1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <linux/nstree.h>
63 #include <net/sock.h>
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/cgroup.h>
67
68 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70 /* let's not notify more than 100 times per second */
71 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
72
73 /*
74 * To avoid confusing the compiler (and generating warnings) with code
75 * that attempts to access what would be a 0-element array (i.e. sized
76 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
77 * constant expression can be added.
78 */
79 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
80
81 /*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
84 *
85 * css_set_lock protects task->cgroups pointer, the list of css_set
86 * objects, and the chain of tasks off each css_set.
87 *
88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89 * cgroup.h can use them for lockdep annotations.
90 */
91 DEFINE_MUTEX(cgroup_mutex);
92 DEFINE_SPINLOCK(css_set_lock);
93
94 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
95 EXPORT_SYMBOL_GPL(cgroup_mutex);
96 EXPORT_SYMBOL_GPL(css_set_lock);
97 #endif
98
99 struct blocking_notifier_head cgroup_lifetime_notifier =
100 BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier);
101
102 DEFINE_SPINLOCK(trace_cgroup_path_lock);
103 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
104 static bool cgroup_debug __read_mostly;
105
106 /*
107 * Protects cgroup_idr and css_idr so that IDs can be released without
108 * grabbing cgroup_mutex.
109 */
110 static DEFINE_SPINLOCK(cgroup_idr_lock);
111
112 /*
113 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
114 * against file removal/re-creation across css hiding.
115 */
116 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
117
118 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
119
120 #define cgroup_assert_mutex_or_rcu_locked() \
121 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
122 !lockdep_is_held(&cgroup_mutex), \
123 "cgroup_mutex or RCU read lock required");
124
125 /*
126 * cgroup destruction makes heavy use of work items and there can be a lot
127 * of concurrent destructions. Use a separate workqueue so that cgroup
128 * destruction work items don't end up filling up max_active of system_percpu_wq
129 * which may lead to deadlock.
130 *
131 * A cgroup destruction should enqueue work sequentially to:
132 * cgroup_offline_wq: use for css offline work
133 * cgroup_release_wq: use for css release work
134 * cgroup_free_wq: use for free work
135 *
136 * Rationale for using separate workqueues:
137 * The cgroup root free work may depend on completion of other css offline
138 * operations. If all tasks were enqueued to a single workqueue, this could
139 * create a deadlock scenario where:
140 * - Free work waits for other css offline work to complete.
141 * - But other css offline work is queued after free work in the same queue.
142 *
143 * Example deadlock scenario with single workqueue (cgroup_destroy_wq):
144 * 1. umount net_prio
145 * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx)
146 * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx)
147 * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline.
148 * 5. net_prio root destruction blocks waiting for perf_event CSS A offline,
149 * which can never complete as it's behind in the same queue and
150 * workqueue's max_active is 1.
151 */
152 static struct workqueue_struct *cgroup_offline_wq;
153 static struct workqueue_struct *cgroup_release_wq;
154 static struct workqueue_struct *cgroup_free_wq;
155
156 /* generate an array of cgroup subsystem pointers */
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
158 struct cgroup_subsys *cgroup_subsys[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 /* array of cgroup subsystem names */
164 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
165 static const char *cgroup_subsys_name[] = {
166 #include <linux/cgroup_subsys.h>
167 };
168 #undef SUBSYS
169
170 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
171 #define SUBSYS(_x) \
172 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
173 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
174 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
175 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
176 #include <linux/cgroup_subsys.h>
177 #undef SUBSYS
178
179 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
180 static struct static_key_true *cgroup_subsys_enabled_key[] = {
181 #include <linux/cgroup_subsys.h>
182 };
183 #undef SUBSYS
184
185 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
186 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
187 #include <linux/cgroup_subsys.h>
188 };
189 #undef SUBSYS
190
191 static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu);
192 static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu);
193
194 /* the default hierarchy */
195 struct cgroup_root cgrp_dfl_root = {
196 .cgrp.self.rstat_cpu = &root_rstat_cpu,
197 .cgrp.rstat_base_cpu = &root_rstat_base_cpu,
198 };
199 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
200
201 /*
202 * The default hierarchy always exists but is hidden until mounted for the
203 * first time. This is for backward compatibility.
204 */
205 bool cgrp_dfl_visible;
206
207 /* some controllers are not supported in the default hierarchy */
208 static u16 cgrp_dfl_inhibit_ss_mask;
209
210 /* some controllers are implicitly enabled on the default hierarchy */
211 static u16 cgrp_dfl_implicit_ss_mask;
212
213 /* some controllers can be threaded on the default hierarchy */
214 static u16 cgrp_dfl_threaded_ss_mask;
215
216 /* The list of hierarchy roots */
217 LIST_HEAD(cgroup_roots);
218 static int cgroup_root_count;
219
220 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
221 static DEFINE_IDR(cgroup_hierarchy_idr);
222
223 /*
224 * Assign a monotonically increasing serial number to csses. It guarantees
225 * cgroups with bigger numbers are newer than those with smaller numbers.
226 * Also, as csses are always appended to the parent's ->children list, it
227 * guarantees that sibling csses are always sorted in the ascending serial
228 * number order on the list. Protected by cgroup_mutex.
229 */
230 static u64 css_serial_nr_next = 1;
231
232 /*
233 * These bitmasks identify subsystems with specific features to avoid
234 * having to do iterative checks repeatedly.
235 */
236 static u16 have_fork_callback __read_mostly;
237 static u16 have_exit_callback __read_mostly;
238 static u16 have_release_callback __read_mostly;
239 static u16 have_canfork_callback __read_mostly;
240
241 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
242
243 /*
244 * Write protected by cgroup_mutex and write-lock of cgroup_threadgroup_rwsem,
245 * read protected by either.
246 *
247 * Can only be turned on, but not turned off.
248 */
249 bool cgroup_enable_per_threadgroup_rwsem __read_mostly;
250
251 /* cgroup namespace for init task */
252 struct cgroup_namespace init_cgroup_ns = {
253 .ns = NS_COMMON_INIT(init_cgroup_ns),
254 .user_ns = &init_user_ns,
255 .root_cset = &init_css_set,
256 };
257
258 static struct file_system_type cgroup2_fs_type;
259 static struct cftype cgroup_base_files[];
260 static struct cftype cgroup_psi_files[];
261
262 /* cgroup optional features */
263 enum cgroup_opt_features {
264 #ifdef CONFIG_PSI
265 OPT_FEATURE_PRESSURE,
266 #endif
267 OPT_FEATURE_COUNT
268 };
269
270 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
271 #ifdef CONFIG_PSI
272 "pressure",
273 #endif
274 };
275
276 static u16 cgroup_feature_disable_mask __read_mostly;
277
278 static int cgroup_apply_control(struct cgroup *cgrp);
279 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
280 static void css_task_iter_skip(struct css_task_iter *it,
281 struct task_struct *task);
282 static int cgroup_destroy_locked(struct cgroup *cgrp);
283 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
284 struct cgroup_subsys *ss);
285 static void css_release(struct percpu_ref *ref);
286 static void kill_css(struct cgroup_subsys_state *css);
287 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
288 struct cgroup *cgrp, struct cftype cfts[],
289 bool is_add);
290
291 #ifdef CONFIG_DEBUG_CGROUP_REF
292 #define CGROUP_REF_FN_ATTRS noinline
293 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
294 #include <linux/cgroup_refcnt.h>
295 #endif
296
297 /**
298 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
299 * @ssid: subsys ID of interest
300 *
301 * cgroup_subsys_enabled() can only be used with literal subsys names which
302 * is fine for individual subsystems but unsuitable for cgroup core. This
303 * is slower static_key_enabled() based test indexed by @ssid.
304 */
cgroup_ssid_enabled(int ssid)305 bool cgroup_ssid_enabled(int ssid)
306 {
307 if (!CGROUP_HAS_SUBSYS_CONFIG)
308 return false;
309
310 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
311 }
312
313 /**
314 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
315 * @cgrp: the cgroup of interest
316 *
317 * The default hierarchy is the v2 interface of cgroup and this function
318 * can be used to test whether a cgroup is on the default hierarchy for
319 * cases where a subsystem should behave differently depending on the
320 * interface version.
321 *
322 * List of changed behaviors:
323 *
324 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
325 * and "name" are disallowed.
326 *
327 * - When mounting an existing superblock, mount options should match.
328 *
329 * - rename(2) is disallowed.
330 *
331 * - "tasks" is removed. Everything should be at process granularity. Use
332 * "cgroup.procs" instead.
333 *
334 * - "cgroup.procs" is not sorted. pids will be unique unless they got
335 * recycled in-between reads.
336 *
337 * - "release_agent" and "notify_on_release" are removed. Replacement
338 * notification mechanism will be implemented.
339 *
340 * - "cgroup.clone_children" is removed.
341 *
342 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
343 * and its descendants contain no task; otherwise, 1. The file also
344 * generates kernfs notification which can be monitored through poll and
345 * [di]notify when the value of the file changes.
346 *
347 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
348 * take masks of ancestors with non-empty cpus/mems, instead of being
349 * moved to an ancestor.
350 *
351 * - cpuset: a task can be moved into an empty cpuset, and again it takes
352 * masks of ancestors.
353 *
354 * - blkcg: blk-throttle becomes properly hierarchical.
355 */
cgroup_on_dfl(const struct cgroup * cgrp)356 bool cgroup_on_dfl(const struct cgroup *cgrp)
357 {
358 return cgrp->root == &cgrp_dfl_root;
359 }
360
361 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)362 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
363 gfp_t gfp_mask)
364 {
365 int ret;
366
367 idr_preload(gfp_mask);
368 spin_lock_bh(&cgroup_idr_lock);
369 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
370 spin_unlock_bh(&cgroup_idr_lock);
371 idr_preload_end();
372 return ret;
373 }
374
cgroup_idr_replace(struct idr * idr,void * ptr,int id)375 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
376 {
377 void *ret;
378
379 spin_lock_bh(&cgroup_idr_lock);
380 ret = idr_replace(idr, ptr, id);
381 spin_unlock_bh(&cgroup_idr_lock);
382 return ret;
383 }
384
cgroup_idr_remove(struct idr * idr,int id)385 static void cgroup_idr_remove(struct idr *idr, int id)
386 {
387 spin_lock_bh(&cgroup_idr_lock);
388 idr_remove(idr, id);
389 spin_unlock_bh(&cgroup_idr_lock);
390 }
391
cgroup_has_tasks(struct cgroup * cgrp)392 static bool cgroup_has_tasks(struct cgroup *cgrp)
393 {
394 return cgrp->nr_populated_csets;
395 }
396
cgroup_is_threaded(struct cgroup * cgrp)397 static bool cgroup_is_threaded(struct cgroup *cgrp)
398 {
399 return cgrp->dom_cgrp != cgrp;
400 }
401
402 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)403 static bool cgroup_is_mixable(struct cgroup *cgrp)
404 {
405 /*
406 * Root isn't under domain level resource control exempting it from
407 * the no-internal-process constraint, so it can serve as a thread
408 * root and a parent of resource domains at the same time.
409 */
410 return !cgroup_parent(cgrp);
411 }
412
413 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)414 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
415 {
416 /* mixables don't care */
417 if (cgroup_is_mixable(cgrp))
418 return true;
419
420 /* domain roots can't be nested under threaded */
421 if (cgroup_is_threaded(cgrp))
422 return false;
423
424 /* can only have either domain or threaded children */
425 if (cgrp->nr_populated_domain_children)
426 return false;
427
428 /* and no domain controllers can be enabled */
429 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
430 return false;
431
432 return true;
433 }
434
435 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)436 static bool cgroup_is_thread_root(struct cgroup *cgrp)
437 {
438 /* thread root should be a domain */
439 if (cgroup_is_threaded(cgrp))
440 return false;
441
442 /* a domain w/ threaded children is a thread root */
443 if (cgrp->nr_threaded_children)
444 return true;
445
446 /*
447 * A domain which has tasks and explicit threaded controllers
448 * enabled is a thread root.
449 */
450 if (cgroup_has_tasks(cgrp) &&
451 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
452 return true;
453
454 return false;
455 }
456
457 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)458 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
459 {
460 /* the cgroup itself can be a thread root */
461 if (cgroup_is_threaded(cgrp))
462 return false;
463
464 /* but the ancestors can't be unless mixable */
465 while ((cgrp = cgroup_parent(cgrp))) {
466 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
467 return false;
468 if (cgroup_is_threaded(cgrp))
469 return false;
470 }
471
472 return true;
473 }
474
475 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)476 static u16 cgroup_control(struct cgroup *cgrp)
477 {
478 struct cgroup *parent = cgroup_parent(cgrp);
479 u16 root_ss_mask = cgrp->root->subsys_mask;
480
481 if (parent) {
482 u16 ss_mask = parent->subtree_control;
483
484 /* threaded cgroups can only have threaded controllers */
485 if (cgroup_is_threaded(cgrp))
486 ss_mask &= cgrp_dfl_threaded_ss_mask;
487 return ss_mask;
488 }
489
490 if (cgroup_on_dfl(cgrp))
491 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
492 cgrp_dfl_implicit_ss_mask);
493 return root_ss_mask;
494 }
495
496 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)497 static u16 cgroup_ss_mask(struct cgroup *cgrp)
498 {
499 struct cgroup *parent = cgroup_parent(cgrp);
500
501 if (parent) {
502 u16 ss_mask = parent->subtree_ss_mask;
503
504 /* threaded cgroups can only have threaded controllers */
505 if (cgroup_is_threaded(cgrp))
506 ss_mask &= cgrp_dfl_threaded_ss_mask;
507 return ss_mask;
508 }
509
510 return cgrp->root->subsys_mask;
511 }
512
513 /**
514 * cgroup_css - obtain a cgroup's css for the specified subsystem
515 * @cgrp: the cgroup of interest
516 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
517 *
518 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
519 * function must be called either under cgroup_mutex or rcu_read_lock() and
520 * the caller is responsible for pinning the returned css if it wants to
521 * keep accessing it outside the said locks. This function may return
522 * %NULL if @cgrp doesn't have @subsys_id enabled.
523 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)524 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
525 struct cgroup_subsys *ss)
526 {
527 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
528 return rcu_dereference_check(cgrp->subsys[ss->id],
529 lockdep_is_held(&cgroup_mutex));
530 else
531 return &cgrp->self;
532 }
533
534 /**
535 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
536 * @cgrp: the cgroup of interest
537 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
538 *
539 * Similar to cgroup_css() but returns the effective css, which is defined
540 * as the matching css of the nearest ancestor including self which has @ss
541 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
542 * function is guaranteed to return non-NULL css.
543 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)544 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
545 struct cgroup_subsys *ss)
546 {
547 lockdep_assert_held(&cgroup_mutex);
548
549 if (!ss)
550 return &cgrp->self;
551
552 /*
553 * This function is used while updating css associations and thus
554 * can't test the csses directly. Test ss_mask.
555 */
556 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
557 cgrp = cgroup_parent(cgrp);
558 if (!cgrp)
559 return NULL;
560 }
561
562 return cgroup_css(cgrp, ss);
563 }
564
565 /**
566 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
567 * @cgrp: the cgroup of interest
568 * @ss: the subsystem of interest
569 *
570 * Find and get the effective css of @cgrp for @ss. The effective css is
571 * defined as the matching css of the nearest ancestor including self which
572 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
573 * the root css is returned, so this function always returns a valid css.
574 *
575 * The returned css is not guaranteed to be online, and therefore it is the
576 * callers responsibility to try get a reference for it.
577 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)578 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
579 struct cgroup_subsys *ss)
580 {
581 struct cgroup_subsys_state *css;
582
583 if (!CGROUP_HAS_SUBSYS_CONFIG)
584 return NULL;
585
586 do {
587 css = cgroup_css(cgrp, ss);
588
589 if (css)
590 return css;
591 cgrp = cgroup_parent(cgrp);
592 } while (cgrp);
593
594 return init_css_set.subsys[ss->id];
595 }
596
597 /**
598 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
599 * @cgrp: the cgroup of interest
600 * @ss: the subsystem of interest
601 *
602 * Find and get the effective css of @cgrp for @ss. The effective css is
603 * defined as the matching css of the nearest ancestor including self which
604 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
605 * the root css is returned, so this function always returns a valid css.
606 * The returned css must be put using css_put().
607 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)608 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
609 struct cgroup_subsys *ss)
610 {
611 struct cgroup_subsys_state *css;
612
613 if (!CGROUP_HAS_SUBSYS_CONFIG)
614 return NULL;
615
616 rcu_read_lock();
617
618 do {
619 css = cgroup_css(cgrp, ss);
620
621 if (css && css_tryget_online(css))
622 goto out_unlock;
623 cgrp = cgroup_parent(cgrp);
624 } while (cgrp);
625
626 css = init_css_set.subsys[ss->id];
627 css_get(css);
628 out_unlock:
629 rcu_read_unlock();
630 return css;
631 }
632 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
633
cgroup_get_live(struct cgroup * cgrp)634 static void cgroup_get_live(struct cgroup *cgrp)
635 {
636 WARN_ON_ONCE(cgroup_is_dead(cgrp));
637 cgroup_get(cgrp);
638 }
639
640 /**
641 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
642 * is responsible for taking the css_set_lock.
643 * @cgrp: the cgroup in question
644 */
__cgroup_task_count(const struct cgroup * cgrp)645 int __cgroup_task_count(const struct cgroup *cgrp)
646 {
647 int count = 0;
648 struct cgrp_cset_link *link;
649
650 lockdep_assert_held(&css_set_lock);
651
652 list_for_each_entry(link, &cgrp->cset_links, cset_link)
653 count += link->cset->nr_tasks;
654
655 return count;
656 }
657
658 /**
659 * cgroup_task_count - count the number of tasks in a cgroup.
660 * @cgrp: the cgroup in question
661 */
cgroup_task_count(const struct cgroup * cgrp)662 int cgroup_task_count(const struct cgroup *cgrp)
663 {
664 int count;
665
666 spin_lock_irq(&css_set_lock);
667 count = __cgroup_task_count(cgrp);
668 spin_unlock_irq(&css_set_lock);
669
670 return count;
671 }
672
kn_priv(struct kernfs_node * kn)673 static struct cgroup *kn_priv(struct kernfs_node *kn)
674 {
675 struct kernfs_node *parent;
676 /*
677 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
678 * Therefore it is always safe to dereference this pointer outside of a
679 * RCU section.
680 */
681 parent = rcu_dereference_check(kn->__parent,
682 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
683 return parent->priv;
684 }
685
of_css(struct kernfs_open_file * of)686 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
687 {
688 struct cgroup *cgrp = kn_priv(of->kn);
689 struct cftype *cft = of_cft(of);
690
691 /*
692 * This is open and unprotected implementation of cgroup_css().
693 * seq_css() is only called from a kernfs file operation which has
694 * an active reference on the file. Because all the subsystem
695 * files are drained before a css is disassociated with a cgroup,
696 * the matching css from the cgroup's subsys table is guaranteed to
697 * be and stay valid until the enclosing operation is complete.
698 */
699 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
700 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
701 else
702 return &cgrp->self;
703 }
704 EXPORT_SYMBOL_GPL(of_css);
705
706 /**
707 * for_each_css - iterate all css's of a cgroup
708 * @css: the iteration cursor
709 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
710 * @cgrp: the target cgroup to iterate css's of
711 *
712 * Should be called under cgroup_mutex.
713 */
714 #define for_each_css(css, ssid, cgrp) \
715 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
716 if (!((css) = rcu_dereference_check( \
717 (cgrp)->subsys[(ssid)], \
718 lockdep_is_held(&cgroup_mutex)))) { } \
719 else
720
721 /**
722 * do_each_subsys_mask - filter for_each_subsys with a bitmask
723 * @ss: the iteration cursor
724 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
725 * @ss_mask: the bitmask
726 *
727 * The block will only run for cases where the ssid-th bit (1 << ssid) of
728 * @ss_mask is set.
729 */
730 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
731 unsigned long __ss_mask = (ss_mask); \
732 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
733 (ssid) = 0; \
734 break; \
735 } \
736 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
737 (ss) = cgroup_subsys[ssid]; \
738 {
739
740 #define while_each_subsys_mask() \
741 } \
742 } \
743 } while (false)
744
745 /* iterate over child cgrps, lock should be held throughout iteration */
746 #define cgroup_for_each_live_child(child, cgrp) \
747 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
748 if (({ lockdep_assert_held(&cgroup_mutex); \
749 cgroup_is_dead(child); })) \
750 ; \
751 else
752
753 /* walk live descendants in pre order */
754 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
755 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
756 if (({ lockdep_assert_held(&cgroup_mutex); \
757 (dsct) = (d_css)->cgroup; \
758 cgroup_is_dead(dsct); })) \
759 ; \
760 else
761
762 /* walk live descendants in postorder */
763 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
764 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
765 if (({ lockdep_assert_held(&cgroup_mutex); \
766 (dsct) = (d_css)->cgroup; \
767 cgroup_is_dead(dsct); })) \
768 ; \
769 else
770
771 /*
772 * The default css_set - used by init and its children prior to any
773 * hierarchies being mounted. It contains a pointer to the root state
774 * for each subsystem. Also used to anchor the list of css_sets. Not
775 * reference-counted, to improve performance when child cgroups
776 * haven't been created.
777 */
778 struct css_set init_css_set = {
779 .refcount = REFCOUNT_INIT(1),
780 .dom_cset = &init_css_set,
781 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
782 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
783 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
784 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
785 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
786 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
787 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
788 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
789 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
790
791 /*
792 * The following field is re-initialized when this cset gets linked
793 * in cgroup_init(). However, let's initialize the field
794 * statically too so that the default cgroup can be accessed safely
795 * early during boot.
796 */
797 .dfl_cgrp = &cgrp_dfl_root.cgrp,
798 };
799
800 static int css_set_count = 1; /* 1 for init_css_set */
801
css_set_threaded(struct css_set * cset)802 static bool css_set_threaded(struct css_set *cset)
803 {
804 return cset->dom_cset != cset;
805 }
806
807 /**
808 * css_set_populated - does a css_set contain any tasks?
809 * @cset: target css_set
810 *
811 * css_set_populated() should be the same as !!cset->nr_tasks at steady
812 * state. However, css_set_populated() can be called while a task is being
813 * added to or removed from the linked list before the nr_tasks is
814 * properly updated. Hence, we can't just look at ->nr_tasks here.
815 */
css_set_populated(struct css_set * cset)816 static bool css_set_populated(struct css_set *cset)
817 {
818 lockdep_assert_held(&css_set_lock);
819
820 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
821 }
822
823 /**
824 * cgroup_update_populated - update the populated count of a cgroup
825 * @cgrp: the target cgroup
826 * @populated: inc or dec populated count
827 *
828 * One of the css_sets associated with @cgrp is either getting its first
829 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
830 * count is propagated towards root so that a given cgroup's
831 * nr_populated_children is zero iff none of its descendants contain any
832 * tasks.
833 *
834 * @cgrp's interface file "cgroup.populated" is zero if both
835 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
836 * 1 otherwise. When the sum changes from or to zero, userland is notified
837 * that the content of the interface file has changed. This can be used to
838 * detect when @cgrp and its descendants become populated or empty.
839 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)840 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
841 {
842 struct cgroup *child = NULL;
843 int adj = populated ? 1 : -1;
844
845 lockdep_assert_held(&css_set_lock);
846
847 do {
848 bool was_populated = cgroup_is_populated(cgrp);
849
850 if (!child) {
851 cgrp->nr_populated_csets += adj;
852 } else {
853 if (cgroup_is_threaded(child))
854 cgrp->nr_populated_threaded_children += adj;
855 else
856 cgrp->nr_populated_domain_children += adj;
857 }
858
859 if (was_populated == cgroup_is_populated(cgrp))
860 break;
861
862 cgroup1_check_for_release(cgrp);
863 TRACE_CGROUP_PATH(notify_populated, cgrp,
864 cgroup_is_populated(cgrp));
865 cgroup_file_notify(&cgrp->events_file);
866
867 child = cgrp;
868 cgrp = cgroup_parent(cgrp);
869 } while (cgrp);
870 }
871
872 /**
873 * css_set_update_populated - update populated state of a css_set
874 * @cset: target css_set
875 * @populated: whether @cset is populated or depopulated
876 *
877 * @cset is either getting the first task or losing the last. Update the
878 * populated counters of all associated cgroups accordingly.
879 */
css_set_update_populated(struct css_set * cset,bool populated)880 static void css_set_update_populated(struct css_set *cset, bool populated)
881 {
882 struct cgrp_cset_link *link;
883
884 lockdep_assert_held(&css_set_lock);
885
886 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
887 cgroup_update_populated(link->cgrp, populated);
888 }
889
890 /*
891 * @task is leaving, advance task iterators which are pointing to it so
892 * that they can resume at the next position. Advancing an iterator might
893 * remove it from the list, use safe walk. See css_task_iter_skip() for
894 * details.
895 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)896 static void css_set_skip_task_iters(struct css_set *cset,
897 struct task_struct *task)
898 {
899 struct css_task_iter *it, *pos;
900
901 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
902 css_task_iter_skip(it, task);
903 }
904
905 /**
906 * css_set_move_task - move a task from one css_set to another
907 * @task: task being moved
908 * @from_cset: css_set @task currently belongs to (may be NULL)
909 * @to_cset: new css_set @task is being moved to (may be NULL)
910 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
911 *
912 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
913 * css_set, @from_cset can be NULL. If @task is being disassociated
914 * instead of moved, @to_cset can be NULL.
915 *
916 * This function automatically handles populated counter updates and
917 * css_task_iter adjustments but the caller is responsible for managing
918 * @from_cset and @to_cset's reference counts.
919 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)920 static void css_set_move_task(struct task_struct *task,
921 struct css_set *from_cset, struct css_set *to_cset,
922 bool use_mg_tasks)
923 {
924 lockdep_assert_held(&css_set_lock);
925
926 if (to_cset && !css_set_populated(to_cset))
927 css_set_update_populated(to_cset, true);
928
929 if (from_cset) {
930 WARN_ON_ONCE(list_empty(&task->cg_list));
931
932 css_set_skip_task_iters(from_cset, task);
933 list_del_init(&task->cg_list);
934 if (!css_set_populated(from_cset))
935 css_set_update_populated(from_cset, false);
936 } else {
937 WARN_ON_ONCE(!list_empty(&task->cg_list));
938 }
939
940 if (to_cset) {
941 /*
942 * We are synchronized through cgroup_threadgroup_rwsem
943 * against PF_EXITING setting such that we can't race
944 * against cgroup_exit()/cgroup_free() dropping the css_set.
945 */
946 WARN_ON_ONCE(task->flags & PF_EXITING);
947
948 cgroup_move_task(task, to_cset);
949 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
950 &to_cset->tasks);
951 }
952 }
953
954 /*
955 * hash table for cgroup groups. This improves the performance to find
956 * an existing css_set. This hash doesn't (currently) take into
957 * account cgroups in empty hierarchies.
958 */
959 #define CSS_SET_HASH_BITS 7
960 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
961
css_set_hash(struct cgroup_subsys_state ** css)962 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
963 {
964 unsigned long key = 0UL;
965 struct cgroup_subsys *ss;
966 int i;
967
968 for_each_subsys(ss, i)
969 key += (unsigned long)css[i];
970 key = (key >> 16) ^ key;
971
972 return key;
973 }
974
put_css_set_locked(struct css_set * cset)975 void put_css_set_locked(struct css_set *cset)
976 {
977 struct cgrp_cset_link *link, *tmp_link;
978 struct cgroup_subsys *ss;
979 int ssid;
980
981 lockdep_assert_held(&css_set_lock);
982
983 if (!refcount_dec_and_test(&cset->refcount))
984 return;
985
986 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
987
988 /* This css_set is dead. Unlink it and release cgroup and css refs */
989 for_each_subsys(ss, ssid) {
990 list_del(&cset->e_cset_node[ssid]);
991 css_put(cset->subsys[ssid]);
992 }
993 hash_del(&cset->hlist);
994 css_set_count--;
995
996 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
997 list_del(&link->cset_link);
998 list_del(&link->cgrp_link);
999 if (cgroup_parent(link->cgrp))
1000 cgroup_put(link->cgrp);
1001 kfree(link);
1002 }
1003
1004 if (css_set_threaded(cset)) {
1005 list_del(&cset->threaded_csets_node);
1006 put_css_set_locked(cset->dom_cset);
1007 }
1008
1009 kfree_rcu(cset, rcu_head);
1010 }
1011
1012 /**
1013 * compare_css_sets - helper function for find_existing_css_set().
1014 * @cset: candidate css_set being tested
1015 * @old_cset: existing css_set for a task
1016 * @new_cgrp: cgroup that's being entered by the task
1017 * @template: desired set of css pointers in css_set (pre-calculated)
1018 *
1019 * Returns true if "cset" matches "old_cset" except for the hierarchy
1020 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1021 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])1022 static bool compare_css_sets(struct css_set *cset,
1023 struct css_set *old_cset,
1024 struct cgroup *new_cgrp,
1025 struct cgroup_subsys_state *template[])
1026 {
1027 struct cgroup *new_dfl_cgrp;
1028 struct list_head *l1, *l2;
1029
1030 /*
1031 * On the default hierarchy, there can be csets which are
1032 * associated with the same set of cgroups but different csses.
1033 * Let's first ensure that csses match.
1034 */
1035 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1036 return false;
1037
1038
1039 /* @cset's domain should match the default cgroup's */
1040 if (cgroup_on_dfl(new_cgrp))
1041 new_dfl_cgrp = new_cgrp;
1042 else
1043 new_dfl_cgrp = old_cset->dfl_cgrp;
1044
1045 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1046 return false;
1047
1048 /*
1049 * Compare cgroup pointers in order to distinguish between
1050 * different cgroups in hierarchies. As different cgroups may
1051 * share the same effective css, this comparison is always
1052 * necessary.
1053 */
1054 l1 = &cset->cgrp_links;
1055 l2 = &old_cset->cgrp_links;
1056 while (1) {
1057 struct cgrp_cset_link *link1, *link2;
1058 struct cgroup *cgrp1, *cgrp2;
1059
1060 l1 = l1->next;
1061 l2 = l2->next;
1062 /* See if we reached the end - both lists are equal length. */
1063 if (l1 == &cset->cgrp_links) {
1064 BUG_ON(l2 != &old_cset->cgrp_links);
1065 break;
1066 } else {
1067 BUG_ON(l2 == &old_cset->cgrp_links);
1068 }
1069 /* Locate the cgroups associated with these links. */
1070 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1071 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1072 cgrp1 = link1->cgrp;
1073 cgrp2 = link2->cgrp;
1074 /* Hierarchies should be linked in the same order. */
1075 BUG_ON(cgrp1->root != cgrp2->root);
1076
1077 /*
1078 * If this hierarchy is the hierarchy of the cgroup
1079 * that's changing, then we need to check that this
1080 * css_set points to the new cgroup; if it's any other
1081 * hierarchy, then this css_set should point to the
1082 * same cgroup as the old css_set.
1083 */
1084 if (cgrp1->root == new_cgrp->root) {
1085 if (cgrp1 != new_cgrp)
1086 return false;
1087 } else {
1088 if (cgrp1 != cgrp2)
1089 return false;
1090 }
1091 }
1092 return true;
1093 }
1094
1095 /**
1096 * find_existing_css_set - init css array and find the matching css_set
1097 * @old_cset: the css_set that we're using before the cgroup transition
1098 * @cgrp: the cgroup that we're moving into
1099 * @template: out param for the new set of csses, should be clear on entry
1100 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1101 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1102 struct cgroup *cgrp,
1103 struct cgroup_subsys_state **template)
1104 {
1105 struct cgroup_root *root = cgrp->root;
1106 struct cgroup_subsys *ss;
1107 struct css_set *cset;
1108 unsigned long key;
1109 int i;
1110
1111 /*
1112 * Build the set of subsystem state objects that we want to see in the
1113 * new css_set. While subsystems can change globally, the entries here
1114 * won't change, so no need for locking.
1115 */
1116 for_each_subsys(ss, i) {
1117 if (root->subsys_mask & (1UL << i)) {
1118 /*
1119 * @ss is in this hierarchy, so we want the
1120 * effective css from @cgrp.
1121 */
1122 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1123 } else {
1124 /*
1125 * @ss is not in this hierarchy, so we don't want
1126 * to change the css.
1127 */
1128 template[i] = old_cset->subsys[i];
1129 }
1130 }
1131
1132 key = css_set_hash(template);
1133 hash_for_each_possible(css_set_table, cset, hlist, key) {
1134 if (!compare_css_sets(cset, old_cset, cgrp, template))
1135 continue;
1136
1137 /* This css_set matches what we need */
1138 return cset;
1139 }
1140
1141 /* No existing cgroup group matched */
1142 return NULL;
1143 }
1144
free_cgrp_cset_links(struct list_head * links_to_free)1145 static void free_cgrp_cset_links(struct list_head *links_to_free)
1146 {
1147 struct cgrp_cset_link *link, *tmp_link;
1148
1149 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1150 list_del(&link->cset_link);
1151 kfree(link);
1152 }
1153 }
1154
1155 /**
1156 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1157 * @count: the number of links to allocate
1158 * @tmp_links: list_head the allocated links are put on
1159 *
1160 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1161 * through ->cset_link. Returns 0 on success or -errno.
1162 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1163 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1164 {
1165 struct cgrp_cset_link *link;
1166 int i;
1167
1168 INIT_LIST_HEAD(tmp_links);
1169
1170 for (i = 0; i < count; i++) {
1171 link = kzalloc(sizeof(*link), GFP_KERNEL);
1172 if (!link) {
1173 free_cgrp_cset_links(tmp_links);
1174 return -ENOMEM;
1175 }
1176 list_add(&link->cset_link, tmp_links);
1177 }
1178 return 0;
1179 }
1180
1181 /**
1182 * link_css_set - a helper function to link a css_set to a cgroup
1183 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1184 * @cset: the css_set to be linked
1185 * @cgrp: the destination cgroup
1186 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1187 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1188 struct cgroup *cgrp)
1189 {
1190 struct cgrp_cset_link *link;
1191
1192 BUG_ON(list_empty(tmp_links));
1193
1194 if (cgroup_on_dfl(cgrp))
1195 cset->dfl_cgrp = cgrp;
1196
1197 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1198 link->cset = cset;
1199 link->cgrp = cgrp;
1200
1201 /*
1202 * Always add links to the tail of the lists so that the lists are
1203 * in chronological order.
1204 */
1205 list_move_tail(&link->cset_link, &cgrp->cset_links);
1206 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1207
1208 if (cgroup_parent(cgrp))
1209 cgroup_get_live(cgrp);
1210 }
1211
1212 /**
1213 * find_css_set - return a new css_set with one cgroup updated
1214 * @old_cset: the baseline css_set
1215 * @cgrp: the cgroup to be updated
1216 *
1217 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1218 * substituted into the appropriate hierarchy.
1219 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1220 static struct css_set *find_css_set(struct css_set *old_cset,
1221 struct cgroup *cgrp)
1222 {
1223 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1224 struct css_set *cset;
1225 struct list_head tmp_links;
1226 struct cgrp_cset_link *link;
1227 struct cgroup_subsys *ss;
1228 unsigned long key;
1229 int ssid;
1230
1231 lockdep_assert_held(&cgroup_mutex);
1232
1233 /* First see if we already have a cgroup group that matches
1234 * the desired set */
1235 spin_lock_irq(&css_set_lock);
1236 cset = find_existing_css_set(old_cset, cgrp, template);
1237 if (cset)
1238 get_css_set(cset);
1239 spin_unlock_irq(&css_set_lock);
1240
1241 if (cset)
1242 return cset;
1243
1244 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1245 if (!cset)
1246 return NULL;
1247
1248 /* Allocate all the cgrp_cset_link objects that we'll need */
1249 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1250 kfree(cset);
1251 return NULL;
1252 }
1253
1254 refcount_set(&cset->refcount, 1);
1255 cset->dom_cset = cset;
1256 INIT_LIST_HEAD(&cset->tasks);
1257 INIT_LIST_HEAD(&cset->mg_tasks);
1258 INIT_LIST_HEAD(&cset->dying_tasks);
1259 INIT_LIST_HEAD(&cset->task_iters);
1260 INIT_LIST_HEAD(&cset->threaded_csets);
1261 INIT_HLIST_NODE(&cset->hlist);
1262 INIT_LIST_HEAD(&cset->cgrp_links);
1263 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1264 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1265 INIT_LIST_HEAD(&cset->mg_node);
1266
1267 /* Copy the set of subsystem state objects generated in
1268 * find_existing_css_set() */
1269 memcpy(cset->subsys, template, sizeof(cset->subsys));
1270
1271 spin_lock_irq(&css_set_lock);
1272 /* Add reference counts and links from the new css_set. */
1273 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1274 struct cgroup *c = link->cgrp;
1275
1276 if (c->root == cgrp->root)
1277 c = cgrp;
1278 link_css_set(&tmp_links, cset, c);
1279 }
1280
1281 BUG_ON(!list_empty(&tmp_links));
1282
1283 css_set_count++;
1284
1285 /* Add @cset to the hash table */
1286 key = css_set_hash(cset->subsys);
1287 hash_add(css_set_table, &cset->hlist, key);
1288
1289 for_each_subsys(ss, ssid) {
1290 struct cgroup_subsys_state *css = cset->subsys[ssid];
1291
1292 list_add_tail(&cset->e_cset_node[ssid],
1293 &css->cgroup->e_csets[ssid]);
1294 css_get(css);
1295 }
1296
1297 spin_unlock_irq(&css_set_lock);
1298
1299 /*
1300 * If @cset should be threaded, look up the matching dom_cset and
1301 * link them up. We first fully initialize @cset then look for the
1302 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1303 * to stay empty until we return.
1304 */
1305 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1306 struct css_set *dcset;
1307
1308 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1309 if (!dcset) {
1310 put_css_set(cset);
1311 return NULL;
1312 }
1313
1314 spin_lock_irq(&css_set_lock);
1315 cset->dom_cset = dcset;
1316 list_add_tail(&cset->threaded_csets_node,
1317 &dcset->threaded_csets);
1318 spin_unlock_irq(&css_set_lock);
1319 }
1320
1321 return cset;
1322 }
1323
cgroup_root_from_kf(struct kernfs_root * kf_root)1324 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1325 {
1326 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1327
1328 return root_cgrp->root;
1329 }
1330
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1331 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1332 {
1333 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1334
1335 /*
1336 * see the comment above CGRP_ROOT_FAVOR_DYNMODS definition.
1337 * favordynmods can flip while task is between
1338 * cgroup_threadgroup_change_begin() and end(), so down_write global
1339 * cgroup_threadgroup_rwsem to synchronize them.
1340 *
1341 * Once cgroup_enable_per_threadgroup_rwsem is enabled, holding
1342 * cgroup_threadgroup_rwsem doesn't exlude tasks between
1343 * cgroup_thread_group_change_begin() and end() and thus it's unsafe to
1344 * turn off. As the scenario is unlikely, simply disallow disabling once
1345 * enabled and print out a warning.
1346 */
1347 percpu_down_write(&cgroup_threadgroup_rwsem);
1348 if (favor && !favoring) {
1349 cgroup_enable_per_threadgroup_rwsem = true;
1350 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1351 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1352 } else if (!favor && favoring) {
1353 if (cgroup_enable_per_threadgroup_rwsem)
1354 pr_warn_once("cgroup favordynmods: per threadgroup rwsem mechanism can't be disabled\n");
1355 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1356 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1357 }
1358 percpu_up_write(&cgroup_threadgroup_rwsem);
1359 }
1360
cgroup_init_root_id(struct cgroup_root * root)1361 static int cgroup_init_root_id(struct cgroup_root *root)
1362 {
1363 int id;
1364
1365 lockdep_assert_held(&cgroup_mutex);
1366
1367 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1368 if (id < 0)
1369 return id;
1370
1371 root->hierarchy_id = id;
1372 return 0;
1373 }
1374
cgroup_exit_root_id(struct cgroup_root * root)1375 static void cgroup_exit_root_id(struct cgroup_root *root)
1376 {
1377 lockdep_assert_held(&cgroup_mutex);
1378
1379 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1380 }
1381
cgroup_free_root(struct cgroup_root * root)1382 void cgroup_free_root(struct cgroup_root *root)
1383 {
1384 kfree_rcu(root, rcu);
1385 }
1386
cgroup_destroy_root(struct cgroup_root * root)1387 static void cgroup_destroy_root(struct cgroup_root *root)
1388 {
1389 struct cgroup *cgrp = &root->cgrp;
1390 struct cgrp_cset_link *link, *tmp_link;
1391 int ret;
1392
1393 trace_cgroup_destroy_root(root);
1394
1395 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1396
1397 BUG_ON(atomic_read(&root->nr_cgrps));
1398 BUG_ON(!list_empty(&cgrp->self.children));
1399
1400 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
1401 CGROUP_LIFETIME_OFFLINE, cgrp);
1402 WARN_ON_ONCE(notifier_to_errno(ret));
1403
1404 /* Rebind all subsystems back to the default hierarchy */
1405 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1406
1407 /*
1408 * Release all the links from cset_links to this hierarchy's
1409 * root cgroup
1410 */
1411 spin_lock_irq(&css_set_lock);
1412
1413 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1414 list_del(&link->cset_link);
1415 list_del(&link->cgrp_link);
1416 kfree(link);
1417 }
1418
1419 spin_unlock_irq(&css_set_lock);
1420
1421 WARN_ON_ONCE(list_empty(&root->root_list));
1422 list_del_rcu(&root->root_list);
1423 cgroup_root_count--;
1424
1425 if (!have_favordynmods)
1426 cgroup_favor_dynmods(root, false);
1427
1428 cgroup_exit_root_id(root);
1429
1430 cgroup_unlock();
1431
1432 kernfs_destroy_root(root->kf_root);
1433 cgroup_free_root(root);
1434 }
1435
1436 /*
1437 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1438 */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1439 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1440 struct cgroup_root *root)
1441 {
1442 struct cgroup *res_cgroup = NULL;
1443
1444 if (cset == &init_css_set) {
1445 res_cgroup = &root->cgrp;
1446 } else if (root == &cgrp_dfl_root) {
1447 res_cgroup = cset->dfl_cgrp;
1448 } else {
1449 struct cgrp_cset_link *link;
1450 lockdep_assert_held(&css_set_lock);
1451
1452 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1453 struct cgroup *c = link->cgrp;
1454
1455 if (c->root == root) {
1456 res_cgroup = c;
1457 break;
1458 }
1459 }
1460 }
1461
1462 /*
1463 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1464 * before we remove the cgroup root from the root_list. Consequently,
1465 * when accessing a cgroup root, the cset_link may have already been
1466 * freed, resulting in a NULL res_cgroup. However, by holding the
1467 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1468 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1469 * check.
1470 */
1471 return res_cgroup;
1472 }
1473
1474 /*
1475 * look up cgroup associated with current task's cgroup namespace on the
1476 * specified hierarchy
1477 */
1478 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1479 current_cgns_cgroup_from_root(struct cgroup_root *root)
1480 {
1481 struct cgroup *res = NULL;
1482 struct css_set *cset;
1483
1484 lockdep_assert_held(&css_set_lock);
1485
1486 rcu_read_lock();
1487
1488 cset = current->nsproxy->cgroup_ns->root_cset;
1489 res = __cset_cgroup_from_root(cset, root);
1490
1491 rcu_read_unlock();
1492
1493 /*
1494 * The namespace_sem is held by current, so the root cgroup can't
1495 * be umounted. Therefore, we can ensure that the res is non-NULL.
1496 */
1497 WARN_ON_ONCE(!res);
1498 return res;
1499 }
1500
1501 /*
1502 * Look up cgroup associated with current task's cgroup namespace on the default
1503 * hierarchy.
1504 *
1505 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1506 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1507 * pointers.
1508 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1509 * - As a bonus returned cgrp is pinned with the current because it cannot
1510 * switch cgroup_ns asynchronously.
1511 */
current_cgns_cgroup_dfl(void)1512 static struct cgroup *current_cgns_cgroup_dfl(void)
1513 {
1514 struct css_set *cset;
1515
1516 if (current->nsproxy) {
1517 cset = current->nsproxy->cgroup_ns->root_cset;
1518 return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1519 } else {
1520 /*
1521 * NOTE: This function may be called from bpf_cgroup_from_id()
1522 * on a task which has already passed exit_nsproxy_namespaces()
1523 * and nsproxy == NULL. Fall back to cgrp_dfl_root which will
1524 * make all cgroups visible for lookups.
1525 */
1526 return &cgrp_dfl_root.cgrp;
1527 }
1528 }
1529
1530 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1531 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1532 struct cgroup_root *root)
1533 {
1534 lockdep_assert_held(&css_set_lock);
1535
1536 return __cset_cgroup_from_root(cset, root);
1537 }
1538
1539 /*
1540 * Return the cgroup for "task" from the given hierarchy. Must be
1541 * called with css_set_lock held to prevent task's groups from being modified.
1542 * Must be called with either cgroup_mutex or rcu read lock to prevent the
1543 * cgroup root from being destroyed.
1544 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1545 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1546 struct cgroup_root *root)
1547 {
1548 /*
1549 * No need to lock the task - since we hold css_set_lock the
1550 * task can't change groups.
1551 */
1552 return cset_cgroup_from_root(task_css_set(task), root);
1553 }
1554
1555 /*
1556 * A task must hold cgroup_mutex to modify cgroups.
1557 *
1558 * Any task can increment and decrement the count field without lock.
1559 * So in general, code holding cgroup_mutex can't rely on the count
1560 * field not changing. However, if the count goes to zero, then only
1561 * cgroup_attach_task() can increment it again. Because a count of zero
1562 * means that no tasks are currently attached, therefore there is no
1563 * way a task attached to that cgroup can fork (the other way to
1564 * increment the count). So code holding cgroup_mutex can safely
1565 * assume that if the count is zero, it will stay zero. Similarly, if
1566 * a task holds cgroup_mutex on a cgroup with zero count, it
1567 * knows that the cgroup won't be removed, as cgroup_rmdir()
1568 * needs that mutex.
1569 *
1570 * A cgroup can only be deleted if both its 'count' of using tasks
1571 * is zero, and its list of 'children' cgroups is empty. Since all
1572 * tasks in the system use _some_ cgroup, and since there is always at
1573 * least one task in the system (init, pid == 1), therefore, root cgroup
1574 * always has either children cgroups and/or using tasks. So we don't
1575 * need a special hack to ensure that root cgroup cannot be deleted.
1576 *
1577 * P.S. One more locking exception. RCU is used to guard the
1578 * update of a tasks cgroup pointer by cgroup_attach_task()
1579 */
1580
1581 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1582
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1583 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1584 char *buf)
1585 {
1586 struct cgroup_subsys *ss = cft->ss;
1587
1588 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1589 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1590 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1591
1592 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1593 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1594 cft->name);
1595 } else {
1596 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1597 }
1598 return buf;
1599 }
1600
1601 /**
1602 * cgroup_file_mode - deduce file mode of a control file
1603 * @cft: the control file in question
1604 *
1605 * S_IRUGO for read, S_IWUSR for write.
1606 */
cgroup_file_mode(const struct cftype * cft)1607 static umode_t cgroup_file_mode(const struct cftype *cft)
1608 {
1609 umode_t mode = 0;
1610
1611 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1612 mode |= S_IRUGO;
1613
1614 if (cft->write_u64 || cft->write_s64 || cft->write) {
1615 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1616 mode |= S_IWUGO;
1617 else
1618 mode |= S_IWUSR;
1619 }
1620
1621 return mode;
1622 }
1623
1624 /**
1625 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1626 * @subtree_control: the new subtree_control mask to consider
1627 * @this_ss_mask: available subsystems
1628 *
1629 * On the default hierarchy, a subsystem may request other subsystems to be
1630 * enabled together through its ->depends_on mask. In such cases, more
1631 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1632 *
1633 * This function calculates which subsystems need to be enabled if
1634 * @subtree_control is to be applied while restricted to @this_ss_mask.
1635 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1636 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1637 {
1638 u16 cur_ss_mask = subtree_control;
1639 struct cgroup_subsys *ss;
1640 int ssid;
1641
1642 lockdep_assert_held(&cgroup_mutex);
1643
1644 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1645
1646 while (true) {
1647 u16 new_ss_mask = cur_ss_mask;
1648
1649 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1650 new_ss_mask |= ss->depends_on;
1651 } while_each_subsys_mask();
1652
1653 /*
1654 * Mask out subsystems which aren't available. This can
1655 * happen only if some depended-upon subsystems were bound
1656 * to non-default hierarchies.
1657 */
1658 new_ss_mask &= this_ss_mask;
1659
1660 if (new_ss_mask == cur_ss_mask)
1661 break;
1662 cur_ss_mask = new_ss_mask;
1663 }
1664
1665 return cur_ss_mask;
1666 }
1667
1668 /**
1669 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1670 * @kn: the kernfs_node being serviced
1671 *
1672 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1673 * the method finishes if locking succeeded. Note that once this function
1674 * returns the cgroup returned by cgroup_kn_lock_live() may become
1675 * inaccessible any time. If the caller intends to continue to access the
1676 * cgroup, it should pin it before invoking this function.
1677 */
cgroup_kn_unlock(struct kernfs_node * kn)1678 void cgroup_kn_unlock(struct kernfs_node *kn)
1679 {
1680 struct cgroup *cgrp;
1681
1682 if (kernfs_type(kn) == KERNFS_DIR)
1683 cgrp = kn->priv;
1684 else
1685 cgrp = kn_priv(kn);
1686
1687 cgroup_unlock();
1688
1689 kernfs_unbreak_active_protection(kn);
1690 cgroup_put(cgrp);
1691 }
1692
1693 /**
1694 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1695 * @kn: the kernfs_node being serviced
1696 * @drain_offline: perform offline draining on the cgroup
1697 *
1698 * This helper is to be used by a cgroup kernfs method currently servicing
1699 * @kn. It breaks the active protection, performs cgroup locking and
1700 * verifies that the associated cgroup is alive. Returns the cgroup if
1701 * alive; otherwise, %NULL. A successful return should be undone by a
1702 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1703 * cgroup is drained of offlining csses before return.
1704 *
1705 * Any cgroup kernfs method implementation which requires locking the
1706 * associated cgroup should use this helper. It avoids nesting cgroup
1707 * locking under kernfs active protection and allows all kernfs operations
1708 * including self-removal.
1709 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1710 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1711 {
1712 struct cgroup *cgrp;
1713
1714 if (kernfs_type(kn) == KERNFS_DIR)
1715 cgrp = kn->priv;
1716 else
1717 cgrp = kn_priv(kn);
1718
1719 /*
1720 * We're gonna grab cgroup_mutex which nests outside kernfs
1721 * active_ref. cgroup liveliness check alone provides enough
1722 * protection against removal. Ensure @cgrp stays accessible and
1723 * break the active_ref protection.
1724 */
1725 if (!cgroup_tryget(cgrp))
1726 return NULL;
1727 kernfs_break_active_protection(kn);
1728
1729 if (drain_offline)
1730 cgroup_lock_and_drain_offline(cgrp);
1731 else
1732 cgroup_lock();
1733
1734 if (!cgroup_is_dead(cgrp))
1735 return cgrp;
1736
1737 cgroup_kn_unlock(kn);
1738 return NULL;
1739 }
1740
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1741 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1742 {
1743 char name[CGROUP_FILE_NAME_MAX];
1744
1745 lockdep_assert_held(&cgroup_mutex);
1746
1747 if (cft->file_offset) {
1748 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1749 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1750
1751 spin_lock_irq(&cgroup_file_kn_lock);
1752 cfile->kn = NULL;
1753 spin_unlock_irq(&cgroup_file_kn_lock);
1754
1755 timer_delete_sync(&cfile->notify_timer);
1756 }
1757
1758 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1759 }
1760
1761 /**
1762 * css_clear_dir - remove subsys files in a cgroup directory
1763 * @css: target css
1764 */
css_clear_dir(struct cgroup_subsys_state * css)1765 static void css_clear_dir(struct cgroup_subsys_state *css)
1766 {
1767 struct cgroup *cgrp = css->cgroup;
1768 struct cftype *cfts;
1769
1770 if (!(css->flags & CSS_VISIBLE))
1771 return;
1772
1773 css->flags &= ~CSS_VISIBLE;
1774
1775 if (css_is_self(css)) {
1776 if (cgroup_on_dfl(cgrp)) {
1777 cgroup_addrm_files(css, cgrp,
1778 cgroup_base_files, false);
1779 if (cgroup_psi_enabled())
1780 cgroup_addrm_files(css, cgrp,
1781 cgroup_psi_files, false);
1782 } else {
1783 cgroup_addrm_files(css, cgrp,
1784 cgroup1_base_files, false);
1785 }
1786 } else {
1787 list_for_each_entry(cfts, &css->ss->cfts, node)
1788 cgroup_addrm_files(css, cgrp, cfts, false);
1789 }
1790 }
1791
1792 /**
1793 * css_populate_dir - create subsys files in a cgroup directory
1794 * @css: target css
1795 *
1796 * On failure, no file is added.
1797 */
css_populate_dir(struct cgroup_subsys_state * css)1798 static int css_populate_dir(struct cgroup_subsys_state *css)
1799 {
1800 struct cgroup *cgrp = css->cgroup;
1801 struct cftype *cfts, *failed_cfts;
1802 int ret;
1803
1804 if (css->flags & CSS_VISIBLE)
1805 return 0;
1806
1807 if (css_is_self(css)) {
1808 if (cgroup_on_dfl(cgrp)) {
1809 ret = cgroup_addrm_files(css, cgrp,
1810 cgroup_base_files, true);
1811 if (ret < 0)
1812 return ret;
1813
1814 if (cgroup_psi_enabled()) {
1815 ret = cgroup_addrm_files(css, cgrp,
1816 cgroup_psi_files, true);
1817 if (ret < 0) {
1818 cgroup_addrm_files(css, cgrp,
1819 cgroup_base_files, false);
1820 return ret;
1821 }
1822 }
1823 } else {
1824 ret = cgroup_addrm_files(css, cgrp,
1825 cgroup1_base_files, true);
1826 if (ret < 0)
1827 return ret;
1828 }
1829 } else {
1830 list_for_each_entry(cfts, &css->ss->cfts, node) {
1831 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1832 if (ret < 0) {
1833 failed_cfts = cfts;
1834 goto err;
1835 }
1836 }
1837 }
1838
1839 css->flags |= CSS_VISIBLE;
1840
1841 return 0;
1842 err:
1843 list_for_each_entry(cfts, &css->ss->cfts, node) {
1844 if (cfts == failed_cfts)
1845 break;
1846 cgroup_addrm_files(css, cgrp, cfts, false);
1847 }
1848 return ret;
1849 }
1850
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1851 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1852 {
1853 struct cgroup *dcgrp = &dst_root->cgrp;
1854 struct cgroup_subsys *ss;
1855 int ssid, ret;
1856 u16 dfl_disable_ss_mask = 0;
1857
1858 lockdep_assert_held(&cgroup_mutex);
1859
1860 do_each_subsys_mask(ss, ssid, ss_mask) {
1861 /*
1862 * If @ss has non-root csses attached to it, can't move.
1863 * If @ss is an implicit controller, it is exempt from this
1864 * rule and can be stolen.
1865 */
1866 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1867 !ss->implicit_on_dfl)
1868 return -EBUSY;
1869
1870 /* can't move between two non-dummy roots either */
1871 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1872 return -EBUSY;
1873
1874 /*
1875 * Collect ssid's that need to be disabled from default
1876 * hierarchy.
1877 */
1878 if (ss->root == &cgrp_dfl_root)
1879 dfl_disable_ss_mask |= 1 << ssid;
1880
1881 } while_each_subsys_mask();
1882
1883 if (dfl_disable_ss_mask) {
1884 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1885
1886 /*
1887 * Controllers from default hierarchy that need to be rebound
1888 * are all disabled together in one go.
1889 */
1890 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1891 WARN_ON(cgroup_apply_control(scgrp));
1892 cgroup_finalize_control(scgrp, 0);
1893 }
1894
1895 do_each_subsys_mask(ss, ssid, ss_mask) {
1896 struct cgroup_root *src_root = ss->root;
1897 struct cgroup *scgrp = &src_root->cgrp;
1898 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1899 struct css_set *cset, *cset_pos;
1900 struct css_task_iter *it;
1901
1902 WARN_ON(!css || cgroup_css(dcgrp, ss));
1903
1904 if (src_root != &cgrp_dfl_root) {
1905 /* disable from the source */
1906 src_root->subsys_mask &= ~(1 << ssid);
1907 WARN_ON(cgroup_apply_control(scgrp));
1908 cgroup_finalize_control(scgrp, 0);
1909 }
1910
1911 /* rebind */
1912 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1913 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1914 ss->root = dst_root;
1915
1916 spin_lock_irq(&css_set_lock);
1917 css->cgroup = dcgrp;
1918 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1919 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1920 e_cset_node[ss->id]) {
1921 list_move_tail(&cset->e_cset_node[ss->id],
1922 &dcgrp->e_csets[ss->id]);
1923 /*
1924 * all css_sets of scgrp together in same order to dcgrp,
1925 * patch in-flight iterators to preserve correct iteration.
1926 * since the iterator is always advanced right away and
1927 * finished when it->cset_pos meets it->cset_head, so only
1928 * update it->cset_head is enough here.
1929 */
1930 list_for_each_entry(it, &cset->task_iters, iters_node)
1931 if (it->cset_head == &scgrp->e_csets[ss->id])
1932 it->cset_head = &dcgrp->e_csets[ss->id];
1933 }
1934 spin_unlock_irq(&css_set_lock);
1935
1936 /* default hierarchy doesn't enable controllers by default */
1937 dst_root->subsys_mask |= 1 << ssid;
1938 if (dst_root == &cgrp_dfl_root) {
1939 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1940 } else {
1941 dcgrp->subtree_control |= 1 << ssid;
1942 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1943 }
1944
1945 ret = cgroup_apply_control(dcgrp);
1946 if (ret)
1947 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1948 ss->name, ret);
1949
1950 if (ss->bind)
1951 ss->bind(css);
1952 } while_each_subsys_mask();
1953
1954 kernfs_activate(dcgrp->kn);
1955 return 0;
1956 }
1957
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1958 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1959 struct kernfs_root *kf_root)
1960 {
1961 int len = 0;
1962 char *buf = NULL;
1963 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1964 struct cgroup *ns_cgroup;
1965
1966 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1967 if (!buf)
1968 return -ENOMEM;
1969
1970 spin_lock_irq(&css_set_lock);
1971 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1972 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1973 spin_unlock_irq(&css_set_lock);
1974
1975 if (len == -E2BIG)
1976 len = -ERANGE;
1977 else if (len > 0) {
1978 seq_escape(sf, buf, " \t\n\\");
1979 len = 0;
1980 }
1981 kfree(buf);
1982 return len;
1983 }
1984
1985 enum cgroup2_param {
1986 Opt_nsdelegate,
1987 Opt_favordynmods,
1988 Opt_memory_localevents,
1989 Opt_memory_recursiveprot,
1990 Opt_memory_hugetlb_accounting,
1991 Opt_pids_localevents,
1992 nr__cgroup2_params
1993 };
1994
1995 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1996 fsparam_flag("nsdelegate", Opt_nsdelegate),
1997 fsparam_flag("favordynmods", Opt_favordynmods),
1998 fsparam_flag("memory_localevents", Opt_memory_localevents),
1999 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
2000 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
2001 fsparam_flag("pids_localevents", Opt_pids_localevents),
2002 {}
2003 };
2004
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)2005 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
2006 {
2007 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2008 struct fs_parse_result result;
2009 int opt;
2010
2011 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
2012 if (opt < 0)
2013 return opt;
2014
2015 switch (opt) {
2016 case Opt_nsdelegate:
2017 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
2018 return 0;
2019 case Opt_favordynmods:
2020 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2021 return 0;
2022 case Opt_memory_localevents:
2023 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2024 return 0;
2025 case Opt_memory_recursiveprot:
2026 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2027 return 0;
2028 case Opt_memory_hugetlb_accounting:
2029 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2030 return 0;
2031 case Opt_pids_localevents:
2032 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2033 return 0;
2034 }
2035 return -EINVAL;
2036 }
2037
of_peak(struct kernfs_open_file * of)2038 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
2039 {
2040 struct cgroup_file_ctx *ctx = of->priv;
2041
2042 return &ctx->peak;
2043 }
2044
apply_cgroup_root_flags(unsigned int root_flags)2045 static void apply_cgroup_root_flags(unsigned int root_flags)
2046 {
2047 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
2048 if (root_flags & CGRP_ROOT_NS_DELEGATE)
2049 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2050 else
2051 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2052
2053 cgroup_favor_dynmods(&cgrp_dfl_root,
2054 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2055
2056 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2057 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2058 else
2059 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2060
2061 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2062 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2063 else
2064 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2065
2066 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2067 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2068 else
2069 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2070
2071 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2072 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2073 else
2074 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2075 }
2076 }
2077
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2078 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2079 {
2080 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2081 seq_puts(seq, ",nsdelegate");
2082 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2083 seq_puts(seq, ",favordynmods");
2084 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2085 seq_puts(seq, ",memory_localevents");
2086 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2087 seq_puts(seq, ",memory_recursiveprot");
2088 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2089 seq_puts(seq, ",memory_hugetlb_accounting");
2090 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2091 seq_puts(seq, ",pids_localevents");
2092 return 0;
2093 }
2094
cgroup_reconfigure(struct fs_context * fc)2095 static int cgroup_reconfigure(struct fs_context *fc)
2096 {
2097 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2098
2099 apply_cgroup_root_flags(ctx->flags);
2100 return 0;
2101 }
2102
init_cgroup_housekeeping(struct cgroup * cgrp)2103 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2104 {
2105 struct cgroup_subsys *ss;
2106 int ssid;
2107
2108 INIT_LIST_HEAD(&cgrp->self.sibling);
2109 INIT_LIST_HEAD(&cgrp->self.children);
2110 INIT_LIST_HEAD(&cgrp->cset_links);
2111 INIT_LIST_HEAD(&cgrp->pidlists);
2112 mutex_init(&cgrp->pidlist_mutex);
2113 cgrp->self.cgroup = cgrp;
2114 cgrp->self.flags |= CSS_ONLINE;
2115 cgrp->dom_cgrp = cgrp;
2116 cgrp->max_descendants = INT_MAX;
2117 cgrp->max_depth = INT_MAX;
2118 prev_cputime_init(&cgrp->prev_cputime);
2119
2120 for_each_subsys(ss, ssid)
2121 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2122
2123 #ifdef CONFIG_CGROUP_BPF
2124 for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++)
2125 cgrp->bpf.revisions[i] = 1;
2126 #endif
2127
2128 init_waitqueue_head(&cgrp->offline_waitq);
2129 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2130 }
2131
init_cgroup_root(struct cgroup_fs_context * ctx)2132 void init_cgroup_root(struct cgroup_fs_context *ctx)
2133 {
2134 struct cgroup_root *root = ctx->root;
2135 struct cgroup *cgrp = &root->cgrp;
2136
2137 INIT_LIST_HEAD_RCU(&root->root_list);
2138 atomic_set(&root->nr_cgrps, 1);
2139 cgrp->root = root;
2140 init_cgroup_housekeeping(cgrp);
2141
2142 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2143 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2144 if (ctx->release_agent)
2145 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2146 if (ctx->name)
2147 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2148 if (ctx->cpuset_clone_children)
2149 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2150 }
2151
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2152 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2153 {
2154 LIST_HEAD(tmp_links);
2155 struct cgroup *root_cgrp = &root->cgrp;
2156 struct kernfs_syscall_ops *kf_sops;
2157 struct css_set *cset;
2158 int i, ret;
2159
2160 lockdep_assert_held(&cgroup_mutex);
2161
2162 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2163 0, GFP_KERNEL);
2164 if (ret)
2165 goto out;
2166
2167 /*
2168 * We're accessing css_set_count without locking css_set_lock here,
2169 * but that's OK - it can only be increased by someone holding
2170 * cgroup_lock, and that's us. Later rebinding may disable
2171 * controllers on the default hierarchy and thus create new csets,
2172 * which can't be more than the existing ones. Allocate 2x.
2173 */
2174 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2175 if (ret)
2176 goto cancel_ref;
2177
2178 ret = cgroup_init_root_id(root);
2179 if (ret)
2180 goto cancel_ref;
2181
2182 kf_sops = root == &cgrp_dfl_root ?
2183 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2184
2185 root->kf_root = kernfs_create_root(kf_sops,
2186 KERNFS_ROOT_CREATE_DEACTIVATED |
2187 KERNFS_ROOT_SUPPORT_EXPORTOP |
2188 KERNFS_ROOT_SUPPORT_USER_XATTR |
2189 KERNFS_ROOT_INVARIANT_PARENT,
2190 root_cgrp);
2191 if (IS_ERR(root->kf_root)) {
2192 ret = PTR_ERR(root->kf_root);
2193 goto exit_root_id;
2194 }
2195 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2196 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2197 root_cgrp->ancestors[0] = root_cgrp;
2198
2199 ret = css_populate_dir(&root_cgrp->self);
2200 if (ret)
2201 goto destroy_root;
2202
2203 ret = css_rstat_init(&root_cgrp->self);
2204 if (ret)
2205 goto destroy_root;
2206
2207 ret = rebind_subsystems(root, ss_mask);
2208 if (ret)
2209 goto exit_stats;
2210
2211 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
2212 CGROUP_LIFETIME_ONLINE, root_cgrp);
2213 WARN_ON_ONCE(notifier_to_errno(ret));
2214
2215 trace_cgroup_setup_root(root);
2216
2217 /*
2218 * There must be no failure case after here, since rebinding takes
2219 * care of subsystems' refcounts, which are explicitly dropped in
2220 * the failure exit path.
2221 */
2222 list_add_rcu(&root->root_list, &cgroup_roots);
2223 cgroup_root_count++;
2224
2225 /*
2226 * Link the root cgroup in this hierarchy into all the css_set
2227 * objects.
2228 */
2229 spin_lock_irq(&css_set_lock);
2230 hash_for_each(css_set_table, i, cset, hlist) {
2231 link_css_set(&tmp_links, cset, root_cgrp);
2232 if (css_set_populated(cset))
2233 cgroup_update_populated(root_cgrp, true);
2234 }
2235 spin_unlock_irq(&css_set_lock);
2236
2237 BUG_ON(!list_empty(&root_cgrp->self.children));
2238 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2239
2240 ret = 0;
2241 goto out;
2242
2243 exit_stats:
2244 css_rstat_exit(&root_cgrp->self);
2245 destroy_root:
2246 kernfs_destroy_root(root->kf_root);
2247 root->kf_root = NULL;
2248 exit_root_id:
2249 cgroup_exit_root_id(root);
2250 cancel_ref:
2251 percpu_ref_exit(&root_cgrp->self.refcnt);
2252 out:
2253 free_cgrp_cset_links(&tmp_links);
2254 return ret;
2255 }
2256
cgroup_do_get_tree(struct fs_context * fc)2257 int cgroup_do_get_tree(struct fs_context *fc)
2258 {
2259 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2260 int ret;
2261
2262 ctx->kfc.root = ctx->root->kf_root;
2263 if (fc->fs_type == &cgroup2_fs_type)
2264 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2265 else
2266 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2267 ret = kernfs_get_tree(fc);
2268
2269 /*
2270 * In non-init cgroup namespace, instead of root cgroup's dentry,
2271 * we return the dentry corresponding to the cgroupns->root_cgrp.
2272 */
2273 if (!ret && ctx->ns != &init_cgroup_ns) {
2274 struct dentry *nsdentry;
2275 struct super_block *sb = fc->root->d_sb;
2276 struct cgroup *cgrp;
2277
2278 cgroup_lock();
2279 spin_lock_irq(&css_set_lock);
2280
2281 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2282
2283 spin_unlock_irq(&css_set_lock);
2284 cgroup_unlock();
2285
2286 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2287 dput(fc->root);
2288 if (IS_ERR(nsdentry)) {
2289 deactivate_locked_super(sb);
2290 ret = PTR_ERR(nsdentry);
2291 nsdentry = NULL;
2292 }
2293 fc->root = nsdentry;
2294 }
2295
2296 if (!ctx->kfc.new_sb_created)
2297 cgroup_put(&ctx->root->cgrp);
2298
2299 return ret;
2300 }
2301
2302 /*
2303 * Destroy a cgroup filesystem context.
2304 */
cgroup_fs_context_free(struct fs_context * fc)2305 static void cgroup_fs_context_free(struct fs_context *fc)
2306 {
2307 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2308
2309 kfree(ctx->name);
2310 kfree(ctx->release_agent);
2311 put_cgroup_ns(ctx->ns);
2312 kernfs_free_fs_context(fc);
2313 kfree(ctx);
2314 }
2315
cgroup_get_tree(struct fs_context * fc)2316 static int cgroup_get_tree(struct fs_context *fc)
2317 {
2318 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2319 int ret;
2320
2321 WRITE_ONCE(cgrp_dfl_visible, true);
2322 cgroup_get_live(&cgrp_dfl_root.cgrp);
2323 ctx->root = &cgrp_dfl_root;
2324
2325 ret = cgroup_do_get_tree(fc);
2326 if (!ret)
2327 apply_cgroup_root_flags(ctx->flags);
2328 return ret;
2329 }
2330
2331 static const struct fs_context_operations cgroup_fs_context_ops = {
2332 .free = cgroup_fs_context_free,
2333 .parse_param = cgroup2_parse_param,
2334 .get_tree = cgroup_get_tree,
2335 .reconfigure = cgroup_reconfigure,
2336 };
2337
2338 static const struct fs_context_operations cgroup1_fs_context_ops = {
2339 .free = cgroup_fs_context_free,
2340 .parse_param = cgroup1_parse_param,
2341 .get_tree = cgroup1_get_tree,
2342 .reconfigure = cgroup1_reconfigure,
2343 };
2344
2345 /*
2346 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2347 * we select the namespace we're going to use.
2348 */
cgroup_init_fs_context(struct fs_context * fc)2349 static int cgroup_init_fs_context(struct fs_context *fc)
2350 {
2351 struct cgroup_fs_context *ctx;
2352
2353 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2354 if (!ctx)
2355 return -ENOMEM;
2356
2357 ctx->ns = current->nsproxy->cgroup_ns;
2358 get_cgroup_ns(ctx->ns);
2359 fc->fs_private = &ctx->kfc;
2360 if (fc->fs_type == &cgroup2_fs_type)
2361 fc->ops = &cgroup_fs_context_ops;
2362 else
2363 fc->ops = &cgroup1_fs_context_ops;
2364 put_user_ns(fc->user_ns);
2365 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2366 fc->global = true;
2367
2368 if (have_favordynmods)
2369 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2370
2371 return 0;
2372 }
2373
cgroup_kill_sb(struct super_block * sb)2374 static void cgroup_kill_sb(struct super_block *sb)
2375 {
2376 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2377 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2378
2379 /*
2380 * If @root doesn't have any children, start killing it.
2381 * This prevents new mounts by disabling percpu_ref_tryget_live().
2382 *
2383 * And don't kill the default root.
2384 */
2385 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2386 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2387 percpu_ref_kill(&root->cgrp.self.refcnt);
2388 cgroup_put(&root->cgrp);
2389 kernfs_kill_sb(sb);
2390 }
2391
2392 struct file_system_type cgroup_fs_type = {
2393 .name = "cgroup",
2394 .init_fs_context = cgroup_init_fs_context,
2395 .parameters = cgroup1_fs_parameters,
2396 .kill_sb = cgroup_kill_sb,
2397 .fs_flags = FS_USERNS_MOUNT,
2398 };
2399
2400 static struct file_system_type cgroup2_fs_type = {
2401 .name = "cgroup2",
2402 .init_fs_context = cgroup_init_fs_context,
2403 .parameters = cgroup2_fs_parameters,
2404 .kill_sb = cgroup_kill_sb,
2405 .fs_flags = FS_USERNS_MOUNT,
2406 };
2407
2408 #ifdef CONFIG_CPUSETS_V1
2409 enum cpuset_param {
2410 Opt_cpuset_v2_mode,
2411 };
2412
2413 static const struct fs_parameter_spec cpuset_fs_parameters[] = {
2414 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
2415 {}
2416 };
2417
cpuset_parse_param(struct fs_context * fc,struct fs_parameter * param)2418 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
2419 {
2420 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2421 struct fs_parse_result result;
2422 int opt;
2423
2424 opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
2425 if (opt < 0)
2426 return opt;
2427
2428 switch (opt) {
2429 case Opt_cpuset_v2_mode:
2430 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
2431 return 0;
2432 }
2433 return -EINVAL;
2434 }
2435
2436 static const struct fs_context_operations cpuset_fs_context_ops = {
2437 .get_tree = cgroup1_get_tree,
2438 .free = cgroup_fs_context_free,
2439 .parse_param = cpuset_parse_param,
2440 };
2441
2442 /*
2443 * This is ugly, but preserves the userspace API for existing cpuset
2444 * users. If someone tries to mount the "cpuset" filesystem, we
2445 * silently switch it to mount "cgroup" instead
2446 */
cpuset_init_fs_context(struct fs_context * fc)2447 static int cpuset_init_fs_context(struct fs_context *fc)
2448 {
2449 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2450 struct cgroup_fs_context *ctx;
2451 int err;
2452
2453 err = cgroup_init_fs_context(fc);
2454 if (err) {
2455 kfree(agent);
2456 return err;
2457 }
2458
2459 fc->ops = &cpuset_fs_context_ops;
2460
2461 ctx = cgroup_fc2context(fc);
2462 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2463 ctx->flags |= CGRP_ROOT_NOPREFIX;
2464 ctx->release_agent = agent;
2465
2466 get_filesystem(&cgroup_fs_type);
2467 put_filesystem(fc->fs_type);
2468 fc->fs_type = &cgroup_fs_type;
2469
2470 return 0;
2471 }
2472
2473 static struct file_system_type cpuset_fs_type = {
2474 .name = "cpuset",
2475 .init_fs_context = cpuset_init_fs_context,
2476 .parameters = cpuset_fs_parameters,
2477 .fs_flags = FS_USERNS_MOUNT,
2478 };
2479 #endif
2480
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2481 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2482 struct cgroup_namespace *ns)
2483 {
2484 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2485
2486 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2487 }
2488
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2489 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2490 struct cgroup_namespace *ns)
2491 {
2492 int ret;
2493
2494 cgroup_lock();
2495 spin_lock_irq(&css_set_lock);
2496
2497 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2498
2499 spin_unlock_irq(&css_set_lock);
2500 cgroup_unlock();
2501
2502 return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2505
2506 /**
2507 * cgroup_attach_lock - Lock for ->attach()
2508 * @lock_mode: whether acquire and acquire which rwsem
2509 * @tsk: thread group to lock
2510 *
2511 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2512 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2513 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2514 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2515 * lead to deadlocks.
2516 *
2517 * Bringing up a CPU may involve creating and destroying tasks which requires
2518 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2519 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2520 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2521 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2522 * the threadgroup_rwsem to be released to create new tasks. For more details:
2523 *
2524 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2525 *
2526 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2527 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2528 * CPU hotplug is disabled on entry.
2529 *
2530 * When favordynmods is enabled, take per threadgroup rwsem to reduce overhead
2531 * on dynamic cgroup modifications. see the comment above
2532 * CGRP_ROOT_FAVOR_DYNMODS definition.
2533 *
2534 * tsk is not NULL only when writing to cgroup.procs.
2535 */
cgroup_attach_lock(enum cgroup_attach_lock_mode lock_mode,struct task_struct * tsk)2536 void cgroup_attach_lock(enum cgroup_attach_lock_mode lock_mode,
2537 struct task_struct *tsk)
2538 {
2539 cpus_read_lock();
2540
2541 switch (lock_mode) {
2542 case CGRP_ATTACH_LOCK_NONE:
2543 break;
2544 case CGRP_ATTACH_LOCK_GLOBAL:
2545 percpu_down_write(&cgroup_threadgroup_rwsem);
2546 break;
2547 case CGRP_ATTACH_LOCK_PER_THREADGROUP:
2548 down_write(&tsk->signal->cgroup_threadgroup_rwsem);
2549 break;
2550 default:
2551 pr_warn("cgroup: Unexpected attach lock mode.");
2552 break;
2553 }
2554 }
2555
2556 /**
2557 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2558 * @lock_mode: whether release and release which rwsem
2559 * @tsk: thread group to lock
2560 */
cgroup_attach_unlock(enum cgroup_attach_lock_mode lock_mode,struct task_struct * tsk)2561 void cgroup_attach_unlock(enum cgroup_attach_lock_mode lock_mode,
2562 struct task_struct *tsk)
2563 {
2564 switch (lock_mode) {
2565 case CGRP_ATTACH_LOCK_NONE:
2566 break;
2567 case CGRP_ATTACH_LOCK_GLOBAL:
2568 percpu_up_write(&cgroup_threadgroup_rwsem);
2569 break;
2570 case CGRP_ATTACH_LOCK_PER_THREADGROUP:
2571 up_write(&tsk->signal->cgroup_threadgroup_rwsem);
2572 break;
2573 default:
2574 pr_warn("cgroup: Unexpected attach lock mode.");
2575 break;
2576 }
2577
2578 cpus_read_unlock();
2579 }
2580
2581 /**
2582 * cgroup_migrate_add_task - add a migration target task to a migration context
2583 * @task: target task
2584 * @mgctx: target migration context
2585 *
2586 * Add @task, which is a migration target, to @mgctx->tset. This function
2587 * becomes noop if @task doesn't need to be migrated. @task's css_set
2588 * should have been added as a migration source and @task->cg_list will be
2589 * moved from the css_set's tasks list to mg_tasks one.
2590 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2591 static void cgroup_migrate_add_task(struct task_struct *task,
2592 struct cgroup_mgctx *mgctx)
2593 {
2594 struct css_set *cset;
2595
2596 lockdep_assert_held(&css_set_lock);
2597
2598 /* @task either already exited or can't exit until the end */
2599 if (task->flags & PF_EXITING)
2600 return;
2601
2602 /* cgroup_threadgroup_rwsem protects racing against forks */
2603 WARN_ON_ONCE(list_empty(&task->cg_list));
2604
2605 cset = task_css_set(task);
2606 if (!cset->mg_src_cgrp)
2607 return;
2608
2609 mgctx->tset.nr_tasks++;
2610
2611 list_move_tail(&task->cg_list, &cset->mg_tasks);
2612 if (list_empty(&cset->mg_node))
2613 list_add_tail(&cset->mg_node,
2614 &mgctx->tset.src_csets);
2615 if (list_empty(&cset->mg_dst_cset->mg_node))
2616 list_add_tail(&cset->mg_dst_cset->mg_node,
2617 &mgctx->tset.dst_csets);
2618 }
2619
2620 /**
2621 * cgroup_taskset_first - reset taskset and return the first task
2622 * @tset: taskset of interest
2623 * @dst_cssp: output variable for the destination css
2624 *
2625 * @tset iteration is initialized and the first task is returned.
2626 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2627 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2628 struct cgroup_subsys_state **dst_cssp)
2629 {
2630 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2631 tset->cur_task = NULL;
2632
2633 return cgroup_taskset_next(tset, dst_cssp);
2634 }
2635
2636 /**
2637 * cgroup_taskset_next - iterate to the next task in taskset
2638 * @tset: taskset of interest
2639 * @dst_cssp: output variable for the destination css
2640 *
2641 * Return the next task in @tset. Iteration must have been initialized
2642 * with cgroup_taskset_first().
2643 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2644 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2645 struct cgroup_subsys_state **dst_cssp)
2646 {
2647 struct css_set *cset = tset->cur_cset;
2648 struct task_struct *task = tset->cur_task;
2649
2650 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2651 if (!task)
2652 task = list_first_entry(&cset->mg_tasks,
2653 struct task_struct, cg_list);
2654 else
2655 task = list_next_entry(task, cg_list);
2656
2657 if (&task->cg_list != &cset->mg_tasks) {
2658 tset->cur_cset = cset;
2659 tset->cur_task = task;
2660
2661 /*
2662 * This function may be called both before and
2663 * after cgroup_migrate_execute(). The two cases
2664 * can be distinguished by looking at whether @cset
2665 * has its ->mg_dst_cset set.
2666 */
2667 if (cset->mg_dst_cset)
2668 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2669 else
2670 *dst_cssp = cset->subsys[tset->ssid];
2671
2672 return task;
2673 }
2674
2675 cset = list_next_entry(cset, mg_node);
2676 task = NULL;
2677 }
2678
2679 return NULL;
2680 }
2681
2682 /**
2683 * cgroup_migrate_execute - migrate a taskset
2684 * @mgctx: migration context
2685 *
2686 * Migrate tasks in @mgctx as setup by migration preparation functions.
2687 * This function fails iff one of the ->can_attach callbacks fails and
2688 * guarantees that either all or none of the tasks in @mgctx are migrated.
2689 * @mgctx is consumed regardless of success.
2690 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2691 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2692 {
2693 struct cgroup_taskset *tset = &mgctx->tset;
2694 struct cgroup_subsys *ss;
2695 struct task_struct *task, *tmp_task;
2696 struct css_set *cset, *tmp_cset;
2697 int ssid, failed_ssid, ret;
2698
2699 /* check that we can legitimately attach to the cgroup */
2700 if (tset->nr_tasks) {
2701 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2702 if (ss->can_attach) {
2703 tset->ssid = ssid;
2704 ret = ss->can_attach(tset);
2705 if (ret) {
2706 failed_ssid = ssid;
2707 goto out_cancel_attach;
2708 }
2709 }
2710 } while_each_subsys_mask();
2711 }
2712
2713 /*
2714 * Now that we're guaranteed success, proceed to move all tasks to
2715 * the new cgroup. There are no failure cases after here, so this
2716 * is the commit point.
2717 */
2718 spin_lock_irq(&css_set_lock);
2719 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2720 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2721 struct css_set *from_cset = task_css_set(task);
2722 struct css_set *to_cset = cset->mg_dst_cset;
2723
2724 get_css_set(to_cset);
2725 to_cset->nr_tasks++;
2726 css_set_move_task(task, from_cset, to_cset, true);
2727 from_cset->nr_tasks--;
2728 /*
2729 * If the source or destination cgroup is frozen,
2730 * the task might require to change its state.
2731 */
2732 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2733 to_cset->dfl_cgrp);
2734 put_css_set_locked(from_cset);
2735
2736 }
2737 }
2738 spin_unlock_irq(&css_set_lock);
2739
2740 /*
2741 * Migration is committed, all target tasks are now on dst_csets.
2742 * Nothing is sensitive to fork() after this point. Notify
2743 * controllers that migration is complete.
2744 */
2745 tset->csets = &tset->dst_csets;
2746
2747 if (tset->nr_tasks) {
2748 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2749 if (ss->attach) {
2750 tset->ssid = ssid;
2751 ss->attach(tset);
2752 }
2753 } while_each_subsys_mask();
2754 }
2755
2756 ret = 0;
2757 goto out_release_tset;
2758
2759 out_cancel_attach:
2760 if (tset->nr_tasks) {
2761 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2762 if (ssid == failed_ssid)
2763 break;
2764 if (ss->cancel_attach) {
2765 tset->ssid = ssid;
2766 ss->cancel_attach(tset);
2767 }
2768 } while_each_subsys_mask();
2769 }
2770 out_release_tset:
2771 spin_lock_irq(&css_set_lock);
2772 list_splice_init(&tset->dst_csets, &tset->src_csets);
2773 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2774 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2775 list_del_init(&cset->mg_node);
2776 }
2777 spin_unlock_irq(&css_set_lock);
2778
2779 /*
2780 * Re-initialize the cgroup_taskset structure in case it is reused
2781 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2782 * iteration.
2783 */
2784 tset->nr_tasks = 0;
2785 tset->csets = &tset->src_csets;
2786 return ret;
2787 }
2788
2789 /**
2790 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2791 * @dst_cgrp: destination cgroup to test
2792 *
2793 * On the default hierarchy, except for the mixable, (possible) thread root
2794 * and threaded cgroups, subtree_control must be zero for migration
2795 * destination cgroups with tasks so that child cgroups don't compete
2796 * against tasks.
2797 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2798 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2799 {
2800 /* v1 doesn't have any restriction */
2801 if (!cgroup_on_dfl(dst_cgrp))
2802 return 0;
2803
2804 /* verify @dst_cgrp can host resources */
2805 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2806 return -EOPNOTSUPP;
2807
2808 /*
2809 * If @dst_cgrp is already or can become a thread root or is
2810 * threaded, it doesn't matter.
2811 */
2812 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2813 return 0;
2814
2815 /* apply no-internal-process constraint */
2816 if (dst_cgrp->subtree_control)
2817 return -EBUSY;
2818
2819 return 0;
2820 }
2821
2822 /**
2823 * cgroup_migrate_finish - cleanup after attach
2824 * @mgctx: migration context
2825 *
2826 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2827 * those functions for details.
2828 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2829 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2830 {
2831 struct css_set *cset, *tmp_cset;
2832
2833 lockdep_assert_held(&cgroup_mutex);
2834
2835 spin_lock_irq(&css_set_lock);
2836
2837 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2838 mg_src_preload_node) {
2839 cset->mg_src_cgrp = NULL;
2840 cset->mg_dst_cgrp = NULL;
2841 cset->mg_dst_cset = NULL;
2842 list_del_init(&cset->mg_src_preload_node);
2843 put_css_set_locked(cset);
2844 }
2845
2846 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2847 mg_dst_preload_node) {
2848 cset->mg_src_cgrp = NULL;
2849 cset->mg_dst_cgrp = NULL;
2850 cset->mg_dst_cset = NULL;
2851 list_del_init(&cset->mg_dst_preload_node);
2852 put_css_set_locked(cset);
2853 }
2854
2855 spin_unlock_irq(&css_set_lock);
2856 }
2857
2858 /**
2859 * cgroup_migrate_add_src - add a migration source css_set
2860 * @src_cset: the source css_set to add
2861 * @dst_cgrp: the destination cgroup
2862 * @mgctx: migration context
2863 *
2864 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2865 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2866 * up by cgroup_migrate_finish().
2867 *
2868 * This function may be called without holding cgroup_threadgroup_rwsem
2869 * even if the target is a process. Threads may be created and destroyed
2870 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2871 * into play and the preloaded css_sets are guaranteed to cover all
2872 * migrations.
2873 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2874 void cgroup_migrate_add_src(struct css_set *src_cset,
2875 struct cgroup *dst_cgrp,
2876 struct cgroup_mgctx *mgctx)
2877 {
2878 struct cgroup *src_cgrp;
2879
2880 lockdep_assert_held(&cgroup_mutex);
2881 lockdep_assert_held(&css_set_lock);
2882
2883 /*
2884 * If ->dead, @src_set is associated with one or more dead cgroups
2885 * and doesn't contain any migratable tasks. Ignore it early so
2886 * that the rest of migration path doesn't get confused by it.
2887 */
2888 if (src_cset->dead)
2889 return;
2890
2891 if (!list_empty(&src_cset->mg_src_preload_node))
2892 return;
2893
2894 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2895
2896 WARN_ON(src_cset->mg_src_cgrp);
2897 WARN_ON(src_cset->mg_dst_cgrp);
2898 WARN_ON(!list_empty(&src_cset->mg_tasks));
2899 WARN_ON(!list_empty(&src_cset->mg_node));
2900
2901 src_cset->mg_src_cgrp = src_cgrp;
2902 src_cset->mg_dst_cgrp = dst_cgrp;
2903 get_css_set(src_cset);
2904 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2905 }
2906
2907 /**
2908 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2909 * @mgctx: migration context
2910 *
2911 * Tasks are about to be moved and all the source css_sets have been
2912 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2913 * pins all destination css_sets, links each to its source, and append them
2914 * to @mgctx->preloaded_dst_csets.
2915 *
2916 * This function must be called after cgroup_migrate_add_src() has been
2917 * called on each migration source css_set. After migration is performed
2918 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2919 * @mgctx.
2920 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2921 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2922 {
2923 struct css_set *src_cset, *tmp_cset;
2924
2925 lockdep_assert_held(&cgroup_mutex);
2926
2927 /* look up the dst cset for each src cset and link it to src */
2928 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2929 mg_src_preload_node) {
2930 struct css_set *dst_cset;
2931 struct cgroup_subsys *ss;
2932 int ssid;
2933
2934 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2935 if (!dst_cset)
2936 return -ENOMEM;
2937
2938 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2939
2940 /*
2941 * If src cset equals dst, it's noop. Drop the src.
2942 * cgroup_migrate() will skip the cset too. Note that we
2943 * can't handle src == dst as some nodes are used by both.
2944 */
2945 if (src_cset == dst_cset) {
2946 src_cset->mg_src_cgrp = NULL;
2947 src_cset->mg_dst_cgrp = NULL;
2948 list_del_init(&src_cset->mg_src_preload_node);
2949 put_css_set(src_cset);
2950 put_css_set(dst_cset);
2951 continue;
2952 }
2953
2954 src_cset->mg_dst_cset = dst_cset;
2955
2956 if (list_empty(&dst_cset->mg_dst_preload_node))
2957 list_add_tail(&dst_cset->mg_dst_preload_node,
2958 &mgctx->preloaded_dst_csets);
2959 else
2960 put_css_set(dst_cset);
2961
2962 for_each_subsys(ss, ssid)
2963 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2964 mgctx->ss_mask |= 1 << ssid;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /**
2971 * cgroup_migrate - migrate a process or task to a cgroup
2972 * @leader: the leader of the process or the task to migrate
2973 * @threadgroup: whether @leader points to the whole process or a single task
2974 * @mgctx: migration context
2975 *
2976 * Migrate a process or task denoted by @leader. If migrating a process,
2977 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2978 * responsible for invoking cgroup_migrate_add_src() and
2979 * cgroup_migrate_prepare_dst() on the targets before invoking this
2980 * function and following up with cgroup_migrate_finish().
2981 *
2982 * As long as a controller's ->can_attach() doesn't fail, this function is
2983 * guaranteed to succeed. This means that, excluding ->can_attach()
2984 * failure, when migrating multiple targets, the success or failure can be
2985 * decided for all targets by invoking group_migrate_prepare_dst() before
2986 * actually starting migrating.
2987 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2988 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2989 struct cgroup_mgctx *mgctx)
2990 {
2991 struct task_struct *task;
2992
2993 /*
2994 * The following thread iteration should be inside an RCU critical
2995 * section to prevent tasks from being freed while taking the snapshot.
2996 * spin_lock_irq() implies RCU critical section here.
2997 */
2998 spin_lock_irq(&css_set_lock);
2999 task = leader;
3000 do {
3001 cgroup_migrate_add_task(task, mgctx);
3002 if (!threadgroup)
3003 break;
3004 } while_each_thread(leader, task);
3005 spin_unlock_irq(&css_set_lock);
3006
3007 return cgroup_migrate_execute(mgctx);
3008 }
3009
3010 /**
3011 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
3012 * @dst_cgrp: the cgroup to attach to
3013 * @leader: the task or the leader of the threadgroup to be attached
3014 * @threadgroup: attach the whole threadgroup?
3015 *
3016 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
3017 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)3018 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
3019 bool threadgroup)
3020 {
3021 DEFINE_CGROUP_MGCTX(mgctx);
3022 struct task_struct *task;
3023 int ret = 0;
3024
3025 /* look up all src csets */
3026 spin_lock_irq(&css_set_lock);
3027 task = leader;
3028 do {
3029 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
3030 if (!threadgroup)
3031 break;
3032 } while_each_thread(leader, task);
3033 spin_unlock_irq(&css_set_lock);
3034
3035 /* prepare dst csets and commit */
3036 ret = cgroup_migrate_prepare_dst(&mgctx);
3037 if (!ret)
3038 ret = cgroup_migrate(leader, threadgroup, &mgctx);
3039
3040 cgroup_migrate_finish(&mgctx);
3041
3042 if (!ret)
3043 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
3044
3045 return ret;
3046 }
3047
cgroup_procs_write_start(char * buf,bool threadgroup,enum cgroup_attach_lock_mode * lock_mode)3048 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
3049 enum cgroup_attach_lock_mode *lock_mode)
3050 {
3051 struct task_struct *tsk;
3052 pid_t pid;
3053
3054 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
3055 return ERR_PTR(-EINVAL);
3056
3057 retry_find_task:
3058 rcu_read_lock();
3059 if (pid) {
3060 tsk = find_task_by_vpid(pid);
3061 if (!tsk) {
3062 tsk = ERR_PTR(-ESRCH);
3063 goto out_unlock_rcu;
3064 }
3065 } else {
3066 tsk = current;
3067 }
3068
3069 if (threadgroup)
3070 tsk = tsk->group_leader;
3071
3072 /*
3073 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
3074 * If userland migrates such a kthread to a non-root cgroup, it can
3075 * become trapped in a cpuset, or RT kthread may be born in a
3076 * cgroup with no rt_runtime allocated. Just say no.
3077 */
3078 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
3079 tsk = ERR_PTR(-EINVAL);
3080 goto out_unlock_rcu;
3081 }
3082 get_task_struct(tsk);
3083 rcu_read_unlock();
3084
3085 /*
3086 * If we migrate a single thread, we don't care about threadgroup
3087 * stability. If the thread is `current`, it won't exit(2) under our
3088 * hands or change PID through exec(2). We exclude
3089 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write callers
3090 * by cgroup_mutex. Therefore, we can skip the global lock.
3091 */
3092 lockdep_assert_held(&cgroup_mutex);
3093
3094 if (pid || threadgroup) {
3095 if (cgroup_enable_per_threadgroup_rwsem)
3096 *lock_mode = CGRP_ATTACH_LOCK_PER_THREADGROUP;
3097 else
3098 *lock_mode = CGRP_ATTACH_LOCK_GLOBAL;
3099 } else {
3100 *lock_mode = CGRP_ATTACH_LOCK_NONE;
3101 }
3102
3103 cgroup_attach_lock(*lock_mode, tsk);
3104
3105 if (threadgroup) {
3106 if (!thread_group_leader(tsk)) {
3107 /*
3108 * A race with de_thread from another thread's exec()
3109 * may strip us of our leadership. If this happens,
3110 * throw this task away and try again.
3111 */
3112 cgroup_attach_unlock(*lock_mode, tsk);
3113 put_task_struct(tsk);
3114 goto retry_find_task;
3115 }
3116 }
3117
3118 return tsk;
3119
3120 out_unlock_rcu:
3121 rcu_read_unlock();
3122 return tsk;
3123 }
3124
cgroup_procs_write_finish(struct task_struct * task,enum cgroup_attach_lock_mode lock_mode)3125 void cgroup_procs_write_finish(struct task_struct *task,
3126 enum cgroup_attach_lock_mode lock_mode)
3127 {
3128 cgroup_attach_unlock(lock_mode, task);
3129
3130 /* release reference from cgroup_procs_write_start() */
3131 put_task_struct(task);
3132 }
3133
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3134 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3135 {
3136 struct cgroup_subsys *ss;
3137 bool printed = false;
3138 int ssid;
3139
3140 do_each_subsys_mask(ss, ssid, ss_mask) {
3141 if (printed)
3142 seq_putc(seq, ' ');
3143 seq_puts(seq, ss->name);
3144 printed = true;
3145 } while_each_subsys_mask();
3146 if (printed)
3147 seq_putc(seq, '\n');
3148 }
3149
3150 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3151 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3152 {
3153 struct cgroup *cgrp = seq_css(seq)->cgroup;
3154
3155 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3156 return 0;
3157 }
3158
3159 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3160 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3161 {
3162 struct cgroup *cgrp = seq_css(seq)->cgroup;
3163
3164 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3165 return 0;
3166 }
3167
3168 /**
3169 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3170 * @cgrp: root of the subtree to update csses for
3171 *
3172 * @cgrp's control masks have changed and its subtree's css associations
3173 * need to be updated accordingly. This function looks up all css_sets
3174 * which are attached to the subtree, creates the matching updated css_sets
3175 * and migrates the tasks to the new ones.
3176 */
cgroup_update_dfl_csses(struct cgroup * cgrp)3177 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3178 {
3179 DEFINE_CGROUP_MGCTX(mgctx);
3180 struct cgroup_subsys_state *d_css;
3181 struct cgroup *dsct;
3182 struct css_set *src_cset;
3183 enum cgroup_attach_lock_mode lock_mode;
3184 bool has_tasks;
3185 int ret;
3186
3187 lockdep_assert_held(&cgroup_mutex);
3188
3189 /* look up all csses currently attached to @cgrp's subtree */
3190 spin_lock_irq(&css_set_lock);
3191 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3192 struct cgrp_cset_link *link;
3193
3194 /*
3195 * As cgroup_update_dfl_csses() is only called by
3196 * cgroup_apply_control(). The csses associated with the
3197 * given cgrp will not be affected by changes made to
3198 * its subtree_control file. We can skip them.
3199 */
3200 if (dsct == cgrp)
3201 continue;
3202
3203 list_for_each_entry(link, &dsct->cset_links, cset_link)
3204 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3205 }
3206 spin_unlock_irq(&css_set_lock);
3207
3208 /*
3209 * We need to write-lock threadgroup_rwsem while migrating tasks.
3210 * However, if there are no source csets for @cgrp, changing its
3211 * controllers isn't gonna produce any task migrations and the
3212 * write-locking can be skipped safely.
3213 */
3214 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3215
3216 if (has_tasks)
3217 lock_mode = CGRP_ATTACH_LOCK_GLOBAL;
3218 else
3219 lock_mode = CGRP_ATTACH_LOCK_NONE;
3220
3221 cgroup_attach_lock(lock_mode, NULL);
3222
3223 /* NULL dst indicates self on default hierarchy */
3224 ret = cgroup_migrate_prepare_dst(&mgctx);
3225 if (ret)
3226 goto out_finish;
3227
3228 spin_lock_irq(&css_set_lock);
3229 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3230 mg_src_preload_node) {
3231 struct task_struct *task, *ntask;
3232
3233 /* all tasks in src_csets need to be migrated */
3234 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3235 cgroup_migrate_add_task(task, &mgctx);
3236 }
3237 spin_unlock_irq(&css_set_lock);
3238
3239 ret = cgroup_migrate_execute(&mgctx);
3240 out_finish:
3241 cgroup_migrate_finish(&mgctx);
3242 cgroup_attach_unlock(lock_mode, NULL);
3243 return ret;
3244 }
3245
3246 /**
3247 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3248 * @cgrp: root of the target subtree
3249 *
3250 * Because css offlining is asynchronous, userland may try to re-enable a
3251 * controller while the previous css is still around. This function grabs
3252 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3253 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3254 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3255 __acquires(&cgroup_mutex)
3256 {
3257 struct cgroup *dsct;
3258 struct cgroup_subsys_state *d_css;
3259 struct cgroup_subsys *ss;
3260 int ssid;
3261
3262 restart:
3263 cgroup_lock();
3264
3265 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3266 for_each_subsys(ss, ssid) {
3267 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3268 DEFINE_WAIT(wait);
3269
3270 if (!css || !percpu_ref_is_dying(&css->refcnt))
3271 continue;
3272
3273 cgroup_get_live(dsct);
3274 prepare_to_wait(&dsct->offline_waitq, &wait,
3275 TASK_UNINTERRUPTIBLE);
3276
3277 cgroup_unlock();
3278 schedule();
3279 finish_wait(&dsct->offline_waitq, &wait);
3280
3281 cgroup_put(dsct);
3282 goto restart;
3283 }
3284 }
3285 }
3286
3287 /**
3288 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3289 * @cgrp: root of the target subtree
3290 *
3291 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3292 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3293 * itself.
3294 */
cgroup_save_control(struct cgroup * cgrp)3295 static void cgroup_save_control(struct cgroup *cgrp)
3296 {
3297 struct cgroup *dsct;
3298 struct cgroup_subsys_state *d_css;
3299
3300 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3301 dsct->old_subtree_control = dsct->subtree_control;
3302 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3303 dsct->old_dom_cgrp = dsct->dom_cgrp;
3304 }
3305 }
3306
3307 /**
3308 * cgroup_propagate_control - refresh control masks of a subtree
3309 * @cgrp: root of the target subtree
3310 *
3311 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3312 * ->subtree_control and propagate controller availability through the
3313 * subtree so that descendants don't have unavailable controllers enabled.
3314 */
cgroup_propagate_control(struct cgroup * cgrp)3315 static void cgroup_propagate_control(struct cgroup *cgrp)
3316 {
3317 struct cgroup *dsct;
3318 struct cgroup_subsys_state *d_css;
3319
3320 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3321 dsct->subtree_control &= cgroup_control(dsct);
3322 dsct->subtree_ss_mask =
3323 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3324 cgroup_ss_mask(dsct));
3325 }
3326 }
3327
3328 /**
3329 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3330 * @cgrp: root of the target subtree
3331 *
3332 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3333 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3334 * itself.
3335 */
cgroup_restore_control(struct cgroup * cgrp)3336 static void cgroup_restore_control(struct cgroup *cgrp)
3337 {
3338 struct cgroup *dsct;
3339 struct cgroup_subsys_state *d_css;
3340
3341 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3342 dsct->subtree_control = dsct->old_subtree_control;
3343 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3344 dsct->dom_cgrp = dsct->old_dom_cgrp;
3345 }
3346 }
3347
css_visible(struct cgroup_subsys_state * css)3348 static bool css_visible(struct cgroup_subsys_state *css)
3349 {
3350 struct cgroup_subsys *ss = css->ss;
3351 struct cgroup *cgrp = css->cgroup;
3352
3353 if (cgroup_control(cgrp) & (1 << ss->id))
3354 return true;
3355 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3356 return false;
3357 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3358 }
3359
3360 /**
3361 * cgroup_apply_control_enable - enable or show csses according to control
3362 * @cgrp: root of the target subtree
3363 *
3364 * Walk @cgrp's subtree and create new csses or make the existing ones
3365 * visible. A css is created invisible if it's being implicitly enabled
3366 * through dependency. An invisible css is made visible when the userland
3367 * explicitly enables it.
3368 *
3369 * Returns 0 on success, -errno on failure. On failure, csses which have
3370 * been processed already aren't cleaned up. The caller is responsible for
3371 * cleaning up with cgroup_apply_control_disable().
3372 */
cgroup_apply_control_enable(struct cgroup * cgrp)3373 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3374 {
3375 struct cgroup *dsct;
3376 struct cgroup_subsys_state *d_css;
3377 struct cgroup_subsys *ss;
3378 int ssid, ret;
3379
3380 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3381 for_each_subsys(ss, ssid) {
3382 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3383
3384 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3385 continue;
3386
3387 if (!css) {
3388 css = css_create(dsct, ss);
3389 if (IS_ERR(css))
3390 return PTR_ERR(css);
3391 }
3392
3393 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3394
3395 if (css_visible(css)) {
3396 ret = css_populate_dir(css);
3397 if (ret)
3398 return ret;
3399 }
3400 }
3401 }
3402
3403 return 0;
3404 }
3405
3406 /**
3407 * cgroup_apply_control_disable - kill or hide csses according to control
3408 * @cgrp: root of the target subtree
3409 *
3410 * Walk @cgrp's subtree and kill and hide csses so that they match
3411 * cgroup_ss_mask() and cgroup_visible_mask().
3412 *
3413 * A css is hidden when the userland requests it to be disabled while other
3414 * subsystems are still depending on it. The css must not actively control
3415 * resources and be in the vanilla state if it's made visible again later.
3416 * Controllers which may be depended upon should provide ->css_reset() for
3417 * this purpose.
3418 */
cgroup_apply_control_disable(struct cgroup * cgrp)3419 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3420 {
3421 struct cgroup *dsct;
3422 struct cgroup_subsys_state *d_css;
3423 struct cgroup_subsys *ss;
3424 int ssid;
3425
3426 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3427 for_each_subsys(ss, ssid) {
3428 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3429
3430 if (!css)
3431 continue;
3432
3433 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3434
3435 if (css->parent &&
3436 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3437 kill_css(css);
3438 } else if (!css_visible(css)) {
3439 css_clear_dir(css);
3440 if (ss->css_reset)
3441 ss->css_reset(css);
3442 }
3443 }
3444 }
3445 }
3446
3447 /**
3448 * cgroup_apply_control - apply control mask updates to the subtree
3449 * @cgrp: root of the target subtree
3450 *
3451 * subsystems can be enabled and disabled in a subtree using the following
3452 * steps.
3453 *
3454 * 1. Call cgroup_save_control() to stash the current state.
3455 * 2. Update ->subtree_control masks in the subtree as desired.
3456 * 3. Call cgroup_apply_control() to apply the changes.
3457 * 4. Optionally perform other related operations.
3458 * 5. Call cgroup_finalize_control() to finish up.
3459 *
3460 * This function implements step 3 and propagates the mask changes
3461 * throughout @cgrp's subtree, updates csses accordingly and perform
3462 * process migrations.
3463 */
cgroup_apply_control(struct cgroup * cgrp)3464 static int cgroup_apply_control(struct cgroup *cgrp)
3465 {
3466 int ret;
3467
3468 cgroup_propagate_control(cgrp);
3469
3470 ret = cgroup_apply_control_enable(cgrp);
3471 if (ret)
3472 return ret;
3473
3474 /*
3475 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3476 * making the following cgroup_update_dfl_csses() properly update
3477 * css associations of all tasks in the subtree.
3478 */
3479 return cgroup_update_dfl_csses(cgrp);
3480 }
3481
3482 /**
3483 * cgroup_finalize_control - finalize control mask update
3484 * @cgrp: root of the target subtree
3485 * @ret: the result of the update
3486 *
3487 * Finalize control mask update. See cgroup_apply_control() for more info.
3488 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3489 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3490 {
3491 if (ret) {
3492 cgroup_restore_control(cgrp);
3493 cgroup_propagate_control(cgrp);
3494 }
3495
3496 cgroup_apply_control_disable(cgrp);
3497 }
3498
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3499 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3500 {
3501 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3502
3503 /* if nothing is getting enabled, nothing to worry about */
3504 if (!enable)
3505 return 0;
3506
3507 /* can @cgrp host any resources? */
3508 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3509 return -EOPNOTSUPP;
3510
3511 /* mixables don't care */
3512 if (cgroup_is_mixable(cgrp))
3513 return 0;
3514
3515 if (domain_enable) {
3516 /* can't enable domain controllers inside a thread subtree */
3517 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3518 return -EOPNOTSUPP;
3519 } else {
3520 /*
3521 * Threaded controllers can handle internal competitions
3522 * and are always allowed inside a (prospective) thread
3523 * subtree.
3524 */
3525 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3526 return 0;
3527 }
3528
3529 /*
3530 * Controllers can't be enabled for a cgroup with tasks to avoid
3531 * child cgroups competing against tasks.
3532 */
3533 if (cgroup_has_tasks(cgrp))
3534 return -EBUSY;
3535
3536 return 0;
3537 }
3538
3539 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3540 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3541 char *buf, size_t nbytes,
3542 loff_t off)
3543 {
3544 u16 enable = 0, disable = 0;
3545 struct cgroup *cgrp, *child;
3546 struct cgroup_subsys *ss;
3547 char *tok;
3548 int ssid, ret;
3549
3550 /*
3551 * Parse input - space separated list of subsystem names prefixed
3552 * with either + or -.
3553 */
3554 buf = strstrip(buf);
3555 while ((tok = strsep(&buf, " "))) {
3556 if (tok[0] == '\0')
3557 continue;
3558 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3559 if (!cgroup_ssid_enabled(ssid) ||
3560 strcmp(tok + 1, ss->name))
3561 continue;
3562
3563 if (*tok == '+') {
3564 enable |= 1 << ssid;
3565 disable &= ~(1 << ssid);
3566 } else if (*tok == '-') {
3567 disable |= 1 << ssid;
3568 enable &= ~(1 << ssid);
3569 } else {
3570 return -EINVAL;
3571 }
3572 break;
3573 } while_each_subsys_mask();
3574 if (ssid == CGROUP_SUBSYS_COUNT)
3575 return -EINVAL;
3576 }
3577
3578 cgrp = cgroup_kn_lock_live(of->kn, true);
3579 if (!cgrp)
3580 return -ENODEV;
3581
3582 for_each_subsys(ss, ssid) {
3583 if (enable & (1 << ssid)) {
3584 if (cgrp->subtree_control & (1 << ssid)) {
3585 enable &= ~(1 << ssid);
3586 continue;
3587 }
3588
3589 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3590 ret = -ENOENT;
3591 goto out_unlock;
3592 }
3593 } else if (disable & (1 << ssid)) {
3594 if (!(cgrp->subtree_control & (1 << ssid))) {
3595 disable &= ~(1 << ssid);
3596 continue;
3597 }
3598
3599 /* a child has it enabled? */
3600 cgroup_for_each_live_child(child, cgrp) {
3601 if (child->subtree_control & (1 << ssid)) {
3602 ret = -EBUSY;
3603 goto out_unlock;
3604 }
3605 }
3606 }
3607 }
3608
3609 if (!enable && !disable) {
3610 ret = 0;
3611 goto out_unlock;
3612 }
3613
3614 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3615 if (ret)
3616 goto out_unlock;
3617
3618 /* save and update control masks and prepare csses */
3619 cgroup_save_control(cgrp);
3620
3621 cgrp->subtree_control |= enable;
3622 cgrp->subtree_control &= ~disable;
3623
3624 ret = cgroup_apply_control(cgrp);
3625 cgroup_finalize_control(cgrp, ret);
3626 if (ret)
3627 goto out_unlock;
3628
3629 kernfs_activate(cgrp->kn);
3630 out_unlock:
3631 cgroup_kn_unlock(of->kn);
3632 return ret ?: nbytes;
3633 }
3634
3635 /**
3636 * cgroup_enable_threaded - make @cgrp threaded
3637 * @cgrp: the target cgroup
3638 *
3639 * Called when "threaded" is written to the cgroup.type interface file and
3640 * tries to make @cgrp threaded and join the parent's resource domain.
3641 * This function is never called on the root cgroup as cgroup.type doesn't
3642 * exist on it.
3643 */
cgroup_enable_threaded(struct cgroup * cgrp)3644 static int cgroup_enable_threaded(struct cgroup *cgrp)
3645 {
3646 struct cgroup *parent = cgroup_parent(cgrp);
3647 struct cgroup *dom_cgrp = parent->dom_cgrp;
3648 struct cgroup *dsct;
3649 struct cgroup_subsys_state *d_css;
3650 int ret;
3651
3652 lockdep_assert_held(&cgroup_mutex);
3653
3654 /* noop if already threaded */
3655 if (cgroup_is_threaded(cgrp))
3656 return 0;
3657
3658 /*
3659 * If @cgroup is populated or has domain controllers enabled, it
3660 * can't be switched. While the below cgroup_can_be_thread_root()
3661 * test can catch the same conditions, that's only when @parent is
3662 * not mixable, so let's check it explicitly.
3663 */
3664 if (cgroup_is_populated(cgrp) ||
3665 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3666 return -EOPNOTSUPP;
3667
3668 /* we're joining the parent's domain, ensure its validity */
3669 if (!cgroup_is_valid_domain(dom_cgrp) ||
3670 !cgroup_can_be_thread_root(dom_cgrp))
3671 return -EOPNOTSUPP;
3672
3673 /*
3674 * The following shouldn't cause actual migrations and should
3675 * always succeed.
3676 */
3677 cgroup_save_control(cgrp);
3678
3679 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3680 if (dsct == cgrp || cgroup_is_threaded(dsct))
3681 dsct->dom_cgrp = dom_cgrp;
3682
3683 ret = cgroup_apply_control(cgrp);
3684 if (!ret)
3685 parent->nr_threaded_children++;
3686
3687 cgroup_finalize_control(cgrp, ret);
3688 return ret;
3689 }
3690
cgroup_type_show(struct seq_file * seq,void * v)3691 static int cgroup_type_show(struct seq_file *seq, void *v)
3692 {
3693 struct cgroup *cgrp = seq_css(seq)->cgroup;
3694
3695 if (cgroup_is_threaded(cgrp))
3696 seq_puts(seq, "threaded\n");
3697 else if (!cgroup_is_valid_domain(cgrp))
3698 seq_puts(seq, "domain invalid\n");
3699 else if (cgroup_is_thread_root(cgrp))
3700 seq_puts(seq, "domain threaded\n");
3701 else
3702 seq_puts(seq, "domain\n");
3703
3704 return 0;
3705 }
3706
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3707 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3708 size_t nbytes, loff_t off)
3709 {
3710 struct cgroup *cgrp;
3711 int ret;
3712
3713 /* only switching to threaded mode is supported */
3714 if (strcmp(strstrip(buf), "threaded"))
3715 return -EINVAL;
3716
3717 /* drain dying csses before we re-apply (threaded) subtree control */
3718 cgrp = cgroup_kn_lock_live(of->kn, true);
3719 if (!cgrp)
3720 return -ENOENT;
3721
3722 /* threaded can only be enabled */
3723 ret = cgroup_enable_threaded(cgrp);
3724
3725 cgroup_kn_unlock(of->kn);
3726 return ret ?: nbytes;
3727 }
3728
cgroup_max_descendants_show(struct seq_file * seq,void * v)3729 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3730 {
3731 struct cgroup *cgrp = seq_css(seq)->cgroup;
3732 int descendants = READ_ONCE(cgrp->max_descendants);
3733
3734 if (descendants == INT_MAX)
3735 seq_puts(seq, "max\n");
3736 else
3737 seq_printf(seq, "%d\n", descendants);
3738
3739 return 0;
3740 }
3741
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3742 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3743 char *buf, size_t nbytes, loff_t off)
3744 {
3745 struct cgroup *cgrp;
3746 int descendants;
3747 ssize_t ret;
3748
3749 buf = strstrip(buf);
3750 if (!strcmp(buf, "max")) {
3751 descendants = INT_MAX;
3752 } else {
3753 ret = kstrtoint(buf, 0, &descendants);
3754 if (ret)
3755 return ret;
3756 }
3757
3758 if (descendants < 0)
3759 return -ERANGE;
3760
3761 cgrp = cgroup_kn_lock_live(of->kn, false);
3762 if (!cgrp)
3763 return -ENOENT;
3764
3765 cgrp->max_descendants = descendants;
3766
3767 cgroup_kn_unlock(of->kn);
3768
3769 return nbytes;
3770 }
3771
cgroup_max_depth_show(struct seq_file * seq,void * v)3772 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3773 {
3774 struct cgroup *cgrp = seq_css(seq)->cgroup;
3775 int depth = READ_ONCE(cgrp->max_depth);
3776
3777 if (depth == INT_MAX)
3778 seq_puts(seq, "max\n");
3779 else
3780 seq_printf(seq, "%d\n", depth);
3781
3782 return 0;
3783 }
3784
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3785 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3786 char *buf, size_t nbytes, loff_t off)
3787 {
3788 struct cgroup *cgrp;
3789 ssize_t ret;
3790 int depth;
3791
3792 buf = strstrip(buf);
3793 if (!strcmp(buf, "max")) {
3794 depth = INT_MAX;
3795 } else {
3796 ret = kstrtoint(buf, 0, &depth);
3797 if (ret)
3798 return ret;
3799 }
3800
3801 if (depth < 0)
3802 return -ERANGE;
3803
3804 cgrp = cgroup_kn_lock_live(of->kn, false);
3805 if (!cgrp)
3806 return -ENOENT;
3807
3808 cgrp->max_depth = depth;
3809
3810 cgroup_kn_unlock(of->kn);
3811
3812 return nbytes;
3813 }
3814
cgroup_events_show(struct seq_file * seq,void * v)3815 static int cgroup_events_show(struct seq_file *seq, void *v)
3816 {
3817 struct cgroup *cgrp = seq_css(seq)->cgroup;
3818
3819 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3820 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3821
3822 return 0;
3823 }
3824
cgroup_stat_show(struct seq_file * seq,void * v)3825 static int cgroup_stat_show(struct seq_file *seq, void *v)
3826 {
3827 struct cgroup *cgroup = seq_css(seq)->cgroup;
3828 struct cgroup_subsys_state *css;
3829 int dying_cnt[CGROUP_SUBSYS_COUNT];
3830 int ssid;
3831
3832 seq_printf(seq, "nr_descendants %d\n",
3833 cgroup->nr_descendants);
3834
3835 /*
3836 * Show the number of live and dying csses associated with each of
3837 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3838 *
3839 * Without proper lock protection, racing is possible. So the
3840 * numbers may not be consistent when that happens.
3841 */
3842 rcu_read_lock();
3843 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3844 dying_cnt[ssid] = -1;
3845 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3846 (cgroup_subsys[ssid]->root != &cgrp_dfl_root))
3847 continue;
3848 css = rcu_dereference_raw(cgroup->subsys[ssid]);
3849 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3850 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3851 css ? (css->nr_descendants + 1) : 0);
3852 }
3853
3854 seq_printf(seq, "nr_dying_descendants %d\n",
3855 cgroup->nr_dying_descendants);
3856 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3857 if (dying_cnt[ssid] >= 0)
3858 seq_printf(seq, "nr_dying_subsys_%s %d\n",
3859 cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3860 }
3861 rcu_read_unlock();
3862 return 0;
3863 }
3864
cgroup_core_local_stat_show(struct seq_file * seq,void * v)3865 static int cgroup_core_local_stat_show(struct seq_file *seq, void *v)
3866 {
3867 struct cgroup *cgrp = seq_css(seq)->cgroup;
3868 unsigned int sequence;
3869 u64 freeze_time;
3870
3871 do {
3872 sequence = read_seqcount_begin(&cgrp->freezer.freeze_seq);
3873 freeze_time = cgrp->freezer.frozen_nsec;
3874 /* Add in current freezer interval if the cgroup is freezing. */
3875 if (test_bit(CGRP_FREEZE, &cgrp->flags))
3876 freeze_time += (ktime_get_ns() -
3877 cgrp->freezer.freeze_start_nsec);
3878 } while (read_seqcount_retry(&cgrp->freezer.freeze_seq, sequence));
3879
3880 do_div(freeze_time, NSEC_PER_USEC);
3881 seq_printf(seq, "frozen_usec %llu\n", freeze_time);
3882
3883 return 0;
3884 }
3885
3886 #ifdef CONFIG_CGROUP_SCHED
3887 /**
3888 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3889 * @cgrp: the cgroup of interest
3890 * @ss: the subsystem of interest
3891 *
3892 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
3893 * or is offline, %NULL is returned.
3894 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3895 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3896 struct cgroup_subsys *ss)
3897 {
3898 struct cgroup_subsys_state *css;
3899
3900 rcu_read_lock();
3901 css = cgroup_css(cgrp, ss);
3902 if (css && !css_tryget_online(css))
3903 css = NULL;
3904 rcu_read_unlock();
3905
3906 return css;
3907 }
3908
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3909 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3910 {
3911 struct cgroup *cgrp = seq_css(seq)->cgroup;
3912 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3913 struct cgroup_subsys_state *css;
3914 int ret;
3915
3916 if (!ss->css_extra_stat_show)
3917 return 0;
3918
3919 css = cgroup_tryget_css(cgrp, ss);
3920 if (!css)
3921 return 0;
3922
3923 ret = ss->css_extra_stat_show(seq, css);
3924 css_put(css);
3925 return ret;
3926 }
3927
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3928 static int cgroup_local_stat_show(struct seq_file *seq,
3929 struct cgroup *cgrp, int ssid)
3930 {
3931 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3932 struct cgroup_subsys_state *css;
3933 int ret;
3934
3935 if (!ss->css_local_stat_show)
3936 return 0;
3937
3938 css = cgroup_tryget_css(cgrp, ss);
3939 if (!css)
3940 return 0;
3941
3942 ret = ss->css_local_stat_show(seq, css);
3943 css_put(css);
3944 return ret;
3945 }
3946 #endif
3947
cpu_stat_show(struct seq_file * seq,void * v)3948 static int cpu_stat_show(struct seq_file *seq, void *v)
3949 {
3950 int ret = 0;
3951
3952 cgroup_base_stat_cputime_show(seq);
3953 #ifdef CONFIG_CGROUP_SCHED
3954 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3955 #endif
3956 return ret;
3957 }
3958
cpu_local_stat_show(struct seq_file * seq,void * v)3959 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3960 {
3961 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3962 int ret = 0;
3963
3964 #ifdef CONFIG_CGROUP_SCHED
3965 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3966 #endif
3967 return ret;
3968 }
3969
3970 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3971 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3972 {
3973 struct cgroup *cgrp = seq_css(seq)->cgroup;
3974 struct psi_group *psi = cgroup_psi(cgrp);
3975
3976 return psi_show(seq, psi, PSI_IO);
3977 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3978 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3979 {
3980 struct cgroup *cgrp = seq_css(seq)->cgroup;
3981 struct psi_group *psi = cgroup_psi(cgrp);
3982
3983 return psi_show(seq, psi, PSI_MEM);
3984 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3985 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3986 {
3987 struct cgroup *cgrp = seq_css(seq)->cgroup;
3988 struct psi_group *psi = cgroup_psi(cgrp);
3989
3990 return psi_show(seq, psi, PSI_CPU);
3991 }
3992
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3993 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3994 size_t nbytes, enum psi_res res)
3995 {
3996 struct cgroup_file_ctx *ctx = of->priv;
3997 struct psi_trigger *new;
3998 struct cgroup *cgrp;
3999 struct psi_group *psi;
4000
4001 cgrp = cgroup_kn_lock_live(of->kn, false);
4002 if (!cgrp)
4003 return -ENODEV;
4004
4005 cgroup_get(cgrp);
4006 cgroup_kn_unlock(of->kn);
4007
4008 /* Allow only one trigger per file descriptor */
4009 if (ctx->psi.trigger) {
4010 cgroup_put(cgrp);
4011 return -EBUSY;
4012 }
4013
4014 psi = cgroup_psi(cgrp);
4015 new = psi_trigger_create(psi, buf, res, of->file, of);
4016 if (IS_ERR(new)) {
4017 cgroup_put(cgrp);
4018 return PTR_ERR(new);
4019 }
4020
4021 smp_store_release(&ctx->psi.trigger, new);
4022 cgroup_put(cgrp);
4023
4024 return nbytes;
4025 }
4026
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4027 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
4028 char *buf, size_t nbytes,
4029 loff_t off)
4030 {
4031 return pressure_write(of, buf, nbytes, PSI_IO);
4032 }
4033
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4034 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
4035 char *buf, size_t nbytes,
4036 loff_t off)
4037 {
4038 return pressure_write(of, buf, nbytes, PSI_MEM);
4039 }
4040
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4041 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
4042 char *buf, size_t nbytes,
4043 loff_t off)
4044 {
4045 return pressure_write(of, buf, nbytes, PSI_CPU);
4046 }
4047
4048 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)4049 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
4050 {
4051 struct cgroup *cgrp = seq_css(seq)->cgroup;
4052 struct psi_group *psi = cgroup_psi(cgrp);
4053
4054 return psi_show(seq, psi, PSI_IRQ);
4055 }
4056
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4057 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
4058 char *buf, size_t nbytes,
4059 loff_t off)
4060 {
4061 return pressure_write(of, buf, nbytes, PSI_IRQ);
4062 }
4063 #endif
4064
cgroup_pressure_show(struct seq_file * seq,void * v)4065 static int cgroup_pressure_show(struct seq_file *seq, void *v)
4066 {
4067 struct cgroup *cgrp = seq_css(seq)->cgroup;
4068 struct psi_group *psi = cgroup_psi(cgrp);
4069
4070 seq_printf(seq, "%d\n", psi->enabled);
4071
4072 return 0;
4073 }
4074
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4075 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
4076 char *buf, size_t nbytes,
4077 loff_t off)
4078 {
4079 ssize_t ret;
4080 int enable;
4081 struct cgroup *cgrp;
4082 struct psi_group *psi;
4083
4084 ret = kstrtoint(strstrip(buf), 0, &enable);
4085 if (ret)
4086 return ret;
4087
4088 if (enable < 0 || enable > 1)
4089 return -ERANGE;
4090
4091 cgrp = cgroup_kn_lock_live(of->kn, false);
4092 if (!cgrp)
4093 return -ENOENT;
4094
4095 psi = cgroup_psi(cgrp);
4096 if (psi->enabled != enable) {
4097 int i;
4098
4099 /* show or hide {cpu,memory,io,irq}.pressure files */
4100 for (i = 0; i < NR_PSI_RESOURCES; i++)
4101 cgroup_file_show(&cgrp->psi_files[i], enable);
4102
4103 psi->enabled = enable;
4104 if (enable)
4105 psi_cgroup_restart(psi);
4106 }
4107
4108 cgroup_kn_unlock(of->kn);
4109
4110 return nbytes;
4111 }
4112
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)4113 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
4114 poll_table *pt)
4115 {
4116 struct cgroup_file_ctx *ctx = of->priv;
4117
4118 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
4119 }
4120
cgroup_pressure_release(struct kernfs_open_file * of)4121 static void cgroup_pressure_release(struct kernfs_open_file *of)
4122 {
4123 struct cgroup_file_ctx *ctx = of->priv;
4124
4125 psi_trigger_destroy(ctx->psi.trigger);
4126 }
4127
cgroup_psi_enabled(void)4128 bool cgroup_psi_enabled(void)
4129 {
4130 if (static_branch_likely(&psi_disabled))
4131 return false;
4132
4133 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
4134 }
4135
4136 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)4137 bool cgroup_psi_enabled(void)
4138 {
4139 return false;
4140 }
4141
4142 #endif /* CONFIG_PSI */
4143
cgroup_freeze_show(struct seq_file * seq,void * v)4144 static int cgroup_freeze_show(struct seq_file *seq, void *v)
4145 {
4146 struct cgroup *cgrp = seq_css(seq)->cgroup;
4147
4148 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
4149
4150 return 0;
4151 }
4152
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4153 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
4154 char *buf, size_t nbytes, loff_t off)
4155 {
4156 struct cgroup *cgrp;
4157 ssize_t ret;
4158 int freeze;
4159
4160 ret = kstrtoint(strstrip(buf), 0, &freeze);
4161 if (ret)
4162 return ret;
4163
4164 if (freeze < 0 || freeze > 1)
4165 return -ERANGE;
4166
4167 cgrp = cgroup_kn_lock_live(of->kn, false);
4168 if (!cgrp)
4169 return -ENOENT;
4170
4171 cgroup_freeze(cgrp, freeze);
4172
4173 cgroup_kn_unlock(of->kn);
4174
4175 return nbytes;
4176 }
4177
__cgroup_kill(struct cgroup * cgrp)4178 static void __cgroup_kill(struct cgroup *cgrp)
4179 {
4180 struct css_task_iter it;
4181 struct task_struct *task;
4182
4183 lockdep_assert_held(&cgroup_mutex);
4184
4185 spin_lock_irq(&css_set_lock);
4186 cgrp->kill_seq++;
4187 spin_unlock_irq(&css_set_lock);
4188
4189 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4190 while ((task = css_task_iter_next(&it))) {
4191 /* Ignore kernel threads here. */
4192 if (task->flags & PF_KTHREAD)
4193 continue;
4194
4195 /* Skip tasks that are already dying. */
4196 if (__fatal_signal_pending(task))
4197 continue;
4198
4199 send_sig(SIGKILL, task, 0);
4200 }
4201 css_task_iter_end(&it);
4202 }
4203
cgroup_kill(struct cgroup * cgrp)4204 static void cgroup_kill(struct cgroup *cgrp)
4205 {
4206 struct cgroup_subsys_state *css;
4207 struct cgroup *dsct;
4208
4209 lockdep_assert_held(&cgroup_mutex);
4210
4211 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4212 __cgroup_kill(dsct);
4213 }
4214
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4215 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4216 size_t nbytes, loff_t off)
4217 {
4218 ssize_t ret = 0;
4219 int kill;
4220 struct cgroup *cgrp;
4221
4222 ret = kstrtoint(strstrip(buf), 0, &kill);
4223 if (ret)
4224 return ret;
4225
4226 if (kill != 1)
4227 return -ERANGE;
4228
4229 cgrp = cgroup_kn_lock_live(of->kn, false);
4230 if (!cgrp)
4231 return -ENOENT;
4232
4233 /*
4234 * Killing is a process directed operation, i.e. the whole thread-group
4235 * is taken down so act like we do for cgroup.procs and only make this
4236 * writable in non-threaded cgroups.
4237 */
4238 if (cgroup_is_threaded(cgrp))
4239 ret = -EOPNOTSUPP;
4240 else
4241 cgroup_kill(cgrp);
4242
4243 cgroup_kn_unlock(of->kn);
4244
4245 return ret ?: nbytes;
4246 }
4247
cgroup_file_open(struct kernfs_open_file * of)4248 static int cgroup_file_open(struct kernfs_open_file *of)
4249 {
4250 struct cftype *cft = of_cft(of);
4251 struct cgroup_file_ctx *ctx;
4252 int ret;
4253
4254 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4255 if (!ctx)
4256 return -ENOMEM;
4257
4258 ctx->ns = current->nsproxy->cgroup_ns;
4259 get_cgroup_ns(ctx->ns);
4260 of->priv = ctx;
4261
4262 if (!cft->open)
4263 return 0;
4264
4265 ret = cft->open(of);
4266 if (ret) {
4267 put_cgroup_ns(ctx->ns);
4268 kfree(ctx);
4269 }
4270 return ret;
4271 }
4272
cgroup_file_release(struct kernfs_open_file * of)4273 static void cgroup_file_release(struct kernfs_open_file *of)
4274 {
4275 struct cftype *cft = of_cft(of);
4276 struct cgroup_file_ctx *ctx = of->priv;
4277
4278 if (cft->release)
4279 cft->release(of);
4280 put_cgroup_ns(ctx->ns);
4281 kfree(ctx);
4282 of->priv = NULL;
4283 }
4284
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4285 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4286 size_t nbytes, loff_t off)
4287 {
4288 struct cgroup_file_ctx *ctx = of->priv;
4289 struct cgroup *cgrp = kn_priv(of->kn);
4290 struct cftype *cft = of_cft(of);
4291 struct cgroup_subsys_state *css;
4292 int ret;
4293
4294 if (!nbytes)
4295 return 0;
4296
4297 /*
4298 * If namespaces are delegation boundaries, disallow writes to
4299 * files in an non-init namespace root from inside the namespace
4300 * except for the files explicitly marked delegatable -
4301 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4302 */
4303 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4304 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4305 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4306 return -EPERM;
4307
4308 if (cft->write)
4309 return cft->write(of, buf, nbytes, off);
4310
4311 /*
4312 * kernfs guarantees that a file isn't deleted with operations in
4313 * flight, which means that the matching css is and stays alive and
4314 * doesn't need to be pinned. The RCU locking is not necessary
4315 * either. It's just for the convenience of using cgroup_css().
4316 */
4317 rcu_read_lock();
4318 css = cgroup_css(cgrp, cft->ss);
4319 rcu_read_unlock();
4320
4321 if (cft->write_u64) {
4322 unsigned long long v;
4323 ret = kstrtoull(buf, 0, &v);
4324 if (!ret)
4325 ret = cft->write_u64(css, cft, v);
4326 } else if (cft->write_s64) {
4327 long long v;
4328 ret = kstrtoll(buf, 0, &v);
4329 if (!ret)
4330 ret = cft->write_s64(css, cft, v);
4331 } else {
4332 ret = -EINVAL;
4333 }
4334
4335 return ret ?: nbytes;
4336 }
4337
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4338 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4339 {
4340 struct cftype *cft = of_cft(of);
4341
4342 if (cft->poll)
4343 return cft->poll(of, pt);
4344
4345 return kernfs_generic_poll(of, pt);
4346 }
4347
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4348 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4349 {
4350 return seq_cft(seq)->seq_start(seq, ppos);
4351 }
4352
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4353 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4354 {
4355 return seq_cft(seq)->seq_next(seq, v, ppos);
4356 }
4357
cgroup_seqfile_stop(struct seq_file * seq,void * v)4358 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4359 {
4360 if (seq_cft(seq)->seq_stop)
4361 seq_cft(seq)->seq_stop(seq, v);
4362 }
4363
cgroup_seqfile_show(struct seq_file * m,void * arg)4364 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4365 {
4366 struct cftype *cft = seq_cft(m);
4367 struct cgroup_subsys_state *css = seq_css(m);
4368
4369 if (cft->seq_show)
4370 return cft->seq_show(m, arg);
4371
4372 if (cft->read_u64)
4373 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4374 else if (cft->read_s64)
4375 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4376 else
4377 return -EINVAL;
4378 return 0;
4379 }
4380
4381 static struct kernfs_ops cgroup_kf_single_ops = {
4382 .atomic_write_len = PAGE_SIZE,
4383 .open = cgroup_file_open,
4384 .release = cgroup_file_release,
4385 .write = cgroup_file_write,
4386 .poll = cgroup_file_poll,
4387 .seq_show = cgroup_seqfile_show,
4388 };
4389
4390 static struct kernfs_ops cgroup_kf_ops = {
4391 .atomic_write_len = PAGE_SIZE,
4392 .open = cgroup_file_open,
4393 .release = cgroup_file_release,
4394 .write = cgroup_file_write,
4395 .poll = cgroup_file_poll,
4396 .seq_start = cgroup_seqfile_start,
4397 .seq_next = cgroup_seqfile_next,
4398 .seq_stop = cgroup_seqfile_stop,
4399 .seq_show = cgroup_seqfile_show,
4400 };
4401
cgroup_file_notify_timer(struct timer_list * timer)4402 static void cgroup_file_notify_timer(struct timer_list *timer)
4403 {
4404 cgroup_file_notify(container_of(timer, struct cgroup_file,
4405 notify_timer));
4406 }
4407
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4408 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4409 struct cftype *cft)
4410 {
4411 char name[CGROUP_FILE_NAME_MAX];
4412 struct kernfs_node *kn;
4413 struct lock_class_key *key = NULL;
4414
4415 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4416 key = &cft->lockdep_key;
4417 #endif
4418 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4419 cgroup_file_mode(cft),
4420 current_fsuid(), current_fsgid(),
4421 0, cft->kf_ops, cft,
4422 NULL, key);
4423 if (IS_ERR(kn))
4424 return PTR_ERR(kn);
4425
4426 if (cft->file_offset) {
4427 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4428
4429 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4430
4431 spin_lock_irq(&cgroup_file_kn_lock);
4432 cfile->kn = kn;
4433 spin_unlock_irq(&cgroup_file_kn_lock);
4434 }
4435
4436 return 0;
4437 }
4438
4439 /**
4440 * cgroup_addrm_files - add or remove files to a cgroup directory
4441 * @css: the target css
4442 * @cgrp: the target cgroup (usually css->cgroup)
4443 * @cfts: array of cftypes to be added
4444 * @is_add: whether to add or remove
4445 *
4446 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4447 * For removals, this function never fails.
4448 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4449 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4450 struct cgroup *cgrp, struct cftype cfts[],
4451 bool is_add)
4452 {
4453 struct cftype *cft, *cft_end = NULL;
4454 int ret = 0;
4455
4456 lockdep_assert_held(&cgroup_mutex);
4457
4458 restart:
4459 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4460 /* does cft->flags tell us to skip this file on @cgrp? */
4461 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4462 continue;
4463 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4464 continue;
4465 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4466 continue;
4467 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4468 continue;
4469 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4470 continue;
4471 if (is_add) {
4472 ret = cgroup_add_file(css, cgrp, cft);
4473 if (ret) {
4474 pr_warn("%s: failed to add %s, err=%d\n",
4475 __func__, cft->name, ret);
4476 cft_end = cft;
4477 is_add = false;
4478 goto restart;
4479 }
4480 } else {
4481 cgroup_rm_file(cgrp, cft);
4482 }
4483 }
4484 return ret;
4485 }
4486
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4487 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4488 {
4489 struct cgroup_subsys *ss = cfts[0].ss;
4490 struct cgroup *root = &ss->root->cgrp;
4491 struct cgroup_subsys_state *css;
4492 int ret = 0;
4493
4494 lockdep_assert_held(&cgroup_mutex);
4495
4496 /* add/rm files for all cgroups created before */
4497 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4498 struct cgroup *cgrp = css->cgroup;
4499
4500 if (!(css->flags & CSS_VISIBLE))
4501 continue;
4502
4503 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4504 if (ret)
4505 break;
4506 }
4507
4508 if (is_add && !ret)
4509 kernfs_activate(root->kn);
4510 return ret;
4511 }
4512
cgroup_exit_cftypes(struct cftype * cfts)4513 static void cgroup_exit_cftypes(struct cftype *cfts)
4514 {
4515 struct cftype *cft;
4516
4517 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4518 /* free copy for custom atomic_write_len, see init_cftypes() */
4519 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4520 kfree(cft->kf_ops);
4521 cft->kf_ops = NULL;
4522 cft->ss = NULL;
4523
4524 /* revert flags set by cgroup core while adding @cfts */
4525 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4526 __CFTYPE_ADDED);
4527 }
4528 }
4529
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4530 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4531 {
4532 struct cftype *cft;
4533 int ret = 0;
4534
4535 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4536 struct kernfs_ops *kf_ops;
4537
4538 WARN_ON(cft->ss || cft->kf_ops);
4539
4540 if (cft->flags & __CFTYPE_ADDED) {
4541 ret = -EBUSY;
4542 break;
4543 }
4544
4545 if (cft->seq_start)
4546 kf_ops = &cgroup_kf_ops;
4547 else
4548 kf_ops = &cgroup_kf_single_ops;
4549
4550 /*
4551 * Ugh... if @cft wants a custom max_write_len, we need to
4552 * make a copy of kf_ops to set its atomic_write_len.
4553 */
4554 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4555 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4556 if (!kf_ops) {
4557 ret = -ENOMEM;
4558 break;
4559 }
4560 kf_ops->atomic_write_len = cft->max_write_len;
4561 }
4562
4563 cft->kf_ops = kf_ops;
4564 cft->ss = ss;
4565 cft->flags |= __CFTYPE_ADDED;
4566 }
4567
4568 if (ret)
4569 cgroup_exit_cftypes(cfts);
4570 return ret;
4571 }
4572
cgroup_rm_cftypes_locked(struct cftype * cfts)4573 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4574 {
4575 lockdep_assert_held(&cgroup_mutex);
4576
4577 list_del(&cfts->node);
4578 cgroup_apply_cftypes(cfts, false);
4579 cgroup_exit_cftypes(cfts);
4580 }
4581
4582 /**
4583 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4584 * @cfts: zero-length name terminated array of cftypes
4585 *
4586 * Unregister @cfts. Files described by @cfts are removed from all
4587 * existing cgroups and all future cgroups won't have them either. This
4588 * function can be called anytime whether @cfts' subsys is attached or not.
4589 *
4590 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4591 * registered.
4592 */
cgroup_rm_cftypes(struct cftype * cfts)4593 int cgroup_rm_cftypes(struct cftype *cfts)
4594 {
4595 if (!cfts || cfts[0].name[0] == '\0')
4596 return 0;
4597
4598 if (!(cfts[0].flags & __CFTYPE_ADDED))
4599 return -ENOENT;
4600
4601 cgroup_lock();
4602 cgroup_rm_cftypes_locked(cfts);
4603 cgroup_unlock();
4604 return 0;
4605 }
4606
4607 /**
4608 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4609 * @ss: target cgroup subsystem
4610 * @cfts: zero-length name terminated array of cftypes
4611 *
4612 * Register @cfts to @ss. Files described by @cfts are created for all
4613 * existing cgroups to which @ss is attached and all future cgroups will
4614 * have them too. This function can be called anytime whether @ss is
4615 * attached or not.
4616 *
4617 * Returns 0 on successful registration, -errno on failure. Note that this
4618 * function currently returns 0 as long as @cfts registration is successful
4619 * even if some file creation attempts on existing cgroups fail.
4620 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4621 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4622 {
4623 int ret;
4624
4625 if (!cgroup_ssid_enabled(ss->id))
4626 return 0;
4627
4628 if (!cfts || cfts[0].name[0] == '\0')
4629 return 0;
4630
4631 ret = cgroup_init_cftypes(ss, cfts);
4632 if (ret)
4633 return ret;
4634
4635 cgroup_lock();
4636
4637 list_add_tail(&cfts->node, &ss->cfts);
4638 ret = cgroup_apply_cftypes(cfts, true);
4639 if (ret)
4640 cgroup_rm_cftypes_locked(cfts);
4641
4642 cgroup_unlock();
4643 return ret;
4644 }
4645
4646 /**
4647 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4648 * @ss: target cgroup subsystem
4649 * @cfts: zero-length name terminated array of cftypes
4650 *
4651 * Similar to cgroup_add_cftypes() but the added files are only used for
4652 * the default hierarchy.
4653 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4654 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4655 {
4656 struct cftype *cft;
4657
4658 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4659 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4660 return cgroup_add_cftypes(ss, cfts);
4661 }
4662
4663 /**
4664 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4665 * @ss: target cgroup subsystem
4666 * @cfts: zero-length name terminated array of cftypes
4667 *
4668 * Similar to cgroup_add_cftypes() but the added files are only used for
4669 * the legacy hierarchies.
4670 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4671 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4672 {
4673 struct cftype *cft;
4674
4675 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4676 cft->flags |= __CFTYPE_NOT_ON_DFL;
4677 return cgroup_add_cftypes(ss, cfts);
4678 }
4679
4680 /**
4681 * cgroup_file_notify - generate a file modified event for a cgroup_file
4682 * @cfile: target cgroup_file
4683 *
4684 * @cfile must have been obtained by setting cftype->file_offset.
4685 */
cgroup_file_notify(struct cgroup_file * cfile)4686 void cgroup_file_notify(struct cgroup_file *cfile)
4687 {
4688 unsigned long flags;
4689
4690 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4691 if (cfile->kn) {
4692 unsigned long last = cfile->notified_at;
4693 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4694
4695 if (time_in_range(jiffies, last, next)) {
4696 timer_reduce(&cfile->notify_timer, next);
4697 } else {
4698 kernfs_notify(cfile->kn);
4699 cfile->notified_at = jiffies;
4700 }
4701 }
4702 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4703 }
4704
4705 /**
4706 * cgroup_file_show - show or hide a hidden cgroup file
4707 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4708 * @show: whether to show or hide
4709 */
cgroup_file_show(struct cgroup_file * cfile,bool show)4710 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4711 {
4712 struct kernfs_node *kn;
4713
4714 spin_lock_irq(&cgroup_file_kn_lock);
4715 kn = cfile->kn;
4716 kernfs_get(kn);
4717 spin_unlock_irq(&cgroup_file_kn_lock);
4718
4719 if (kn)
4720 kernfs_show(kn, show);
4721
4722 kernfs_put(kn);
4723 }
4724
4725 /**
4726 * css_next_child - find the next child of a given css
4727 * @pos: the current position (%NULL to initiate traversal)
4728 * @parent: css whose children to walk
4729 *
4730 * This function returns the next child of @parent and should be called
4731 * under either cgroup_mutex or RCU read lock. The only requirement is
4732 * that @parent and @pos are accessible. The next sibling is guaranteed to
4733 * be returned regardless of their states.
4734 *
4735 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4736 * css which finished ->css_online() is guaranteed to be visible in the
4737 * future iterations and will stay visible until the last reference is put.
4738 * A css which hasn't finished ->css_online() or already finished
4739 * ->css_offline() may show up during traversal. It's each subsystem's
4740 * responsibility to synchronize against on/offlining.
4741 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4742 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4743 struct cgroup_subsys_state *parent)
4744 {
4745 struct cgroup_subsys_state *next;
4746
4747 cgroup_assert_mutex_or_rcu_locked();
4748
4749 /*
4750 * @pos could already have been unlinked from the sibling list.
4751 * Once a cgroup is removed, its ->sibling.next is no longer
4752 * updated when its next sibling changes. CSS_RELEASED is set when
4753 * @pos is taken off list, at which time its next pointer is valid,
4754 * and, as releases are serialized, the one pointed to by the next
4755 * pointer is guaranteed to not have started release yet. This
4756 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4757 * critical section, the one pointed to by its next pointer is
4758 * guaranteed to not have finished its RCU grace period even if we
4759 * have dropped rcu_read_lock() in-between iterations.
4760 *
4761 * If @pos has CSS_RELEASED set, its next pointer can't be
4762 * dereferenced; however, as each css is given a monotonically
4763 * increasing unique serial number and always appended to the
4764 * sibling list, the next one can be found by walking the parent's
4765 * children until the first css with higher serial number than
4766 * @pos's. While this path can be slower, it happens iff iteration
4767 * races against release and the race window is very small.
4768 */
4769 if (!pos) {
4770 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4771 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4772 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4773 } else {
4774 list_for_each_entry_rcu(next, &parent->children, sibling,
4775 lockdep_is_held(&cgroup_mutex))
4776 if (next->serial_nr > pos->serial_nr)
4777 break;
4778 }
4779
4780 /*
4781 * @next, if not pointing to the head, can be dereferenced and is
4782 * the next sibling.
4783 */
4784 if (&next->sibling != &parent->children)
4785 return next;
4786 return NULL;
4787 }
4788
4789 /**
4790 * css_next_descendant_pre - find the next descendant for pre-order walk
4791 * @pos: the current position (%NULL to initiate traversal)
4792 * @root: css whose descendants to walk
4793 *
4794 * To be used by css_for_each_descendant_pre(). Find the next descendant
4795 * to visit for pre-order traversal of @root's descendants. @root is
4796 * included in the iteration and the first node to be visited.
4797 *
4798 * While this function requires cgroup_mutex or RCU read locking, it
4799 * doesn't require the whole traversal to be contained in a single critical
4800 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4801 * This function will return the correct next descendant as long as both @pos
4802 * and @root are accessible and @pos is a descendant of @root.
4803 *
4804 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4805 * css which finished ->css_online() is guaranteed to be visible in the
4806 * future iterations and will stay visible until the last reference is put.
4807 * A css which hasn't finished ->css_online() or already finished
4808 * ->css_offline() may show up during traversal. It's each subsystem's
4809 * responsibility to synchronize against on/offlining.
4810 */
4811 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4812 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4813 struct cgroup_subsys_state *root)
4814 {
4815 struct cgroup_subsys_state *next;
4816
4817 cgroup_assert_mutex_or_rcu_locked();
4818
4819 /* if first iteration, visit @root */
4820 if (!pos)
4821 return root;
4822
4823 /* visit the first child if exists */
4824 next = css_next_child(NULL, pos);
4825 if (next)
4826 return next;
4827
4828 /* no child, visit my or the closest ancestor's next sibling */
4829 while (pos != root) {
4830 next = css_next_child(pos, pos->parent);
4831 if (next)
4832 return next;
4833 pos = pos->parent;
4834 }
4835
4836 return NULL;
4837 }
4838 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4839
4840 /**
4841 * css_rightmost_descendant - return the rightmost descendant of a css
4842 * @pos: css of interest
4843 *
4844 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4845 * is returned. This can be used during pre-order traversal to skip
4846 * subtree of @pos.
4847 *
4848 * While this function requires cgroup_mutex or RCU read locking, it
4849 * doesn't require the whole traversal to be contained in a single critical
4850 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4851 * This function will return the correct rightmost descendant as long as @pos
4852 * is accessible.
4853 */
4854 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4855 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4856 {
4857 struct cgroup_subsys_state *last, *tmp;
4858
4859 cgroup_assert_mutex_or_rcu_locked();
4860
4861 do {
4862 last = pos;
4863 /* ->prev isn't RCU safe, walk ->next till the end */
4864 pos = NULL;
4865 css_for_each_child(tmp, last)
4866 pos = tmp;
4867 } while (pos);
4868
4869 return last;
4870 }
4871
4872 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4873 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4874 {
4875 struct cgroup_subsys_state *last;
4876
4877 do {
4878 last = pos;
4879 pos = css_next_child(NULL, pos);
4880 } while (pos);
4881
4882 return last;
4883 }
4884
4885 /**
4886 * css_next_descendant_post - find the next descendant for post-order walk
4887 * @pos: the current position (%NULL to initiate traversal)
4888 * @root: css whose descendants to walk
4889 *
4890 * To be used by css_for_each_descendant_post(). Find the next descendant
4891 * to visit for post-order traversal of @root's descendants. @root is
4892 * included in the iteration and the last node to be visited.
4893 *
4894 * While this function requires cgroup_mutex or RCU read locking, it
4895 * doesn't require the whole traversal to be contained in a single critical
4896 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4897 * This function will return the correct next descendant as long as both @pos
4898 * and @cgroup are accessible and @pos is a descendant of @cgroup.
4899 *
4900 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4901 * css which finished ->css_online() is guaranteed to be visible in the
4902 * future iterations and will stay visible until the last reference is put.
4903 * A css which hasn't finished ->css_online() or already finished
4904 * ->css_offline() may show up during traversal. It's each subsystem's
4905 * responsibility to synchronize against on/offlining.
4906 */
4907 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4908 css_next_descendant_post(struct cgroup_subsys_state *pos,
4909 struct cgroup_subsys_state *root)
4910 {
4911 struct cgroup_subsys_state *next;
4912
4913 cgroup_assert_mutex_or_rcu_locked();
4914
4915 /* if first iteration, visit leftmost descendant which may be @root */
4916 if (!pos)
4917 return css_leftmost_descendant(root);
4918
4919 /* if we visited @root, we're done */
4920 if (pos == root)
4921 return NULL;
4922
4923 /* if there's an unvisited sibling, visit its leftmost descendant */
4924 next = css_next_child(pos, pos->parent);
4925 if (next)
4926 return css_leftmost_descendant(next);
4927
4928 /* no sibling left, visit parent */
4929 return pos->parent;
4930 }
4931
4932 /**
4933 * css_has_online_children - does a css have online children
4934 * @css: the target css
4935 *
4936 * Returns %true if @css has any online children; otherwise, %false. This
4937 * function can be called from any context but the caller is responsible
4938 * for synchronizing against on/offlining as necessary.
4939 */
css_has_online_children(struct cgroup_subsys_state * css)4940 bool css_has_online_children(struct cgroup_subsys_state *css)
4941 {
4942 struct cgroup_subsys_state *child;
4943 bool ret = false;
4944
4945 rcu_read_lock();
4946 css_for_each_child(child, css) {
4947 if (child->flags & CSS_ONLINE) {
4948 ret = true;
4949 break;
4950 }
4951 }
4952 rcu_read_unlock();
4953 return ret;
4954 }
4955
css_task_iter_next_css_set(struct css_task_iter * it)4956 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4957 {
4958 struct list_head *l;
4959 struct cgrp_cset_link *link;
4960 struct css_set *cset;
4961
4962 lockdep_assert_held(&css_set_lock);
4963
4964 /* find the next threaded cset */
4965 if (it->tcset_pos) {
4966 l = it->tcset_pos->next;
4967
4968 if (l != it->tcset_head) {
4969 it->tcset_pos = l;
4970 return container_of(l, struct css_set,
4971 threaded_csets_node);
4972 }
4973
4974 it->tcset_pos = NULL;
4975 }
4976
4977 /* find the next cset */
4978 l = it->cset_pos;
4979 l = l->next;
4980 if (l == it->cset_head) {
4981 it->cset_pos = NULL;
4982 return NULL;
4983 }
4984
4985 if (it->ss) {
4986 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4987 } else {
4988 link = list_entry(l, struct cgrp_cset_link, cset_link);
4989 cset = link->cset;
4990 }
4991
4992 it->cset_pos = l;
4993
4994 /* initialize threaded css_set walking */
4995 if (it->flags & CSS_TASK_ITER_THREADED) {
4996 if (it->cur_dcset)
4997 put_css_set_locked(it->cur_dcset);
4998 it->cur_dcset = cset;
4999 get_css_set(cset);
5000
5001 it->tcset_head = &cset->threaded_csets;
5002 it->tcset_pos = &cset->threaded_csets;
5003 }
5004
5005 return cset;
5006 }
5007
5008 /**
5009 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
5010 * @it: the iterator to advance
5011 *
5012 * Advance @it to the next css_set to walk.
5013 */
css_task_iter_advance_css_set(struct css_task_iter * it)5014 static void css_task_iter_advance_css_set(struct css_task_iter *it)
5015 {
5016 struct css_set *cset;
5017
5018 lockdep_assert_held(&css_set_lock);
5019
5020 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
5021 while ((cset = css_task_iter_next_css_set(it))) {
5022 if (!list_empty(&cset->tasks)) {
5023 it->cur_tasks_head = &cset->tasks;
5024 break;
5025 } else if (!list_empty(&cset->mg_tasks)) {
5026 it->cur_tasks_head = &cset->mg_tasks;
5027 break;
5028 } else if (!list_empty(&cset->dying_tasks)) {
5029 it->cur_tasks_head = &cset->dying_tasks;
5030 break;
5031 }
5032 }
5033 if (!cset) {
5034 it->task_pos = NULL;
5035 return;
5036 }
5037 it->task_pos = it->cur_tasks_head->next;
5038
5039 /*
5040 * We don't keep css_sets locked across iteration steps and thus
5041 * need to take steps to ensure that iteration can be resumed after
5042 * the lock is re-acquired. Iteration is performed at two levels -
5043 * css_sets and tasks in them.
5044 *
5045 * Once created, a css_set never leaves its cgroup lists, so a
5046 * pinned css_set is guaranteed to stay put and we can resume
5047 * iteration afterwards.
5048 *
5049 * Tasks may leave @cset across iteration steps. This is resolved
5050 * by registering each iterator with the css_set currently being
5051 * walked and making css_set_move_task() advance iterators whose
5052 * next task is leaving.
5053 */
5054 if (it->cur_cset) {
5055 list_del(&it->iters_node);
5056 put_css_set_locked(it->cur_cset);
5057 }
5058 get_css_set(cset);
5059 it->cur_cset = cset;
5060 list_add(&it->iters_node, &cset->task_iters);
5061 }
5062
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)5063 static void css_task_iter_skip(struct css_task_iter *it,
5064 struct task_struct *task)
5065 {
5066 lockdep_assert_held(&css_set_lock);
5067
5068 if (it->task_pos == &task->cg_list) {
5069 it->task_pos = it->task_pos->next;
5070 it->flags |= CSS_TASK_ITER_SKIPPED;
5071 }
5072 }
5073
css_task_iter_advance(struct css_task_iter * it)5074 static void css_task_iter_advance(struct css_task_iter *it)
5075 {
5076 struct task_struct *task;
5077
5078 lockdep_assert_held(&css_set_lock);
5079 repeat:
5080 if (it->task_pos) {
5081 /*
5082 * Advance iterator to find next entry. We go through cset
5083 * tasks, mg_tasks and dying_tasks, when consumed we move onto
5084 * the next cset.
5085 */
5086 if (it->flags & CSS_TASK_ITER_SKIPPED)
5087 it->flags &= ~CSS_TASK_ITER_SKIPPED;
5088 else
5089 it->task_pos = it->task_pos->next;
5090
5091 if (it->task_pos == &it->cur_cset->tasks) {
5092 it->cur_tasks_head = &it->cur_cset->mg_tasks;
5093 it->task_pos = it->cur_tasks_head->next;
5094 }
5095 if (it->task_pos == &it->cur_cset->mg_tasks) {
5096 it->cur_tasks_head = &it->cur_cset->dying_tasks;
5097 it->task_pos = it->cur_tasks_head->next;
5098 }
5099 if (it->task_pos == &it->cur_cset->dying_tasks)
5100 css_task_iter_advance_css_set(it);
5101 } else {
5102 /* called from start, proceed to the first cset */
5103 css_task_iter_advance_css_set(it);
5104 }
5105
5106 if (!it->task_pos)
5107 return;
5108
5109 task = list_entry(it->task_pos, struct task_struct, cg_list);
5110
5111 if (it->flags & CSS_TASK_ITER_PROCS) {
5112 /* if PROCS, skip over tasks which aren't group leaders */
5113 if (!thread_group_leader(task))
5114 goto repeat;
5115
5116 /* and dying leaders w/o live member threads */
5117 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
5118 !atomic_read(&task->signal->live))
5119 goto repeat;
5120 } else {
5121 /* skip all dying ones */
5122 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
5123 goto repeat;
5124 }
5125 }
5126
5127 /**
5128 * css_task_iter_start - initiate task iteration
5129 * @css: the css to walk tasks of
5130 * @flags: CSS_TASK_ITER_* flags
5131 * @it: the task iterator to use
5132 *
5133 * Initiate iteration through the tasks of @css. The caller can call
5134 * css_task_iter_next() to walk through the tasks until the function
5135 * returns NULL. On completion of iteration, css_task_iter_end() must be
5136 * called.
5137 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)5138 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
5139 struct css_task_iter *it)
5140 {
5141 unsigned long irqflags;
5142
5143 memset(it, 0, sizeof(*it));
5144
5145 spin_lock_irqsave(&css_set_lock, irqflags);
5146
5147 it->ss = css->ss;
5148 it->flags = flags;
5149
5150 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
5151 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
5152 else
5153 it->cset_pos = &css->cgroup->cset_links;
5154
5155 it->cset_head = it->cset_pos;
5156
5157 css_task_iter_advance(it);
5158
5159 spin_unlock_irqrestore(&css_set_lock, irqflags);
5160 }
5161
5162 /**
5163 * css_task_iter_next - return the next task for the iterator
5164 * @it: the task iterator being iterated
5165 *
5166 * The "next" function for task iteration. @it should have been
5167 * initialized via css_task_iter_start(). Returns NULL when the iteration
5168 * reaches the end.
5169 */
css_task_iter_next(struct css_task_iter * it)5170 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5171 {
5172 unsigned long irqflags;
5173
5174 if (it->cur_task) {
5175 put_task_struct(it->cur_task);
5176 it->cur_task = NULL;
5177 }
5178
5179 spin_lock_irqsave(&css_set_lock, irqflags);
5180
5181 /* @it may be half-advanced by skips, finish advancing */
5182 if (it->flags & CSS_TASK_ITER_SKIPPED)
5183 css_task_iter_advance(it);
5184
5185 if (it->task_pos) {
5186 it->cur_task = list_entry(it->task_pos, struct task_struct,
5187 cg_list);
5188 get_task_struct(it->cur_task);
5189 css_task_iter_advance(it);
5190 }
5191
5192 spin_unlock_irqrestore(&css_set_lock, irqflags);
5193
5194 return it->cur_task;
5195 }
5196
5197 /**
5198 * css_task_iter_end - finish task iteration
5199 * @it: the task iterator to finish
5200 *
5201 * Finish task iteration started by css_task_iter_start().
5202 */
css_task_iter_end(struct css_task_iter * it)5203 void css_task_iter_end(struct css_task_iter *it)
5204 {
5205 unsigned long irqflags;
5206
5207 if (it->cur_cset) {
5208 spin_lock_irqsave(&css_set_lock, irqflags);
5209 list_del(&it->iters_node);
5210 put_css_set_locked(it->cur_cset);
5211 spin_unlock_irqrestore(&css_set_lock, irqflags);
5212 }
5213
5214 if (it->cur_dcset)
5215 put_css_set(it->cur_dcset);
5216
5217 if (it->cur_task)
5218 put_task_struct(it->cur_task);
5219 }
5220
cgroup_procs_release(struct kernfs_open_file * of)5221 static void cgroup_procs_release(struct kernfs_open_file *of)
5222 {
5223 struct cgroup_file_ctx *ctx = of->priv;
5224
5225 if (ctx->procs.started)
5226 css_task_iter_end(&ctx->procs.iter);
5227 }
5228
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5229 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5230 {
5231 struct kernfs_open_file *of = s->private;
5232 struct cgroup_file_ctx *ctx = of->priv;
5233
5234 if (pos)
5235 (*pos)++;
5236
5237 return css_task_iter_next(&ctx->procs.iter);
5238 }
5239
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5240 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5241 unsigned int iter_flags)
5242 {
5243 struct kernfs_open_file *of = s->private;
5244 struct cgroup *cgrp = seq_css(s)->cgroup;
5245 struct cgroup_file_ctx *ctx = of->priv;
5246 struct css_task_iter *it = &ctx->procs.iter;
5247
5248 /*
5249 * When a seq_file is seeked, it's always traversed sequentially
5250 * from position 0, so we can simply keep iterating on !0 *pos.
5251 */
5252 if (!ctx->procs.started) {
5253 if (WARN_ON_ONCE((*pos)))
5254 return ERR_PTR(-EINVAL);
5255 css_task_iter_start(&cgrp->self, iter_flags, it);
5256 ctx->procs.started = true;
5257 } else if (!(*pos)) {
5258 css_task_iter_end(it);
5259 css_task_iter_start(&cgrp->self, iter_flags, it);
5260 } else
5261 return it->cur_task;
5262
5263 return cgroup_procs_next(s, NULL, NULL);
5264 }
5265
cgroup_procs_start(struct seq_file * s,loff_t * pos)5266 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5267 {
5268 struct cgroup *cgrp = seq_css(s)->cgroup;
5269
5270 /*
5271 * All processes of a threaded subtree belong to the domain cgroup
5272 * of the subtree. Only threads can be distributed across the
5273 * subtree. Reject reads on cgroup.procs in the subtree proper.
5274 * They're always empty anyway.
5275 */
5276 if (cgroup_is_threaded(cgrp))
5277 return ERR_PTR(-EOPNOTSUPP);
5278
5279 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5280 CSS_TASK_ITER_THREADED);
5281 }
5282
cgroup_procs_show(struct seq_file * s,void * v)5283 static int cgroup_procs_show(struct seq_file *s, void *v)
5284 {
5285 seq_printf(s, "%d\n", task_pid_vnr(v));
5286 return 0;
5287 }
5288
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5289 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5290 {
5291 int ret;
5292 struct inode *inode;
5293
5294 lockdep_assert_held(&cgroup_mutex);
5295
5296 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5297 if (!inode)
5298 return -ENOMEM;
5299
5300 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5301 iput(inode);
5302 return ret;
5303 }
5304
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5305 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5306 struct cgroup *dst_cgrp,
5307 struct super_block *sb,
5308 struct cgroup_namespace *ns)
5309 {
5310 struct cgroup *com_cgrp = src_cgrp;
5311 int ret;
5312
5313 lockdep_assert_held(&cgroup_mutex);
5314
5315 /* find the common ancestor */
5316 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5317 com_cgrp = cgroup_parent(com_cgrp);
5318
5319 /* %current should be authorized to migrate to the common ancestor */
5320 ret = cgroup_may_write(com_cgrp, sb);
5321 if (ret)
5322 return ret;
5323
5324 /*
5325 * If namespaces are delegation boundaries, %current must be able
5326 * to see both source and destination cgroups from its namespace.
5327 */
5328 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5329 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5330 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5331 return -ENOENT;
5332
5333 return 0;
5334 }
5335
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5336 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5337 struct cgroup *dst_cgrp,
5338 struct super_block *sb, bool threadgroup,
5339 struct cgroup_namespace *ns)
5340 {
5341 int ret = 0;
5342
5343 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5344 if (ret)
5345 return ret;
5346
5347 ret = cgroup_migrate_vet_dst(dst_cgrp);
5348 if (ret)
5349 return ret;
5350
5351 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5352 ret = -EOPNOTSUPP;
5353
5354 return ret;
5355 }
5356
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5357 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5358 bool threadgroup)
5359 {
5360 struct cgroup_file_ctx *ctx = of->priv;
5361 struct cgroup *src_cgrp, *dst_cgrp;
5362 struct task_struct *task;
5363 ssize_t ret;
5364 enum cgroup_attach_lock_mode lock_mode;
5365
5366 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5367 if (!dst_cgrp)
5368 return -ENODEV;
5369
5370 task = cgroup_procs_write_start(buf, threadgroup, &lock_mode);
5371 ret = PTR_ERR_OR_ZERO(task);
5372 if (ret)
5373 goto out_unlock;
5374
5375 /* find the source cgroup */
5376 spin_lock_irq(&css_set_lock);
5377 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5378 spin_unlock_irq(&css_set_lock);
5379
5380 /*
5381 * Process and thread migrations follow same delegation rule. Check
5382 * permissions using the credentials from file open to protect against
5383 * inherited fd attacks.
5384 */
5385 scoped_with_creds(of->file->f_cred)
5386 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5387 of->file->f_path.dentry->d_sb,
5388 threadgroup, ctx->ns);
5389 if (ret)
5390 goto out_finish;
5391
5392 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5393
5394 out_finish:
5395 cgroup_procs_write_finish(task, lock_mode);
5396 out_unlock:
5397 cgroup_kn_unlock(of->kn);
5398
5399 return ret;
5400 }
5401
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5402 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5403 char *buf, size_t nbytes, loff_t off)
5404 {
5405 return __cgroup_procs_write(of, buf, true) ?: nbytes;
5406 }
5407
cgroup_threads_start(struct seq_file * s,loff_t * pos)5408 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5409 {
5410 return __cgroup_procs_start(s, pos, 0);
5411 }
5412
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5413 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5414 char *buf, size_t nbytes, loff_t off)
5415 {
5416 return __cgroup_procs_write(of, buf, false) ?: nbytes;
5417 }
5418
5419 /* cgroup core interface files for the default hierarchy */
5420 static struct cftype cgroup_base_files[] = {
5421 {
5422 .name = "cgroup.type",
5423 .flags = CFTYPE_NOT_ON_ROOT,
5424 .seq_show = cgroup_type_show,
5425 .write = cgroup_type_write,
5426 },
5427 {
5428 .name = "cgroup.procs",
5429 .flags = CFTYPE_NS_DELEGATABLE,
5430 .file_offset = offsetof(struct cgroup, procs_file),
5431 .release = cgroup_procs_release,
5432 .seq_start = cgroup_procs_start,
5433 .seq_next = cgroup_procs_next,
5434 .seq_show = cgroup_procs_show,
5435 .write = cgroup_procs_write,
5436 },
5437 {
5438 .name = "cgroup.threads",
5439 .flags = CFTYPE_NS_DELEGATABLE,
5440 .release = cgroup_procs_release,
5441 .seq_start = cgroup_threads_start,
5442 .seq_next = cgroup_procs_next,
5443 .seq_show = cgroup_procs_show,
5444 .write = cgroup_threads_write,
5445 },
5446 {
5447 .name = "cgroup.controllers",
5448 .seq_show = cgroup_controllers_show,
5449 },
5450 {
5451 .name = "cgroup.subtree_control",
5452 .flags = CFTYPE_NS_DELEGATABLE,
5453 .seq_show = cgroup_subtree_control_show,
5454 .write = cgroup_subtree_control_write,
5455 },
5456 {
5457 .name = "cgroup.events",
5458 .flags = CFTYPE_NOT_ON_ROOT,
5459 .file_offset = offsetof(struct cgroup, events_file),
5460 .seq_show = cgroup_events_show,
5461 },
5462 {
5463 .name = "cgroup.max.descendants",
5464 .seq_show = cgroup_max_descendants_show,
5465 .write = cgroup_max_descendants_write,
5466 },
5467 {
5468 .name = "cgroup.max.depth",
5469 .seq_show = cgroup_max_depth_show,
5470 .write = cgroup_max_depth_write,
5471 },
5472 {
5473 .name = "cgroup.stat",
5474 .seq_show = cgroup_stat_show,
5475 },
5476 {
5477 .name = "cgroup.stat.local",
5478 .flags = CFTYPE_NOT_ON_ROOT,
5479 .seq_show = cgroup_core_local_stat_show,
5480 },
5481 {
5482 .name = "cgroup.freeze",
5483 .flags = CFTYPE_NOT_ON_ROOT,
5484 .seq_show = cgroup_freeze_show,
5485 .write = cgroup_freeze_write,
5486 },
5487 {
5488 .name = "cgroup.kill",
5489 .flags = CFTYPE_NOT_ON_ROOT,
5490 .write = cgroup_kill_write,
5491 },
5492 {
5493 .name = "cpu.stat",
5494 .seq_show = cpu_stat_show,
5495 },
5496 {
5497 .name = "cpu.stat.local",
5498 .seq_show = cpu_local_stat_show,
5499 },
5500 { } /* terminate */
5501 };
5502
5503 static struct cftype cgroup_psi_files[] = {
5504 #ifdef CONFIG_PSI
5505 {
5506 .name = "io.pressure",
5507 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5508 .seq_show = cgroup_io_pressure_show,
5509 .write = cgroup_io_pressure_write,
5510 .poll = cgroup_pressure_poll,
5511 .release = cgroup_pressure_release,
5512 },
5513 {
5514 .name = "memory.pressure",
5515 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5516 .seq_show = cgroup_memory_pressure_show,
5517 .write = cgroup_memory_pressure_write,
5518 .poll = cgroup_pressure_poll,
5519 .release = cgroup_pressure_release,
5520 },
5521 {
5522 .name = "cpu.pressure",
5523 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5524 .seq_show = cgroup_cpu_pressure_show,
5525 .write = cgroup_cpu_pressure_write,
5526 .poll = cgroup_pressure_poll,
5527 .release = cgroup_pressure_release,
5528 },
5529 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5530 {
5531 .name = "irq.pressure",
5532 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5533 .seq_show = cgroup_irq_pressure_show,
5534 .write = cgroup_irq_pressure_write,
5535 .poll = cgroup_pressure_poll,
5536 .release = cgroup_pressure_release,
5537 },
5538 #endif
5539 {
5540 .name = "cgroup.pressure",
5541 .seq_show = cgroup_pressure_show,
5542 .write = cgroup_pressure_write,
5543 },
5544 #endif /* CONFIG_PSI */
5545 { } /* terminate */
5546 };
5547
5548 /*
5549 * css destruction is four-stage process.
5550 *
5551 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5552 * Implemented in kill_css().
5553 *
5554 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5555 * and thus css_tryget_online() is guaranteed to fail, the css can be
5556 * offlined by invoking offline_css(). After offlining, the base ref is
5557 * put. Implemented in css_killed_work_fn().
5558 *
5559 * 3. When the percpu_ref reaches zero, the only possible remaining
5560 * accessors are inside RCU read sections. css_release() schedules the
5561 * RCU callback.
5562 *
5563 * 4. After the grace period, the css can be freed. Implemented in
5564 * css_free_rwork_fn().
5565 *
5566 * It is actually hairier because both step 2 and 4 require process context
5567 * and thus involve punting to css->destroy_work adding two additional
5568 * steps to the already complex sequence.
5569 */
css_free_rwork_fn(struct work_struct * work)5570 static void css_free_rwork_fn(struct work_struct *work)
5571 {
5572 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5573 struct cgroup_subsys_state, destroy_rwork);
5574 struct cgroup_subsys *ss = css->ss;
5575 struct cgroup *cgrp = css->cgroup;
5576
5577 percpu_ref_exit(&css->refcnt);
5578 css_rstat_exit(css);
5579
5580 if (!css_is_self(css)) {
5581 /* css free path */
5582 struct cgroup_subsys_state *parent = css->parent;
5583 int id = css->id;
5584
5585 ss->css_free(css);
5586 cgroup_idr_remove(&ss->css_idr, id);
5587 cgroup_put(cgrp);
5588
5589 if (parent)
5590 css_put(parent);
5591 } else {
5592 /* cgroup free path */
5593 atomic_dec(&cgrp->root->nr_cgrps);
5594 if (!cgroup_on_dfl(cgrp))
5595 cgroup1_pidlist_destroy_all(cgrp);
5596 cancel_work_sync(&cgrp->release_agent_work);
5597 bpf_cgrp_storage_free(cgrp);
5598
5599 if (cgroup_parent(cgrp)) {
5600 /*
5601 * We get a ref to the parent, and put the ref when
5602 * this cgroup is being freed, so it's guaranteed
5603 * that the parent won't be destroyed before its
5604 * children.
5605 */
5606 cgroup_put(cgroup_parent(cgrp));
5607 kernfs_put(cgrp->kn);
5608 psi_cgroup_free(cgrp);
5609 kfree(cgrp);
5610 } else {
5611 /*
5612 * This is root cgroup's refcnt reaching zero,
5613 * which indicates that the root should be
5614 * released.
5615 */
5616 cgroup_destroy_root(cgrp->root);
5617 }
5618 }
5619 }
5620
css_release_work_fn(struct work_struct * work)5621 static void css_release_work_fn(struct work_struct *work)
5622 {
5623 struct cgroup_subsys_state *css =
5624 container_of(work, struct cgroup_subsys_state, destroy_work);
5625 struct cgroup_subsys *ss = css->ss;
5626 struct cgroup *cgrp = css->cgroup;
5627
5628 cgroup_lock();
5629
5630 css->flags |= CSS_RELEASED;
5631 list_del_rcu(&css->sibling);
5632
5633 if (!css_is_self(css)) {
5634 struct cgroup *parent_cgrp;
5635
5636 css_rstat_flush(css);
5637
5638 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5639 if (ss->css_released)
5640 ss->css_released(css);
5641
5642 cgrp->nr_dying_subsys[ss->id]--;
5643 /*
5644 * When a css is released and ready to be freed, its
5645 * nr_descendants must be zero. However, the corresponding
5646 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5647 * is activated and deactivated multiple times with one or
5648 * more of its previous activation leaving behind dying csses.
5649 */
5650 WARN_ON_ONCE(css->nr_descendants);
5651 parent_cgrp = cgroup_parent(cgrp);
5652 while (parent_cgrp) {
5653 parent_cgrp->nr_dying_subsys[ss->id]--;
5654 parent_cgrp = cgroup_parent(parent_cgrp);
5655 }
5656 } else {
5657 struct cgroup *tcgrp;
5658
5659 /* cgroup release path */
5660 TRACE_CGROUP_PATH(release, cgrp);
5661
5662 css_rstat_flush(&cgrp->self);
5663
5664 spin_lock_irq(&css_set_lock);
5665 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5666 tcgrp = cgroup_parent(tcgrp))
5667 tcgrp->nr_dying_descendants--;
5668 spin_unlock_irq(&css_set_lock);
5669
5670 /*
5671 * There are two control paths which try to determine
5672 * cgroup from dentry without going through kernfs -
5673 * cgroupstats_build() and css_tryget_online_from_dir().
5674 * Those are supported by RCU protecting clearing of
5675 * cgrp->kn->priv backpointer.
5676 */
5677 if (cgrp->kn)
5678 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5679 NULL);
5680 }
5681
5682 cgroup_unlock();
5683
5684 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5685 queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5686 }
5687
css_release(struct percpu_ref * ref)5688 static void css_release(struct percpu_ref *ref)
5689 {
5690 struct cgroup_subsys_state *css =
5691 container_of(ref, struct cgroup_subsys_state, refcnt);
5692
5693 INIT_WORK(&css->destroy_work, css_release_work_fn);
5694 queue_work(cgroup_release_wq, &css->destroy_work);
5695 }
5696
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5697 static void init_and_link_css(struct cgroup_subsys_state *css,
5698 struct cgroup_subsys *ss, struct cgroup *cgrp)
5699 {
5700 lockdep_assert_held(&cgroup_mutex);
5701
5702 cgroup_get_live(cgrp);
5703
5704 memset(css, 0, sizeof(*css));
5705 css->cgroup = cgrp;
5706 css->ss = ss;
5707 css->id = -1;
5708 INIT_LIST_HEAD(&css->sibling);
5709 INIT_LIST_HEAD(&css->children);
5710 css->serial_nr = css_serial_nr_next++;
5711 atomic_set(&css->online_cnt, 0);
5712
5713 if (cgroup_parent(cgrp)) {
5714 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5715 css_get(css->parent);
5716 }
5717
5718 BUG_ON(cgroup_css(cgrp, ss));
5719 }
5720
5721 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5722 static int online_css(struct cgroup_subsys_state *css)
5723 {
5724 struct cgroup_subsys *ss = css->ss;
5725 int ret = 0;
5726
5727 lockdep_assert_held(&cgroup_mutex);
5728
5729 if (ss->css_online)
5730 ret = ss->css_online(css);
5731 if (!ret) {
5732 css->flags |= CSS_ONLINE;
5733 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5734
5735 atomic_inc(&css->online_cnt);
5736 if (css->parent) {
5737 atomic_inc(&css->parent->online_cnt);
5738 while ((css = css->parent))
5739 css->nr_descendants++;
5740 }
5741 }
5742 return ret;
5743 }
5744
5745 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5746 static void offline_css(struct cgroup_subsys_state *css)
5747 {
5748 struct cgroup_subsys *ss = css->ss;
5749
5750 lockdep_assert_held(&cgroup_mutex);
5751
5752 if (!(css->flags & CSS_ONLINE))
5753 return;
5754
5755 if (ss->css_offline)
5756 ss->css_offline(css);
5757
5758 css->flags &= ~CSS_ONLINE;
5759 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5760
5761 wake_up_all(&css->cgroup->offline_waitq);
5762
5763 css->cgroup->nr_dying_subsys[ss->id]++;
5764 /*
5765 * Parent css and cgroup cannot be freed until after the freeing
5766 * of child css, see css_free_rwork_fn().
5767 */
5768 while ((css = css->parent)) {
5769 css->nr_descendants--;
5770 css->cgroup->nr_dying_subsys[ss->id]++;
5771 }
5772 }
5773
5774 /**
5775 * css_create - create a cgroup_subsys_state
5776 * @cgrp: the cgroup new css will be associated with
5777 * @ss: the subsys of new css
5778 *
5779 * Create a new css associated with @cgrp - @ss pair. On success, the new
5780 * css is online and installed in @cgrp. This function doesn't create the
5781 * interface files. Returns 0 on success, -errno on failure.
5782 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5783 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5784 struct cgroup_subsys *ss)
5785 {
5786 struct cgroup *parent = cgroup_parent(cgrp);
5787 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5788 struct cgroup_subsys_state *css;
5789 int err;
5790
5791 lockdep_assert_held(&cgroup_mutex);
5792
5793 css = ss->css_alloc(parent_css);
5794 if (!css)
5795 css = ERR_PTR(-ENOMEM);
5796 if (IS_ERR(css))
5797 return css;
5798
5799 init_and_link_css(css, ss, cgrp);
5800
5801 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5802 if (err)
5803 goto err_free_css;
5804
5805 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5806 if (err < 0)
5807 goto err_free_css;
5808 css->id = err;
5809
5810 err = css_rstat_init(css);
5811 if (err)
5812 goto err_free_css;
5813
5814 /* @css is ready to be brought online now, make it visible */
5815 list_add_tail_rcu(&css->sibling, &parent_css->children);
5816 cgroup_idr_replace(&ss->css_idr, css, css->id);
5817
5818 err = online_css(css);
5819 if (err)
5820 goto err_list_del;
5821
5822 return css;
5823
5824 err_list_del:
5825 list_del_rcu(&css->sibling);
5826 err_free_css:
5827 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5828 queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5829 return ERR_PTR(err);
5830 }
5831
5832 /*
5833 * The returned cgroup is fully initialized including its control mask, but
5834 * it doesn't have the control mask applied.
5835 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5836 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5837 umode_t mode)
5838 {
5839 struct cgroup_root *root = parent->root;
5840 struct cgroup *cgrp, *tcgrp;
5841 struct kernfs_node *kn;
5842 int i, level = parent->level + 1;
5843 int ret;
5844
5845 /* allocate the cgroup and its ID, 0 is reserved for the root */
5846 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5847 if (!cgrp)
5848 return ERR_PTR(-ENOMEM);
5849
5850 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5851 if (ret)
5852 goto out_free_cgrp;
5853
5854 /* create the directory */
5855 kn = kernfs_create_dir_ns(parent->kn, name, mode,
5856 current_fsuid(), current_fsgid(),
5857 cgrp, NULL);
5858 if (IS_ERR(kn)) {
5859 ret = PTR_ERR(kn);
5860 goto out_cancel_ref;
5861 }
5862 cgrp->kn = kn;
5863
5864 init_cgroup_housekeeping(cgrp);
5865
5866 cgrp->self.parent = &parent->self;
5867 cgrp->root = root;
5868 cgrp->level = level;
5869
5870 /*
5871 * Now that init_cgroup_housekeeping() has been called and cgrp->self
5872 * is setup, it is safe to perform rstat initialization on it.
5873 */
5874 ret = css_rstat_init(&cgrp->self);
5875 if (ret)
5876 goto out_kernfs_remove;
5877
5878 ret = psi_cgroup_alloc(cgrp);
5879 if (ret)
5880 goto out_stat_exit;
5881
5882 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5883 cgrp->ancestors[tcgrp->level] = tcgrp;
5884
5885 /*
5886 * New cgroup inherits effective freeze counter, and
5887 * if the parent has to be frozen, the child has too.
5888 */
5889 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5890 seqcount_spinlock_init(&cgrp->freezer.freeze_seq, &css_set_lock);
5891 if (cgrp->freezer.e_freeze) {
5892 /*
5893 * Set the CGRP_FREEZE flag, so when a process will be
5894 * attached to the child cgroup, it will become frozen.
5895 * At this point the new cgroup is unpopulated, so we can
5896 * consider it frozen immediately.
5897 */
5898 set_bit(CGRP_FREEZE, &cgrp->flags);
5899 cgrp->freezer.freeze_start_nsec = ktime_get_ns();
5900 set_bit(CGRP_FROZEN, &cgrp->flags);
5901 }
5902
5903 if (notify_on_release(parent))
5904 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5905
5906 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5907 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5908
5909 cgrp->self.serial_nr = css_serial_nr_next++;
5910
5911 ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier,
5912 CGROUP_LIFETIME_ONLINE,
5913 CGROUP_LIFETIME_OFFLINE, cgrp);
5914 ret = notifier_to_errno(ret);
5915 if (ret)
5916 goto out_psi_free;
5917
5918 /* allocation complete, commit to creation */
5919 spin_lock_irq(&css_set_lock);
5920 for (i = 0; i < level; i++) {
5921 tcgrp = cgrp->ancestors[i];
5922 tcgrp->nr_descendants++;
5923
5924 /*
5925 * If the new cgroup is frozen, all ancestor cgroups get a new
5926 * frozen descendant, but their state can't change because of
5927 * this.
5928 */
5929 if (cgrp->freezer.e_freeze)
5930 tcgrp->freezer.nr_frozen_descendants++;
5931 }
5932 spin_unlock_irq(&css_set_lock);
5933
5934 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5935 atomic_inc(&root->nr_cgrps);
5936 cgroup_get_live(parent);
5937
5938 /*
5939 * On the default hierarchy, a child doesn't automatically inherit
5940 * subtree_control from the parent. Each is configured manually.
5941 */
5942 if (!cgroup_on_dfl(cgrp))
5943 cgrp->subtree_control = cgroup_control(cgrp);
5944
5945 cgroup_propagate_control(cgrp);
5946
5947 return cgrp;
5948
5949 out_psi_free:
5950 psi_cgroup_free(cgrp);
5951 out_stat_exit:
5952 css_rstat_exit(&cgrp->self);
5953 out_kernfs_remove:
5954 kernfs_remove(cgrp->kn);
5955 out_cancel_ref:
5956 percpu_ref_exit(&cgrp->self.refcnt);
5957 out_free_cgrp:
5958 kfree(cgrp);
5959 return ERR_PTR(ret);
5960 }
5961
cgroup_check_hierarchy_limits(struct cgroup * parent)5962 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5963 {
5964 struct cgroup *cgroup;
5965 int ret = false;
5966 int level = 0;
5967
5968 lockdep_assert_held(&cgroup_mutex);
5969
5970 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5971 if (cgroup->nr_descendants >= cgroup->max_descendants)
5972 goto fail;
5973
5974 if (level >= cgroup->max_depth)
5975 goto fail;
5976
5977 level++;
5978 }
5979
5980 ret = true;
5981 fail:
5982 return ret;
5983 }
5984
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5985 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5986 {
5987 struct cgroup *parent, *cgrp;
5988 int ret;
5989
5990 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5991 if (strchr(name, '\n'))
5992 return -EINVAL;
5993
5994 parent = cgroup_kn_lock_live(parent_kn, false);
5995 if (!parent)
5996 return -ENODEV;
5997
5998 if (!cgroup_check_hierarchy_limits(parent)) {
5999 ret = -EAGAIN;
6000 goto out_unlock;
6001 }
6002
6003 cgrp = cgroup_create(parent, name, mode);
6004 if (IS_ERR(cgrp)) {
6005 ret = PTR_ERR(cgrp);
6006 goto out_unlock;
6007 }
6008
6009 /*
6010 * This extra ref will be put in css_free_rwork_fn() and guarantees
6011 * that @cgrp->kn is always accessible.
6012 */
6013 kernfs_get(cgrp->kn);
6014
6015 ret = css_populate_dir(&cgrp->self);
6016 if (ret)
6017 goto out_destroy;
6018
6019 ret = cgroup_apply_control_enable(cgrp);
6020 if (ret)
6021 goto out_destroy;
6022
6023 TRACE_CGROUP_PATH(mkdir, cgrp);
6024
6025 /* let's create and online css's */
6026 kernfs_activate(cgrp->kn);
6027
6028 ret = 0;
6029 goto out_unlock;
6030
6031 out_destroy:
6032 cgroup_destroy_locked(cgrp);
6033 out_unlock:
6034 cgroup_kn_unlock(parent_kn);
6035 return ret;
6036 }
6037
6038 /*
6039 * This is called when the refcnt of a css is confirmed to be killed.
6040 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
6041 * initiate destruction and put the css ref from kill_css().
6042 */
css_killed_work_fn(struct work_struct * work)6043 static void css_killed_work_fn(struct work_struct *work)
6044 {
6045 struct cgroup_subsys_state *css =
6046 container_of(work, struct cgroup_subsys_state, destroy_work);
6047
6048 cgroup_lock();
6049
6050 do {
6051 offline_css(css);
6052 css_put(css);
6053 /* @css can't go away while we're holding cgroup_mutex */
6054 css = css->parent;
6055 } while (css && atomic_dec_and_test(&css->online_cnt));
6056
6057 cgroup_unlock();
6058 }
6059
6060 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)6061 static void css_killed_ref_fn(struct percpu_ref *ref)
6062 {
6063 struct cgroup_subsys_state *css =
6064 container_of(ref, struct cgroup_subsys_state, refcnt);
6065
6066 if (atomic_dec_and_test(&css->online_cnt)) {
6067 INIT_WORK(&css->destroy_work, css_killed_work_fn);
6068 queue_work(cgroup_offline_wq, &css->destroy_work);
6069 }
6070 }
6071
6072 /**
6073 * kill_css - destroy a css
6074 * @css: css to destroy
6075 *
6076 * This function initiates destruction of @css by removing cgroup interface
6077 * files and putting its base reference. ->css_offline() will be invoked
6078 * asynchronously once css_tryget_online() is guaranteed to fail and when
6079 * the reference count reaches zero, @css will be released.
6080 */
kill_css(struct cgroup_subsys_state * css)6081 static void kill_css(struct cgroup_subsys_state *css)
6082 {
6083 lockdep_assert_held(&cgroup_mutex);
6084
6085 if (css->flags & CSS_DYING)
6086 return;
6087
6088 /*
6089 * Call css_killed(), if defined, before setting the CSS_DYING flag
6090 */
6091 if (css->ss->css_killed)
6092 css->ss->css_killed(css);
6093
6094 css->flags |= CSS_DYING;
6095
6096 /*
6097 * This must happen before css is disassociated with its cgroup.
6098 * See seq_css() for details.
6099 */
6100 css_clear_dir(css);
6101
6102 /*
6103 * Killing would put the base ref, but we need to keep it alive
6104 * until after ->css_offline().
6105 */
6106 css_get(css);
6107
6108 /*
6109 * cgroup core guarantees that, by the time ->css_offline() is
6110 * invoked, no new css reference will be given out via
6111 * css_tryget_online(). We can't simply call percpu_ref_kill() and
6112 * proceed to offlining css's because percpu_ref_kill() doesn't
6113 * guarantee that the ref is seen as killed on all CPUs on return.
6114 *
6115 * Use percpu_ref_kill_and_confirm() to get notifications as each
6116 * css is confirmed to be seen as killed on all CPUs.
6117 */
6118 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
6119 }
6120
6121 /**
6122 * cgroup_destroy_locked - the first stage of cgroup destruction
6123 * @cgrp: cgroup to be destroyed
6124 *
6125 * css's make use of percpu refcnts whose killing latency shouldn't be
6126 * exposed to userland and are RCU protected. Also, cgroup core needs to
6127 * guarantee that css_tryget_online() won't succeed by the time
6128 * ->css_offline() is invoked. To satisfy all the requirements,
6129 * destruction is implemented in the following two steps.
6130 *
6131 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
6132 * userland visible parts and start killing the percpu refcnts of
6133 * css's. Set up so that the next stage will be kicked off once all
6134 * the percpu refcnts are confirmed to be killed.
6135 *
6136 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
6137 * rest of destruction. Once all cgroup references are gone, the
6138 * cgroup is RCU-freed.
6139 *
6140 * This function implements s1. After this step, @cgrp is gone as far as
6141 * the userland is concerned and a new cgroup with the same name may be
6142 * created. As cgroup doesn't care about the names internally, this
6143 * doesn't cause any problem.
6144 */
cgroup_destroy_locked(struct cgroup * cgrp)6145 static int cgroup_destroy_locked(struct cgroup *cgrp)
6146 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
6147 {
6148 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
6149 struct cgroup_subsys_state *css;
6150 struct cgrp_cset_link *link;
6151 int ssid, ret;
6152
6153 lockdep_assert_held(&cgroup_mutex);
6154
6155 /*
6156 * Only migration can raise populated from zero and we're already
6157 * holding cgroup_mutex.
6158 */
6159 if (cgroup_is_populated(cgrp))
6160 return -EBUSY;
6161
6162 /*
6163 * Make sure there's no live children. We can't test emptiness of
6164 * ->self.children as dead children linger on it while being
6165 * drained; otherwise, "rmdir parent/child parent" may fail.
6166 */
6167 if (css_has_online_children(&cgrp->self))
6168 return -EBUSY;
6169
6170 /*
6171 * Mark @cgrp and the associated csets dead. The former prevents
6172 * further task migration and child creation by disabling
6173 * cgroup_kn_lock_live(). The latter makes the csets ignored by
6174 * the migration path.
6175 */
6176 cgrp->self.flags &= ~CSS_ONLINE;
6177
6178 spin_lock_irq(&css_set_lock);
6179 list_for_each_entry(link, &cgrp->cset_links, cset_link)
6180 link->cset->dead = true;
6181 spin_unlock_irq(&css_set_lock);
6182
6183 /* initiate massacre of all css's */
6184 for_each_css(css, ssid, cgrp)
6185 kill_css(css);
6186
6187 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6188 css_clear_dir(&cgrp->self);
6189 kernfs_remove(cgrp->kn);
6190
6191 if (cgroup_is_threaded(cgrp))
6192 parent->nr_threaded_children--;
6193
6194 spin_lock_irq(&css_set_lock);
6195 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6196 tcgrp->nr_descendants--;
6197 tcgrp->nr_dying_descendants++;
6198 /*
6199 * If the dying cgroup is frozen, decrease frozen descendants
6200 * counters of ancestor cgroups.
6201 */
6202 if (test_bit(CGRP_FROZEN, &cgrp->flags))
6203 tcgrp->freezer.nr_frozen_descendants--;
6204 }
6205 spin_unlock_irq(&css_set_lock);
6206
6207 cgroup1_check_for_release(parent);
6208
6209 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
6210 CGROUP_LIFETIME_OFFLINE, cgrp);
6211 WARN_ON_ONCE(notifier_to_errno(ret));
6212
6213 /* put the base reference */
6214 percpu_ref_kill(&cgrp->self.refcnt);
6215
6216 return 0;
6217 };
6218
cgroup_rmdir(struct kernfs_node * kn)6219 int cgroup_rmdir(struct kernfs_node *kn)
6220 {
6221 struct cgroup *cgrp;
6222 int ret = 0;
6223
6224 cgrp = cgroup_kn_lock_live(kn, false);
6225 if (!cgrp)
6226 return 0;
6227
6228 ret = cgroup_destroy_locked(cgrp);
6229 if (!ret)
6230 TRACE_CGROUP_PATH(rmdir, cgrp);
6231
6232 cgroup_kn_unlock(kn);
6233 return ret;
6234 }
6235
6236 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6237 .show_options = cgroup_show_options,
6238 .mkdir = cgroup_mkdir,
6239 .rmdir = cgroup_rmdir,
6240 .show_path = cgroup_show_path,
6241 };
6242
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6243 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6244 {
6245 struct cgroup_subsys_state *css;
6246
6247 pr_debug("Initializing cgroup subsys %s\n", ss->name);
6248
6249 cgroup_lock();
6250
6251 idr_init(&ss->css_idr);
6252 INIT_LIST_HEAD(&ss->cfts);
6253
6254 /* Create the root cgroup state for this subsystem */
6255 ss->root = &cgrp_dfl_root;
6256 css = ss->css_alloc(NULL);
6257 /* We don't handle early failures gracefully */
6258 BUG_ON(IS_ERR(css));
6259 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6260
6261 /*
6262 * Root csses are never destroyed and we can't initialize
6263 * percpu_ref during early init. Disable refcnting.
6264 */
6265 css->flags |= CSS_NO_REF;
6266
6267 if (early) {
6268 /* allocation can't be done safely during early init */
6269 css->id = 1;
6270 } else {
6271 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6272 BUG_ON(css->id < 0);
6273
6274 BUG_ON(ss_rstat_init(ss));
6275 BUG_ON(css_rstat_init(css));
6276 }
6277
6278 /* Update the init_css_set to contain a subsys
6279 * pointer to this state - since the subsystem is
6280 * newly registered, all tasks and hence the
6281 * init_css_set is in the subsystem's root cgroup. */
6282 init_css_set.subsys[ss->id] = css;
6283
6284 have_fork_callback |= (bool)ss->fork << ss->id;
6285 have_exit_callback |= (bool)ss->exit << ss->id;
6286 have_release_callback |= (bool)ss->release << ss->id;
6287 have_canfork_callback |= (bool)ss->can_fork << ss->id;
6288
6289 /* At system boot, before all subsystems have been
6290 * registered, no tasks have been forked, so we don't
6291 * need to invoke fork callbacks here. */
6292 BUG_ON(!list_empty(&init_task.tasks));
6293
6294 BUG_ON(online_css(css));
6295
6296 cgroup_unlock();
6297 }
6298
6299 /**
6300 * cgroup_init_early - cgroup initialization at system boot
6301 *
6302 * Initialize cgroups at system boot, and initialize any
6303 * subsystems that request early init.
6304 */
cgroup_init_early(void)6305 int __init cgroup_init_early(void)
6306 {
6307 static struct cgroup_fs_context __initdata ctx;
6308 struct cgroup_subsys *ss;
6309 int i;
6310
6311 ctx.root = &cgrp_dfl_root;
6312 init_cgroup_root(&ctx);
6313 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6314
6315 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6316
6317 for_each_subsys(ss, i) {
6318 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6319 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6320 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6321 ss->id, ss->name);
6322 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6323 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6324 WARN(ss->early_init && ss->css_rstat_flush,
6325 "cgroup rstat cannot be used with early init subsystem\n");
6326
6327 ss->id = i;
6328 ss->name = cgroup_subsys_name[i];
6329 if (!ss->legacy_name)
6330 ss->legacy_name = cgroup_subsys_name[i];
6331
6332 if (ss->early_init)
6333 cgroup_init_subsys(ss, true);
6334 }
6335 return 0;
6336 }
6337
6338 /**
6339 * cgroup_init - cgroup initialization
6340 *
6341 * Register cgroup filesystem and /proc file, and initialize
6342 * any subsystems that didn't request early init.
6343 */
cgroup_init(void)6344 int __init cgroup_init(void)
6345 {
6346 struct cgroup_subsys *ss;
6347 int ssid;
6348
6349 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6350 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6351 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6352 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6353
6354 BUG_ON(ss_rstat_init(NULL));
6355
6356 get_user_ns(init_cgroup_ns.user_ns);
6357
6358 cgroup_lock();
6359
6360 /*
6361 * Add init_css_set to the hash table so that dfl_root can link to
6362 * it during init.
6363 */
6364 hash_add(css_set_table, &init_css_set.hlist,
6365 css_set_hash(init_css_set.subsys));
6366
6367 cgroup_bpf_lifetime_notifier_init();
6368
6369 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6370
6371 cgroup_unlock();
6372
6373 for_each_subsys(ss, ssid) {
6374 if (ss->early_init) {
6375 struct cgroup_subsys_state *css =
6376 init_css_set.subsys[ss->id];
6377
6378 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6379 GFP_KERNEL);
6380 BUG_ON(css->id < 0);
6381 } else {
6382 cgroup_init_subsys(ss, false);
6383 }
6384
6385 list_add_tail(&init_css_set.e_cset_node[ssid],
6386 &cgrp_dfl_root.cgrp.e_csets[ssid]);
6387
6388 /*
6389 * Setting dfl_root subsys_mask needs to consider the
6390 * disabled flag and cftype registration needs kmalloc,
6391 * both of which aren't available during early_init.
6392 */
6393 if (!cgroup_ssid_enabled(ssid))
6394 continue;
6395
6396 if (cgroup1_ssid_disabled(ssid))
6397 pr_info("Disabling %s control group subsystem in v1 mounts\n",
6398 ss->legacy_name);
6399
6400 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6401
6402 /* implicit controllers must be threaded too */
6403 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6404
6405 if (ss->implicit_on_dfl)
6406 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6407 else if (!ss->dfl_cftypes)
6408 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6409
6410 if (ss->threaded)
6411 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6412
6413 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6414 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6415 } else {
6416 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6417 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6418 }
6419
6420 if (ss->bind)
6421 ss->bind(init_css_set.subsys[ssid]);
6422
6423 cgroup_lock();
6424 css_populate_dir(init_css_set.subsys[ssid]);
6425 cgroup_unlock();
6426 }
6427
6428 /* init_css_set.subsys[] has been updated, re-hash */
6429 hash_del(&init_css_set.hlist);
6430 hash_add(css_set_table, &init_css_set.hlist,
6431 css_set_hash(init_css_set.subsys));
6432
6433 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6434 WARN_ON(register_filesystem(&cgroup_fs_type));
6435 WARN_ON(register_filesystem(&cgroup2_fs_type));
6436 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6437 #ifdef CONFIG_CPUSETS_V1
6438 WARN_ON(register_filesystem(&cpuset_fs_type));
6439 #endif
6440
6441 ns_tree_add(&init_cgroup_ns);
6442 return 0;
6443 }
6444
cgroup_wq_init(void)6445 static int __init cgroup_wq_init(void)
6446 {
6447 /*
6448 * There isn't much point in executing destruction path in
6449 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6450 * Use 1 for @max_active.
6451 *
6452 * We would prefer to do this in cgroup_init() above, but that
6453 * is called before init_workqueues(): so leave this until after.
6454 */
6455 cgroup_offline_wq = alloc_workqueue("cgroup_offline", WQ_PERCPU, 1);
6456 BUG_ON(!cgroup_offline_wq);
6457
6458 cgroup_release_wq = alloc_workqueue("cgroup_release", WQ_PERCPU, 1);
6459 BUG_ON(!cgroup_release_wq);
6460
6461 cgroup_free_wq = alloc_workqueue("cgroup_free", WQ_PERCPU, 1);
6462 BUG_ON(!cgroup_free_wq);
6463 return 0;
6464 }
6465 core_initcall(cgroup_wq_init);
6466
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6467 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6468 {
6469 struct kernfs_node *kn;
6470
6471 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6472 if (!kn)
6473 return;
6474 kernfs_path(kn, buf, buflen);
6475 kernfs_put(kn);
6476 }
6477
6478 /*
6479 * __cgroup_get_from_id : get the cgroup associated with cgroup id
6480 * @id: cgroup id
6481 * On success return the cgrp or ERR_PTR on failure
6482 * There are no cgroup NS restrictions.
6483 */
__cgroup_get_from_id(u64 id)6484 struct cgroup *__cgroup_get_from_id(u64 id)
6485 {
6486 struct kernfs_node *kn;
6487 struct cgroup *cgrp;
6488
6489 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6490 if (!kn)
6491 return ERR_PTR(-ENOENT);
6492
6493 if (kernfs_type(kn) != KERNFS_DIR) {
6494 kernfs_put(kn);
6495 return ERR_PTR(-ENOENT);
6496 }
6497
6498 rcu_read_lock();
6499
6500 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6501 if (cgrp && !cgroup_tryget(cgrp))
6502 cgrp = NULL;
6503
6504 rcu_read_unlock();
6505 kernfs_put(kn);
6506
6507 if (!cgrp)
6508 return ERR_PTR(-ENOENT);
6509 return cgrp;
6510 }
6511
6512 /*
6513 * cgroup_get_from_id : get the cgroup associated with cgroup id
6514 * @id: cgroup id
6515 * On success return the cgrp or ERR_PTR on failure
6516 * Only cgroups within current task's cgroup NS are valid.
6517 */
cgroup_get_from_id(u64 id)6518 struct cgroup *cgroup_get_from_id(u64 id)
6519 {
6520 struct cgroup *cgrp, *root_cgrp;
6521
6522 cgrp = __cgroup_get_from_id(id);
6523 if (IS_ERR(cgrp))
6524 return cgrp;
6525
6526 root_cgrp = current_cgns_cgroup_dfl();
6527 if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6528 cgroup_put(cgrp);
6529 return ERR_PTR(-ENOENT);
6530 }
6531
6532 return cgrp;
6533 }
6534 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6535
6536 /*
6537 * proc_cgroup_show()
6538 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6539 * - Used for /proc/<pid>/cgroup.
6540 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6541 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6542 struct pid *pid, struct task_struct *tsk)
6543 {
6544 char *buf;
6545 int retval;
6546 struct cgroup_root *root;
6547
6548 retval = -ENOMEM;
6549 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6550 if (!buf)
6551 goto out;
6552
6553 rcu_read_lock();
6554 spin_lock_irq(&css_set_lock);
6555
6556 for_each_root(root) {
6557 struct cgroup_subsys *ss;
6558 struct cgroup *cgrp;
6559 int ssid, count = 0;
6560
6561 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6562 continue;
6563
6564 cgrp = task_cgroup_from_root(tsk, root);
6565 /* The root has already been unmounted. */
6566 if (!cgrp)
6567 continue;
6568
6569 seq_printf(m, "%d:", root->hierarchy_id);
6570 if (root != &cgrp_dfl_root)
6571 for_each_subsys(ss, ssid)
6572 if (root->subsys_mask & (1 << ssid))
6573 seq_printf(m, "%s%s", count++ ? "," : "",
6574 ss->legacy_name);
6575 if (strlen(root->name))
6576 seq_printf(m, "%sname=%s", count ? "," : "",
6577 root->name);
6578 seq_putc(m, ':');
6579 /*
6580 * On traditional hierarchies, all zombie tasks show up as
6581 * belonging to the root cgroup. On the default hierarchy,
6582 * while a zombie doesn't show up in "cgroup.procs" and
6583 * thus can't be migrated, its /proc/PID/cgroup keeps
6584 * reporting the cgroup it belonged to before exiting. If
6585 * the cgroup is removed before the zombie is reaped,
6586 * " (deleted)" is appended to the cgroup path.
6587 */
6588 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6589 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6590 current->nsproxy->cgroup_ns);
6591 if (retval == -E2BIG)
6592 retval = -ENAMETOOLONG;
6593 if (retval < 0)
6594 goto out_unlock;
6595
6596 seq_puts(m, buf);
6597 } else {
6598 seq_puts(m, "/");
6599 }
6600
6601 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6602 seq_puts(m, " (deleted)\n");
6603 else
6604 seq_putc(m, '\n');
6605 }
6606
6607 retval = 0;
6608 out_unlock:
6609 spin_unlock_irq(&css_set_lock);
6610 rcu_read_unlock();
6611 kfree(buf);
6612 out:
6613 return retval;
6614 }
6615
6616 /**
6617 * cgroup_fork - initialize cgroup related fields during copy_process()
6618 * @child: pointer to task_struct of forking parent process.
6619 *
6620 * A task is associated with the init_css_set until cgroup_post_fork()
6621 * attaches it to the target css_set.
6622 */
cgroup_fork(struct task_struct * child)6623 void cgroup_fork(struct task_struct *child)
6624 {
6625 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6626 INIT_LIST_HEAD(&child->cg_list);
6627 }
6628
6629 /**
6630 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6631 * @f: file corresponding to cgroup_dir
6632 *
6633 * Find the cgroup from a file pointer associated with a cgroup directory.
6634 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6635 * cgroup cannot be found.
6636 */
cgroup_v1v2_get_from_file(struct file * f)6637 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6638 {
6639 struct cgroup_subsys_state *css;
6640
6641 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6642 if (IS_ERR(css))
6643 return ERR_CAST(css);
6644
6645 return css->cgroup;
6646 }
6647
6648 /**
6649 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6650 * cgroup2.
6651 * @f: file corresponding to cgroup2_dir
6652 */
cgroup_get_from_file(struct file * f)6653 static struct cgroup *cgroup_get_from_file(struct file *f)
6654 {
6655 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6656
6657 if (IS_ERR(cgrp))
6658 return ERR_CAST(cgrp);
6659
6660 if (!cgroup_on_dfl(cgrp)) {
6661 cgroup_put(cgrp);
6662 return ERR_PTR(-EBADF);
6663 }
6664
6665 return cgrp;
6666 }
6667
6668 /**
6669 * cgroup_css_set_fork - find or create a css_set for a child process
6670 * @kargs: the arguments passed to create the child process
6671 *
6672 * This functions finds or creates a new css_set which the child
6673 * process will be attached to in cgroup_post_fork(). By default,
6674 * the child process will be given the same css_set as its parent.
6675 *
6676 * If CLONE_INTO_CGROUP is specified this function will try to find an
6677 * existing css_set which includes the requested cgroup and if not create
6678 * a new css_set that the child will be attached to later. If this function
6679 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6680 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6681 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6682 * to the target cgroup.
6683 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6684 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6685 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6686 {
6687 int ret;
6688 struct cgroup *dst_cgrp = NULL;
6689 struct css_set *cset;
6690 struct super_block *sb;
6691
6692 if (kargs->flags & CLONE_INTO_CGROUP)
6693 cgroup_lock();
6694
6695 cgroup_threadgroup_change_begin(current);
6696
6697 spin_lock_irq(&css_set_lock);
6698 cset = task_css_set(current);
6699 get_css_set(cset);
6700 if (kargs->cgrp)
6701 kargs->kill_seq = kargs->cgrp->kill_seq;
6702 else
6703 kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6704 spin_unlock_irq(&css_set_lock);
6705
6706 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6707 kargs->cset = cset;
6708 return 0;
6709 }
6710
6711 CLASS(fd_raw, f)(kargs->cgroup);
6712 if (fd_empty(f)) {
6713 ret = -EBADF;
6714 goto err;
6715 }
6716 sb = fd_file(f)->f_path.dentry->d_sb;
6717
6718 dst_cgrp = cgroup_get_from_file(fd_file(f));
6719 if (IS_ERR(dst_cgrp)) {
6720 ret = PTR_ERR(dst_cgrp);
6721 dst_cgrp = NULL;
6722 goto err;
6723 }
6724
6725 if (cgroup_is_dead(dst_cgrp)) {
6726 ret = -ENODEV;
6727 goto err;
6728 }
6729
6730 /*
6731 * Verify that we the target cgroup is writable for us. This is
6732 * usually done by the vfs layer but since we're not going through
6733 * the vfs layer here we need to do it "manually".
6734 */
6735 ret = cgroup_may_write(dst_cgrp, sb);
6736 if (ret)
6737 goto err;
6738
6739 /*
6740 * Spawning a task directly into a cgroup works by passing a file
6741 * descriptor to the target cgroup directory. This can even be an O_PATH
6742 * file descriptor. But it can never be a cgroup.procs file descriptor.
6743 * This was done on purpose so spawning into a cgroup could be
6744 * conceptualized as an atomic
6745 *
6746 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6747 * write(fd, <child-pid>, ...);
6748 *
6749 * sequence, i.e. it's a shorthand for the caller opening and writing
6750 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6751 * to always use the caller's credentials.
6752 */
6753 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6754 !(kargs->flags & CLONE_THREAD),
6755 current->nsproxy->cgroup_ns);
6756 if (ret)
6757 goto err;
6758
6759 kargs->cset = find_css_set(cset, dst_cgrp);
6760 if (!kargs->cset) {
6761 ret = -ENOMEM;
6762 goto err;
6763 }
6764
6765 put_css_set(cset);
6766 kargs->cgrp = dst_cgrp;
6767 return ret;
6768
6769 err:
6770 cgroup_threadgroup_change_end(current);
6771 cgroup_unlock();
6772 if (dst_cgrp)
6773 cgroup_put(dst_cgrp);
6774 put_css_set(cset);
6775 if (kargs->cset)
6776 put_css_set(kargs->cset);
6777 return ret;
6778 }
6779
6780 /**
6781 * cgroup_css_set_put_fork - drop references we took during fork
6782 * @kargs: the arguments passed to create the child process
6783 *
6784 * Drop references to the prepared css_set and target cgroup if
6785 * CLONE_INTO_CGROUP was requested.
6786 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6787 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6788 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6789 {
6790 struct cgroup *cgrp = kargs->cgrp;
6791 struct css_set *cset = kargs->cset;
6792
6793 cgroup_threadgroup_change_end(current);
6794
6795 if (cset) {
6796 put_css_set(cset);
6797 kargs->cset = NULL;
6798 }
6799
6800 if (kargs->flags & CLONE_INTO_CGROUP) {
6801 cgroup_unlock();
6802 if (cgrp) {
6803 cgroup_put(cgrp);
6804 kargs->cgrp = NULL;
6805 }
6806 }
6807 }
6808
6809 /**
6810 * cgroup_can_fork - called on a new task before the process is exposed
6811 * @child: the child process
6812 * @kargs: the arguments passed to create the child process
6813 *
6814 * This prepares a new css_set for the child process which the child will
6815 * be attached to in cgroup_post_fork().
6816 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6817 * callback returns an error, the fork aborts with that error code. This
6818 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6819 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6820 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6821 {
6822 struct cgroup_subsys *ss;
6823 int i, j, ret;
6824
6825 ret = cgroup_css_set_fork(kargs);
6826 if (ret)
6827 return ret;
6828
6829 do_each_subsys_mask(ss, i, have_canfork_callback) {
6830 ret = ss->can_fork(child, kargs->cset);
6831 if (ret)
6832 goto out_revert;
6833 } while_each_subsys_mask();
6834
6835 return 0;
6836
6837 out_revert:
6838 for_each_subsys(ss, j) {
6839 if (j >= i)
6840 break;
6841 if (ss->cancel_fork)
6842 ss->cancel_fork(child, kargs->cset);
6843 }
6844
6845 cgroup_css_set_put_fork(kargs);
6846
6847 return ret;
6848 }
6849
6850 /**
6851 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6852 * @child: the child process
6853 * @kargs: the arguments passed to create the child process
6854 *
6855 * This calls the cancel_fork() callbacks if a fork failed *after*
6856 * cgroup_can_fork() succeeded and cleans up references we took to
6857 * prepare a new css_set for the child process in cgroup_can_fork().
6858 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6859 void cgroup_cancel_fork(struct task_struct *child,
6860 struct kernel_clone_args *kargs)
6861 {
6862 struct cgroup_subsys *ss;
6863 int i;
6864
6865 for_each_subsys(ss, i)
6866 if (ss->cancel_fork)
6867 ss->cancel_fork(child, kargs->cset);
6868
6869 cgroup_css_set_put_fork(kargs);
6870 }
6871
6872 /**
6873 * cgroup_post_fork - finalize cgroup setup for the child process
6874 * @child: the child process
6875 * @kargs: the arguments passed to create the child process
6876 *
6877 * Attach the child process to its css_set calling the subsystem fork()
6878 * callbacks.
6879 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6880 void cgroup_post_fork(struct task_struct *child,
6881 struct kernel_clone_args *kargs)
6882 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6883 {
6884 unsigned int cgrp_kill_seq = 0;
6885 unsigned long cgrp_flags = 0;
6886 bool kill = false;
6887 struct cgroup_subsys *ss;
6888 struct css_set *cset;
6889 int i;
6890
6891 cset = kargs->cset;
6892 kargs->cset = NULL;
6893
6894 spin_lock_irq(&css_set_lock);
6895
6896 /* init tasks are special, only link regular threads */
6897 if (likely(child->pid)) {
6898 if (kargs->cgrp) {
6899 cgrp_flags = kargs->cgrp->flags;
6900 cgrp_kill_seq = kargs->cgrp->kill_seq;
6901 } else {
6902 cgrp_flags = cset->dfl_cgrp->flags;
6903 cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6904 }
6905
6906 WARN_ON_ONCE(!list_empty(&child->cg_list));
6907 cset->nr_tasks++;
6908 css_set_move_task(child, NULL, cset, false);
6909 } else {
6910 put_css_set(cset);
6911 cset = NULL;
6912 }
6913
6914 if (!(child->flags & PF_KTHREAD)) {
6915 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6916 /*
6917 * If the cgroup has to be frozen, the new task has
6918 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6919 * get the task into the frozen state.
6920 */
6921 spin_lock(&child->sighand->siglock);
6922 WARN_ON_ONCE(child->frozen);
6923 child->jobctl |= JOBCTL_TRAP_FREEZE;
6924 spin_unlock(&child->sighand->siglock);
6925
6926 /*
6927 * Calling cgroup_update_frozen() isn't required here,
6928 * because it will be called anyway a bit later from
6929 * do_freezer_trap(). So we avoid cgroup's transient
6930 * switch from the frozen state and back.
6931 */
6932 }
6933
6934 /*
6935 * If the cgroup is to be killed notice it now and take the
6936 * child down right after we finished preparing it for
6937 * userspace.
6938 */
6939 kill = kargs->kill_seq != cgrp_kill_seq;
6940 }
6941
6942 spin_unlock_irq(&css_set_lock);
6943
6944 /*
6945 * Call ss->fork(). This must happen after @child is linked on
6946 * css_set; otherwise, @child might change state between ->fork()
6947 * and addition to css_set.
6948 */
6949 do_each_subsys_mask(ss, i, have_fork_callback) {
6950 ss->fork(child);
6951 } while_each_subsys_mask();
6952
6953 /* Make the new cset the root_cset of the new cgroup namespace. */
6954 if (kargs->flags & CLONE_NEWCGROUP) {
6955 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6956
6957 get_css_set(cset);
6958 child->nsproxy->cgroup_ns->root_cset = cset;
6959 put_css_set(rcset);
6960 }
6961
6962 /* Cgroup has to be killed so take down child immediately. */
6963 if (unlikely(kill))
6964 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6965
6966 cgroup_css_set_put_fork(kargs);
6967 }
6968
6969 /**
6970 * cgroup_exit - detach cgroup from exiting task
6971 * @tsk: pointer to task_struct of exiting process
6972 *
6973 * Description: Detach cgroup from @tsk.
6974 *
6975 */
cgroup_exit(struct task_struct * tsk)6976 void cgroup_exit(struct task_struct *tsk)
6977 {
6978 struct cgroup_subsys *ss;
6979 struct css_set *cset;
6980 int i;
6981
6982 spin_lock_irq(&css_set_lock);
6983
6984 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6985 cset = task_css_set(tsk);
6986 css_set_move_task(tsk, cset, NULL, false);
6987 cset->nr_tasks--;
6988 /* matches the signal->live check in css_task_iter_advance() */
6989 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6990 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6991
6992 if (dl_task(tsk))
6993 dec_dl_tasks_cs(tsk);
6994
6995 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6996 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6997 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6998 cgroup_update_frozen(task_dfl_cgroup(tsk));
6999
7000 spin_unlock_irq(&css_set_lock);
7001
7002 /* see cgroup_post_fork() for details */
7003 do_each_subsys_mask(ss, i, have_exit_callback) {
7004 ss->exit(tsk);
7005 } while_each_subsys_mask();
7006 }
7007
cgroup_release(struct task_struct * task)7008 void cgroup_release(struct task_struct *task)
7009 {
7010 struct cgroup_subsys *ss;
7011 int ssid;
7012
7013 do_each_subsys_mask(ss, ssid, have_release_callback) {
7014 ss->release(task);
7015 } while_each_subsys_mask();
7016
7017 if (!list_empty(&task->cg_list)) {
7018 spin_lock_irq(&css_set_lock);
7019 css_set_skip_task_iters(task_css_set(task), task);
7020 list_del_init(&task->cg_list);
7021 spin_unlock_irq(&css_set_lock);
7022 }
7023 }
7024
cgroup_free(struct task_struct * task)7025 void cgroup_free(struct task_struct *task)
7026 {
7027 struct css_set *cset = task_css_set(task);
7028 put_css_set(cset);
7029 }
7030
cgroup_disable(char * str)7031 static int __init cgroup_disable(char *str)
7032 {
7033 struct cgroup_subsys *ss;
7034 char *token;
7035 int i;
7036
7037 while ((token = strsep(&str, ",")) != NULL) {
7038 if (!*token)
7039 continue;
7040
7041 for_each_subsys(ss, i) {
7042 if (strcmp(token, ss->name) &&
7043 strcmp(token, ss->legacy_name))
7044 continue;
7045
7046 static_branch_disable(cgroup_subsys_enabled_key[i]);
7047 pr_info("Disabling %s control group subsystem\n",
7048 ss->name);
7049 }
7050
7051 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
7052 if (strcmp(token, cgroup_opt_feature_names[i]))
7053 continue;
7054 cgroup_feature_disable_mask |= 1 << i;
7055 pr_info("Disabling %s control group feature\n",
7056 cgroup_opt_feature_names[i]);
7057 break;
7058 }
7059 }
7060 return 1;
7061 }
7062 __setup("cgroup_disable=", cgroup_disable);
7063
enable_debug_cgroup(void)7064 void __init __weak enable_debug_cgroup(void) { }
7065
enable_cgroup_debug(char * str)7066 static int __init enable_cgroup_debug(char *str)
7067 {
7068 cgroup_debug = true;
7069 enable_debug_cgroup();
7070 return 1;
7071 }
7072 __setup("cgroup_debug", enable_cgroup_debug);
7073
cgroup_favordynmods_setup(char * str)7074 static int __init cgroup_favordynmods_setup(char *str)
7075 {
7076 return (kstrtobool(str, &have_favordynmods) == 0);
7077 }
7078 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
7079
7080 /**
7081 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
7082 * @dentry: directory dentry of interest
7083 * @ss: subsystem of interest
7084 *
7085 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
7086 * to get the corresponding css and return it. If such css doesn't exist
7087 * or can't be pinned, an ERR_PTR value is returned.
7088 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)7089 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
7090 struct cgroup_subsys *ss)
7091 {
7092 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
7093 struct file_system_type *s_type = dentry->d_sb->s_type;
7094 struct cgroup_subsys_state *css = NULL;
7095 struct cgroup *cgrp;
7096
7097 /* is @dentry a cgroup dir? */
7098 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
7099 !kn || kernfs_type(kn) != KERNFS_DIR)
7100 return ERR_PTR(-EBADF);
7101
7102 rcu_read_lock();
7103
7104 /*
7105 * This path doesn't originate from kernfs and @kn could already
7106 * have been or be removed at any point. @kn->priv is RCU
7107 * protected for this access. See css_release_work_fn() for details.
7108 */
7109 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7110 if (cgrp)
7111 css = cgroup_css(cgrp, ss);
7112
7113 if (!css || !css_tryget_online(css))
7114 css = ERR_PTR(-ENOENT);
7115
7116 rcu_read_unlock();
7117 return css;
7118 }
7119
7120 /**
7121 * css_from_id - lookup css by id
7122 * @id: the cgroup id
7123 * @ss: cgroup subsys to be looked into
7124 *
7125 * Returns the css if there's valid one with @id, otherwise returns NULL.
7126 * Should be called under rcu_read_lock().
7127 */
css_from_id(int id,struct cgroup_subsys * ss)7128 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
7129 {
7130 WARN_ON_ONCE(!rcu_read_lock_held());
7131 return idr_find(&ss->css_idr, id);
7132 }
7133
7134 /**
7135 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
7136 * @path: path on the default hierarchy
7137 *
7138 * Find the cgroup at @path on the default hierarchy, increment its
7139 * reference count and return it. Returns pointer to the found cgroup on
7140 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
7141 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
7142 */
cgroup_get_from_path(const char * path)7143 struct cgroup *cgroup_get_from_path(const char *path)
7144 {
7145 struct kernfs_node *kn;
7146 struct cgroup *cgrp = ERR_PTR(-ENOENT);
7147 struct cgroup *root_cgrp;
7148
7149 root_cgrp = current_cgns_cgroup_dfl();
7150 kn = kernfs_walk_and_get(root_cgrp->kn, path);
7151 if (!kn)
7152 goto out;
7153
7154 if (kernfs_type(kn) != KERNFS_DIR) {
7155 cgrp = ERR_PTR(-ENOTDIR);
7156 goto out_kernfs;
7157 }
7158
7159 rcu_read_lock();
7160
7161 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7162 if (!cgrp || !cgroup_tryget(cgrp))
7163 cgrp = ERR_PTR(-ENOENT);
7164
7165 rcu_read_unlock();
7166
7167 out_kernfs:
7168 kernfs_put(kn);
7169 out:
7170 return cgrp;
7171 }
7172 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
7173
7174 /**
7175 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
7176 * @fd: fd obtained by open(cgroup_dir)
7177 *
7178 * Find the cgroup from a fd which should be obtained
7179 * by opening a cgroup directory. Returns a pointer to the
7180 * cgroup on success. ERR_PTR is returned if the cgroup
7181 * cannot be found.
7182 */
cgroup_v1v2_get_from_fd(int fd)7183 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
7184 {
7185 CLASS(fd_raw, f)(fd);
7186 if (fd_empty(f))
7187 return ERR_PTR(-EBADF);
7188
7189 return cgroup_v1v2_get_from_file(fd_file(f));
7190 }
7191
7192 /**
7193 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
7194 * cgroup2.
7195 * @fd: fd obtained by open(cgroup2_dir)
7196 */
cgroup_get_from_fd(int fd)7197 struct cgroup *cgroup_get_from_fd(int fd)
7198 {
7199 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7200
7201 if (IS_ERR(cgrp))
7202 return ERR_CAST(cgrp);
7203
7204 if (!cgroup_on_dfl(cgrp)) {
7205 cgroup_put(cgrp);
7206 return ERR_PTR(-EBADF);
7207 }
7208 return cgrp;
7209 }
7210 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7211
power_of_ten(int power)7212 static u64 power_of_ten(int power)
7213 {
7214 u64 v = 1;
7215 while (power--)
7216 v *= 10;
7217 return v;
7218 }
7219
7220 /**
7221 * cgroup_parse_float - parse a floating number
7222 * @input: input string
7223 * @dec_shift: number of decimal digits to shift
7224 * @v: output
7225 *
7226 * Parse a decimal floating point number in @input and store the result in
7227 * @v with decimal point right shifted @dec_shift times. For example, if
7228 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7229 * Returns 0 on success, -errno otherwise.
7230 *
7231 * There's nothing cgroup specific about this function except that it's
7232 * currently the only user.
7233 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7234 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7235 {
7236 s64 whole, frac = 0;
7237 int fstart = 0, fend = 0, flen;
7238
7239 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7240 return -EINVAL;
7241 if (frac < 0)
7242 return -EINVAL;
7243
7244 flen = fend > fstart ? fend - fstart : 0;
7245 if (flen < dec_shift)
7246 frac *= power_of_ten(dec_shift - flen);
7247 else
7248 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7249
7250 *v = whole * power_of_ten(dec_shift) + frac;
7251 return 0;
7252 }
7253
7254 /*
7255 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
7256 * definition in cgroup-defs.h.
7257 */
7258 #ifdef CONFIG_SOCK_CGROUP_DATA
7259
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7260 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7261 {
7262 struct cgroup *cgroup;
7263
7264 rcu_read_lock();
7265 /* Don't associate the sock with unrelated interrupted task's cgroup. */
7266 if (in_interrupt()) {
7267 cgroup = &cgrp_dfl_root.cgrp;
7268 cgroup_get(cgroup);
7269 goto out;
7270 }
7271
7272 while (true) {
7273 struct css_set *cset;
7274
7275 cset = task_css_set(current);
7276 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7277 cgroup = cset->dfl_cgrp;
7278 break;
7279 }
7280 cpu_relax();
7281 }
7282 out:
7283 skcd->cgroup = cgroup;
7284 cgroup_bpf_get(cgroup);
7285 rcu_read_unlock();
7286 }
7287
cgroup_sk_clone(struct sock_cgroup_data * skcd)7288 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7289 {
7290 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7291
7292 /*
7293 * We might be cloning a socket which is left in an empty
7294 * cgroup and the cgroup might have already been rmdir'd.
7295 * Don't use cgroup_get_live().
7296 */
7297 cgroup_get(cgrp);
7298 cgroup_bpf_get(cgrp);
7299 }
7300
cgroup_sk_free(struct sock_cgroup_data * skcd)7301 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7302 {
7303 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7304
7305 cgroup_bpf_put(cgrp);
7306 cgroup_put(cgrp);
7307 }
7308
7309 #endif /* CONFIG_SOCK_CGROUP_DATA */
7310
7311 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7312 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7313 ssize_t size, const char *prefix)
7314 {
7315 struct cftype *cft;
7316 ssize_t ret = 0;
7317
7318 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7319 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7320 continue;
7321
7322 if (prefix)
7323 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7324
7325 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7326
7327 if (WARN_ON(ret >= size))
7328 break;
7329 }
7330
7331 return ret;
7332 }
7333
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7334 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7335 char *buf)
7336 {
7337 struct cgroup_subsys *ss;
7338 int ssid;
7339 ssize_t ret = 0;
7340
7341 ret = show_delegatable_files(cgroup_base_files, buf + ret,
7342 PAGE_SIZE - ret, NULL);
7343 if (cgroup_psi_enabled())
7344 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7345 PAGE_SIZE - ret, NULL);
7346
7347 for_each_subsys(ss, ssid)
7348 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7349 PAGE_SIZE - ret,
7350 cgroup_subsys_name[ssid]);
7351
7352 return ret;
7353 }
7354 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7355
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7356 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7357 char *buf)
7358 {
7359 return snprintf(buf, PAGE_SIZE,
7360 "nsdelegate\n"
7361 "favordynmods\n"
7362 "memory_localevents\n"
7363 "memory_recursiveprot\n"
7364 "memory_hugetlb_accounting\n"
7365 "pids_localevents\n");
7366 }
7367 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7368
7369 static struct attribute *cgroup_sysfs_attrs[] = {
7370 &cgroup_delegate_attr.attr,
7371 &cgroup_features_attr.attr,
7372 NULL,
7373 };
7374
7375 static const struct attribute_group cgroup_sysfs_attr_group = {
7376 .attrs = cgroup_sysfs_attrs,
7377 .name = "cgroup",
7378 };
7379
cgroup_sysfs_init(void)7380 static int __init cgroup_sysfs_init(void)
7381 {
7382 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7383 }
7384 subsys_initcall(cgroup_sysfs_init);
7385
7386 #endif /* CONFIG_SYSFS */
7387