xref: /linux/kernel/cgroup/cgroup.c (revision 9abdb50cda0ffe33bbb2e40cbad97b32fb7ff892)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <linux/psi.h>
59 #include <net/sock.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/cgroup.h>
63 
64 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
65 					 MAX_CFTYPE_NAME + 2)
66 /* let's not notify more than 100 times per second */
67 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
68 
69 /*
70  * cgroup_mutex is the master lock.  Any modification to cgroup or its
71  * hierarchy must be performed while holding it.
72  *
73  * css_set_lock protects task->cgroups pointer, the list of css_set
74  * objects, and the chain of tasks off each css_set.
75  *
76  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
77  * cgroup.h can use them for lockdep annotations.
78  */
79 DEFINE_MUTEX(cgroup_mutex);
80 DEFINE_SPINLOCK(css_set_lock);
81 
82 #ifdef CONFIG_PROVE_RCU
83 EXPORT_SYMBOL_GPL(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(css_set_lock);
85 #endif
86 
87 DEFINE_SPINLOCK(trace_cgroup_path_lock);
88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
89 bool cgroup_debug __read_mostly;
90 
91 /*
92  * Protects cgroup_idr and css_idr so that IDs can be released without
93  * grabbing cgroup_mutex.
94  */
95 static DEFINE_SPINLOCK(cgroup_idr_lock);
96 
97 /*
98  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
99  * against file removal/re-creation across css hiding.
100  */
101 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
102 
103 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
104 
105 #define cgroup_assert_mutex_or_rcu_locked()				\
106 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
107 			   !lockdep_is_held(&cgroup_mutex),		\
108 			   "cgroup_mutex or RCU read lock required");
109 
110 /*
111  * cgroup destruction makes heavy use of work items and there can be a lot
112  * of concurrent destructions.  Use a separate workqueue so that cgroup
113  * destruction work items don't end up filling up max_active of system_wq
114  * which may lead to deadlock.
115  */
116 static struct workqueue_struct *cgroup_destroy_wq;
117 
118 /* generate an array of cgroup subsystem pointers */
119 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
120 struct cgroup_subsys *cgroup_subsys[] = {
121 #include <linux/cgroup_subsys.h>
122 };
123 #undef SUBSYS
124 
125 /* array of cgroup subsystem names */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
127 static const char *cgroup_subsys_name[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131 
132 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
133 #define SUBSYS(_x)								\
134 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
136 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
138 #include <linux/cgroup_subsys.h>
139 #undef SUBSYS
140 
141 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
142 static struct static_key_true *cgroup_subsys_enabled_key[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146 
147 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
148 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
149 #include <linux/cgroup_subsys.h>
150 };
151 #undef SUBSYS
152 
153 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
154 
155 /*
156  * The default hierarchy, reserved for the subsystems that are otherwise
157  * unattached - it never has more than a single cgroup, and all tasks are
158  * part of that cgroup.
159  */
160 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
161 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
162 
163 /*
164  * The default hierarchy always exists but is hidden until mounted for the
165  * first time.  This is for backward compatibility.
166  */
167 static bool cgrp_dfl_visible;
168 
169 /* some controllers are not supported in the default hierarchy */
170 static u16 cgrp_dfl_inhibit_ss_mask;
171 
172 /* some controllers are implicitly enabled on the default hierarchy */
173 static u16 cgrp_dfl_implicit_ss_mask;
174 
175 /* some controllers can be threaded on the default hierarchy */
176 static u16 cgrp_dfl_threaded_ss_mask;
177 
178 /* The list of hierarchy roots */
179 LIST_HEAD(cgroup_roots);
180 static int cgroup_root_count;
181 
182 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
183 static DEFINE_IDR(cgroup_hierarchy_idr);
184 
185 /*
186  * Assign a monotonically increasing serial number to csses.  It guarantees
187  * cgroups with bigger numbers are newer than those with smaller numbers.
188  * Also, as csses are always appended to the parent's ->children list, it
189  * guarantees that sibling csses are always sorted in the ascending serial
190  * number order on the list.  Protected by cgroup_mutex.
191  */
192 static u64 css_serial_nr_next = 1;
193 
194 /*
195  * These bitmasks identify subsystems with specific features to avoid
196  * having to do iterative checks repeatedly.
197  */
198 static u16 have_fork_callback __read_mostly;
199 static u16 have_exit_callback __read_mostly;
200 static u16 have_free_callback __read_mostly;
201 static u16 have_canfork_callback __read_mostly;
202 
203 /* cgroup namespace for init task */
204 struct cgroup_namespace init_cgroup_ns = {
205 	.count		= REFCOUNT_INIT(2),
206 	.user_ns	= &init_user_ns,
207 	.ns.ops		= &cgroupns_operations,
208 	.ns.inum	= PROC_CGROUP_INIT_INO,
209 	.root_cset	= &init_css_set,
210 };
211 
212 static struct file_system_type cgroup2_fs_type;
213 static struct cftype cgroup_base_files[];
214 
215 static int cgroup_apply_control(struct cgroup *cgrp);
216 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
217 static void css_task_iter_advance(struct css_task_iter *it);
218 static int cgroup_destroy_locked(struct cgroup *cgrp);
219 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
220 					      struct cgroup_subsys *ss);
221 static void css_release(struct percpu_ref *ref);
222 static void kill_css(struct cgroup_subsys_state *css);
223 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
224 			      struct cgroup *cgrp, struct cftype cfts[],
225 			      bool is_add);
226 
227 /**
228  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
229  * @ssid: subsys ID of interest
230  *
231  * cgroup_subsys_enabled() can only be used with literal subsys names which
232  * is fine for individual subsystems but unsuitable for cgroup core.  This
233  * is slower static_key_enabled() based test indexed by @ssid.
234  */
235 bool cgroup_ssid_enabled(int ssid)
236 {
237 	if (CGROUP_SUBSYS_COUNT == 0)
238 		return false;
239 
240 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
241 }
242 
243 /**
244  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
245  * @cgrp: the cgroup of interest
246  *
247  * The default hierarchy is the v2 interface of cgroup and this function
248  * can be used to test whether a cgroup is on the default hierarchy for
249  * cases where a subsystem should behave differnetly depending on the
250  * interface version.
251  *
252  * The set of behaviors which change on the default hierarchy are still
253  * being determined and the mount option is prefixed with __DEVEL__.
254  *
255  * List of changed behaviors:
256  *
257  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
258  *   and "name" are disallowed.
259  *
260  * - When mounting an existing superblock, mount options should match.
261  *
262  * - Remount is disallowed.
263  *
264  * - rename(2) is disallowed.
265  *
266  * - "tasks" is removed.  Everything should be at process granularity.  Use
267  *   "cgroup.procs" instead.
268  *
269  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
270  *   recycled inbetween reads.
271  *
272  * - "release_agent" and "notify_on_release" are removed.  Replacement
273  *   notification mechanism will be implemented.
274  *
275  * - "cgroup.clone_children" is removed.
276  *
277  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
278  *   and its descendants contain no task; otherwise, 1.  The file also
279  *   generates kernfs notification which can be monitored through poll and
280  *   [di]notify when the value of the file changes.
281  *
282  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
283  *   take masks of ancestors with non-empty cpus/mems, instead of being
284  *   moved to an ancestor.
285  *
286  * - cpuset: a task can be moved into an empty cpuset, and again it takes
287  *   masks of ancestors.
288  *
289  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
290  *   is not created.
291  *
292  * - blkcg: blk-throttle becomes properly hierarchical.
293  *
294  * - debug: disallowed on the default hierarchy.
295  */
296 bool cgroup_on_dfl(const struct cgroup *cgrp)
297 {
298 	return cgrp->root == &cgrp_dfl_root;
299 }
300 
301 /* IDR wrappers which synchronize using cgroup_idr_lock */
302 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
303 			    gfp_t gfp_mask)
304 {
305 	int ret;
306 
307 	idr_preload(gfp_mask);
308 	spin_lock_bh(&cgroup_idr_lock);
309 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
310 	spin_unlock_bh(&cgroup_idr_lock);
311 	idr_preload_end();
312 	return ret;
313 }
314 
315 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
316 {
317 	void *ret;
318 
319 	spin_lock_bh(&cgroup_idr_lock);
320 	ret = idr_replace(idr, ptr, id);
321 	spin_unlock_bh(&cgroup_idr_lock);
322 	return ret;
323 }
324 
325 static void cgroup_idr_remove(struct idr *idr, int id)
326 {
327 	spin_lock_bh(&cgroup_idr_lock);
328 	idr_remove(idr, id);
329 	spin_unlock_bh(&cgroup_idr_lock);
330 }
331 
332 static bool cgroup_has_tasks(struct cgroup *cgrp)
333 {
334 	return cgrp->nr_populated_csets;
335 }
336 
337 bool cgroup_is_threaded(struct cgroup *cgrp)
338 {
339 	return cgrp->dom_cgrp != cgrp;
340 }
341 
342 /* can @cgrp host both domain and threaded children? */
343 static bool cgroup_is_mixable(struct cgroup *cgrp)
344 {
345 	/*
346 	 * Root isn't under domain level resource control exempting it from
347 	 * the no-internal-process constraint, so it can serve as a thread
348 	 * root and a parent of resource domains at the same time.
349 	 */
350 	return !cgroup_parent(cgrp);
351 }
352 
353 /* can @cgrp become a thread root? should always be true for a thread root */
354 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
355 {
356 	/* mixables don't care */
357 	if (cgroup_is_mixable(cgrp))
358 		return true;
359 
360 	/* domain roots can't be nested under threaded */
361 	if (cgroup_is_threaded(cgrp))
362 		return false;
363 
364 	/* can only have either domain or threaded children */
365 	if (cgrp->nr_populated_domain_children)
366 		return false;
367 
368 	/* and no domain controllers can be enabled */
369 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
370 		return false;
371 
372 	return true;
373 }
374 
375 /* is @cgrp root of a threaded subtree? */
376 bool cgroup_is_thread_root(struct cgroup *cgrp)
377 {
378 	/* thread root should be a domain */
379 	if (cgroup_is_threaded(cgrp))
380 		return false;
381 
382 	/* a domain w/ threaded children is a thread root */
383 	if (cgrp->nr_threaded_children)
384 		return true;
385 
386 	/*
387 	 * A domain which has tasks and explicit threaded controllers
388 	 * enabled is a thread root.
389 	 */
390 	if (cgroup_has_tasks(cgrp) &&
391 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
392 		return true;
393 
394 	return false;
395 }
396 
397 /* a domain which isn't connected to the root w/o brekage can't be used */
398 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
399 {
400 	/* the cgroup itself can be a thread root */
401 	if (cgroup_is_threaded(cgrp))
402 		return false;
403 
404 	/* but the ancestors can't be unless mixable */
405 	while ((cgrp = cgroup_parent(cgrp))) {
406 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
407 			return false;
408 		if (cgroup_is_threaded(cgrp))
409 			return false;
410 	}
411 
412 	return true;
413 }
414 
415 /* subsystems visibly enabled on a cgroup */
416 static u16 cgroup_control(struct cgroup *cgrp)
417 {
418 	struct cgroup *parent = cgroup_parent(cgrp);
419 	u16 root_ss_mask = cgrp->root->subsys_mask;
420 
421 	if (parent) {
422 		u16 ss_mask = parent->subtree_control;
423 
424 		/* threaded cgroups can only have threaded controllers */
425 		if (cgroup_is_threaded(cgrp))
426 			ss_mask &= cgrp_dfl_threaded_ss_mask;
427 		return ss_mask;
428 	}
429 
430 	if (cgroup_on_dfl(cgrp))
431 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
432 				  cgrp_dfl_implicit_ss_mask);
433 	return root_ss_mask;
434 }
435 
436 /* subsystems enabled on a cgroup */
437 static u16 cgroup_ss_mask(struct cgroup *cgrp)
438 {
439 	struct cgroup *parent = cgroup_parent(cgrp);
440 
441 	if (parent) {
442 		u16 ss_mask = parent->subtree_ss_mask;
443 
444 		/* threaded cgroups can only have threaded controllers */
445 		if (cgroup_is_threaded(cgrp))
446 			ss_mask &= cgrp_dfl_threaded_ss_mask;
447 		return ss_mask;
448 	}
449 
450 	return cgrp->root->subsys_mask;
451 }
452 
453 /**
454  * cgroup_css - obtain a cgroup's css for the specified subsystem
455  * @cgrp: the cgroup of interest
456  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
457  *
458  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
459  * function must be called either under cgroup_mutex or rcu_read_lock() and
460  * the caller is responsible for pinning the returned css if it wants to
461  * keep accessing it outside the said locks.  This function may return
462  * %NULL if @cgrp doesn't have @subsys_id enabled.
463  */
464 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
465 					      struct cgroup_subsys *ss)
466 {
467 	if (ss)
468 		return rcu_dereference_check(cgrp->subsys[ss->id],
469 					lockdep_is_held(&cgroup_mutex));
470 	else
471 		return &cgrp->self;
472 }
473 
474 /**
475  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
476  * @cgrp: the cgroup of interest
477  * @ss: the subsystem of interest
478  *
479  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
480  * or is offline, %NULL is returned.
481  */
482 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
483 						     struct cgroup_subsys *ss)
484 {
485 	struct cgroup_subsys_state *css;
486 
487 	rcu_read_lock();
488 	css = cgroup_css(cgrp, ss);
489 	if (!css || !css_tryget_online(css))
490 		css = NULL;
491 	rcu_read_unlock();
492 
493 	return css;
494 }
495 
496 /**
497  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
498  * @cgrp: the cgroup of interest
499  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
500  *
501  * Similar to cgroup_css() but returns the effective css, which is defined
502  * as the matching css of the nearest ancestor including self which has @ss
503  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
504  * function is guaranteed to return non-NULL css.
505  */
506 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
507 							struct cgroup_subsys *ss)
508 {
509 	lockdep_assert_held(&cgroup_mutex);
510 
511 	if (!ss)
512 		return &cgrp->self;
513 
514 	/*
515 	 * This function is used while updating css associations and thus
516 	 * can't test the csses directly.  Test ss_mask.
517 	 */
518 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
519 		cgrp = cgroup_parent(cgrp);
520 		if (!cgrp)
521 			return NULL;
522 	}
523 
524 	return cgroup_css(cgrp, ss);
525 }
526 
527 /**
528  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
529  * @cgrp: the cgroup of interest
530  * @ss: the subsystem of interest
531  *
532  * Find and get the effective css of @cgrp for @ss.  The effective css is
533  * defined as the matching css of the nearest ancestor including self which
534  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
535  * the root css is returned, so this function always returns a valid css.
536  *
537  * The returned css is not guaranteed to be online, and therefore it is the
538  * callers responsiblity to tryget a reference for it.
539  */
540 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
541 					 struct cgroup_subsys *ss)
542 {
543 	struct cgroup_subsys_state *css;
544 
545 	do {
546 		css = cgroup_css(cgrp, ss);
547 
548 		if (css)
549 			return css;
550 		cgrp = cgroup_parent(cgrp);
551 	} while (cgrp);
552 
553 	return init_css_set.subsys[ss->id];
554 }
555 
556 /**
557  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
558  * @cgrp: the cgroup of interest
559  * @ss: the subsystem of interest
560  *
561  * Find and get the effective css of @cgrp for @ss.  The effective css is
562  * defined as the matching css of the nearest ancestor including self which
563  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
564  * the root css is returned, so this function always returns a valid css.
565  * The returned css must be put using css_put().
566  */
567 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
568 					     struct cgroup_subsys *ss)
569 {
570 	struct cgroup_subsys_state *css;
571 
572 	rcu_read_lock();
573 
574 	do {
575 		css = cgroup_css(cgrp, ss);
576 
577 		if (css && css_tryget_online(css))
578 			goto out_unlock;
579 		cgrp = cgroup_parent(cgrp);
580 	} while (cgrp);
581 
582 	css = init_css_set.subsys[ss->id];
583 	css_get(css);
584 out_unlock:
585 	rcu_read_unlock();
586 	return css;
587 }
588 
589 static void cgroup_get_live(struct cgroup *cgrp)
590 {
591 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
592 	css_get(&cgrp->self);
593 }
594 
595 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
596 {
597 	struct cgroup *cgrp = of->kn->parent->priv;
598 	struct cftype *cft = of_cft(of);
599 
600 	/*
601 	 * This is open and unprotected implementation of cgroup_css().
602 	 * seq_css() is only called from a kernfs file operation which has
603 	 * an active reference on the file.  Because all the subsystem
604 	 * files are drained before a css is disassociated with a cgroup,
605 	 * the matching css from the cgroup's subsys table is guaranteed to
606 	 * be and stay valid until the enclosing operation is complete.
607 	 */
608 	if (cft->ss)
609 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
610 	else
611 		return &cgrp->self;
612 }
613 EXPORT_SYMBOL_GPL(of_css);
614 
615 /**
616  * for_each_css - iterate all css's of a cgroup
617  * @css: the iteration cursor
618  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
619  * @cgrp: the target cgroup to iterate css's of
620  *
621  * Should be called under cgroup_[tree_]mutex.
622  */
623 #define for_each_css(css, ssid, cgrp)					\
624 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
625 		if (!((css) = rcu_dereference_check(			\
626 				(cgrp)->subsys[(ssid)],			\
627 				lockdep_is_held(&cgroup_mutex)))) { }	\
628 		else
629 
630 /**
631  * for_each_e_css - iterate all effective css's of a cgroup
632  * @css: the iteration cursor
633  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
634  * @cgrp: the target cgroup to iterate css's of
635  *
636  * Should be called under cgroup_[tree_]mutex.
637  */
638 #define for_each_e_css(css, ssid, cgrp)					    \
639 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
640 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
641 						   cgroup_subsys[(ssid)]))) \
642 			;						    \
643 		else
644 
645 /**
646  * do_each_subsys_mask - filter for_each_subsys with a bitmask
647  * @ss: the iteration cursor
648  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
649  * @ss_mask: the bitmask
650  *
651  * The block will only run for cases where the ssid-th bit (1 << ssid) of
652  * @ss_mask is set.
653  */
654 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
655 	unsigned long __ss_mask = (ss_mask);				\
656 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
657 		(ssid) = 0;						\
658 		break;							\
659 	}								\
660 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
661 		(ss) = cgroup_subsys[ssid];				\
662 		{
663 
664 #define while_each_subsys_mask()					\
665 		}							\
666 	}								\
667 } while (false)
668 
669 /* iterate over child cgrps, lock should be held throughout iteration */
670 #define cgroup_for_each_live_child(child, cgrp)				\
671 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
672 		if (({ lockdep_assert_held(&cgroup_mutex);		\
673 		       cgroup_is_dead(child); }))			\
674 			;						\
675 		else
676 
677 /* walk live descendants in preorder */
678 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
679 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
680 		if (({ lockdep_assert_held(&cgroup_mutex);		\
681 		       (dsct) = (d_css)->cgroup;			\
682 		       cgroup_is_dead(dsct); }))			\
683 			;						\
684 		else
685 
686 /* walk live descendants in postorder */
687 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
688 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
689 		if (({ lockdep_assert_held(&cgroup_mutex);		\
690 		       (dsct) = (d_css)->cgroup;			\
691 		       cgroup_is_dead(dsct); }))			\
692 			;						\
693 		else
694 
695 /*
696  * The default css_set - used by init and its children prior to any
697  * hierarchies being mounted. It contains a pointer to the root state
698  * for each subsystem. Also used to anchor the list of css_sets. Not
699  * reference-counted, to improve performance when child cgroups
700  * haven't been created.
701  */
702 struct css_set init_css_set = {
703 	.refcount		= REFCOUNT_INIT(1),
704 	.dom_cset		= &init_css_set,
705 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
706 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
707 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
708 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
709 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
710 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
711 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
712 
713 	/*
714 	 * The following field is re-initialized when this cset gets linked
715 	 * in cgroup_init().  However, let's initialize the field
716 	 * statically too so that the default cgroup can be accessed safely
717 	 * early during boot.
718 	 */
719 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
720 };
721 
722 static int css_set_count	= 1;	/* 1 for init_css_set */
723 
724 static bool css_set_threaded(struct css_set *cset)
725 {
726 	return cset->dom_cset != cset;
727 }
728 
729 /**
730  * css_set_populated - does a css_set contain any tasks?
731  * @cset: target css_set
732  *
733  * css_set_populated() should be the same as !!cset->nr_tasks at steady
734  * state. However, css_set_populated() can be called while a task is being
735  * added to or removed from the linked list before the nr_tasks is
736  * properly updated. Hence, we can't just look at ->nr_tasks here.
737  */
738 static bool css_set_populated(struct css_set *cset)
739 {
740 	lockdep_assert_held(&css_set_lock);
741 
742 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
743 }
744 
745 /**
746  * cgroup_update_populated - update the populated count of a cgroup
747  * @cgrp: the target cgroup
748  * @populated: inc or dec populated count
749  *
750  * One of the css_sets associated with @cgrp is either getting its first
751  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
752  * count is propagated towards root so that a given cgroup's
753  * nr_populated_children is zero iff none of its descendants contain any
754  * tasks.
755  *
756  * @cgrp's interface file "cgroup.populated" is zero if both
757  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
758  * 1 otherwise.  When the sum changes from or to zero, userland is notified
759  * that the content of the interface file has changed.  This can be used to
760  * detect when @cgrp and its descendants become populated or empty.
761  */
762 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
763 {
764 	struct cgroup *child = NULL;
765 	int adj = populated ? 1 : -1;
766 
767 	lockdep_assert_held(&css_set_lock);
768 
769 	do {
770 		bool was_populated = cgroup_is_populated(cgrp);
771 
772 		if (!child) {
773 			cgrp->nr_populated_csets += adj;
774 		} else {
775 			if (cgroup_is_threaded(child))
776 				cgrp->nr_populated_threaded_children += adj;
777 			else
778 				cgrp->nr_populated_domain_children += adj;
779 		}
780 
781 		if (was_populated == cgroup_is_populated(cgrp))
782 			break;
783 
784 		cgroup1_check_for_release(cgrp);
785 		cgroup_file_notify(&cgrp->events_file);
786 
787 		child = cgrp;
788 		cgrp = cgroup_parent(cgrp);
789 	} while (cgrp);
790 }
791 
792 /**
793  * css_set_update_populated - update populated state of a css_set
794  * @cset: target css_set
795  * @populated: whether @cset is populated or depopulated
796  *
797  * @cset is either getting the first task or losing the last.  Update the
798  * populated counters of all associated cgroups accordingly.
799  */
800 static void css_set_update_populated(struct css_set *cset, bool populated)
801 {
802 	struct cgrp_cset_link *link;
803 
804 	lockdep_assert_held(&css_set_lock);
805 
806 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
807 		cgroup_update_populated(link->cgrp, populated);
808 }
809 
810 /**
811  * css_set_move_task - move a task from one css_set to another
812  * @task: task being moved
813  * @from_cset: css_set @task currently belongs to (may be NULL)
814  * @to_cset: new css_set @task is being moved to (may be NULL)
815  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
816  *
817  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
818  * css_set, @from_cset can be NULL.  If @task is being disassociated
819  * instead of moved, @to_cset can be NULL.
820  *
821  * This function automatically handles populated counter updates and
822  * css_task_iter adjustments but the caller is responsible for managing
823  * @from_cset and @to_cset's reference counts.
824  */
825 static void css_set_move_task(struct task_struct *task,
826 			      struct css_set *from_cset, struct css_set *to_cset,
827 			      bool use_mg_tasks)
828 {
829 	lockdep_assert_held(&css_set_lock);
830 
831 	if (to_cset && !css_set_populated(to_cset))
832 		css_set_update_populated(to_cset, true);
833 
834 	if (from_cset) {
835 		struct css_task_iter *it, *pos;
836 
837 		WARN_ON_ONCE(list_empty(&task->cg_list));
838 
839 		/*
840 		 * @task is leaving, advance task iterators which are
841 		 * pointing to it so that they can resume at the next
842 		 * position.  Advancing an iterator might remove it from
843 		 * the list, use safe walk.  See css_task_iter_advance*()
844 		 * for details.
845 		 */
846 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
847 					 iters_node)
848 			if (it->task_pos == &task->cg_list)
849 				css_task_iter_advance(it);
850 
851 		list_del_init(&task->cg_list);
852 		if (!css_set_populated(from_cset))
853 			css_set_update_populated(from_cset, false);
854 	} else {
855 		WARN_ON_ONCE(!list_empty(&task->cg_list));
856 	}
857 
858 	if (to_cset) {
859 		/*
860 		 * We are synchronized through cgroup_threadgroup_rwsem
861 		 * against PF_EXITING setting such that we can't race
862 		 * against cgroup_exit() changing the css_set to
863 		 * init_css_set and dropping the old one.
864 		 */
865 		WARN_ON_ONCE(task->flags & PF_EXITING);
866 
867 		cgroup_move_task(task, to_cset);
868 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
869 							     &to_cset->tasks);
870 	}
871 }
872 
873 /*
874  * hash table for cgroup groups. This improves the performance to find
875  * an existing css_set. This hash doesn't (currently) take into
876  * account cgroups in empty hierarchies.
877  */
878 #define CSS_SET_HASH_BITS	7
879 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
880 
881 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
882 {
883 	unsigned long key = 0UL;
884 	struct cgroup_subsys *ss;
885 	int i;
886 
887 	for_each_subsys(ss, i)
888 		key += (unsigned long)css[i];
889 	key = (key >> 16) ^ key;
890 
891 	return key;
892 }
893 
894 void put_css_set_locked(struct css_set *cset)
895 {
896 	struct cgrp_cset_link *link, *tmp_link;
897 	struct cgroup_subsys *ss;
898 	int ssid;
899 
900 	lockdep_assert_held(&css_set_lock);
901 
902 	if (!refcount_dec_and_test(&cset->refcount))
903 		return;
904 
905 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
906 
907 	/* This css_set is dead. unlink it and release cgroup and css refs */
908 	for_each_subsys(ss, ssid) {
909 		list_del(&cset->e_cset_node[ssid]);
910 		css_put(cset->subsys[ssid]);
911 	}
912 	hash_del(&cset->hlist);
913 	css_set_count--;
914 
915 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
916 		list_del(&link->cset_link);
917 		list_del(&link->cgrp_link);
918 		if (cgroup_parent(link->cgrp))
919 			cgroup_put(link->cgrp);
920 		kfree(link);
921 	}
922 
923 	if (css_set_threaded(cset)) {
924 		list_del(&cset->threaded_csets_node);
925 		put_css_set_locked(cset->dom_cset);
926 	}
927 
928 	kfree_rcu(cset, rcu_head);
929 }
930 
931 /**
932  * compare_css_sets - helper function for find_existing_css_set().
933  * @cset: candidate css_set being tested
934  * @old_cset: existing css_set for a task
935  * @new_cgrp: cgroup that's being entered by the task
936  * @template: desired set of css pointers in css_set (pre-calculated)
937  *
938  * Returns true if "cset" matches "old_cset" except for the hierarchy
939  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
940  */
941 static bool compare_css_sets(struct css_set *cset,
942 			     struct css_set *old_cset,
943 			     struct cgroup *new_cgrp,
944 			     struct cgroup_subsys_state *template[])
945 {
946 	struct cgroup *new_dfl_cgrp;
947 	struct list_head *l1, *l2;
948 
949 	/*
950 	 * On the default hierarchy, there can be csets which are
951 	 * associated with the same set of cgroups but different csses.
952 	 * Let's first ensure that csses match.
953 	 */
954 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
955 		return false;
956 
957 
958 	/* @cset's domain should match the default cgroup's */
959 	if (cgroup_on_dfl(new_cgrp))
960 		new_dfl_cgrp = new_cgrp;
961 	else
962 		new_dfl_cgrp = old_cset->dfl_cgrp;
963 
964 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
965 		return false;
966 
967 	/*
968 	 * Compare cgroup pointers in order to distinguish between
969 	 * different cgroups in hierarchies.  As different cgroups may
970 	 * share the same effective css, this comparison is always
971 	 * necessary.
972 	 */
973 	l1 = &cset->cgrp_links;
974 	l2 = &old_cset->cgrp_links;
975 	while (1) {
976 		struct cgrp_cset_link *link1, *link2;
977 		struct cgroup *cgrp1, *cgrp2;
978 
979 		l1 = l1->next;
980 		l2 = l2->next;
981 		/* See if we reached the end - both lists are equal length. */
982 		if (l1 == &cset->cgrp_links) {
983 			BUG_ON(l2 != &old_cset->cgrp_links);
984 			break;
985 		} else {
986 			BUG_ON(l2 == &old_cset->cgrp_links);
987 		}
988 		/* Locate the cgroups associated with these links. */
989 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
990 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
991 		cgrp1 = link1->cgrp;
992 		cgrp2 = link2->cgrp;
993 		/* Hierarchies should be linked in the same order. */
994 		BUG_ON(cgrp1->root != cgrp2->root);
995 
996 		/*
997 		 * If this hierarchy is the hierarchy of the cgroup
998 		 * that's changing, then we need to check that this
999 		 * css_set points to the new cgroup; if it's any other
1000 		 * hierarchy, then this css_set should point to the
1001 		 * same cgroup as the old css_set.
1002 		 */
1003 		if (cgrp1->root == new_cgrp->root) {
1004 			if (cgrp1 != new_cgrp)
1005 				return false;
1006 		} else {
1007 			if (cgrp1 != cgrp2)
1008 				return false;
1009 		}
1010 	}
1011 	return true;
1012 }
1013 
1014 /**
1015  * find_existing_css_set - init css array and find the matching css_set
1016  * @old_cset: the css_set that we're using before the cgroup transition
1017  * @cgrp: the cgroup that we're moving into
1018  * @template: out param for the new set of csses, should be clear on entry
1019  */
1020 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1021 					struct cgroup *cgrp,
1022 					struct cgroup_subsys_state *template[])
1023 {
1024 	struct cgroup_root *root = cgrp->root;
1025 	struct cgroup_subsys *ss;
1026 	struct css_set *cset;
1027 	unsigned long key;
1028 	int i;
1029 
1030 	/*
1031 	 * Build the set of subsystem state objects that we want to see in the
1032 	 * new css_set. while subsystems can change globally, the entries here
1033 	 * won't change, so no need for locking.
1034 	 */
1035 	for_each_subsys(ss, i) {
1036 		if (root->subsys_mask & (1UL << i)) {
1037 			/*
1038 			 * @ss is in this hierarchy, so we want the
1039 			 * effective css from @cgrp.
1040 			 */
1041 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1042 		} else {
1043 			/*
1044 			 * @ss is not in this hierarchy, so we don't want
1045 			 * to change the css.
1046 			 */
1047 			template[i] = old_cset->subsys[i];
1048 		}
1049 	}
1050 
1051 	key = css_set_hash(template);
1052 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1053 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1054 			continue;
1055 
1056 		/* This css_set matches what we need */
1057 		return cset;
1058 	}
1059 
1060 	/* No existing cgroup group matched */
1061 	return NULL;
1062 }
1063 
1064 static void free_cgrp_cset_links(struct list_head *links_to_free)
1065 {
1066 	struct cgrp_cset_link *link, *tmp_link;
1067 
1068 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1069 		list_del(&link->cset_link);
1070 		kfree(link);
1071 	}
1072 }
1073 
1074 /**
1075  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1076  * @count: the number of links to allocate
1077  * @tmp_links: list_head the allocated links are put on
1078  *
1079  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1080  * through ->cset_link.  Returns 0 on success or -errno.
1081  */
1082 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1083 {
1084 	struct cgrp_cset_link *link;
1085 	int i;
1086 
1087 	INIT_LIST_HEAD(tmp_links);
1088 
1089 	for (i = 0; i < count; i++) {
1090 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1091 		if (!link) {
1092 			free_cgrp_cset_links(tmp_links);
1093 			return -ENOMEM;
1094 		}
1095 		list_add(&link->cset_link, tmp_links);
1096 	}
1097 	return 0;
1098 }
1099 
1100 /**
1101  * link_css_set - a helper function to link a css_set to a cgroup
1102  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1103  * @cset: the css_set to be linked
1104  * @cgrp: the destination cgroup
1105  */
1106 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1107 			 struct cgroup *cgrp)
1108 {
1109 	struct cgrp_cset_link *link;
1110 
1111 	BUG_ON(list_empty(tmp_links));
1112 
1113 	if (cgroup_on_dfl(cgrp))
1114 		cset->dfl_cgrp = cgrp;
1115 
1116 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1117 	link->cset = cset;
1118 	link->cgrp = cgrp;
1119 
1120 	/*
1121 	 * Always add links to the tail of the lists so that the lists are
1122 	 * in choronological order.
1123 	 */
1124 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1125 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1126 
1127 	if (cgroup_parent(cgrp))
1128 		cgroup_get_live(cgrp);
1129 }
1130 
1131 /**
1132  * find_css_set - return a new css_set with one cgroup updated
1133  * @old_cset: the baseline css_set
1134  * @cgrp: the cgroup to be updated
1135  *
1136  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1137  * substituted into the appropriate hierarchy.
1138  */
1139 static struct css_set *find_css_set(struct css_set *old_cset,
1140 				    struct cgroup *cgrp)
1141 {
1142 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1143 	struct css_set *cset;
1144 	struct list_head tmp_links;
1145 	struct cgrp_cset_link *link;
1146 	struct cgroup_subsys *ss;
1147 	unsigned long key;
1148 	int ssid;
1149 
1150 	lockdep_assert_held(&cgroup_mutex);
1151 
1152 	/* First see if we already have a cgroup group that matches
1153 	 * the desired set */
1154 	spin_lock_irq(&css_set_lock);
1155 	cset = find_existing_css_set(old_cset, cgrp, template);
1156 	if (cset)
1157 		get_css_set(cset);
1158 	spin_unlock_irq(&css_set_lock);
1159 
1160 	if (cset)
1161 		return cset;
1162 
1163 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1164 	if (!cset)
1165 		return NULL;
1166 
1167 	/* Allocate all the cgrp_cset_link objects that we'll need */
1168 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1169 		kfree(cset);
1170 		return NULL;
1171 	}
1172 
1173 	refcount_set(&cset->refcount, 1);
1174 	cset->dom_cset = cset;
1175 	INIT_LIST_HEAD(&cset->tasks);
1176 	INIT_LIST_HEAD(&cset->mg_tasks);
1177 	INIT_LIST_HEAD(&cset->task_iters);
1178 	INIT_LIST_HEAD(&cset->threaded_csets);
1179 	INIT_HLIST_NODE(&cset->hlist);
1180 	INIT_LIST_HEAD(&cset->cgrp_links);
1181 	INIT_LIST_HEAD(&cset->mg_preload_node);
1182 	INIT_LIST_HEAD(&cset->mg_node);
1183 
1184 	/* Copy the set of subsystem state objects generated in
1185 	 * find_existing_css_set() */
1186 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1187 
1188 	spin_lock_irq(&css_set_lock);
1189 	/* Add reference counts and links from the new css_set. */
1190 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1191 		struct cgroup *c = link->cgrp;
1192 
1193 		if (c->root == cgrp->root)
1194 			c = cgrp;
1195 		link_css_set(&tmp_links, cset, c);
1196 	}
1197 
1198 	BUG_ON(!list_empty(&tmp_links));
1199 
1200 	css_set_count++;
1201 
1202 	/* Add @cset to the hash table */
1203 	key = css_set_hash(cset->subsys);
1204 	hash_add(css_set_table, &cset->hlist, key);
1205 
1206 	for_each_subsys(ss, ssid) {
1207 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1208 
1209 		list_add_tail(&cset->e_cset_node[ssid],
1210 			      &css->cgroup->e_csets[ssid]);
1211 		css_get(css);
1212 	}
1213 
1214 	spin_unlock_irq(&css_set_lock);
1215 
1216 	/*
1217 	 * If @cset should be threaded, look up the matching dom_cset and
1218 	 * link them up.  We first fully initialize @cset then look for the
1219 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1220 	 * to stay empty until we return.
1221 	 */
1222 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1223 		struct css_set *dcset;
1224 
1225 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1226 		if (!dcset) {
1227 			put_css_set(cset);
1228 			return NULL;
1229 		}
1230 
1231 		spin_lock_irq(&css_set_lock);
1232 		cset->dom_cset = dcset;
1233 		list_add_tail(&cset->threaded_csets_node,
1234 			      &dcset->threaded_csets);
1235 		spin_unlock_irq(&css_set_lock);
1236 	}
1237 
1238 	return cset;
1239 }
1240 
1241 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1242 {
1243 	struct cgroup *root_cgrp = kf_root->kn->priv;
1244 
1245 	return root_cgrp->root;
1246 }
1247 
1248 static int cgroup_init_root_id(struct cgroup_root *root)
1249 {
1250 	int id;
1251 
1252 	lockdep_assert_held(&cgroup_mutex);
1253 
1254 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1255 	if (id < 0)
1256 		return id;
1257 
1258 	root->hierarchy_id = id;
1259 	return 0;
1260 }
1261 
1262 static void cgroup_exit_root_id(struct cgroup_root *root)
1263 {
1264 	lockdep_assert_held(&cgroup_mutex);
1265 
1266 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1267 }
1268 
1269 void cgroup_free_root(struct cgroup_root *root)
1270 {
1271 	if (root) {
1272 		idr_destroy(&root->cgroup_idr);
1273 		kfree(root);
1274 	}
1275 }
1276 
1277 static void cgroup_destroy_root(struct cgroup_root *root)
1278 {
1279 	struct cgroup *cgrp = &root->cgrp;
1280 	struct cgrp_cset_link *link, *tmp_link;
1281 
1282 	trace_cgroup_destroy_root(root);
1283 
1284 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1285 
1286 	BUG_ON(atomic_read(&root->nr_cgrps));
1287 	BUG_ON(!list_empty(&cgrp->self.children));
1288 
1289 	/* Rebind all subsystems back to the default hierarchy */
1290 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1291 
1292 	/*
1293 	 * Release all the links from cset_links to this hierarchy's
1294 	 * root cgroup
1295 	 */
1296 	spin_lock_irq(&css_set_lock);
1297 
1298 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1299 		list_del(&link->cset_link);
1300 		list_del(&link->cgrp_link);
1301 		kfree(link);
1302 	}
1303 
1304 	spin_unlock_irq(&css_set_lock);
1305 
1306 	if (!list_empty(&root->root_list)) {
1307 		list_del(&root->root_list);
1308 		cgroup_root_count--;
1309 	}
1310 
1311 	cgroup_exit_root_id(root);
1312 
1313 	mutex_unlock(&cgroup_mutex);
1314 
1315 	kernfs_destroy_root(root->kf_root);
1316 	cgroup_free_root(root);
1317 }
1318 
1319 /*
1320  * look up cgroup associated with current task's cgroup namespace on the
1321  * specified hierarchy
1322  */
1323 static struct cgroup *
1324 current_cgns_cgroup_from_root(struct cgroup_root *root)
1325 {
1326 	struct cgroup *res = NULL;
1327 	struct css_set *cset;
1328 
1329 	lockdep_assert_held(&css_set_lock);
1330 
1331 	rcu_read_lock();
1332 
1333 	cset = current->nsproxy->cgroup_ns->root_cset;
1334 	if (cset == &init_css_set) {
1335 		res = &root->cgrp;
1336 	} else {
1337 		struct cgrp_cset_link *link;
1338 
1339 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1340 			struct cgroup *c = link->cgrp;
1341 
1342 			if (c->root == root) {
1343 				res = c;
1344 				break;
1345 			}
1346 		}
1347 	}
1348 	rcu_read_unlock();
1349 
1350 	BUG_ON(!res);
1351 	return res;
1352 }
1353 
1354 /* look up cgroup associated with given css_set on the specified hierarchy */
1355 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1356 					    struct cgroup_root *root)
1357 {
1358 	struct cgroup *res = NULL;
1359 
1360 	lockdep_assert_held(&cgroup_mutex);
1361 	lockdep_assert_held(&css_set_lock);
1362 
1363 	if (cset == &init_css_set) {
1364 		res = &root->cgrp;
1365 	} else if (root == &cgrp_dfl_root) {
1366 		res = cset->dfl_cgrp;
1367 	} else {
1368 		struct cgrp_cset_link *link;
1369 
1370 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1371 			struct cgroup *c = link->cgrp;
1372 
1373 			if (c->root == root) {
1374 				res = c;
1375 				break;
1376 			}
1377 		}
1378 	}
1379 
1380 	BUG_ON(!res);
1381 	return res;
1382 }
1383 
1384 /*
1385  * Return the cgroup for "task" from the given hierarchy. Must be
1386  * called with cgroup_mutex and css_set_lock held.
1387  */
1388 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1389 				     struct cgroup_root *root)
1390 {
1391 	/*
1392 	 * No need to lock the task - since we hold cgroup_mutex the
1393 	 * task can't change groups, so the only thing that can happen
1394 	 * is that it exits and its css is set back to init_css_set.
1395 	 */
1396 	return cset_cgroup_from_root(task_css_set(task), root);
1397 }
1398 
1399 /*
1400  * A task must hold cgroup_mutex to modify cgroups.
1401  *
1402  * Any task can increment and decrement the count field without lock.
1403  * So in general, code holding cgroup_mutex can't rely on the count
1404  * field not changing.  However, if the count goes to zero, then only
1405  * cgroup_attach_task() can increment it again.  Because a count of zero
1406  * means that no tasks are currently attached, therefore there is no
1407  * way a task attached to that cgroup can fork (the other way to
1408  * increment the count).  So code holding cgroup_mutex can safely
1409  * assume that if the count is zero, it will stay zero. Similarly, if
1410  * a task holds cgroup_mutex on a cgroup with zero count, it
1411  * knows that the cgroup won't be removed, as cgroup_rmdir()
1412  * needs that mutex.
1413  *
1414  * A cgroup can only be deleted if both its 'count' of using tasks
1415  * is zero, and its list of 'children' cgroups is empty.  Since all
1416  * tasks in the system use _some_ cgroup, and since there is always at
1417  * least one task in the system (init, pid == 1), therefore, root cgroup
1418  * always has either children cgroups and/or using tasks.  So we don't
1419  * need a special hack to ensure that root cgroup cannot be deleted.
1420  *
1421  * P.S.  One more locking exception.  RCU is used to guard the
1422  * update of a tasks cgroup pointer by cgroup_attach_task()
1423  */
1424 
1425 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1426 
1427 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1428 			      char *buf)
1429 {
1430 	struct cgroup_subsys *ss = cft->ss;
1431 
1432 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1433 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1434 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1435 
1436 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1437 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1438 			 cft->name);
1439 	} else {
1440 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1441 	}
1442 	return buf;
1443 }
1444 
1445 /**
1446  * cgroup_file_mode - deduce file mode of a control file
1447  * @cft: the control file in question
1448  *
1449  * S_IRUGO for read, S_IWUSR for write.
1450  */
1451 static umode_t cgroup_file_mode(const struct cftype *cft)
1452 {
1453 	umode_t mode = 0;
1454 
1455 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1456 		mode |= S_IRUGO;
1457 
1458 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1459 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1460 			mode |= S_IWUGO;
1461 		else
1462 			mode |= S_IWUSR;
1463 	}
1464 
1465 	return mode;
1466 }
1467 
1468 /**
1469  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1470  * @subtree_control: the new subtree_control mask to consider
1471  * @this_ss_mask: available subsystems
1472  *
1473  * On the default hierarchy, a subsystem may request other subsystems to be
1474  * enabled together through its ->depends_on mask.  In such cases, more
1475  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1476  *
1477  * This function calculates which subsystems need to be enabled if
1478  * @subtree_control is to be applied while restricted to @this_ss_mask.
1479  */
1480 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1481 {
1482 	u16 cur_ss_mask = subtree_control;
1483 	struct cgroup_subsys *ss;
1484 	int ssid;
1485 
1486 	lockdep_assert_held(&cgroup_mutex);
1487 
1488 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1489 
1490 	while (true) {
1491 		u16 new_ss_mask = cur_ss_mask;
1492 
1493 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1494 			new_ss_mask |= ss->depends_on;
1495 		} while_each_subsys_mask();
1496 
1497 		/*
1498 		 * Mask out subsystems which aren't available.  This can
1499 		 * happen only if some depended-upon subsystems were bound
1500 		 * to non-default hierarchies.
1501 		 */
1502 		new_ss_mask &= this_ss_mask;
1503 
1504 		if (new_ss_mask == cur_ss_mask)
1505 			break;
1506 		cur_ss_mask = new_ss_mask;
1507 	}
1508 
1509 	return cur_ss_mask;
1510 }
1511 
1512 /**
1513  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1514  * @kn: the kernfs_node being serviced
1515  *
1516  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1517  * the method finishes if locking succeeded.  Note that once this function
1518  * returns the cgroup returned by cgroup_kn_lock_live() may become
1519  * inaccessible any time.  If the caller intends to continue to access the
1520  * cgroup, it should pin it before invoking this function.
1521  */
1522 void cgroup_kn_unlock(struct kernfs_node *kn)
1523 {
1524 	struct cgroup *cgrp;
1525 
1526 	if (kernfs_type(kn) == KERNFS_DIR)
1527 		cgrp = kn->priv;
1528 	else
1529 		cgrp = kn->parent->priv;
1530 
1531 	mutex_unlock(&cgroup_mutex);
1532 
1533 	kernfs_unbreak_active_protection(kn);
1534 	cgroup_put(cgrp);
1535 }
1536 
1537 /**
1538  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1539  * @kn: the kernfs_node being serviced
1540  * @drain_offline: perform offline draining on the cgroup
1541  *
1542  * This helper is to be used by a cgroup kernfs method currently servicing
1543  * @kn.  It breaks the active protection, performs cgroup locking and
1544  * verifies that the associated cgroup is alive.  Returns the cgroup if
1545  * alive; otherwise, %NULL.  A successful return should be undone by a
1546  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1547  * cgroup is drained of offlining csses before return.
1548  *
1549  * Any cgroup kernfs method implementation which requires locking the
1550  * associated cgroup should use this helper.  It avoids nesting cgroup
1551  * locking under kernfs active protection and allows all kernfs operations
1552  * including self-removal.
1553  */
1554 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1555 {
1556 	struct cgroup *cgrp;
1557 
1558 	if (kernfs_type(kn) == KERNFS_DIR)
1559 		cgrp = kn->priv;
1560 	else
1561 		cgrp = kn->parent->priv;
1562 
1563 	/*
1564 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1565 	 * active_ref.  cgroup liveliness check alone provides enough
1566 	 * protection against removal.  Ensure @cgrp stays accessible and
1567 	 * break the active_ref protection.
1568 	 */
1569 	if (!cgroup_tryget(cgrp))
1570 		return NULL;
1571 	kernfs_break_active_protection(kn);
1572 
1573 	if (drain_offline)
1574 		cgroup_lock_and_drain_offline(cgrp);
1575 	else
1576 		mutex_lock(&cgroup_mutex);
1577 
1578 	if (!cgroup_is_dead(cgrp))
1579 		return cgrp;
1580 
1581 	cgroup_kn_unlock(kn);
1582 	return NULL;
1583 }
1584 
1585 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1586 {
1587 	char name[CGROUP_FILE_NAME_MAX];
1588 
1589 	lockdep_assert_held(&cgroup_mutex);
1590 
1591 	if (cft->file_offset) {
1592 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1593 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1594 
1595 		spin_lock_irq(&cgroup_file_kn_lock);
1596 		cfile->kn = NULL;
1597 		spin_unlock_irq(&cgroup_file_kn_lock);
1598 
1599 		del_timer_sync(&cfile->notify_timer);
1600 	}
1601 
1602 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1603 }
1604 
1605 /**
1606  * css_clear_dir - remove subsys files in a cgroup directory
1607  * @css: taget css
1608  */
1609 static void css_clear_dir(struct cgroup_subsys_state *css)
1610 {
1611 	struct cgroup *cgrp = css->cgroup;
1612 	struct cftype *cfts;
1613 
1614 	if (!(css->flags & CSS_VISIBLE))
1615 		return;
1616 
1617 	css->flags &= ~CSS_VISIBLE;
1618 
1619 	if (!css->ss) {
1620 		if (cgroup_on_dfl(cgrp))
1621 			cfts = cgroup_base_files;
1622 		else
1623 			cfts = cgroup1_base_files;
1624 
1625 		cgroup_addrm_files(css, cgrp, cfts, false);
1626 	} else {
1627 		list_for_each_entry(cfts, &css->ss->cfts, node)
1628 			cgroup_addrm_files(css, cgrp, cfts, false);
1629 	}
1630 }
1631 
1632 /**
1633  * css_populate_dir - create subsys files in a cgroup directory
1634  * @css: target css
1635  *
1636  * On failure, no file is added.
1637  */
1638 static int css_populate_dir(struct cgroup_subsys_state *css)
1639 {
1640 	struct cgroup *cgrp = css->cgroup;
1641 	struct cftype *cfts, *failed_cfts;
1642 	int ret;
1643 
1644 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1645 		return 0;
1646 
1647 	if (!css->ss) {
1648 		if (cgroup_on_dfl(cgrp))
1649 			cfts = cgroup_base_files;
1650 		else
1651 			cfts = cgroup1_base_files;
1652 
1653 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1654 		if (ret < 0)
1655 			return ret;
1656 	} else {
1657 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1658 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1659 			if (ret < 0) {
1660 				failed_cfts = cfts;
1661 				goto err;
1662 			}
1663 		}
1664 	}
1665 
1666 	css->flags |= CSS_VISIBLE;
1667 
1668 	return 0;
1669 err:
1670 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1671 		if (cfts == failed_cfts)
1672 			break;
1673 		cgroup_addrm_files(css, cgrp, cfts, false);
1674 	}
1675 	return ret;
1676 }
1677 
1678 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1679 {
1680 	struct cgroup *dcgrp = &dst_root->cgrp;
1681 	struct cgroup_subsys *ss;
1682 	int ssid, i, ret;
1683 
1684 	lockdep_assert_held(&cgroup_mutex);
1685 
1686 	do_each_subsys_mask(ss, ssid, ss_mask) {
1687 		/*
1688 		 * If @ss has non-root csses attached to it, can't move.
1689 		 * If @ss is an implicit controller, it is exempt from this
1690 		 * rule and can be stolen.
1691 		 */
1692 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1693 		    !ss->implicit_on_dfl)
1694 			return -EBUSY;
1695 
1696 		/* can't move between two non-dummy roots either */
1697 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1698 			return -EBUSY;
1699 	} while_each_subsys_mask();
1700 
1701 	do_each_subsys_mask(ss, ssid, ss_mask) {
1702 		struct cgroup_root *src_root = ss->root;
1703 		struct cgroup *scgrp = &src_root->cgrp;
1704 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1705 		struct css_set *cset;
1706 
1707 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1708 
1709 		/* disable from the source */
1710 		src_root->subsys_mask &= ~(1 << ssid);
1711 		WARN_ON(cgroup_apply_control(scgrp));
1712 		cgroup_finalize_control(scgrp, 0);
1713 
1714 		/* rebind */
1715 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1716 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1717 		ss->root = dst_root;
1718 		css->cgroup = dcgrp;
1719 
1720 		spin_lock_irq(&css_set_lock);
1721 		hash_for_each(css_set_table, i, cset, hlist)
1722 			list_move_tail(&cset->e_cset_node[ss->id],
1723 				       &dcgrp->e_csets[ss->id]);
1724 		spin_unlock_irq(&css_set_lock);
1725 
1726 		/* default hierarchy doesn't enable controllers by default */
1727 		dst_root->subsys_mask |= 1 << ssid;
1728 		if (dst_root == &cgrp_dfl_root) {
1729 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1730 		} else {
1731 			dcgrp->subtree_control |= 1 << ssid;
1732 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1733 		}
1734 
1735 		ret = cgroup_apply_control(dcgrp);
1736 		if (ret)
1737 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1738 				ss->name, ret);
1739 
1740 		if (ss->bind)
1741 			ss->bind(css);
1742 	} while_each_subsys_mask();
1743 
1744 	kernfs_activate(dcgrp->kn);
1745 	return 0;
1746 }
1747 
1748 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1749 		     struct kernfs_root *kf_root)
1750 {
1751 	int len = 0;
1752 	char *buf = NULL;
1753 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1754 	struct cgroup *ns_cgroup;
1755 
1756 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1757 	if (!buf)
1758 		return -ENOMEM;
1759 
1760 	spin_lock_irq(&css_set_lock);
1761 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1762 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1763 	spin_unlock_irq(&css_set_lock);
1764 
1765 	if (len >= PATH_MAX)
1766 		len = -ERANGE;
1767 	else if (len > 0) {
1768 		seq_escape(sf, buf, " \t\n\\");
1769 		len = 0;
1770 	}
1771 	kfree(buf);
1772 	return len;
1773 }
1774 
1775 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1776 {
1777 	char *token;
1778 
1779 	*root_flags = 0;
1780 
1781 	if (!data || *data == '\0')
1782 		return 0;
1783 
1784 	while ((token = strsep(&data, ",")) != NULL) {
1785 		if (!strcmp(token, "nsdelegate")) {
1786 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1787 			continue;
1788 		}
1789 
1790 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1791 		return -EINVAL;
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static void apply_cgroup_root_flags(unsigned int root_flags)
1798 {
1799 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1800 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1801 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1802 		else
1803 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1804 	}
1805 }
1806 
1807 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1808 {
1809 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1810 		seq_puts(seq, ",nsdelegate");
1811 	return 0;
1812 }
1813 
1814 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1815 {
1816 	unsigned int root_flags;
1817 	int ret;
1818 
1819 	ret = parse_cgroup_root_flags(data, &root_flags);
1820 	if (ret)
1821 		return ret;
1822 
1823 	apply_cgroup_root_flags(root_flags);
1824 	return 0;
1825 }
1826 
1827 /*
1828  * To reduce the fork() overhead for systems that are not actually using
1829  * their cgroups capability, we don't maintain the lists running through
1830  * each css_set to its tasks until we see the list actually used - in other
1831  * words after the first mount.
1832  */
1833 static bool use_task_css_set_links __read_mostly;
1834 
1835 static void cgroup_enable_task_cg_lists(void)
1836 {
1837 	struct task_struct *p, *g;
1838 
1839 	/*
1840 	 * We need tasklist_lock because RCU is not safe against
1841 	 * while_each_thread(). Besides, a forking task that has passed
1842 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1843 	 * is not guaranteed to have its child immediately visible in the
1844 	 * tasklist if we walk through it with RCU.
1845 	 */
1846 	read_lock(&tasklist_lock);
1847 	spin_lock_irq(&css_set_lock);
1848 
1849 	if (use_task_css_set_links)
1850 		goto out_unlock;
1851 
1852 	use_task_css_set_links = true;
1853 
1854 	do_each_thread(g, p) {
1855 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1856 			     task_css_set(p) != &init_css_set);
1857 
1858 		/*
1859 		 * We should check if the process is exiting, otherwise
1860 		 * it will race with cgroup_exit() in that the list
1861 		 * entry won't be deleted though the process has exited.
1862 		 * Do it while holding siglock so that we don't end up
1863 		 * racing against cgroup_exit().
1864 		 *
1865 		 * Interrupts were already disabled while acquiring
1866 		 * the css_set_lock, so we do not need to disable it
1867 		 * again when acquiring the sighand->siglock here.
1868 		 */
1869 		spin_lock(&p->sighand->siglock);
1870 		if (!(p->flags & PF_EXITING)) {
1871 			struct css_set *cset = task_css_set(p);
1872 
1873 			if (!css_set_populated(cset))
1874 				css_set_update_populated(cset, true);
1875 			list_add_tail(&p->cg_list, &cset->tasks);
1876 			get_css_set(cset);
1877 			cset->nr_tasks++;
1878 		}
1879 		spin_unlock(&p->sighand->siglock);
1880 	} while_each_thread(g, p);
1881 out_unlock:
1882 	spin_unlock_irq(&css_set_lock);
1883 	read_unlock(&tasklist_lock);
1884 }
1885 
1886 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1887 {
1888 	struct cgroup_subsys *ss;
1889 	int ssid;
1890 
1891 	INIT_LIST_HEAD(&cgrp->self.sibling);
1892 	INIT_LIST_HEAD(&cgrp->self.children);
1893 	INIT_LIST_HEAD(&cgrp->cset_links);
1894 	INIT_LIST_HEAD(&cgrp->pidlists);
1895 	mutex_init(&cgrp->pidlist_mutex);
1896 	cgrp->self.cgroup = cgrp;
1897 	cgrp->self.flags |= CSS_ONLINE;
1898 	cgrp->dom_cgrp = cgrp;
1899 	cgrp->max_descendants = INT_MAX;
1900 	cgrp->max_depth = INT_MAX;
1901 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1902 	prev_cputime_init(&cgrp->prev_cputime);
1903 
1904 	for_each_subsys(ss, ssid)
1905 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1906 
1907 	init_waitqueue_head(&cgrp->offline_waitq);
1908 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1909 }
1910 
1911 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1912 {
1913 	struct cgroup *cgrp = &root->cgrp;
1914 
1915 	INIT_LIST_HEAD(&root->root_list);
1916 	atomic_set(&root->nr_cgrps, 1);
1917 	cgrp->root = root;
1918 	init_cgroup_housekeeping(cgrp);
1919 	idr_init(&root->cgroup_idr);
1920 
1921 	root->flags = opts->flags;
1922 	if (opts->release_agent)
1923 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1924 	if (opts->name)
1925 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1926 	if (opts->cpuset_clone_children)
1927 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1928 }
1929 
1930 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1931 {
1932 	LIST_HEAD(tmp_links);
1933 	struct cgroup *root_cgrp = &root->cgrp;
1934 	struct kernfs_syscall_ops *kf_sops;
1935 	struct css_set *cset;
1936 	int i, ret;
1937 
1938 	lockdep_assert_held(&cgroup_mutex);
1939 
1940 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1941 	if (ret < 0)
1942 		goto out;
1943 	root_cgrp->id = ret;
1944 	root_cgrp->ancestor_ids[0] = ret;
1945 
1946 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1947 			      0, GFP_KERNEL);
1948 	if (ret)
1949 		goto out;
1950 
1951 	/*
1952 	 * We're accessing css_set_count without locking css_set_lock here,
1953 	 * but that's OK - it can only be increased by someone holding
1954 	 * cgroup_lock, and that's us.  Later rebinding may disable
1955 	 * controllers on the default hierarchy and thus create new csets,
1956 	 * which can't be more than the existing ones.  Allocate 2x.
1957 	 */
1958 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1959 	if (ret)
1960 		goto cancel_ref;
1961 
1962 	ret = cgroup_init_root_id(root);
1963 	if (ret)
1964 		goto cancel_ref;
1965 
1966 	kf_sops = root == &cgrp_dfl_root ?
1967 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1968 
1969 	root->kf_root = kernfs_create_root(kf_sops,
1970 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1971 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1972 					   root_cgrp);
1973 	if (IS_ERR(root->kf_root)) {
1974 		ret = PTR_ERR(root->kf_root);
1975 		goto exit_root_id;
1976 	}
1977 	root_cgrp->kn = root->kf_root->kn;
1978 
1979 	ret = css_populate_dir(&root_cgrp->self);
1980 	if (ret)
1981 		goto destroy_root;
1982 
1983 	ret = rebind_subsystems(root, ss_mask);
1984 	if (ret)
1985 		goto destroy_root;
1986 
1987 	ret = cgroup_bpf_inherit(root_cgrp);
1988 	WARN_ON_ONCE(ret);
1989 
1990 	trace_cgroup_setup_root(root);
1991 
1992 	/*
1993 	 * There must be no failure case after here, since rebinding takes
1994 	 * care of subsystems' refcounts, which are explicitly dropped in
1995 	 * the failure exit path.
1996 	 */
1997 	list_add(&root->root_list, &cgroup_roots);
1998 	cgroup_root_count++;
1999 
2000 	/*
2001 	 * Link the root cgroup in this hierarchy into all the css_set
2002 	 * objects.
2003 	 */
2004 	spin_lock_irq(&css_set_lock);
2005 	hash_for_each(css_set_table, i, cset, hlist) {
2006 		link_css_set(&tmp_links, cset, root_cgrp);
2007 		if (css_set_populated(cset))
2008 			cgroup_update_populated(root_cgrp, true);
2009 	}
2010 	spin_unlock_irq(&css_set_lock);
2011 
2012 	BUG_ON(!list_empty(&root_cgrp->self.children));
2013 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2014 
2015 	kernfs_activate(root_cgrp->kn);
2016 	ret = 0;
2017 	goto out;
2018 
2019 destroy_root:
2020 	kernfs_destroy_root(root->kf_root);
2021 	root->kf_root = NULL;
2022 exit_root_id:
2023 	cgroup_exit_root_id(root);
2024 cancel_ref:
2025 	percpu_ref_exit(&root_cgrp->self.refcnt);
2026 out:
2027 	free_cgrp_cset_links(&tmp_links);
2028 	return ret;
2029 }
2030 
2031 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
2032 			       struct cgroup_root *root, unsigned long magic,
2033 			       struct cgroup_namespace *ns)
2034 {
2035 	struct dentry *dentry;
2036 	bool new_sb = false;
2037 
2038 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2039 
2040 	/*
2041 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2042 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2043 	 */
2044 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2045 		struct dentry *nsdentry;
2046 		struct super_block *sb = dentry->d_sb;
2047 		struct cgroup *cgrp;
2048 
2049 		mutex_lock(&cgroup_mutex);
2050 		spin_lock_irq(&css_set_lock);
2051 
2052 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2053 
2054 		spin_unlock_irq(&css_set_lock);
2055 		mutex_unlock(&cgroup_mutex);
2056 
2057 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2058 		dput(dentry);
2059 		if (IS_ERR(nsdentry))
2060 			deactivate_locked_super(sb);
2061 		dentry = nsdentry;
2062 	}
2063 
2064 	if (!new_sb)
2065 		cgroup_put(&root->cgrp);
2066 
2067 	return dentry;
2068 }
2069 
2070 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2071 			 int flags, const char *unused_dev_name,
2072 			 void *data)
2073 {
2074 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2075 	struct dentry *dentry;
2076 	int ret;
2077 
2078 	get_cgroup_ns(ns);
2079 
2080 	/* Check if the caller has permission to mount. */
2081 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2082 		put_cgroup_ns(ns);
2083 		return ERR_PTR(-EPERM);
2084 	}
2085 
2086 	/*
2087 	 * The first time anyone tries to mount a cgroup, enable the list
2088 	 * linking each css_set to its tasks and fix up all existing tasks.
2089 	 */
2090 	if (!use_task_css_set_links)
2091 		cgroup_enable_task_cg_lists();
2092 
2093 	if (fs_type == &cgroup2_fs_type) {
2094 		unsigned int root_flags;
2095 
2096 		ret = parse_cgroup_root_flags(data, &root_flags);
2097 		if (ret) {
2098 			put_cgroup_ns(ns);
2099 			return ERR_PTR(ret);
2100 		}
2101 
2102 		cgrp_dfl_visible = true;
2103 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2104 
2105 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2106 					 CGROUP2_SUPER_MAGIC, ns);
2107 		if (!IS_ERR(dentry))
2108 			apply_cgroup_root_flags(root_flags);
2109 	} else {
2110 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2111 				       CGROUP_SUPER_MAGIC, ns);
2112 	}
2113 
2114 	put_cgroup_ns(ns);
2115 	return dentry;
2116 }
2117 
2118 static void cgroup_kill_sb(struct super_block *sb)
2119 {
2120 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2121 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2122 
2123 	/*
2124 	 * If @root doesn't have any children, start killing it.
2125 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2126 	 * cgroup_mount() may wait for @root's release.
2127 	 *
2128 	 * And don't kill the default root.
2129 	 */
2130 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2131 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2132 		percpu_ref_kill(&root->cgrp.self.refcnt);
2133 	cgroup_put(&root->cgrp);
2134 	kernfs_kill_sb(sb);
2135 }
2136 
2137 struct file_system_type cgroup_fs_type = {
2138 	.name = "cgroup",
2139 	.mount = cgroup_mount,
2140 	.kill_sb = cgroup_kill_sb,
2141 	.fs_flags = FS_USERNS_MOUNT,
2142 };
2143 
2144 static struct file_system_type cgroup2_fs_type = {
2145 	.name = "cgroup2",
2146 	.mount = cgroup_mount,
2147 	.kill_sb = cgroup_kill_sb,
2148 	.fs_flags = FS_USERNS_MOUNT,
2149 };
2150 
2151 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2152 			  struct cgroup_namespace *ns)
2153 {
2154 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2155 
2156 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2157 }
2158 
2159 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2160 		   struct cgroup_namespace *ns)
2161 {
2162 	int ret;
2163 
2164 	mutex_lock(&cgroup_mutex);
2165 	spin_lock_irq(&css_set_lock);
2166 
2167 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2168 
2169 	spin_unlock_irq(&css_set_lock);
2170 	mutex_unlock(&cgroup_mutex);
2171 
2172 	return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2175 
2176 /**
2177  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2178  * @task: target task
2179  * @buf: the buffer to write the path into
2180  * @buflen: the length of the buffer
2181  *
2182  * Determine @task's cgroup on the first (the one with the lowest non-zero
2183  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2184  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2185  * cgroup controller callbacks.
2186  *
2187  * Return value is the same as kernfs_path().
2188  */
2189 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2190 {
2191 	struct cgroup_root *root;
2192 	struct cgroup *cgrp;
2193 	int hierarchy_id = 1;
2194 	int ret;
2195 
2196 	mutex_lock(&cgroup_mutex);
2197 	spin_lock_irq(&css_set_lock);
2198 
2199 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2200 
2201 	if (root) {
2202 		cgrp = task_cgroup_from_root(task, root);
2203 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2204 	} else {
2205 		/* if no hierarchy exists, everyone is in "/" */
2206 		ret = strlcpy(buf, "/", buflen);
2207 	}
2208 
2209 	spin_unlock_irq(&css_set_lock);
2210 	mutex_unlock(&cgroup_mutex);
2211 	return ret;
2212 }
2213 EXPORT_SYMBOL_GPL(task_cgroup_path);
2214 
2215 /**
2216  * cgroup_migrate_add_task - add a migration target task to a migration context
2217  * @task: target task
2218  * @mgctx: target migration context
2219  *
2220  * Add @task, which is a migration target, to @mgctx->tset.  This function
2221  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2222  * should have been added as a migration source and @task->cg_list will be
2223  * moved from the css_set's tasks list to mg_tasks one.
2224  */
2225 static void cgroup_migrate_add_task(struct task_struct *task,
2226 				    struct cgroup_mgctx *mgctx)
2227 {
2228 	struct css_set *cset;
2229 
2230 	lockdep_assert_held(&css_set_lock);
2231 
2232 	/* @task either already exited or can't exit until the end */
2233 	if (task->flags & PF_EXITING)
2234 		return;
2235 
2236 	/* leave @task alone if post_fork() hasn't linked it yet */
2237 	if (list_empty(&task->cg_list))
2238 		return;
2239 
2240 	cset = task_css_set(task);
2241 	if (!cset->mg_src_cgrp)
2242 		return;
2243 
2244 	mgctx->tset.nr_tasks++;
2245 
2246 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2247 	if (list_empty(&cset->mg_node))
2248 		list_add_tail(&cset->mg_node,
2249 			      &mgctx->tset.src_csets);
2250 	if (list_empty(&cset->mg_dst_cset->mg_node))
2251 		list_add_tail(&cset->mg_dst_cset->mg_node,
2252 			      &mgctx->tset.dst_csets);
2253 }
2254 
2255 /**
2256  * cgroup_taskset_first - reset taskset and return the first task
2257  * @tset: taskset of interest
2258  * @dst_cssp: output variable for the destination css
2259  *
2260  * @tset iteration is initialized and the first task is returned.
2261  */
2262 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2263 					 struct cgroup_subsys_state **dst_cssp)
2264 {
2265 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2266 	tset->cur_task = NULL;
2267 
2268 	return cgroup_taskset_next(tset, dst_cssp);
2269 }
2270 
2271 /**
2272  * cgroup_taskset_next - iterate to the next task in taskset
2273  * @tset: taskset of interest
2274  * @dst_cssp: output variable for the destination css
2275  *
2276  * Return the next task in @tset.  Iteration must have been initialized
2277  * with cgroup_taskset_first().
2278  */
2279 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2280 					struct cgroup_subsys_state **dst_cssp)
2281 {
2282 	struct css_set *cset = tset->cur_cset;
2283 	struct task_struct *task = tset->cur_task;
2284 
2285 	while (&cset->mg_node != tset->csets) {
2286 		if (!task)
2287 			task = list_first_entry(&cset->mg_tasks,
2288 						struct task_struct, cg_list);
2289 		else
2290 			task = list_next_entry(task, cg_list);
2291 
2292 		if (&task->cg_list != &cset->mg_tasks) {
2293 			tset->cur_cset = cset;
2294 			tset->cur_task = task;
2295 
2296 			/*
2297 			 * This function may be called both before and
2298 			 * after cgroup_taskset_migrate().  The two cases
2299 			 * can be distinguished by looking at whether @cset
2300 			 * has its ->mg_dst_cset set.
2301 			 */
2302 			if (cset->mg_dst_cset)
2303 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2304 			else
2305 				*dst_cssp = cset->subsys[tset->ssid];
2306 
2307 			return task;
2308 		}
2309 
2310 		cset = list_next_entry(cset, mg_node);
2311 		task = NULL;
2312 	}
2313 
2314 	return NULL;
2315 }
2316 
2317 /**
2318  * cgroup_taskset_migrate - migrate a taskset
2319  * @mgctx: migration context
2320  *
2321  * Migrate tasks in @mgctx as setup by migration preparation functions.
2322  * This function fails iff one of the ->can_attach callbacks fails and
2323  * guarantees that either all or none of the tasks in @mgctx are migrated.
2324  * @mgctx is consumed regardless of success.
2325  */
2326 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2327 {
2328 	struct cgroup_taskset *tset = &mgctx->tset;
2329 	struct cgroup_subsys *ss;
2330 	struct task_struct *task, *tmp_task;
2331 	struct css_set *cset, *tmp_cset;
2332 	int ssid, failed_ssid, ret;
2333 
2334 	/* check that we can legitimately attach to the cgroup */
2335 	if (tset->nr_tasks) {
2336 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2337 			if (ss->can_attach) {
2338 				tset->ssid = ssid;
2339 				ret = ss->can_attach(tset);
2340 				if (ret) {
2341 					failed_ssid = ssid;
2342 					goto out_cancel_attach;
2343 				}
2344 			}
2345 		} while_each_subsys_mask();
2346 	}
2347 
2348 	/*
2349 	 * Now that we're guaranteed success, proceed to move all tasks to
2350 	 * the new cgroup.  There are no failure cases after here, so this
2351 	 * is the commit point.
2352 	 */
2353 	spin_lock_irq(&css_set_lock);
2354 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2355 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2356 			struct css_set *from_cset = task_css_set(task);
2357 			struct css_set *to_cset = cset->mg_dst_cset;
2358 
2359 			get_css_set(to_cset);
2360 			to_cset->nr_tasks++;
2361 			css_set_move_task(task, from_cset, to_cset, true);
2362 			put_css_set_locked(from_cset);
2363 			from_cset->nr_tasks--;
2364 		}
2365 	}
2366 	spin_unlock_irq(&css_set_lock);
2367 
2368 	/*
2369 	 * Migration is committed, all target tasks are now on dst_csets.
2370 	 * Nothing is sensitive to fork() after this point.  Notify
2371 	 * controllers that migration is complete.
2372 	 */
2373 	tset->csets = &tset->dst_csets;
2374 
2375 	if (tset->nr_tasks) {
2376 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2377 			if (ss->attach) {
2378 				tset->ssid = ssid;
2379 				ss->attach(tset);
2380 			}
2381 		} while_each_subsys_mask();
2382 	}
2383 
2384 	ret = 0;
2385 	goto out_release_tset;
2386 
2387 out_cancel_attach:
2388 	if (tset->nr_tasks) {
2389 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2390 			if (ssid == failed_ssid)
2391 				break;
2392 			if (ss->cancel_attach) {
2393 				tset->ssid = ssid;
2394 				ss->cancel_attach(tset);
2395 			}
2396 		} while_each_subsys_mask();
2397 	}
2398 out_release_tset:
2399 	spin_lock_irq(&css_set_lock);
2400 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2401 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2402 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2403 		list_del_init(&cset->mg_node);
2404 	}
2405 	spin_unlock_irq(&css_set_lock);
2406 
2407 	/*
2408 	 * Re-initialize the cgroup_taskset structure in case it is reused
2409 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2410 	 * iteration.
2411 	 */
2412 	tset->nr_tasks = 0;
2413 	tset->csets    = &tset->src_csets;
2414 	return ret;
2415 }
2416 
2417 /**
2418  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2419  * @dst_cgrp: destination cgroup to test
2420  *
2421  * On the default hierarchy, except for the mixable, (possible) thread root
2422  * and threaded cgroups, subtree_control must be zero for migration
2423  * destination cgroups with tasks so that child cgroups don't compete
2424  * against tasks.
2425  */
2426 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2427 {
2428 	/* v1 doesn't have any restriction */
2429 	if (!cgroup_on_dfl(dst_cgrp))
2430 		return 0;
2431 
2432 	/* verify @dst_cgrp can host resources */
2433 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2434 		return -EOPNOTSUPP;
2435 
2436 	/* mixables don't care */
2437 	if (cgroup_is_mixable(dst_cgrp))
2438 		return 0;
2439 
2440 	/*
2441 	 * If @dst_cgrp is already or can become a thread root or is
2442 	 * threaded, it doesn't matter.
2443 	 */
2444 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2445 		return 0;
2446 
2447 	/* apply no-internal-process constraint */
2448 	if (dst_cgrp->subtree_control)
2449 		return -EBUSY;
2450 
2451 	return 0;
2452 }
2453 
2454 /**
2455  * cgroup_migrate_finish - cleanup after attach
2456  * @mgctx: migration context
2457  *
2458  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2459  * those functions for details.
2460  */
2461 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2462 {
2463 	LIST_HEAD(preloaded);
2464 	struct css_set *cset, *tmp_cset;
2465 
2466 	lockdep_assert_held(&cgroup_mutex);
2467 
2468 	spin_lock_irq(&css_set_lock);
2469 
2470 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2471 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2472 
2473 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2474 		cset->mg_src_cgrp = NULL;
2475 		cset->mg_dst_cgrp = NULL;
2476 		cset->mg_dst_cset = NULL;
2477 		list_del_init(&cset->mg_preload_node);
2478 		put_css_set_locked(cset);
2479 	}
2480 
2481 	spin_unlock_irq(&css_set_lock);
2482 }
2483 
2484 /**
2485  * cgroup_migrate_add_src - add a migration source css_set
2486  * @src_cset: the source css_set to add
2487  * @dst_cgrp: the destination cgroup
2488  * @mgctx: migration context
2489  *
2490  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2491  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2492  * up by cgroup_migrate_finish().
2493  *
2494  * This function may be called without holding cgroup_threadgroup_rwsem
2495  * even if the target is a process.  Threads may be created and destroyed
2496  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2497  * into play and the preloaded css_sets are guaranteed to cover all
2498  * migrations.
2499  */
2500 void cgroup_migrate_add_src(struct css_set *src_cset,
2501 			    struct cgroup *dst_cgrp,
2502 			    struct cgroup_mgctx *mgctx)
2503 {
2504 	struct cgroup *src_cgrp;
2505 
2506 	lockdep_assert_held(&cgroup_mutex);
2507 	lockdep_assert_held(&css_set_lock);
2508 
2509 	/*
2510 	 * If ->dead, @src_set is associated with one or more dead cgroups
2511 	 * and doesn't contain any migratable tasks.  Ignore it early so
2512 	 * that the rest of migration path doesn't get confused by it.
2513 	 */
2514 	if (src_cset->dead)
2515 		return;
2516 
2517 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2518 
2519 	if (!list_empty(&src_cset->mg_preload_node))
2520 		return;
2521 
2522 	WARN_ON(src_cset->mg_src_cgrp);
2523 	WARN_ON(src_cset->mg_dst_cgrp);
2524 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2525 	WARN_ON(!list_empty(&src_cset->mg_node));
2526 
2527 	src_cset->mg_src_cgrp = src_cgrp;
2528 	src_cset->mg_dst_cgrp = dst_cgrp;
2529 	get_css_set(src_cset);
2530 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2531 }
2532 
2533 /**
2534  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2535  * @mgctx: migration context
2536  *
2537  * Tasks are about to be moved and all the source css_sets have been
2538  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2539  * pins all destination css_sets, links each to its source, and append them
2540  * to @mgctx->preloaded_dst_csets.
2541  *
2542  * This function must be called after cgroup_migrate_add_src() has been
2543  * called on each migration source css_set.  After migration is performed
2544  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2545  * @mgctx.
2546  */
2547 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2548 {
2549 	struct css_set *src_cset, *tmp_cset;
2550 
2551 	lockdep_assert_held(&cgroup_mutex);
2552 
2553 	/* look up the dst cset for each src cset and link it to src */
2554 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2555 				 mg_preload_node) {
2556 		struct css_set *dst_cset;
2557 		struct cgroup_subsys *ss;
2558 		int ssid;
2559 
2560 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2561 		if (!dst_cset)
2562 			goto err;
2563 
2564 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2565 
2566 		/*
2567 		 * If src cset equals dst, it's noop.  Drop the src.
2568 		 * cgroup_migrate() will skip the cset too.  Note that we
2569 		 * can't handle src == dst as some nodes are used by both.
2570 		 */
2571 		if (src_cset == dst_cset) {
2572 			src_cset->mg_src_cgrp = NULL;
2573 			src_cset->mg_dst_cgrp = NULL;
2574 			list_del_init(&src_cset->mg_preload_node);
2575 			put_css_set(src_cset);
2576 			put_css_set(dst_cset);
2577 			continue;
2578 		}
2579 
2580 		src_cset->mg_dst_cset = dst_cset;
2581 
2582 		if (list_empty(&dst_cset->mg_preload_node))
2583 			list_add_tail(&dst_cset->mg_preload_node,
2584 				      &mgctx->preloaded_dst_csets);
2585 		else
2586 			put_css_set(dst_cset);
2587 
2588 		for_each_subsys(ss, ssid)
2589 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2590 				mgctx->ss_mask |= 1 << ssid;
2591 	}
2592 
2593 	return 0;
2594 err:
2595 	cgroup_migrate_finish(mgctx);
2596 	return -ENOMEM;
2597 }
2598 
2599 /**
2600  * cgroup_migrate - migrate a process or task to a cgroup
2601  * @leader: the leader of the process or the task to migrate
2602  * @threadgroup: whether @leader points to the whole process or a single task
2603  * @mgctx: migration context
2604  *
2605  * Migrate a process or task denoted by @leader.  If migrating a process,
2606  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2607  * responsible for invoking cgroup_migrate_add_src() and
2608  * cgroup_migrate_prepare_dst() on the targets before invoking this
2609  * function and following up with cgroup_migrate_finish().
2610  *
2611  * As long as a controller's ->can_attach() doesn't fail, this function is
2612  * guaranteed to succeed.  This means that, excluding ->can_attach()
2613  * failure, when migrating multiple targets, the success or failure can be
2614  * decided for all targets by invoking group_migrate_prepare_dst() before
2615  * actually starting migrating.
2616  */
2617 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2618 		   struct cgroup_mgctx *mgctx)
2619 {
2620 	struct task_struct *task;
2621 
2622 	/*
2623 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2624 	 * already PF_EXITING could be freed from underneath us unless we
2625 	 * take an rcu_read_lock.
2626 	 */
2627 	spin_lock_irq(&css_set_lock);
2628 	rcu_read_lock();
2629 	task = leader;
2630 	do {
2631 		cgroup_migrate_add_task(task, mgctx);
2632 		if (!threadgroup)
2633 			break;
2634 	} while_each_thread(leader, task);
2635 	rcu_read_unlock();
2636 	spin_unlock_irq(&css_set_lock);
2637 
2638 	return cgroup_migrate_execute(mgctx);
2639 }
2640 
2641 /**
2642  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2643  * @dst_cgrp: the cgroup to attach to
2644  * @leader: the task or the leader of the threadgroup to be attached
2645  * @threadgroup: attach the whole threadgroup?
2646  *
2647  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2648  */
2649 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2650 		       bool threadgroup)
2651 {
2652 	DEFINE_CGROUP_MGCTX(mgctx);
2653 	struct task_struct *task;
2654 	int ret;
2655 
2656 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2657 	if (ret)
2658 		return ret;
2659 
2660 	/* look up all src csets */
2661 	spin_lock_irq(&css_set_lock);
2662 	rcu_read_lock();
2663 	task = leader;
2664 	do {
2665 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2666 		if (!threadgroup)
2667 			break;
2668 	} while_each_thread(leader, task);
2669 	rcu_read_unlock();
2670 	spin_unlock_irq(&css_set_lock);
2671 
2672 	/* prepare dst csets and commit */
2673 	ret = cgroup_migrate_prepare_dst(&mgctx);
2674 	if (!ret)
2675 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2676 
2677 	cgroup_migrate_finish(&mgctx);
2678 
2679 	if (!ret)
2680 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2681 
2682 	return ret;
2683 }
2684 
2685 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2686 	__acquires(&cgroup_threadgroup_rwsem)
2687 {
2688 	struct task_struct *tsk;
2689 	pid_t pid;
2690 
2691 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2692 		return ERR_PTR(-EINVAL);
2693 
2694 	percpu_down_write(&cgroup_threadgroup_rwsem);
2695 
2696 	rcu_read_lock();
2697 	if (pid) {
2698 		tsk = find_task_by_vpid(pid);
2699 		if (!tsk) {
2700 			tsk = ERR_PTR(-ESRCH);
2701 			goto out_unlock_threadgroup;
2702 		}
2703 	} else {
2704 		tsk = current;
2705 	}
2706 
2707 	if (threadgroup)
2708 		tsk = tsk->group_leader;
2709 
2710 	/*
2711 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2712 	 * If userland migrates such a kthread to a non-root cgroup, it can
2713 	 * become trapped in a cpuset, or RT kthread may be born in a
2714 	 * cgroup with no rt_runtime allocated.  Just say no.
2715 	 */
2716 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2717 		tsk = ERR_PTR(-EINVAL);
2718 		goto out_unlock_threadgroup;
2719 	}
2720 
2721 	get_task_struct(tsk);
2722 	goto out_unlock_rcu;
2723 
2724 out_unlock_threadgroup:
2725 	percpu_up_write(&cgroup_threadgroup_rwsem);
2726 out_unlock_rcu:
2727 	rcu_read_unlock();
2728 	return tsk;
2729 }
2730 
2731 void cgroup_procs_write_finish(struct task_struct *task)
2732 	__releases(&cgroup_threadgroup_rwsem)
2733 {
2734 	struct cgroup_subsys *ss;
2735 	int ssid;
2736 
2737 	/* release reference from cgroup_procs_write_start() */
2738 	put_task_struct(task);
2739 
2740 	percpu_up_write(&cgroup_threadgroup_rwsem);
2741 	for_each_subsys(ss, ssid)
2742 		if (ss->post_attach)
2743 			ss->post_attach();
2744 }
2745 
2746 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2747 {
2748 	struct cgroup_subsys *ss;
2749 	bool printed = false;
2750 	int ssid;
2751 
2752 	do_each_subsys_mask(ss, ssid, ss_mask) {
2753 		if (printed)
2754 			seq_putc(seq, ' ');
2755 		seq_printf(seq, "%s", ss->name);
2756 		printed = true;
2757 	} while_each_subsys_mask();
2758 	if (printed)
2759 		seq_putc(seq, '\n');
2760 }
2761 
2762 /* show controllers which are enabled from the parent */
2763 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2764 {
2765 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2766 
2767 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2768 	return 0;
2769 }
2770 
2771 /* show controllers which are enabled for a given cgroup's children */
2772 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2773 {
2774 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2775 
2776 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2777 	return 0;
2778 }
2779 
2780 /**
2781  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2782  * @cgrp: root of the subtree to update csses for
2783  *
2784  * @cgrp's control masks have changed and its subtree's css associations
2785  * need to be updated accordingly.  This function looks up all css_sets
2786  * which are attached to the subtree, creates the matching updated css_sets
2787  * and migrates the tasks to the new ones.
2788  */
2789 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2790 {
2791 	DEFINE_CGROUP_MGCTX(mgctx);
2792 	struct cgroup_subsys_state *d_css;
2793 	struct cgroup *dsct;
2794 	struct css_set *src_cset;
2795 	int ret;
2796 
2797 	lockdep_assert_held(&cgroup_mutex);
2798 
2799 	percpu_down_write(&cgroup_threadgroup_rwsem);
2800 
2801 	/* look up all csses currently attached to @cgrp's subtree */
2802 	spin_lock_irq(&css_set_lock);
2803 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2804 		struct cgrp_cset_link *link;
2805 
2806 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2807 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2808 	}
2809 	spin_unlock_irq(&css_set_lock);
2810 
2811 	/* NULL dst indicates self on default hierarchy */
2812 	ret = cgroup_migrate_prepare_dst(&mgctx);
2813 	if (ret)
2814 		goto out_finish;
2815 
2816 	spin_lock_irq(&css_set_lock);
2817 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2818 		struct task_struct *task, *ntask;
2819 
2820 		/* all tasks in src_csets need to be migrated */
2821 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2822 			cgroup_migrate_add_task(task, &mgctx);
2823 	}
2824 	spin_unlock_irq(&css_set_lock);
2825 
2826 	ret = cgroup_migrate_execute(&mgctx);
2827 out_finish:
2828 	cgroup_migrate_finish(&mgctx);
2829 	percpu_up_write(&cgroup_threadgroup_rwsem);
2830 	return ret;
2831 }
2832 
2833 /**
2834  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2835  * @cgrp: root of the target subtree
2836  *
2837  * Because css offlining is asynchronous, userland may try to re-enable a
2838  * controller while the previous css is still around.  This function grabs
2839  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2840  */
2841 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2842 	__acquires(&cgroup_mutex)
2843 {
2844 	struct cgroup *dsct;
2845 	struct cgroup_subsys_state *d_css;
2846 	struct cgroup_subsys *ss;
2847 	int ssid;
2848 
2849 restart:
2850 	mutex_lock(&cgroup_mutex);
2851 
2852 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2853 		for_each_subsys(ss, ssid) {
2854 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2855 			DEFINE_WAIT(wait);
2856 
2857 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2858 				continue;
2859 
2860 			cgroup_get_live(dsct);
2861 			prepare_to_wait(&dsct->offline_waitq, &wait,
2862 					TASK_UNINTERRUPTIBLE);
2863 
2864 			mutex_unlock(&cgroup_mutex);
2865 			schedule();
2866 			finish_wait(&dsct->offline_waitq, &wait);
2867 
2868 			cgroup_put(dsct);
2869 			goto restart;
2870 		}
2871 	}
2872 }
2873 
2874 /**
2875  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2876  * @cgrp: root of the target subtree
2877  *
2878  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2879  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2880  * itself.
2881  */
2882 static void cgroup_save_control(struct cgroup *cgrp)
2883 {
2884 	struct cgroup *dsct;
2885 	struct cgroup_subsys_state *d_css;
2886 
2887 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2888 		dsct->old_subtree_control = dsct->subtree_control;
2889 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2890 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2891 	}
2892 }
2893 
2894 /**
2895  * cgroup_propagate_control - refresh control masks of a subtree
2896  * @cgrp: root of the target subtree
2897  *
2898  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2899  * ->subtree_control and propagate controller availability through the
2900  * subtree so that descendants don't have unavailable controllers enabled.
2901  */
2902 static void cgroup_propagate_control(struct cgroup *cgrp)
2903 {
2904 	struct cgroup *dsct;
2905 	struct cgroup_subsys_state *d_css;
2906 
2907 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2908 		dsct->subtree_control &= cgroup_control(dsct);
2909 		dsct->subtree_ss_mask =
2910 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2911 						    cgroup_ss_mask(dsct));
2912 	}
2913 }
2914 
2915 /**
2916  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2917  * @cgrp: root of the target subtree
2918  *
2919  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2920  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2921  * itself.
2922  */
2923 static void cgroup_restore_control(struct cgroup *cgrp)
2924 {
2925 	struct cgroup *dsct;
2926 	struct cgroup_subsys_state *d_css;
2927 
2928 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2929 		dsct->subtree_control = dsct->old_subtree_control;
2930 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2931 		dsct->dom_cgrp = dsct->old_dom_cgrp;
2932 	}
2933 }
2934 
2935 static bool css_visible(struct cgroup_subsys_state *css)
2936 {
2937 	struct cgroup_subsys *ss = css->ss;
2938 	struct cgroup *cgrp = css->cgroup;
2939 
2940 	if (cgroup_control(cgrp) & (1 << ss->id))
2941 		return true;
2942 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2943 		return false;
2944 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2945 }
2946 
2947 /**
2948  * cgroup_apply_control_enable - enable or show csses according to control
2949  * @cgrp: root of the target subtree
2950  *
2951  * Walk @cgrp's subtree and create new csses or make the existing ones
2952  * visible.  A css is created invisible if it's being implicitly enabled
2953  * through dependency.  An invisible css is made visible when the userland
2954  * explicitly enables it.
2955  *
2956  * Returns 0 on success, -errno on failure.  On failure, csses which have
2957  * been processed already aren't cleaned up.  The caller is responsible for
2958  * cleaning up with cgroup_apply_control_disable().
2959  */
2960 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2961 {
2962 	struct cgroup *dsct;
2963 	struct cgroup_subsys_state *d_css;
2964 	struct cgroup_subsys *ss;
2965 	int ssid, ret;
2966 
2967 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2968 		for_each_subsys(ss, ssid) {
2969 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2970 
2971 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2972 
2973 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2974 				continue;
2975 
2976 			if (!css) {
2977 				css = css_create(dsct, ss);
2978 				if (IS_ERR(css))
2979 					return PTR_ERR(css);
2980 			}
2981 
2982 			if (css_visible(css)) {
2983 				ret = css_populate_dir(css);
2984 				if (ret)
2985 					return ret;
2986 			}
2987 		}
2988 	}
2989 
2990 	return 0;
2991 }
2992 
2993 /**
2994  * cgroup_apply_control_disable - kill or hide csses according to control
2995  * @cgrp: root of the target subtree
2996  *
2997  * Walk @cgrp's subtree and kill and hide csses so that they match
2998  * cgroup_ss_mask() and cgroup_visible_mask().
2999  *
3000  * A css is hidden when the userland requests it to be disabled while other
3001  * subsystems are still depending on it.  The css must not actively control
3002  * resources and be in the vanilla state if it's made visible again later.
3003  * Controllers which may be depended upon should provide ->css_reset() for
3004  * this purpose.
3005  */
3006 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3007 {
3008 	struct cgroup *dsct;
3009 	struct cgroup_subsys_state *d_css;
3010 	struct cgroup_subsys *ss;
3011 	int ssid;
3012 
3013 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3014 		for_each_subsys(ss, ssid) {
3015 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3016 
3017 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3018 
3019 			if (!css)
3020 				continue;
3021 
3022 			if (css->parent &&
3023 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3024 				kill_css(css);
3025 			} else if (!css_visible(css)) {
3026 				css_clear_dir(css);
3027 				if (ss->css_reset)
3028 					ss->css_reset(css);
3029 			}
3030 		}
3031 	}
3032 }
3033 
3034 /**
3035  * cgroup_apply_control - apply control mask updates to the subtree
3036  * @cgrp: root of the target subtree
3037  *
3038  * subsystems can be enabled and disabled in a subtree using the following
3039  * steps.
3040  *
3041  * 1. Call cgroup_save_control() to stash the current state.
3042  * 2. Update ->subtree_control masks in the subtree as desired.
3043  * 3. Call cgroup_apply_control() to apply the changes.
3044  * 4. Optionally perform other related operations.
3045  * 5. Call cgroup_finalize_control() to finish up.
3046  *
3047  * This function implements step 3 and propagates the mask changes
3048  * throughout @cgrp's subtree, updates csses accordingly and perform
3049  * process migrations.
3050  */
3051 static int cgroup_apply_control(struct cgroup *cgrp)
3052 {
3053 	int ret;
3054 
3055 	cgroup_propagate_control(cgrp);
3056 
3057 	ret = cgroup_apply_control_enable(cgrp);
3058 	if (ret)
3059 		return ret;
3060 
3061 	/*
3062 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3063 	 * making the following cgroup_update_dfl_csses() properly update
3064 	 * css associations of all tasks in the subtree.
3065 	 */
3066 	ret = cgroup_update_dfl_csses(cgrp);
3067 	if (ret)
3068 		return ret;
3069 
3070 	return 0;
3071 }
3072 
3073 /**
3074  * cgroup_finalize_control - finalize control mask update
3075  * @cgrp: root of the target subtree
3076  * @ret: the result of the update
3077  *
3078  * Finalize control mask update.  See cgroup_apply_control() for more info.
3079  */
3080 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3081 {
3082 	if (ret) {
3083 		cgroup_restore_control(cgrp);
3084 		cgroup_propagate_control(cgrp);
3085 	}
3086 
3087 	cgroup_apply_control_disable(cgrp);
3088 }
3089 
3090 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3091 {
3092 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3093 
3094 	/* if nothing is getting enabled, nothing to worry about */
3095 	if (!enable)
3096 		return 0;
3097 
3098 	/* can @cgrp host any resources? */
3099 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3100 		return -EOPNOTSUPP;
3101 
3102 	/* mixables don't care */
3103 	if (cgroup_is_mixable(cgrp))
3104 		return 0;
3105 
3106 	if (domain_enable) {
3107 		/* can't enable domain controllers inside a thread subtree */
3108 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3109 			return -EOPNOTSUPP;
3110 	} else {
3111 		/*
3112 		 * Threaded controllers can handle internal competitions
3113 		 * and are always allowed inside a (prospective) thread
3114 		 * subtree.
3115 		 */
3116 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3117 			return 0;
3118 	}
3119 
3120 	/*
3121 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3122 	 * child cgroups competing against tasks.
3123 	 */
3124 	if (cgroup_has_tasks(cgrp))
3125 		return -EBUSY;
3126 
3127 	return 0;
3128 }
3129 
3130 /* change the enabled child controllers for a cgroup in the default hierarchy */
3131 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3132 					    char *buf, size_t nbytes,
3133 					    loff_t off)
3134 {
3135 	u16 enable = 0, disable = 0;
3136 	struct cgroup *cgrp, *child;
3137 	struct cgroup_subsys *ss;
3138 	char *tok;
3139 	int ssid, ret;
3140 
3141 	/*
3142 	 * Parse input - space separated list of subsystem names prefixed
3143 	 * with either + or -.
3144 	 */
3145 	buf = strstrip(buf);
3146 	while ((tok = strsep(&buf, " "))) {
3147 		if (tok[0] == '\0')
3148 			continue;
3149 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3150 			if (!cgroup_ssid_enabled(ssid) ||
3151 			    strcmp(tok + 1, ss->name))
3152 				continue;
3153 
3154 			if (*tok == '+') {
3155 				enable |= 1 << ssid;
3156 				disable &= ~(1 << ssid);
3157 			} else if (*tok == '-') {
3158 				disable |= 1 << ssid;
3159 				enable &= ~(1 << ssid);
3160 			} else {
3161 				return -EINVAL;
3162 			}
3163 			break;
3164 		} while_each_subsys_mask();
3165 		if (ssid == CGROUP_SUBSYS_COUNT)
3166 			return -EINVAL;
3167 	}
3168 
3169 	cgrp = cgroup_kn_lock_live(of->kn, true);
3170 	if (!cgrp)
3171 		return -ENODEV;
3172 
3173 	for_each_subsys(ss, ssid) {
3174 		if (enable & (1 << ssid)) {
3175 			if (cgrp->subtree_control & (1 << ssid)) {
3176 				enable &= ~(1 << ssid);
3177 				continue;
3178 			}
3179 
3180 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3181 				ret = -ENOENT;
3182 				goto out_unlock;
3183 			}
3184 		} else if (disable & (1 << ssid)) {
3185 			if (!(cgrp->subtree_control & (1 << ssid))) {
3186 				disable &= ~(1 << ssid);
3187 				continue;
3188 			}
3189 
3190 			/* a child has it enabled? */
3191 			cgroup_for_each_live_child(child, cgrp) {
3192 				if (child->subtree_control & (1 << ssid)) {
3193 					ret = -EBUSY;
3194 					goto out_unlock;
3195 				}
3196 			}
3197 		}
3198 	}
3199 
3200 	if (!enable && !disable) {
3201 		ret = 0;
3202 		goto out_unlock;
3203 	}
3204 
3205 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3206 	if (ret)
3207 		goto out_unlock;
3208 
3209 	/* save and update control masks and prepare csses */
3210 	cgroup_save_control(cgrp);
3211 
3212 	cgrp->subtree_control |= enable;
3213 	cgrp->subtree_control &= ~disable;
3214 
3215 	ret = cgroup_apply_control(cgrp);
3216 	cgroup_finalize_control(cgrp, ret);
3217 	if (ret)
3218 		goto out_unlock;
3219 
3220 	kernfs_activate(cgrp->kn);
3221 out_unlock:
3222 	cgroup_kn_unlock(of->kn);
3223 	return ret ?: nbytes;
3224 }
3225 
3226 /**
3227  * cgroup_enable_threaded - make @cgrp threaded
3228  * @cgrp: the target cgroup
3229  *
3230  * Called when "threaded" is written to the cgroup.type interface file and
3231  * tries to make @cgrp threaded and join the parent's resource domain.
3232  * This function is never called on the root cgroup as cgroup.type doesn't
3233  * exist on it.
3234  */
3235 static int cgroup_enable_threaded(struct cgroup *cgrp)
3236 {
3237 	struct cgroup *parent = cgroup_parent(cgrp);
3238 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3239 	struct cgroup *dsct;
3240 	struct cgroup_subsys_state *d_css;
3241 	int ret;
3242 
3243 	lockdep_assert_held(&cgroup_mutex);
3244 
3245 	/* noop if already threaded */
3246 	if (cgroup_is_threaded(cgrp))
3247 		return 0;
3248 
3249 	/*
3250 	 * If @cgroup is populated or has domain controllers enabled, it
3251 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3252 	 * test can catch the same conditions, that's only when @parent is
3253 	 * not mixable, so let's check it explicitly.
3254 	 */
3255 	if (cgroup_is_populated(cgrp) ||
3256 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3257 		return -EOPNOTSUPP;
3258 
3259 	/* we're joining the parent's domain, ensure its validity */
3260 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3261 	    !cgroup_can_be_thread_root(dom_cgrp))
3262 		return -EOPNOTSUPP;
3263 
3264 	/*
3265 	 * The following shouldn't cause actual migrations and should
3266 	 * always succeed.
3267 	 */
3268 	cgroup_save_control(cgrp);
3269 
3270 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3271 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3272 			dsct->dom_cgrp = dom_cgrp;
3273 
3274 	ret = cgroup_apply_control(cgrp);
3275 	if (!ret)
3276 		parent->nr_threaded_children++;
3277 
3278 	cgroup_finalize_control(cgrp, ret);
3279 	return ret;
3280 }
3281 
3282 static int cgroup_type_show(struct seq_file *seq, void *v)
3283 {
3284 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3285 
3286 	if (cgroup_is_threaded(cgrp))
3287 		seq_puts(seq, "threaded\n");
3288 	else if (!cgroup_is_valid_domain(cgrp))
3289 		seq_puts(seq, "domain invalid\n");
3290 	else if (cgroup_is_thread_root(cgrp))
3291 		seq_puts(seq, "domain threaded\n");
3292 	else
3293 		seq_puts(seq, "domain\n");
3294 
3295 	return 0;
3296 }
3297 
3298 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3299 				 size_t nbytes, loff_t off)
3300 {
3301 	struct cgroup *cgrp;
3302 	int ret;
3303 
3304 	/* only switching to threaded mode is supported */
3305 	if (strcmp(strstrip(buf), "threaded"))
3306 		return -EINVAL;
3307 
3308 	cgrp = cgroup_kn_lock_live(of->kn, false);
3309 	if (!cgrp)
3310 		return -ENOENT;
3311 
3312 	/* threaded can only be enabled */
3313 	ret = cgroup_enable_threaded(cgrp);
3314 
3315 	cgroup_kn_unlock(of->kn);
3316 	return ret ?: nbytes;
3317 }
3318 
3319 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3320 {
3321 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3322 	int descendants = READ_ONCE(cgrp->max_descendants);
3323 
3324 	if (descendants == INT_MAX)
3325 		seq_puts(seq, "max\n");
3326 	else
3327 		seq_printf(seq, "%d\n", descendants);
3328 
3329 	return 0;
3330 }
3331 
3332 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3333 					   char *buf, size_t nbytes, loff_t off)
3334 {
3335 	struct cgroup *cgrp;
3336 	int descendants;
3337 	ssize_t ret;
3338 
3339 	buf = strstrip(buf);
3340 	if (!strcmp(buf, "max")) {
3341 		descendants = INT_MAX;
3342 	} else {
3343 		ret = kstrtoint(buf, 0, &descendants);
3344 		if (ret)
3345 			return ret;
3346 	}
3347 
3348 	if (descendants < 0)
3349 		return -ERANGE;
3350 
3351 	cgrp = cgroup_kn_lock_live(of->kn, false);
3352 	if (!cgrp)
3353 		return -ENOENT;
3354 
3355 	cgrp->max_descendants = descendants;
3356 
3357 	cgroup_kn_unlock(of->kn);
3358 
3359 	return nbytes;
3360 }
3361 
3362 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3363 {
3364 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3365 	int depth = READ_ONCE(cgrp->max_depth);
3366 
3367 	if (depth == INT_MAX)
3368 		seq_puts(seq, "max\n");
3369 	else
3370 		seq_printf(seq, "%d\n", depth);
3371 
3372 	return 0;
3373 }
3374 
3375 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3376 				      char *buf, size_t nbytes, loff_t off)
3377 {
3378 	struct cgroup *cgrp;
3379 	ssize_t ret;
3380 	int depth;
3381 
3382 	buf = strstrip(buf);
3383 	if (!strcmp(buf, "max")) {
3384 		depth = INT_MAX;
3385 	} else {
3386 		ret = kstrtoint(buf, 0, &depth);
3387 		if (ret)
3388 			return ret;
3389 	}
3390 
3391 	if (depth < 0)
3392 		return -ERANGE;
3393 
3394 	cgrp = cgroup_kn_lock_live(of->kn, false);
3395 	if (!cgrp)
3396 		return -ENOENT;
3397 
3398 	cgrp->max_depth = depth;
3399 
3400 	cgroup_kn_unlock(of->kn);
3401 
3402 	return nbytes;
3403 }
3404 
3405 static int cgroup_events_show(struct seq_file *seq, void *v)
3406 {
3407 	seq_printf(seq, "populated %d\n",
3408 		   cgroup_is_populated(seq_css(seq)->cgroup));
3409 	return 0;
3410 }
3411 
3412 static int cgroup_stat_show(struct seq_file *seq, void *v)
3413 {
3414 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3415 
3416 	seq_printf(seq, "nr_descendants %d\n",
3417 		   cgroup->nr_descendants);
3418 	seq_printf(seq, "nr_dying_descendants %d\n",
3419 		   cgroup->nr_dying_descendants);
3420 
3421 	return 0;
3422 }
3423 
3424 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3425 						 struct cgroup *cgrp, int ssid)
3426 {
3427 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3428 	struct cgroup_subsys_state *css;
3429 	int ret;
3430 
3431 	if (!ss->css_extra_stat_show)
3432 		return 0;
3433 
3434 	css = cgroup_tryget_css(cgrp, ss);
3435 	if (!css)
3436 		return 0;
3437 
3438 	ret = ss->css_extra_stat_show(seq, css);
3439 	css_put(css);
3440 	return ret;
3441 }
3442 
3443 static int cpu_stat_show(struct seq_file *seq, void *v)
3444 {
3445 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3446 	int ret = 0;
3447 
3448 	cgroup_base_stat_cputime_show(seq);
3449 #ifdef CONFIG_CGROUP_SCHED
3450 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3451 #endif
3452 	return ret;
3453 }
3454 
3455 #ifdef CONFIG_PSI
3456 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3457 {
3458 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3459 }
3460 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3461 {
3462 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3463 }
3464 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3465 {
3466 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3467 }
3468 #endif
3469 
3470 static int cgroup_file_open(struct kernfs_open_file *of)
3471 {
3472 	struct cftype *cft = of->kn->priv;
3473 
3474 	if (cft->open)
3475 		return cft->open(of);
3476 	return 0;
3477 }
3478 
3479 static void cgroup_file_release(struct kernfs_open_file *of)
3480 {
3481 	struct cftype *cft = of->kn->priv;
3482 
3483 	if (cft->release)
3484 		cft->release(of);
3485 }
3486 
3487 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3488 				 size_t nbytes, loff_t off)
3489 {
3490 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3491 	struct cgroup *cgrp = of->kn->parent->priv;
3492 	struct cftype *cft = of->kn->priv;
3493 	struct cgroup_subsys_state *css;
3494 	int ret;
3495 
3496 	/*
3497 	 * If namespaces are delegation boundaries, disallow writes to
3498 	 * files in an non-init namespace root from inside the namespace
3499 	 * except for the files explicitly marked delegatable -
3500 	 * cgroup.procs and cgroup.subtree_control.
3501 	 */
3502 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3503 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3504 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3505 		return -EPERM;
3506 
3507 	if (cft->write)
3508 		return cft->write(of, buf, nbytes, off);
3509 
3510 	/*
3511 	 * kernfs guarantees that a file isn't deleted with operations in
3512 	 * flight, which means that the matching css is and stays alive and
3513 	 * doesn't need to be pinned.  The RCU locking is not necessary
3514 	 * either.  It's just for the convenience of using cgroup_css().
3515 	 */
3516 	rcu_read_lock();
3517 	css = cgroup_css(cgrp, cft->ss);
3518 	rcu_read_unlock();
3519 
3520 	if (cft->write_u64) {
3521 		unsigned long long v;
3522 		ret = kstrtoull(buf, 0, &v);
3523 		if (!ret)
3524 			ret = cft->write_u64(css, cft, v);
3525 	} else if (cft->write_s64) {
3526 		long long v;
3527 		ret = kstrtoll(buf, 0, &v);
3528 		if (!ret)
3529 			ret = cft->write_s64(css, cft, v);
3530 	} else {
3531 		ret = -EINVAL;
3532 	}
3533 
3534 	return ret ?: nbytes;
3535 }
3536 
3537 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3538 {
3539 	struct cftype *cft = of->kn->priv;
3540 
3541 	if (cft->poll)
3542 		return cft->poll(of, pt);
3543 
3544 	return kernfs_generic_poll(of, pt);
3545 }
3546 
3547 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3548 {
3549 	return seq_cft(seq)->seq_start(seq, ppos);
3550 }
3551 
3552 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3553 {
3554 	return seq_cft(seq)->seq_next(seq, v, ppos);
3555 }
3556 
3557 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3558 {
3559 	if (seq_cft(seq)->seq_stop)
3560 		seq_cft(seq)->seq_stop(seq, v);
3561 }
3562 
3563 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3564 {
3565 	struct cftype *cft = seq_cft(m);
3566 	struct cgroup_subsys_state *css = seq_css(m);
3567 
3568 	if (cft->seq_show)
3569 		return cft->seq_show(m, arg);
3570 
3571 	if (cft->read_u64)
3572 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3573 	else if (cft->read_s64)
3574 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3575 	else
3576 		return -EINVAL;
3577 	return 0;
3578 }
3579 
3580 static struct kernfs_ops cgroup_kf_single_ops = {
3581 	.atomic_write_len	= PAGE_SIZE,
3582 	.open			= cgroup_file_open,
3583 	.release		= cgroup_file_release,
3584 	.write			= cgroup_file_write,
3585 	.poll			= cgroup_file_poll,
3586 	.seq_show		= cgroup_seqfile_show,
3587 };
3588 
3589 static struct kernfs_ops cgroup_kf_ops = {
3590 	.atomic_write_len	= PAGE_SIZE,
3591 	.open			= cgroup_file_open,
3592 	.release		= cgroup_file_release,
3593 	.write			= cgroup_file_write,
3594 	.poll			= cgroup_file_poll,
3595 	.seq_start		= cgroup_seqfile_start,
3596 	.seq_next		= cgroup_seqfile_next,
3597 	.seq_stop		= cgroup_seqfile_stop,
3598 	.seq_show		= cgroup_seqfile_show,
3599 };
3600 
3601 /* set uid and gid of cgroup dirs and files to that of the creator */
3602 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3603 {
3604 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3605 			       .ia_uid = current_fsuid(),
3606 			       .ia_gid = current_fsgid(), };
3607 
3608 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3609 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3610 		return 0;
3611 
3612 	return kernfs_setattr(kn, &iattr);
3613 }
3614 
3615 static void cgroup_file_notify_timer(struct timer_list *timer)
3616 {
3617 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3618 					notify_timer));
3619 }
3620 
3621 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3622 			   struct cftype *cft)
3623 {
3624 	char name[CGROUP_FILE_NAME_MAX];
3625 	struct kernfs_node *kn;
3626 	struct lock_class_key *key = NULL;
3627 	int ret;
3628 
3629 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3630 	key = &cft->lockdep_key;
3631 #endif
3632 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3633 				  cgroup_file_mode(cft),
3634 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3635 				  0, cft->kf_ops, cft,
3636 				  NULL, key);
3637 	if (IS_ERR(kn))
3638 		return PTR_ERR(kn);
3639 
3640 	ret = cgroup_kn_set_ugid(kn);
3641 	if (ret) {
3642 		kernfs_remove(kn);
3643 		return ret;
3644 	}
3645 
3646 	if (cft->file_offset) {
3647 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3648 
3649 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3650 
3651 		spin_lock_irq(&cgroup_file_kn_lock);
3652 		cfile->kn = kn;
3653 		spin_unlock_irq(&cgroup_file_kn_lock);
3654 	}
3655 
3656 	return 0;
3657 }
3658 
3659 /**
3660  * cgroup_addrm_files - add or remove files to a cgroup directory
3661  * @css: the target css
3662  * @cgrp: the target cgroup (usually css->cgroup)
3663  * @cfts: array of cftypes to be added
3664  * @is_add: whether to add or remove
3665  *
3666  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3667  * For removals, this function never fails.
3668  */
3669 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3670 			      struct cgroup *cgrp, struct cftype cfts[],
3671 			      bool is_add)
3672 {
3673 	struct cftype *cft, *cft_end = NULL;
3674 	int ret = 0;
3675 
3676 	lockdep_assert_held(&cgroup_mutex);
3677 
3678 restart:
3679 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3680 		/* does cft->flags tell us to skip this file on @cgrp? */
3681 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3682 			continue;
3683 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3684 			continue;
3685 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3686 			continue;
3687 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3688 			continue;
3689 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3690 			continue;
3691 		if (is_add) {
3692 			ret = cgroup_add_file(css, cgrp, cft);
3693 			if (ret) {
3694 				pr_warn("%s: failed to add %s, err=%d\n",
3695 					__func__, cft->name, ret);
3696 				cft_end = cft;
3697 				is_add = false;
3698 				goto restart;
3699 			}
3700 		} else {
3701 			cgroup_rm_file(cgrp, cft);
3702 		}
3703 	}
3704 	return ret;
3705 }
3706 
3707 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3708 {
3709 	struct cgroup_subsys *ss = cfts[0].ss;
3710 	struct cgroup *root = &ss->root->cgrp;
3711 	struct cgroup_subsys_state *css;
3712 	int ret = 0;
3713 
3714 	lockdep_assert_held(&cgroup_mutex);
3715 
3716 	/* add/rm files for all cgroups created before */
3717 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3718 		struct cgroup *cgrp = css->cgroup;
3719 
3720 		if (!(css->flags & CSS_VISIBLE))
3721 			continue;
3722 
3723 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3724 		if (ret)
3725 			break;
3726 	}
3727 
3728 	if (is_add && !ret)
3729 		kernfs_activate(root->kn);
3730 	return ret;
3731 }
3732 
3733 static void cgroup_exit_cftypes(struct cftype *cfts)
3734 {
3735 	struct cftype *cft;
3736 
3737 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3738 		/* free copy for custom atomic_write_len, see init_cftypes() */
3739 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3740 			kfree(cft->kf_ops);
3741 		cft->kf_ops = NULL;
3742 		cft->ss = NULL;
3743 
3744 		/* revert flags set by cgroup core while adding @cfts */
3745 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3746 	}
3747 }
3748 
3749 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3750 {
3751 	struct cftype *cft;
3752 
3753 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3754 		struct kernfs_ops *kf_ops;
3755 
3756 		WARN_ON(cft->ss || cft->kf_ops);
3757 
3758 		if (cft->seq_start)
3759 			kf_ops = &cgroup_kf_ops;
3760 		else
3761 			kf_ops = &cgroup_kf_single_ops;
3762 
3763 		/*
3764 		 * Ugh... if @cft wants a custom max_write_len, we need to
3765 		 * make a copy of kf_ops to set its atomic_write_len.
3766 		 */
3767 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3768 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3769 			if (!kf_ops) {
3770 				cgroup_exit_cftypes(cfts);
3771 				return -ENOMEM;
3772 			}
3773 			kf_ops->atomic_write_len = cft->max_write_len;
3774 		}
3775 
3776 		cft->kf_ops = kf_ops;
3777 		cft->ss = ss;
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3784 {
3785 	lockdep_assert_held(&cgroup_mutex);
3786 
3787 	if (!cfts || !cfts[0].ss)
3788 		return -ENOENT;
3789 
3790 	list_del(&cfts->node);
3791 	cgroup_apply_cftypes(cfts, false);
3792 	cgroup_exit_cftypes(cfts);
3793 	return 0;
3794 }
3795 
3796 /**
3797  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3798  * @cfts: zero-length name terminated array of cftypes
3799  *
3800  * Unregister @cfts.  Files described by @cfts are removed from all
3801  * existing cgroups and all future cgroups won't have them either.  This
3802  * function can be called anytime whether @cfts' subsys is attached or not.
3803  *
3804  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3805  * registered.
3806  */
3807 int cgroup_rm_cftypes(struct cftype *cfts)
3808 {
3809 	int ret;
3810 
3811 	mutex_lock(&cgroup_mutex);
3812 	ret = cgroup_rm_cftypes_locked(cfts);
3813 	mutex_unlock(&cgroup_mutex);
3814 	return ret;
3815 }
3816 
3817 /**
3818  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3819  * @ss: target cgroup subsystem
3820  * @cfts: zero-length name terminated array of cftypes
3821  *
3822  * Register @cfts to @ss.  Files described by @cfts are created for all
3823  * existing cgroups to which @ss is attached and all future cgroups will
3824  * have them too.  This function can be called anytime whether @ss is
3825  * attached or not.
3826  *
3827  * Returns 0 on successful registration, -errno on failure.  Note that this
3828  * function currently returns 0 as long as @cfts registration is successful
3829  * even if some file creation attempts on existing cgroups fail.
3830  */
3831 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3832 {
3833 	int ret;
3834 
3835 	if (!cgroup_ssid_enabled(ss->id))
3836 		return 0;
3837 
3838 	if (!cfts || cfts[0].name[0] == '\0')
3839 		return 0;
3840 
3841 	ret = cgroup_init_cftypes(ss, cfts);
3842 	if (ret)
3843 		return ret;
3844 
3845 	mutex_lock(&cgroup_mutex);
3846 
3847 	list_add_tail(&cfts->node, &ss->cfts);
3848 	ret = cgroup_apply_cftypes(cfts, true);
3849 	if (ret)
3850 		cgroup_rm_cftypes_locked(cfts);
3851 
3852 	mutex_unlock(&cgroup_mutex);
3853 	return ret;
3854 }
3855 
3856 /**
3857  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3858  * @ss: target cgroup subsystem
3859  * @cfts: zero-length name terminated array of cftypes
3860  *
3861  * Similar to cgroup_add_cftypes() but the added files are only used for
3862  * the default hierarchy.
3863  */
3864 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3865 {
3866 	struct cftype *cft;
3867 
3868 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3869 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3870 	return cgroup_add_cftypes(ss, cfts);
3871 }
3872 
3873 /**
3874  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3875  * @ss: target cgroup subsystem
3876  * @cfts: zero-length name terminated array of cftypes
3877  *
3878  * Similar to cgroup_add_cftypes() but the added files are only used for
3879  * the legacy hierarchies.
3880  */
3881 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3882 {
3883 	struct cftype *cft;
3884 
3885 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3886 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3887 	return cgroup_add_cftypes(ss, cfts);
3888 }
3889 
3890 /**
3891  * cgroup_file_notify - generate a file modified event for a cgroup_file
3892  * @cfile: target cgroup_file
3893  *
3894  * @cfile must have been obtained by setting cftype->file_offset.
3895  */
3896 void cgroup_file_notify(struct cgroup_file *cfile)
3897 {
3898 	unsigned long flags;
3899 
3900 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3901 	if (cfile->kn) {
3902 		unsigned long last = cfile->notified_at;
3903 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3904 
3905 		if (time_in_range(jiffies, last, next)) {
3906 			timer_reduce(&cfile->notify_timer, next);
3907 		} else {
3908 			kernfs_notify(cfile->kn);
3909 			cfile->notified_at = jiffies;
3910 		}
3911 	}
3912 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3913 }
3914 
3915 /**
3916  * css_next_child - find the next child of a given css
3917  * @pos: the current position (%NULL to initiate traversal)
3918  * @parent: css whose children to walk
3919  *
3920  * This function returns the next child of @parent and should be called
3921  * under either cgroup_mutex or RCU read lock.  The only requirement is
3922  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3923  * be returned regardless of their states.
3924  *
3925  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3926  * css which finished ->css_online() is guaranteed to be visible in the
3927  * future iterations and will stay visible until the last reference is put.
3928  * A css which hasn't finished ->css_online() or already finished
3929  * ->css_offline() may show up during traversal.  It's each subsystem's
3930  * responsibility to synchronize against on/offlining.
3931  */
3932 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3933 					   struct cgroup_subsys_state *parent)
3934 {
3935 	struct cgroup_subsys_state *next;
3936 
3937 	cgroup_assert_mutex_or_rcu_locked();
3938 
3939 	/*
3940 	 * @pos could already have been unlinked from the sibling list.
3941 	 * Once a cgroup is removed, its ->sibling.next is no longer
3942 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3943 	 * @pos is taken off list, at which time its next pointer is valid,
3944 	 * and, as releases are serialized, the one pointed to by the next
3945 	 * pointer is guaranteed to not have started release yet.  This
3946 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3947 	 * critical section, the one pointed to by its next pointer is
3948 	 * guaranteed to not have finished its RCU grace period even if we
3949 	 * have dropped rcu_read_lock() inbetween iterations.
3950 	 *
3951 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3952 	 * dereferenced; however, as each css is given a monotonically
3953 	 * increasing unique serial number and always appended to the
3954 	 * sibling list, the next one can be found by walking the parent's
3955 	 * children until the first css with higher serial number than
3956 	 * @pos's.  While this path can be slower, it happens iff iteration
3957 	 * races against release and the race window is very small.
3958 	 */
3959 	if (!pos) {
3960 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3961 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3962 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3963 	} else {
3964 		list_for_each_entry_rcu(next, &parent->children, sibling)
3965 			if (next->serial_nr > pos->serial_nr)
3966 				break;
3967 	}
3968 
3969 	/*
3970 	 * @next, if not pointing to the head, can be dereferenced and is
3971 	 * the next sibling.
3972 	 */
3973 	if (&next->sibling != &parent->children)
3974 		return next;
3975 	return NULL;
3976 }
3977 
3978 /**
3979  * css_next_descendant_pre - find the next descendant for pre-order walk
3980  * @pos: the current position (%NULL to initiate traversal)
3981  * @root: css whose descendants to walk
3982  *
3983  * To be used by css_for_each_descendant_pre().  Find the next descendant
3984  * to visit for pre-order traversal of @root's descendants.  @root is
3985  * included in the iteration and the first node to be visited.
3986  *
3987  * While this function requires cgroup_mutex or RCU read locking, it
3988  * doesn't require the whole traversal to be contained in a single critical
3989  * section.  This function will return the correct next descendant as long
3990  * as both @pos and @root are accessible and @pos is a descendant of @root.
3991  *
3992  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3993  * css which finished ->css_online() is guaranteed to be visible in the
3994  * future iterations and will stay visible until the last reference is put.
3995  * A css which hasn't finished ->css_online() or already finished
3996  * ->css_offline() may show up during traversal.  It's each subsystem's
3997  * responsibility to synchronize against on/offlining.
3998  */
3999 struct cgroup_subsys_state *
4000 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4001 			struct cgroup_subsys_state *root)
4002 {
4003 	struct cgroup_subsys_state *next;
4004 
4005 	cgroup_assert_mutex_or_rcu_locked();
4006 
4007 	/* if first iteration, visit @root */
4008 	if (!pos)
4009 		return root;
4010 
4011 	/* visit the first child if exists */
4012 	next = css_next_child(NULL, pos);
4013 	if (next)
4014 		return next;
4015 
4016 	/* no child, visit my or the closest ancestor's next sibling */
4017 	while (pos != root) {
4018 		next = css_next_child(pos, pos->parent);
4019 		if (next)
4020 			return next;
4021 		pos = pos->parent;
4022 	}
4023 
4024 	return NULL;
4025 }
4026 
4027 /**
4028  * css_rightmost_descendant - return the rightmost descendant of a css
4029  * @pos: css of interest
4030  *
4031  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4032  * is returned.  This can be used during pre-order traversal to skip
4033  * subtree of @pos.
4034  *
4035  * While this function requires cgroup_mutex or RCU read locking, it
4036  * doesn't require the whole traversal to be contained in a single critical
4037  * section.  This function will return the correct rightmost descendant as
4038  * long as @pos is accessible.
4039  */
4040 struct cgroup_subsys_state *
4041 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4042 {
4043 	struct cgroup_subsys_state *last, *tmp;
4044 
4045 	cgroup_assert_mutex_or_rcu_locked();
4046 
4047 	do {
4048 		last = pos;
4049 		/* ->prev isn't RCU safe, walk ->next till the end */
4050 		pos = NULL;
4051 		css_for_each_child(tmp, last)
4052 			pos = tmp;
4053 	} while (pos);
4054 
4055 	return last;
4056 }
4057 
4058 static struct cgroup_subsys_state *
4059 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4060 {
4061 	struct cgroup_subsys_state *last;
4062 
4063 	do {
4064 		last = pos;
4065 		pos = css_next_child(NULL, pos);
4066 	} while (pos);
4067 
4068 	return last;
4069 }
4070 
4071 /**
4072  * css_next_descendant_post - find the next descendant for post-order walk
4073  * @pos: the current position (%NULL to initiate traversal)
4074  * @root: css whose descendants to walk
4075  *
4076  * To be used by css_for_each_descendant_post().  Find the next descendant
4077  * to visit for post-order traversal of @root's descendants.  @root is
4078  * included in the iteration and the last node to be visited.
4079  *
4080  * While this function requires cgroup_mutex or RCU read locking, it
4081  * doesn't require the whole traversal to be contained in a single critical
4082  * section.  This function will return the correct next descendant as long
4083  * as both @pos and @cgroup are accessible and @pos is a descendant of
4084  * @cgroup.
4085  *
4086  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4087  * css which finished ->css_online() is guaranteed to be visible in the
4088  * future iterations and will stay visible until the last reference is put.
4089  * A css which hasn't finished ->css_online() or already finished
4090  * ->css_offline() may show up during traversal.  It's each subsystem's
4091  * responsibility to synchronize against on/offlining.
4092  */
4093 struct cgroup_subsys_state *
4094 css_next_descendant_post(struct cgroup_subsys_state *pos,
4095 			 struct cgroup_subsys_state *root)
4096 {
4097 	struct cgroup_subsys_state *next;
4098 
4099 	cgroup_assert_mutex_or_rcu_locked();
4100 
4101 	/* if first iteration, visit leftmost descendant which may be @root */
4102 	if (!pos)
4103 		return css_leftmost_descendant(root);
4104 
4105 	/* if we visited @root, we're done */
4106 	if (pos == root)
4107 		return NULL;
4108 
4109 	/* if there's an unvisited sibling, visit its leftmost descendant */
4110 	next = css_next_child(pos, pos->parent);
4111 	if (next)
4112 		return css_leftmost_descendant(next);
4113 
4114 	/* no sibling left, visit parent */
4115 	return pos->parent;
4116 }
4117 
4118 /**
4119  * css_has_online_children - does a css have online children
4120  * @css: the target css
4121  *
4122  * Returns %true if @css has any online children; otherwise, %false.  This
4123  * function can be called from any context but the caller is responsible
4124  * for synchronizing against on/offlining as necessary.
4125  */
4126 bool css_has_online_children(struct cgroup_subsys_state *css)
4127 {
4128 	struct cgroup_subsys_state *child;
4129 	bool ret = false;
4130 
4131 	rcu_read_lock();
4132 	css_for_each_child(child, css) {
4133 		if (child->flags & CSS_ONLINE) {
4134 			ret = true;
4135 			break;
4136 		}
4137 	}
4138 	rcu_read_unlock();
4139 	return ret;
4140 }
4141 
4142 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4143 {
4144 	struct list_head *l;
4145 	struct cgrp_cset_link *link;
4146 	struct css_set *cset;
4147 
4148 	lockdep_assert_held(&css_set_lock);
4149 
4150 	/* find the next threaded cset */
4151 	if (it->tcset_pos) {
4152 		l = it->tcset_pos->next;
4153 
4154 		if (l != it->tcset_head) {
4155 			it->tcset_pos = l;
4156 			return container_of(l, struct css_set,
4157 					    threaded_csets_node);
4158 		}
4159 
4160 		it->tcset_pos = NULL;
4161 	}
4162 
4163 	/* find the next cset */
4164 	l = it->cset_pos;
4165 	l = l->next;
4166 	if (l == it->cset_head) {
4167 		it->cset_pos = NULL;
4168 		return NULL;
4169 	}
4170 
4171 	if (it->ss) {
4172 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4173 	} else {
4174 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4175 		cset = link->cset;
4176 	}
4177 
4178 	it->cset_pos = l;
4179 
4180 	/* initialize threaded css_set walking */
4181 	if (it->flags & CSS_TASK_ITER_THREADED) {
4182 		if (it->cur_dcset)
4183 			put_css_set_locked(it->cur_dcset);
4184 		it->cur_dcset = cset;
4185 		get_css_set(cset);
4186 
4187 		it->tcset_head = &cset->threaded_csets;
4188 		it->tcset_pos = &cset->threaded_csets;
4189 	}
4190 
4191 	return cset;
4192 }
4193 
4194 /**
4195  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4196  * @it: the iterator to advance
4197  *
4198  * Advance @it to the next css_set to walk.
4199  */
4200 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4201 {
4202 	struct css_set *cset;
4203 
4204 	lockdep_assert_held(&css_set_lock);
4205 
4206 	/* Advance to the next non-empty css_set */
4207 	do {
4208 		cset = css_task_iter_next_css_set(it);
4209 		if (!cset) {
4210 			it->task_pos = NULL;
4211 			return;
4212 		}
4213 	} while (!css_set_populated(cset));
4214 
4215 	if (!list_empty(&cset->tasks))
4216 		it->task_pos = cset->tasks.next;
4217 	else
4218 		it->task_pos = cset->mg_tasks.next;
4219 
4220 	it->tasks_head = &cset->tasks;
4221 	it->mg_tasks_head = &cset->mg_tasks;
4222 
4223 	/*
4224 	 * We don't keep css_sets locked across iteration steps and thus
4225 	 * need to take steps to ensure that iteration can be resumed after
4226 	 * the lock is re-acquired.  Iteration is performed at two levels -
4227 	 * css_sets and tasks in them.
4228 	 *
4229 	 * Once created, a css_set never leaves its cgroup lists, so a
4230 	 * pinned css_set is guaranteed to stay put and we can resume
4231 	 * iteration afterwards.
4232 	 *
4233 	 * Tasks may leave @cset across iteration steps.  This is resolved
4234 	 * by registering each iterator with the css_set currently being
4235 	 * walked and making css_set_move_task() advance iterators whose
4236 	 * next task is leaving.
4237 	 */
4238 	if (it->cur_cset) {
4239 		list_del(&it->iters_node);
4240 		put_css_set_locked(it->cur_cset);
4241 	}
4242 	get_css_set(cset);
4243 	it->cur_cset = cset;
4244 	list_add(&it->iters_node, &cset->task_iters);
4245 }
4246 
4247 static void css_task_iter_advance(struct css_task_iter *it)
4248 {
4249 	struct list_head *next;
4250 
4251 	lockdep_assert_held(&css_set_lock);
4252 repeat:
4253 	if (it->task_pos) {
4254 		/*
4255 		 * Advance iterator to find next entry.  cset->tasks is
4256 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4257 		 * we move onto the next cset.
4258 		 */
4259 		next = it->task_pos->next;
4260 
4261 		if (next == it->tasks_head)
4262 			next = it->mg_tasks_head->next;
4263 
4264 		if (next == it->mg_tasks_head)
4265 			css_task_iter_advance_css_set(it);
4266 		else
4267 			it->task_pos = next;
4268 	} else {
4269 		/* called from start, proceed to the first cset */
4270 		css_task_iter_advance_css_set(it);
4271 	}
4272 
4273 	/* if PROCS, skip over tasks which aren't group leaders */
4274 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4275 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4276 					    cg_list)))
4277 		goto repeat;
4278 }
4279 
4280 /**
4281  * css_task_iter_start - initiate task iteration
4282  * @css: the css to walk tasks of
4283  * @flags: CSS_TASK_ITER_* flags
4284  * @it: the task iterator to use
4285  *
4286  * Initiate iteration through the tasks of @css.  The caller can call
4287  * css_task_iter_next() to walk through the tasks until the function
4288  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4289  * called.
4290  */
4291 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4292 			 struct css_task_iter *it)
4293 {
4294 	/* no one should try to iterate before mounting cgroups */
4295 	WARN_ON_ONCE(!use_task_css_set_links);
4296 
4297 	memset(it, 0, sizeof(*it));
4298 
4299 	spin_lock_irq(&css_set_lock);
4300 
4301 	it->ss = css->ss;
4302 	it->flags = flags;
4303 
4304 	if (it->ss)
4305 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4306 	else
4307 		it->cset_pos = &css->cgroup->cset_links;
4308 
4309 	it->cset_head = it->cset_pos;
4310 
4311 	css_task_iter_advance(it);
4312 
4313 	spin_unlock_irq(&css_set_lock);
4314 }
4315 
4316 /**
4317  * css_task_iter_next - return the next task for the iterator
4318  * @it: the task iterator being iterated
4319  *
4320  * The "next" function for task iteration.  @it should have been
4321  * initialized via css_task_iter_start().  Returns NULL when the iteration
4322  * reaches the end.
4323  */
4324 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4325 {
4326 	if (it->cur_task) {
4327 		put_task_struct(it->cur_task);
4328 		it->cur_task = NULL;
4329 	}
4330 
4331 	spin_lock_irq(&css_set_lock);
4332 
4333 	if (it->task_pos) {
4334 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4335 					  cg_list);
4336 		get_task_struct(it->cur_task);
4337 		css_task_iter_advance(it);
4338 	}
4339 
4340 	spin_unlock_irq(&css_set_lock);
4341 
4342 	return it->cur_task;
4343 }
4344 
4345 /**
4346  * css_task_iter_end - finish task iteration
4347  * @it: the task iterator to finish
4348  *
4349  * Finish task iteration started by css_task_iter_start().
4350  */
4351 void css_task_iter_end(struct css_task_iter *it)
4352 {
4353 	if (it->cur_cset) {
4354 		spin_lock_irq(&css_set_lock);
4355 		list_del(&it->iters_node);
4356 		put_css_set_locked(it->cur_cset);
4357 		spin_unlock_irq(&css_set_lock);
4358 	}
4359 
4360 	if (it->cur_dcset)
4361 		put_css_set(it->cur_dcset);
4362 
4363 	if (it->cur_task)
4364 		put_task_struct(it->cur_task);
4365 }
4366 
4367 static void cgroup_procs_release(struct kernfs_open_file *of)
4368 {
4369 	if (of->priv) {
4370 		css_task_iter_end(of->priv);
4371 		kfree(of->priv);
4372 	}
4373 }
4374 
4375 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4376 {
4377 	struct kernfs_open_file *of = s->private;
4378 	struct css_task_iter *it = of->priv;
4379 
4380 	return css_task_iter_next(it);
4381 }
4382 
4383 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4384 				  unsigned int iter_flags)
4385 {
4386 	struct kernfs_open_file *of = s->private;
4387 	struct cgroup *cgrp = seq_css(s)->cgroup;
4388 	struct css_task_iter *it = of->priv;
4389 
4390 	/*
4391 	 * When a seq_file is seeked, it's always traversed sequentially
4392 	 * from position 0, so we can simply keep iterating on !0 *pos.
4393 	 */
4394 	if (!it) {
4395 		if (WARN_ON_ONCE((*pos)++))
4396 			return ERR_PTR(-EINVAL);
4397 
4398 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4399 		if (!it)
4400 			return ERR_PTR(-ENOMEM);
4401 		of->priv = it;
4402 		css_task_iter_start(&cgrp->self, iter_flags, it);
4403 	} else if (!(*pos)++) {
4404 		css_task_iter_end(it);
4405 		css_task_iter_start(&cgrp->self, iter_flags, it);
4406 	}
4407 
4408 	return cgroup_procs_next(s, NULL, NULL);
4409 }
4410 
4411 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4412 {
4413 	struct cgroup *cgrp = seq_css(s)->cgroup;
4414 
4415 	/*
4416 	 * All processes of a threaded subtree belong to the domain cgroup
4417 	 * of the subtree.  Only threads can be distributed across the
4418 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4419 	 * They're always empty anyway.
4420 	 */
4421 	if (cgroup_is_threaded(cgrp))
4422 		return ERR_PTR(-EOPNOTSUPP);
4423 
4424 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4425 					    CSS_TASK_ITER_THREADED);
4426 }
4427 
4428 static int cgroup_procs_show(struct seq_file *s, void *v)
4429 {
4430 	seq_printf(s, "%d\n", task_pid_vnr(v));
4431 	return 0;
4432 }
4433 
4434 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4435 					 struct cgroup *dst_cgrp,
4436 					 struct super_block *sb)
4437 {
4438 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4439 	struct cgroup *com_cgrp = src_cgrp;
4440 	struct inode *inode;
4441 	int ret;
4442 
4443 	lockdep_assert_held(&cgroup_mutex);
4444 
4445 	/* find the common ancestor */
4446 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4447 		com_cgrp = cgroup_parent(com_cgrp);
4448 
4449 	/* %current should be authorized to migrate to the common ancestor */
4450 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4451 	if (!inode)
4452 		return -ENOMEM;
4453 
4454 	ret = inode_permission(inode, MAY_WRITE);
4455 	iput(inode);
4456 	if (ret)
4457 		return ret;
4458 
4459 	/*
4460 	 * If namespaces are delegation boundaries, %current must be able
4461 	 * to see both source and destination cgroups from its namespace.
4462 	 */
4463 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4464 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4465 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4466 		return -ENOENT;
4467 
4468 	return 0;
4469 }
4470 
4471 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4472 				  char *buf, size_t nbytes, loff_t off)
4473 {
4474 	struct cgroup *src_cgrp, *dst_cgrp;
4475 	struct task_struct *task;
4476 	ssize_t ret;
4477 
4478 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4479 	if (!dst_cgrp)
4480 		return -ENODEV;
4481 
4482 	task = cgroup_procs_write_start(buf, true);
4483 	ret = PTR_ERR_OR_ZERO(task);
4484 	if (ret)
4485 		goto out_unlock;
4486 
4487 	/* find the source cgroup */
4488 	spin_lock_irq(&css_set_lock);
4489 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4490 	spin_unlock_irq(&css_set_lock);
4491 
4492 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4493 					    of->file->f_path.dentry->d_sb);
4494 	if (ret)
4495 		goto out_finish;
4496 
4497 	ret = cgroup_attach_task(dst_cgrp, task, true);
4498 
4499 out_finish:
4500 	cgroup_procs_write_finish(task);
4501 out_unlock:
4502 	cgroup_kn_unlock(of->kn);
4503 
4504 	return ret ?: nbytes;
4505 }
4506 
4507 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4508 {
4509 	return __cgroup_procs_start(s, pos, 0);
4510 }
4511 
4512 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4513 				    char *buf, size_t nbytes, loff_t off)
4514 {
4515 	struct cgroup *src_cgrp, *dst_cgrp;
4516 	struct task_struct *task;
4517 	ssize_t ret;
4518 
4519 	buf = strstrip(buf);
4520 
4521 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4522 	if (!dst_cgrp)
4523 		return -ENODEV;
4524 
4525 	task = cgroup_procs_write_start(buf, false);
4526 	ret = PTR_ERR_OR_ZERO(task);
4527 	if (ret)
4528 		goto out_unlock;
4529 
4530 	/* find the source cgroup */
4531 	spin_lock_irq(&css_set_lock);
4532 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4533 	spin_unlock_irq(&css_set_lock);
4534 
4535 	/* thread migrations follow the cgroup.procs delegation rule */
4536 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4537 					    of->file->f_path.dentry->d_sb);
4538 	if (ret)
4539 		goto out_finish;
4540 
4541 	/* and must be contained in the same domain */
4542 	ret = -EOPNOTSUPP;
4543 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4544 		goto out_finish;
4545 
4546 	ret = cgroup_attach_task(dst_cgrp, task, false);
4547 
4548 out_finish:
4549 	cgroup_procs_write_finish(task);
4550 out_unlock:
4551 	cgroup_kn_unlock(of->kn);
4552 
4553 	return ret ?: nbytes;
4554 }
4555 
4556 /* cgroup core interface files for the default hierarchy */
4557 static struct cftype cgroup_base_files[] = {
4558 	{
4559 		.name = "cgroup.type",
4560 		.flags = CFTYPE_NOT_ON_ROOT,
4561 		.seq_show = cgroup_type_show,
4562 		.write = cgroup_type_write,
4563 	},
4564 	{
4565 		.name = "cgroup.procs",
4566 		.flags = CFTYPE_NS_DELEGATABLE,
4567 		.file_offset = offsetof(struct cgroup, procs_file),
4568 		.release = cgroup_procs_release,
4569 		.seq_start = cgroup_procs_start,
4570 		.seq_next = cgroup_procs_next,
4571 		.seq_show = cgroup_procs_show,
4572 		.write = cgroup_procs_write,
4573 	},
4574 	{
4575 		.name = "cgroup.threads",
4576 		.flags = CFTYPE_NS_DELEGATABLE,
4577 		.release = cgroup_procs_release,
4578 		.seq_start = cgroup_threads_start,
4579 		.seq_next = cgroup_procs_next,
4580 		.seq_show = cgroup_procs_show,
4581 		.write = cgroup_threads_write,
4582 	},
4583 	{
4584 		.name = "cgroup.controllers",
4585 		.seq_show = cgroup_controllers_show,
4586 	},
4587 	{
4588 		.name = "cgroup.subtree_control",
4589 		.flags = CFTYPE_NS_DELEGATABLE,
4590 		.seq_show = cgroup_subtree_control_show,
4591 		.write = cgroup_subtree_control_write,
4592 	},
4593 	{
4594 		.name = "cgroup.events",
4595 		.flags = CFTYPE_NOT_ON_ROOT,
4596 		.file_offset = offsetof(struct cgroup, events_file),
4597 		.seq_show = cgroup_events_show,
4598 	},
4599 	{
4600 		.name = "cgroup.max.descendants",
4601 		.seq_show = cgroup_max_descendants_show,
4602 		.write = cgroup_max_descendants_write,
4603 	},
4604 	{
4605 		.name = "cgroup.max.depth",
4606 		.seq_show = cgroup_max_depth_show,
4607 		.write = cgroup_max_depth_write,
4608 	},
4609 	{
4610 		.name = "cgroup.stat",
4611 		.seq_show = cgroup_stat_show,
4612 	},
4613 	{
4614 		.name = "cpu.stat",
4615 		.flags = CFTYPE_NOT_ON_ROOT,
4616 		.seq_show = cpu_stat_show,
4617 	},
4618 #ifdef CONFIG_PSI
4619 	{
4620 		.name = "io.pressure",
4621 		.flags = CFTYPE_NOT_ON_ROOT,
4622 		.seq_show = cgroup_io_pressure_show,
4623 	},
4624 	{
4625 		.name = "memory.pressure",
4626 		.flags = CFTYPE_NOT_ON_ROOT,
4627 		.seq_show = cgroup_memory_pressure_show,
4628 	},
4629 	{
4630 		.name = "cpu.pressure",
4631 		.flags = CFTYPE_NOT_ON_ROOT,
4632 		.seq_show = cgroup_cpu_pressure_show,
4633 	},
4634 #endif
4635 	{ }	/* terminate */
4636 };
4637 
4638 /*
4639  * css destruction is four-stage process.
4640  *
4641  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4642  *    Implemented in kill_css().
4643  *
4644  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4645  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4646  *    offlined by invoking offline_css().  After offlining, the base ref is
4647  *    put.  Implemented in css_killed_work_fn().
4648  *
4649  * 3. When the percpu_ref reaches zero, the only possible remaining
4650  *    accessors are inside RCU read sections.  css_release() schedules the
4651  *    RCU callback.
4652  *
4653  * 4. After the grace period, the css can be freed.  Implemented in
4654  *    css_free_work_fn().
4655  *
4656  * It is actually hairier because both step 2 and 4 require process context
4657  * and thus involve punting to css->destroy_work adding two additional
4658  * steps to the already complex sequence.
4659  */
4660 static void css_free_rwork_fn(struct work_struct *work)
4661 {
4662 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4663 				struct cgroup_subsys_state, destroy_rwork);
4664 	struct cgroup_subsys *ss = css->ss;
4665 	struct cgroup *cgrp = css->cgroup;
4666 
4667 	percpu_ref_exit(&css->refcnt);
4668 
4669 	if (ss) {
4670 		/* css free path */
4671 		struct cgroup_subsys_state *parent = css->parent;
4672 		int id = css->id;
4673 
4674 		ss->css_free(css);
4675 		cgroup_idr_remove(&ss->css_idr, id);
4676 		cgroup_put(cgrp);
4677 
4678 		if (parent)
4679 			css_put(parent);
4680 	} else {
4681 		/* cgroup free path */
4682 		atomic_dec(&cgrp->root->nr_cgrps);
4683 		cgroup1_pidlist_destroy_all(cgrp);
4684 		cancel_work_sync(&cgrp->release_agent_work);
4685 
4686 		if (cgroup_parent(cgrp)) {
4687 			/*
4688 			 * We get a ref to the parent, and put the ref when
4689 			 * this cgroup is being freed, so it's guaranteed
4690 			 * that the parent won't be destroyed before its
4691 			 * children.
4692 			 */
4693 			cgroup_put(cgroup_parent(cgrp));
4694 			kernfs_put(cgrp->kn);
4695 			psi_cgroup_free(cgrp);
4696 			if (cgroup_on_dfl(cgrp))
4697 				cgroup_rstat_exit(cgrp);
4698 			kfree(cgrp);
4699 		} else {
4700 			/*
4701 			 * This is root cgroup's refcnt reaching zero,
4702 			 * which indicates that the root should be
4703 			 * released.
4704 			 */
4705 			cgroup_destroy_root(cgrp->root);
4706 		}
4707 	}
4708 }
4709 
4710 static void css_release_work_fn(struct work_struct *work)
4711 {
4712 	struct cgroup_subsys_state *css =
4713 		container_of(work, struct cgroup_subsys_state, destroy_work);
4714 	struct cgroup_subsys *ss = css->ss;
4715 	struct cgroup *cgrp = css->cgroup;
4716 
4717 	mutex_lock(&cgroup_mutex);
4718 
4719 	css->flags |= CSS_RELEASED;
4720 	list_del_rcu(&css->sibling);
4721 
4722 	if (ss) {
4723 		/* css release path */
4724 		if (!list_empty(&css->rstat_css_node)) {
4725 			cgroup_rstat_flush(cgrp);
4726 			list_del_rcu(&css->rstat_css_node);
4727 		}
4728 
4729 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4730 		if (ss->css_released)
4731 			ss->css_released(css);
4732 	} else {
4733 		struct cgroup *tcgrp;
4734 
4735 		/* cgroup release path */
4736 		TRACE_CGROUP_PATH(release, cgrp);
4737 
4738 		if (cgroup_on_dfl(cgrp))
4739 			cgroup_rstat_flush(cgrp);
4740 
4741 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4742 		     tcgrp = cgroup_parent(tcgrp))
4743 			tcgrp->nr_dying_descendants--;
4744 
4745 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4746 		cgrp->id = -1;
4747 
4748 		/*
4749 		 * There are two control paths which try to determine
4750 		 * cgroup from dentry without going through kernfs -
4751 		 * cgroupstats_build() and css_tryget_online_from_dir().
4752 		 * Those are supported by RCU protecting clearing of
4753 		 * cgrp->kn->priv backpointer.
4754 		 */
4755 		if (cgrp->kn)
4756 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4757 					 NULL);
4758 
4759 		cgroup_bpf_put(cgrp);
4760 	}
4761 
4762 	mutex_unlock(&cgroup_mutex);
4763 
4764 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4765 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4766 }
4767 
4768 static void css_release(struct percpu_ref *ref)
4769 {
4770 	struct cgroup_subsys_state *css =
4771 		container_of(ref, struct cgroup_subsys_state, refcnt);
4772 
4773 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4774 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4775 }
4776 
4777 static void init_and_link_css(struct cgroup_subsys_state *css,
4778 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4779 {
4780 	lockdep_assert_held(&cgroup_mutex);
4781 
4782 	cgroup_get_live(cgrp);
4783 
4784 	memset(css, 0, sizeof(*css));
4785 	css->cgroup = cgrp;
4786 	css->ss = ss;
4787 	css->id = -1;
4788 	INIT_LIST_HEAD(&css->sibling);
4789 	INIT_LIST_HEAD(&css->children);
4790 	INIT_LIST_HEAD(&css->rstat_css_node);
4791 	css->serial_nr = css_serial_nr_next++;
4792 	atomic_set(&css->online_cnt, 0);
4793 
4794 	if (cgroup_parent(cgrp)) {
4795 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4796 		css_get(css->parent);
4797 	}
4798 
4799 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4800 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4801 
4802 	BUG_ON(cgroup_css(cgrp, ss));
4803 }
4804 
4805 /* invoke ->css_online() on a new CSS and mark it online if successful */
4806 static int online_css(struct cgroup_subsys_state *css)
4807 {
4808 	struct cgroup_subsys *ss = css->ss;
4809 	int ret = 0;
4810 
4811 	lockdep_assert_held(&cgroup_mutex);
4812 
4813 	if (ss->css_online)
4814 		ret = ss->css_online(css);
4815 	if (!ret) {
4816 		css->flags |= CSS_ONLINE;
4817 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4818 
4819 		atomic_inc(&css->online_cnt);
4820 		if (css->parent)
4821 			atomic_inc(&css->parent->online_cnt);
4822 	}
4823 	return ret;
4824 }
4825 
4826 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4827 static void offline_css(struct cgroup_subsys_state *css)
4828 {
4829 	struct cgroup_subsys *ss = css->ss;
4830 
4831 	lockdep_assert_held(&cgroup_mutex);
4832 
4833 	if (!(css->flags & CSS_ONLINE))
4834 		return;
4835 
4836 	if (ss->css_offline)
4837 		ss->css_offline(css);
4838 
4839 	css->flags &= ~CSS_ONLINE;
4840 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4841 
4842 	wake_up_all(&css->cgroup->offline_waitq);
4843 }
4844 
4845 /**
4846  * css_create - create a cgroup_subsys_state
4847  * @cgrp: the cgroup new css will be associated with
4848  * @ss: the subsys of new css
4849  *
4850  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4851  * css is online and installed in @cgrp.  This function doesn't create the
4852  * interface files.  Returns 0 on success, -errno on failure.
4853  */
4854 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4855 					      struct cgroup_subsys *ss)
4856 {
4857 	struct cgroup *parent = cgroup_parent(cgrp);
4858 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4859 	struct cgroup_subsys_state *css;
4860 	int err;
4861 
4862 	lockdep_assert_held(&cgroup_mutex);
4863 
4864 	css = ss->css_alloc(parent_css);
4865 	if (!css)
4866 		css = ERR_PTR(-ENOMEM);
4867 	if (IS_ERR(css))
4868 		return css;
4869 
4870 	init_and_link_css(css, ss, cgrp);
4871 
4872 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4873 	if (err)
4874 		goto err_free_css;
4875 
4876 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4877 	if (err < 0)
4878 		goto err_free_css;
4879 	css->id = err;
4880 
4881 	/* @css is ready to be brought online now, make it visible */
4882 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4883 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4884 
4885 	err = online_css(css);
4886 	if (err)
4887 		goto err_list_del;
4888 
4889 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4890 	    cgroup_parent(parent)) {
4891 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4892 			current->comm, current->pid, ss->name);
4893 		if (!strcmp(ss->name, "memory"))
4894 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4895 		ss->warned_broken_hierarchy = true;
4896 	}
4897 
4898 	return css;
4899 
4900 err_list_del:
4901 	list_del_rcu(&css->sibling);
4902 err_free_css:
4903 	list_del_rcu(&css->rstat_css_node);
4904 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4905 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4906 	return ERR_PTR(err);
4907 }
4908 
4909 /*
4910  * The returned cgroup is fully initialized including its control mask, but
4911  * it isn't associated with its kernfs_node and doesn't have the control
4912  * mask applied.
4913  */
4914 static struct cgroup *cgroup_create(struct cgroup *parent)
4915 {
4916 	struct cgroup_root *root = parent->root;
4917 	struct cgroup *cgrp, *tcgrp;
4918 	int level = parent->level + 1;
4919 	int ret;
4920 
4921 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4922 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4923 		       GFP_KERNEL);
4924 	if (!cgrp)
4925 		return ERR_PTR(-ENOMEM);
4926 
4927 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4928 	if (ret)
4929 		goto out_free_cgrp;
4930 
4931 	if (cgroup_on_dfl(parent)) {
4932 		ret = cgroup_rstat_init(cgrp);
4933 		if (ret)
4934 			goto out_cancel_ref;
4935 	}
4936 
4937 	/*
4938 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4939 	 * a half-baked cgroup.
4940 	 */
4941 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4942 	if (cgrp->id < 0) {
4943 		ret = -ENOMEM;
4944 		goto out_stat_exit;
4945 	}
4946 
4947 	init_cgroup_housekeeping(cgrp);
4948 
4949 	cgrp->self.parent = &parent->self;
4950 	cgrp->root = root;
4951 	cgrp->level = level;
4952 
4953 	ret = psi_cgroup_alloc(cgrp);
4954 	if (ret)
4955 		goto out_idr_free;
4956 
4957 	ret = cgroup_bpf_inherit(cgrp);
4958 	if (ret)
4959 		goto out_psi_free;
4960 
4961 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4962 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4963 
4964 		if (tcgrp != cgrp)
4965 			tcgrp->nr_descendants++;
4966 	}
4967 
4968 	if (notify_on_release(parent))
4969 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4970 
4971 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4972 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4973 
4974 	cgrp->self.serial_nr = css_serial_nr_next++;
4975 
4976 	/* allocation complete, commit to creation */
4977 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4978 	atomic_inc(&root->nr_cgrps);
4979 	cgroup_get_live(parent);
4980 
4981 	/*
4982 	 * @cgrp is now fully operational.  If something fails after this
4983 	 * point, it'll be released via the normal destruction path.
4984 	 */
4985 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4986 
4987 	/*
4988 	 * On the default hierarchy, a child doesn't automatically inherit
4989 	 * subtree_control from the parent.  Each is configured manually.
4990 	 */
4991 	if (!cgroup_on_dfl(cgrp))
4992 		cgrp->subtree_control = cgroup_control(cgrp);
4993 
4994 	cgroup_propagate_control(cgrp);
4995 
4996 	return cgrp;
4997 
4998 out_psi_free:
4999 	psi_cgroup_free(cgrp);
5000 out_idr_free:
5001 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5002 out_stat_exit:
5003 	if (cgroup_on_dfl(parent))
5004 		cgroup_rstat_exit(cgrp);
5005 out_cancel_ref:
5006 	percpu_ref_exit(&cgrp->self.refcnt);
5007 out_free_cgrp:
5008 	kfree(cgrp);
5009 	return ERR_PTR(ret);
5010 }
5011 
5012 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5013 {
5014 	struct cgroup *cgroup;
5015 	int ret = false;
5016 	int level = 1;
5017 
5018 	lockdep_assert_held(&cgroup_mutex);
5019 
5020 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5021 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5022 			goto fail;
5023 
5024 		if (level > cgroup->max_depth)
5025 			goto fail;
5026 
5027 		level++;
5028 	}
5029 
5030 	ret = true;
5031 fail:
5032 	return ret;
5033 }
5034 
5035 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5036 {
5037 	struct cgroup *parent, *cgrp;
5038 	struct kernfs_node *kn;
5039 	int ret;
5040 
5041 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5042 	if (strchr(name, '\n'))
5043 		return -EINVAL;
5044 
5045 	parent = cgroup_kn_lock_live(parent_kn, false);
5046 	if (!parent)
5047 		return -ENODEV;
5048 
5049 	if (!cgroup_check_hierarchy_limits(parent)) {
5050 		ret = -EAGAIN;
5051 		goto out_unlock;
5052 	}
5053 
5054 	cgrp = cgroup_create(parent);
5055 	if (IS_ERR(cgrp)) {
5056 		ret = PTR_ERR(cgrp);
5057 		goto out_unlock;
5058 	}
5059 
5060 	/* create the directory */
5061 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5062 	if (IS_ERR(kn)) {
5063 		ret = PTR_ERR(kn);
5064 		goto out_destroy;
5065 	}
5066 	cgrp->kn = kn;
5067 
5068 	/*
5069 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5070 	 * that @cgrp->kn is always accessible.
5071 	 */
5072 	kernfs_get(kn);
5073 
5074 	ret = cgroup_kn_set_ugid(kn);
5075 	if (ret)
5076 		goto out_destroy;
5077 
5078 	ret = css_populate_dir(&cgrp->self);
5079 	if (ret)
5080 		goto out_destroy;
5081 
5082 	ret = cgroup_apply_control_enable(cgrp);
5083 	if (ret)
5084 		goto out_destroy;
5085 
5086 	TRACE_CGROUP_PATH(mkdir, cgrp);
5087 
5088 	/* let's create and online css's */
5089 	kernfs_activate(kn);
5090 
5091 	ret = 0;
5092 	goto out_unlock;
5093 
5094 out_destroy:
5095 	cgroup_destroy_locked(cgrp);
5096 out_unlock:
5097 	cgroup_kn_unlock(parent_kn);
5098 	return ret;
5099 }
5100 
5101 /*
5102  * This is called when the refcnt of a css is confirmed to be killed.
5103  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5104  * initate destruction and put the css ref from kill_css().
5105  */
5106 static void css_killed_work_fn(struct work_struct *work)
5107 {
5108 	struct cgroup_subsys_state *css =
5109 		container_of(work, struct cgroup_subsys_state, destroy_work);
5110 
5111 	mutex_lock(&cgroup_mutex);
5112 
5113 	do {
5114 		offline_css(css);
5115 		css_put(css);
5116 		/* @css can't go away while we're holding cgroup_mutex */
5117 		css = css->parent;
5118 	} while (css && atomic_dec_and_test(&css->online_cnt));
5119 
5120 	mutex_unlock(&cgroup_mutex);
5121 }
5122 
5123 /* css kill confirmation processing requires process context, bounce */
5124 static void css_killed_ref_fn(struct percpu_ref *ref)
5125 {
5126 	struct cgroup_subsys_state *css =
5127 		container_of(ref, struct cgroup_subsys_state, refcnt);
5128 
5129 	if (atomic_dec_and_test(&css->online_cnt)) {
5130 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5131 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5132 	}
5133 }
5134 
5135 /**
5136  * kill_css - destroy a css
5137  * @css: css to destroy
5138  *
5139  * This function initiates destruction of @css by removing cgroup interface
5140  * files and putting its base reference.  ->css_offline() will be invoked
5141  * asynchronously once css_tryget_online() is guaranteed to fail and when
5142  * the reference count reaches zero, @css will be released.
5143  */
5144 static void kill_css(struct cgroup_subsys_state *css)
5145 {
5146 	lockdep_assert_held(&cgroup_mutex);
5147 
5148 	if (css->flags & CSS_DYING)
5149 		return;
5150 
5151 	css->flags |= CSS_DYING;
5152 
5153 	/*
5154 	 * This must happen before css is disassociated with its cgroup.
5155 	 * See seq_css() for details.
5156 	 */
5157 	css_clear_dir(css);
5158 
5159 	/*
5160 	 * Killing would put the base ref, but we need to keep it alive
5161 	 * until after ->css_offline().
5162 	 */
5163 	css_get(css);
5164 
5165 	/*
5166 	 * cgroup core guarantees that, by the time ->css_offline() is
5167 	 * invoked, no new css reference will be given out via
5168 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5169 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5170 	 * guarantee that the ref is seen as killed on all CPUs on return.
5171 	 *
5172 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5173 	 * css is confirmed to be seen as killed on all CPUs.
5174 	 */
5175 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5176 }
5177 
5178 /**
5179  * cgroup_destroy_locked - the first stage of cgroup destruction
5180  * @cgrp: cgroup to be destroyed
5181  *
5182  * css's make use of percpu refcnts whose killing latency shouldn't be
5183  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5184  * guarantee that css_tryget_online() won't succeed by the time
5185  * ->css_offline() is invoked.  To satisfy all the requirements,
5186  * destruction is implemented in the following two steps.
5187  *
5188  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5189  *     userland visible parts and start killing the percpu refcnts of
5190  *     css's.  Set up so that the next stage will be kicked off once all
5191  *     the percpu refcnts are confirmed to be killed.
5192  *
5193  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5194  *     rest of destruction.  Once all cgroup references are gone, the
5195  *     cgroup is RCU-freed.
5196  *
5197  * This function implements s1.  After this step, @cgrp is gone as far as
5198  * the userland is concerned and a new cgroup with the same name may be
5199  * created.  As cgroup doesn't care about the names internally, this
5200  * doesn't cause any problem.
5201  */
5202 static int cgroup_destroy_locked(struct cgroup *cgrp)
5203 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5204 {
5205 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5206 	struct cgroup_subsys_state *css;
5207 	struct cgrp_cset_link *link;
5208 	int ssid;
5209 
5210 	lockdep_assert_held(&cgroup_mutex);
5211 
5212 	/*
5213 	 * Only migration can raise populated from zero and we're already
5214 	 * holding cgroup_mutex.
5215 	 */
5216 	if (cgroup_is_populated(cgrp))
5217 		return -EBUSY;
5218 
5219 	/*
5220 	 * Make sure there's no live children.  We can't test emptiness of
5221 	 * ->self.children as dead children linger on it while being
5222 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5223 	 */
5224 	if (css_has_online_children(&cgrp->self))
5225 		return -EBUSY;
5226 
5227 	/*
5228 	 * Mark @cgrp and the associated csets dead.  The former prevents
5229 	 * further task migration and child creation by disabling
5230 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5231 	 * the migration path.
5232 	 */
5233 	cgrp->self.flags &= ~CSS_ONLINE;
5234 
5235 	spin_lock_irq(&css_set_lock);
5236 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5237 		link->cset->dead = true;
5238 	spin_unlock_irq(&css_set_lock);
5239 
5240 	/* initiate massacre of all css's */
5241 	for_each_css(css, ssid, cgrp)
5242 		kill_css(css);
5243 
5244 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5245 	css_clear_dir(&cgrp->self);
5246 	kernfs_remove(cgrp->kn);
5247 
5248 	if (parent && cgroup_is_threaded(cgrp))
5249 		parent->nr_threaded_children--;
5250 
5251 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5252 		tcgrp->nr_descendants--;
5253 		tcgrp->nr_dying_descendants++;
5254 	}
5255 
5256 	cgroup1_check_for_release(parent);
5257 
5258 	/* put the base reference */
5259 	percpu_ref_kill(&cgrp->self.refcnt);
5260 
5261 	return 0;
5262 };
5263 
5264 int cgroup_rmdir(struct kernfs_node *kn)
5265 {
5266 	struct cgroup *cgrp;
5267 	int ret = 0;
5268 
5269 	cgrp = cgroup_kn_lock_live(kn, false);
5270 	if (!cgrp)
5271 		return 0;
5272 
5273 	ret = cgroup_destroy_locked(cgrp);
5274 	if (!ret)
5275 		TRACE_CGROUP_PATH(rmdir, cgrp);
5276 
5277 	cgroup_kn_unlock(kn);
5278 	return ret;
5279 }
5280 
5281 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5282 	.show_options		= cgroup_show_options,
5283 	.remount_fs		= cgroup_remount,
5284 	.mkdir			= cgroup_mkdir,
5285 	.rmdir			= cgroup_rmdir,
5286 	.show_path		= cgroup_show_path,
5287 };
5288 
5289 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5290 {
5291 	struct cgroup_subsys_state *css;
5292 
5293 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5294 
5295 	mutex_lock(&cgroup_mutex);
5296 
5297 	idr_init(&ss->css_idr);
5298 	INIT_LIST_HEAD(&ss->cfts);
5299 
5300 	/* Create the root cgroup state for this subsystem */
5301 	ss->root = &cgrp_dfl_root;
5302 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5303 	/* We don't handle early failures gracefully */
5304 	BUG_ON(IS_ERR(css));
5305 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5306 
5307 	/*
5308 	 * Root csses are never destroyed and we can't initialize
5309 	 * percpu_ref during early init.  Disable refcnting.
5310 	 */
5311 	css->flags |= CSS_NO_REF;
5312 
5313 	if (early) {
5314 		/* allocation can't be done safely during early init */
5315 		css->id = 1;
5316 	} else {
5317 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5318 		BUG_ON(css->id < 0);
5319 	}
5320 
5321 	/* Update the init_css_set to contain a subsys
5322 	 * pointer to this state - since the subsystem is
5323 	 * newly registered, all tasks and hence the
5324 	 * init_css_set is in the subsystem's root cgroup. */
5325 	init_css_set.subsys[ss->id] = css;
5326 
5327 	have_fork_callback |= (bool)ss->fork << ss->id;
5328 	have_exit_callback |= (bool)ss->exit << ss->id;
5329 	have_free_callback |= (bool)ss->free << ss->id;
5330 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5331 
5332 	/* At system boot, before all subsystems have been
5333 	 * registered, no tasks have been forked, so we don't
5334 	 * need to invoke fork callbacks here. */
5335 	BUG_ON(!list_empty(&init_task.tasks));
5336 
5337 	BUG_ON(online_css(css));
5338 
5339 	mutex_unlock(&cgroup_mutex);
5340 }
5341 
5342 /**
5343  * cgroup_init_early - cgroup initialization at system boot
5344  *
5345  * Initialize cgroups at system boot, and initialize any
5346  * subsystems that request early init.
5347  */
5348 int __init cgroup_init_early(void)
5349 {
5350 	static struct cgroup_sb_opts __initdata opts;
5351 	struct cgroup_subsys *ss;
5352 	int i;
5353 
5354 	init_cgroup_root(&cgrp_dfl_root, &opts);
5355 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5356 
5357 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5358 
5359 	for_each_subsys(ss, i) {
5360 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5361 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5362 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5363 		     ss->id, ss->name);
5364 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5365 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5366 
5367 		ss->id = i;
5368 		ss->name = cgroup_subsys_name[i];
5369 		if (!ss->legacy_name)
5370 			ss->legacy_name = cgroup_subsys_name[i];
5371 
5372 		if (ss->early_init)
5373 			cgroup_init_subsys(ss, true);
5374 	}
5375 	return 0;
5376 }
5377 
5378 static u16 cgroup_disable_mask __initdata;
5379 
5380 /**
5381  * cgroup_init - cgroup initialization
5382  *
5383  * Register cgroup filesystem and /proc file, and initialize
5384  * any subsystems that didn't request early init.
5385  */
5386 int __init cgroup_init(void)
5387 {
5388 	struct cgroup_subsys *ss;
5389 	int ssid;
5390 
5391 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5392 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5393 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5394 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5395 
5396 	cgroup_rstat_boot();
5397 
5398 	/*
5399 	 * The latency of the synchronize_rcu() is too high for cgroups,
5400 	 * avoid it at the cost of forcing all readers into the slow path.
5401 	 */
5402 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5403 
5404 	get_user_ns(init_cgroup_ns.user_ns);
5405 
5406 	mutex_lock(&cgroup_mutex);
5407 
5408 	/*
5409 	 * Add init_css_set to the hash table so that dfl_root can link to
5410 	 * it during init.
5411 	 */
5412 	hash_add(css_set_table, &init_css_set.hlist,
5413 		 css_set_hash(init_css_set.subsys));
5414 
5415 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5416 
5417 	mutex_unlock(&cgroup_mutex);
5418 
5419 	for_each_subsys(ss, ssid) {
5420 		if (ss->early_init) {
5421 			struct cgroup_subsys_state *css =
5422 				init_css_set.subsys[ss->id];
5423 
5424 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5425 						   GFP_KERNEL);
5426 			BUG_ON(css->id < 0);
5427 		} else {
5428 			cgroup_init_subsys(ss, false);
5429 		}
5430 
5431 		list_add_tail(&init_css_set.e_cset_node[ssid],
5432 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5433 
5434 		/*
5435 		 * Setting dfl_root subsys_mask needs to consider the
5436 		 * disabled flag and cftype registration needs kmalloc,
5437 		 * both of which aren't available during early_init.
5438 		 */
5439 		if (cgroup_disable_mask & (1 << ssid)) {
5440 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5441 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5442 			       ss->name);
5443 			continue;
5444 		}
5445 
5446 		if (cgroup1_ssid_disabled(ssid))
5447 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5448 			       ss->name);
5449 
5450 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5451 
5452 		/* implicit controllers must be threaded too */
5453 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5454 
5455 		if (ss->implicit_on_dfl)
5456 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5457 		else if (!ss->dfl_cftypes)
5458 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5459 
5460 		if (ss->threaded)
5461 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5462 
5463 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5464 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5465 		} else {
5466 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5467 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5468 		}
5469 
5470 		if (ss->bind)
5471 			ss->bind(init_css_set.subsys[ssid]);
5472 
5473 		mutex_lock(&cgroup_mutex);
5474 		css_populate_dir(init_css_set.subsys[ssid]);
5475 		mutex_unlock(&cgroup_mutex);
5476 	}
5477 
5478 	/* init_css_set.subsys[] has been updated, re-hash */
5479 	hash_del(&init_css_set.hlist);
5480 	hash_add(css_set_table, &init_css_set.hlist,
5481 		 css_set_hash(init_css_set.subsys));
5482 
5483 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5484 	WARN_ON(register_filesystem(&cgroup_fs_type));
5485 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5486 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5487 
5488 	return 0;
5489 }
5490 
5491 static int __init cgroup_wq_init(void)
5492 {
5493 	/*
5494 	 * There isn't much point in executing destruction path in
5495 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5496 	 * Use 1 for @max_active.
5497 	 *
5498 	 * We would prefer to do this in cgroup_init() above, but that
5499 	 * is called before init_workqueues(): so leave this until after.
5500 	 */
5501 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5502 	BUG_ON(!cgroup_destroy_wq);
5503 	return 0;
5504 }
5505 core_initcall(cgroup_wq_init);
5506 
5507 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5508 					char *buf, size_t buflen)
5509 {
5510 	struct kernfs_node *kn;
5511 
5512 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5513 	if (!kn)
5514 		return;
5515 	kernfs_path(kn, buf, buflen);
5516 	kernfs_put(kn);
5517 }
5518 
5519 /*
5520  * proc_cgroup_show()
5521  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5522  *  - Used for /proc/<pid>/cgroup.
5523  */
5524 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5525 		     struct pid *pid, struct task_struct *tsk)
5526 {
5527 	char *buf;
5528 	int retval;
5529 	struct cgroup_root *root;
5530 
5531 	retval = -ENOMEM;
5532 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5533 	if (!buf)
5534 		goto out;
5535 
5536 	mutex_lock(&cgroup_mutex);
5537 	spin_lock_irq(&css_set_lock);
5538 
5539 	for_each_root(root) {
5540 		struct cgroup_subsys *ss;
5541 		struct cgroup *cgrp;
5542 		int ssid, count = 0;
5543 
5544 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5545 			continue;
5546 
5547 		seq_printf(m, "%d:", root->hierarchy_id);
5548 		if (root != &cgrp_dfl_root)
5549 			for_each_subsys(ss, ssid)
5550 				if (root->subsys_mask & (1 << ssid))
5551 					seq_printf(m, "%s%s", count++ ? "," : "",
5552 						   ss->legacy_name);
5553 		if (strlen(root->name))
5554 			seq_printf(m, "%sname=%s", count ? "," : "",
5555 				   root->name);
5556 		seq_putc(m, ':');
5557 
5558 		cgrp = task_cgroup_from_root(tsk, root);
5559 
5560 		/*
5561 		 * On traditional hierarchies, all zombie tasks show up as
5562 		 * belonging to the root cgroup.  On the default hierarchy,
5563 		 * while a zombie doesn't show up in "cgroup.procs" and
5564 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5565 		 * reporting the cgroup it belonged to before exiting.  If
5566 		 * the cgroup is removed before the zombie is reaped,
5567 		 * " (deleted)" is appended to the cgroup path.
5568 		 */
5569 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5570 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5571 						current->nsproxy->cgroup_ns);
5572 			if (retval >= PATH_MAX)
5573 				retval = -ENAMETOOLONG;
5574 			if (retval < 0)
5575 				goto out_unlock;
5576 
5577 			seq_puts(m, buf);
5578 		} else {
5579 			seq_puts(m, "/");
5580 		}
5581 
5582 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5583 			seq_puts(m, " (deleted)\n");
5584 		else
5585 			seq_putc(m, '\n');
5586 	}
5587 
5588 	retval = 0;
5589 out_unlock:
5590 	spin_unlock_irq(&css_set_lock);
5591 	mutex_unlock(&cgroup_mutex);
5592 	kfree(buf);
5593 out:
5594 	return retval;
5595 }
5596 
5597 /**
5598  * cgroup_fork - initialize cgroup related fields during copy_process()
5599  * @child: pointer to task_struct of forking parent process.
5600  *
5601  * A task is associated with the init_css_set until cgroup_post_fork()
5602  * attaches it to the parent's css_set.  Empty cg_list indicates that
5603  * @child isn't holding reference to its css_set.
5604  */
5605 void cgroup_fork(struct task_struct *child)
5606 {
5607 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5608 	INIT_LIST_HEAD(&child->cg_list);
5609 }
5610 
5611 /**
5612  * cgroup_can_fork - called on a new task before the process is exposed
5613  * @child: the task in question.
5614  *
5615  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5616  * returns an error, the fork aborts with that error code. This allows for
5617  * a cgroup subsystem to conditionally allow or deny new forks.
5618  */
5619 int cgroup_can_fork(struct task_struct *child)
5620 {
5621 	struct cgroup_subsys *ss;
5622 	int i, j, ret;
5623 
5624 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5625 		ret = ss->can_fork(child);
5626 		if (ret)
5627 			goto out_revert;
5628 	} while_each_subsys_mask();
5629 
5630 	return 0;
5631 
5632 out_revert:
5633 	for_each_subsys(ss, j) {
5634 		if (j >= i)
5635 			break;
5636 		if (ss->cancel_fork)
5637 			ss->cancel_fork(child);
5638 	}
5639 
5640 	return ret;
5641 }
5642 
5643 /**
5644  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5645  * @child: the task in question
5646  *
5647  * This calls the cancel_fork() callbacks if a fork failed *after*
5648  * cgroup_can_fork() succeded.
5649  */
5650 void cgroup_cancel_fork(struct task_struct *child)
5651 {
5652 	struct cgroup_subsys *ss;
5653 	int i;
5654 
5655 	for_each_subsys(ss, i)
5656 		if (ss->cancel_fork)
5657 			ss->cancel_fork(child);
5658 }
5659 
5660 /**
5661  * cgroup_post_fork - called on a new task after adding it to the task list
5662  * @child: the task in question
5663  *
5664  * Adds the task to the list running through its css_set if necessary and
5665  * call the subsystem fork() callbacks.  Has to be after the task is
5666  * visible on the task list in case we race with the first call to
5667  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5668  * list.
5669  */
5670 void cgroup_post_fork(struct task_struct *child)
5671 {
5672 	struct cgroup_subsys *ss;
5673 	int i;
5674 
5675 	/*
5676 	 * This may race against cgroup_enable_task_cg_lists().  As that
5677 	 * function sets use_task_css_set_links before grabbing
5678 	 * tasklist_lock and we just went through tasklist_lock to add
5679 	 * @child, it's guaranteed that either we see the set
5680 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5681 	 * @child during its iteration.
5682 	 *
5683 	 * If we won the race, @child is associated with %current's
5684 	 * css_set.  Grabbing css_set_lock guarantees both that the
5685 	 * association is stable, and, on completion of the parent's
5686 	 * migration, @child is visible in the source of migration or
5687 	 * already in the destination cgroup.  This guarantee is necessary
5688 	 * when implementing operations which need to migrate all tasks of
5689 	 * a cgroup to another.
5690 	 *
5691 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5692 	 * will remain in init_css_set.  This is safe because all tasks are
5693 	 * in the init_css_set before cg_links is enabled and there's no
5694 	 * operation which transfers all tasks out of init_css_set.
5695 	 */
5696 	if (use_task_css_set_links) {
5697 		struct css_set *cset;
5698 
5699 		spin_lock_irq(&css_set_lock);
5700 		cset = task_css_set(current);
5701 		if (list_empty(&child->cg_list)) {
5702 			get_css_set(cset);
5703 			cset->nr_tasks++;
5704 			css_set_move_task(child, NULL, cset, false);
5705 		}
5706 		spin_unlock_irq(&css_set_lock);
5707 	}
5708 
5709 	/*
5710 	 * Call ss->fork().  This must happen after @child is linked on
5711 	 * css_set; otherwise, @child might change state between ->fork()
5712 	 * and addition to css_set.
5713 	 */
5714 	do_each_subsys_mask(ss, i, have_fork_callback) {
5715 		ss->fork(child);
5716 	} while_each_subsys_mask();
5717 }
5718 
5719 /**
5720  * cgroup_exit - detach cgroup from exiting task
5721  * @tsk: pointer to task_struct of exiting process
5722  *
5723  * Description: Detach cgroup from @tsk and release it.
5724  *
5725  * Note that cgroups marked notify_on_release force every task in
5726  * them to take the global cgroup_mutex mutex when exiting.
5727  * This could impact scaling on very large systems.  Be reluctant to
5728  * use notify_on_release cgroups where very high task exit scaling
5729  * is required on large systems.
5730  *
5731  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5732  * call cgroup_exit() while the task is still competent to handle
5733  * notify_on_release(), then leave the task attached to the root cgroup in
5734  * each hierarchy for the remainder of its exit.  No need to bother with
5735  * init_css_set refcnting.  init_css_set never goes away and we can't race
5736  * with migration path - PF_EXITING is visible to migration path.
5737  */
5738 void cgroup_exit(struct task_struct *tsk)
5739 {
5740 	struct cgroup_subsys *ss;
5741 	struct css_set *cset;
5742 	int i;
5743 
5744 	/*
5745 	 * Unlink from @tsk from its css_set.  As migration path can't race
5746 	 * with us, we can check css_set and cg_list without synchronization.
5747 	 */
5748 	cset = task_css_set(tsk);
5749 
5750 	if (!list_empty(&tsk->cg_list)) {
5751 		spin_lock_irq(&css_set_lock);
5752 		css_set_move_task(tsk, cset, NULL, false);
5753 		cset->nr_tasks--;
5754 		spin_unlock_irq(&css_set_lock);
5755 	} else {
5756 		get_css_set(cset);
5757 	}
5758 
5759 	/* see cgroup_post_fork() for details */
5760 	do_each_subsys_mask(ss, i, have_exit_callback) {
5761 		ss->exit(tsk);
5762 	} while_each_subsys_mask();
5763 }
5764 
5765 void cgroup_free(struct task_struct *task)
5766 {
5767 	struct css_set *cset = task_css_set(task);
5768 	struct cgroup_subsys *ss;
5769 	int ssid;
5770 
5771 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5772 		ss->free(task);
5773 	} while_each_subsys_mask();
5774 
5775 	put_css_set(cset);
5776 }
5777 
5778 static int __init cgroup_disable(char *str)
5779 {
5780 	struct cgroup_subsys *ss;
5781 	char *token;
5782 	int i;
5783 
5784 	while ((token = strsep(&str, ",")) != NULL) {
5785 		if (!*token)
5786 			continue;
5787 
5788 		for_each_subsys(ss, i) {
5789 			if (strcmp(token, ss->name) &&
5790 			    strcmp(token, ss->legacy_name))
5791 				continue;
5792 			cgroup_disable_mask |= 1 << i;
5793 		}
5794 	}
5795 	return 1;
5796 }
5797 __setup("cgroup_disable=", cgroup_disable);
5798 
5799 void __init __weak enable_debug_cgroup(void) { }
5800 
5801 static int __init enable_cgroup_debug(char *str)
5802 {
5803 	cgroup_debug = true;
5804 	enable_debug_cgroup();
5805 	return 1;
5806 }
5807 __setup("cgroup_debug", enable_cgroup_debug);
5808 
5809 /**
5810  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5811  * @dentry: directory dentry of interest
5812  * @ss: subsystem of interest
5813  *
5814  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5815  * to get the corresponding css and return it.  If such css doesn't exist
5816  * or can't be pinned, an ERR_PTR value is returned.
5817  */
5818 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5819 						       struct cgroup_subsys *ss)
5820 {
5821 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5822 	struct file_system_type *s_type = dentry->d_sb->s_type;
5823 	struct cgroup_subsys_state *css = NULL;
5824 	struct cgroup *cgrp;
5825 
5826 	/* is @dentry a cgroup dir? */
5827 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5828 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5829 		return ERR_PTR(-EBADF);
5830 
5831 	rcu_read_lock();
5832 
5833 	/*
5834 	 * This path doesn't originate from kernfs and @kn could already
5835 	 * have been or be removed at any point.  @kn->priv is RCU
5836 	 * protected for this access.  See css_release_work_fn() for details.
5837 	 */
5838 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5839 	if (cgrp)
5840 		css = cgroup_css(cgrp, ss);
5841 
5842 	if (!css || !css_tryget_online(css))
5843 		css = ERR_PTR(-ENOENT);
5844 
5845 	rcu_read_unlock();
5846 	return css;
5847 }
5848 
5849 /**
5850  * css_from_id - lookup css by id
5851  * @id: the cgroup id
5852  * @ss: cgroup subsys to be looked into
5853  *
5854  * Returns the css if there's valid one with @id, otherwise returns NULL.
5855  * Should be called under rcu_read_lock().
5856  */
5857 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5858 {
5859 	WARN_ON_ONCE(!rcu_read_lock_held());
5860 	return idr_find(&ss->css_idr, id);
5861 }
5862 
5863 /**
5864  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5865  * @path: path on the default hierarchy
5866  *
5867  * Find the cgroup at @path on the default hierarchy, increment its
5868  * reference count and return it.  Returns pointer to the found cgroup on
5869  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5870  * if @path points to a non-directory.
5871  */
5872 struct cgroup *cgroup_get_from_path(const char *path)
5873 {
5874 	struct kernfs_node *kn;
5875 	struct cgroup *cgrp;
5876 
5877 	mutex_lock(&cgroup_mutex);
5878 
5879 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5880 	if (kn) {
5881 		if (kernfs_type(kn) == KERNFS_DIR) {
5882 			cgrp = kn->priv;
5883 			cgroup_get_live(cgrp);
5884 		} else {
5885 			cgrp = ERR_PTR(-ENOTDIR);
5886 		}
5887 		kernfs_put(kn);
5888 	} else {
5889 		cgrp = ERR_PTR(-ENOENT);
5890 	}
5891 
5892 	mutex_unlock(&cgroup_mutex);
5893 	return cgrp;
5894 }
5895 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5896 
5897 /**
5898  * cgroup_get_from_fd - get a cgroup pointer from a fd
5899  * @fd: fd obtained by open(cgroup2_dir)
5900  *
5901  * Find the cgroup from a fd which should be obtained
5902  * by opening a cgroup directory.  Returns a pointer to the
5903  * cgroup on success. ERR_PTR is returned if the cgroup
5904  * cannot be found.
5905  */
5906 struct cgroup *cgroup_get_from_fd(int fd)
5907 {
5908 	struct cgroup_subsys_state *css;
5909 	struct cgroup *cgrp;
5910 	struct file *f;
5911 
5912 	f = fget_raw(fd);
5913 	if (!f)
5914 		return ERR_PTR(-EBADF);
5915 
5916 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5917 	fput(f);
5918 	if (IS_ERR(css))
5919 		return ERR_CAST(css);
5920 
5921 	cgrp = css->cgroup;
5922 	if (!cgroup_on_dfl(cgrp)) {
5923 		cgroup_put(cgrp);
5924 		return ERR_PTR(-EBADF);
5925 	}
5926 
5927 	return cgrp;
5928 }
5929 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5930 
5931 /*
5932  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5933  * definition in cgroup-defs.h.
5934  */
5935 #ifdef CONFIG_SOCK_CGROUP_DATA
5936 
5937 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5938 
5939 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5940 static bool cgroup_sk_alloc_disabled __read_mostly;
5941 
5942 void cgroup_sk_alloc_disable(void)
5943 {
5944 	if (cgroup_sk_alloc_disabled)
5945 		return;
5946 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5947 	cgroup_sk_alloc_disabled = true;
5948 }
5949 
5950 #else
5951 
5952 #define cgroup_sk_alloc_disabled	false
5953 
5954 #endif
5955 
5956 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5957 {
5958 	if (cgroup_sk_alloc_disabled)
5959 		return;
5960 
5961 	/* Socket clone path */
5962 	if (skcd->val) {
5963 		/*
5964 		 * We might be cloning a socket which is left in an empty
5965 		 * cgroup and the cgroup might have already been rmdir'd.
5966 		 * Don't use cgroup_get_live().
5967 		 */
5968 		cgroup_get(sock_cgroup_ptr(skcd));
5969 		return;
5970 	}
5971 
5972 	rcu_read_lock();
5973 
5974 	while (true) {
5975 		struct css_set *cset;
5976 
5977 		cset = task_css_set(current);
5978 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5979 			skcd->val = (unsigned long)cset->dfl_cgrp;
5980 			break;
5981 		}
5982 		cpu_relax();
5983 	}
5984 
5985 	rcu_read_unlock();
5986 }
5987 
5988 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5989 {
5990 	cgroup_put(sock_cgroup_ptr(skcd));
5991 }
5992 
5993 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5994 
5995 #ifdef CONFIG_CGROUP_BPF
5996 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5997 		      enum bpf_attach_type type, u32 flags)
5998 {
5999 	int ret;
6000 
6001 	mutex_lock(&cgroup_mutex);
6002 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6003 	mutex_unlock(&cgroup_mutex);
6004 	return ret;
6005 }
6006 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6007 		      enum bpf_attach_type type, u32 flags)
6008 {
6009 	int ret;
6010 
6011 	mutex_lock(&cgroup_mutex);
6012 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6013 	mutex_unlock(&cgroup_mutex);
6014 	return ret;
6015 }
6016 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6017 		     union bpf_attr __user *uattr)
6018 {
6019 	int ret;
6020 
6021 	mutex_lock(&cgroup_mutex);
6022 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6023 	mutex_unlock(&cgroup_mutex);
6024 	return ret;
6025 }
6026 #endif /* CONFIG_CGROUP_BPF */
6027 
6028 #ifdef CONFIG_SYSFS
6029 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6030 				      ssize_t size, const char *prefix)
6031 {
6032 	struct cftype *cft;
6033 	ssize_t ret = 0;
6034 
6035 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6036 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6037 			continue;
6038 
6039 		if (prefix)
6040 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6041 
6042 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6043 
6044 		if (WARN_ON(ret >= size))
6045 			break;
6046 	}
6047 
6048 	return ret;
6049 }
6050 
6051 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6052 			      char *buf)
6053 {
6054 	struct cgroup_subsys *ss;
6055 	int ssid;
6056 	ssize_t ret = 0;
6057 
6058 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6059 				     NULL);
6060 
6061 	for_each_subsys(ss, ssid)
6062 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6063 					      PAGE_SIZE - ret,
6064 					      cgroup_subsys_name[ssid]);
6065 
6066 	return ret;
6067 }
6068 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6069 
6070 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6071 			     char *buf)
6072 {
6073 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6074 }
6075 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6076 
6077 static struct attribute *cgroup_sysfs_attrs[] = {
6078 	&cgroup_delegate_attr.attr,
6079 	&cgroup_features_attr.attr,
6080 	NULL,
6081 };
6082 
6083 static const struct attribute_group cgroup_sysfs_attr_group = {
6084 	.attrs = cgroup_sysfs_attrs,
6085 	.name = "cgroup",
6086 };
6087 
6088 static int __init cgroup_sysfs_init(void)
6089 {
6090 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6091 }
6092 subsys_initcall(cgroup_sysfs_init);
6093 #endif /* CONFIG_SYSFS */
6094