= primary_event_id(event),
6356 		.stream_id	= event->id,
6357 	};
6358 
6359 	if (enable)
6360 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6361 
6362 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6363 
6364 	ret = perf_output_begin(&handle, event,
6365 				throttle_event.header.size);
6366 	if (ret)
6367 		return;
6368 
6369 	perf_output_put(&handle, throttle_event);
6370 	perf_event__output_id_sample(event, &handle, &sample);
6371 	perf_output_end(&handle);
6372 }
6373 
6374 static void perf_log_itrace_start(struct perf_event *event)
6375 {
6376 	struct perf_output_handle handle;
6377 	struct perf_sample_data sample;
6378 	struct perf_aux_event {
6379 		struct perf_event_header        header;
6380 		u32				pid;
6381 		u32				tid;
6382 	} rec;
6383 	int ret;
6384 
6385 	if (event->parent)
6386 		event = event->parent;
6387 
6388 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6389 	    event->hw.itrace_started)
6390 		return;
6391 
6392 	rec.header.type	= PERF_RECORD_ITRACE_START;
6393 	rec.header.misc	= 0;
6394 	rec.header.size	= sizeof(rec);
6395 	rec.pid	= perf_event_pid(event, current);
6396 	rec.tid	= perf_event_tid(event, current);
6397 
6398 	perf_event_header__init_id(&rec.header, &sample, event);
6399 	ret = perf_output_begin(&handle, event, rec.header.size);
6400 
6401 	if (ret)
6402 		return;
6403 
6404 	perf_output_put(&handle, rec);
6405 	perf_event__output_id_sample(event, &handle, &sample);
6406 
6407 	perf_output_end(&handle);
6408 }
6409 
6410 /*
6411  * Generic event overflow handling, sampling.
6412  */
6413 
6414 static int __perf_event_overflow(struct perf_event *event,
6415 				   int throttle, struct perf_sample_data *data,
6416 				   struct pt_regs *regs)
6417 {
6418 	int events = atomic_read(&event->event_limit);
6419 	struct hw_perf_event *hwc = &event->hw;
6420 	u64 seq;
6421 	int ret = 0;
6422 
6423 	/*
6424 	 * Non-sampling counters might still use the PMI to fold short
6425 	 * hardware counters, ignore those.
6426 	 */
6427 	if (unlikely(!is_sampling_event(event)))
6428 		return 0;
6429 
6430 	seq = __this_cpu_read(perf_throttled_seq);
6431 	if (seq != hwc->interrupts_seq) {
6432 		hwc->interrupts_seq = seq;
6433 		hwc->interrupts = 1;
6434 	} else {
6435 		hwc->interrupts++;
6436 		if (unlikely(throttle
6437 			     && hwc->interrupts >= max_samples_per_tick)) {
6438 			__this_cpu_inc(perf_throttled_count);
6439 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6440 			hwc->interrupts = MAX_INTERRUPTS;
6441 			perf_log_throttle(event, 0);
6442 			ret = 1;
6443 		}
6444 	}
6445 
6446 	if (event->attr.freq) {
6447 		u64 now = perf_clock();
6448 		s64 delta = now - hwc->freq_time_stamp;
6449 
6450 		hwc->freq_time_stamp = now;
6451 
6452 		if (delta > 0 && delta < 2*TICK_NSEC)
6453 			perf_adjust_period(event, delta, hwc->last_period, true);
6454 	}
6455 
6456 	/*
6457 	 * XXX event_limit might not quite work as expected on inherited
6458 	 * events
6459 	 */
6460 
6461 	event->pending_kill = POLL_IN;
6462 	if (events && atomic_dec_and_test(&event->event_limit)) {
6463 		ret = 1;
6464 		event->pending_kill = POLL_HUP;
6465 		event->pending_disable = 1;
6466 		irq_work_queue(&event->pending);
6467 	}
6468 
6469 	if (event->overflow_handler)
6470 		event->overflow_handler(event, data, regs);
6471 	else
6472 		perf_event_output(event, data, regs);
6473 
6474 	if (*perf_event_fasync(event) && event->pending_kill) {
6475 		event->pending_wakeup = 1;
6476 		irq_work_queue(&event->pending);
6477 	}
6478 
6479 	return ret;
6480 }
6481 
6482 int perf_event_overflow(struct perf_event *event,
6483 			  struct perf_sample_data *data,
6484 			  struct pt_regs *regs)
6485 {
6486 	return __perf_event_overflow(event, 1, data, regs);
6487 }
6488 
6489 /*
6490  * Generic software event infrastructure
6491  */
6492 
6493 struct swevent_htable {
6494 	struct swevent_hlist		*swevent_hlist;
6495 	struct mutex			hlist_mutex;
6496 	int				hlist_refcount;
6497 
6498 	/* Recursion avoidance in each contexts */
6499 	int				recursion[PERF_NR_CONTEXTS];
6500 };
6501 
6502 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6503 
6504 /*
6505  * We directly increment event->count and keep a second value in
6506  * event->hw.period_left to count intervals. This period event
6507  * is kept in the range [-sample_period, 0] so that we can use the
6508  * sign as trigger.
6509  */
6510 
6511 u64 perf_swevent_set_period(struct perf_event *event)
6512 {
6513 	struct hw_perf_event *hwc = &event->hw;
6514 	u64 period = hwc->last_period;
6515 	u64 nr, offset;
6516 	s64 old, val;
6517 
6518 	hwc->last_period = hwc->sample_period;
6519 
6520 again:
6521 	old = val = local64_read(&hwc->period_left);
6522 	if (val < 0)
6523 		return 0;
6524 
6525 	nr = div64_u64(period + val, period);
6526 	offset = nr * period;
6527 	val -= offset;
6528 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6529 		goto again;
6530 
6531 	return nr;
6532 }
6533 
6534 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6535 				    struct perf_sample_data *data,
6536 				    struct pt_regs *regs)
6537 {
6538 	struct hw_perf_event *hwc = &event->hw;
6539 	int throttle = 0;
6540 
6541 	if (!overflow)
6542 		overflow = perf_swevent_set_period(event);
6543 
6544 	if (hwc->interrupts == MAX_INTERRUPTS)
6545 		return;
6546 
6547 	for (; overflow; overflow--) {
6548 		if (__perf_event_overflow(event, throttle,
6549 					    data, regs)) {
6550 			/*
6551 			 * We inhibit the overflow from happening when
6552 			 * hwc->interrupts == MAX_INTERRUPTS.
6553 			 */
6554 			break;
6555 		}
6556 		throttle = 1;
6557 	}
6558 }
6559 
6560 static void perf_swevent_event(struct perf_event *event, u64 nr,
6561 			       struct perf_sample_data *data,
6562 			       struct pt_regs *regs)
6563 {
6564 	struct hw_perf_event *hwc = &event->hw;
6565 
6566 	local64_add(nr, &event->count);
6567 
6568 	if (!regs)
6569 		return;
6570 
6571 	if (!is_sampling_event(event))
6572 		return;
6573 
6574 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6575 		data->period = nr;
6576 		return perf_swevent_overflow(event, 1, data, regs);
6577 	} else
6578 		data->period = event->hw.last_period;
6579 
6580 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6581 		return perf_swevent_overflow(event, 1, data, regs);
6582 
6583 	if (local64_add_negative(nr, &hwc->period_left))
6584 		return;
6585 
6586 	perf_swevent_overflow(event, 0, data, regs);
6587 }
6588 
6589 static int perf_exclude_event(struct perf_event *event,
6590 			      struct pt_regs *regs)
6591 {
6592 	if (event->hw.state & PERF_HES_STOPPED)
6593 		return 1;
6594 
6595 	if (regs) {
6596 		if (event->attr.exclude_user && user_mode(regs))
6597 			return 1;
6598 
6599 		if (event->attr.exclude_kernel && !user_mode(regs))
6600 			return 1;
6601 	}
6602 
6603 	return 0;
6604 }
6605 
6606 static int perf_swevent_match(struct perf_event *event,
6607 				enum perf_type_id type,
6608 				u32 event_id,
6609 				struct perf_sample_data *data,
6610 				struct pt_regs *regs)
6611 {
6612 	if (event->attr.type != type)
6613 		return 0;
6614 
6615 	if (event->attr.config != event_id)
6616 		return 0;
6617 
6618 	if (perf_exclude_event(event, regs))
6619 		return 0;
6620 
6621 	return 1;
6622 }
6623 
6624 static inline u64 swevent_hash(u64 type, u32 event_id)
6625 {
6626 	u64 val = event_id | (type << 32);
6627 
6628 	return hash_64(val, SWEVENT_HLIST_BITS);
6629 }
6630 
6631 static inline struct hlist_head *
6632 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6633 {
6634 	u64 hash = swevent_hash(type, event_id);
6635 
6636 	return &hlist->heads[hash];
6637 }
6638 
6639 /* For the read side: events when they trigger */
6640 static inline struct hlist_head *
6641 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6642 {
6643 	struct swevent_hlist *hlist;
6644 
6645 	hlist = rcu_dereference(swhash->swevent_hlist);
6646 	if (!hlist)
6647 		return NULL;
6648 
6649 	return __find_swevent_head(hlist, type, event_id);
6650 }
6651 
6652 /* For the event head insertion and removal in the hlist */
6653 static inline struct hlist_head *
6654 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6655 {
6656 	struct swevent_hlist *hlist;
6657 	u32 event_id = event->attr.config;
6658 	u64 type = event->attr.type;
6659 
6660 	/*
6661 	 * Event scheduling is always serialized against hlist allocation
6662 	 * and release. Which makes the protected version suitable here.
6663 	 * The context lock guarantees that.
6664 	 */
6665 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6666 					  lockdep_is_held(&event->ctx->lock));
6667 	if (!hlist)
6668 		return NULL;
6669 
6670 	return __find_swevent_head(hlist, type, event_id);
6671 }
6672 
6673 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6674 				    u64 nr,
6675 				    struct perf_sample_data *data,
6676 				    struct pt_regs *regs)
6677 {
6678 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6679 	struct perf_event *event;
6680 	struct hlist_head *head;
6681 
6682 	rcu_read_lock();
6683 	head = find_swevent_head_rcu(swhash, type, event_id);
6684 	if (!head)
6685 		goto end;
6686 
6687 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6688 		if (perf_swevent_match(event, type, event_id, data, regs))
6689 			perf_swevent_event(event, nr, data, regs);
6690 	}
6691 end:
6692 	rcu_read_unlock();
6693 }
6694 
6695 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6696 
6697 int perf_swevent_get_recursion_context(void)
6698 {
6699 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6700 
6701 	return get_recursion_context(swhash->recursion);
6702 }
6703 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6704 
6705 inline void perf_swevent_put_recursion_context(int rctx)
6706 {
6707 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6708 
6709 	put_recursion_context(swhash->recursion, rctx);
6710 }
6711 
6712 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6713 {
6714 	struct perf_sample_data data;
6715 
6716 	if (WARN_ON_ONCE(!regs))
6717 		return;
6718 
6719 	perf_sample_data_init(&data, addr, 0);
6720 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6721 }
6722 
6723 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6724 {
6725 	int rctx;
6726 
6727 	preempt_disable_notrace();
6728 	rctx = perf_swevent_get_recursion_context();
6729 	if (unlikely(rctx < 0))
6730 		goto fail;
6731 
6732 	___perf_sw_event(event_id, nr, regs, addr);
6733 
6734 	perf_swevent_put_recursion_context(rctx);
6735 fail:
6736 	preempt_enable_notrace();
6737 }
6738 
6739 static void perf_swevent_read(struct perf_event *event)
6740 {
6741 }
6742 
6743 static int perf_swevent_add(struct perf_event *event, int flags)
6744 {
6745 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6746 	struct hw_perf_event *hwc = &event->hw;
6747 	struct hlist_head *head;
6748 
6749 	if (is_sampling_event(event)) {
6750 		hwc->last_period = hwc->sample_period;
6751 		perf_swevent_set_period(event);
6752 	}
6753 
6754 	hwc->state = !(flags & PERF_EF_START);
6755 
6756 	head = find_swevent_head(swhash, event);
6757 	if (WARN_ON_ONCE(!head))
6758 		return -EINVAL;
6759 
6760 	hlist_add_head_rcu(&event->hlist_entry, head);
6761 	perf_event_update_userpage(event);
6762 
6763 	return 0;
6764 }
6765 
6766 static void perf_swevent_del(struct perf_event *event, int flags)
6767 {
6768 	hlist_del_rcu(&event->hlist_entry);
6769 }
6770 
6771 static void perf_swevent_start(struct perf_event *event, int flags)
6772 {
6773 	event->hw.state = 0;
6774 }
6775 
6776 static void perf_swevent_stop(struct perf_event *event, int flags)
6777 {
6778 	event->hw.state = PERF_HES_STOPPED;
6779 }
6780 
6781 /* Deref the hlist from the update side */
6782 static inline struct swevent_hlist *
6783 swevent_hlist_deref(struct swevent_htable *swhash)
6784 {
6785 	return rcu_dereference_protected(swhash->swevent_hlist,
6786 					 lockdep_is_held(&swhash->hlist_mutex));
6787 }
6788 
6789 static void swevent_hlist_release(struct swevent_htable *swhash)
6790 {
6791 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6792 
6793 	if (!hlist)
6794 		return;
6795 
6796 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6797 	kfree_rcu(hlist, rcu_head);
6798 }
6799 
6800 static void swevent_hlist_put_cpu(int cpu)
6801 {
6802 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6803 
6804 	mutex_lock(&swhash->hlist_mutex);
6805 
6806 	if (!--swhash->hlist_refcount)
6807 		swevent_hlist_release(swhash);
6808 
6809 	mutex_unlock(&swhash->hlist_mutex);
6810 }
6811 
6812 static void swevent_hlist_put(void)
6813 {
6814 	int cpu;
6815 
6816 	for_each_possible_cpu(cpu)
6817 		swevent_hlist_put_cpu(cpu);
6818 }
6819 
6820 static int swevent_hlist_get_cpu(int cpu)
6821 {
6822 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6823 	int err = 0;
6824 
6825 	mutex_lock(&swhash->hlist_mutex);
6826 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6827 		struct swevent_hlist *hlist;
6828 
6829 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6830 		if (!hlist) {
6831 			err = -ENOMEM;
6832 			goto exit;
6833 		}
6834 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6835 	}
6836 	swhash->hlist_refcount++;
6837 exit:
6838 	mutex_unlock(&swhash->hlist_mutex);
6839 
6840 	return err;
6841 }
6842 
6843 static int swevent_hlist_get(void)
6844 {
6845 	int err, cpu, failed_cpu;
6846 
6847 	get_online_cpus();
6848 	for_each_possible_cpu(cpu) {
6849 		err = swevent_hlist_get_cpu(cpu);
6850 		if (err) {
6851 			failed_cpu = cpu;
6852 			goto fail;
6853 		}
6854 	}
6855 	put_online_cpus();
6856 
6857 	return 0;
6858 fail:
6859 	for_each_possible_cpu(cpu) {
6860 		if (cpu == failed_cpu)
6861 			break;
6862 		swevent_hlist_put_cpu(cpu);
6863 	}
6864 
6865 	put_online_cpus();
6866 	return err;
6867 }
6868 
6869 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6870 
6871 static void sw_perf_event_destroy(struct perf_event *event)
6872 {
6873 	u64 event_id = event->attr.config;
6874 
6875 	WARN_ON(event->parent);
6876 
6877 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6878 	swevent_hlist_put();
6879 }
6880 
6881 static int perf_swevent_init(struct perf_event *event)
6882 {
6883 	u64 event_id = event->attr.config;
6884 
6885 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6886 		return -ENOENT;
6887 
6888 	/*
6889 	 * no branch sampling for software events
6890 	 */
6891 	if (has_branch_stack(event))
6892 		return -EOPNOTSUPP;
6893 
6894 	switch (event_id) {
6895 	case PERF_COUNT_SW_CPU_CLOCK:
6896 	case PERF_COUNT_SW_TASK_CLOCK:
6897 		return -ENOENT;
6898 
6899 	default:
6900 		break;
6901 	}
6902 
6903 	if (event_id >= PERF_COUNT_SW_MAX)
6904 		return -ENOENT;
6905 
6906 	if (!event->parent) {
6907 		int err;
6908 
6909 		err = swevent_hlist_get();
6910 		if (err)
6911 			return err;
6912 
6913 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6914 		event->destroy = sw_perf_event_destroy;
6915 	}
6916 
6917 	return 0;
6918 }
6919 
6920 static struct pmu perf_swevent = {
6921 	.task_ctx_nr	= perf_sw_context,
6922 
6923 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6924 
6925 	.event_init	= perf_swevent_init,
6926 	.add		= perf_swevent_add,
6927 	.del		= perf_swevent_del,
6928 	.start		= perf_swevent_start,
6929 	.stop		= perf_swevent_stop,
6930 	.read		= perf_swevent_read,
6931 };
6932 
6933 #ifdef CONFIG_EVENT_TRACING
6934 
6935 static int perf_tp_filter_match(struct perf_event *event,
6936 				struct perf_sample_data *data)
6937 {
6938 	void *record = data->raw->data;
6939 
6940 	/* only top level events have filters set */
6941 	if (event->parent)
6942 		event = event->parent;
6943 
6944 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6945 		return 1;
6946 	return 0;
6947 }
6948 
6949 static int perf_tp_event_match(struct perf_event *event,
6950 				struct perf_sample_data *data,
6951 				struct pt_regs *regs)
6952 {
6953 	if (event->hw.state & PERF_HES_STOPPED)
6954 		return 0;
6955 	/*
6956 	 * All tracepoints are from kernel-space.
6957 	 */
6958 	if (event->attr.exclude_kernel)
6959 		return 0;
6960 
6961 	if (!perf_tp_filter_match(event, data))
6962 		return 0;
6963 
6964 	return 1;
6965 }
6966 
6967 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6968 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6969 		   struct task_struct *task)
6970 {
6971 	struct perf_sample_data data;
6972 	struct perf_event *event;
6973 
6974 	struct perf_raw_record raw = {
6975 		.size = entry_size,
6976 		.data = record,
6977 	};
6978 
6979 	perf_sample_data_init(&data, addr, 0);
6980 	data.raw = &raw;
6981 
6982 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6983 		if (perf_tp_event_match(event, &data, regs))
6984 			perf_swevent_event(event, count, &data, regs);
6985 	}
6986 
6987 	/*
6988 	 * If we got specified a target task, also iterate its context and
6989 	 * deliver this event there too.
6990 	 */
6991 	if (task && task != current) {
6992 		struct perf_event_context *ctx;
6993 		struct trace_entry *entry = record;
6994 
6995 		rcu_read_lock();
6996 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6997 		if (!ctx)
6998 			goto unlock;
6999 
7000 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7001 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7002 				continue;
7003 			if (event->attr.config != entry->type)
7004 				continue;
7005 			if (perf_tp_event_match(event, &data, regs))
7006 				perf_swevent_event(event, count, &data, regs);
7007 		}
7008 unlock:
7009 		rcu_read_unlock();
7010 	}
7011 
7012 	perf_swevent_put_recursion_context(rctx);
7013 }
7014 EXPORT_SYMBOL_GPL(perf_tp_event);
7015 
7016 static void tp_perf_event_destroy(struct perf_event *event)
7017 {
7018 	perf_trace_destroy(event);
7019 }
7020 
7021 static int perf_tp_event_init(struct perf_event *event)
7022 {
7023 	int err;
7024 
7025 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7026 		return -ENOENT;
7027 
7028 	/*
7029 	 * no branch sampling for tracepoint events
7030 	 */
7031 	if (has_branch_stack(event))
7032 		return -EOPNOTSUPP;
7033 
7034 	err = perf_trace_init(event);
7035 	if (err)
7036 		return err;
7037 
7038 	event->destroy = tp_perf_event_destroy;
7039 
7040 	return 0;
7041 }
7042 
7043 static struct pmu perf_tracepoint = {
7044 	.task_ctx_nr	= perf_sw_context,
7045 
7046 	.event_init	= perf_tp_event_init,
7047 	.add		= perf_trace_add,
7048 	.del		= perf_trace_del,
7049 	.start		= perf_swevent_start,
7050 	.stop		= perf_swevent_stop,
7051 	.read		= perf_swevent_read,
7052 };
7053 
7054 static inline void perf_tp_register(void)
7055 {
7056 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7057 }
7058 
7059 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7060 {
7061 	char *filter_str;
7062 	int ret;
7063 
7064 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7065 		return -EINVAL;
7066 
7067 	filter_str = strndup_user(arg, PAGE_SIZE);
7068 	if (IS_ERR(filter_str))
7069 		return PTR_ERR(filter_str);
7070 
7071 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7072 
7073 	kfree(filter_str);
7074 	return ret;
7075 }
7076 
7077 static void perf_event_free_filter(struct perf_event *event)
7078 {
7079 	ftrace_profile_free_filter(event);
7080 }
7081 
7082 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7083 {
7084 	struct bpf_prog *prog;
7085 
7086 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7087 		return -EINVAL;
7088 
7089 	if (event->tp_event->prog)
7090 		return -EEXIST;
7091 
7092 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7093 		/* bpf programs can only be attached to u/kprobes */
7094 		return -EINVAL;
7095 
7096 	prog = bpf_prog_get(prog_fd);
7097 	if (IS_ERR(prog))
7098 		return PTR_ERR(prog);
7099 
7100 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7101 		/* valid fd, but invalid bpf program type */
7102 		bpf_prog_put(prog);
7103 		return -EINVAL;
7104 	}
7105 
7106 	event->tp_event->prog = prog;
7107 
7108 	return 0;
7109 }
7110 
7111 static void perf_event_free_bpf_prog(struct perf_event *event)
7112 {
7113 	struct bpf_prog *prog;
7114 
7115 	if (!event->tp_event)
7116 		return;
7117 
7118 	prog = event->tp_event->prog;
7119 	if (prog) {
7120 		event->tp_event->prog = NULL;
7121 		bpf_prog_put(prog);
7122 	}
7123 }
7124 
7125 #else
7126 
7127 static inline void perf_tp_register(void)
7128 {
7129 }
7130 
7131 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7132 {
7133 	return -ENOENT;
7134 }
7135 
7136 static void perf_event_free_filter(struct perf_event *event)
7137 {
7138 }
7139 
7140 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7141 {
7142 	return -ENOENT;
7143 }
7144 
7145 static void perf_event_free_bpf_prog(struct perf_event *event)
7146 {
7147 }
7148 #endif /* CONFIG_EVENT_TRACING */
7149 
7150 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7151 void perf_bp_event(struct perf_event *bp, void *data)
7152 {
7153 	struct perf_sample_data sample;
7154 	struct pt_regs *regs = data;
7155 
7156 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7157 
7158 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7159 		perf_swevent_event(bp, 1, &sample, regs);
7160 }
7161 #endif
7162 
7163 /*
7164  * hrtimer based swevent callback
7165  */
7166 
7167 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7168 {
7169 	enum hrtimer_restart ret = HRTIMER_RESTART;
7170 	struct perf_sample_data data;
7171 	struct pt_regs *regs;
7172 	struct perf_event *event;
7173 	u64 period;
7174 
7175 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7176 
7177 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7178 		return HRTIMER_NORESTART;
7179 
7180 	event->pmu->read(event);
7181 
7182 	perf_sample_data_init(&data, 0, event->hw.last_period);
7183 	regs = get_irq_regs();
7184 
7185 	if (regs && !perf_exclude_event(event, regs)) {
7186 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7187 			if (__perf_event_overflow(event, 1, &data, regs))
7188 				ret = HRTIMER_NORESTART;
7189 	}
7190 
7191 	period = max_t(u64, 10000, event->hw.sample_period);
7192 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7193 
7194 	return ret;
7195 }
7196 
7197 static void perf_swevent_start_hrtimer(struct perf_event *event)
7198 {
7199 	struct hw_perf_event *hwc = &event->hw;
7200 	s64 period;
7201 
7202 	if (!is_sampling_event(event))
7203 		return;
7204 
7205 	period = local64_read(&hwc->period_left);
7206 	if (period) {
7207 		if (period < 0)
7208 			period = 10000;
7209 
7210 		local64_set(&hwc->period_left, 0);
7211 	} else {
7212 		period = max_t(u64, 10000, hwc->sample_period);
7213 	}
7214 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7215 		      HRTIMER_MODE_REL_PINNED);
7216 }
7217 
7218 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7219 {
7220 	struct hw_perf_event *hwc = &event->hw;
7221 
7222 	if (is_sampling_event(event)) {
7223 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7224 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7225 
7226 		hrtimer_cancel(&hwc->hrtimer);
7227 	}
7228 }
7229 
7230 static void perf_swevent_init_hrtimer(struct perf_event *event)
7231 {
7232 	struct hw_perf_event *hwc = &event->hw;
7233 
7234 	if (!is_sampling_event(event))
7235 		return;
7236 
7237 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7238 	hwc->hrtimer.function = perf_swevent_hrtimer;
7239 
7240 	/*
7241 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7242 	 * mapping and avoid the whole period adjust feedback stuff.
7243 	 */
7244 	if (event->attr.freq) {
7245 		long freq = event->attr.sample_freq;
7246 
7247 		event->attr.sample_period = NSEC_PER_SEC / freq;
7248 		hwc->sample_period = event->attr.sample_period;
7249 		local64_set(&hwc->period_left, hwc->sample_period);
7250 		hwc->last_period = hwc->sample_period;
7251 		event->attr.freq = 0;
7252 	}
7253 }
7254 
7255 /*
7256  * Software event: cpu wall time clock
7257  */
7258 
7259 static void cpu_clock_event_update(struct perf_event *event)
7260 {
7261 	s64 prev;
7262 	u64 now;
7263 
7264 	now = local_clock();
7265 	prev = local64_xchg(&event->hw.prev_count, now);
7266 	local64_add(now - prev, &event->count);
7267 }
7268 
7269 static void cpu_clock_event_start(struct perf_event *event, int flags)
7270 {
7271 	local64_set(&event->hw.prev_count, local_clock());
7272 	perf_swevent_start_hrtimer(event);
7273 }
7274 
7275 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7276 {
7277 	perf_swevent_cancel_hrtimer(event);
7278 	cpu_clock_event_update(event);
7279 }
7280 
7281 static int cpu_clock_event_add(struct perf_event *event, int flags)
7282 {
7283 	if (flags & PERF_EF_START)
7284 		cpu_clock_event_start(event, flags);
7285 	perf_event_update_userpage(event);
7286 
7287 	return 0;
7288 }
7289 
7290 static void cpu_clock_event_del(struct perf_event *event, int flags)
7291 {
7292 	cpu_clock_event_stop(event, flags);
7293 }
7294 
7295 static void cpu_clock_event_read(struct perf_event *event)
7296 {
7297 	cpu_clock_event_update(event);
7298 }
7299 
7300 static int cpu_clock_event_init(struct perf_event *event)
7301 {
7302 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7303 		return -ENOENT;
7304 
7305 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7306 		return -ENOENT;
7307 
7308 	/*
7309 	 * no branch sampling for software events
7310 	 */
7311 	if (has_branch_stack(event))
7312 		return -EOPNOTSUPP;
7313 
7314 	perf_swevent_init_hrtimer(event);
7315 
7316 	return 0;
7317 }
7318 
7319 static struct pmu perf_cpu_clock = {
7320 	.task_ctx_nr	= perf_sw_context,
7321 
7322 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7323 
7324 	.event_init	= cpu_clock_event_init,
7325 	.add		= cpu_clock_event_add,
7326 	.del		= cpu_clock_event_del,
7327 	.start		= cpu_clock_event_start,
7328 	.stop		= cpu_clock_event_stop,
7329 	.read		= cpu_clock_event_read,
7330 };
7331 
7332 /*
7333  * Software event: task time clock
7334  */
7335 
7336 static void task_clock_event_update(struct perf_event *event, u64 now)
7337 {
7338 	u64 prev;
7339 	s64 delta;
7340 
7341 	prev = local64_xchg(&event->hw.prev_count, now);
7342 	delta = now - prev;
7343 	local64_add(delta, &event->count);
7344 }
7345 
7346 static void task_clock_event_start(struct perf_event *event, int flags)
7347 {
7348 	local64_set(&event->hw.prev_count, event->ctx->time);
7349 	perf_swevent_start_hrtimer(event);
7350 }
7351 
7352 static void task_clock_event_stop(struct perf_event *event, int flags)
7353 {
7354 	perf_swevent_cancel_hrtimer(event);
7355 	task_clock_event_update(event, event->ctx->time);
7356 }
7357 
7358 static int task_clock_event_add(struct perf_event *event, int flags)
7359 {
7360 	if (flags & PERF_EF_START)
7361 		task_clock_event_start(event, flags);
7362 	perf_event_update_userpage(event);
7363 
7364 	return 0;
7365 }
7366 
7367 static void task_clock_event_del(struct perf_event *event, int flags)
7368 {
7369 	task_clock_event_stop(event, PERF_EF_UPDATE);
7370 }
7371 
7372 static void task_clock_event_read(struct perf_event *event)
7373 {
7374 	u64 now = perf_clock();
7375 	u64 delta = now - event->ctx->timestamp;
7376 	u64 time = event->ctx->time + delta;
7377 
7378 	task_clock_event_update(event, time);
7379 }
7380 
7381 static int task_clock_event_init(struct perf_event *event)
7382 {
7383 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7384 		return -ENOENT;
7385 
7386 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7387 		return -ENOENT;
7388 
7389 	/*
7390 	 * no branch sampling for software events
7391 	 */
7392 	if (has_branch_stack(event))
7393 		return -EOPNOTSUPP;
7394 
7395 	perf_swevent_init_hrtimer(event);
7396 
7397 	return 0;
7398 }
7399 
7400 static struct pmu perf_task_clock = {
7401 	.task_ctx_nr	= perf_sw_context,
7402 
7403 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7404 
7405 	.event_init	= task_clock_event_init,
7406 	.add		= task_clock_event_add,
7407 	.del		= task_clock_event_del,
7408 	.start		= task_clock_event_start,
7409 	.stop		= task_clock_event_stop,
7410 	.read		= task_clock_event_read,
7411 };
7412 
7413 static void perf_pmu_nop_void(struct pmu *pmu)
7414 {
7415 }
7416 
7417 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7418 {
7419 }
7420 
7421 static int perf_pmu_nop_int(struct pmu *pmu)
7422 {
7423 	return 0;
7424 }
7425 
7426 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7427 
7428 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7429 {
7430 	__this_cpu_write(nop_txn_flags, flags);
7431 
7432 	if (flags & ~PERF_PMU_TXN_ADD)
7433 		return;
7434 
7435 	perf_pmu_disable(pmu);
7436 }
7437 
7438 static int perf_pmu_commit_txn(struct pmu *pmu)
7439 {
7440 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7441 
7442 	__this_cpu_write(nop_txn_flags, 0);
7443 
7444 	if (flags & ~PERF_PMU_TXN_ADD)
7445 		return 0;
7446 
7447 	perf_pmu_enable(pmu);
7448 	return 0;
7449 }
7450 
7451 static void perf_pmu_cancel_txn(struct pmu *pmu)
7452 {
7453 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7454 
7455 	__this_cpu_write(nop_txn_flags, 0);
7456 
7457 	if (flags & ~PERF_PMU_TXN_ADD)
7458 		return;
7459 
7460 	perf_pmu_enable(pmu);
7461 }
7462 
7463 static int perf_event_idx_default(struct perf_event *event)
7464 {
7465 	return 0;
7466 }
7467 
7468 /*
7469  * Ensures all contexts with the same task_ctx_nr have the same
7470  * pmu_cpu_context too.
7471  */
7472 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7473 {
7474 	struct pmu *pmu;
7475 
7476 	if (ctxn < 0)
7477 		return NULL;
7478 
7479 	list_for_each_entry(pmu, &pmus, entry) {
7480 		if (pmu->task_ctx_nr == ctxn)
7481 			return pmu->pmu_cpu_context;
7482 	}
7483 
7484 	return NULL;
7485 }
7486 
7487 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7488 {
7489 	int cpu;
7490 
7491 	for_each_possible_cpu(cpu) {
7492 		struct perf_cpu_context *cpuctx;
7493 
7494 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7495 
7496 		if (cpuctx->unique_pmu == old_pmu)
7497 			cpuctx->unique_pmu = pmu;
7498 	}
7499 }
7500 
7501 static void free_pmu_context(struct pmu *pmu)
7502 {
7503 	struct pmu *i;
7504 
7505 	mutex_lock(&pmus_lock);
7506 	/*
7507 	 * Like a real lame refcount.
7508 	 */
7509 	list_for_each_entry(i, &pmus, entry) {
7510 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7511 			update_pmu_context(i, pmu);
7512 			goto out;
7513 		}
7514 	}
7515 
7516 	free_percpu(pmu->pmu_cpu_context);
7517 out:
7518 	mutex_unlock(&pmus_lock);
7519 }
7520 static struct idr pmu_idr;
7521 
7522 static ssize_t
7523 type_show(struct device *dev, struct device_attribute *attr, char *page)
7524 {
7525 	struct pmu *pmu = dev_get_drvdata(dev);
7526 
7527 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7528 }
7529 static DEVICE_ATTR_RO(type);
7530 
7531 static ssize_t
7532 perf_event_mux_interval_ms_show(struct device *dev,
7533 				struct device_attribute *attr,
7534 				char *page)
7535 {
7536 	struct pmu *pmu = dev_get_drvdata(dev);
7537 
7538 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7539 }
7540 
7541 static DEFINE_MUTEX(mux_interval_mutex);
7542 
7543 static ssize_t
7544 perf_event_mux_interval_ms_store(struct device *dev,
7545 				 struct device_attribute *attr,
7546 				 const char *buf, size_t count)
7547 {
7548 	struct pmu *pmu = dev_get_drvdata(dev);
7549 	int timer, cpu, ret;
7550 
7551 	ret = kstrtoint(buf, 0, &timer);
7552 	if (ret)
7553 		return ret;
7554 
7555 	if (timer < 1)
7556 		return -EINVAL;
7557 
7558 	/* same value, noting to do */
7559 	if (timer == pmu->hrtimer_interval_ms)
7560 		return count;
7561 
7562 	mutex_lock(&mux_interval_mutex);
7563 	pmu->hrtimer_interval_ms = timer;
7564 
7565 	/* update all cpuctx for this PMU */
7566 	get_online_cpus();
7567 	for_each_online_cpu(cpu) {
7568 		struct perf_cpu_context *cpuctx;
7569 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7570 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7571 
7572 		cpu_function_call(cpu,
7573 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7574 	}
7575 	put_online_cpus();
7576 	mutex_unlock(&mux_interval_mutex);
7577 
7578 	return count;
7579 }
7580 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7581 
7582 static struct attribute *pmu_dev_attrs[] = {
7583 	&dev_attr_type.attr,
7584 	&dev_attr_perf_event_mux_interval_ms.attr,
7585 	NULL,
7586 };
7587 ATTRIBUTE_GROUPS(pmu_dev);
7588 
7589 static int pmu_bus_running;
7590 static struct bus_type pmu_bus = {
7591 	.name		= "event_source",
7592 	.dev_groups	= pmu_dev_groups,
7593 };
7594 
7595 static void pmu_dev_release(struct device *dev)
7596 {
7597 	kfree(dev);
7598 }
7599 
7600 static int pmu_dev_alloc(struct pmu *pmu)
7601 {
7602 	int ret = -ENOMEM;
7603 
7604 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7605 	if (!pmu->dev)
7606 		goto out;
7607 
7608 	pmu->dev->groups = pmu->attr_groups;
7609 	device_initialize(pmu->dev);
7610 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7611 	if (ret)
7612 		goto free_dev;
7613 
7614 	dev_set_drvdata(pmu->dev, pmu);
7615 	pmu->dev->bus = &pmu_bus;
7616 	pmu->dev->release = pmu_dev_release;
7617 	ret = device_add(pmu->dev);
7618 	if (ret)
7619 		goto free_dev;
7620 
7621 out:
7622 	return ret;
7623 
7624 free_dev:
7625 	put_device(pmu->dev);
7626 	goto out;
7627 }
7628 
7629 static struct lock_class_key cpuctx_mutex;
7630 static struct lock_class_key cpuctx_lock;
7631 
7632 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7633 {
7634 	int cpu, ret;
7635 
7636 	mutex_lock(&pmus_lock);
7637 	ret = -ENOMEM;
7638 	pmu->pmu_disable_count = alloc_percpu(int);
7639 	if (!pmu->pmu_disable_count)
7640 		goto unlock;
7641 
7642 	pmu->type = -1;
7643 	if (!name)
7644 		goto skip_type;
7645 	pmu->name = name;
7646 
7647 	if (type < 0) {
7648 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7649 		if (type < 0) {
7650 			ret = type;
7651 			goto free_pdc;
7652 		}
7653 	}
7654 	pmu->type = type;
7655 
7656 	if (pmu_bus_running) {
7657 		ret = pmu_dev_alloc(pmu);
7658 		if (ret)
7659 			goto free_idr;
7660 	}
7661 
7662 skip_type:
7663 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7664 	if (pmu->pmu_cpu_context)
7665 		goto got_cpu_context;
7666 
7667 	ret = -ENOMEM;
7668 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7669 	if (!pmu->pmu_cpu_context)
7670 		goto free_dev;
7671 
7672 	for_each_possible_cpu(cpu) {
7673 		struct perf_cpu_context *cpuctx;
7674 
7675 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7676 		__perf_event_init_context(&cpuctx->ctx);
7677 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7678 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7679 		cpuctx->ctx.pmu = pmu;
7680 
7681 		__perf_mux_hrtimer_init(cpuctx, cpu);
7682 
7683 		cpuctx->unique_pmu = pmu;
7684 	}
7685 
7686 got_cpu_context:
7687 	if (!pmu->start_txn) {
7688 		if (pmu->pmu_enable) {
7689 			/*
7690 			 * If we have pmu_enable/pmu_disable calls, install
7691 			 * transaction stubs that use that to try and batch
7692 			 * hardware accesses.
7693 			 */
7694 			pmu->start_txn  = perf_pmu_start_txn;
7695 			pmu->commit_txn = perf_pmu_commit_txn;
7696 			pmu->cancel_txn = perf_pmu_cancel_txn;
7697 		} else {
7698 			pmu->start_txn  = perf_pmu_nop_txn;
7699 			pmu->commit_txn = perf_pmu_nop_int;
7700 			pmu->cancel_txn = perf_pmu_nop_void;
7701 		}
7702 	}
7703 
7704 	if (!pmu->pmu_enable) {
7705 		pmu->pmu_enable  = perf_pmu_nop_void;
7706 		pmu->pmu_disable = perf_pmu_nop_void;
7707 	}
7708 
7709 	if (!pmu->event_idx)
7710 		pmu->event_idx = perf_event_idx_default;
7711 
7712 	list_add_rcu(&pmu->entry, &pmus);
7713 	atomic_set(&pmu->exclusive_cnt, 0);
7714 	ret = 0;
7715 unlock:
7716 	mutex_unlock(&pmus_lock);
7717 
7718 	return ret;
7719 
7720 free_dev:
7721 	device_del(pmu->dev);
7722 	put_device(pmu->dev);
7723 
7724 free_idr:
7725 	if (pmu->type >= PERF_TYPE_MAX)
7726 		idr_remove(&pmu_idr, pmu->type);
7727 
7728 free_pdc:
7729 	free_percpu(pmu->pmu_disable_count);
7730 	goto unlock;
7731 }
7732 EXPORT_SYMBOL_GPL(perf_pmu_register);
7733 
7734 void perf_pmu_unregister(struct pmu *pmu)
7735 {
7736 	mutex_lock(&pmus_lock);
7737 	list_del_rcu(&pmu->entry);
7738 	mutex_unlock(&pmus_lock);
7739 
7740 	/*
7741 	 * We dereference the pmu list under both SRCU and regular RCU, so
7742 	 * synchronize against both of those.
7743 	 */
7744 	synchronize_srcu(&pmus_srcu);
7745 	synchronize_rcu();
7746 
7747 	free_percpu(pmu->pmu_disable_count);
7748 	if (pmu->type >= PERF_TYPE_MAX)
7749 		idr_remove(&pmu_idr, pmu->type);
7750 	device_del(pmu->dev);
7751 	put_device(pmu->dev);
7752 	free_pmu_context(pmu);
7753 }
7754 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7755 
7756 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7757 {
7758 	struct perf_event_context *ctx = NULL;
7759 	int ret;
7760 
7761 	if (!try_module_get(pmu->module))
7762 		return -ENODEV;
7763 
7764 	if (event->group_leader != event) {
7765 		/*
7766 		 * This ctx->mutex can nest when we're called through
7767 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7768 		 */
7769 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7770 						 SINGLE_DEPTH_NESTING);
7771 		BUG_ON(!ctx);
7772 	}
7773 
7774 	event->pmu = pmu;
7775 	ret = pmu->event_init(event);
7776 
7777 	if (ctx)
7778 		perf_event_ctx_unlock(event->group_leader, ctx);
7779 
7780 	if (ret)
7781 		module_put(pmu->module);
7782 
7783 	return ret;
7784 }
7785 
7786 static struct pmu *perf_init_event(struct perf_event *event)
7787 {
7788 	struct pmu *pmu = NULL;
7789 	int idx;
7790 	int ret;
7791 
7792 	idx = srcu_read_lock(&pmus_srcu);
7793 
7794 	rcu_read_lock();
7795 	pmu = idr_find(&pmu_idr, event->attr.type);
7796 	rcu_read_unlock();
7797 	if (pmu) {
7798 		ret = perf_try_init_event(pmu, event);
7799 		if (ret)
7800 			pmu = ERR_PTR(ret);
7801 		goto unlock;
7802 	}
7803 
7804 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7805 		ret = perf_try_init_event(pmu, event);
7806 		if (!ret)
7807 			goto unlock;
7808 
7809 		if (ret != -ENOENT) {
7810 			pmu = ERR_PTR(ret);
7811 			goto unlock;
7812 		}
7813 	}
7814 	pmu = ERR_PTR(-ENOENT);
7815 unlock:
7816 	srcu_read_unlock(&pmus_srcu, idx);
7817 
7818 	return pmu;
7819 }
7820 
7821 static void account_event_cpu(struct perf_event *event, int cpu)
7822 {
7823 	if (event->parent)
7824 		return;
7825 
7826 	if (is_cgroup_event(event))
7827 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7828 }
7829 
7830 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
7831 static void account_freq_event_nohz(void)
7832 {
7833 #ifdef CONFIG_NO_HZ_FULL
7834 	/* Lock so we don't race with concurrent unaccount */
7835 	spin_lock(&nr_freq_lock);
7836 	if (atomic_inc_return(&nr_freq_events) == 1)
7837 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7838 	spin_unlock(&nr_freq_lock);
7839 #endif
7840 }
7841 
7842 static void account_freq_event(void)
7843 {
7844 	if (tick_nohz_full_enabled())
7845 		account_freq_event_nohz();
7846 	else
7847 		atomic_inc(&nr_freq_events);
7848 }
7849 
7850 
7851 static void account_event(struct perf_event *event)
7852 {
7853 	bool inc = false;
7854 
7855 	if (event->parent)
7856 		return;
7857 
7858 	if (event->attach_state & PERF_ATTACH_TASK)
7859 		inc = true;
7860 	if (event->attr.mmap || event->attr.mmap_data)
7861 		atomic_inc(&nr_mmap_events);
7862 	if (event->attr.comm)
7863 		atomic_inc(&nr_comm_events);
7864 	if (event->attr.task)
7865 		atomic_inc(&nr_task_events);
7866 	if (event->attr.freq)
7867 		account_freq_event();
7868 	if (event->attr.context_switch) {
7869 		atomic_inc(&nr_switch_events);
7870 		inc = true;
7871 	}
7872 	if (has_branch_stack(event))
7873 		inc = true;
7874 	if (is_cgroup_event(event))
7875 		inc = true;
7876 
7877 	if (inc) {
7878 		if (atomic_inc_not_zero(&perf_sched_count))
7879 			goto enabled;
7880 
7881 		mutex_lock(&perf_sched_mutex);
7882 		if (!atomic_read(&perf_sched_count)) {
7883 			static_branch_enable(&perf_sched_events);
7884 			/*
7885 			 * Guarantee that all CPUs observe they key change and
7886 			 * call the perf scheduling hooks before proceeding to
7887 			 * install events that need them.
7888 			 */
7889 			synchronize_sched();
7890 		}
7891 		/*
7892 		 * Now that we have waited for the sync_sched(), allow further
7893 		 * increments to by-pass the mutex.
7894 		 */
7895 		atomic_inc(&perf_sched_count);
7896 		mutex_unlock(&perf_sched_mutex);
7897 	}
7898 enabled:
7899 
7900 	account_event_cpu(event, event->cpu);
7901 }
7902 
7903 /*
7904  * Allocate and initialize a event structure
7905  */
7906 static struct perf_event *
7907 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7908 		 struct task_struct *task,
7909 		 struct perf_event *group_leader,
7910 		 struct perf_event *parent_event,
7911 		 perf_overflow_handler_t overflow_handler,
7912 		 void *context, int cgroup_fd)
7913 {
7914 	struct pmu *pmu;
7915 	struct perf_event *event;
7916 	struct hw_perf_event *hwc;
7917 	long err = -EINVAL;
7918 
7919 	if ((unsigned)cpu >= nr_cpu_ids) {
7920 		if (!task || cpu != -1)
7921 			return ERR_PTR(-EINVAL);
7922 	}
7923 
7924 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7925 	if (!event)
7926 		return ERR_PTR(-ENOMEM);
7927 
7928 	/*
7929 	 * Single events are their own group leaders, with an
7930 	 * empty sibling list:
7931 	 */
7932 	if (!group_leader)
7933 		group_leader = event;
7934 
7935 	mutex_init(&event->child_mutex);
7936 	INIT_LIST_HEAD(&event->child_list);
7937 
7938 	INIT_LIST_HEAD(&event->group_entry);
7939 	INIT_LIST_HEAD(&event->event_entry);
7940 	INIT_LIST_HEAD(&event->sibling_list);
7941 	INIT_LIST_HEAD(&event->rb_entry);
7942 	INIT_LIST_HEAD(&event->active_entry);
7943 	INIT_HLIST_NODE(&event->hlist_entry);
7944 
7945 
7946 	init_waitqueue_head(&event->waitq);
7947 	init_irq_work(&event->pending, perf_pending_event);
7948 
7949 	mutex_init(&event->mmap_mutex);
7950 
7951 	atomic_long_set(&event->refcount, 1);
7952 	event->cpu		= cpu;
7953 	event->attr		= *attr;
7954 	event->group_leader	= group_leader;
7955 	event->pmu		= NULL;
7956 	event->oncpu		= -1;
7957 
7958 	event->parent		= parent_event;
7959 
7960 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7961 	event->id		= atomic64_inc_return(&perf_event_id);
7962 
7963 	event->state		= PERF_EVENT_STATE_INACTIVE;
7964 
7965 	if (task) {
7966 		event->attach_state = PERF_ATTACH_TASK;
7967 		/*
7968 		 * XXX pmu::event_init needs to know what task to account to
7969 		 * and we cannot use the ctx information because we need the
7970 		 * pmu before we get a ctx.
7971 		 */
7972 		event->hw.target = task;
7973 	}
7974 
7975 	event->clock = &local_clock;
7976 	if (parent_event)
7977 		event->clock = parent_event->clock;
7978 
7979 	if (!overflow_handler && parent_event) {
7980 		overflow_handler = parent_event->overflow_handler;
7981 		context = parent_event->overflow_handler_context;
7982 	}
7983 
7984 	event->overflow_handler	= overflow_handler;
7985 	event->overflow_handler_context = context;
7986 
7987 	perf_event__state_init(event);
7988 
7989 	pmu = NULL;
7990 
7991 	hwc = &event->hw;
7992 	hwc->sample_period = attr->sample_period;
7993 	if (attr->freq && attr->sample_freq)
7994 		hwc->sample_period = 1;
7995 	hwc->last_period = hwc->sample_period;
7996 
7997 	local64_set(&hwc->period_left, hwc->sample_period);
7998 
7999 	/*
8000 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8001 	 */
8002 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8003 		goto err_ns;
8004 
8005 	if (!has_branch_stack(event))
8006 		event->attr.branch_sample_type = 0;
8007 
8008 	if (cgroup_fd != -1) {
8009 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8010 		if (err)
8011 			goto err_ns;
8012 	}
8013 
8014 	pmu = perf_init_event(event);
8015 	if (!pmu)
8016 		goto err_ns;
8017 	else if (IS_ERR(pmu)) {
8018 		err = PTR_ERR(pmu);
8019 		goto err_ns;
8020 	}
8021 
8022 	err = exclusive_event_init(event);
8023 	if (err)
8024 		goto err_pmu;
8025 
8026 	if (!event->parent) {
8027 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8028 			err = get_callchain_buffers();
8029 			if (err)
8030 				goto err_per_task;
8031 		}
8032 	}
8033 
8034 	/* symmetric to unaccount_event() in _free_event() */
8035 	account_event(event);
8036 
8037 	return event;
8038 
8039 err_per_task:
8040 	exclusive_event_destroy(event);
8041 
8042 err_pmu:
8043 	if (event->destroy)
8044 		event->destroy(event);
8045 	module_put(pmu->module);
8046 err_ns:
8047 	if (is_cgroup_event(event))
8048 		perf_detach_cgroup(event);
8049 	if (event->ns)
8050 		put_pid_ns(event->ns);
8051 	kfree(event);
8052 
8053 	return ERR_PTR(err);
8054 }
8055 
8056 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8057 			  struct perf_event_attr *attr)
8058 {
8059 	u32 size;
8060 	int ret;
8061 
8062 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8063 		return -EFAULT;
8064 
8065 	/*
8066 	 * zero the full structure, so that a short copy will be nice.
8067 	 */
8068 	memset(attr, 0, sizeof(*attr));
8069 
8070 	ret = get_user(size, &uattr->size);
8071 	if (ret)
8072 		return ret;
8073 
8074 	if (size > PAGE_SIZE)	/* silly large */
8075 		goto err_size;
8076 
8077 	if (!size)		/* abi compat */
8078 		size = PERF_ATTR_SIZE_VER0;
8079 
8080 	if (size < PERF_ATTR_SIZE_VER0)
8081 		goto err_size;
8082 
8083 	/*
8084 	 * If we're handed a bigger struct than we know of,
8085 	 * ensure all the unknown bits are 0 - i.e. new
8086 	 * user-space does not rely on any kernel feature
8087 	 * extensions we dont know about yet.
8088 	 */
8089 	if (size > sizeof(*attr)) {
8090 		unsigned char __user *addr;
8091 		unsigned char __user *end;
8092 		unsigned char val;
8093 
8094 		addr = (void __user *)uattr + sizeof(*attr);
8095 		end  = (void __user *)uattr + size;
8096 
8097 		for (; addr < end; addr++) {
8098 			ret = get_user(val, addr);
8099 			if (ret)
8100 				return ret;
8101 			if (val)
8102 				goto err_size;
8103 		}
8104 		size = sizeof(*attr);
8105 	}
8106 
8107 	ret = copy_from_user(attr, uattr, size);
8108 	if (ret)
8109 		return -EFAULT;
8110 
8111 	if (attr->__reserved_1)
8112 		return -EINVAL;
8113 
8114 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8115 		return -EINVAL;
8116 
8117 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8118 		return -EINVAL;
8119 
8120 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8121 		u64 mask = attr->branch_sample_type;
8122 
8123 		/* only using defined bits */
8124 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8125 			return -EINVAL;
8126 
8127 		/* at least one branch bit must be set */
8128 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8129 			return -EINVAL;
8130 
8131 		/* propagate priv level, when not set for branch */
8132 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8133 
8134 			/* exclude_kernel checked on syscall entry */
8135 			if (!attr->exclude_kernel)
8136 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8137 
8138 			if (!attr->exclude_user)
8139 				mask |= PERF_SAMPLE_BRANCH_USER;
8140 
8141 			if (!attr->exclude_hv)
8142 				mask |= PERF_SAMPLE_BRANCH_HV;
8143 			/*
8144 			 * adjust user setting (for HW filter setup)
8145 			 */
8146 			attr->branch_sample_type = mask;
8147 		}
8148 		/* privileged levels capture (kernel, hv): check permissions */
8149 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8150 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8151 			return -EACCES;
8152 	}
8153 
8154 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8155 		ret = perf_reg_validate(attr->sample_regs_user);
8156 		if (ret)
8157 			return ret;
8158 	}
8159 
8160 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8161 		if (!arch_perf_have_user_stack_dump())
8162 			return -ENOSYS;
8163 
8164 		/*
8165 		 * We have __u32 type for the size, but so far
8166 		 * we can only use __u16 as maximum due to the
8167 		 * __u16 sample size limit.
8168 		 */
8169 		if (attr->sample_stack_user >= USHRT_MAX)
8170 			ret = -EINVAL;
8171 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8172 			ret = -EINVAL;
8173 	}
8174 
8175 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8176 		ret = perf_reg_validate(attr->sample_regs_intr);
8177 out:
8178 	return ret;
8179 
8180 err_size:
8181 	put_user(sizeof(*attr), &uattr->size);
8182 	ret = -E2BIG;
8183 	goto out;
8184 }
8185 
8186 static int
8187 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8188 {
8189 	struct ring_buffer *rb = NULL;
8190 	int ret = -EINVAL;
8191 
8192 	if (!output_event)
8193 		goto set;
8194 
8195 	/* don't allow circular references */
8196 	if (event == output_event)
8197 		goto out;
8198 
8199 	/*
8200 	 * Don't allow cross-cpu buffers
8201 	 */
8202 	if (output_event->cpu != event->cpu)
8203 		goto out;
8204 
8205 	/*
8206 	 * If its not a per-cpu rb, it must be the same task.
8207 	 */
8208 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8209 		goto out;
8210 
8211 	/*
8212 	 * Mixing clocks in the same buffer is trouble you don't need.
8213 	 */
8214 	if (output_event->clock != event->clock)
8215 		goto out;
8216 
8217 	/*
8218 	 * If both events generate aux data, they must be on the same PMU
8219 	 */
8220 	if (has_aux(event) && has_aux(output_event) &&
8221 	    event->pmu != output_event->pmu)
8222 		goto out;
8223 
8224 set:
8225 	mutex_lock(&event->mmap_mutex);
8226 	/* Can't redirect output if we've got an active mmap() */
8227 	if (atomic_read(&event->mmap_count))
8228 		goto unlock;
8229 
8230 	if (output_event) {
8231 		/* get the rb we want to redirect to */
8232 		rb = ring_buffer_get(output_event);
8233 		if (!rb)
8234 			goto unlock;
8235 	}
8236 
8237 	ring_buffer_attach(event, rb);
8238 
8239 	ret = 0;
8240 unlock:
8241 	mutex_unlock(&event->mmap_mutex);
8242 
8243 out:
8244 	return ret;
8245 }
8246 
8247 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8248 {
8249 	if (b < a)
8250 		swap(a, b);
8251 
8252 	mutex_lock(a);
8253 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8254 }
8255 
8256 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8257 {
8258 	bool nmi_safe = false;
8259 
8260 	switch (clk_id) {
8261 	case CLOCK_MONOTONIC:
8262 		event->clock = &ktime_get_mono_fast_ns;
8263 		nmi_safe = true;
8264 		break;
8265 
8266 	case CLOCK_MONOTONIC_RAW:
8267 		event->clock = &ktime_get_raw_fast_ns;
8268 		nmi_safe = true;
8269 		break;
8270 
8271 	case CLOCK_REALTIME:
8272 		event->clock = &ktime_get_real_ns;
8273 		break;
8274 
8275 	case CLOCK_BOOTTIME:
8276 		event->clock = &ktime_get_boot_ns;
8277 		break;
8278 
8279 	case CLOCK_TAI:
8280 		event->clock = &ktime_get_tai_ns;
8281 		break;
8282 
8283 	default:
8284 		return -EINVAL;
8285 	}
8286 
8287 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8288 		return -EINVAL;
8289 
8290 	return 0;
8291 }
8292 
8293 /**
8294  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8295  *
8296  * @attr_uptr:	event_id type attributes for monitoring/sampling
8297  * @pid:		target pid
8298  * @cpu:		target cpu
8299  * @group_fd:		group leader event fd
8300  */
8301 SYSCALL_DEFINE5(perf_event_open,
8302 		struct perf_event_attr __user *, attr_uptr,
8303 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8304 {
8305 	struct perf_event *group_leader = NULL, *output_event = NULL;
8306 	struct perf_event *event, *sibling;
8307 	struct perf_event_attr attr;
8308 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8309 	struct file *event_file = NULL;
8310 	struct fd group = {NULL, 0};
8311 	struct task_struct *task = NULL;
8312 	struct pmu *pmu;
8313 	int event_fd;
8314 	int move_group = 0;
8315 	int err;
8316 	int f_flags = O_RDWR;
8317 	int cgroup_fd = -1;
8318 
8319 	/* for future expandability... */
8320 	if (flags & ~PERF_FLAG_ALL)
8321 		return -EINVAL;
8322 
8323 	err = perf_copy_attr(attr_uptr, &attr);
8324 	if (err)
8325 		return err;
8326 
8327 	if (!attr.exclude_kernel) {
8328 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8329 			return -EACCES;
8330 	}
8331 
8332 	if (attr.freq) {
8333 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8334 			return -EINVAL;
8335 	} else {
8336 		if (attr.sample_period & (1ULL << 63))
8337 			return -EINVAL;
8338 	}
8339 
8340 	/*
8341 	 * In cgroup mode, the pid argument is used to pass the fd
8342 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8343 	 * designates the cpu on which to monitor threads from that
8344 	 * cgroup.
8345 	 */
8346 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8347 		return -EINVAL;
8348 
8349 	if (flags & PERF_FLAG_FD_CLOEXEC)
8350 		f_flags |= O_CLOEXEC;
8351 
8352 	event_fd = get_unused_fd_flags(f_flags);
8353 	if (event_fd < 0)
8354 		return event_fd;
8355 
8356 	if (group_fd != -1) {
8357 		err = perf_fget_light(group_fd, &group);
8358 		if (err)
8359 			goto err_fd;
8360 		group_leader = group.file->private_data;
8361 		if (flags & PERF_FLAG_FD_OUTPUT)
8362 			output_event = group_leader;
8363 		if (flags & PERF_FLAG_FD_NO_GROUP)
8364 			group_leader = NULL;
8365 	}
8366 
8367 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8368 		task = find_lively_task_by_vpid(pid);
8369 		if (IS_ERR(task)) {
8370 			err = PTR_ERR(task);
8371 			goto err_group_fd;
8372 		}
8373 	}
8374 
8375 	if (task && group_leader &&
8376 	    group_leader->attr.inherit != attr.inherit) {
8377 		err = -EINVAL;
8378 		goto err_task;
8379 	}
8380 
8381 	get_online_cpus();
8382 
8383 	if (flags & PERF_FLAG_PID_CGROUP)
8384 		cgroup_fd = pid;
8385 
8386 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8387 				 NULL, NULL, cgroup_fd);
8388 	if (IS_ERR(event)) {
8389 		err = PTR_ERR(event);
8390 		goto err_cpus;
8391 	}
8392 
8393 	if (is_sampling_event(event)) {
8394 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8395 			err = -ENOTSUPP;
8396 			goto err_alloc;
8397 		}
8398 	}
8399 
8400 	/*
8401 	 * Special case software events and allow them to be part of
8402 	 * any hardware group.
8403 	 */
8404 	pmu = event->pmu;
8405 
8406 	if (attr.use_clockid) {
8407 		err = perf_event_set_clock(event, attr.clockid);
8408 		if (err)
8409 			goto err_alloc;
8410 	}
8411 
8412 	if (group_leader &&
8413 	    (is_software_event(event) != is_software_event(group_leader))) {
8414 		if (is_software_event(event)) {
8415 			/*
8416 			 * If event and group_leader are not both a software
8417 			 * event, and event is, then group leader is not.
8418 			 *
8419 			 * Allow the addition of software events to !software
8420 			 * groups, this is safe because software events never
8421 			 * fail to schedule.
8422 			 */
8423 			pmu = group_leader->pmu;
8424 		} else if (is_software_event(group_leader) &&
8425 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8426 			/*
8427 			 * In case the group is a pure software group, and we
8428 			 * try to add a hardware event, move the whole group to
8429 			 * the hardware context.
8430 			 */
8431 			move_group = 1;
8432 		}
8433 	}
8434 
8435 	/*
8436 	 * Get the target context (task or percpu):
8437 	 */
8438 	ctx = find_get_context(pmu, task, event);
8439 	if (IS_ERR(ctx)) {
8440 		err = PTR_ERR(ctx);
8441 		goto err_alloc;
8442 	}
8443 
8444 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8445 		err = -EBUSY;
8446 		goto err_context;
8447 	}
8448 
8449 	if (task) {
8450 		put_task_struct(task);
8451 		task = NULL;
8452 	}
8453 
8454 	/*
8455 	 * Look up the group leader (we will attach this event to it):
8456 	 */
8457 	if (group_leader) {
8458 		err = -EINVAL;
8459 
8460 		/*
8461 		 * Do not allow a recursive hierarchy (this new sibling
8462 		 * becoming part of another group-sibling):
8463 		 */
8464 		if (group_leader->group_leader != group_leader)
8465 			goto err_context;
8466 
8467 		/* All events in a group should have the same clock */
8468 		if (group_leader->clock != event->clock)
8469 			goto err_context;
8470 
8471 		/*
8472 		 * Do not allow to attach to a group in a different
8473 		 * task or CPU context:
8474 		 */
8475 		if (move_group) {
8476 			/*
8477 			 * Make sure we're both on the same task, or both
8478 			 * per-cpu events.
8479 			 */
8480 			if (group_leader->ctx->task != ctx->task)
8481 				goto err_context;
8482 
8483 			/*
8484 			 * Make sure we're both events for the same CPU;
8485 			 * grouping events for different CPUs is broken; since
8486 			 * you can never concurrently schedule them anyhow.
8487 			 */
8488 			if (group_leader->cpu != event->cpu)
8489 				goto err_context;
8490 		} else {
8491 			if (group_leader->ctx != ctx)
8492 				goto err_context;
8493 		}
8494 
8495 		/*
8496 		 * Only a group leader can be exclusive or pinned
8497 		 */
8498 		if (attr.exclusive || attr.pinned)
8499 			goto err_context;
8500 	}
8501 
8502 	if (output_event) {
8503 		err = perf_event_set_output(event, output_event);
8504 		if (err)
8505 			goto err_context;
8506 	}
8507 
8508 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8509 					f_flags);
8510 	if (IS_ERR(event_file)) {
8511 		err = PTR_ERR(event_file);
8512 		goto err_context;
8513 	}
8514 
8515 	if (move_group) {
8516 		gctx = group_leader->ctx;
8517 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8518 		if (gctx->task == TASK_TOMBSTONE) {
8519 			err = -ESRCH;
8520 			goto err_locked;
8521 		}
8522 	} else {
8523 		mutex_lock(&ctx->mutex);
8524 	}
8525 
8526 	if (ctx->task == TASK_TOMBSTONE) {
8527 		err = -ESRCH;
8528 		goto err_locked;
8529 	}
8530 
8531 	if (!perf_event_validate_size(event)) {
8532 		err = -E2BIG;
8533 		goto err_locked;
8534 	}
8535 
8536 	/*
8537 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8538 	 * because we need to serialize with concurrent event creation.
8539 	 */
8540 	if (!exclusive_event_installable(event, ctx)) {
8541 		/* exclusive and group stuff are assumed mutually exclusive */
8542 		WARN_ON_ONCE(move_group);
8543 
8544 		err = -EBUSY;
8545 		goto err_locked;
8546 	}
8547 
8548 	WARN_ON_ONCE(ctx->parent_ctx);
8549 
8550 	if (move_group) {
8551 		/*
8552 		 * See perf_event_ctx_lock() for comments on the details
8553 		 * of swizzling perf_event::ctx.
8554 		 */
8555 		perf_remove_from_context(group_leader, 0);
8556 
8557 		list_for_each_entry(sibling, &group_leader->sibling_list,
8558 				    group_entry) {
8559 			perf_remove_from_context(sibling, 0);
8560 			put_ctx(gctx);
8561 		}
8562 
8563 		/*
8564 		 * Wait for everybody to stop referencing the events through
8565 		 * the old lists, before installing it on new lists.
8566 		 */
8567 		synchronize_rcu();
8568 
8569 		/*
8570 		 * Install the group siblings before the group leader.
8571 		 *
8572 		 * Because a group leader will try and install the entire group
8573 		 * (through the sibling list, which is still in-tact), we can
8574 		 * end up with siblings installed in the wrong context.
8575 		 *
8576 		 * By installing siblings first we NO-OP because they're not
8577 		 * reachable through the group lists.
8578 		 */
8579 		list_for_each_entry(sibling, &group_leader->sibling_list,
8580 				    group_entry) {
8581 			perf_event__state_init(sibling);
8582 			perf_install_in_context(ctx, sibling, sibling->cpu);
8583 			get_ctx(ctx);
8584 		}
8585 
8586 		/*
8587 		 * Removing from the context ends up with disabled
8588 		 * event. What we want here is event in the initial
8589 		 * startup state, ready to be add into new context.
8590 		 */
8591 		perf_event__state_init(group_leader);
8592 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8593 		get_ctx(ctx);
8594 
8595 		/*
8596 		 * Now that all events are installed in @ctx, nothing
8597 		 * references @gctx anymore, so drop the last reference we have
8598 		 * on it.
8599 		 */
8600 		put_ctx(gctx);
8601 	}
8602 
8603 	/*
8604 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8605 	 * that we're serialized against further additions and before
8606 	 * perf_install_in_context() which is the point the event is active and
8607 	 * can use these values.
8608 	 */
8609 	perf_event__header_size(event);
8610 	perf_event__id_header_size(event);
8611 
8612 	event->owner = current;
8613 
8614 	perf_install_in_context(ctx, event, event->cpu);
8615 	perf_unpin_context(ctx);
8616 
8617 	if (move_group)
8618 		mutex_unlock(&gctx->mutex);
8619 	mutex_unlock(&ctx->mutex);
8620 
8621 	put_online_cpus();
8622 
8623 	mutex_lock(&current->perf_event_mutex);
8624 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8625 	mutex_unlock(&current->perf_event_mutex);
8626 
8627 	/*
8628 	 * Drop the reference on the group_event after placing the
8629 	 * new event on the sibling_list. This ensures destruction
8630 	 * of the group leader will find the pointer to itself in
8631 	 * perf_group_detach().
8632 	 */
8633 	fdput(group);
8634 	fd_install(event_fd, event_file);
8635 	return event_fd;
8636 
8637 err_locked:
8638 	if (move_group)
8639 		mutex_unlock(&gctx->mutex);
8640 	mutex_unlock(&ctx->mutex);
8641 /* err_file: */
8642 	fput(event_file);
8643 err_context:
8644 	perf_unpin_context(ctx);
8645 	put_ctx(ctx);
8646 err_alloc:
8647 	/*
8648 	 * If event_file is set, the fput() above will have called ->release()
8649 	 * and that will take care of freeing the event.
8650 	 */
8651 	if (!event_file)
8652 		free_event(event);
8653 err_cpus:
8654 	put_online_cpus();
8655 err_task:
8656 	if (task)
8657 		put_task_struct(task);
8658 err_group_fd:
8659 	fdput(group);
8660 err_fd:
8661 	put_unused_fd(event_fd);
8662 	return err;
8663 }
8664 
8665 /**
8666  * perf_event_create_kernel_counter
8667  *
8668  * @attr: attributes of the counter to create
8669  * @cpu: cpu in which the counter is bound
8670  * @task: task to profile (NULL for percpu)
8671  */
8672 struct perf_event *
8673 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8674 				 struct task_struct *task,
8675 				 perf_overflow_handler_t overflow_handler,
8676 				 void *context)
8677 {
8678 	struct perf_event_context *ctx;
8679 	struct perf_event *event;
8680 	int err;
8681 
8682 	/*
8683 	 * Get the target context (task or percpu):
8684 	 */
8685 
8686 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8687 				 overflow_handler, context, -1);
8688 	if (IS_ERR(event)) {
8689 		err = PTR_ERR(event);
8690 		goto err;
8691 	}
8692 
8693 	/* Mark owner so we could distinguish it from user events. */
8694 	event->owner = TASK_TOMBSTONE;
8695 
8696 	ctx = find_get_context(event->pmu, task, event);
8697 	if (IS_ERR(ctx)) {
8698 		err = PTR_ERR(ctx);
8699 		goto err_free;
8700 	}
8701 
8702 	WARN_ON_ONCE(ctx->parent_ctx);
8703 	mutex_lock(&ctx->mutex);
8704 	if (ctx->task == TASK_TOMBSTONE) {
8705 		err = -ESRCH;
8706 		goto err_unlock;
8707 	}
8708 
8709 	if (!exclusive_event_installable(event, ctx)) {
8710 		err = -EBUSY;
8711 		goto err_unlock;
8712 	}
8713 
8714 	perf_install_in_context(ctx, event, cpu);
8715 	perf_unpin_context(ctx);
8716 	mutex_unlock(&ctx->mutex);
8717 
8718 	return event;
8719 
8720 err_unlock:
8721 	mutex_unlock(&ctx->mutex);
8722 	perf_unpin_context(ctx);
8723 	put_ctx(ctx);
8724 err_free:
8725 	free_event(event);
8726 err:
8727 	return ERR_PTR(err);
8728 }
8729 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8730 
8731 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8732 {
8733 	struct perf_event_context *src_ctx;
8734 	struct perf_event_context *dst_ctx;
8735 	struct perf_event *event, *tmp;
8736 	LIST_HEAD(events);
8737 
8738 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8739 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8740 
8741 	/*
8742 	 * See perf_event_ctx_lock() for comments on the details
8743 	 * of swizzling perf_event::ctx.
8744 	 */
8745 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8746 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8747 				 event_entry) {
8748 		perf_remove_from_context(event, 0);
8749 		unaccount_event_cpu(event, src_cpu);
8750 		put_ctx(src_ctx);
8751 		list_add(&event->migrate_entry, &events);
8752 	}
8753 
8754 	/*
8755 	 * Wait for the events to quiesce before re-instating them.
8756 	 */
8757 	synchronize_rcu();
8758 
8759 	/*
8760 	 * Re-instate events in 2 passes.
8761 	 *
8762 	 * Skip over group leaders and only install siblings on this first
8763 	 * pass, siblings will not get enabled without a leader, however a
8764 	 * leader will enable its siblings, even if those are still on the old
8765 	 * context.
8766 	 */
8767 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8768 		if (event->group_leader == event)
8769 			continue;
8770 
8771 		list_del(&event->migrate_entry);
8772 		if (event->state >= PERF_EVENT_STATE_OFF)
8773 			event->state = PERF_EVENT_STATE_INACTIVE;
8774 		account_event_cpu(event, dst_cpu);
8775 		perf_install_in_context(dst_ctx, event, dst_cpu);
8776 		get_ctx(dst_ctx);
8777 	}
8778 
8779 	/*
8780 	 * Once all the siblings are setup properly, install the group leaders
8781 	 * to make it go.
8782 	 */
8783 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8784 		list_del(&event->migrate_entry);
8785 		if (event->state >= PERF_EVENT_STATE_OFF)
8786 			event->state = PERF_EVENT_STATE_INACTIVE;
8787 		account_event_cpu(event, dst_cpu);
8788 		perf_install_in_context(dst_ctx, event, dst_cpu);
8789 		get_ctx(dst_ctx);
8790 	}
8791 	mutex_unlock(&dst_ctx->mutex);
8792 	mutex_unlock(&src_ctx->mutex);
8793 }
8794 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8795 
8796 static void sync_child_event(struct perf_event *child_event,
8797 			       struct task_struct *child)
8798 {
8799 	struct perf_event *parent_event = child_event->parent;
8800 	u64 child_val;
8801 
8802 	if (child_event->attr.inherit_stat)
8803 		perf_event_read_event(child_event, child);
8804 
8805 	child_val = perf_event_count(child_event);
8806 
8807 	/*
8808 	 * Add back the child's count to the parent's count:
8809 	 */
8810 	atomic64_add(child_val, &parent_event->child_count);
8811 	atomic64_add(child_event->total_time_enabled,
8812 		     &parent_event->child_total_time_enabled);
8813 	atomic64_add(child_event->total_time_running,
8814 		     &parent_event->child_total_time_running);
8815 }
8816 
8817 static void
8818 perf_event_exit_event(struct perf_event *child_event,
8819 		      struct perf_event_context *child_ctx,
8820 		      struct task_struct *child)
8821 {
8822 	struct perf_event *parent_event = child_event->parent;
8823 
8824 	/*
8825 	 * Do not destroy the 'original' grouping; because of the context
8826 	 * switch optimization the original events could've ended up in a
8827 	 * random child task.
8828 	 *
8829 	 * If we were to destroy the original group, all group related
8830 	 * operations would cease to function properly after this random
8831 	 * child dies.
8832 	 *
8833 	 * Do destroy all inherited groups, we don't care about those
8834 	 * and being thorough is better.
8835 	 */
8836 	raw_spin_lock_irq(&child_ctx->lock);
8837 	WARN_ON_ONCE(child_ctx->is_active);
8838 
8839 	if (parent_event)
8840 		perf_group_detach(child_event);
8841 	list_del_event(child_event, child_ctx);
8842 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8843 	raw_spin_unlock_irq(&child_ctx->lock);
8844 
8845 	/*
8846 	 * Parent events are governed by their filedesc, retain them.
8847 	 */
8848 	if (!parent_event) {
8849 		perf_event_wakeup(child_event);
8850 		return;
8851 	}
8852 	/*
8853 	 * Child events can be cleaned up.
8854 	 */
8855 
8856 	sync_child_event(child_event, child);
8857 
8858 	/*
8859 	 * Remove this event from the parent's list
8860 	 */
8861 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8862 	mutex_lock(&parent_event->child_mutex);
8863 	list_del_init(&child_event->child_list);
8864 	mutex_unlock(&parent_event->child_mutex);
8865 
8866 	/*
8867 	 * Kick perf_poll() for is_event_hup().
8868 	 */
8869 	perf_event_wakeup(parent_event);
8870 	free_event(child_event);
8871 	put_event(parent_event);
8872 }
8873 
8874 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8875 {
8876 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8877 	struct perf_event *child_event, *next;
8878 
8879 	WARN_ON_ONCE(child != current);
8880 
8881 	child_ctx = perf_pin_task_context(child, ctxn);
8882 	if (!child_ctx)
8883 		return;
8884 
8885 	/*
8886 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
8887 	 * ctx::mutex over the entire thing. This serializes against almost
8888 	 * everything that wants to access the ctx.
8889 	 *
8890 	 * The exception is sys_perf_event_open() /
8891 	 * perf_event_create_kernel_count() which does find_get_context()
8892 	 * without ctx::mutex (it cannot because of the move_group double mutex
8893 	 * lock thing). See the comments in perf_install_in_context().
8894 	 */
8895 	mutex_lock(&child_ctx->mutex);
8896 
8897 	/*
8898 	 * In a single ctx::lock section, de-schedule the events and detach the
8899 	 * context from the task such that we cannot ever get it scheduled back
8900 	 * in.
8901 	 */
8902 	raw_spin_lock_irq(&child_ctx->lock);
8903 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8904 
8905 	/*
8906 	 * Now that the context is inactive, destroy the task <-> ctx relation
8907 	 * and mark the context dead.
8908 	 */
8909 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8910 	put_ctx(child_ctx); /* cannot be last */
8911 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8912 	put_task_struct(current); /* cannot be last */
8913 
8914 	clone_ctx = unclone_ctx(child_ctx);
8915 	raw_spin_unlock_irq(&child_ctx->lock);
8916 
8917 	if (clone_ctx)
8918 		put_ctx(clone_ctx);
8919 
8920 	/*
8921 	 * Report the task dead after unscheduling the events so that we
8922 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8923 	 * get a few PERF_RECORD_READ events.
8924 	 */
8925 	perf_event_task(child, child_ctx, 0);
8926 
8927 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8928 		perf_event_exit_event(child_event, child_ctx, child);
8929 
8930 	mutex_unlock(&child_ctx->mutex);
8931 
8932 	put_ctx(child_ctx);
8933 }
8934 
8935 /*
8936  * When a child task exits, feed back event values to parent events.
8937  */
8938 void perf_event_exit_task(struct task_struct *child)
8939 {
8940 	struct perf_event *event, *tmp;
8941 	int ctxn;
8942 
8943 	mutex_lock(&child->perf_event_mutex);
8944 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8945 				 owner_entry) {
8946 		list_del_init(&event->owner_entry);
8947 
8948 		/*
8949 		 * Ensure the list deletion is visible before we clear
8950 		 * the owner, closes a race against perf_release() where
8951 		 * we need to serialize on the owner->perf_event_mutex.
8952 		 */
8953 		smp_store_release(&event->owner, NULL);
8954 	}
8955 	mutex_unlock(&child->perf_event_mutex);
8956 
8957 	for_each_task_context_nr(ctxn)
8958 		perf_event_exit_task_context(child, ctxn);
8959 
8960 	/*
8961 	 * The perf_event_exit_task_context calls perf_event_task
8962 	 * with child's task_ctx, which generates EXIT events for
8963 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8964 	 * At this point we need to send EXIT events to cpu contexts.
8965 	 */
8966 	perf_event_task(child, NULL, 0);
8967 }
8968 
8969 static void perf_free_event(struct perf_event *event,
8970 			    struct perf_event_context *ctx)
8971 {
8972 	struct perf_event *parent = event->parent;
8973 
8974 	if (WARN_ON_ONCE(!parent))
8975 		return;
8976 
8977 	mutex_lock(&parent->child_mutex);
8978 	list_del_init(&event->child_list);
8979 	mutex_unlock(&parent->child_mutex);
8980 
8981 	put_event(parent);
8982 
8983 	raw_spin_lock_irq(&ctx->lock);
8984 	perf_group_detach(event);
8985 	list_del_event(event, ctx);
8986 	raw_spin_unlock_irq(&ctx->lock);
8987 	free_event(event);
8988 }
8989 
8990 /*
8991  * Free an unexposed, unused context as created by inheritance by
8992  * perf_event_init_task below, used by fork() in case of fail.
8993  *
8994  * Not all locks are strictly required, but take them anyway to be nice and
8995  * help out with the lockdep assertions.
8996  */
8997 void perf_event_free_task(struct task_struct *task)
8998 {
8999 	struct perf_event_context *ctx;
9000 	struct perf_event *event, *tmp;
9001 	int ctxn;
9002 
9003 	for_each_task_context_nr(ctxn) {
9004 		ctx = task->perf_event_ctxp[ctxn];
9005 		if (!ctx)
9006 			continue;
9007 
9008 		mutex_lock(&ctx->mutex);
9009 again:
9010 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9011 				group_entry)
9012 			perf_free_event(event, ctx);
9013 
9014 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9015 				group_entry)
9016 			perf_free_event(event, ctx);
9017 
9018 		if (!list_empty(&ctx->pinned_groups) ||
9019 				!list_empty(&ctx->flexible_groups))
9020 			goto again;
9021 
9022 		mutex_unlock(&ctx->mutex);
9023 
9024 		put_ctx(ctx);
9025 	}
9026 }
9027 
9028 void perf_event_delayed_put(struct task_struct *task)
9029 {
9030 	int ctxn;
9031 
9032 	for_each_task_context_nr(ctxn)
9033 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9034 }
9035 
9036 struct file *perf_event_get(unsigned int fd)
9037 {
9038 	struct file *file;
9039 
9040 	file = fget_raw(fd);
9041 	if (!file)
9042 		return ERR_PTR(-EBADF);
9043 
9044 	if (file->f_op != &perf_fops) {
9045 		fput(file);
9046 		return ERR_PTR(-EBADF);
9047 	}
9048 
9049 	return file;
9050 }
9051 
9052 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9053 {
9054 	if (!event)
9055 		return ERR_PTR(-EINVAL);
9056 
9057 	return &event->attr;
9058 }
9059 
9060 /*
9061  * inherit a event from parent task to child task:
9062  */
9063 static struct perf_event *
9064 inherit_event(struct perf_event *parent_event,
9065 	      struct task_struct *parent,
9066 	      struct perf_event_context *parent_ctx,
9067 	      struct task_struct *child,
9068 	      struct perf_event *group_leader,
9069 	      struct perf_event_context *child_ctx)
9070 {
9071 	enum perf_event_active_state parent_state = parent_event->state;
9072 	struct perf_event *child_event;
9073 	unsigned long flags;
9074 
9075 	/*
9076 	 * Instead of creating recursive hierarchies of events,
9077 	 * we link inherited events back to the original parent,
9078 	 * which has a filp for sure, which we use as the reference
9079 	 * count:
9080 	 */
9081 	if (parent_event->parent)
9082 		parent_event = parent_event->parent;
9083 
9084 	child_event = perf_event_alloc(&parent_event->attr,
9085 					   parent_event->cpu,
9086 					   child,
9087 					   group_leader, parent_event,
9088 					   NULL, NULL, -1);
9089 	if (IS_ERR(child_event))
9090 		return child_event;
9091 
9092 	/*
9093 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9094 	 * must be under the same lock in order to serialize against
9095 	 * perf_event_release_kernel(), such that either we must observe
9096 	 * is_orphaned_event() or they will observe us on the child_list.
9097 	 */
9098 	mutex_lock(&parent_event->child_mutex);
9099 	if (is_orphaned_event(parent_event) ||
9100 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9101 		mutex_unlock(&parent_event->child_mutex);
9102 		free_event(child_event);
9103 		return NULL;
9104 	}
9105 
9106 	get_ctx(child_ctx);
9107 
9108 	/*
9109 	 * Make the child state follow the state of the parent event,
9110 	 * not its attr.disabled bit.  We hold the parent's mutex,
9111 	 * so we won't race with perf_event_{en, dis}able_family.
9112 	 */
9113 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9114 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9115 	else
9116 		child_event->state = PERF_EVENT_STATE_OFF;
9117 
9118 	if (parent_event->attr.freq) {
9119 		u64 sample_period = parent_event->hw.sample_period;
9120 		struct hw_perf_event *hwc = &child_event->hw;
9121 
9122 		hwc->sample_period = sample_period;
9123 		hwc->last_period   = sample_period;
9124 
9125 		local64_set(&hwc->period_left, sample_period);
9126 	}
9127 
9128 	child_event->ctx = child_ctx;
9129 	child_event->overflow_handler = parent_event->overflow_handler;
9130 	child_event->overflow_handler_context
9131 		= parent_event->overflow_handler_context;
9132 
9133 	/*
9134 	 * Precalculate sample_data sizes
9135 	 */
9136 	perf_event__header_size(child_event);
9137 	perf_event__id_header_size(child_event);
9138 
9139 	/*
9140 	 * Link it up in the child's context:
9141 	 */
9142 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9143 	add_event_to_ctx(child_event, child_ctx);
9144 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9145 
9146 	/*
9147 	 * Link this into the parent event's child list
9148 	 */
9149 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9150 	mutex_unlock(&parent_event->child_mutex);
9151 
9152 	return child_event;
9153 }
9154 
9155 static int inherit_group(struct perf_event *parent_event,
9156 	      struct task_struct *parent,
9157 	      struct perf_event_context *parent_ctx,
9158 	      struct task_struct *child,
9159 	      struct perf_event_context *child_ctx)
9160 {
9161 	struct perf_event *leader;
9162 	struct perf_event *sub;
9163 	struct perf_event *child_ctr;
9164 
9165 	leader = inherit_event(parent_event, parent, parent_ctx,
9166 				 child, NULL, child_ctx);
9167 	if (IS_ERR(leader))
9168 		return PTR_ERR(leader);
9169 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9170 		child_ctr = inherit_event(sub, parent, parent_ctx,
9171 					    child, leader, child_ctx);
9172 		if (IS_ERR(child_ctr))
9173 			return PTR_ERR(child_ctr);
9174 	}
9175 	return 0;
9176 }
9177 
9178 static int
9179 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9180 		   struct perf_event_context *parent_ctx,
9181 		   struct task_struct *child, int ctxn,
9182 		   int *inherited_all)
9183 {
9184 	int ret;
9185 	struct perf_event_context *child_ctx;
9186 
9187 	if (!event->attr.inherit) {
9188 		*inherited_all = 0;
9189 		return 0;
9190 	}
9191 
9192 	child_ctx = child->perf_event_ctxp[ctxn];
9193 	if (!child_ctx) {
9194 		/*
9195 		 * This is executed from the parent task context, so
9196 		 * inherit events that have been marked for cloning.
9197 		 * First allocate and initialize a context for the
9198 		 * child.
9199 		 */
9200 
9201 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9202 		if (!child_ctx)
9203 			return -ENOMEM;
9204 
9205 		child->perf_event_ctxp[ctxn] = child_ctx;
9206 	}
9207 
9208 	ret = inherit_group(event, parent, parent_ctx,
9209 			    child, child_ctx);
9210 
9211 	if (ret)
9212 		*inherited_all = 0;
9213 
9214 	return ret;
9215 }
9216 
9217 /*
9218  * Initialize the perf_event context in task_struct
9219  */
9220 static int perf_event_init_context(struct task_struct *child, int ctxn)
9221 {
9222 	struct perf_event_context *child_ctx, *parent_ctx;
9223 	struct perf_event_context *cloned_ctx;
9224 	struct perf_event *event;
9225 	struct task_struct *parent = current;
9226 	int inherited_all = 1;
9227 	unsigned long flags;
9228 	int ret = 0;
9229 
9230 	if (likely(!parent->perf_event_ctxp[ctxn]))
9231 		return 0;
9232 
9233 	/*
9234 	 * If the parent's context is a clone, pin it so it won't get
9235 	 * swapped under us.
9236 	 */
9237 	parent_ctx = perf_pin_task_context(parent, ctxn);
9238 	if (!parent_ctx)
9239 		return 0;
9240 
9241 	/*
9242 	 * No need to check if parent_ctx != NULL here; since we saw
9243 	 * it non-NULL earlier, the only reason for it to become NULL
9244 	 * is if we exit, and since we're currently in the middle of
9245 	 * a fork we can't be exiting at the same time.
9246 	 */
9247 
9248 	/*
9249 	 * Lock the parent list. No need to lock the child - not PID
9250 	 * hashed yet and not running, so nobody can access it.
9251 	 */
9252 	mutex_lock(&parent_ctx->mutex);
9253 
9254 	/*
9255 	 * We dont have to disable NMIs - we are only looking at
9256 	 * the list, not manipulating it:
9257 	 */
9258 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9259 		ret = inherit_task_group(event, parent, parent_ctx,
9260 					 child, ctxn, &inherited_all);
9261 		if (ret)
9262 			break;
9263 	}
9264 
9265 	/*
9266 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9267 	 * to allocations, but we need to prevent rotation because
9268 	 * rotate_ctx() will change the list from interrupt context.
9269 	 */
9270 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9271 	parent_ctx->rotate_disable = 1;
9272 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9273 
9274 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9275 		ret = inherit_task_group(event, parent, parent_ctx,
9276 					 child, ctxn, &inherited_all);
9277 		if (ret)
9278 			break;
9279 	}
9280 
9281 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9282 	parent_ctx->rotate_disable = 0;
9283 
9284 	child_ctx = child->perf_event_ctxp[ctxn];
9285 
9286 	if (child_ctx && inherited_all) {
9287 		/*
9288 		 * Mark the child context as a clone of the parent
9289 		 * context, or of whatever the parent is a clone of.
9290 		 *
9291 		 * Note that if the parent is a clone, the holding of
9292 		 * parent_ctx->lock avoids it from being uncloned.
9293 		 */
9294 		cloned_ctx = parent_ctx->parent_ctx;
9295 		if (cloned_ctx) {
9296 			child_ctx->parent_ctx = cloned_ctx;
9297 			child_ctx->parent_gen = parent_ctx->parent_gen;
9298 		} else {
9299 			child_ctx->parent_ctx = parent_ctx;
9300 			child_ctx->parent_gen = parent_ctx->generation;
9301 		}
9302 		get_ctx(child_ctx->parent_ctx);
9303 	}
9304 
9305 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9306 	mutex_unlock(&parent_ctx->mutex);
9307 
9308 	perf_unpin_context(parent_ctx);
9309 	put_ctx(parent_ctx);
9310 
9311 	return ret;
9312 }
9313 
9314 /*
9315  * Initialize the perf_event context in task_struct
9316  */
9317 int perf_event_init_task(struct task_struct *child)
9318 {
9319 	int ctxn, ret;
9320 
9321 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9322 	mutex_init(&child->perf_event_mutex);
9323 	INIT_LIST_HEAD(&child->perf_event_list);
9324 
9325 	for_each_task_context_nr(ctxn) {
9326 		ret = perf_event_init_context(child, ctxn);
9327 		if (ret) {
9328 			perf_event_free_task(child);
9329 			return ret;
9330 		}
9331 	}
9332 
9333 	return 0;
9334 }
9335 
9336 static void __init perf_event_init_all_cpus(void)
9337 {
9338 	struct swevent_htable *swhash;
9339 	int cpu;
9340 
9341 	for_each_possible_cpu(cpu) {
9342 		swhash = &per_cpu(swevent_htable, cpu);
9343 		mutex_init(&swhash->hlist_mutex);
9344 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9345 	}
9346 }
9347 
9348 static void perf_event_init_cpu(int cpu)
9349 {
9350 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9351 
9352 	mutex_lock(&swhash->hlist_mutex);
9353 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9354 		struct swevent_hlist *hlist;
9355 
9356 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9357 		WARN_ON(!hlist);
9358 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9359 	}
9360 	mutex_unlock(&swhash->hlist_mutex);
9361 }
9362 
9363 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9364 static void __perf_event_exit_context(void *__info)
9365 {
9366 	struct perf_event_context *ctx = __info;
9367 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9368 	struct perf_event *event;
9369 
9370 	raw_spin_lock(&ctx->lock);
9371 	list_for_each_entry(event, &ctx->event_list, event_entry)
9372 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9373 	raw_spin_unlock(&ctx->lock);
9374 }
9375 
9376 static void perf_event_exit_cpu_context(int cpu)
9377 {
9378 	struct perf_event_context *ctx;
9379 	struct pmu *pmu;
9380 	int idx;
9381 
9382 	idx = srcu_read_lock(&pmus_srcu);
9383 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9384 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9385 
9386 		mutex_lock(&ctx->mutex);
9387 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9388 		mutex_unlock(&ctx->mutex);
9389 	}
9390 	srcu_read_unlock(&pmus_srcu, idx);
9391 }
9392 
9393 static void perf_event_exit_cpu(int cpu)
9394 {
9395 	perf_event_exit_cpu_context(cpu);
9396 }
9397 #else
9398 static inline void perf_event_exit_cpu(int cpu) { }
9399 #endif
9400 
9401 static int
9402 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9403 {
9404 	int cpu;
9405 
9406 	for_each_online_cpu(cpu)
9407 		perf_event_exit_cpu(cpu);
9408 
9409 	return NOTIFY_OK;
9410 }
9411 
9412 /*
9413  * Run the perf reboot notifier at the very last possible moment so that
9414  * the generic watchdog code runs as long as possible.
9415  */
9416 static struct notifier_block perf_reboot_notifier = {
9417 	.notifier_call = perf_reboot,
9418 	.priority = INT_MIN,
9419 };
9420 
9421 static int
9422 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9423 {
9424 	unsigned int cpu = (long)hcpu;
9425 
9426 	switch (action & ~CPU_TASKS_FROZEN) {
9427 
9428 	case CPU_UP_PREPARE:
9429 		perf_event_init_cpu(cpu);
9430 		break;
9431 
9432 	case CPU_DOWN_PREPARE:
9433 		perf_event_exit_cpu(cpu);
9434 		break;
9435 	default:
9436 		break;
9437 	}
9438 
9439 	return NOTIFY_OK;
9440 }
9441 
9442 void __init perf_event_init(void)
9443 {
9444 	int ret;
9445 
9446 	idr_init(&pmu_idr);
9447 
9448 	perf_event_init_all_cpus();
9449 	init_srcu_struct(&pmus_srcu);
9450 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9451 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9452 	perf_pmu_register(&perf_task_clock, NULL, -1);
9453 	perf_tp_register();
9454 	perf_cpu_notifier(perf_cpu_notify);
9455 	register_reboot_notifier(&perf_reboot_notifier);
9456 
9457 	ret = init_hw_breakpoint();
9458 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9459 
9460 	/*
9461 	 * Build time assertion that we keep the data_head at the intended
9462 	 * location.  IOW, validation we got the __reserved[] size right.
9463 	 */
9464 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9465 		     != 1024);
9466 }
9467 
9468 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9469 			      char *page)
9470 {
9471 	struct perf_pmu_events_attr *pmu_attr =
9472 		container_of(attr, struct perf_pmu_events_attr, attr);
9473 
9474 	if (pmu_attr->event_str)
9475 		return sprintf(page, "%s\n", pmu_attr->event_str);
9476 
9477 	return 0;
9478 }
9479 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9480 
9481 static int __init perf_event_sysfs_init(void)
9482 {
9483 	struct pmu *pmu;
9484 	int ret;
9485 
9486 	mutex_lock(&pmus_lock);
9487 
9488 	ret = bus_register(&pmu_bus);
9489 	if (ret)
9490 		goto unlock;
9491 
9492 	list_for_each_entry(pmu, &pmus, entry) {
9493 		if (!pmu->name || pmu->type < 0)
9494 			continue;
9495 
9496 		ret = pmu_dev_alloc(pmu);
9497 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9498 	}
9499 	pmu_bus_running = 1;
9500 	ret = 0;
9501 
9502 unlock:
9503 	mutex_unlock(&pmus_lock);
9504 
9505 	return ret;
9506 }
9507 device_initcall(perf_event_sysfs_init);
9508 
9509 #ifdef CONFIG_CGROUP_PERF
9510 static struct cgroup_subsys_state *
9511 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9512 {
9513 	struct perf_cgroup *jc;
9514 
9515 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9516 	if (!jc)
9517 		return ERR_PTR(-ENOMEM);
9518 
9519 	jc->info = alloc_percpu(struct perf_cgroup_info);
9520 	if (!jc->info) {
9521 		kfree(jc);
9522 		return ERR_PTR(-ENOMEM);
9523 	}
9524 
9525 	return &jc->css;
9526 }
9527 
9528 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9529 {
9530 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9531 
9532 	free_percpu(jc->info);
9533 	kfree(jc);
9534 }
9535 
9536 static int __perf_cgroup_move(void *info)
9537 {
9538 	struct task_struct *task = info;
9539 	rcu_read_lock();
9540 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9541 	rcu_read_unlock();
9542 	return 0;
9543 }
9544 
9545 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9546 {
9547 	struct task_struct *task;
9548 	struct cgroup_subsys_state *css;
9549 
9550 	cgroup_taskset_for_each(task, css, tset)
9551 		task_function_call(task, __perf_cgroup_move, task);
9552 }
9553 
9554 struct cgroup_subsys perf_event_cgrp_subsys = {
9555 	.css_alloc	= perf_cgroup_css_alloc,
9556 	.css_free	= perf_cgroup_css_free,
9557 	.attach		= perf_cgroup_attach,
9558 };
9559 #endif /* CONFIG_CGROUP_PERF */
9560