xref: /linux/kernel/bpf/core.c (revision 40863f4d6ef2c34bb00dd1070dfaf9d5f27a497e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <crypto/sha1.h>
22 #include <linux/filter.h>
23 #include <linux/skbuff.h>
24 #include <linux/vmalloc.h>
25 #include <linux/prandom.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/overflow.h>
30 #include <linux/rbtree_latch.h>
31 #include <linux/kallsyms.h>
32 #include <linux/rcupdate.h>
33 #include <linux/perf_event.h>
34 #include <linux/extable.h>
35 #include <linux/log2.h>
36 #include <linux/bpf_verifier.h>
37 #include <linux/nodemask.h>
38 #include <linux/nospec.h>
39 #include <linux/bpf_mem_alloc.h>
40 #include <linux/memcontrol.h>
41 #include <linux/execmem.h>
42 #include <crypto/sha2.h>
43 
44 #include <asm/barrier.h>
45 #include <linux/unaligned.h>
46 
47 /* Registers */
48 #define BPF_R0	regs[BPF_REG_0]
49 #define BPF_R1	regs[BPF_REG_1]
50 #define BPF_R2	regs[BPF_REG_2]
51 #define BPF_R3	regs[BPF_REG_3]
52 #define BPF_R4	regs[BPF_REG_4]
53 #define BPF_R5	regs[BPF_REG_5]
54 #define BPF_R6	regs[BPF_REG_6]
55 #define BPF_R7	regs[BPF_REG_7]
56 #define BPF_R8	regs[BPF_REG_8]
57 #define BPF_R9	regs[BPF_REG_9]
58 #define BPF_R10	regs[BPF_REG_10]
59 
60 /* Named registers */
61 #define DST	regs[insn->dst_reg]
62 #define SRC	regs[insn->src_reg]
63 #define FP	regs[BPF_REG_FP]
64 #define AX	regs[BPF_REG_AX]
65 #define ARG1	regs[BPF_REG_ARG1]
66 #define CTX	regs[BPF_REG_CTX]
67 #define OFF	insn->off
68 #define IMM	insn->imm
69 
70 struct bpf_mem_alloc bpf_global_ma;
71 bool bpf_global_ma_set;
72 
73 /* No hurry in this branch
74  *
75  * Exported for the bpf jit load helper.
76  */
77 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
78 {
79 	u8 *ptr = NULL;
80 
81 	if (k >= SKF_NET_OFF) {
82 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
83 	} else if (k >= SKF_LL_OFF) {
84 		if (unlikely(!skb_mac_header_was_set(skb)))
85 			return NULL;
86 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
87 	}
88 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
89 		return ptr;
90 
91 	return NULL;
92 }
93 
94 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
95 enum page_size_enum {
96 	__PAGE_SIZE = PAGE_SIZE
97 };
98 
99 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
100 {
101 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
102 	struct bpf_prog_aux *aux;
103 	struct bpf_prog *fp;
104 
105 	size = round_up(size, __PAGE_SIZE);
106 	fp = __vmalloc(size, gfp_flags);
107 	if (fp == NULL)
108 		return NULL;
109 
110 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
111 	if (aux == NULL) {
112 		vfree(fp);
113 		return NULL;
114 	}
115 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
116 	if (!fp->active) {
117 		vfree(fp);
118 		kfree(aux);
119 		return NULL;
120 	}
121 
122 	fp->pages = size / PAGE_SIZE;
123 	fp->aux = aux;
124 	fp->aux->main_prog_aux = aux;
125 	fp->aux->prog = fp;
126 	fp->jit_requested = ebpf_jit_enabled();
127 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
128 #ifdef CONFIG_CGROUP_BPF
129 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
130 #endif
131 
132 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
133 #ifdef CONFIG_FINEIBT
134 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
135 #endif
136 	mutex_init(&fp->aux->used_maps_mutex);
137 	mutex_init(&fp->aux->ext_mutex);
138 	mutex_init(&fp->aux->dst_mutex);
139 
140 #ifdef CONFIG_BPF_SYSCALL
141 	bpf_prog_stream_init(fp);
142 #endif
143 
144 	return fp;
145 }
146 
147 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
148 {
149 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
150 	struct bpf_prog *prog;
151 	int cpu;
152 
153 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
154 	if (!prog)
155 		return NULL;
156 
157 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
158 	if (!prog->stats) {
159 		free_percpu(prog->active);
160 		kfree(prog->aux);
161 		vfree(prog);
162 		return NULL;
163 	}
164 
165 	for_each_possible_cpu(cpu) {
166 		struct bpf_prog_stats *pstats;
167 
168 		pstats = per_cpu_ptr(prog->stats, cpu);
169 		u64_stats_init(&pstats->syncp);
170 	}
171 	return prog;
172 }
173 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
174 
175 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
176 {
177 	if (!prog->aux->nr_linfo || !prog->jit_requested)
178 		return 0;
179 
180 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
181 					  sizeof(*prog->aux->jited_linfo),
182 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
183 	if (!prog->aux->jited_linfo)
184 		return -ENOMEM;
185 
186 	return 0;
187 }
188 
189 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
190 {
191 	if (prog->aux->jited_linfo &&
192 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
193 		kvfree(prog->aux->jited_linfo);
194 		prog->aux->jited_linfo = NULL;
195 	}
196 
197 	kfree(prog->aux->kfunc_tab);
198 	prog->aux->kfunc_tab = NULL;
199 }
200 
201 /* The jit engine is responsible to provide an array
202  * for insn_off to the jited_off mapping (insn_to_jit_off).
203  *
204  * The idx to this array is the insn_off.  Hence, the insn_off
205  * here is relative to the prog itself instead of the main prog.
206  * This array has one entry for each xlated bpf insn.
207  *
208  * jited_off is the byte off to the end of the jited insn.
209  *
210  * Hence, with
211  * insn_start:
212  *      The first bpf insn off of the prog.  The insn off
213  *      here is relative to the main prog.
214  *      e.g. if prog is a subprog, insn_start > 0
215  * linfo_idx:
216  *      The prog's idx to prog->aux->linfo and jited_linfo
217  *
218  * jited_linfo[linfo_idx] = prog->bpf_func
219  *
220  * For i > linfo_idx,
221  *
222  * jited_linfo[i] = prog->bpf_func +
223  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
224  */
225 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
226 			       const u32 *insn_to_jit_off)
227 {
228 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
229 	const struct bpf_line_info *linfo;
230 	void **jited_linfo;
231 
232 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
233 		/* Userspace did not provide linfo */
234 		return;
235 
236 	linfo_idx = prog->aux->linfo_idx;
237 	linfo = &prog->aux->linfo[linfo_idx];
238 	insn_start = linfo[0].insn_off;
239 	insn_end = insn_start + prog->len;
240 
241 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
242 	jited_linfo[0] = prog->bpf_func;
243 
244 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
245 
246 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
247 		/* The verifier ensures that linfo[i].insn_off is
248 		 * strictly increasing
249 		 */
250 		jited_linfo[i] = prog->bpf_func +
251 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
252 }
253 
254 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
255 				  gfp_t gfp_extra_flags)
256 {
257 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
258 	struct bpf_prog *fp;
259 	u32 pages;
260 
261 	size = round_up(size, PAGE_SIZE);
262 	pages = size / PAGE_SIZE;
263 	if (pages <= fp_old->pages)
264 		return fp_old;
265 
266 	fp = __vmalloc(size, gfp_flags);
267 	if (fp) {
268 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
269 		fp->pages = pages;
270 		fp->aux->prog = fp;
271 
272 		/* We keep fp->aux from fp_old around in the new
273 		 * reallocated structure.
274 		 */
275 		fp_old->aux = NULL;
276 		fp_old->stats = NULL;
277 		fp_old->active = NULL;
278 		__bpf_prog_free(fp_old);
279 	}
280 
281 	return fp;
282 }
283 
284 void __bpf_prog_free(struct bpf_prog *fp)
285 {
286 	if (fp->aux) {
287 		mutex_destroy(&fp->aux->used_maps_mutex);
288 		mutex_destroy(&fp->aux->dst_mutex);
289 		kfree(fp->aux->poke_tab);
290 		kfree(fp->aux);
291 	}
292 	free_percpu(fp->stats);
293 	free_percpu(fp->active);
294 	vfree(fp);
295 }
296 
297 int bpf_prog_calc_tag(struct bpf_prog *fp)
298 {
299 	size_t size = bpf_prog_insn_size(fp);
300 	struct bpf_insn *dst;
301 	bool was_ld_map;
302 	u32 i;
303 
304 	dst = vmalloc(size);
305 	if (!dst)
306 		return -ENOMEM;
307 
308 	/* We need to take out the map fd for the digest calculation
309 	 * since they are unstable from user space side.
310 	 */
311 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
312 		dst[i] = fp->insnsi[i];
313 		if (!was_ld_map &&
314 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
315 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
316 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
317 			was_ld_map = true;
318 			dst[i].imm = 0;
319 		} else if (was_ld_map &&
320 			   dst[i].code == 0 &&
321 			   dst[i].dst_reg == 0 &&
322 			   dst[i].src_reg == 0 &&
323 			   dst[i].off == 0) {
324 			was_ld_map = false;
325 			dst[i].imm = 0;
326 		} else {
327 			was_ld_map = false;
328 		}
329 	}
330 	sha256((u8 *)dst, size, fp->digest);
331 	vfree(dst);
332 	return 0;
333 }
334 
335 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
336 				s32 end_new, s32 curr, const bool probe_pass)
337 {
338 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
339 	s32 delta = end_new - end_old;
340 	s64 imm = insn->imm;
341 
342 	if (curr < pos && curr + imm + 1 >= end_old)
343 		imm += delta;
344 	else if (curr >= end_new && curr + imm + 1 < end_new)
345 		imm -= delta;
346 	if (imm < imm_min || imm > imm_max)
347 		return -ERANGE;
348 	if (!probe_pass)
349 		insn->imm = imm;
350 	return 0;
351 }
352 
353 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
354 				s32 end_new, s32 curr, const bool probe_pass)
355 {
356 	s64 off_min, off_max, off;
357 	s32 delta = end_new - end_old;
358 
359 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
360 		off = insn->imm;
361 		off_min = S32_MIN;
362 		off_max = S32_MAX;
363 	} else {
364 		off = insn->off;
365 		off_min = S16_MIN;
366 		off_max = S16_MAX;
367 	}
368 
369 	if (curr < pos && curr + off + 1 >= end_old)
370 		off += delta;
371 	else if (curr >= end_new && curr + off + 1 < end_new)
372 		off -= delta;
373 	if (off < off_min || off > off_max)
374 		return -ERANGE;
375 	if (!probe_pass) {
376 		if (insn->code == (BPF_JMP32 | BPF_JA))
377 			insn->imm = off;
378 		else
379 			insn->off = off;
380 	}
381 	return 0;
382 }
383 
384 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
385 			    s32 end_new, const bool probe_pass)
386 {
387 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
388 	struct bpf_insn *insn = prog->insnsi;
389 	int ret = 0;
390 
391 	for (i = 0; i < insn_cnt; i++, insn++) {
392 		u8 code;
393 
394 		/* In the probing pass we still operate on the original,
395 		 * unpatched image in order to check overflows before we
396 		 * do any other adjustments. Therefore skip the patchlet.
397 		 */
398 		if (probe_pass && i == pos) {
399 			i = end_new;
400 			insn = prog->insnsi + end_old;
401 		}
402 		if (bpf_pseudo_func(insn)) {
403 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
404 						   end_new, i, probe_pass);
405 			if (ret)
406 				return ret;
407 			continue;
408 		}
409 		code = insn->code;
410 		if ((BPF_CLASS(code) != BPF_JMP &&
411 		     BPF_CLASS(code) != BPF_JMP32) ||
412 		    BPF_OP(code) == BPF_EXIT)
413 			continue;
414 		/* Adjust offset of jmps if we cross patch boundaries. */
415 		if (BPF_OP(code) == BPF_CALL) {
416 			if (insn->src_reg != BPF_PSEUDO_CALL)
417 				continue;
418 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
419 						   end_new, i, probe_pass);
420 		} else {
421 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
422 						   end_new, i, probe_pass);
423 		}
424 		if (ret)
425 			break;
426 	}
427 
428 	return ret;
429 }
430 
431 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
432 {
433 	struct bpf_line_info *linfo;
434 	u32 i, nr_linfo;
435 
436 	nr_linfo = prog->aux->nr_linfo;
437 	if (!nr_linfo || !delta)
438 		return;
439 
440 	linfo = prog->aux->linfo;
441 
442 	for (i = 0; i < nr_linfo; i++)
443 		if (off < linfo[i].insn_off)
444 			break;
445 
446 	/* Push all off < linfo[i].insn_off by delta */
447 	for (; i < nr_linfo; i++)
448 		linfo[i].insn_off += delta;
449 }
450 
451 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
452 				       const struct bpf_insn *patch, u32 len)
453 {
454 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
455 	const u32 cnt_max = S16_MAX;
456 	struct bpf_prog *prog_adj;
457 	int err;
458 
459 	/* Since our patchlet doesn't expand the image, we're done. */
460 	if (insn_delta == 0) {
461 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
462 		return prog;
463 	}
464 
465 	insn_adj_cnt = prog->len + insn_delta;
466 
467 	/* Reject anything that would potentially let the insn->off
468 	 * target overflow when we have excessive program expansions.
469 	 * We need to probe here before we do any reallocation where
470 	 * we afterwards may not fail anymore.
471 	 */
472 	if (insn_adj_cnt > cnt_max &&
473 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
474 		return ERR_PTR(err);
475 
476 	/* Several new instructions need to be inserted. Make room
477 	 * for them. Likely, there's no need for a new allocation as
478 	 * last page could have large enough tailroom.
479 	 */
480 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
481 				    GFP_USER);
482 	if (!prog_adj)
483 		return ERR_PTR(-ENOMEM);
484 
485 	prog_adj->len = insn_adj_cnt;
486 
487 	/* Patching happens in 3 steps:
488 	 *
489 	 * 1) Move over tail of insnsi from next instruction onwards,
490 	 *    so we can patch the single target insn with one or more
491 	 *    new ones (patching is always from 1 to n insns, n > 0).
492 	 * 2) Inject new instructions at the target location.
493 	 * 3) Adjust branch offsets if necessary.
494 	 */
495 	insn_rest = insn_adj_cnt - off - len;
496 
497 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
498 		sizeof(*patch) * insn_rest);
499 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
500 
501 	/* We are guaranteed to not fail at this point, otherwise
502 	 * the ship has sailed to reverse to the original state. An
503 	 * overflow cannot happen at this point.
504 	 */
505 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
506 
507 	bpf_adj_linfo(prog_adj, off, insn_delta);
508 
509 	return prog_adj;
510 }
511 
512 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
513 {
514 	int err;
515 
516 	/* Branch offsets can't overflow when program is shrinking, no need
517 	 * to call bpf_adj_branches(..., true) here
518 	 */
519 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
520 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
521 	prog->len -= cnt;
522 
523 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
524 	WARN_ON_ONCE(err);
525 	return err;
526 }
527 
528 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
529 {
530 	int i;
531 
532 	for (i = 0; i < fp->aux->real_func_cnt; i++)
533 		bpf_prog_kallsyms_del(fp->aux->func[i]);
534 }
535 
536 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
537 {
538 	bpf_prog_kallsyms_del_subprogs(fp);
539 	bpf_prog_kallsyms_del(fp);
540 }
541 
542 #ifdef CONFIG_BPF_JIT
543 /* All BPF JIT sysctl knobs here. */
544 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
545 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
546 int bpf_jit_harden   __read_mostly;
547 long bpf_jit_limit   __read_mostly;
548 long bpf_jit_limit_max __read_mostly;
549 
550 static void
551 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
552 {
553 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
554 
555 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
556 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
557 }
558 
559 static void
560 bpf_prog_ksym_set_name(struct bpf_prog *prog)
561 {
562 	char *sym = prog->aux->ksym.name;
563 	const char *end = sym + KSYM_NAME_LEN;
564 	const struct btf_type *type;
565 	const char *func_name;
566 
567 	BUILD_BUG_ON(sizeof("bpf_prog_") +
568 		     sizeof(prog->tag) * 2 +
569 		     /* name has been null terminated.
570 		      * We should need +1 for the '_' preceding
571 		      * the name.  However, the null character
572 		      * is double counted between the name and the
573 		      * sizeof("bpf_prog_") above, so we omit
574 		      * the +1 here.
575 		      */
576 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
577 
578 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
579 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
580 
581 	/* prog->aux->name will be ignored if full btf name is available */
582 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
583 		type = btf_type_by_id(prog->aux->btf,
584 				      prog->aux->func_info[prog->aux->func_idx].type_id);
585 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
586 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
587 		return;
588 	}
589 
590 	if (prog->aux->name[0])
591 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
592 	else
593 		*sym = 0;
594 }
595 
596 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
597 {
598 	return container_of(n, struct bpf_ksym, tnode)->start;
599 }
600 
601 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
602 					  struct latch_tree_node *b)
603 {
604 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
605 }
606 
607 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
608 {
609 	unsigned long val = (unsigned long)key;
610 	const struct bpf_ksym *ksym;
611 
612 	ksym = container_of(n, struct bpf_ksym, tnode);
613 
614 	if (val < ksym->start)
615 		return -1;
616 	/* Ensure that we detect return addresses as part of the program, when
617 	 * the final instruction is a call for a program part of the stack
618 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
619 	 */
620 	if (val > ksym->end)
621 		return  1;
622 
623 	return 0;
624 }
625 
626 static const struct latch_tree_ops bpf_tree_ops = {
627 	.less	= bpf_tree_less,
628 	.comp	= bpf_tree_comp,
629 };
630 
631 static DEFINE_SPINLOCK(bpf_lock);
632 static LIST_HEAD(bpf_kallsyms);
633 static struct latch_tree_root bpf_tree __cacheline_aligned;
634 
635 void bpf_ksym_add(struct bpf_ksym *ksym)
636 {
637 	spin_lock_bh(&bpf_lock);
638 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
639 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
640 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
641 	spin_unlock_bh(&bpf_lock);
642 }
643 
644 static void __bpf_ksym_del(struct bpf_ksym *ksym)
645 {
646 	if (list_empty(&ksym->lnode))
647 		return;
648 
649 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
650 	list_del_rcu(&ksym->lnode);
651 }
652 
653 void bpf_ksym_del(struct bpf_ksym *ksym)
654 {
655 	spin_lock_bh(&bpf_lock);
656 	__bpf_ksym_del(ksym);
657 	spin_unlock_bh(&bpf_lock);
658 }
659 
660 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
661 {
662 	return fp->jited && !bpf_prog_was_classic(fp);
663 }
664 
665 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
666 {
667 	if (!bpf_prog_kallsyms_candidate(fp) ||
668 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
669 		return;
670 
671 	bpf_prog_ksym_set_addr(fp);
672 	bpf_prog_ksym_set_name(fp);
673 	fp->aux->ksym.prog = true;
674 
675 	bpf_ksym_add(&fp->aux->ksym);
676 
677 #ifdef CONFIG_FINEIBT
678 	/*
679 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
680 	 * and hence unwinder needs help.
681 	 */
682 	if (cfi_mode != CFI_FINEIBT)
683 		return;
684 
685 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
686 		 "__cfi_%s", fp->aux->ksym.name);
687 
688 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
689 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
690 
691 	bpf_ksym_add(&fp->aux->ksym_prefix);
692 #endif
693 }
694 
695 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
696 {
697 	if (!bpf_prog_kallsyms_candidate(fp))
698 		return;
699 
700 	bpf_ksym_del(&fp->aux->ksym);
701 #ifdef CONFIG_FINEIBT
702 	if (cfi_mode != CFI_FINEIBT)
703 		return;
704 	bpf_ksym_del(&fp->aux->ksym_prefix);
705 #endif
706 }
707 
708 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
709 {
710 	struct latch_tree_node *n;
711 
712 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
713 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
714 }
715 
716 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
717 				 unsigned long *off, char *sym)
718 {
719 	struct bpf_ksym *ksym;
720 	int ret = 0;
721 
722 	rcu_read_lock();
723 	ksym = bpf_ksym_find(addr);
724 	if (ksym) {
725 		unsigned long symbol_start = ksym->start;
726 		unsigned long symbol_end = ksym->end;
727 
728 		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
729 
730 		if (size)
731 			*size = symbol_end - symbol_start;
732 		if (off)
733 			*off  = addr - symbol_start;
734 	}
735 	rcu_read_unlock();
736 
737 	return ret;
738 }
739 
740 bool is_bpf_text_address(unsigned long addr)
741 {
742 	bool ret;
743 
744 	rcu_read_lock();
745 	ret = bpf_ksym_find(addr) != NULL;
746 	rcu_read_unlock();
747 
748 	return ret;
749 }
750 
751 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
752 {
753 	struct bpf_ksym *ksym;
754 
755 	WARN_ON_ONCE(!rcu_read_lock_held());
756 	ksym = bpf_ksym_find(addr);
757 
758 	return ksym && ksym->prog ?
759 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
760 	       NULL;
761 }
762 
763 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
764 {
765 	const struct exception_table_entry *e = NULL;
766 	struct bpf_prog *prog;
767 
768 	rcu_read_lock();
769 	prog = bpf_prog_ksym_find(addr);
770 	if (!prog)
771 		goto out;
772 	if (!prog->aux->num_exentries)
773 		goto out;
774 
775 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
776 out:
777 	rcu_read_unlock();
778 	return e;
779 }
780 
781 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
782 		    char *sym)
783 {
784 	struct bpf_ksym *ksym;
785 	unsigned int it = 0;
786 	int ret = -ERANGE;
787 
788 	if (!bpf_jit_kallsyms_enabled())
789 		return ret;
790 
791 	rcu_read_lock();
792 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
793 		if (it++ != symnum)
794 			continue;
795 
796 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
797 
798 		*value = ksym->start;
799 		*type  = BPF_SYM_ELF_TYPE;
800 
801 		ret = 0;
802 		break;
803 	}
804 	rcu_read_unlock();
805 
806 	return ret;
807 }
808 
809 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
810 				struct bpf_jit_poke_descriptor *poke)
811 {
812 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
813 	static const u32 poke_tab_max = 1024;
814 	u32 slot = prog->aux->size_poke_tab;
815 	u32 size = slot + 1;
816 
817 	if (size > poke_tab_max)
818 		return -ENOSPC;
819 	if (poke->tailcall_target || poke->tailcall_target_stable ||
820 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
821 		return -EINVAL;
822 
823 	switch (poke->reason) {
824 	case BPF_POKE_REASON_TAIL_CALL:
825 		if (!poke->tail_call.map)
826 			return -EINVAL;
827 		break;
828 	default:
829 		return -EINVAL;
830 	}
831 
832 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
833 	if (!tab)
834 		return -ENOMEM;
835 
836 	memcpy(&tab[slot], poke, sizeof(*poke));
837 	prog->aux->size_poke_tab = size;
838 	prog->aux->poke_tab = tab;
839 
840 	return slot;
841 }
842 
843 /*
844  * BPF program pack allocator.
845  *
846  * Most BPF programs are pretty small. Allocating a hole page for each
847  * program is sometime a waste. Many small bpf program also adds pressure
848  * to instruction TLB. To solve this issue, we introduce a BPF program pack
849  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
850  * to host BPF programs.
851  */
852 #define BPF_PROG_CHUNK_SHIFT	6
853 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
854 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
855 
856 struct bpf_prog_pack {
857 	struct list_head list;
858 	void *ptr;
859 	unsigned long bitmap[];
860 };
861 
862 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
863 {
864 	memset(area, 0, size);
865 }
866 
867 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
868 
869 static DEFINE_MUTEX(pack_mutex);
870 static LIST_HEAD(pack_list);
871 
872 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
873  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
874  */
875 #ifdef PMD_SIZE
876 /* PMD_SIZE is really big for some archs. It doesn't make sense to
877  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
878  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
879  * greater than or equal to 2MB.
880  */
881 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
882 #else
883 #define BPF_PROG_PACK_SIZE PAGE_SIZE
884 #endif
885 
886 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
887 
888 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
889 {
890 	struct bpf_prog_pack *pack;
891 	int err;
892 
893 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
894 		       GFP_KERNEL);
895 	if (!pack)
896 		return NULL;
897 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
898 	if (!pack->ptr)
899 		goto out;
900 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
901 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
902 
903 	set_vm_flush_reset_perms(pack->ptr);
904 	err = set_memory_rox((unsigned long)pack->ptr,
905 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
906 	if (err)
907 		goto out;
908 	list_add_tail(&pack->list, &pack_list);
909 	return pack;
910 
911 out:
912 	bpf_jit_free_exec(pack->ptr);
913 	kfree(pack);
914 	return NULL;
915 }
916 
917 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
918 {
919 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
920 	struct bpf_prog_pack *pack;
921 	unsigned long pos;
922 	void *ptr = NULL;
923 
924 	mutex_lock(&pack_mutex);
925 	if (size > BPF_PROG_PACK_SIZE) {
926 		size = round_up(size, PAGE_SIZE);
927 		ptr = bpf_jit_alloc_exec(size);
928 		if (ptr) {
929 			int err;
930 
931 			bpf_fill_ill_insns(ptr, size);
932 			set_vm_flush_reset_perms(ptr);
933 			err = set_memory_rox((unsigned long)ptr,
934 					     size / PAGE_SIZE);
935 			if (err) {
936 				bpf_jit_free_exec(ptr);
937 				ptr = NULL;
938 			}
939 		}
940 		goto out;
941 	}
942 	list_for_each_entry(pack, &pack_list, list) {
943 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
944 						 nbits, 0);
945 		if (pos < BPF_PROG_CHUNK_COUNT)
946 			goto found_free_area;
947 	}
948 
949 	pack = alloc_new_pack(bpf_fill_ill_insns);
950 	if (!pack)
951 		goto out;
952 
953 	pos = 0;
954 
955 found_free_area:
956 	bitmap_set(pack->bitmap, pos, nbits);
957 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
958 
959 out:
960 	mutex_unlock(&pack_mutex);
961 	return ptr;
962 }
963 
964 void bpf_prog_pack_free(void *ptr, u32 size)
965 {
966 	struct bpf_prog_pack *pack = NULL, *tmp;
967 	unsigned int nbits;
968 	unsigned long pos;
969 
970 	mutex_lock(&pack_mutex);
971 	if (size > BPF_PROG_PACK_SIZE) {
972 		bpf_jit_free_exec(ptr);
973 		goto out;
974 	}
975 
976 	list_for_each_entry(tmp, &pack_list, list) {
977 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
978 			pack = tmp;
979 			break;
980 		}
981 	}
982 
983 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
984 		goto out;
985 
986 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
987 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
988 
989 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
990 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
991 
992 	bitmap_clear(pack->bitmap, pos, nbits);
993 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
994 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
995 		list_del(&pack->list);
996 		bpf_jit_free_exec(pack->ptr);
997 		kfree(pack);
998 	}
999 out:
1000 	mutex_unlock(&pack_mutex);
1001 }
1002 
1003 static atomic_long_t bpf_jit_current;
1004 
1005 /* Can be overridden by an arch's JIT compiler if it has a custom,
1006  * dedicated BPF backend memory area, or if neither of the two
1007  * below apply.
1008  */
1009 u64 __weak bpf_jit_alloc_exec_limit(void)
1010 {
1011 #if defined(MODULES_VADDR)
1012 	return MODULES_END - MODULES_VADDR;
1013 #else
1014 	return VMALLOC_END - VMALLOC_START;
1015 #endif
1016 }
1017 
1018 static int __init bpf_jit_charge_init(void)
1019 {
1020 	/* Only used as heuristic here to derive limit. */
1021 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1022 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1023 					    PAGE_SIZE), LONG_MAX);
1024 	return 0;
1025 }
1026 pure_initcall(bpf_jit_charge_init);
1027 
1028 int bpf_jit_charge_modmem(u32 size)
1029 {
1030 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1031 		if (!bpf_capable()) {
1032 			atomic_long_sub(size, &bpf_jit_current);
1033 			return -EPERM;
1034 		}
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 void bpf_jit_uncharge_modmem(u32 size)
1041 {
1042 	atomic_long_sub(size, &bpf_jit_current);
1043 }
1044 
1045 void *__weak bpf_jit_alloc_exec(unsigned long size)
1046 {
1047 	return execmem_alloc(EXECMEM_BPF, size);
1048 }
1049 
1050 void __weak bpf_jit_free_exec(void *addr)
1051 {
1052 	execmem_free(addr);
1053 }
1054 
1055 struct bpf_binary_header *
1056 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1057 		     unsigned int alignment,
1058 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1059 {
1060 	struct bpf_binary_header *hdr;
1061 	u32 size, hole, start;
1062 
1063 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1064 		     alignment > BPF_IMAGE_ALIGNMENT);
1065 
1066 	/* Most of BPF filters are really small, but if some of them
1067 	 * fill a page, allow at least 128 extra bytes to insert a
1068 	 * random section of illegal instructions.
1069 	 */
1070 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1071 
1072 	if (bpf_jit_charge_modmem(size))
1073 		return NULL;
1074 	hdr = bpf_jit_alloc_exec(size);
1075 	if (!hdr) {
1076 		bpf_jit_uncharge_modmem(size);
1077 		return NULL;
1078 	}
1079 
1080 	/* Fill space with illegal/arch-dep instructions. */
1081 	bpf_fill_ill_insns(hdr, size);
1082 
1083 	hdr->size = size;
1084 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1085 		     PAGE_SIZE - sizeof(*hdr));
1086 	start = get_random_u32_below(hole) & ~(alignment - 1);
1087 
1088 	/* Leave a random number of instructions before BPF code. */
1089 	*image_ptr = &hdr->image[start];
1090 
1091 	return hdr;
1092 }
1093 
1094 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1095 {
1096 	u32 size = hdr->size;
1097 
1098 	bpf_jit_free_exec(hdr);
1099 	bpf_jit_uncharge_modmem(size);
1100 }
1101 
1102 /* Allocate jit binary from bpf_prog_pack allocator.
1103  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1104  * to the memory. To solve this problem, a RW buffer is also allocated at
1105  * as the same time. The JIT engine should calculate offsets based on the
1106  * RO memory address, but write JITed program to the RW buffer. Once the
1107  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1108  * the JITed program to the RO memory.
1109  */
1110 struct bpf_binary_header *
1111 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1112 			  unsigned int alignment,
1113 			  struct bpf_binary_header **rw_header,
1114 			  u8 **rw_image,
1115 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1116 {
1117 	struct bpf_binary_header *ro_header;
1118 	u32 size, hole, start;
1119 
1120 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1121 		     alignment > BPF_IMAGE_ALIGNMENT);
1122 
1123 	/* add 16 bytes for a random section of illegal instructions */
1124 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1125 
1126 	if (bpf_jit_charge_modmem(size))
1127 		return NULL;
1128 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1129 	if (!ro_header) {
1130 		bpf_jit_uncharge_modmem(size);
1131 		return NULL;
1132 	}
1133 
1134 	*rw_header = kvmalloc(size, GFP_KERNEL);
1135 	if (!*rw_header) {
1136 		bpf_prog_pack_free(ro_header, size);
1137 		bpf_jit_uncharge_modmem(size);
1138 		return NULL;
1139 	}
1140 
1141 	/* Fill space with illegal/arch-dep instructions. */
1142 	bpf_fill_ill_insns(*rw_header, size);
1143 	(*rw_header)->size = size;
1144 
1145 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1146 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1147 	start = get_random_u32_below(hole) & ~(alignment - 1);
1148 
1149 	*image_ptr = &ro_header->image[start];
1150 	*rw_image = &(*rw_header)->image[start];
1151 
1152 	return ro_header;
1153 }
1154 
1155 /* Copy JITed text from rw_header to its final location, the ro_header. */
1156 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1157 				 struct bpf_binary_header *rw_header)
1158 {
1159 	void *ptr;
1160 
1161 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1162 
1163 	kvfree(rw_header);
1164 
1165 	if (IS_ERR(ptr)) {
1166 		bpf_prog_pack_free(ro_header, ro_header->size);
1167 		return PTR_ERR(ptr);
1168 	}
1169 	return 0;
1170 }
1171 
1172 /* bpf_jit_binary_pack_free is called in two different scenarios:
1173  *   1) when the program is freed after;
1174  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1175  * For case 2), we need to free both the RO memory and the RW buffer.
1176  *
1177  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1178  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1179  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1180  * bpf_arch_text_copy (when jit fails).
1181  */
1182 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1183 			      struct bpf_binary_header *rw_header)
1184 {
1185 	u32 size = ro_header->size;
1186 
1187 	bpf_prog_pack_free(ro_header, size);
1188 	kvfree(rw_header);
1189 	bpf_jit_uncharge_modmem(size);
1190 }
1191 
1192 struct bpf_binary_header *
1193 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1194 {
1195 	unsigned long real_start = (unsigned long)fp->bpf_func;
1196 	unsigned long addr;
1197 
1198 	addr = real_start & BPF_PROG_CHUNK_MASK;
1199 	return (void *)addr;
1200 }
1201 
1202 static inline struct bpf_binary_header *
1203 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1204 {
1205 	unsigned long real_start = (unsigned long)fp->bpf_func;
1206 	unsigned long addr;
1207 
1208 	addr = real_start & PAGE_MASK;
1209 	return (void *)addr;
1210 }
1211 
1212 /* This symbol is only overridden by archs that have different
1213  * requirements than the usual eBPF JITs, f.e. when they only
1214  * implement cBPF JIT, do not set images read-only, etc.
1215  */
1216 void __weak bpf_jit_free(struct bpf_prog *fp)
1217 {
1218 	if (fp->jited) {
1219 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1220 
1221 		bpf_jit_binary_free(hdr);
1222 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1223 	}
1224 
1225 	bpf_prog_unlock_free(fp);
1226 }
1227 
1228 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1229 			  const struct bpf_insn *insn, bool extra_pass,
1230 			  u64 *func_addr, bool *func_addr_fixed)
1231 {
1232 	s16 off = insn->off;
1233 	s32 imm = insn->imm;
1234 	u8 *addr;
1235 	int err;
1236 
1237 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1238 	if (!*func_addr_fixed) {
1239 		/* Place-holder address till the last pass has collected
1240 		 * all addresses for JITed subprograms in which case we
1241 		 * can pick them up from prog->aux.
1242 		 */
1243 		if (!extra_pass)
1244 			addr = NULL;
1245 		else if (prog->aux->func &&
1246 			 off >= 0 && off < prog->aux->real_func_cnt)
1247 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1248 		else
1249 			return -EINVAL;
1250 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1251 		   bpf_jit_supports_far_kfunc_call()) {
1252 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1253 		if (err)
1254 			return err;
1255 	} else {
1256 		/* Address of a BPF helper call. Since part of the core
1257 		 * kernel, it's always at a fixed location. __bpf_call_base
1258 		 * and the helper with imm relative to it are both in core
1259 		 * kernel.
1260 		 */
1261 		addr = (u8 *)__bpf_call_base + imm;
1262 	}
1263 
1264 	*func_addr = (unsigned long)addr;
1265 	return 0;
1266 }
1267 
1268 const char *bpf_jit_get_prog_name(struct bpf_prog *prog)
1269 {
1270 	if (prog->aux->ksym.prog)
1271 		return prog->aux->ksym.name;
1272 	return prog->aux->name;
1273 }
1274 
1275 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1276 			      const struct bpf_insn *aux,
1277 			      struct bpf_insn *to_buff,
1278 			      bool emit_zext)
1279 {
1280 	struct bpf_insn *to = to_buff;
1281 	u32 imm_rnd = get_random_u32();
1282 	s16 off;
1283 
1284 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1285 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1286 
1287 	/* Constraints on AX register:
1288 	 *
1289 	 * AX register is inaccessible from user space. It is mapped in
1290 	 * all JITs, and used here for constant blinding rewrites. It is
1291 	 * typically "stateless" meaning its contents are only valid within
1292 	 * the executed instruction, but not across several instructions.
1293 	 * There are a few exceptions however which are further detailed
1294 	 * below.
1295 	 *
1296 	 * Constant blinding is only used by JITs, not in the interpreter.
1297 	 * The interpreter uses AX in some occasions as a local temporary
1298 	 * register e.g. in DIV or MOD instructions.
1299 	 *
1300 	 * In restricted circumstances, the verifier can also use the AX
1301 	 * register for rewrites as long as they do not interfere with
1302 	 * the above cases!
1303 	 */
1304 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1305 		goto out;
1306 
1307 	if (from->imm == 0 &&
1308 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1309 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1310 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1311 		goto out;
1312 	}
1313 
1314 	switch (from->code) {
1315 	case BPF_ALU | BPF_ADD | BPF_K:
1316 	case BPF_ALU | BPF_SUB | BPF_K:
1317 	case BPF_ALU | BPF_AND | BPF_K:
1318 	case BPF_ALU | BPF_OR  | BPF_K:
1319 	case BPF_ALU | BPF_XOR | BPF_K:
1320 	case BPF_ALU | BPF_MUL | BPF_K:
1321 	case BPF_ALU | BPF_MOV | BPF_K:
1322 	case BPF_ALU | BPF_DIV | BPF_K:
1323 	case BPF_ALU | BPF_MOD | BPF_K:
1324 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1325 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1327 		break;
1328 
1329 	case BPF_ALU64 | BPF_ADD | BPF_K:
1330 	case BPF_ALU64 | BPF_SUB | BPF_K:
1331 	case BPF_ALU64 | BPF_AND | BPF_K:
1332 	case BPF_ALU64 | BPF_OR  | BPF_K:
1333 	case BPF_ALU64 | BPF_XOR | BPF_K:
1334 	case BPF_ALU64 | BPF_MUL | BPF_K:
1335 	case BPF_ALU64 | BPF_MOV | BPF_K:
1336 	case BPF_ALU64 | BPF_DIV | BPF_K:
1337 	case BPF_ALU64 | BPF_MOD | BPF_K:
1338 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1339 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1340 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1341 		break;
1342 
1343 	case BPF_JMP | BPF_JEQ  | BPF_K:
1344 	case BPF_JMP | BPF_JNE  | BPF_K:
1345 	case BPF_JMP | BPF_JGT  | BPF_K:
1346 	case BPF_JMP | BPF_JLT  | BPF_K:
1347 	case BPF_JMP | BPF_JGE  | BPF_K:
1348 	case BPF_JMP | BPF_JLE  | BPF_K:
1349 	case BPF_JMP | BPF_JSGT | BPF_K:
1350 	case BPF_JMP | BPF_JSLT | BPF_K:
1351 	case BPF_JMP | BPF_JSGE | BPF_K:
1352 	case BPF_JMP | BPF_JSLE | BPF_K:
1353 	case BPF_JMP | BPF_JSET | BPF_K:
1354 		/* Accommodate for extra offset in case of a backjump. */
1355 		off = from->off;
1356 		if (off < 0)
1357 			off -= 2;
1358 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1359 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1360 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1361 		break;
1362 
1363 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1364 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1365 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1366 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1367 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1368 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1369 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1370 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1371 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1372 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1373 	case BPF_JMP32 | BPF_JSET | BPF_K:
1374 		/* Accommodate for extra offset in case of a backjump. */
1375 		off = from->off;
1376 		if (off < 0)
1377 			off -= 2;
1378 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1379 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1380 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1381 				      off);
1382 		break;
1383 
1384 	case BPF_LD | BPF_IMM | BPF_DW:
1385 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1386 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1387 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1388 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1389 		break;
1390 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1391 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1392 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1393 		if (emit_zext)
1394 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1395 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1396 		break;
1397 
1398 	case BPF_ST | BPF_MEM | BPF_DW:
1399 	case BPF_ST | BPF_MEM | BPF_W:
1400 	case BPF_ST | BPF_MEM | BPF_H:
1401 	case BPF_ST | BPF_MEM | BPF_B:
1402 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1403 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1404 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1405 		break;
1406 	}
1407 out:
1408 	return to - to_buff;
1409 }
1410 
1411 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1412 					      gfp_t gfp_extra_flags)
1413 {
1414 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1415 	struct bpf_prog *fp;
1416 
1417 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1418 	if (fp != NULL) {
1419 		/* aux->prog still points to the fp_other one, so
1420 		 * when promoting the clone to the real program,
1421 		 * this still needs to be adapted.
1422 		 */
1423 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1424 	}
1425 
1426 	return fp;
1427 }
1428 
1429 static void bpf_prog_clone_free(struct bpf_prog *fp)
1430 {
1431 	/* aux was stolen by the other clone, so we cannot free
1432 	 * it from this path! It will be freed eventually by the
1433 	 * other program on release.
1434 	 *
1435 	 * At this point, we don't need a deferred release since
1436 	 * clone is guaranteed to not be locked.
1437 	 */
1438 	fp->aux = NULL;
1439 	fp->stats = NULL;
1440 	fp->active = NULL;
1441 	__bpf_prog_free(fp);
1442 }
1443 
1444 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1445 {
1446 	/* We have to repoint aux->prog to self, as we don't
1447 	 * know whether fp here is the clone or the original.
1448 	 */
1449 	fp->aux->prog = fp;
1450 	bpf_prog_clone_free(fp_other);
1451 }
1452 
1453 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1454 {
1455 	struct bpf_insn insn_buff[16], aux[2];
1456 	struct bpf_prog *clone, *tmp;
1457 	int insn_delta, insn_cnt;
1458 	struct bpf_insn *insn;
1459 	int i, rewritten;
1460 
1461 	if (!prog->blinding_requested || prog->blinded)
1462 		return prog;
1463 
1464 	clone = bpf_prog_clone_create(prog, GFP_USER);
1465 	if (!clone)
1466 		return ERR_PTR(-ENOMEM);
1467 
1468 	insn_cnt = clone->len;
1469 	insn = clone->insnsi;
1470 
1471 	for (i = 0; i < insn_cnt; i++, insn++) {
1472 		if (bpf_pseudo_func(insn)) {
1473 			/* ld_imm64 with an address of bpf subprog is not
1474 			 * a user controlled constant. Don't randomize it,
1475 			 * since it will conflict with jit_subprogs() logic.
1476 			 */
1477 			insn++;
1478 			i++;
1479 			continue;
1480 		}
1481 
1482 		/* We temporarily need to hold the original ld64 insn
1483 		 * so that we can still access the first part in the
1484 		 * second blinding run.
1485 		 */
1486 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1487 		    insn[1].code == 0)
1488 			memcpy(aux, insn, sizeof(aux));
1489 
1490 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1491 						clone->aux->verifier_zext);
1492 		if (!rewritten)
1493 			continue;
1494 
1495 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1496 		if (IS_ERR(tmp)) {
1497 			/* Patching may have repointed aux->prog during
1498 			 * realloc from the original one, so we need to
1499 			 * fix it up here on error.
1500 			 */
1501 			bpf_jit_prog_release_other(prog, clone);
1502 			return tmp;
1503 		}
1504 
1505 		clone = tmp;
1506 		insn_delta = rewritten - 1;
1507 
1508 		/* Walk new program and skip insns we just inserted. */
1509 		insn = clone->insnsi + i + insn_delta;
1510 		insn_cnt += insn_delta;
1511 		i        += insn_delta;
1512 	}
1513 
1514 	clone->blinded = 1;
1515 	return clone;
1516 }
1517 #endif /* CONFIG_BPF_JIT */
1518 
1519 /* Base function for offset calculation. Needs to go into .text section,
1520  * therefore keeping it non-static as well; will also be used by JITs
1521  * anyway later on, so do not let the compiler omit it. This also needs
1522  * to go into kallsyms for correlation from e.g. bpftool, so naming
1523  * must not change.
1524  */
1525 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1526 {
1527 	return 0;
1528 }
1529 EXPORT_SYMBOL_GPL(__bpf_call_base);
1530 
1531 /* All UAPI available opcodes. */
1532 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1533 	/* 32 bit ALU operations. */		\
1534 	/*   Register based. */			\
1535 	INSN_3(ALU, ADD,  X),			\
1536 	INSN_3(ALU, SUB,  X),			\
1537 	INSN_3(ALU, AND,  X),			\
1538 	INSN_3(ALU, OR,   X),			\
1539 	INSN_3(ALU, LSH,  X),			\
1540 	INSN_3(ALU, RSH,  X),			\
1541 	INSN_3(ALU, XOR,  X),			\
1542 	INSN_3(ALU, MUL,  X),			\
1543 	INSN_3(ALU, MOV,  X),			\
1544 	INSN_3(ALU, ARSH, X),			\
1545 	INSN_3(ALU, DIV,  X),			\
1546 	INSN_3(ALU, MOD,  X),			\
1547 	INSN_2(ALU, NEG),			\
1548 	INSN_3(ALU, END, TO_BE),		\
1549 	INSN_3(ALU, END, TO_LE),		\
1550 	/*   Immediate based. */		\
1551 	INSN_3(ALU, ADD,  K),			\
1552 	INSN_3(ALU, SUB,  K),			\
1553 	INSN_3(ALU, AND,  K),			\
1554 	INSN_3(ALU, OR,   K),			\
1555 	INSN_3(ALU, LSH,  K),			\
1556 	INSN_3(ALU, RSH,  K),			\
1557 	INSN_3(ALU, XOR,  K),			\
1558 	INSN_3(ALU, MUL,  K),			\
1559 	INSN_3(ALU, MOV,  K),			\
1560 	INSN_3(ALU, ARSH, K),			\
1561 	INSN_3(ALU, DIV,  K),			\
1562 	INSN_3(ALU, MOD,  K),			\
1563 	/* 64 bit ALU operations. */		\
1564 	/*   Register based. */			\
1565 	INSN_3(ALU64, ADD,  X),			\
1566 	INSN_3(ALU64, SUB,  X),			\
1567 	INSN_3(ALU64, AND,  X),			\
1568 	INSN_3(ALU64, OR,   X),			\
1569 	INSN_3(ALU64, LSH,  X),			\
1570 	INSN_3(ALU64, RSH,  X),			\
1571 	INSN_3(ALU64, XOR,  X),			\
1572 	INSN_3(ALU64, MUL,  X),			\
1573 	INSN_3(ALU64, MOV,  X),			\
1574 	INSN_3(ALU64, ARSH, X),			\
1575 	INSN_3(ALU64, DIV,  X),			\
1576 	INSN_3(ALU64, MOD,  X),			\
1577 	INSN_2(ALU64, NEG),			\
1578 	INSN_3(ALU64, END, TO_LE),		\
1579 	/*   Immediate based. */		\
1580 	INSN_3(ALU64, ADD,  K),			\
1581 	INSN_3(ALU64, SUB,  K),			\
1582 	INSN_3(ALU64, AND,  K),			\
1583 	INSN_3(ALU64, OR,   K),			\
1584 	INSN_3(ALU64, LSH,  K),			\
1585 	INSN_3(ALU64, RSH,  K),			\
1586 	INSN_3(ALU64, XOR,  K),			\
1587 	INSN_3(ALU64, MUL,  K),			\
1588 	INSN_3(ALU64, MOV,  K),			\
1589 	INSN_3(ALU64, ARSH, K),			\
1590 	INSN_3(ALU64, DIV,  K),			\
1591 	INSN_3(ALU64, MOD,  K),			\
1592 	/* Call instruction. */			\
1593 	INSN_2(JMP, CALL),			\
1594 	/* Exit instruction. */			\
1595 	INSN_2(JMP, EXIT),			\
1596 	/* 32-bit Jump instructions. */		\
1597 	/*   Register based. */			\
1598 	INSN_3(JMP32, JEQ,  X),			\
1599 	INSN_3(JMP32, JNE,  X),			\
1600 	INSN_3(JMP32, JGT,  X),			\
1601 	INSN_3(JMP32, JLT,  X),			\
1602 	INSN_3(JMP32, JGE,  X),			\
1603 	INSN_3(JMP32, JLE,  X),			\
1604 	INSN_3(JMP32, JSGT, X),			\
1605 	INSN_3(JMP32, JSLT, X),			\
1606 	INSN_3(JMP32, JSGE, X),			\
1607 	INSN_3(JMP32, JSLE, X),			\
1608 	INSN_3(JMP32, JSET, X),			\
1609 	/*   Immediate based. */		\
1610 	INSN_3(JMP32, JEQ,  K),			\
1611 	INSN_3(JMP32, JNE,  K),			\
1612 	INSN_3(JMP32, JGT,  K),			\
1613 	INSN_3(JMP32, JLT,  K),			\
1614 	INSN_3(JMP32, JGE,  K),			\
1615 	INSN_3(JMP32, JLE,  K),			\
1616 	INSN_3(JMP32, JSGT, K),			\
1617 	INSN_3(JMP32, JSLT, K),			\
1618 	INSN_3(JMP32, JSGE, K),			\
1619 	INSN_3(JMP32, JSLE, K),			\
1620 	INSN_3(JMP32, JSET, K),			\
1621 	/* Jump instructions. */		\
1622 	/*   Register based. */			\
1623 	INSN_3(JMP, JEQ,  X),			\
1624 	INSN_3(JMP, JNE,  X),			\
1625 	INSN_3(JMP, JGT,  X),			\
1626 	INSN_3(JMP, JLT,  X),			\
1627 	INSN_3(JMP, JGE,  X),			\
1628 	INSN_3(JMP, JLE,  X),			\
1629 	INSN_3(JMP, JSGT, X),			\
1630 	INSN_3(JMP, JSLT, X),			\
1631 	INSN_3(JMP, JSGE, X),			\
1632 	INSN_3(JMP, JSLE, X),			\
1633 	INSN_3(JMP, JSET, X),			\
1634 	/*   Immediate based. */		\
1635 	INSN_3(JMP, JEQ,  K),			\
1636 	INSN_3(JMP, JNE,  K),			\
1637 	INSN_3(JMP, JGT,  K),			\
1638 	INSN_3(JMP, JLT,  K),			\
1639 	INSN_3(JMP, JGE,  K),			\
1640 	INSN_3(JMP, JLE,  K),			\
1641 	INSN_3(JMP, JSGT, K),			\
1642 	INSN_3(JMP, JSLT, K),			\
1643 	INSN_3(JMP, JSGE, K),			\
1644 	INSN_3(JMP, JSLE, K),			\
1645 	INSN_3(JMP, JSET, K),			\
1646 	INSN_2(JMP, JA),			\
1647 	INSN_2(JMP32, JA),			\
1648 	/* Atomic operations. */		\
1649 	INSN_3(STX, ATOMIC, B),			\
1650 	INSN_3(STX, ATOMIC, H),			\
1651 	INSN_3(STX, ATOMIC, W),			\
1652 	INSN_3(STX, ATOMIC, DW),		\
1653 	/* Store instructions. */		\
1654 	/*   Register based. */			\
1655 	INSN_3(STX, MEM,  B),			\
1656 	INSN_3(STX, MEM,  H),			\
1657 	INSN_3(STX, MEM,  W),			\
1658 	INSN_3(STX, MEM,  DW),			\
1659 	/*   Immediate based. */		\
1660 	INSN_3(ST, MEM, B),			\
1661 	INSN_3(ST, MEM, H),			\
1662 	INSN_3(ST, MEM, W),			\
1663 	INSN_3(ST, MEM, DW),			\
1664 	/* Load instructions. */		\
1665 	/*   Register based. */			\
1666 	INSN_3(LDX, MEM, B),			\
1667 	INSN_3(LDX, MEM, H),			\
1668 	INSN_3(LDX, MEM, W),			\
1669 	INSN_3(LDX, MEM, DW),			\
1670 	INSN_3(LDX, MEMSX, B),			\
1671 	INSN_3(LDX, MEMSX, H),			\
1672 	INSN_3(LDX, MEMSX, W),			\
1673 	/*   Immediate based. */		\
1674 	INSN_3(LD, IMM, DW)
1675 
1676 bool bpf_opcode_in_insntable(u8 code)
1677 {
1678 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1679 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1680 	static const bool public_insntable[256] = {
1681 		[0 ... 255] = false,
1682 		/* Now overwrite non-defaults ... */
1683 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1684 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1685 		[BPF_LD | BPF_ABS | BPF_B] = true,
1686 		[BPF_LD | BPF_ABS | BPF_H] = true,
1687 		[BPF_LD | BPF_ABS | BPF_W] = true,
1688 		[BPF_LD | BPF_IND | BPF_B] = true,
1689 		[BPF_LD | BPF_IND | BPF_H] = true,
1690 		[BPF_LD | BPF_IND | BPF_W] = true,
1691 		[BPF_JMP | BPF_JCOND] = true,
1692 	};
1693 #undef BPF_INSN_3_TBL
1694 #undef BPF_INSN_2_TBL
1695 	return public_insntable[code];
1696 }
1697 
1698 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1699 /**
1700  *	___bpf_prog_run - run eBPF program on a given context
1701  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1702  *	@insn: is the array of eBPF instructions
1703  *
1704  * Decode and execute eBPF instructions.
1705  *
1706  * Return: whatever value is in %BPF_R0 at program exit
1707  */
1708 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1709 {
1710 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1711 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1712 	static const void * const jumptable[256] __annotate_jump_table = {
1713 		[0 ... 255] = &&default_label,
1714 		/* Now overwrite non-defaults ... */
1715 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1716 		/* Non-UAPI available opcodes. */
1717 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1718 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1719 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1720 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1721 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1722 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1723 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1724 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1725 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1726 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1727 	};
1728 #undef BPF_INSN_3_LBL
1729 #undef BPF_INSN_2_LBL
1730 	u32 tail_call_cnt = 0;
1731 
1732 #define CONT	 ({ insn++; goto select_insn; })
1733 #define CONT_JMP ({ insn++; goto select_insn; })
1734 
1735 select_insn:
1736 	goto *jumptable[insn->code];
1737 
1738 	/* Explicitly mask the register-based shift amounts with 63 or 31
1739 	 * to avoid undefined behavior. Normally this won't affect the
1740 	 * generated code, for example, in case of native 64 bit archs such
1741 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1742 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1743 	 * the BPF shift operations to machine instructions which produce
1744 	 * implementation-defined results in such a case; the resulting
1745 	 * contents of the register may be arbitrary, but program behaviour
1746 	 * as a whole remains defined. In other words, in case of JIT backends,
1747 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1748 	 */
1749 	/* ALU (shifts) */
1750 #define SHT(OPCODE, OP)					\
1751 	ALU64_##OPCODE##_X:				\
1752 		DST = DST OP (SRC & 63);		\
1753 		CONT;					\
1754 	ALU_##OPCODE##_X:				\
1755 		DST = (u32) DST OP ((u32) SRC & 31);	\
1756 		CONT;					\
1757 	ALU64_##OPCODE##_K:				\
1758 		DST = DST OP IMM;			\
1759 		CONT;					\
1760 	ALU_##OPCODE##_K:				\
1761 		DST = (u32) DST OP (u32) IMM;		\
1762 		CONT;
1763 	/* ALU (rest) */
1764 #define ALU(OPCODE, OP)					\
1765 	ALU64_##OPCODE##_X:				\
1766 		DST = DST OP SRC;			\
1767 		CONT;					\
1768 	ALU_##OPCODE##_X:				\
1769 		DST = (u32) DST OP (u32) SRC;		\
1770 		CONT;					\
1771 	ALU64_##OPCODE##_K:				\
1772 		DST = DST OP IMM;			\
1773 		CONT;					\
1774 	ALU_##OPCODE##_K:				\
1775 		DST = (u32) DST OP (u32) IMM;		\
1776 		CONT;
1777 	ALU(ADD,  +)
1778 	ALU(SUB,  -)
1779 	ALU(AND,  &)
1780 	ALU(OR,   |)
1781 	ALU(XOR,  ^)
1782 	ALU(MUL,  *)
1783 	SHT(LSH, <<)
1784 	SHT(RSH, >>)
1785 #undef SHT
1786 #undef ALU
1787 	ALU_NEG:
1788 		DST = (u32) -DST;
1789 		CONT;
1790 	ALU64_NEG:
1791 		DST = -DST;
1792 		CONT;
1793 	ALU_MOV_X:
1794 		switch (OFF) {
1795 		case 0:
1796 			DST = (u32) SRC;
1797 			break;
1798 		case 8:
1799 			DST = (u32)(s8) SRC;
1800 			break;
1801 		case 16:
1802 			DST = (u32)(s16) SRC;
1803 			break;
1804 		}
1805 		CONT;
1806 	ALU_MOV_K:
1807 		DST = (u32) IMM;
1808 		CONT;
1809 	ALU64_MOV_X:
1810 		switch (OFF) {
1811 		case 0:
1812 			DST = SRC;
1813 			break;
1814 		case 8:
1815 			DST = (s8) SRC;
1816 			break;
1817 		case 16:
1818 			DST = (s16) SRC;
1819 			break;
1820 		case 32:
1821 			DST = (s32) SRC;
1822 			break;
1823 		}
1824 		CONT;
1825 	ALU64_MOV_K:
1826 		DST = IMM;
1827 		CONT;
1828 	LD_IMM_DW:
1829 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1830 		insn++;
1831 		CONT;
1832 	ALU_ARSH_X:
1833 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1834 		CONT;
1835 	ALU_ARSH_K:
1836 		DST = (u64) (u32) (((s32) DST) >> IMM);
1837 		CONT;
1838 	ALU64_ARSH_X:
1839 		(*(s64 *) &DST) >>= (SRC & 63);
1840 		CONT;
1841 	ALU64_ARSH_K:
1842 		(*(s64 *) &DST) >>= IMM;
1843 		CONT;
1844 	ALU64_MOD_X:
1845 		switch (OFF) {
1846 		case 0:
1847 			div64_u64_rem(DST, SRC, &AX);
1848 			DST = AX;
1849 			break;
1850 		case 1:
1851 			AX = div64_s64(DST, SRC);
1852 			DST = DST - AX * SRC;
1853 			break;
1854 		}
1855 		CONT;
1856 	ALU_MOD_X:
1857 		switch (OFF) {
1858 		case 0:
1859 			AX = (u32) DST;
1860 			DST = do_div(AX, (u32) SRC);
1861 			break;
1862 		case 1:
1863 			AX = abs((s32)DST);
1864 			AX = do_div(AX, abs((s32)SRC));
1865 			if ((s32)DST < 0)
1866 				DST = (u32)-AX;
1867 			else
1868 				DST = (u32)AX;
1869 			break;
1870 		}
1871 		CONT;
1872 	ALU64_MOD_K:
1873 		switch (OFF) {
1874 		case 0:
1875 			div64_u64_rem(DST, IMM, &AX);
1876 			DST = AX;
1877 			break;
1878 		case 1:
1879 			AX = div64_s64(DST, IMM);
1880 			DST = DST - AX * IMM;
1881 			break;
1882 		}
1883 		CONT;
1884 	ALU_MOD_K:
1885 		switch (OFF) {
1886 		case 0:
1887 			AX = (u32) DST;
1888 			DST = do_div(AX, (u32) IMM);
1889 			break;
1890 		case 1:
1891 			AX = abs((s32)DST);
1892 			AX = do_div(AX, abs((s32)IMM));
1893 			if ((s32)DST < 0)
1894 				DST = (u32)-AX;
1895 			else
1896 				DST = (u32)AX;
1897 			break;
1898 		}
1899 		CONT;
1900 	ALU64_DIV_X:
1901 		switch (OFF) {
1902 		case 0:
1903 			DST = div64_u64(DST, SRC);
1904 			break;
1905 		case 1:
1906 			DST = div64_s64(DST, SRC);
1907 			break;
1908 		}
1909 		CONT;
1910 	ALU_DIV_X:
1911 		switch (OFF) {
1912 		case 0:
1913 			AX = (u32) DST;
1914 			do_div(AX, (u32) SRC);
1915 			DST = (u32) AX;
1916 			break;
1917 		case 1:
1918 			AX = abs((s32)DST);
1919 			do_div(AX, abs((s32)SRC));
1920 			if (((s32)DST < 0) == ((s32)SRC < 0))
1921 				DST = (u32)AX;
1922 			else
1923 				DST = (u32)-AX;
1924 			break;
1925 		}
1926 		CONT;
1927 	ALU64_DIV_K:
1928 		switch (OFF) {
1929 		case 0:
1930 			DST = div64_u64(DST, IMM);
1931 			break;
1932 		case 1:
1933 			DST = div64_s64(DST, IMM);
1934 			break;
1935 		}
1936 		CONT;
1937 	ALU_DIV_K:
1938 		switch (OFF) {
1939 		case 0:
1940 			AX = (u32) DST;
1941 			do_div(AX, (u32) IMM);
1942 			DST = (u32) AX;
1943 			break;
1944 		case 1:
1945 			AX = abs((s32)DST);
1946 			do_div(AX, abs((s32)IMM));
1947 			if (((s32)DST < 0) == ((s32)IMM < 0))
1948 				DST = (u32)AX;
1949 			else
1950 				DST = (u32)-AX;
1951 			break;
1952 		}
1953 		CONT;
1954 	ALU_END_TO_BE:
1955 		switch (IMM) {
1956 		case 16:
1957 			DST = (__force u16) cpu_to_be16(DST);
1958 			break;
1959 		case 32:
1960 			DST = (__force u32) cpu_to_be32(DST);
1961 			break;
1962 		case 64:
1963 			DST = (__force u64) cpu_to_be64(DST);
1964 			break;
1965 		}
1966 		CONT;
1967 	ALU_END_TO_LE:
1968 		switch (IMM) {
1969 		case 16:
1970 			DST = (__force u16) cpu_to_le16(DST);
1971 			break;
1972 		case 32:
1973 			DST = (__force u32) cpu_to_le32(DST);
1974 			break;
1975 		case 64:
1976 			DST = (__force u64) cpu_to_le64(DST);
1977 			break;
1978 		}
1979 		CONT;
1980 	ALU64_END_TO_LE:
1981 		switch (IMM) {
1982 		case 16:
1983 			DST = (__force u16) __swab16(DST);
1984 			break;
1985 		case 32:
1986 			DST = (__force u32) __swab32(DST);
1987 			break;
1988 		case 64:
1989 			DST = (__force u64) __swab64(DST);
1990 			break;
1991 		}
1992 		CONT;
1993 
1994 	/* CALL */
1995 	JMP_CALL:
1996 		/* Function call scratches BPF_R1-BPF_R5 registers,
1997 		 * preserves BPF_R6-BPF_R9, and stores return value
1998 		 * into BPF_R0.
1999 		 */
2000 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2001 						       BPF_R4, BPF_R5);
2002 		CONT;
2003 
2004 	JMP_CALL_ARGS:
2005 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2006 							    BPF_R3, BPF_R4,
2007 							    BPF_R5,
2008 							    insn + insn->off + 1);
2009 		CONT;
2010 
2011 	JMP_TAIL_CALL: {
2012 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2013 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2014 		struct bpf_prog *prog;
2015 		u32 index = BPF_R3;
2016 
2017 		if (unlikely(index >= array->map.max_entries))
2018 			goto out;
2019 
2020 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2021 			goto out;
2022 
2023 		tail_call_cnt++;
2024 
2025 		prog = READ_ONCE(array->ptrs[index]);
2026 		if (!prog)
2027 			goto out;
2028 
2029 		/* ARG1 at this point is guaranteed to point to CTX from
2030 		 * the verifier side due to the fact that the tail call is
2031 		 * handled like a helper, that is, bpf_tail_call_proto,
2032 		 * where arg1_type is ARG_PTR_TO_CTX.
2033 		 */
2034 		insn = prog->insnsi;
2035 		goto select_insn;
2036 out:
2037 		CONT;
2038 	}
2039 	JMP_JA:
2040 		insn += insn->off;
2041 		CONT;
2042 	JMP32_JA:
2043 		insn += insn->imm;
2044 		CONT;
2045 	JMP_EXIT:
2046 		return BPF_R0;
2047 	/* JMP */
2048 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2049 	JMP_##OPCODE##_X:					\
2050 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2051 			insn += insn->off;			\
2052 			CONT_JMP;				\
2053 		}						\
2054 		CONT;						\
2055 	JMP32_##OPCODE##_X:					\
2056 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2057 			insn += insn->off;			\
2058 			CONT_JMP;				\
2059 		}						\
2060 		CONT;						\
2061 	JMP_##OPCODE##_K:					\
2062 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2063 			insn += insn->off;			\
2064 			CONT_JMP;				\
2065 		}						\
2066 		CONT;						\
2067 	JMP32_##OPCODE##_K:					\
2068 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2069 			insn += insn->off;			\
2070 			CONT_JMP;				\
2071 		}						\
2072 		CONT;
2073 	COND_JMP(u, JEQ, ==)
2074 	COND_JMP(u, JNE, !=)
2075 	COND_JMP(u, JGT, >)
2076 	COND_JMP(u, JLT, <)
2077 	COND_JMP(u, JGE, >=)
2078 	COND_JMP(u, JLE, <=)
2079 	COND_JMP(u, JSET, &)
2080 	COND_JMP(s, JSGT, >)
2081 	COND_JMP(s, JSLT, <)
2082 	COND_JMP(s, JSGE, >=)
2083 	COND_JMP(s, JSLE, <=)
2084 #undef COND_JMP
2085 	/* ST, STX and LDX*/
2086 	ST_NOSPEC:
2087 		/* Speculation barrier for mitigating Speculative Store Bypass,
2088 		 * Bounds-Check Bypass and Type Confusion. In case of arm64, we
2089 		 * rely on the firmware mitigation as controlled via the ssbd
2090 		 * kernel parameter. Whenever the mitigation is enabled, it
2091 		 * works for all of the kernel code with no need to provide any
2092 		 * additional instructions here. In case of x86, we use 'lfence'
2093 		 * insn for mitigation. We reuse preexisting logic from Spectre
2094 		 * v1 mitigation that happens to produce the required code on
2095 		 * x86 for v4 as well.
2096 		 */
2097 		barrier_nospec();
2098 		CONT;
2099 #define LDST(SIZEOP, SIZE)						\
2100 	STX_MEM_##SIZEOP:						\
2101 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2102 		CONT;							\
2103 	ST_MEM_##SIZEOP:						\
2104 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2105 		CONT;							\
2106 	LDX_MEM_##SIZEOP:						\
2107 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2108 		CONT;							\
2109 	LDX_PROBE_MEM_##SIZEOP:						\
2110 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2111 			      (const void *)(long) (SRC + insn->off));	\
2112 		DST = *((SIZE *)&DST);					\
2113 		CONT;
2114 
2115 	LDST(B,   u8)
2116 	LDST(H,  u16)
2117 	LDST(W,  u32)
2118 	LDST(DW, u64)
2119 #undef LDST
2120 
2121 #define LDSX(SIZEOP, SIZE)						\
2122 	LDX_MEMSX_##SIZEOP:						\
2123 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2124 		CONT;							\
2125 	LDX_PROBE_MEMSX_##SIZEOP:					\
2126 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2127 				      (const void *)(long) (SRC + insn->off));	\
2128 		DST = *((SIZE *)&DST);					\
2129 		CONT;
2130 
2131 	LDSX(B,   s8)
2132 	LDSX(H,  s16)
2133 	LDSX(W,  s32)
2134 #undef LDSX
2135 
2136 #define ATOMIC_ALU_OP(BOP, KOP)						\
2137 		case BOP:						\
2138 			if (BPF_SIZE(insn->code) == BPF_W)		\
2139 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2140 					     (DST + insn->off));	\
2141 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2142 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2143 					       (DST + insn->off));	\
2144 			else						\
2145 				goto default_label;			\
2146 			break;						\
2147 		case BOP | BPF_FETCH:					\
2148 			if (BPF_SIZE(insn->code) == BPF_W)		\
2149 				SRC = (u32) atomic_fetch_##KOP(		\
2150 					(u32) SRC,			\
2151 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2152 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2153 				SRC = (u64) atomic64_fetch_##KOP(	\
2154 					(u64) SRC,			\
2155 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2156 			else						\
2157 				goto default_label;			\
2158 			break;
2159 
2160 	STX_ATOMIC_DW:
2161 	STX_ATOMIC_W:
2162 	STX_ATOMIC_H:
2163 	STX_ATOMIC_B:
2164 		switch (IMM) {
2165 		/* Atomic read-modify-write instructions support only W and DW
2166 		 * size modifiers.
2167 		 */
2168 		ATOMIC_ALU_OP(BPF_ADD, add)
2169 		ATOMIC_ALU_OP(BPF_AND, and)
2170 		ATOMIC_ALU_OP(BPF_OR, or)
2171 		ATOMIC_ALU_OP(BPF_XOR, xor)
2172 #undef ATOMIC_ALU_OP
2173 
2174 		case BPF_XCHG:
2175 			if (BPF_SIZE(insn->code) == BPF_W)
2176 				SRC = (u32) atomic_xchg(
2177 					(atomic_t *)(unsigned long) (DST + insn->off),
2178 					(u32) SRC);
2179 			else if (BPF_SIZE(insn->code) == BPF_DW)
2180 				SRC = (u64) atomic64_xchg(
2181 					(atomic64_t *)(unsigned long) (DST + insn->off),
2182 					(u64) SRC);
2183 			else
2184 				goto default_label;
2185 			break;
2186 		case BPF_CMPXCHG:
2187 			if (BPF_SIZE(insn->code) == BPF_W)
2188 				BPF_R0 = (u32) atomic_cmpxchg(
2189 					(atomic_t *)(unsigned long) (DST + insn->off),
2190 					(u32) BPF_R0, (u32) SRC);
2191 			else if (BPF_SIZE(insn->code) == BPF_DW)
2192 				BPF_R0 = (u64) atomic64_cmpxchg(
2193 					(atomic64_t *)(unsigned long) (DST + insn->off),
2194 					(u64) BPF_R0, (u64) SRC);
2195 			else
2196 				goto default_label;
2197 			break;
2198 		/* Atomic load and store instructions support all size
2199 		 * modifiers.
2200 		 */
2201 		case BPF_LOAD_ACQ:
2202 			switch (BPF_SIZE(insn->code)) {
2203 #define LOAD_ACQUIRE(SIZEOP, SIZE)				\
2204 			case BPF_##SIZEOP:			\
2205 				DST = (SIZE)smp_load_acquire(	\
2206 					(SIZE *)(unsigned long)(SRC + insn->off));	\
2207 				break;
2208 			LOAD_ACQUIRE(B,   u8)
2209 			LOAD_ACQUIRE(H,  u16)
2210 			LOAD_ACQUIRE(W,  u32)
2211 #ifdef CONFIG_64BIT
2212 			LOAD_ACQUIRE(DW, u64)
2213 #endif
2214 #undef LOAD_ACQUIRE
2215 			default:
2216 				goto default_label;
2217 			}
2218 			break;
2219 		case BPF_STORE_REL:
2220 			switch (BPF_SIZE(insn->code)) {
2221 #define STORE_RELEASE(SIZEOP, SIZE)			\
2222 			case BPF_##SIZEOP:		\
2223 				smp_store_release(	\
2224 					(SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC);	\
2225 				break;
2226 			STORE_RELEASE(B,   u8)
2227 			STORE_RELEASE(H,  u16)
2228 			STORE_RELEASE(W,  u32)
2229 #ifdef CONFIG_64BIT
2230 			STORE_RELEASE(DW, u64)
2231 #endif
2232 #undef STORE_RELEASE
2233 			default:
2234 				goto default_label;
2235 			}
2236 			break;
2237 
2238 		default:
2239 			goto default_label;
2240 		}
2241 		CONT;
2242 
2243 	default_label:
2244 		/* If we ever reach this, we have a bug somewhere. Die hard here
2245 		 * instead of just returning 0; we could be somewhere in a subprog,
2246 		 * so execution could continue otherwise which we do /not/ want.
2247 		 *
2248 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2249 		 */
2250 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2251 			insn->code, insn->imm);
2252 		BUG_ON(1);
2253 		return 0;
2254 }
2255 
2256 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2257 #define DEFINE_BPF_PROG_RUN(stack_size) \
2258 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2259 { \
2260 	u64 stack[stack_size / sizeof(u64)]; \
2261 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2262 \
2263 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2264 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2265 	ARG1 = (u64) (unsigned long) ctx; \
2266 	return ___bpf_prog_run(regs, insn); \
2267 }
2268 
2269 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2270 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2271 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2272 				      const struct bpf_insn *insn) \
2273 { \
2274 	u64 stack[stack_size / sizeof(u64)]; \
2275 	u64 regs[MAX_BPF_EXT_REG]; \
2276 \
2277 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2278 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2279 	BPF_R1 = r1; \
2280 	BPF_R2 = r2; \
2281 	BPF_R3 = r3; \
2282 	BPF_R4 = r4; \
2283 	BPF_R5 = r5; \
2284 	return ___bpf_prog_run(regs, insn); \
2285 }
2286 
2287 #define EVAL1(FN, X) FN(X)
2288 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2289 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2290 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2291 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2292 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2293 
2294 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2295 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2296 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2297 
2298 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2299 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2300 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2301 
2302 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2303 
2304 static unsigned int (*interpreters[])(const void *ctx,
2305 				      const struct bpf_insn *insn) = {
2306 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2307 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2308 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2309 };
2310 #undef PROG_NAME_LIST
2311 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2312 static __maybe_unused
2313 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2314 			   const struct bpf_insn *insn) = {
2315 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2316 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2317 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2318 };
2319 #undef PROG_NAME_LIST
2320 
2321 #ifdef CONFIG_BPF_SYSCALL
2322 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2323 {
2324 	stack_depth = max_t(u32, stack_depth, 1);
2325 	insn->off = (s16) insn->imm;
2326 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2327 		__bpf_call_base_args;
2328 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2329 }
2330 #endif
2331 #endif
2332 
2333 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2334 					 const struct bpf_insn *insn)
2335 {
2336 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2337 	 * is not working properly, so warn about it!
2338 	 */
2339 	WARN_ON_ONCE(1);
2340 	return 0;
2341 }
2342 
2343 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2344 				      const struct bpf_prog *fp)
2345 {
2346 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2347 	struct bpf_prog_aux *aux = fp->aux;
2348 	enum bpf_cgroup_storage_type i;
2349 	bool ret = false;
2350 	u64 cookie;
2351 
2352 	if (fp->kprobe_override)
2353 		return ret;
2354 
2355 	spin_lock(&map->owner_lock);
2356 	/* There's no owner yet where we could check for compatibility. */
2357 	if (!map->owner) {
2358 		map->owner = bpf_map_owner_alloc(map);
2359 		if (!map->owner)
2360 			goto err;
2361 		map->owner->type  = prog_type;
2362 		map->owner->jited = fp->jited;
2363 		map->owner->xdp_has_frags = aux->xdp_has_frags;
2364 		map->owner->attach_func_proto = aux->attach_func_proto;
2365 		for_each_cgroup_storage_type(i) {
2366 			map->owner->storage_cookie[i] =
2367 				aux->cgroup_storage[i] ?
2368 				aux->cgroup_storage[i]->cookie : 0;
2369 		}
2370 		ret = true;
2371 	} else {
2372 		ret = map->owner->type  == prog_type &&
2373 		      map->owner->jited == fp->jited &&
2374 		      map->owner->xdp_has_frags == aux->xdp_has_frags;
2375 		for_each_cgroup_storage_type(i) {
2376 			if (!ret)
2377 				break;
2378 			cookie = aux->cgroup_storage[i] ?
2379 				 aux->cgroup_storage[i]->cookie : 0;
2380 			ret = map->owner->storage_cookie[i] == cookie ||
2381 			      !cookie;
2382 		}
2383 		if (ret &&
2384 		    map->owner->attach_func_proto != aux->attach_func_proto) {
2385 			switch (prog_type) {
2386 			case BPF_PROG_TYPE_TRACING:
2387 			case BPF_PROG_TYPE_LSM:
2388 			case BPF_PROG_TYPE_EXT:
2389 			case BPF_PROG_TYPE_STRUCT_OPS:
2390 				ret = false;
2391 				break;
2392 			default:
2393 				break;
2394 			}
2395 		}
2396 	}
2397 err:
2398 	spin_unlock(&map->owner_lock);
2399 	return ret;
2400 }
2401 
2402 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2403 {
2404 	/* XDP programs inserted into maps are not guaranteed to run on
2405 	 * a particular netdev (and can run outside driver context entirely
2406 	 * in the case of devmap and cpumap). Until device checks
2407 	 * are implemented, prohibit adding dev-bound programs to program maps.
2408 	 */
2409 	if (bpf_prog_is_dev_bound(fp->aux))
2410 		return false;
2411 
2412 	return __bpf_prog_map_compatible(map, fp);
2413 }
2414 
2415 static int bpf_check_tail_call(const struct bpf_prog *fp)
2416 {
2417 	struct bpf_prog_aux *aux = fp->aux;
2418 	int i, ret = 0;
2419 
2420 	mutex_lock(&aux->used_maps_mutex);
2421 	for (i = 0; i < aux->used_map_cnt; i++) {
2422 		struct bpf_map *map = aux->used_maps[i];
2423 
2424 		if (!map_type_contains_progs(map))
2425 			continue;
2426 
2427 		if (!__bpf_prog_map_compatible(map, fp)) {
2428 			ret = -EINVAL;
2429 			goto out;
2430 		}
2431 	}
2432 
2433 out:
2434 	mutex_unlock(&aux->used_maps_mutex);
2435 	return ret;
2436 }
2437 
2438 static bool bpf_prog_select_interpreter(struct bpf_prog *fp)
2439 {
2440 	bool select_interpreter = false;
2441 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2442 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2443 	u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2444 
2445 	/* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2446 	 * But for non-JITed programs, we don't need bpf_func, so no bounds
2447 	 * check needed.
2448 	 */
2449 	if (idx < ARRAY_SIZE(interpreters)) {
2450 		fp->bpf_func = interpreters[idx];
2451 		select_interpreter = true;
2452 	} else {
2453 		fp->bpf_func = __bpf_prog_ret0_warn;
2454 	}
2455 #else
2456 	fp->bpf_func = __bpf_prog_ret0_warn;
2457 #endif
2458 	return select_interpreter;
2459 }
2460 
2461 /**
2462  *	bpf_prog_select_runtime - select exec runtime for BPF program
2463  *	@fp: bpf_prog populated with BPF program
2464  *	@err: pointer to error variable
2465  *
2466  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2467  * The BPF program will be executed via bpf_prog_run() function.
2468  *
2469  * Return: the &fp argument along with &err set to 0 for success or
2470  * a negative errno code on failure
2471  */
2472 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2473 {
2474 	/* In case of BPF to BPF calls, verifier did all the prep
2475 	 * work with regards to JITing, etc.
2476 	 */
2477 	bool jit_needed = false;
2478 
2479 	if (fp->bpf_func)
2480 		goto finalize;
2481 
2482 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2483 	    bpf_prog_has_kfunc_call(fp))
2484 		jit_needed = true;
2485 
2486 	if (!bpf_prog_select_interpreter(fp))
2487 		jit_needed = true;
2488 
2489 	/* eBPF JITs can rewrite the program in case constant
2490 	 * blinding is active. However, in case of error during
2491 	 * blinding, bpf_int_jit_compile() must always return a
2492 	 * valid program, which in this case would simply not
2493 	 * be JITed, but falls back to the interpreter.
2494 	 */
2495 	if (!bpf_prog_is_offloaded(fp->aux)) {
2496 		*err = bpf_prog_alloc_jited_linfo(fp);
2497 		if (*err)
2498 			return fp;
2499 
2500 		fp = bpf_int_jit_compile(fp);
2501 		bpf_prog_jit_attempt_done(fp);
2502 		if (!fp->jited && jit_needed) {
2503 			*err = -ENOTSUPP;
2504 			return fp;
2505 		}
2506 	} else {
2507 		*err = bpf_prog_offload_compile(fp);
2508 		if (*err)
2509 			return fp;
2510 	}
2511 
2512 finalize:
2513 	*err = bpf_prog_lock_ro(fp);
2514 	if (*err)
2515 		return fp;
2516 
2517 	/* The tail call compatibility check can only be done at
2518 	 * this late stage as we need to determine, if we deal
2519 	 * with JITed or non JITed program concatenations and not
2520 	 * all eBPF JITs might immediately support all features.
2521 	 */
2522 	*err = bpf_check_tail_call(fp);
2523 
2524 	return fp;
2525 }
2526 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2527 
2528 static unsigned int __bpf_prog_ret1(const void *ctx,
2529 				    const struct bpf_insn *insn)
2530 {
2531 	return 1;
2532 }
2533 
2534 static struct bpf_prog_dummy {
2535 	struct bpf_prog prog;
2536 } dummy_bpf_prog = {
2537 	.prog = {
2538 		.bpf_func = __bpf_prog_ret1,
2539 	},
2540 };
2541 
2542 struct bpf_empty_prog_array bpf_empty_prog_array = {
2543 	.null_prog = NULL,
2544 };
2545 EXPORT_SYMBOL(bpf_empty_prog_array);
2546 
2547 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2548 {
2549 	struct bpf_prog_array *p;
2550 
2551 	if (prog_cnt)
2552 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2553 	else
2554 		p = &bpf_empty_prog_array.hdr;
2555 
2556 	return p;
2557 }
2558 
2559 void bpf_prog_array_free(struct bpf_prog_array *progs)
2560 {
2561 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2562 		return;
2563 	kfree_rcu(progs, rcu);
2564 }
2565 
2566 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2567 {
2568 	struct bpf_prog_array *progs;
2569 
2570 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2571 	 * no need to call kfree_rcu(), just call kfree() directly.
2572 	 */
2573 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2574 	if (rcu_trace_implies_rcu_gp())
2575 		kfree(progs);
2576 	else
2577 		kfree_rcu(progs, rcu);
2578 }
2579 
2580 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2581 {
2582 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2583 		return;
2584 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2585 }
2586 
2587 int bpf_prog_array_length(struct bpf_prog_array *array)
2588 {
2589 	struct bpf_prog_array_item *item;
2590 	u32 cnt = 0;
2591 
2592 	for (item = array->items; item->prog; item++)
2593 		if (item->prog != &dummy_bpf_prog.prog)
2594 			cnt++;
2595 	return cnt;
2596 }
2597 
2598 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2599 {
2600 	struct bpf_prog_array_item *item;
2601 
2602 	for (item = array->items; item->prog; item++)
2603 		if (item->prog != &dummy_bpf_prog.prog)
2604 			return false;
2605 	return true;
2606 }
2607 
2608 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2609 				     u32 *prog_ids,
2610 				     u32 request_cnt)
2611 {
2612 	struct bpf_prog_array_item *item;
2613 	int i = 0;
2614 
2615 	for (item = array->items; item->prog; item++) {
2616 		if (item->prog == &dummy_bpf_prog.prog)
2617 			continue;
2618 		prog_ids[i] = item->prog->aux->id;
2619 		if (++i == request_cnt) {
2620 			item++;
2621 			break;
2622 		}
2623 	}
2624 
2625 	return !!(item->prog);
2626 }
2627 
2628 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2629 				__u32 __user *prog_ids, u32 cnt)
2630 {
2631 	unsigned long err = 0;
2632 	bool nospc;
2633 	u32 *ids;
2634 
2635 	/* users of this function are doing:
2636 	 * cnt = bpf_prog_array_length();
2637 	 * if (cnt > 0)
2638 	 *     bpf_prog_array_copy_to_user(..., cnt);
2639 	 * so below kcalloc doesn't need extra cnt > 0 check.
2640 	 */
2641 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2642 	if (!ids)
2643 		return -ENOMEM;
2644 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2645 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2646 	kfree(ids);
2647 	if (err)
2648 		return -EFAULT;
2649 	if (nospc)
2650 		return -ENOSPC;
2651 	return 0;
2652 }
2653 
2654 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2655 				struct bpf_prog *old_prog)
2656 {
2657 	struct bpf_prog_array_item *item;
2658 
2659 	for (item = array->items; item->prog; item++)
2660 		if (item->prog == old_prog) {
2661 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2662 			break;
2663 		}
2664 }
2665 
2666 /**
2667  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2668  *                                   index into the program array with
2669  *                                   a dummy no-op program.
2670  * @array: a bpf_prog_array
2671  * @index: the index of the program to replace
2672  *
2673  * Skips over dummy programs, by not counting them, when calculating
2674  * the position of the program to replace.
2675  *
2676  * Return:
2677  * * 0		- Success
2678  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2679  * * -ENOENT	- Index out of range
2680  */
2681 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2682 {
2683 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2684 }
2685 
2686 /**
2687  * bpf_prog_array_update_at() - Updates the program at the given index
2688  *                              into the program array.
2689  * @array: a bpf_prog_array
2690  * @index: the index of the program to update
2691  * @prog: the program to insert into the array
2692  *
2693  * Skips over dummy programs, by not counting them, when calculating
2694  * the position of the program to update.
2695  *
2696  * Return:
2697  * * 0		- Success
2698  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2699  * * -ENOENT	- Index out of range
2700  */
2701 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2702 			     struct bpf_prog *prog)
2703 {
2704 	struct bpf_prog_array_item *item;
2705 
2706 	if (unlikely(index < 0))
2707 		return -EINVAL;
2708 
2709 	for (item = array->items; item->prog; item++) {
2710 		if (item->prog == &dummy_bpf_prog.prog)
2711 			continue;
2712 		if (!index) {
2713 			WRITE_ONCE(item->prog, prog);
2714 			return 0;
2715 		}
2716 		index--;
2717 	}
2718 	return -ENOENT;
2719 }
2720 
2721 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2722 			struct bpf_prog *exclude_prog,
2723 			struct bpf_prog *include_prog,
2724 			u64 bpf_cookie,
2725 			struct bpf_prog_array **new_array)
2726 {
2727 	int new_prog_cnt, carry_prog_cnt = 0;
2728 	struct bpf_prog_array_item *existing, *new;
2729 	struct bpf_prog_array *array;
2730 	bool found_exclude = false;
2731 
2732 	/* Figure out how many existing progs we need to carry over to
2733 	 * the new array.
2734 	 */
2735 	if (old_array) {
2736 		existing = old_array->items;
2737 		for (; existing->prog; existing++) {
2738 			if (existing->prog == exclude_prog) {
2739 				found_exclude = true;
2740 				continue;
2741 			}
2742 			if (existing->prog != &dummy_bpf_prog.prog)
2743 				carry_prog_cnt++;
2744 			if (existing->prog == include_prog)
2745 				return -EEXIST;
2746 		}
2747 	}
2748 
2749 	if (exclude_prog && !found_exclude)
2750 		return -ENOENT;
2751 
2752 	/* How many progs (not NULL) will be in the new array? */
2753 	new_prog_cnt = carry_prog_cnt;
2754 	if (include_prog)
2755 		new_prog_cnt += 1;
2756 
2757 	/* Do we have any prog (not NULL) in the new array? */
2758 	if (!new_prog_cnt) {
2759 		*new_array = NULL;
2760 		return 0;
2761 	}
2762 
2763 	/* +1 as the end of prog_array is marked with NULL */
2764 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2765 	if (!array)
2766 		return -ENOMEM;
2767 	new = array->items;
2768 
2769 	/* Fill in the new prog array */
2770 	if (carry_prog_cnt) {
2771 		existing = old_array->items;
2772 		for (; existing->prog; existing++) {
2773 			if (existing->prog == exclude_prog ||
2774 			    existing->prog == &dummy_bpf_prog.prog)
2775 				continue;
2776 
2777 			new->prog = existing->prog;
2778 			new->bpf_cookie = existing->bpf_cookie;
2779 			new++;
2780 		}
2781 	}
2782 	if (include_prog) {
2783 		new->prog = include_prog;
2784 		new->bpf_cookie = bpf_cookie;
2785 		new++;
2786 	}
2787 	new->prog = NULL;
2788 	*new_array = array;
2789 	return 0;
2790 }
2791 
2792 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2793 			     u32 *prog_ids, u32 request_cnt,
2794 			     u32 *prog_cnt)
2795 {
2796 	u32 cnt = 0;
2797 
2798 	if (array)
2799 		cnt = bpf_prog_array_length(array);
2800 
2801 	*prog_cnt = cnt;
2802 
2803 	/* return early if user requested only program count or nothing to copy */
2804 	if (!request_cnt || !cnt)
2805 		return 0;
2806 
2807 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2808 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2809 								     : 0;
2810 }
2811 
2812 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2813 			  struct bpf_map **used_maps, u32 len)
2814 {
2815 	struct bpf_map *map;
2816 	bool sleepable;
2817 	u32 i;
2818 
2819 	sleepable = aux->prog->sleepable;
2820 	for (i = 0; i < len; i++) {
2821 		map = used_maps[i];
2822 		if (map->ops->map_poke_untrack)
2823 			map->ops->map_poke_untrack(map, aux);
2824 		if (sleepable)
2825 			atomic64_dec(&map->sleepable_refcnt);
2826 		bpf_map_put(map);
2827 	}
2828 }
2829 
2830 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2831 {
2832 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2833 	kfree(aux->used_maps);
2834 }
2835 
2836 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2837 {
2838 #ifdef CONFIG_BPF_SYSCALL
2839 	struct btf_mod_pair *btf_mod;
2840 	u32 i;
2841 
2842 	for (i = 0; i < len; i++) {
2843 		btf_mod = &used_btfs[i];
2844 		if (btf_mod->module)
2845 			module_put(btf_mod->module);
2846 		btf_put(btf_mod->btf);
2847 	}
2848 #endif
2849 }
2850 
2851 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2852 {
2853 	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2854 	kfree(aux->used_btfs);
2855 }
2856 
2857 static void bpf_prog_free_deferred(struct work_struct *work)
2858 {
2859 	struct bpf_prog_aux *aux;
2860 	int i;
2861 
2862 	aux = container_of(work, struct bpf_prog_aux, work);
2863 #ifdef CONFIG_BPF_SYSCALL
2864 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2865 	bpf_prog_stream_free(aux->prog);
2866 #endif
2867 #ifdef CONFIG_CGROUP_BPF
2868 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2869 		bpf_cgroup_atype_put(aux->cgroup_atype);
2870 #endif
2871 	bpf_free_used_maps(aux);
2872 	bpf_free_used_btfs(aux);
2873 	if (bpf_prog_is_dev_bound(aux))
2874 		bpf_prog_dev_bound_destroy(aux->prog);
2875 #ifdef CONFIG_PERF_EVENTS
2876 	if (aux->prog->has_callchain_buf)
2877 		put_callchain_buffers();
2878 #endif
2879 	if (aux->dst_trampoline)
2880 		bpf_trampoline_put(aux->dst_trampoline);
2881 	for (i = 0; i < aux->real_func_cnt; i++) {
2882 		/* We can just unlink the subprog poke descriptor table as
2883 		 * it was originally linked to the main program and is also
2884 		 * released along with it.
2885 		 */
2886 		aux->func[i]->aux->poke_tab = NULL;
2887 		bpf_jit_free(aux->func[i]);
2888 	}
2889 	if (aux->real_func_cnt) {
2890 		kfree(aux->func);
2891 		bpf_prog_unlock_free(aux->prog);
2892 	} else {
2893 		bpf_jit_free(aux->prog);
2894 	}
2895 }
2896 
2897 void bpf_prog_free(struct bpf_prog *fp)
2898 {
2899 	struct bpf_prog_aux *aux = fp->aux;
2900 
2901 	if (aux->dst_prog)
2902 		bpf_prog_put(aux->dst_prog);
2903 	bpf_token_put(aux->token);
2904 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2905 	schedule_work(&aux->work);
2906 }
2907 EXPORT_SYMBOL_GPL(bpf_prog_free);
2908 
2909 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2910 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2911 
2912 void bpf_user_rnd_init_once(void)
2913 {
2914 	prandom_init_once(&bpf_user_rnd_state);
2915 }
2916 
2917 BPF_CALL_0(bpf_user_rnd_u32)
2918 {
2919 	/* Should someone ever have the rather unwise idea to use some
2920 	 * of the registers passed into this function, then note that
2921 	 * this function is called from native eBPF and classic-to-eBPF
2922 	 * transformations. Register assignments from both sides are
2923 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2924 	 */
2925 	struct rnd_state *state;
2926 	u32 res;
2927 
2928 	state = &get_cpu_var(bpf_user_rnd_state);
2929 	res = prandom_u32_state(state);
2930 	put_cpu_var(bpf_user_rnd_state);
2931 
2932 	return res;
2933 }
2934 
2935 BPF_CALL_0(bpf_get_raw_cpu_id)
2936 {
2937 	return raw_smp_processor_id();
2938 }
2939 
2940 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2941 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2942 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2943 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2944 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2945 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2946 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2947 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2948 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2949 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2950 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2951 
2952 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2953 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2954 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2955 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2956 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2957 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2958 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2959 
2960 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2961 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2962 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2963 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2964 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2965 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2966 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2967 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2968 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2969 const struct bpf_func_proto bpf_set_retval_proto __weak;
2970 const struct bpf_func_proto bpf_get_retval_proto __weak;
2971 
2972 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2973 {
2974 	return NULL;
2975 }
2976 
2977 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2978 {
2979 	return NULL;
2980 }
2981 
2982 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
2983 {
2984 	return NULL;
2985 }
2986 
2987 u64 __weak
2988 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2989 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2990 {
2991 	return -ENOTSUPP;
2992 }
2993 EXPORT_SYMBOL_GPL(bpf_event_output);
2994 
2995 /* Always built-in helper functions. */
2996 const struct bpf_func_proto bpf_tail_call_proto = {
2997 	/* func is unused for tail_call, we set it to pass the
2998 	 * get_helper_proto check
2999 	 */
3000 	.func		= BPF_PTR_POISON,
3001 	.gpl_only	= false,
3002 	.ret_type	= RET_VOID,
3003 	.arg1_type	= ARG_PTR_TO_CTX,
3004 	.arg2_type	= ARG_CONST_MAP_PTR,
3005 	.arg3_type	= ARG_ANYTHING,
3006 };
3007 
3008 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
3009  * It is encouraged to implement bpf_int_jit_compile() instead, so that
3010  * eBPF and implicitly also cBPF can get JITed!
3011  */
3012 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3013 {
3014 	return prog;
3015 }
3016 
3017 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3018  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3019  */
3020 void __weak bpf_jit_compile(struct bpf_prog *prog)
3021 {
3022 }
3023 
3024 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3025 {
3026 	return false;
3027 }
3028 
3029 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3030  * analysis code and wants explicit zero extension inserted by verifier.
3031  * Otherwise, return FALSE.
3032  *
3033  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3034  * you don't override this. JITs that don't want these extra insns can detect
3035  * them using insn_is_zext.
3036  */
3037 bool __weak bpf_jit_needs_zext(void)
3038 {
3039 	return false;
3040 }
3041 
3042 /* By default, enable the verifier's mitigations against Spectre v1 and v4 for
3043  * all archs. The value returned must not change at runtime as there is
3044  * currently no support for reloading programs that were loaded without
3045  * mitigations.
3046  */
3047 bool __weak bpf_jit_bypass_spec_v1(void)
3048 {
3049 	return false;
3050 }
3051 
3052 bool __weak bpf_jit_bypass_spec_v4(void)
3053 {
3054 	return false;
3055 }
3056 
3057 /* Return true if the JIT inlines the call to the helper corresponding to
3058  * the imm.
3059  *
3060  * The verifier will not patch the insn->imm for the call to the helper if
3061  * this returns true.
3062  */
3063 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3064 {
3065 	return false;
3066 }
3067 
3068 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
3069 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3070 {
3071 	return false;
3072 }
3073 
3074 bool __weak bpf_jit_supports_percpu_insn(void)
3075 {
3076 	return false;
3077 }
3078 
3079 bool __weak bpf_jit_supports_kfunc_call(void)
3080 {
3081 	return false;
3082 }
3083 
3084 bool __weak bpf_jit_supports_far_kfunc_call(void)
3085 {
3086 	return false;
3087 }
3088 
3089 bool __weak bpf_jit_supports_arena(void)
3090 {
3091 	return false;
3092 }
3093 
3094 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3095 {
3096 	return false;
3097 }
3098 
3099 u64 __weak bpf_arch_uaddress_limit(void)
3100 {
3101 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3102 	return TASK_SIZE;
3103 #else
3104 	return 0;
3105 #endif
3106 }
3107 
3108 /* Return TRUE if the JIT backend satisfies the following two conditions:
3109  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3110  * 2) Under the specific arch, the implementation of xchg() is the same
3111  *    as atomic_xchg() on pointer-sized words.
3112  */
3113 bool __weak bpf_jit_supports_ptr_xchg(void)
3114 {
3115 	return false;
3116 }
3117 
3118 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3119  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3120  */
3121 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3122 			 int len)
3123 {
3124 	return -EFAULT;
3125 }
3126 
3127 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3128 			      void *addr1, void *addr2)
3129 {
3130 	return -ENOTSUPP;
3131 }
3132 
3133 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3134 {
3135 	return ERR_PTR(-ENOTSUPP);
3136 }
3137 
3138 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3139 {
3140 	return -ENOTSUPP;
3141 }
3142 
3143 bool __weak bpf_jit_supports_exceptions(void)
3144 {
3145 	return false;
3146 }
3147 
3148 bool __weak bpf_jit_supports_private_stack(void)
3149 {
3150 	return false;
3151 }
3152 
3153 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3154 {
3155 }
3156 
3157 bool __weak bpf_jit_supports_timed_may_goto(void)
3158 {
3159 	return false;
3160 }
3161 
3162 u64 __weak arch_bpf_timed_may_goto(void)
3163 {
3164 	return 0;
3165 }
3166 
3167 static noinline void bpf_prog_report_may_goto_violation(void)
3168 {
3169 #ifdef CONFIG_BPF_SYSCALL
3170 	struct bpf_stream_stage ss;
3171 	struct bpf_prog *prog;
3172 
3173 	prog = bpf_prog_find_from_stack();
3174 	if (!prog)
3175 		return;
3176 	bpf_stream_stage(ss, prog, BPF_STDERR, ({
3177 		bpf_stream_printk(ss, "ERROR: Timeout detected for may_goto instruction\n");
3178 		bpf_stream_dump_stack(ss);
3179 	}));
3180 #endif
3181 }
3182 
3183 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3184 {
3185 	u64 time = ktime_get_mono_fast_ns();
3186 
3187 	/* Populate the timestamp for this stack frame, and refresh count. */
3188 	if (!p->timestamp) {
3189 		p->timestamp = time;
3190 		return BPF_MAX_TIMED_LOOPS;
3191 	}
3192 	/* Check if we've exhausted our time slice, and zero count. */
3193 	if (unlikely(time - p->timestamp >= (NSEC_PER_SEC / 4))) {
3194 		bpf_prog_report_may_goto_violation();
3195 		return 0;
3196 	}
3197 	/* Refresh the count for the stack frame. */
3198 	return BPF_MAX_TIMED_LOOPS;
3199 }
3200 
3201 /* for configs without MMU or 32-bit */
3202 __weak const struct bpf_map_ops arena_map_ops;
3203 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3204 {
3205 	return 0;
3206 }
3207 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3208 {
3209 	return 0;
3210 }
3211 
3212 #ifdef CONFIG_BPF_SYSCALL
3213 static int __init bpf_global_ma_init(void)
3214 {
3215 	int ret;
3216 
3217 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3218 	bpf_global_ma_set = !ret;
3219 	return ret;
3220 }
3221 late_initcall(bpf_global_ma_init);
3222 #endif
3223 
3224 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3225 EXPORT_SYMBOL(bpf_stats_enabled_key);
3226 
3227 /* All definitions of tracepoints related to BPF. */
3228 #define CREATE_TRACE_POINTS
3229 #include <linux/bpf_trace.h>
3230 
3231 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3232 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3233 
3234 #ifdef CONFIG_BPF_SYSCALL
3235 
3236 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3237 			   const char **linep, int *nump)
3238 {
3239 	int idx = -1, insn_start, insn_end, len;
3240 	struct bpf_line_info *linfo;
3241 	void **jited_linfo;
3242 	struct btf *btf;
3243 	int nr_linfo;
3244 
3245 	btf = prog->aux->btf;
3246 	linfo = prog->aux->linfo;
3247 	jited_linfo = prog->aux->jited_linfo;
3248 
3249 	if (!btf || !linfo || !jited_linfo)
3250 		return -EINVAL;
3251 	len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len;
3252 
3253 	linfo = &prog->aux->linfo[prog->aux->linfo_idx];
3254 	jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx];
3255 
3256 	insn_start = linfo[0].insn_off;
3257 	insn_end = insn_start + len;
3258 	nr_linfo = prog->aux->nr_linfo - prog->aux->linfo_idx;
3259 
3260 	for (int i = 0; i < nr_linfo &&
3261 	     linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) {
3262 		if (jited_linfo[i] >= (void *)ip)
3263 			break;
3264 		idx = i;
3265 	}
3266 
3267 	if (idx == -1)
3268 		return -ENOENT;
3269 
3270 	/* Get base component of the file path. */
3271 	*filep = btf_name_by_offset(btf, linfo[idx].file_name_off);
3272 	*filep = kbasename(*filep);
3273 	/* Obtain the source line, and strip whitespace in prefix. */
3274 	*linep = btf_name_by_offset(btf, linfo[idx].line_off);
3275 	while (isspace(**linep))
3276 		*linep += 1;
3277 	*nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col);
3278 	return 0;
3279 }
3280 
3281 struct walk_stack_ctx {
3282 	struct bpf_prog *prog;
3283 };
3284 
3285 static bool find_from_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp)
3286 {
3287 	struct walk_stack_ctx *ctxp = cookie;
3288 	struct bpf_prog *prog;
3289 
3290 	/*
3291 	 * The RCU read lock is held to safely traverse the latch tree, but we
3292 	 * don't need its protection when accessing the prog, since it has an
3293 	 * active stack frame on the current stack trace, and won't disappear.
3294 	 */
3295 	rcu_read_lock();
3296 	prog = bpf_prog_ksym_find(ip);
3297 	rcu_read_unlock();
3298 	if (!prog)
3299 		return true;
3300 	/* Make sure we return the main prog if we found a subprog */
3301 	ctxp->prog = prog->aux->main_prog_aux->prog;
3302 	return false;
3303 }
3304 
3305 struct bpf_prog *bpf_prog_find_from_stack(void)
3306 {
3307 	struct walk_stack_ctx ctx = {};
3308 
3309 	arch_bpf_stack_walk(find_from_stack_cb, &ctx);
3310 	return ctx.prog;
3311 }
3312 
3313 #endif
3314