xref: /linux/kernel/cpu.c (revision 64fc2a947a9873700929ec0ef02b4654a04e0476)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
28 
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
32 
33 #include "smpboot.h"
34 
35 /**
36  * cpuhp_cpu_state - Per cpu hotplug state storage
37  * @state:	The current cpu state
38  * @target:	The target state
39  * @thread:	Pointer to the hotplug thread
40  * @should_run:	Thread should execute
41  * @rollback:	Perform a rollback
42  * @single:	Single callback invocation
43  * @bringup:	Single callback bringup or teardown selector
44  * @cb_state:	The state for a single callback (install/uninstall)
45  * @result:	Result of the operation
46  * @done:	Signal completion to the issuer of the task
47  */
48 struct cpuhp_cpu_state {
49 	enum cpuhp_state	state;
50 	enum cpuhp_state	target;
51 #ifdef CONFIG_SMP
52 	struct task_struct	*thread;
53 	bool			should_run;
54 	bool			rollback;
55 	bool			single;
56 	bool			bringup;
57 	struct hlist_node	*node;
58 	enum cpuhp_state	cb_state;
59 	int			result;
60 	struct completion	done;
61 #endif
62 };
63 
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
65 
66 /**
67  * cpuhp_step - Hotplug state machine step
68  * @name:	Name of the step
69  * @startup:	Startup function of the step
70  * @teardown:	Teardown function of the step
71  * @skip_onerr:	Do not invoke the functions on error rollback
72  *		Will go away once the notifiers	are gone
73  * @cant_stop:	Bringup/teardown can't be stopped at this step
74  */
75 struct cpuhp_step {
76 	const char		*name;
77 	union {
78 		int		(*single)(unsigned int cpu);
79 		int		(*multi)(unsigned int cpu,
80 					 struct hlist_node *node);
81 	} startup;
82 	union {
83 		int		(*single)(unsigned int cpu);
84 		int		(*multi)(unsigned int cpu,
85 					 struct hlist_node *node);
86 	} teardown;
87 	struct hlist_head	list;
88 	bool			skip_onerr;
89 	bool			cant_stop;
90 	bool			multi_instance;
91 };
92 
93 static DEFINE_MUTEX(cpuhp_state_mutex);
94 static struct cpuhp_step cpuhp_bp_states[];
95 static struct cpuhp_step cpuhp_ap_states[];
96 
97 static bool cpuhp_is_ap_state(enum cpuhp_state state)
98 {
99 	/*
100 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101 	 * purposes as that state is handled explicitly in cpu_down.
102 	 */
103 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
104 }
105 
106 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
107 {
108 	struct cpuhp_step *sp;
109 
110 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
111 	return sp + state;
112 }
113 
114 /**
115  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116  * @cpu:	The cpu for which the callback should be invoked
117  * @step:	The step in the state machine
118  * @bringup:	True if the bringup callback should be invoked
119  *
120  * Called from cpu hotplug and from the state register machinery.
121  */
122 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
123 				 bool bringup, struct hlist_node *node)
124 {
125 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
126 	struct cpuhp_step *step = cpuhp_get_step(state);
127 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
128 	int (*cb)(unsigned int cpu);
129 	int ret, cnt;
130 
131 	if (!step->multi_instance) {
132 		cb = bringup ? step->startup.single : step->teardown.single;
133 		if (!cb)
134 			return 0;
135 		trace_cpuhp_enter(cpu, st->target, state, cb);
136 		ret = cb(cpu);
137 		trace_cpuhp_exit(cpu, st->state, state, ret);
138 		return ret;
139 	}
140 	cbm = bringup ? step->startup.multi : step->teardown.multi;
141 	if (!cbm)
142 		return 0;
143 
144 	/* Single invocation for instance add/remove */
145 	if (node) {
146 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
147 		ret = cbm(cpu, node);
148 		trace_cpuhp_exit(cpu, st->state, state, ret);
149 		return ret;
150 	}
151 
152 	/* State transition. Invoke on all instances */
153 	cnt = 0;
154 	hlist_for_each(node, &step->list) {
155 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 		ret = cbm(cpu, node);
157 		trace_cpuhp_exit(cpu, st->state, state, ret);
158 		if (ret)
159 			goto err;
160 		cnt++;
161 	}
162 	return 0;
163 err:
164 	/* Rollback the instances if one failed */
165 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
166 	if (!cbm)
167 		return ret;
168 
169 	hlist_for_each(node, &step->list) {
170 		if (!cnt--)
171 			break;
172 		cbm(cpu, node);
173 	}
174 	return ret;
175 }
176 
177 #ifdef CONFIG_SMP
178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
179 static DEFINE_MUTEX(cpu_add_remove_lock);
180 bool cpuhp_tasks_frozen;
181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
182 
183 /*
184  * The following two APIs (cpu_maps_update_begin/done) must be used when
185  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
186  */
187 void cpu_maps_update_begin(void)
188 {
189 	mutex_lock(&cpu_add_remove_lock);
190 }
191 
192 void cpu_maps_update_done(void)
193 {
194 	mutex_unlock(&cpu_add_remove_lock);
195 }
196 
197 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
198  * Should always be manipulated under cpu_add_remove_lock
199  */
200 static int cpu_hotplug_disabled;
201 
202 #ifdef CONFIG_HOTPLUG_CPU
203 
204 static struct {
205 	struct task_struct *active_writer;
206 	/* wait queue to wake up the active_writer */
207 	wait_queue_head_t wq;
208 	/* verifies that no writer will get active while readers are active */
209 	struct mutex lock;
210 	/*
211 	 * Also blocks the new readers during
212 	 * an ongoing cpu hotplug operation.
213 	 */
214 	atomic_t refcount;
215 
216 #ifdef CONFIG_DEBUG_LOCK_ALLOC
217 	struct lockdep_map dep_map;
218 #endif
219 } cpu_hotplug = {
220 	.active_writer = NULL,
221 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
222 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
223 #ifdef CONFIG_DEBUG_LOCK_ALLOC
224 	.dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
225 #endif
226 };
227 
228 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
229 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
230 #define cpuhp_lock_acquire_tryread() \
231 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
233 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
234 
235 
236 void get_online_cpus(void)
237 {
238 	might_sleep();
239 	if (cpu_hotplug.active_writer == current)
240 		return;
241 	cpuhp_lock_acquire_read();
242 	mutex_lock(&cpu_hotplug.lock);
243 	atomic_inc(&cpu_hotplug.refcount);
244 	mutex_unlock(&cpu_hotplug.lock);
245 }
246 EXPORT_SYMBOL_GPL(get_online_cpus);
247 
248 void put_online_cpus(void)
249 {
250 	int refcount;
251 
252 	if (cpu_hotplug.active_writer == current)
253 		return;
254 
255 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
256 	if (WARN_ON(refcount < 0)) /* try to fix things up */
257 		atomic_inc(&cpu_hotplug.refcount);
258 
259 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
260 		wake_up(&cpu_hotplug.wq);
261 
262 	cpuhp_lock_release();
263 
264 }
265 EXPORT_SYMBOL_GPL(put_online_cpus);
266 
267 /*
268  * This ensures that the hotplug operation can begin only when the
269  * refcount goes to zero.
270  *
271  * Note that during a cpu-hotplug operation, the new readers, if any,
272  * will be blocked by the cpu_hotplug.lock
273  *
274  * Since cpu_hotplug_begin() is always called after invoking
275  * cpu_maps_update_begin(), we can be sure that only one writer is active.
276  *
277  * Note that theoretically, there is a possibility of a livelock:
278  * - Refcount goes to zero, last reader wakes up the sleeping
279  *   writer.
280  * - Last reader unlocks the cpu_hotplug.lock.
281  * - A new reader arrives at this moment, bumps up the refcount.
282  * - The writer acquires the cpu_hotplug.lock finds the refcount
283  *   non zero and goes to sleep again.
284  *
285  * However, this is very difficult to achieve in practice since
286  * get_online_cpus() not an api which is called all that often.
287  *
288  */
289 void cpu_hotplug_begin(void)
290 {
291 	DEFINE_WAIT(wait);
292 
293 	cpu_hotplug.active_writer = current;
294 	cpuhp_lock_acquire();
295 
296 	for (;;) {
297 		mutex_lock(&cpu_hotplug.lock);
298 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
299 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
300 				break;
301 		mutex_unlock(&cpu_hotplug.lock);
302 		schedule();
303 	}
304 	finish_wait(&cpu_hotplug.wq, &wait);
305 }
306 
307 void cpu_hotplug_done(void)
308 {
309 	cpu_hotplug.active_writer = NULL;
310 	mutex_unlock(&cpu_hotplug.lock);
311 	cpuhp_lock_release();
312 }
313 
314 /*
315  * Wait for currently running CPU hotplug operations to complete (if any) and
316  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318  * hotplug path before performing hotplug operations. So acquiring that lock
319  * guarantees mutual exclusion from any currently running hotplug operations.
320  */
321 void cpu_hotplug_disable(void)
322 {
323 	cpu_maps_update_begin();
324 	cpu_hotplug_disabled++;
325 	cpu_maps_update_done();
326 }
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
328 
329 static void __cpu_hotplug_enable(void)
330 {
331 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
332 		return;
333 	cpu_hotplug_disabled--;
334 }
335 
336 void cpu_hotplug_enable(void)
337 {
338 	cpu_maps_update_begin();
339 	__cpu_hotplug_enable();
340 	cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343 #endif	/* CONFIG_HOTPLUG_CPU */
344 
345 /* Notifier wrappers for transitioning to state machine */
346 
347 static int bringup_wait_for_ap(unsigned int cpu)
348 {
349 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
350 
351 	wait_for_completion(&st->done);
352 	return st->result;
353 }
354 
355 static int bringup_cpu(unsigned int cpu)
356 {
357 	struct task_struct *idle = idle_thread_get(cpu);
358 	int ret;
359 
360 	/*
361 	 * Some architectures have to walk the irq descriptors to
362 	 * setup the vector space for the cpu which comes online.
363 	 * Prevent irq alloc/free across the bringup.
364 	 */
365 	irq_lock_sparse();
366 
367 	/* Arch-specific enabling code. */
368 	ret = __cpu_up(cpu, idle);
369 	irq_unlock_sparse();
370 	if (ret)
371 		return ret;
372 	ret = bringup_wait_for_ap(cpu);
373 	BUG_ON(!cpu_online(cpu));
374 	return ret;
375 }
376 
377 /*
378  * Hotplug state machine related functions
379  */
380 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
381 {
382 	for (st->state++; st->state < st->target; st->state++) {
383 		struct cpuhp_step *step = cpuhp_get_step(st->state);
384 
385 		if (!step->skip_onerr)
386 			cpuhp_invoke_callback(cpu, st->state, true, NULL);
387 	}
388 }
389 
390 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
391 				enum cpuhp_state target)
392 {
393 	enum cpuhp_state prev_state = st->state;
394 	int ret = 0;
395 
396 	for (; st->state > target; st->state--) {
397 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
398 		if (ret) {
399 			st->target = prev_state;
400 			undo_cpu_down(cpu, st);
401 			break;
402 		}
403 	}
404 	return ret;
405 }
406 
407 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
408 {
409 	for (st->state--; st->state > st->target; st->state--) {
410 		struct cpuhp_step *step = cpuhp_get_step(st->state);
411 
412 		if (!step->skip_onerr)
413 			cpuhp_invoke_callback(cpu, st->state, false, NULL);
414 	}
415 }
416 
417 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
418 			      enum cpuhp_state target)
419 {
420 	enum cpuhp_state prev_state = st->state;
421 	int ret = 0;
422 
423 	while (st->state < target) {
424 		st->state++;
425 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
426 		if (ret) {
427 			st->target = prev_state;
428 			undo_cpu_up(cpu, st);
429 			break;
430 		}
431 	}
432 	return ret;
433 }
434 
435 /*
436  * The cpu hotplug threads manage the bringup and teardown of the cpus
437  */
438 static void cpuhp_create(unsigned int cpu)
439 {
440 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
441 
442 	init_completion(&st->done);
443 }
444 
445 static int cpuhp_should_run(unsigned int cpu)
446 {
447 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
448 
449 	return st->should_run;
450 }
451 
452 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
453 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
454 {
455 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
456 
457 	return cpuhp_down_callbacks(cpu, st, target);
458 }
459 
460 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
461 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
462 {
463 	return cpuhp_up_callbacks(cpu, st, st->target);
464 }
465 
466 /*
467  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
468  * callbacks when a state gets [un]installed at runtime.
469  */
470 static void cpuhp_thread_fun(unsigned int cpu)
471 {
472 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
473 	int ret = 0;
474 
475 	/*
476 	 * Paired with the mb() in cpuhp_kick_ap_work and
477 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
478 	 */
479 	smp_mb();
480 	if (!st->should_run)
481 		return;
482 
483 	st->should_run = false;
484 
485 	/* Single callback invocation for [un]install ? */
486 	if (st->single) {
487 		if (st->cb_state < CPUHP_AP_ONLINE) {
488 			local_irq_disable();
489 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
490 						    st->bringup, st->node);
491 			local_irq_enable();
492 		} else {
493 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
494 						    st->bringup, st->node);
495 		}
496 	} else if (st->rollback) {
497 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
498 
499 		undo_cpu_down(cpu, st);
500 		st->rollback = false;
501 	} else {
502 		/* Cannot happen .... */
503 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
504 
505 		/* Regular hotplug work */
506 		if (st->state < st->target)
507 			ret = cpuhp_ap_online(cpu, st);
508 		else if (st->state > st->target)
509 			ret = cpuhp_ap_offline(cpu, st);
510 	}
511 	st->result = ret;
512 	complete(&st->done);
513 }
514 
515 /* Invoke a single callback on a remote cpu */
516 static int
517 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
518 			 struct hlist_node *node)
519 {
520 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
521 
522 	if (!cpu_online(cpu))
523 		return 0;
524 
525 	/*
526 	 * If we are up and running, use the hotplug thread. For early calls
527 	 * we invoke the thread function directly.
528 	 */
529 	if (!st->thread)
530 		return cpuhp_invoke_callback(cpu, state, bringup, node);
531 
532 	st->cb_state = state;
533 	st->single = true;
534 	st->bringup = bringup;
535 	st->node = node;
536 
537 	/*
538 	 * Make sure the above stores are visible before should_run becomes
539 	 * true. Paired with the mb() above in cpuhp_thread_fun()
540 	 */
541 	smp_mb();
542 	st->should_run = true;
543 	wake_up_process(st->thread);
544 	wait_for_completion(&st->done);
545 	return st->result;
546 }
547 
548 /* Regular hotplug invocation of the AP hotplug thread */
549 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
550 {
551 	st->result = 0;
552 	st->single = false;
553 	/*
554 	 * Make sure the above stores are visible before should_run becomes
555 	 * true. Paired with the mb() above in cpuhp_thread_fun()
556 	 */
557 	smp_mb();
558 	st->should_run = true;
559 	wake_up_process(st->thread);
560 }
561 
562 static int cpuhp_kick_ap_work(unsigned int cpu)
563 {
564 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
565 	enum cpuhp_state state = st->state;
566 
567 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
568 	__cpuhp_kick_ap_work(st);
569 	wait_for_completion(&st->done);
570 	trace_cpuhp_exit(cpu, st->state, state, st->result);
571 	return st->result;
572 }
573 
574 static struct smp_hotplug_thread cpuhp_threads = {
575 	.store			= &cpuhp_state.thread,
576 	.create			= &cpuhp_create,
577 	.thread_should_run	= cpuhp_should_run,
578 	.thread_fn		= cpuhp_thread_fun,
579 	.thread_comm		= "cpuhp/%u",
580 	.selfparking		= true,
581 };
582 
583 void __init cpuhp_threads_init(void)
584 {
585 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
586 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
587 }
588 
589 #ifdef CONFIG_HOTPLUG_CPU
590 /**
591  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
592  * @cpu: a CPU id
593  *
594  * This function walks all processes, finds a valid mm struct for each one and
595  * then clears a corresponding bit in mm's cpumask.  While this all sounds
596  * trivial, there are various non-obvious corner cases, which this function
597  * tries to solve in a safe manner.
598  *
599  * Also note that the function uses a somewhat relaxed locking scheme, so it may
600  * be called only for an already offlined CPU.
601  */
602 void clear_tasks_mm_cpumask(int cpu)
603 {
604 	struct task_struct *p;
605 
606 	/*
607 	 * This function is called after the cpu is taken down and marked
608 	 * offline, so its not like new tasks will ever get this cpu set in
609 	 * their mm mask. -- Peter Zijlstra
610 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
611 	 * full-fledged tasklist_lock.
612 	 */
613 	WARN_ON(cpu_online(cpu));
614 	rcu_read_lock();
615 	for_each_process(p) {
616 		struct task_struct *t;
617 
618 		/*
619 		 * Main thread might exit, but other threads may still have
620 		 * a valid mm. Find one.
621 		 */
622 		t = find_lock_task_mm(p);
623 		if (!t)
624 			continue;
625 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
626 		task_unlock(t);
627 	}
628 	rcu_read_unlock();
629 }
630 
631 static inline void check_for_tasks(int dead_cpu)
632 {
633 	struct task_struct *g, *p;
634 
635 	read_lock(&tasklist_lock);
636 	for_each_process_thread(g, p) {
637 		if (!p->on_rq)
638 			continue;
639 		/*
640 		 * We do the check with unlocked task_rq(p)->lock.
641 		 * Order the reading to do not warn about a task,
642 		 * which was running on this cpu in the past, and
643 		 * it's just been woken on another cpu.
644 		 */
645 		rmb();
646 		if (task_cpu(p) != dead_cpu)
647 			continue;
648 
649 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
650 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
651 	}
652 	read_unlock(&tasklist_lock);
653 }
654 
655 /* Take this CPU down. */
656 static int take_cpu_down(void *_param)
657 {
658 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
659 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
660 	int err, cpu = smp_processor_id();
661 
662 	/* Ensure this CPU doesn't handle any more interrupts. */
663 	err = __cpu_disable();
664 	if (err < 0)
665 		return err;
666 
667 	/*
668 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
669 	 * do this step again.
670 	 */
671 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
672 	st->state--;
673 	/* Invoke the former CPU_DYING callbacks */
674 	for (; st->state > target; st->state--)
675 		cpuhp_invoke_callback(cpu, st->state, false, NULL);
676 
677 	/* Give up timekeeping duties */
678 	tick_handover_do_timer();
679 	/* Park the stopper thread */
680 	stop_machine_park(cpu);
681 	return 0;
682 }
683 
684 static int takedown_cpu(unsigned int cpu)
685 {
686 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
687 	int err;
688 
689 	/* Park the smpboot threads */
690 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
691 	smpboot_park_threads(cpu);
692 
693 	/*
694 	 * Prevent irq alloc/free while the dying cpu reorganizes the
695 	 * interrupt affinities.
696 	 */
697 	irq_lock_sparse();
698 
699 	/*
700 	 * So now all preempt/rcu users must observe !cpu_active().
701 	 */
702 	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
703 	if (err) {
704 		/* CPU refused to die */
705 		irq_unlock_sparse();
706 		/* Unpark the hotplug thread so we can rollback there */
707 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
708 		return err;
709 	}
710 	BUG_ON(cpu_online(cpu));
711 
712 	/*
713 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
714 	 * runnable tasks from the cpu, there's only the idle task left now
715 	 * that the migration thread is done doing the stop_machine thing.
716 	 *
717 	 * Wait for the stop thread to go away.
718 	 */
719 	wait_for_completion(&st->done);
720 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
721 
722 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
723 	irq_unlock_sparse();
724 
725 	hotplug_cpu__broadcast_tick_pull(cpu);
726 	/* This actually kills the CPU. */
727 	__cpu_die(cpu);
728 
729 	tick_cleanup_dead_cpu(cpu);
730 	return 0;
731 }
732 
733 static void cpuhp_complete_idle_dead(void *arg)
734 {
735 	struct cpuhp_cpu_state *st = arg;
736 
737 	complete(&st->done);
738 }
739 
740 void cpuhp_report_idle_dead(void)
741 {
742 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
743 
744 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
745 	rcu_report_dead(smp_processor_id());
746 	st->state = CPUHP_AP_IDLE_DEAD;
747 	/*
748 	 * We cannot call complete after rcu_report_dead() so we delegate it
749 	 * to an online cpu.
750 	 */
751 	smp_call_function_single(cpumask_first(cpu_online_mask),
752 				 cpuhp_complete_idle_dead, st, 0);
753 }
754 
755 #else
756 #define takedown_cpu		NULL
757 #endif
758 
759 #ifdef CONFIG_HOTPLUG_CPU
760 
761 /* Requires cpu_add_remove_lock to be held */
762 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
763 			   enum cpuhp_state target)
764 {
765 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
766 	int prev_state, ret = 0;
767 	bool hasdied = false;
768 
769 	if (num_online_cpus() == 1)
770 		return -EBUSY;
771 
772 	if (!cpu_present(cpu))
773 		return -EINVAL;
774 
775 	cpu_hotplug_begin();
776 
777 	cpuhp_tasks_frozen = tasks_frozen;
778 
779 	prev_state = st->state;
780 	st->target = target;
781 	/*
782 	 * If the current CPU state is in the range of the AP hotplug thread,
783 	 * then we need to kick the thread.
784 	 */
785 	if (st->state > CPUHP_TEARDOWN_CPU) {
786 		ret = cpuhp_kick_ap_work(cpu);
787 		/*
788 		 * The AP side has done the error rollback already. Just
789 		 * return the error code..
790 		 */
791 		if (ret)
792 			goto out;
793 
794 		/*
795 		 * We might have stopped still in the range of the AP hotplug
796 		 * thread. Nothing to do anymore.
797 		 */
798 		if (st->state > CPUHP_TEARDOWN_CPU)
799 			goto out;
800 	}
801 	/*
802 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
803 	 * to do the further cleanups.
804 	 */
805 	ret = cpuhp_down_callbacks(cpu, st, target);
806 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
807 		st->target = prev_state;
808 		st->rollback = true;
809 		cpuhp_kick_ap_work(cpu);
810 	}
811 
812 	hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
813 out:
814 	cpu_hotplug_done();
815 	return ret;
816 }
817 
818 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
819 {
820 	int err;
821 
822 	cpu_maps_update_begin();
823 
824 	if (cpu_hotplug_disabled) {
825 		err = -EBUSY;
826 		goto out;
827 	}
828 
829 	err = _cpu_down(cpu, 0, target);
830 
831 out:
832 	cpu_maps_update_done();
833 	return err;
834 }
835 int cpu_down(unsigned int cpu)
836 {
837 	return do_cpu_down(cpu, CPUHP_OFFLINE);
838 }
839 EXPORT_SYMBOL(cpu_down);
840 #endif /*CONFIG_HOTPLUG_CPU*/
841 
842 /**
843  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
844  * @cpu: cpu that just started
845  *
846  * It must be called by the arch code on the new cpu, before the new cpu
847  * enables interrupts and before the "boot" cpu returns from __cpu_up().
848  */
849 void notify_cpu_starting(unsigned int cpu)
850 {
851 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
853 
854 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
855 	while (st->state < target) {
856 		st->state++;
857 		cpuhp_invoke_callback(cpu, st->state, true, NULL);
858 	}
859 }
860 
861 /*
862  * Called from the idle task. We need to set active here, so we can kick off
863  * the stopper thread and unpark the smpboot threads. If the target state is
864  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865  * cpu further.
866  */
867 void cpuhp_online_idle(enum cpuhp_state state)
868 {
869 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
870 	unsigned int cpu = smp_processor_id();
871 
872 	/* Happens for the boot cpu */
873 	if (state != CPUHP_AP_ONLINE_IDLE)
874 		return;
875 
876 	st->state = CPUHP_AP_ONLINE_IDLE;
877 
878 	/* Unpark the stopper thread and the hotplug thread of this cpu */
879 	stop_machine_unpark(cpu);
880 	kthread_unpark(st->thread);
881 
882 	/* Should we go further up ? */
883 	if (st->target > CPUHP_AP_ONLINE_IDLE)
884 		__cpuhp_kick_ap_work(st);
885 	else
886 		complete(&st->done);
887 }
888 
889 /* Requires cpu_add_remove_lock to be held */
890 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
891 {
892 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
893 	struct task_struct *idle;
894 	int ret = 0;
895 
896 	cpu_hotplug_begin();
897 
898 	if (!cpu_present(cpu)) {
899 		ret = -EINVAL;
900 		goto out;
901 	}
902 
903 	/*
904 	 * The caller of do_cpu_up might have raced with another
905 	 * caller. Ignore it for now.
906 	 */
907 	if (st->state >= target)
908 		goto out;
909 
910 	if (st->state == CPUHP_OFFLINE) {
911 		/* Let it fail before we try to bring the cpu up */
912 		idle = idle_thread_get(cpu);
913 		if (IS_ERR(idle)) {
914 			ret = PTR_ERR(idle);
915 			goto out;
916 		}
917 	}
918 
919 	cpuhp_tasks_frozen = tasks_frozen;
920 
921 	st->target = target;
922 	/*
923 	 * If the current CPU state is in the range of the AP hotplug thread,
924 	 * then we need to kick the thread once more.
925 	 */
926 	if (st->state > CPUHP_BRINGUP_CPU) {
927 		ret = cpuhp_kick_ap_work(cpu);
928 		/*
929 		 * The AP side has done the error rollback already. Just
930 		 * return the error code..
931 		 */
932 		if (ret)
933 			goto out;
934 	}
935 
936 	/*
937 	 * Try to reach the target state. We max out on the BP at
938 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
939 	 * responsible for bringing it up to the target state.
940 	 */
941 	target = min((int)target, CPUHP_BRINGUP_CPU);
942 	ret = cpuhp_up_callbacks(cpu, st, target);
943 out:
944 	cpu_hotplug_done();
945 	return ret;
946 }
947 
948 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
949 {
950 	int err = 0;
951 
952 	if (!cpu_possible(cpu)) {
953 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
954 		       cpu);
955 #if defined(CONFIG_IA64)
956 		pr_err("please check additional_cpus= boot parameter\n");
957 #endif
958 		return -EINVAL;
959 	}
960 
961 	err = try_online_node(cpu_to_node(cpu));
962 	if (err)
963 		return err;
964 
965 	cpu_maps_update_begin();
966 
967 	if (cpu_hotplug_disabled) {
968 		err = -EBUSY;
969 		goto out;
970 	}
971 
972 	err = _cpu_up(cpu, 0, target);
973 out:
974 	cpu_maps_update_done();
975 	return err;
976 }
977 
978 int cpu_up(unsigned int cpu)
979 {
980 	return do_cpu_up(cpu, CPUHP_ONLINE);
981 }
982 EXPORT_SYMBOL_GPL(cpu_up);
983 
984 #ifdef CONFIG_PM_SLEEP_SMP
985 static cpumask_var_t frozen_cpus;
986 
987 int freeze_secondary_cpus(int primary)
988 {
989 	int cpu, error = 0;
990 
991 	cpu_maps_update_begin();
992 	if (!cpu_online(primary))
993 		primary = cpumask_first(cpu_online_mask);
994 	/*
995 	 * We take down all of the non-boot CPUs in one shot to avoid races
996 	 * with the userspace trying to use the CPU hotplug at the same time
997 	 */
998 	cpumask_clear(frozen_cpus);
999 
1000 	pr_info("Disabling non-boot CPUs ...\n");
1001 	for_each_online_cpu(cpu) {
1002 		if (cpu == primary)
1003 			continue;
1004 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1005 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1006 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1007 		if (!error)
1008 			cpumask_set_cpu(cpu, frozen_cpus);
1009 		else {
1010 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1011 			break;
1012 		}
1013 	}
1014 
1015 	if (!error)
1016 		BUG_ON(num_online_cpus() > 1);
1017 	else
1018 		pr_err("Non-boot CPUs are not disabled\n");
1019 
1020 	/*
1021 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1022 	 * this even in case of failure as all disable_nonboot_cpus() users are
1023 	 * supposed to do enable_nonboot_cpus() on the failure path.
1024 	 */
1025 	cpu_hotplug_disabled++;
1026 
1027 	cpu_maps_update_done();
1028 	return error;
1029 }
1030 
1031 void __weak arch_enable_nonboot_cpus_begin(void)
1032 {
1033 }
1034 
1035 void __weak arch_enable_nonboot_cpus_end(void)
1036 {
1037 }
1038 
1039 void enable_nonboot_cpus(void)
1040 {
1041 	int cpu, error;
1042 
1043 	/* Allow everyone to use the CPU hotplug again */
1044 	cpu_maps_update_begin();
1045 	__cpu_hotplug_enable();
1046 	if (cpumask_empty(frozen_cpus))
1047 		goto out;
1048 
1049 	pr_info("Enabling non-boot CPUs ...\n");
1050 
1051 	arch_enable_nonboot_cpus_begin();
1052 
1053 	for_each_cpu(cpu, frozen_cpus) {
1054 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1055 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1056 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1057 		if (!error) {
1058 			pr_info("CPU%d is up\n", cpu);
1059 			continue;
1060 		}
1061 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1062 	}
1063 
1064 	arch_enable_nonboot_cpus_end();
1065 
1066 	cpumask_clear(frozen_cpus);
1067 out:
1068 	cpu_maps_update_done();
1069 }
1070 
1071 static int __init alloc_frozen_cpus(void)
1072 {
1073 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1074 		return -ENOMEM;
1075 	return 0;
1076 }
1077 core_initcall(alloc_frozen_cpus);
1078 
1079 /*
1080  * When callbacks for CPU hotplug notifications are being executed, we must
1081  * ensure that the state of the system with respect to the tasks being frozen
1082  * or not, as reported by the notification, remains unchanged *throughout the
1083  * duration* of the execution of the callbacks.
1084  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1085  *
1086  * This synchronization is implemented by mutually excluding regular CPU
1087  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1088  * Hibernate notifications.
1089  */
1090 static int
1091 cpu_hotplug_pm_callback(struct notifier_block *nb,
1092 			unsigned long action, void *ptr)
1093 {
1094 	switch (action) {
1095 
1096 	case PM_SUSPEND_PREPARE:
1097 	case PM_HIBERNATION_PREPARE:
1098 		cpu_hotplug_disable();
1099 		break;
1100 
1101 	case PM_POST_SUSPEND:
1102 	case PM_POST_HIBERNATION:
1103 		cpu_hotplug_enable();
1104 		break;
1105 
1106 	default:
1107 		return NOTIFY_DONE;
1108 	}
1109 
1110 	return NOTIFY_OK;
1111 }
1112 
1113 
1114 static int __init cpu_hotplug_pm_sync_init(void)
1115 {
1116 	/*
1117 	 * cpu_hotplug_pm_callback has higher priority than x86
1118 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1119 	 * to disable cpu hotplug to avoid cpu hotplug race.
1120 	 */
1121 	pm_notifier(cpu_hotplug_pm_callback, 0);
1122 	return 0;
1123 }
1124 core_initcall(cpu_hotplug_pm_sync_init);
1125 
1126 #endif /* CONFIG_PM_SLEEP_SMP */
1127 
1128 #endif /* CONFIG_SMP */
1129 
1130 /* Boot processor state steps */
1131 static struct cpuhp_step cpuhp_bp_states[] = {
1132 	[CPUHP_OFFLINE] = {
1133 		.name			= "offline",
1134 		.startup.single		= NULL,
1135 		.teardown.single	= NULL,
1136 	},
1137 #ifdef CONFIG_SMP
1138 	[CPUHP_CREATE_THREADS]= {
1139 		.name			= "threads:prepare",
1140 		.startup.single		= smpboot_create_threads,
1141 		.teardown.single	= NULL,
1142 		.cant_stop		= true,
1143 	},
1144 	[CPUHP_PERF_PREPARE] = {
1145 		.name			= "perf:prepare",
1146 		.startup.single		= perf_event_init_cpu,
1147 		.teardown.single	= perf_event_exit_cpu,
1148 	},
1149 	[CPUHP_WORKQUEUE_PREP] = {
1150 		.name			= "workqueue:prepare",
1151 		.startup.single		= workqueue_prepare_cpu,
1152 		.teardown.single	= NULL,
1153 	},
1154 	[CPUHP_HRTIMERS_PREPARE] = {
1155 		.name			= "hrtimers:prepare",
1156 		.startup.single		= hrtimers_prepare_cpu,
1157 		.teardown.single	= hrtimers_dead_cpu,
1158 	},
1159 	[CPUHP_SMPCFD_PREPARE] = {
1160 		.name			= "smpcfd:prepare",
1161 		.startup.single		= smpcfd_prepare_cpu,
1162 		.teardown.single	= smpcfd_dead_cpu,
1163 	},
1164 	[CPUHP_RELAY_PREPARE] = {
1165 		.name			= "relay:prepare",
1166 		.startup.single		= relay_prepare_cpu,
1167 		.teardown.single	= NULL,
1168 	},
1169 	[CPUHP_SLAB_PREPARE] = {
1170 		.name			= "slab:prepare",
1171 		.startup.single		= slab_prepare_cpu,
1172 		.teardown.single	= slab_dead_cpu,
1173 	},
1174 	[CPUHP_RCUTREE_PREP] = {
1175 		.name			= "RCU/tree:prepare",
1176 		.startup.single		= rcutree_prepare_cpu,
1177 		.teardown.single	= rcutree_dead_cpu,
1178 	},
1179 	/*
1180 	 * On the tear-down path, timers_dead_cpu() must be invoked
1181 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1182 	 * otherwise a RCU stall occurs.
1183 	 */
1184 	[CPUHP_TIMERS_DEAD] = {
1185 		.name			= "timers:dead",
1186 		.startup.single		= NULL,
1187 		.teardown.single	= timers_dead_cpu,
1188 	},
1189 	/* Kicks the plugged cpu into life */
1190 	[CPUHP_BRINGUP_CPU] = {
1191 		.name			= "cpu:bringup",
1192 		.startup.single		= bringup_cpu,
1193 		.teardown.single	= NULL,
1194 		.cant_stop		= true,
1195 	},
1196 	[CPUHP_AP_SMPCFD_DYING] = {
1197 		.name			= "smpcfd:dying",
1198 		.startup.single		= NULL,
1199 		.teardown.single	= smpcfd_dying_cpu,
1200 	},
1201 	/*
1202 	 * Handled on controll processor until the plugged processor manages
1203 	 * this itself.
1204 	 */
1205 	[CPUHP_TEARDOWN_CPU] = {
1206 		.name			= "cpu:teardown",
1207 		.startup.single		= NULL,
1208 		.teardown.single	= takedown_cpu,
1209 		.cant_stop		= true,
1210 	},
1211 #else
1212 	[CPUHP_BRINGUP_CPU] = { },
1213 #endif
1214 };
1215 
1216 /* Application processor state steps */
1217 static struct cpuhp_step cpuhp_ap_states[] = {
1218 #ifdef CONFIG_SMP
1219 	/* Final state before CPU kills itself */
1220 	[CPUHP_AP_IDLE_DEAD] = {
1221 		.name			= "idle:dead",
1222 	},
1223 	/*
1224 	 * Last state before CPU enters the idle loop to die. Transient state
1225 	 * for synchronization.
1226 	 */
1227 	[CPUHP_AP_OFFLINE] = {
1228 		.name			= "ap:offline",
1229 		.cant_stop		= true,
1230 	},
1231 	/* First state is scheduler control. Interrupts are disabled */
1232 	[CPUHP_AP_SCHED_STARTING] = {
1233 		.name			= "sched:starting",
1234 		.startup.single		= sched_cpu_starting,
1235 		.teardown.single	= sched_cpu_dying,
1236 	},
1237 	[CPUHP_AP_RCUTREE_DYING] = {
1238 		.name			= "RCU/tree:dying",
1239 		.startup.single		= NULL,
1240 		.teardown.single	= rcutree_dying_cpu,
1241 	},
1242 	/* Entry state on starting. Interrupts enabled from here on. Transient
1243 	 * state for synchronsization */
1244 	[CPUHP_AP_ONLINE] = {
1245 		.name			= "ap:online",
1246 	},
1247 	/* Handle smpboot threads park/unpark */
1248 	[CPUHP_AP_SMPBOOT_THREADS] = {
1249 		.name			= "smpboot/threads:online",
1250 		.startup.single		= smpboot_unpark_threads,
1251 		.teardown.single	= NULL,
1252 	},
1253 	[CPUHP_AP_PERF_ONLINE] = {
1254 		.name			= "perf:online",
1255 		.startup.single		= perf_event_init_cpu,
1256 		.teardown.single	= perf_event_exit_cpu,
1257 	},
1258 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1259 		.name			= "workqueue:online",
1260 		.startup.single		= workqueue_online_cpu,
1261 		.teardown.single	= workqueue_offline_cpu,
1262 	},
1263 	[CPUHP_AP_RCUTREE_ONLINE] = {
1264 		.name			= "RCU/tree:online",
1265 		.startup.single		= rcutree_online_cpu,
1266 		.teardown.single	= rcutree_offline_cpu,
1267 	},
1268 #endif
1269 	/*
1270 	 * The dynamically registered state space is here
1271 	 */
1272 
1273 #ifdef CONFIG_SMP
1274 	/* Last state is scheduler control setting the cpu active */
1275 	[CPUHP_AP_ACTIVE] = {
1276 		.name			= "sched:active",
1277 		.startup.single		= sched_cpu_activate,
1278 		.teardown.single	= sched_cpu_deactivate,
1279 	},
1280 #endif
1281 
1282 	/* CPU is fully up and running. */
1283 	[CPUHP_ONLINE] = {
1284 		.name			= "online",
1285 		.startup.single		= NULL,
1286 		.teardown.single	= NULL,
1287 	},
1288 };
1289 
1290 /* Sanity check for callbacks */
1291 static int cpuhp_cb_check(enum cpuhp_state state)
1292 {
1293 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1294 		return -EINVAL;
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Returns a free for dynamic slot assignment of the Online state. The states
1300  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1301  * by having no name assigned.
1302  */
1303 static int cpuhp_reserve_state(enum cpuhp_state state)
1304 {
1305 	enum cpuhp_state i;
1306 
1307 	for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1308 		if (!cpuhp_ap_states[i].name)
1309 			return i;
1310 	}
1311 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1312 	return -ENOSPC;
1313 }
1314 
1315 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1316 				 int (*startup)(unsigned int cpu),
1317 				 int (*teardown)(unsigned int cpu),
1318 				 bool multi_instance)
1319 {
1320 	/* (Un)Install the callbacks for further cpu hotplug operations */
1321 	struct cpuhp_step *sp;
1322 	int ret = 0;
1323 
1324 	mutex_lock(&cpuhp_state_mutex);
1325 
1326 	if (state == CPUHP_AP_ONLINE_DYN) {
1327 		ret = cpuhp_reserve_state(state);
1328 		if (ret < 0)
1329 			goto out;
1330 		state = ret;
1331 	}
1332 	sp = cpuhp_get_step(state);
1333 	if (name && sp->name) {
1334 		ret = -EBUSY;
1335 		goto out;
1336 	}
1337 	sp->startup.single = startup;
1338 	sp->teardown.single = teardown;
1339 	sp->name = name;
1340 	sp->multi_instance = multi_instance;
1341 	INIT_HLIST_HEAD(&sp->list);
1342 out:
1343 	mutex_unlock(&cpuhp_state_mutex);
1344 	return ret;
1345 }
1346 
1347 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1348 {
1349 	return cpuhp_get_step(state)->teardown.single;
1350 }
1351 
1352 /*
1353  * Call the startup/teardown function for a step either on the AP or
1354  * on the current CPU.
1355  */
1356 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1357 			    struct hlist_node *node)
1358 {
1359 	struct cpuhp_step *sp = cpuhp_get_step(state);
1360 	int ret;
1361 
1362 	if ((bringup && !sp->startup.single) ||
1363 	    (!bringup && !sp->teardown.single))
1364 		return 0;
1365 	/*
1366 	 * The non AP bound callbacks can fail on bringup. On teardown
1367 	 * e.g. module removal we crash for now.
1368 	 */
1369 #ifdef CONFIG_SMP
1370 	if (cpuhp_is_ap_state(state))
1371 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1372 	else
1373 		ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1374 #else
1375 	ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1376 #endif
1377 	BUG_ON(ret && !bringup);
1378 	return ret;
1379 }
1380 
1381 /*
1382  * Called from __cpuhp_setup_state on a recoverable failure.
1383  *
1384  * Note: The teardown callbacks for rollback are not allowed to fail!
1385  */
1386 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1387 				   struct hlist_node *node)
1388 {
1389 	int cpu;
1390 
1391 	/* Roll back the already executed steps on the other cpus */
1392 	for_each_present_cpu(cpu) {
1393 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1394 		int cpustate = st->state;
1395 
1396 		if (cpu >= failedcpu)
1397 			break;
1398 
1399 		/* Did we invoke the startup call on that cpu ? */
1400 		if (cpustate >= state)
1401 			cpuhp_issue_call(cpu, state, false, node);
1402 	}
1403 }
1404 
1405 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1406 			       bool invoke)
1407 {
1408 	struct cpuhp_step *sp;
1409 	int cpu;
1410 	int ret;
1411 
1412 	sp = cpuhp_get_step(state);
1413 	if (sp->multi_instance == false)
1414 		return -EINVAL;
1415 
1416 	get_online_cpus();
1417 
1418 	if (!invoke || !sp->startup.multi)
1419 		goto add_node;
1420 
1421 	/*
1422 	 * Try to call the startup callback for each present cpu
1423 	 * depending on the hotplug state of the cpu.
1424 	 */
1425 	for_each_present_cpu(cpu) {
1426 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1427 		int cpustate = st->state;
1428 
1429 		if (cpustate < state)
1430 			continue;
1431 
1432 		ret = cpuhp_issue_call(cpu, state, true, node);
1433 		if (ret) {
1434 			if (sp->teardown.multi)
1435 				cpuhp_rollback_install(cpu, state, node);
1436 			goto err;
1437 		}
1438 	}
1439 add_node:
1440 	ret = 0;
1441 	mutex_lock(&cpuhp_state_mutex);
1442 	hlist_add_head(node, &sp->list);
1443 	mutex_unlock(&cpuhp_state_mutex);
1444 
1445 err:
1446 	put_online_cpus();
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1450 
1451 /**
1452  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1453  * @state:		The state to setup
1454  * @invoke:		If true, the startup function is invoked for cpus where
1455  *			cpu state >= @state
1456  * @startup:		startup callback function
1457  * @teardown:		teardown callback function
1458  * @multi_instance:	State is set up for multiple instances which get
1459  *			added afterwards.
1460  *
1461  * Returns:
1462  *   On success:
1463  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1464  *      0 for all other states
1465  *   On failure: proper (negative) error code
1466  */
1467 int __cpuhp_setup_state(enum cpuhp_state state,
1468 			const char *name, bool invoke,
1469 			int (*startup)(unsigned int cpu),
1470 			int (*teardown)(unsigned int cpu),
1471 			bool multi_instance)
1472 {
1473 	int cpu, ret = 0;
1474 	bool dynstate;
1475 
1476 	if (cpuhp_cb_check(state) || !name)
1477 		return -EINVAL;
1478 
1479 	get_online_cpus();
1480 
1481 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1482 				    multi_instance);
1483 
1484 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1485 	if (ret > 0 && dynstate) {
1486 		state = ret;
1487 		ret = 0;
1488 	}
1489 
1490 	if (ret || !invoke || !startup)
1491 		goto out;
1492 
1493 	/*
1494 	 * Try to call the startup callback for each present cpu
1495 	 * depending on the hotplug state of the cpu.
1496 	 */
1497 	for_each_present_cpu(cpu) {
1498 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1499 		int cpustate = st->state;
1500 
1501 		if (cpustate < state)
1502 			continue;
1503 
1504 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1505 		if (ret) {
1506 			if (teardown)
1507 				cpuhp_rollback_install(cpu, state, NULL);
1508 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1509 			goto out;
1510 		}
1511 	}
1512 out:
1513 	put_online_cpus();
1514 	/*
1515 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1516 	 * dynamically allocated state in case of success.
1517 	 */
1518 	if (!ret && dynstate)
1519 		return state;
1520 	return ret;
1521 }
1522 EXPORT_SYMBOL(__cpuhp_setup_state);
1523 
1524 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1525 				  struct hlist_node *node, bool invoke)
1526 {
1527 	struct cpuhp_step *sp = cpuhp_get_step(state);
1528 	int cpu;
1529 
1530 	BUG_ON(cpuhp_cb_check(state));
1531 
1532 	if (!sp->multi_instance)
1533 		return -EINVAL;
1534 
1535 	get_online_cpus();
1536 	if (!invoke || !cpuhp_get_teardown_cb(state))
1537 		goto remove;
1538 	/*
1539 	 * Call the teardown callback for each present cpu depending
1540 	 * on the hotplug state of the cpu. This function is not
1541 	 * allowed to fail currently!
1542 	 */
1543 	for_each_present_cpu(cpu) {
1544 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1545 		int cpustate = st->state;
1546 
1547 		if (cpustate >= state)
1548 			cpuhp_issue_call(cpu, state, false, node);
1549 	}
1550 
1551 remove:
1552 	mutex_lock(&cpuhp_state_mutex);
1553 	hlist_del(node);
1554 	mutex_unlock(&cpuhp_state_mutex);
1555 	put_online_cpus();
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1560 /**
1561  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1562  * @state:	The state to remove
1563  * @invoke:	If true, the teardown function is invoked for cpus where
1564  *		cpu state >= @state
1565  *
1566  * The teardown callback is currently not allowed to fail. Think
1567  * about module removal!
1568  */
1569 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1570 {
1571 	struct cpuhp_step *sp = cpuhp_get_step(state);
1572 	int cpu;
1573 
1574 	BUG_ON(cpuhp_cb_check(state));
1575 
1576 	get_online_cpus();
1577 
1578 	if (sp->multi_instance) {
1579 		WARN(!hlist_empty(&sp->list),
1580 		     "Error: Removing state %d which has instances left.\n",
1581 		     state);
1582 		goto remove;
1583 	}
1584 
1585 	if (!invoke || !cpuhp_get_teardown_cb(state))
1586 		goto remove;
1587 
1588 	/*
1589 	 * Call the teardown callback for each present cpu depending
1590 	 * on the hotplug state of the cpu. This function is not
1591 	 * allowed to fail currently!
1592 	 */
1593 	for_each_present_cpu(cpu) {
1594 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1595 		int cpustate = st->state;
1596 
1597 		if (cpustate >= state)
1598 			cpuhp_issue_call(cpu, state, false, NULL);
1599 	}
1600 remove:
1601 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1602 	put_online_cpus();
1603 }
1604 EXPORT_SYMBOL(__cpuhp_remove_state);
1605 
1606 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1607 static ssize_t show_cpuhp_state(struct device *dev,
1608 				struct device_attribute *attr, char *buf)
1609 {
1610 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1611 
1612 	return sprintf(buf, "%d\n", st->state);
1613 }
1614 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1615 
1616 static ssize_t write_cpuhp_target(struct device *dev,
1617 				  struct device_attribute *attr,
1618 				  const char *buf, size_t count)
1619 {
1620 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1621 	struct cpuhp_step *sp;
1622 	int target, ret;
1623 
1624 	ret = kstrtoint(buf, 10, &target);
1625 	if (ret)
1626 		return ret;
1627 
1628 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1629 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1630 		return -EINVAL;
1631 #else
1632 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1633 		return -EINVAL;
1634 #endif
1635 
1636 	ret = lock_device_hotplug_sysfs();
1637 	if (ret)
1638 		return ret;
1639 
1640 	mutex_lock(&cpuhp_state_mutex);
1641 	sp = cpuhp_get_step(target);
1642 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1643 	mutex_unlock(&cpuhp_state_mutex);
1644 	if (ret)
1645 		return ret;
1646 
1647 	if (st->state < target)
1648 		ret = do_cpu_up(dev->id, target);
1649 	else
1650 		ret = do_cpu_down(dev->id, target);
1651 
1652 	unlock_device_hotplug();
1653 	return ret ? ret : count;
1654 }
1655 
1656 static ssize_t show_cpuhp_target(struct device *dev,
1657 				 struct device_attribute *attr, char *buf)
1658 {
1659 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1660 
1661 	return sprintf(buf, "%d\n", st->target);
1662 }
1663 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1664 
1665 static struct attribute *cpuhp_cpu_attrs[] = {
1666 	&dev_attr_state.attr,
1667 	&dev_attr_target.attr,
1668 	NULL
1669 };
1670 
1671 static struct attribute_group cpuhp_cpu_attr_group = {
1672 	.attrs = cpuhp_cpu_attrs,
1673 	.name = "hotplug",
1674 	NULL
1675 };
1676 
1677 static ssize_t show_cpuhp_states(struct device *dev,
1678 				 struct device_attribute *attr, char *buf)
1679 {
1680 	ssize_t cur, res = 0;
1681 	int i;
1682 
1683 	mutex_lock(&cpuhp_state_mutex);
1684 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1685 		struct cpuhp_step *sp = cpuhp_get_step(i);
1686 
1687 		if (sp->name) {
1688 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1689 			buf += cur;
1690 			res += cur;
1691 		}
1692 	}
1693 	mutex_unlock(&cpuhp_state_mutex);
1694 	return res;
1695 }
1696 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1697 
1698 static struct attribute *cpuhp_cpu_root_attrs[] = {
1699 	&dev_attr_states.attr,
1700 	NULL
1701 };
1702 
1703 static struct attribute_group cpuhp_cpu_root_attr_group = {
1704 	.attrs = cpuhp_cpu_root_attrs,
1705 	.name = "hotplug",
1706 	NULL
1707 };
1708 
1709 static int __init cpuhp_sysfs_init(void)
1710 {
1711 	int cpu, ret;
1712 
1713 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1714 				 &cpuhp_cpu_root_attr_group);
1715 	if (ret)
1716 		return ret;
1717 
1718 	for_each_possible_cpu(cpu) {
1719 		struct device *dev = get_cpu_device(cpu);
1720 
1721 		if (!dev)
1722 			continue;
1723 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1724 		if (ret)
1725 			return ret;
1726 	}
1727 	return 0;
1728 }
1729 device_initcall(cpuhp_sysfs_init);
1730 #endif
1731 
1732 /*
1733  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1734  * represents all NR_CPUS bits binary values of 1<<nr.
1735  *
1736  * It is used by cpumask_of() to get a constant address to a CPU
1737  * mask value that has a single bit set only.
1738  */
1739 
1740 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1741 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1742 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1743 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1744 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1745 
1746 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1747 
1748 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1749 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1750 #if BITS_PER_LONG > 32
1751 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1752 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1753 #endif
1754 };
1755 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1756 
1757 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1758 EXPORT_SYMBOL(cpu_all_bits);
1759 
1760 #ifdef CONFIG_INIT_ALL_POSSIBLE
1761 struct cpumask __cpu_possible_mask __read_mostly
1762 	= {CPU_BITS_ALL};
1763 #else
1764 struct cpumask __cpu_possible_mask __read_mostly;
1765 #endif
1766 EXPORT_SYMBOL(__cpu_possible_mask);
1767 
1768 struct cpumask __cpu_online_mask __read_mostly;
1769 EXPORT_SYMBOL(__cpu_online_mask);
1770 
1771 struct cpumask __cpu_present_mask __read_mostly;
1772 EXPORT_SYMBOL(__cpu_present_mask);
1773 
1774 struct cpumask __cpu_active_mask __read_mostly;
1775 EXPORT_SYMBOL(__cpu_active_mask);
1776 
1777 void init_cpu_present(const struct cpumask *src)
1778 {
1779 	cpumask_copy(&__cpu_present_mask, src);
1780 }
1781 
1782 void init_cpu_possible(const struct cpumask *src)
1783 {
1784 	cpumask_copy(&__cpu_possible_mask, src);
1785 }
1786 
1787 void init_cpu_online(const struct cpumask *src)
1788 {
1789 	cpumask_copy(&__cpu_online_mask, src);
1790 }
1791 
1792 /*
1793  * Activate the first processor.
1794  */
1795 void __init boot_cpu_init(void)
1796 {
1797 	int cpu = smp_processor_id();
1798 
1799 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1800 	set_cpu_online(cpu, true);
1801 	set_cpu_active(cpu, true);
1802 	set_cpu_present(cpu, true);
1803 	set_cpu_possible(cpu, true);
1804 }
1805 
1806 /*
1807  * Must be called _AFTER_ setting up the per_cpu areas
1808  */
1809 void __init boot_cpu_state_init(void)
1810 {
1811 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1812 }
1813