1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/tty.h> 67 #include <linux/binfmts.h> 68 #include <linux/highmem.h> 69 #include <linux/syscalls.h> 70 #include <asm/syscall.h> 71 #include <linux/capability.h> 72 #include <linux/fs_struct.h> 73 #include <linux/compat.h> 74 #include <linux/ctype.h> 75 #include <linux/string.h> 76 #include <uapi/linux/limits.h> 77 78 #include "audit.h" 79 80 /* flags stating the success for a syscall */ 81 #define AUDITSC_INVALID 0 82 #define AUDITSC_SUCCESS 1 83 #define AUDITSC_FAILURE 2 84 85 /* no execve audit message should be longer than this (userspace limits) */ 86 #define MAX_EXECVE_AUDIT_LEN 7500 87 88 /* max length to print of cmdline/proctitle value during audit */ 89 #define MAX_PROCTITLE_AUDIT_LEN 128 90 91 /* number of audit rules */ 92 int audit_n_rules; 93 94 /* determines whether we collect data for signals sent */ 95 int audit_signals; 96 97 struct audit_aux_data { 98 struct audit_aux_data *next; 99 int type; 100 }; 101 102 #define AUDIT_AUX_IPCPERM 0 103 104 /* Number of target pids per aux struct. */ 105 #define AUDIT_AUX_PIDS 16 106 107 struct audit_aux_data_pids { 108 struct audit_aux_data d; 109 pid_t target_pid[AUDIT_AUX_PIDS]; 110 kuid_t target_auid[AUDIT_AUX_PIDS]; 111 kuid_t target_uid[AUDIT_AUX_PIDS]; 112 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 113 u32 target_sid[AUDIT_AUX_PIDS]; 114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 115 int pid_count; 116 }; 117 118 struct audit_aux_data_bprm_fcaps { 119 struct audit_aux_data d; 120 struct audit_cap_data fcap; 121 unsigned int fcap_ver; 122 struct audit_cap_data old_pcap; 123 struct audit_cap_data new_pcap; 124 }; 125 126 struct audit_tree_refs { 127 struct audit_tree_refs *next; 128 struct audit_chunk *c[31]; 129 }; 130 131 static int audit_match_perm(struct audit_context *ctx, int mask) 132 { 133 unsigned n; 134 if (unlikely(!ctx)) 135 return 0; 136 n = ctx->major; 137 138 switch (audit_classify_syscall(ctx->arch, n)) { 139 case 0: /* native */ 140 if ((mask & AUDIT_PERM_WRITE) && 141 audit_match_class(AUDIT_CLASS_WRITE, n)) 142 return 1; 143 if ((mask & AUDIT_PERM_READ) && 144 audit_match_class(AUDIT_CLASS_READ, n)) 145 return 1; 146 if ((mask & AUDIT_PERM_ATTR) && 147 audit_match_class(AUDIT_CLASS_CHATTR, n)) 148 return 1; 149 return 0; 150 case 1: /* 32bit on biarch */ 151 if ((mask & AUDIT_PERM_WRITE) && 152 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 153 return 1; 154 if ((mask & AUDIT_PERM_READ) && 155 audit_match_class(AUDIT_CLASS_READ_32, n)) 156 return 1; 157 if ((mask & AUDIT_PERM_ATTR) && 158 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 159 return 1; 160 return 0; 161 case 2: /* open */ 162 return mask & ACC_MODE(ctx->argv[1]); 163 case 3: /* openat */ 164 return mask & ACC_MODE(ctx->argv[2]); 165 case 4: /* socketcall */ 166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 167 case 5: /* execve */ 168 return mask & AUDIT_PERM_EXEC; 169 default: 170 return 0; 171 } 172 } 173 174 static int audit_match_filetype(struct audit_context *ctx, int val) 175 { 176 struct audit_names *n; 177 umode_t mode = (umode_t)val; 178 179 if (unlikely(!ctx)) 180 return 0; 181 182 list_for_each_entry(n, &ctx->names_list, list) { 183 if ((n->ino != -1) && 184 ((n->mode & S_IFMT) == mode)) 185 return 1; 186 } 187 188 return 0; 189 } 190 191 /* 192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 193 * ->first_trees points to its beginning, ->trees - to the current end of data. 194 * ->tree_count is the number of free entries in array pointed to by ->trees. 195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 197 * it's going to remain 1-element for almost any setup) until we free context itself. 198 * References in it _are_ dropped - at the same time we free/drop aux stuff. 199 */ 200 201 #ifdef CONFIG_AUDIT_TREE 202 static void audit_set_auditable(struct audit_context *ctx) 203 { 204 if (!ctx->prio) { 205 ctx->prio = 1; 206 ctx->current_state = AUDIT_RECORD_CONTEXT; 207 } 208 } 209 210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 211 { 212 struct audit_tree_refs *p = ctx->trees; 213 int left = ctx->tree_count; 214 if (likely(left)) { 215 p->c[--left] = chunk; 216 ctx->tree_count = left; 217 return 1; 218 } 219 if (!p) 220 return 0; 221 p = p->next; 222 if (p) { 223 p->c[30] = chunk; 224 ctx->trees = p; 225 ctx->tree_count = 30; 226 return 1; 227 } 228 return 0; 229 } 230 231 static int grow_tree_refs(struct audit_context *ctx) 232 { 233 struct audit_tree_refs *p = ctx->trees; 234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 235 if (!ctx->trees) { 236 ctx->trees = p; 237 return 0; 238 } 239 if (p) 240 p->next = ctx->trees; 241 else 242 ctx->first_trees = ctx->trees; 243 ctx->tree_count = 31; 244 return 1; 245 } 246 #endif 247 248 static void unroll_tree_refs(struct audit_context *ctx, 249 struct audit_tree_refs *p, int count) 250 { 251 #ifdef CONFIG_AUDIT_TREE 252 struct audit_tree_refs *q; 253 int n; 254 if (!p) { 255 /* we started with empty chain */ 256 p = ctx->first_trees; 257 count = 31; 258 /* if the very first allocation has failed, nothing to do */ 259 if (!p) 260 return; 261 } 262 n = count; 263 for (q = p; q != ctx->trees; q = q->next, n = 31) { 264 while (n--) { 265 audit_put_chunk(q->c[n]); 266 q->c[n] = NULL; 267 } 268 } 269 while (n-- > ctx->tree_count) { 270 audit_put_chunk(q->c[n]); 271 q->c[n] = NULL; 272 } 273 ctx->trees = p; 274 ctx->tree_count = count; 275 #endif 276 } 277 278 static void free_tree_refs(struct audit_context *ctx) 279 { 280 struct audit_tree_refs *p, *q; 281 for (p = ctx->first_trees; p; p = q) { 282 q = p->next; 283 kfree(p); 284 } 285 } 286 287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 288 { 289 #ifdef CONFIG_AUDIT_TREE 290 struct audit_tree_refs *p; 291 int n; 292 if (!tree) 293 return 0; 294 /* full ones */ 295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 296 for (n = 0; n < 31; n++) 297 if (audit_tree_match(p->c[n], tree)) 298 return 1; 299 } 300 /* partial */ 301 if (p) { 302 for (n = ctx->tree_count; n < 31; n++) 303 if (audit_tree_match(p->c[n], tree)) 304 return 1; 305 } 306 #endif 307 return 0; 308 } 309 310 static int audit_compare_uid(kuid_t uid, 311 struct audit_names *name, 312 struct audit_field *f, 313 struct audit_context *ctx) 314 { 315 struct audit_names *n; 316 int rc; 317 318 if (name) { 319 rc = audit_uid_comparator(uid, f->op, name->uid); 320 if (rc) 321 return rc; 322 } 323 324 if (ctx) { 325 list_for_each_entry(n, &ctx->names_list, list) { 326 rc = audit_uid_comparator(uid, f->op, n->uid); 327 if (rc) 328 return rc; 329 } 330 } 331 return 0; 332 } 333 334 static int audit_compare_gid(kgid_t gid, 335 struct audit_names *name, 336 struct audit_field *f, 337 struct audit_context *ctx) 338 { 339 struct audit_names *n; 340 int rc; 341 342 if (name) { 343 rc = audit_gid_comparator(gid, f->op, name->gid); 344 if (rc) 345 return rc; 346 } 347 348 if (ctx) { 349 list_for_each_entry(n, &ctx->names_list, list) { 350 rc = audit_gid_comparator(gid, f->op, n->gid); 351 if (rc) 352 return rc; 353 } 354 } 355 return 0; 356 } 357 358 static int audit_field_compare(struct task_struct *tsk, 359 const struct cred *cred, 360 struct audit_field *f, 361 struct audit_context *ctx, 362 struct audit_names *name) 363 { 364 switch (f->val) { 365 /* process to file object comparisons */ 366 case AUDIT_COMPARE_UID_TO_OBJ_UID: 367 return audit_compare_uid(cred->uid, name, f, ctx); 368 case AUDIT_COMPARE_GID_TO_OBJ_GID: 369 return audit_compare_gid(cred->gid, name, f, ctx); 370 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 371 return audit_compare_uid(cred->euid, name, f, ctx); 372 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 373 return audit_compare_gid(cred->egid, name, f, ctx); 374 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 375 return audit_compare_uid(tsk->loginuid, name, f, ctx); 376 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 377 return audit_compare_uid(cred->suid, name, f, ctx); 378 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 379 return audit_compare_gid(cred->sgid, name, f, ctx); 380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 381 return audit_compare_uid(cred->fsuid, name, f, ctx); 382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 383 return audit_compare_gid(cred->fsgid, name, f, ctx); 384 /* uid comparisons */ 385 case AUDIT_COMPARE_UID_TO_AUID: 386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 387 case AUDIT_COMPARE_UID_TO_EUID: 388 return audit_uid_comparator(cred->uid, f->op, cred->euid); 389 case AUDIT_COMPARE_UID_TO_SUID: 390 return audit_uid_comparator(cred->uid, f->op, cred->suid); 391 case AUDIT_COMPARE_UID_TO_FSUID: 392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 393 /* auid comparisons */ 394 case AUDIT_COMPARE_AUID_TO_EUID: 395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 396 case AUDIT_COMPARE_AUID_TO_SUID: 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 398 case AUDIT_COMPARE_AUID_TO_FSUID: 399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 400 /* euid comparisons */ 401 case AUDIT_COMPARE_EUID_TO_SUID: 402 return audit_uid_comparator(cred->euid, f->op, cred->suid); 403 case AUDIT_COMPARE_EUID_TO_FSUID: 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 405 /* suid comparisons */ 406 case AUDIT_COMPARE_SUID_TO_FSUID: 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 408 /* gid comparisons */ 409 case AUDIT_COMPARE_GID_TO_EGID: 410 return audit_gid_comparator(cred->gid, f->op, cred->egid); 411 case AUDIT_COMPARE_GID_TO_SGID: 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 413 case AUDIT_COMPARE_GID_TO_FSGID: 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 415 /* egid comparisons */ 416 case AUDIT_COMPARE_EGID_TO_SGID: 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 418 case AUDIT_COMPARE_EGID_TO_FSGID: 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 420 /* sgid comparison */ 421 case AUDIT_COMPARE_SGID_TO_FSGID: 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 423 default: 424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 425 return 0; 426 } 427 return 0; 428 } 429 430 /* Determine if any context name data matches a rule's watch data */ 431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 432 * otherwise. 433 * 434 * If task_creation is true, this is an explicit indication that we are 435 * filtering a task rule at task creation time. This and tsk == current are 436 * the only situations where tsk->cred may be accessed without an rcu read lock. 437 */ 438 static int audit_filter_rules(struct task_struct *tsk, 439 struct audit_krule *rule, 440 struct audit_context *ctx, 441 struct audit_names *name, 442 enum audit_state *state, 443 bool task_creation) 444 { 445 const struct cred *cred; 446 int i, need_sid = 1; 447 u32 sid; 448 449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 450 451 for (i = 0; i < rule->field_count; i++) { 452 struct audit_field *f = &rule->fields[i]; 453 struct audit_names *n; 454 int result = 0; 455 pid_t pid; 456 457 switch (f->type) { 458 case AUDIT_PID: 459 pid = task_pid_nr(tsk); 460 result = audit_comparator(pid, f->op, f->val); 461 break; 462 case AUDIT_PPID: 463 if (ctx) { 464 if (!ctx->ppid) 465 ctx->ppid = task_ppid_nr(tsk); 466 result = audit_comparator(ctx->ppid, f->op, f->val); 467 } 468 break; 469 case AUDIT_UID: 470 result = audit_uid_comparator(cred->uid, f->op, f->uid); 471 break; 472 case AUDIT_EUID: 473 result = audit_uid_comparator(cred->euid, f->op, f->uid); 474 break; 475 case AUDIT_SUID: 476 result = audit_uid_comparator(cred->suid, f->op, f->uid); 477 break; 478 case AUDIT_FSUID: 479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 480 break; 481 case AUDIT_GID: 482 result = audit_gid_comparator(cred->gid, f->op, f->gid); 483 if (f->op == Audit_equal) { 484 if (!result) 485 result = in_group_p(f->gid); 486 } else if (f->op == Audit_not_equal) { 487 if (result) 488 result = !in_group_p(f->gid); 489 } 490 break; 491 case AUDIT_EGID: 492 result = audit_gid_comparator(cred->egid, f->op, f->gid); 493 if (f->op == Audit_equal) { 494 if (!result) 495 result = in_egroup_p(f->gid); 496 } else if (f->op == Audit_not_equal) { 497 if (result) 498 result = !in_egroup_p(f->gid); 499 } 500 break; 501 case AUDIT_SGID: 502 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 503 break; 504 case AUDIT_FSGID: 505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 506 break; 507 case AUDIT_PERS: 508 result = audit_comparator(tsk->personality, f->op, f->val); 509 break; 510 case AUDIT_ARCH: 511 if (ctx) 512 result = audit_comparator(ctx->arch, f->op, f->val); 513 break; 514 515 case AUDIT_EXIT: 516 if (ctx && ctx->return_valid) 517 result = audit_comparator(ctx->return_code, f->op, f->val); 518 break; 519 case AUDIT_SUCCESS: 520 if (ctx && ctx->return_valid) { 521 if (f->val) 522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 523 else 524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 525 } 526 break; 527 case AUDIT_DEVMAJOR: 528 if (name) { 529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 530 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 531 ++result; 532 } else if (ctx) { 533 list_for_each_entry(n, &ctx->names_list, list) { 534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 536 ++result; 537 break; 538 } 539 } 540 } 541 break; 542 case AUDIT_DEVMINOR: 543 if (name) { 544 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 545 audit_comparator(MINOR(name->rdev), f->op, f->val)) 546 ++result; 547 } else if (ctx) { 548 list_for_each_entry(n, &ctx->names_list, list) { 549 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 550 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 551 ++result; 552 break; 553 } 554 } 555 } 556 break; 557 case AUDIT_INODE: 558 if (name) 559 result = audit_comparator(name->ino, f->op, f->val); 560 else if (ctx) { 561 list_for_each_entry(n, &ctx->names_list, list) { 562 if (audit_comparator(n->ino, f->op, f->val)) { 563 ++result; 564 break; 565 } 566 } 567 } 568 break; 569 case AUDIT_OBJ_UID: 570 if (name) { 571 result = audit_uid_comparator(name->uid, f->op, f->uid); 572 } else if (ctx) { 573 list_for_each_entry(n, &ctx->names_list, list) { 574 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 575 ++result; 576 break; 577 } 578 } 579 } 580 break; 581 case AUDIT_OBJ_GID: 582 if (name) { 583 result = audit_gid_comparator(name->gid, f->op, f->gid); 584 } else if (ctx) { 585 list_for_each_entry(n, &ctx->names_list, list) { 586 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_WATCH: 594 if (name) 595 result = audit_watch_compare(rule->watch, name->ino, name->dev); 596 break; 597 case AUDIT_DIR: 598 if (ctx) 599 result = match_tree_refs(ctx, rule->tree); 600 break; 601 case AUDIT_LOGINUID: 602 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 603 break; 604 case AUDIT_LOGINUID_SET: 605 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 606 break; 607 case AUDIT_SUBJ_USER: 608 case AUDIT_SUBJ_ROLE: 609 case AUDIT_SUBJ_TYPE: 610 case AUDIT_SUBJ_SEN: 611 case AUDIT_SUBJ_CLR: 612 /* NOTE: this may return negative values indicating 613 a temporary error. We simply treat this as a 614 match for now to avoid losing information that 615 may be wanted. An error message will also be 616 logged upon error */ 617 if (f->lsm_rule) { 618 if (need_sid) { 619 security_task_getsecid(tsk, &sid); 620 need_sid = 0; 621 } 622 result = security_audit_rule_match(sid, f->type, 623 f->op, 624 f->lsm_rule, 625 ctx); 626 } 627 break; 628 case AUDIT_OBJ_USER: 629 case AUDIT_OBJ_ROLE: 630 case AUDIT_OBJ_TYPE: 631 case AUDIT_OBJ_LEV_LOW: 632 case AUDIT_OBJ_LEV_HIGH: 633 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 634 also applies here */ 635 if (f->lsm_rule) { 636 /* Find files that match */ 637 if (name) { 638 result = security_audit_rule_match( 639 name->osid, f->type, f->op, 640 f->lsm_rule, ctx); 641 } else if (ctx) { 642 list_for_each_entry(n, &ctx->names_list, list) { 643 if (security_audit_rule_match(n->osid, f->type, 644 f->op, f->lsm_rule, 645 ctx)) { 646 ++result; 647 break; 648 } 649 } 650 } 651 /* Find ipc objects that match */ 652 if (!ctx || ctx->type != AUDIT_IPC) 653 break; 654 if (security_audit_rule_match(ctx->ipc.osid, 655 f->type, f->op, 656 f->lsm_rule, ctx)) 657 ++result; 658 } 659 break; 660 case AUDIT_ARG0: 661 case AUDIT_ARG1: 662 case AUDIT_ARG2: 663 case AUDIT_ARG3: 664 if (ctx) 665 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 666 break; 667 case AUDIT_FILTERKEY: 668 /* ignore this field for filtering */ 669 result = 1; 670 break; 671 case AUDIT_PERM: 672 result = audit_match_perm(ctx, f->val); 673 break; 674 case AUDIT_FILETYPE: 675 result = audit_match_filetype(ctx, f->val); 676 break; 677 case AUDIT_FIELD_COMPARE: 678 result = audit_field_compare(tsk, cred, f, ctx, name); 679 break; 680 } 681 if (!result) 682 return 0; 683 } 684 685 if (ctx) { 686 if (rule->prio <= ctx->prio) 687 return 0; 688 if (rule->filterkey) { 689 kfree(ctx->filterkey); 690 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 691 } 692 ctx->prio = rule->prio; 693 } 694 switch (rule->action) { 695 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 696 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 697 } 698 return 1; 699 } 700 701 /* At process creation time, we can determine if system-call auditing is 702 * completely disabled for this task. Since we only have the task 703 * structure at this point, we can only check uid and gid. 704 */ 705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 706 { 707 struct audit_entry *e; 708 enum audit_state state; 709 710 rcu_read_lock(); 711 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 712 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 713 &state, true)) { 714 if (state == AUDIT_RECORD_CONTEXT) 715 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 716 rcu_read_unlock(); 717 return state; 718 } 719 } 720 rcu_read_unlock(); 721 return AUDIT_BUILD_CONTEXT; 722 } 723 724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 725 { 726 int word, bit; 727 728 if (val > 0xffffffff) 729 return false; 730 731 word = AUDIT_WORD(val); 732 if (word >= AUDIT_BITMASK_SIZE) 733 return false; 734 735 bit = AUDIT_BIT(val); 736 737 return rule->mask[word] & bit; 738 } 739 740 /* At syscall entry and exit time, this filter is called if the 741 * audit_state is not low enough that auditing cannot take place, but is 742 * also not high enough that we already know we have to write an audit 743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 744 */ 745 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 746 struct audit_context *ctx, 747 struct list_head *list) 748 { 749 struct audit_entry *e; 750 enum audit_state state; 751 752 if (audit_pid && tsk->tgid == audit_pid) 753 return AUDIT_DISABLED; 754 755 rcu_read_lock(); 756 if (!list_empty(list)) { 757 list_for_each_entry_rcu(e, list, list) { 758 if (audit_in_mask(&e->rule, ctx->major) && 759 audit_filter_rules(tsk, &e->rule, ctx, NULL, 760 &state, false)) { 761 rcu_read_unlock(); 762 ctx->current_state = state; 763 return state; 764 } 765 } 766 } 767 rcu_read_unlock(); 768 return AUDIT_BUILD_CONTEXT; 769 } 770 771 /* 772 * Given an audit_name check the inode hash table to see if they match. 773 * Called holding the rcu read lock to protect the use of audit_inode_hash 774 */ 775 static int audit_filter_inode_name(struct task_struct *tsk, 776 struct audit_names *n, 777 struct audit_context *ctx) { 778 int h = audit_hash_ino((u32)n->ino); 779 struct list_head *list = &audit_inode_hash[h]; 780 struct audit_entry *e; 781 enum audit_state state; 782 783 if (list_empty(list)) 784 return 0; 785 786 list_for_each_entry_rcu(e, list, list) { 787 if (audit_in_mask(&e->rule, ctx->major) && 788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 789 ctx->current_state = state; 790 return 1; 791 } 792 } 793 794 return 0; 795 } 796 797 /* At syscall exit time, this filter is called if any audit_names have been 798 * collected during syscall processing. We only check rules in sublists at hash 799 * buckets applicable to the inode numbers in audit_names. 800 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 801 */ 802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 803 { 804 struct audit_names *n; 805 806 if (audit_pid && tsk->tgid == audit_pid) 807 return; 808 809 rcu_read_lock(); 810 811 list_for_each_entry(n, &ctx->names_list, list) { 812 if (audit_filter_inode_name(tsk, n, ctx)) 813 break; 814 } 815 rcu_read_unlock(); 816 } 817 818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 819 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 820 int return_valid, 821 long return_code) 822 { 823 struct audit_context *context = tsk->audit_context; 824 825 if (!context) 826 return NULL; 827 context->return_valid = return_valid; 828 829 /* 830 * we need to fix up the return code in the audit logs if the actual 831 * return codes are later going to be fixed up by the arch specific 832 * signal handlers 833 * 834 * This is actually a test for: 835 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 836 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 837 * 838 * but is faster than a bunch of || 839 */ 840 if (unlikely(return_code <= -ERESTARTSYS) && 841 (return_code >= -ERESTART_RESTARTBLOCK) && 842 (return_code != -ENOIOCTLCMD)) 843 context->return_code = -EINTR; 844 else 845 context->return_code = return_code; 846 847 if (context->in_syscall && !context->dummy) { 848 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 849 audit_filter_inodes(tsk, context); 850 } 851 852 tsk->audit_context = NULL; 853 return context; 854 } 855 856 static inline void audit_proctitle_free(struct audit_context *context) 857 { 858 kfree(context->proctitle.value); 859 context->proctitle.value = NULL; 860 context->proctitle.len = 0; 861 } 862 863 static inline void audit_free_names(struct audit_context *context) 864 { 865 struct audit_names *n, *next; 866 867 list_for_each_entry_safe(n, next, &context->names_list, list) { 868 list_del(&n->list); 869 if (n->name) 870 putname(n->name); 871 if (n->should_free) 872 kfree(n); 873 } 874 context->name_count = 0; 875 path_put(&context->pwd); 876 context->pwd.dentry = NULL; 877 context->pwd.mnt = NULL; 878 } 879 880 static inline void audit_free_aux(struct audit_context *context) 881 { 882 struct audit_aux_data *aux; 883 884 while ((aux = context->aux)) { 885 context->aux = aux->next; 886 kfree(aux); 887 } 888 while ((aux = context->aux_pids)) { 889 context->aux_pids = aux->next; 890 kfree(aux); 891 } 892 } 893 894 static inline struct audit_context *audit_alloc_context(enum audit_state state) 895 { 896 struct audit_context *context; 897 898 context = kzalloc(sizeof(*context), GFP_KERNEL); 899 if (!context) 900 return NULL; 901 context->state = state; 902 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 903 INIT_LIST_HEAD(&context->killed_trees); 904 INIT_LIST_HEAD(&context->names_list); 905 return context; 906 } 907 908 /** 909 * audit_alloc - allocate an audit context block for a task 910 * @tsk: task 911 * 912 * Filter on the task information and allocate a per-task audit context 913 * if necessary. Doing so turns on system call auditing for the 914 * specified task. This is called from copy_process, so no lock is 915 * needed. 916 */ 917 int audit_alloc(struct task_struct *tsk) 918 { 919 struct audit_context *context; 920 enum audit_state state; 921 char *key = NULL; 922 923 if (likely(!audit_ever_enabled)) 924 return 0; /* Return if not auditing. */ 925 926 state = audit_filter_task(tsk, &key); 927 if (state == AUDIT_DISABLED) { 928 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 929 return 0; 930 } 931 932 if (!(context = audit_alloc_context(state))) { 933 kfree(key); 934 audit_log_lost("out of memory in audit_alloc"); 935 return -ENOMEM; 936 } 937 context->filterkey = key; 938 939 tsk->audit_context = context; 940 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 941 return 0; 942 } 943 944 static inline void audit_free_context(struct audit_context *context) 945 { 946 audit_free_names(context); 947 unroll_tree_refs(context, NULL, 0); 948 free_tree_refs(context); 949 audit_free_aux(context); 950 kfree(context->filterkey); 951 kfree(context->sockaddr); 952 audit_proctitle_free(context); 953 kfree(context); 954 } 955 956 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 957 kuid_t auid, kuid_t uid, unsigned int sessionid, 958 u32 sid, char *comm) 959 { 960 struct audit_buffer *ab; 961 char *ctx = NULL; 962 u32 len; 963 int rc = 0; 964 965 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 966 if (!ab) 967 return rc; 968 969 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 970 from_kuid(&init_user_ns, auid), 971 from_kuid(&init_user_ns, uid), sessionid); 972 if (sid) { 973 if (security_secid_to_secctx(sid, &ctx, &len)) { 974 audit_log_format(ab, " obj=(none)"); 975 rc = 1; 976 } else { 977 audit_log_format(ab, " obj=%s", ctx); 978 security_release_secctx(ctx, len); 979 } 980 } 981 audit_log_format(ab, " ocomm="); 982 audit_log_untrustedstring(ab, comm); 983 audit_log_end(ab); 984 985 return rc; 986 } 987 988 /* 989 * to_send and len_sent accounting are very loose estimates. We aren't 990 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 991 * within about 500 bytes (next page boundary) 992 * 993 * why snprintf? an int is up to 12 digits long. if we just assumed when 994 * logging that a[%d]= was going to be 16 characters long we would be wasting 995 * space in every audit message. In one 7500 byte message we can log up to 996 * about 1000 min size arguments. That comes down to about 50% waste of space 997 * if we didn't do the snprintf to find out how long arg_num_len was. 998 */ 999 static int audit_log_single_execve_arg(struct audit_context *context, 1000 struct audit_buffer **ab, 1001 int arg_num, 1002 size_t *len_sent, 1003 const char __user *p, 1004 char *buf) 1005 { 1006 char arg_num_len_buf[12]; 1007 const char __user *tmp_p = p; 1008 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1009 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1010 size_t len, len_left, to_send; 1011 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1012 unsigned int i, has_cntl = 0, too_long = 0; 1013 int ret; 1014 1015 /* strnlen_user includes the null we don't want to send */ 1016 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1017 1018 /* 1019 * We just created this mm, if we can't find the strings 1020 * we just copied into it something is _very_ wrong. Similar 1021 * for strings that are too long, we should not have created 1022 * any. 1023 */ 1024 if (unlikely((len == 0) || len > MAX_ARG_STRLEN - 1)) { 1025 WARN_ON(1); 1026 send_sig(SIGKILL, current, 0); 1027 return -1; 1028 } 1029 1030 /* walk the whole argument looking for non-ascii chars */ 1031 do { 1032 if (len_left > MAX_EXECVE_AUDIT_LEN) 1033 to_send = MAX_EXECVE_AUDIT_LEN; 1034 else 1035 to_send = len_left; 1036 ret = copy_from_user(buf, tmp_p, to_send); 1037 /* 1038 * There is no reason for this copy to be short. We just 1039 * copied them here, and the mm hasn't been exposed to user- 1040 * space yet. 1041 */ 1042 if (ret) { 1043 WARN_ON(1); 1044 send_sig(SIGKILL, current, 0); 1045 return -1; 1046 } 1047 buf[to_send] = '\0'; 1048 has_cntl = audit_string_contains_control(buf, to_send); 1049 if (has_cntl) { 1050 /* 1051 * hex messages get logged as 2 bytes, so we can only 1052 * send half as much in each message 1053 */ 1054 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1055 break; 1056 } 1057 len_left -= to_send; 1058 tmp_p += to_send; 1059 } while (len_left > 0); 1060 1061 len_left = len; 1062 1063 if (len > max_execve_audit_len) 1064 too_long = 1; 1065 1066 /* rewalk the argument actually logging the message */ 1067 for (i = 0; len_left > 0; i++) { 1068 int room_left; 1069 1070 if (len_left > max_execve_audit_len) 1071 to_send = max_execve_audit_len; 1072 else 1073 to_send = len_left; 1074 1075 /* do we have space left to send this argument in this ab? */ 1076 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1077 if (has_cntl) 1078 room_left -= (to_send * 2); 1079 else 1080 room_left -= to_send; 1081 if (room_left < 0) { 1082 *len_sent = 0; 1083 audit_log_end(*ab); 1084 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1085 if (!*ab) 1086 return 0; 1087 } 1088 1089 /* 1090 * first record needs to say how long the original string was 1091 * so we can be sure nothing was lost. 1092 */ 1093 if ((i == 0) && (too_long)) 1094 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1095 has_cntl ? 2*len : len); 1096 1097 /* 1098 * normally arguments are small enough to fit and we already 1099 * filled buf above when we checked for control characters 1100 * so don't bother with another copy_from_user 1101 */ 1102 if (len >= max_execve_audit_len) 1103 ret = copy_from_user(buf, p, to_send); 1104 else 1105 ret = 0; 1106 if (ret) { 1107 WARN_ON(1); 1108 send_sig(SIGKILL, current, 0); 1109 return -1; 1110 } 1111 buf[to_send] = '\0'; 1112 1113 /* actually log it */ 1114 audit_log_format(*ab, " a%d", arg_num); 1115 if (too_long) 1116 audit_log_format(*ab, "[%d]", i); 1117 audit_log_format(*ab, "="); 1118 if (has_cntl) 1119 audit_log_n_hex(*ab, buf, to_send); 1120 else 1121 audit_log_string(*ab, buf); 1122 1123 p += to_send; 1124 len_left -= to_send; 1125 *len_sent += arg_num_len; 1126 if (has_cntl) 1127 *len_sent += to_send * 2; 1128 else 1129 *len_sent += to_send; 1130 } 1131 /* include the null we didn't log */ 1132 return len + 1; 1133 } 1134 1135 static void audit_log_execve_info(struct audit_context *context, 1136 struct audit_buffer **ab) 1137 { 1138 int i, len; 1139 size_t len_sent = 0; 1140 const char __user *p; 1141 char *buf; 1142 1143 p = (const char __user *)current->mm->arg_start; 1144 1145 audit_log_format(*ab, "argc=%d", context->execve.argc); 1146 1147 /* 1148 * we need some kernel buffer to hold the userspace args. Just 1149 * allocate one big one rather than allocating one of the right size 1150 * for every single argument inside audit_log_single_execve_arg() 1151 * should be <8k allocation so should be pretty safe. 1152 */ 1153 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1154 if (!buf) { 1155 audit_panic("out of memory for argv string"); 1156 return; 1157 } 1158 1159 for (i = 0; i < context->execve.argc; i++) { 1160 len = audit_log_single_execve_arg(context, ab, i, 1161 &len_sent, p, buf); 1162 if (len <= 0) 1163 break; 1164 p += len; 1165 } 1166 kfree(buf); 1167 } 1168 1169 static void show_special(struct audit_context *context, int *call_panic) 1170 { 1171 struct audit_buffer *ab; 1172 int i; 1173 1174 ab = audit_log_start(context, GFP_KERNEL, context->type); 1175 if (!ab) 1176 return; 1177 1178 switch (context->type) { 1179 case AUDIT_SOCKETCALL: { 1180 int nargs = context->socketcall.nargs; 1181 audit_log_format(ab, "nargs=%d", nargs); 1182 for (i = 0; i < nargs; i++) 1183 audit_log_format(ab, " a%d=%lx", i, 1184 context->socketcall.args[i]); 1185 break; } 1186 case AUDIT_IPC: { 1187 u32 osid = context->ipc.osid; 1188 1189 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1190 from_kuid(&init_user_ns, context->ipc.uid), 1191 from_kgid(&init_user_ns, context->ipc.gid), 1192 context->ipc.mode); 1193 if (osid) { 1194 char *ctx = NULL; 1195 u32 len; 1196 if (security_secid_to_secctx(osid, &ctx, &len)) { 1197 audit_log_format(ab, " osid=%u", osid); 1198 *call_panic = 1; 1199 } else { 1200 audit_log_format(ab, " obj=%s", ctx); 1201 security_release_secctx(ctx, len); 1202 } 1203 } 1204 if (context->ipc.has_perm) { 1205 audit_log_end(ab); 1206 ab = audit_log_start(context, GFP_KERNEL, 1207 AUDIT_IPC_SET_PERM); 1208 if (unlikely(!ab)) 1209 return; 1210 audit_log_format(ab, 1211 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1212 context->ipc.qbytes, 1213 context->ipc.perm_uid, 1214 context->ipc.perm_gid, 1215 context->ipc.perm_mode); 1216 } 1217 break; } 1218 case AUDIT_MQ_OPEN: { 1219 audit_log_format(ab, 1220 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1221 "mq_msgsize=%ld mq_curmsgs=%ld", 1222 context->mq_open.oflag, context->mq_open.mode, 1223 context->mq_open.attr.mq_flags, 1224 context->mq_open.attr.mq_maxmsg, 1225 context->mq_open.attr.mq_msgsize, 1226 context->mq_open.attr.mq_curmsgs); 1227 break; } 1228 case AUDIT_MQ_SENDRECV: { 1229 audit_log_format(ab, 1230 "mqdes=%d msg_len=%zd msg_prio=%u " 1231 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1232 context->mq_sendrecv.mqdes, 1233 context->mq_sendrecv.msg_len, 1234 context->mq_sendrecv.msg_prio, 1235 context->mq_sendrecv.abs_timeout.tv_sec, 1236 context->mq_sendrecv.abs_timeout.tv_nsec); 1237 break; } 1238 case AUDIT_MQ_NOTIFY: { 1239 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1240 context->mq_notify.mqdes, 1241 context->mq_notify.sigev_signo); 1242 break; } 1243 case AUDIT_MQ_GETSETATTR: { 1244 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1245 audit_log_format(ab, 1246 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1247 "mq_curmsgs=%ld ", 1248 context->mq_getsetattr.mqdes, 1249 attr->mq_flags, attr->mq_maxmsg, 1250 attr->mq_msgsize, attr->mq_curmsgs); 1251 break; } 1252 case AUDIT_CAPSET: { 1253 audit_log_format(ab, "pid=%d", context->capset.pid); 1254 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1255 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1256 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1257 break; } 1258 case AUDIT_MMAP: { 1259 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1260 context->mmap.flags); 1261 break; } 1262 case AUDIT_EXECVE: { 1263 audit_log_execve_info(context, &ab); 1264 break; } 1265 } 1266 audit_log_end(ab); 1267 } 1268 1269 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1270 { 1271 char *end = proctitle + len - 1; 1272 while (end > proctitle && !isprint(*end)) 1273 end--; 1274 1275 /* catch the case where proctitle is only 1 non-print character */ 1276 len = end - proctitle + 1; 1277 len -= isprint(proctitle[len-1]) == 0; 1278 return len; 1279 } 1280 1281 static void audit_log_proctitle(struct task_struct *tsk, 1282 struct audit_context *context) 1283 { 1284 int res; 1285 char *buf; 1286 char *msg = "(null)"; 1287 int len = strlen(msg); 1288 struct audit_buffer *ab; 1289 1290 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1291 if (!ab) 1292 return; /* audit_panic or being filtered */ 1293 1294 audit_log_format(ab, "proctitle="); 1295 1296 /* Not cached */ 1297 if (!context->proctitle.value) { 1298 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1299 if (!buf) 1300 goto out; 1301 /* Historically called this from procfs naming */ 1302 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1303 if (res == 0) { 1304 kfree(buf); 1305 goto out; 1306 } 1307 res = audit_proctitle_rtrim(buf, res); 1308 if (res == 0) { 1309 kfree(buf); 1310 goto out; 1311 } 1312 context->proctitle.value = buf; 1313 context->proctitle.len = res; 1314 } 1315 msg = context->proctitle.value; 1316 len = context->proctitle.len; 1317 out: 1318 audit_log_n_untrustedstring(ab, msg, len); 1319 audit_log_end(ab); 1320 } 1321 1322 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1323 { 1324 int i, call_panic = 0; 1325 struct audit_buffer *ab; 1326 struct audit_aux_data *aux; 1327 struct audit_names *n; 1328 1329 /* tsk == current */ 1330 context->personality = tsk->personality; 1331 1332 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1333 if (!ab) 1334 return; /* audit_panic has been called */ 1335 audit_log_format(ab, "arch=%x syscall=%d", 1336 context->arch, context->major); 1337 if (context->personality != PER_LINUX) 1338 audit_log_format(ab, " per=%lx", context->personality); 1339 if (context->return_valid) 1340 audit_log_format(ab, " success=%s exit=%ld", 1341 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1342 context->return_code); 1343 1344 audit_log_format(ab, 1345 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1346 context->argv[0], 1347 context->argv[1], 1348 context->argv[2], 1349 context->argv[3], 1350 context->name_count); 1351 1352 audit_log_task_info(ab, tsk); 1353 audit_log_key(ab, context->filterkey); 1354 audit_log_end(ab); 1355 1356 for (aux = context->aux; aux; aux = aux->next) { 1357 1358 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1359 if (!ab) 1360 continue; /* audit_panic has been called */ 1361 1362 switch (aux->type) { 1363 1364 case AUDIT_BPRM_FCAPS: { 1365 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1366 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1367 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1368 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1369 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1370 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1371 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1372 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1373 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1374 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1375 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1376 break; } 1377 1378 } 1379 audit_log_end(ab); 1380 } 1381 1382 if (context->type) 1383 show_special(context, &call_panic); 1384 1385 if (context->fds[0] >= 0) { 1386 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1387 if (ab) { 1388 audit_log_format(ab, "fd0=%d fd1=%d", 1389 context->fds[0], context->fds[1]); 1390 audit_log_end(ab); 1391 } 1392 } 1393 1394 if (context->sockaddr_len) { 1395 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1396 if (ab) { 1397 audit_log_format(ab, "saddr="); 1398 audit_log_n_hex(ab, (void *)context->sockaddr, 1399 context->sockaddr_len); 1400 audit_log_end(ab); 1401 } 1402 } 1403 1404 for (aux = context->aux_pids; aux; aux = aux->next) { 1405 struct audit_aux_data_pids *axs = (void *)aux; 1406 1407 for (i = 0; i < axs->pid_count; i++) 1408 if (audit_log_pid_context(context, axs->target_pid[i], 1409 axs->target_auid[i], 1410 axs->target_uid[i], 1411 axs->target_sessionid[i], 1412 axs->target_sid[i], 1413 axs->target_comm[i])) 1414 call_panic = 1; 1415 } 1416 1417 if (context->target_pid && 1418 audit_log_pid_context(context, context->target_pid, 1419 context->target_auid, context->target_uid, 1420 context->target_sessionid, 1421 context->target_sid, context->target_comm)) 1422 call_panic = 1; 1423 1424 if (context->pwd.dentry && context->pwd.mnt) { 1425 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1426 if (ab) { 1427 audit_log_d_path(ab, " cwd=", &context->pwd); 1428 audit_log_end(ab); 1429 } 1430 } 1431 1432 i = 0; 1433 list_for_each_entry(n, &context->names_list, list) { 1434 if (n->hidden) 1435 continue; 1436 audit_log_name(context, n, NULL, i++, &call_panic); 1437 } 1438 1439 audit_log_proctitle(tsk, context); 1440 1441 /* Send end of event record to help user space know we are finished */ 1442 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1443 if (ab) 1444 audit_log_end(ab); 1445 if (call_panic) 1446 audit_panic("error converting sid to string"); 1447 } 1448 1449 /** 1450 * audit_free - free a per-task audit context 1451 * @tsk: task whose audit context block to free 1452 * 1453 * Called from copy_process and do_exit 1454 */ 1455 void __audit_free(struct task_struct *tsk) 1456 { 1457 struct audit_context *context; 1458 1459 context = audit_take_context(tsk, 0, 0); 1460 if (!context) 1461 return; 1462 1463 /* Check for system calls that do not go through the exit 1464 * function (e.g., exit_group), then free context block. 1465 * We use GFP_ATOMIC here because we might be doing this 1466 * in the context of the idle thread */ 1467 /* that can happen only if we are called from do_exit() */ 1468 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1469 audit_log_exit(context, tsk); 1470 if (!list_empty(&context->killed_trees)) 1471 audit_kill_trees(&context->killed_trees); 1472 1473 audit_free_context(context); 1474 } 1475 1476 /** 1477 * audit_syscall_entry - fill in an audit record at syscall entry 1478 * @major: major syscall type (function) 1479 * @a1: additional syscall register 1 1480 * @a2: additional syscall register 2 1481 * @a3: additional syscall register 3 1482 * @a4: additional syscall register 4 1483 * 1484 * Fill in audit context at syscall entry. This only happens if the 1485 * audit context was created when the task was created and the state or 1486 * filters demand the audit context be built. If the state from the 1487 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1488 * then the record will be written at syscall exit time (otherwise, it 1489 * will only be written if another part of the kernel requests that it 1490 * be written). 1491 */ 1492 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1493 unsigned long a3, unsigned long a4) 1494 { 1495 struct task_struct *tsk = current; 1496 struct audit_context *context = tsk->audit_context; 1497 enum audit_state state; 1498 1499 if (!context) 1500 return; 1501 1502 BUG_ON(context->in_syscall || context->name_count); 1503 1504 if (!audit_enabled) 1505 return; 1506 1507 context->arch = syscall_get_arch(); 1508 context->major = major; 1509 context->argv[0] = a1; 1510 context->argv[1] = a2; 1511 context->argv[2] = a3; 1512 context->argv[3] = a4; 1513 1514 state = context->state; 1515 context->dummy = !audit_n_rules; 1516 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1517 context->prio = 0; 1518 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1519 } 1520 if (state == AUDIT_DISABLED) 1521 return; 1522 1523 context->serial = 0; 1524 context->ctime = CURRENT_TIME; 1525 context->in_syscall = 1; 1526 context->current_state = state; 1527 context->ppid = 0; 1528 } 1529 1530 /** 1531 * audit_syscall_exit - deallocate audit context after a system call 1532 * @success: success value of the syscall 1533 * @return_code: return value of the syscall 1534 * 1535 * Tear down after system call. If the audit context has been marked as 1536 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1537 * filtering, or because some other part of the kernel wrote an audit 1538 * message), then write out the syscall information. In call cases, 1539 * free the names stored from getname(). 1540 */ 1541 void __audit_syscall_exit(int success, long return_code) 1542 { 1543 struct task_struct *tsk = current; 1544 struct audit_context *context; 1545 1546 if (success) 1547 success = AUDITSC_SUCCESS; 1548 else 1549 success = AUDITSC_FAILURE; 1550 1551 context = audit_take_context(tsk, success, return_code); 1552 if (!context) 1553 return; 1554 1555 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1556 audit_log_exit(context, tsk); 1557 1558 context->in_syscall = 0; 1559 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1560 1561 if (!list_empty(&context->killed_trees)) 1562 audit_kill_trees(&context->killed_trees); 1563 1564 audit_free_names(context); 1565 unroll_tree_refs(context, NULL, 0); 1566 audit_free_aux(context); 1567 context->aux = NULL; 1568 context->aux_pids = NULL; 1569 context->target_pid = 0; 1570 context->target_sid = 0; 1571 context->sockaddr_len = 0; 1572 context->type = 0; 1573 context->fds[0] = -1; 1574 if (context->state != AUDIT_RECORD_CONTEXT) { 1575 kfree(context->filterkey); 1576 context->filterkey = NULL; 1577 } 1578 tsk->audit_context = context; 1579 } 1580 1581 static inline void handle_one(const struct inode *inode) 1582 { 1583 #ifdef CONFIG_AUDIT_TREE 1584 struct audit_context *context; 1585 struct audit_tree_refs *p; 1586 struct audit_chunk *chunk; 1587 int count; 1588 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1589 return; 1590 context = current->audit_context; 1591 p = context->trees; 1592 count = context->tree_count; 1593 rcu_read_lock(); 1594 chunk = audit_tree_lookup(inode); 1595 rcu_read_unlock(); 1596 if (!chunk) 1597 return; 1598 if (likely(put_tree_ref(context, chunk))) 1599 return; 1600 if (unlikely(!grow_tree_refs(context))) { 1601 pr_warn("out of memory, audit has lost a tree reference\n"); 1602 audit_set_auditable(context); 1603 audit_put_chunk(chunk); 1604 unroll_tree_refs(context, p, count); 1605 return; 1606 } 1607 put_tree_ref(context, chunk); 1608 #endif 1609 } 1610 1611 static void handle_path(const struct dentry *dentry) 1612 { 1613 #ifdef CONFIG_AUDIT_TREE 1614 struct audit_context *context; 1615 struct audit_tree_refs *p; 1616 const struct dentry *d, *parent; 1617 struct audit_chunk *drop; 1618 unsigned long seq; 1619 int count; 1620 1621 context = current->audit_context; 1622 p = context->trees; 1623 count = context->tree_count; 1624 retry: 1625 drop = NULL; 1626 d = dentry; 1627 rcu_read_lock(); 1628 seq = read_seqbegin(&rename_lock); 1629 for(;;) { 1630 struct inode *inode = d_backing_inode(d); 1631 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1632 struct audit_chunk *chunk; 1633 chunk = audit_tree_lookup(inode); 1634 if (chunk) { 1635 if (unlikely(!put_tree_ref(context, chunk))) { 1636 drop = chunk; 1637 break; 1638 } 1639 } 1640 } 1641 parent = d->d_parent; 1642 if (parent == d) 1643 break; 1644 d = parent; 1645 } 1646 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1647 rcu_read_unlock(); 1648 if (!drop) { 1649 /* just a race with rename */ 1650 unroll_tree_refs(context, p, count); 1651 goto retry; 1652 } 1653 audit_put_chunk(drop); 1654 if (grow_tree_refs(context)) { 1655 /* OK, got more space */ 1656 unroll_tree_refs(context, p, count); 1657 goto retry; 1658 } 1659 /* too bad */ 1660 pr_warn("out of memory, audit has lost a tree reference\n"); 1661 unroll_tree_refs(context, p, count); 1662 audit_set_auditable(context); 1663 return; 1664 } 1665 rcu_read_unlock(); 1666 #endif 1667 } 1668 1669 static struct audit_names *audit_alloc_name(struct audit_context *context, 1670 unsigned char type) 1671 { 1672 struct audit_names *aname; 1673 1674 if (context->name_count < AUDIT_NAMES) { 1675 aname = &context->preallocated_names[context->name_count]; 1676 memset(aname, 0, sizeof(*aname)); 1677 } else { 1678 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1679 if (!aname) 1680 return NULL; 1681 aname->should_free = true; 1682 } 1683 1684 aname->ino = (unsigned long)-1; 1685 aname->type = type; 1686 list_add_tail(&aname->list, &context->names_list); 1687 1688 context->name_count++; 1689 return aname; 1690 } 1691 1692 /** 1693 * audit_reusename - fill out filename with info from existing entry 1694 * @uptr: userland ptr to pathname 1695 * 1696 * Search the audit_names list for the current audit context. If there is an 1697 * existing entry with a matching "uptr" then return the filename 1698 * associated with that audit_name. If not, return NULL. 1699 */ 1700 struct filename * 1701 __audit_reusename(const __user char *uptr) 1702 { 1703 struct audit_context *context = current->audit_context; 1704 struct audit_names *n; 1705 1706 list_for_each_entry(n, &context->names_list, list) { 1707 if (!n->name) 1708 continue; 1709 if (n->name->uptr == uptr) { 1710 n->name->refcnt++; 1711 return n->name; 1712 } 1713 } 1714 return NULL; 1715 } 1716 1717 /** 1718 * audit_getname - add a name to the list 1719 * @name: name to add 1720 * 1721 * Add a name to the list of audit names for this context. 1722 * Called from fs/namei.c:getname(). 1723 */ 1724 void __audit_getname(struct filename *name) 1725 { 1726 struct audit_context *context = current->audit_context; 1727 struct audit_names *n; 1728 1729 if (!context->in_syscall) 1730 return; 1731 1732 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1733 if (!n) 1734 return; 1735 1736 n->name = name; 1737 n->name_len = AUDIT_NAME_FULL; 1738 name->aname = n; 1739 name->refcnt++; 1740 1741 if (!context->pwd.dentry) 1742 get_fs_pwd(current->fs, &context->pwd); 1743 } 1744 1745 /** 1746 * __audit_inode - store the inode and device from a lookup 1747 * @name: name being audited 1748 * @dentry: dentry being audited 1749 * @flags: attributes for this particular entry 1750 */ 1751 void __audit_inode(struct filename *name, const struct dentry *dentry, 1752 unsigned int flags) 1753 { 1754 struct audit_context *context = current->audit_context; 1755 const struct inode *inode = d_backing_inode(dentry); 1756 struct audit_names *n; 1757 bool parent = flags & AUDIT_INODE_PARENT; 1758 1759 if (!context->in_syscall) 1760 return; 1761 1762 if (!name) 1763 goto out_alloc; 1764 1765 /* 1766 * If we have a pointer to an audit_names entry already, then we can 1767 * just use it directly if the type is correct. 1768 */ 1769 n = name->aname; 1770 if (n) { 1771 if (parent) { 1772 if (n->type == AUDIT_TYPE_PARENT || 1773 n->type == AUDIT_TYPE_UNKNOWN) 1774 goto out; 1775 } else { 1776 if (n->type != AUDIT_TYPE_PARENT) 1777 goto out; 1778 } 1779 } 1780 1781 list_for_each_entry_reverse(n, &context->names_list, list) { 1782 if (n->ino) { 1783 /* valid inode number, use that for the comparison */ 1784 if (n->ino != inode->i_ino || 1785 n->dev != inode->i_sb->s_dev) 1786 continue; 1787 } else if (n->name) { 1788 /* inode number has not been set, check the name */ 1789 if (strcmp(n->name->name, name->name)) 1790 continue; 1791 } else 1792 /* no inode and no name (?!) ... this is odd ... */ 1793 continue; 1794 1795 /* match the correct record type */ 1796 if (parent) { 1797 if (n->type == AUDIT_TYPE_PARENT || 1798 n->type == AUDIT_TYPE_UNKNOWN) 1799 goto out; 1800 } else { 1801 if (n->type != AUDIT_TYPE_PARENT) 1802 goto out; 1803 } 1804 } 1805 1806 out_alloc: 1807 /* unable to find an entry with both a matching name and type */ 1808 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1809 if (!n) 1810 return; 1811 if (name) { 1812 n->name = name; 1813 name->refcnt++; 1814 } 1815 1816 out: 1817 if (parent) { 1818 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1819 n->type = AUDIT_TYPE_PARENT; 1820 if (flags & AUDIT_INODE_HIDDEN) 1821 n->hidden = true; 1822 } else { 1823 n->name_len = AUDIT_NAME_FULL; 1824 n->type = AUDIT_TYPE_NORMAL; 1825 } 1826 handle_path(dentry); 1827 audit_copy_inode(n, dentry, inode); 1828 } 1829 1830 void __audit_file(const struct file *file) 1831 { 1832 __audit_inode(NULL, file->f_path.dentry, 0); 1833 } 1834 1835 /** 1836 * __audit_inode_child - collect inode info for created/removed objects 1837 * @parent: inode of dentry parent 1838 * @dentry: dentry being audited 1839 * @type: AUDIT_TYPE_* value that we're looking for 1840 * 1841 * For syscalls that create or remove filesystem objects, audit_inode 1842 * can only collect information for the filesystem object's parent. 1843 * This call updates the audit context with the child's information. 1844 * Syscalls that create a new filesystem object must be hooked after 1845 * the object is created. Syscalls that remove a filesystem object 1846 * must be hooked prior, in order to capture the target inode during 1847 * unsuccessful attempts. 1848 */ 1849 void __audit_inode_child(const struct inode *parent, 1850 const struct dentry *dentry, 1851 const unsigned char type) 1852 { 1853 struct audit_context *context = current->audit_context; 1854 const struct inode *inode = d_backing_inode(dentry); 1855 const char *dname = dentry->d_name.name; 1856 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1857 1858 if (!context->in_syscall) 1859 return; 1860 1861 if (inode) 1862 handle_one(inode); 1863 1864 /* look for a parent entry first */ 1865 list_for_each_entry(n, &context->names_list, list) { 1866 if (!n->name || 1867 (n->type != AUDIT_TYPE_PARENT && 1868 n->type != AUDIT_TYPE_UNKNOWN)) 1869 continue; 1870 1871 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1872 !audit_compare_dname_path(dname, 1873 n->name->name, n->name_len)) { 1874 if (n->type == AUDIT_TYPE_UNKNOWN) 1875 n->type = AUDIT_TYPE_PARENT; 1876 found_parent = n; 1877 break; 1878 } 1879 } 1880 1881 /* is there a matching child entry? */ 1882 list_for_each_entry(n, &context->names_list, list) { 1883 /* can only match entries that have a name */ 1884 if (!n->name || 1885 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1886 continue; 1887 1888 if (!strcmp(dname, n->name->name) || 1889 !audit_compare_dname_path(dname, n->name->name, 1890 found_parent ? 1891 found_parent->name_len : 1892 AUDIT_NAME_FULL)) { 1893 if (n->type == AUDIT_TYPE_UNKNOWN) 1894 n->type = type; 1895 found_child = n; 1896 break; 1897 } 1898 } 1899 1900 if (!found_parent) { 1901 /* create a new, "anonymous" parent record */ 1902 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1903 if (!n) 1904 return; 1905 audit_copy_inode(n, NULL, parent); 1906 } 1907 1908 if (!found_child) { 1909 found_child = audit_alloc_name(context, type); 1910 if (!found_child) 1911 return; 1912 1913 /* Re-use the name belonging to the slot for a matching parent 1914 * directory. All names for this context are relinquished in 1915 * audit_free_names() */ 1916 if (found_parent) { 1917 found_child->name = found_parent->name; 1918 found_child->name_len = AUDIT_NAME_FULL; 1919 found_child->name->refcnt++; 1920 } 1921 } 1922 1923 if (inode) 1924 audit_copy_inode(found_child, dentry, inode); 1925 else 1926 found_child->ino = (unsigned long)-1; 1927 } 1928 EXPORT_SYMBOL_GPL(__audit_inode_child); 1929 1930 /** 1931 * auditsc_get_stamp - get local copies of audit_context values 1932 * @ctx: audit_context for the task 1933 * @t: timespec to store time recorded in the audit_context 1934 * @serial: serial value that is recorded in the audit_context 1935 * 1936 * Also sets the context as auditable. 1937 */ 1938 int auditsc_get_stamp(struct audit_context *ctx, 1939 struct timespec *t, unsigned int *serial) 1940 { 1941 if (!ctx->in_syscall) 1942 return 0; 1943 if (!ctx->serial) 1944 ctx->serial = audit_serial(); 1945 t->tv_sec = ctx->ctime.tv_sec; 1946 t->tv_nsec = ctx->ctime.tv_nsec; 1947 *serial = ctx->serial; 1948 if (!ctx->prio) { 1949 ctx->prio = 1; 1950 ctx->current_state = AUDIT_RECORD_CONTEXT; 1951 } 1952 return 1; 1953 } 1954 1955 /* global counter which is incremented every time something logs in */ 1956 static atomic_t session_id = ATOMIC_INIT(0); 1957 1958 static int audit_set_loginuid_perm(kuid_t loginuid) 1959 { 1960 /* if we are unset, we don't need privs */ 1961 if (!audit_loginuid_set(current)) 1962 return 0; 1963 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 1964 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 1965 return -EPERM; 1966 /* it is set, you need permission */ 1967 if (!capable(CAP_AUDIT_CONTROL)) 1968 return -EPERM; 1969 /* reject if this is not an unset and we don't allow that */ 1970 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 1971 return -EPERM; 1972 return 0; 1973 } 1974 1975 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 1976 unsigned int oldsessionid, unsigned int sessionid, 1977 int rc) 1978 { 1979 struct audit_buffer *ab; 1980 uid_t uid, oldloginuid, loginuid; 1981 1982 if (!audit_enabled) 1983 return; 1984 1985 uid = from_kuid(&init_user_ns, task_uid(current)); 1986 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 1987 loginuid = from_kuid(&init_user_ns, kloginuid), 1988 1989 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1990 if (!ab) 1991 return; 1992 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 1993 audit_log_task_context(ab); 1994 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d", 1995 oldloginuid, loginuid, oldsessionid, sessionid, !rc); 1996 audit_log_end(ab); 1997 } 1998 1999 /** 2000 * audit_set_loginuid - set current task's audit_context loginuid 2001 * @loginuid: loginuid value 2002 * 2003 * Returns 0. 2004 * 2005 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2006 */ 2007 int audit_set_loginuid(kuid_t loginuid) 2008 { 2009 struct task_struct *task = current; 2010 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2011 kuid_t oldloginuid; 2012 int rc; 2013 2014 oldloginuid = audit_get_loginuid(current); 2015 oldsessionid = audit_get_sessionid(current); 2016 2017 rc = audit_set_loginuid_perm(loginuid); 2018 if (rc) 2019 goto out; 2020 2021 /* are we setting or clearing? */ 2022 if (uid_valid(loginuid)) 2023 sessionid = (unsigned int)atomic_inc_return(&session_id); 2024 2025 task->sessionid = sessionid; 2026 task->loginuid = loginuid; 2027 out: 2028 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2029 return rc; 2030 } 2031 2032 /** 2033 * __audit_mq_open - record audit data for a POSIX MQ open 2034 * @oflag: open flag 2035 * @mode: mode bits 2036 * @attr: queue attributes 2037 * 2038 */ 2039 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2040 { 2041 struct audit_context *context = current->audit_context; 2042 2043 if (attr) 2044 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2045 else 2046 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2047 2048 context->mq_open.oflag = oflag; 2049 context->mq_open.mode = mode; 2050 2051 context->type = AUDIT_MQ_OPEN; 2052 } 2053 2054 /** 2055 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2056 * @mqdes: MQ descriptor 2057 * @msg_len: Message length 2058 * @msg_prio: Message priority 2059 * @abs_timeout: Message timeout in absolute time 2060 * 2061 */ 2062 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2063 const struct timespec *abs_timeout) 2064 { 2065 struct audit_context *context = current->audit_context; 2066 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2067 2068 if (abs_timeout) 2069 memcpy(p, abs_timeout, sizeof(struct timespec)); 2070 else 2071 memset(p, 0, sizeof(struct timespec)); 2072 2073 context->mq_sendrecv.mqdes = mqdes; 2074 context->mq_sendrecv.msg_len = msg_len; 2075 context->mq_sendrecv.msg_prio = msg_prio; 2076 2077 context->type = AUDIT_MQ_SENDRECV; 2078 } 2079 2080 /** 2081 * __audit_mq_notify - record audit data for a POSIX MQ notify 2082 * @mqdes: MQ descriptor 2083 * @notification: Notification event 2084 * 2085 */ 2086 2087 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2088 { 2089 struct audit_context *context = current->audit_context; 2090 2091 if (notification) 2092 context->mq_notify.sigev_signo = notification->sigev_signo; 2093 else 2094 context->mq_notify.sigev_signo = 0; 2095 2096 context->mq_notify.mqdes = mqdes; 2097 context->type = AUDIT_MQ_NOTIFY; 2098 } 2099 2100 /** 2101 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2102 * @mqdes: MQ descriptor 2103 * @mqstat: MQ flags 2104 * 2105 */ 2106 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2107 { 2108 struct audit_context *context = current->audit_context; 2109 context->mq_getsetattr.mqdes = mqdes; 2110 context->mq_getsetattr.mqstat = *mqstat; 2111 context->type = AUDIT_MQ_GETSETATTR; 2112 } 2113 2114 /** 2115 * audit_ipc_obj - record audit data for ipc object 2116 * @ipcp: ipc permissions 2117 * 2118 */ 2119 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2120 { 2121 struct audit_context *context = current->audit_context; 2122 context->ipc.uid = ipcp->uid; 2123 context->ipc.gid = ipcp->gid; 2124 context->ipc.mode = ipcp->mode; 2125 context->ipc.has_perm = 0; 2126 security_ipc_getsecid(ipcp, &context->ipc.osid); 2127 context->type = AUDIT_IPC; 2128 } 2129 2130 /** 2131 * audit_ipc_set_perm - record audit data for new ipc permissions 2132 * @qbytes: msgq bytes 2133 * @uid: msgq user id 2134 * @gid: msgq group id 2135 * @mode: msgq mode (permissions) 2136 * 2137 * Called only after audit_ipc_obj(). 2138 */ 2139 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2140 { 2141 struct audit_context *context = current->audit_context; 2142 2143 context->ipc.qbytes = qbytes; 2144 context->ipc.perm_uid = uid; 2145 context->ipc.perm_gid = gid; 2146 context->ipc.perm_mode = mode; 2147 context->ipc.has_perm = 1; 2148 } 2149 2150 void __audit_bprm(struct linux_binprm *bprm) 2151 { 2152 struct audit_context *context = current->audit_context; 2153 2154 context->type = AUDIT_EXECVE; 2155 context->execve.argc = bprm->argc; 2156 } 2157 2158 2159 /** 2160 * audit_socketcall - record audit data for sys_socketcall 2161 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2162 * @args: args array 2163 * 2164 */ 2165 int __audit_socketcall(int nargs, unsigned long *args) 2166 { 2167 struct audit_context *context = current->audit_context; 2168 2169 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2170 return -EINVAL; 2171 context->type = AUDIT_SOCKETCALL; 2172 context->socketcall.nargs = nargs; 2173 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2174 return 0; 2175 } 2176 2177 /** 2178 * __audit_fd_pair - record audit data for pipe and socketpair 2179 * @fd1: the first file descriptor 2180 * @fd2: the second file descriptor 2181 * 2182 */ 2183 void __audit_fd_pair(int fd1, int fd2) 2184 { 2185 struct audit_context *context = current->audit_context; 2186 context->fds[0] = fd1; 2187 context->fds[1] = fd2; 2188 } 2189 2190 /** 2191 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2192 * @len: data length in user space 2193 * @a: data address in kernel space 2194 * 2195 * Returns 0 for success or NULL context or < 0 on error. 2196 */ 2197 int __audit_sockaddr(int len, void *a) 2198 { 2199 struct audit_context *context = current->audit_context; 2200 2201 if (!context->sockaddr) { 2202 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2203 if (!p) 2204 return -ENOMEM; 2205 context->sockaddr = p; 2206 } 2207 2208 context->sockaddr_len = len; 2209 memcpy(context->sockaddr, a, len); 2210 return 0; 2211 } 2212 2213 void __audit_ptrace(struct task_struct *t) 2214 { 2215 struct audit_context *context = current->audit_context; 2216 2217 context->target_pid = task_pid_nr(t); 2218 context->target_auid = audit_get_loginuid(t); 2219 context->target_uid = task_uid(t); 2220 context->target_sessionid = audit_get_sessionid(t); 2221 security_task_getsecid(t, &context->target_sid); 2222 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2223 } 2224 2225 /** 2226 * audit_signal_info - record signal info for shutting down audit subsystem 2227 * @sig: signal value 2228 * @t: task being signaled 2229 * 2230 * If the audit subsystem is being terminated, record the task (pid) 2231 * and uid that is doing that. 2232 */ 2233 int __audit_signal_info(int sig, struct task_struct *t) 2234 { 2235 struct audit_aux_data_pids *axp; 2236 struct task_struct *tsk = current; 2237 struct audit_context *ctx = tsk->audit_context; 2238 kuid_t uid = current_uid(), t_uid = task_uid(t); 2239 2240 if (audit_pid && t->tgid == audit_pid) { 2241 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2242 audit_sig_pid = task_pid_nr(tsk); 2243 if (uid_valid(tsk->loginuid)) 2244 audit_sig_uid = tsk->loginuid; 2245 else 2246 audit_sig_uid = uid; 2247 security_task_getsecid(tsk, &audit_sig_sid); 2248 } 2249 if (!audit_signals || audit_dummy_context()) 2250 return 0; 2251 } 2252 2253 /* optimize the common case by putting first signal recipient directly 2254 * in audit_context */ 2255 if (!ctx->target_pid) { 2256 ctx->target_pid = task_tgid_nr(t); 2257 ctx->target_auid = audit_get_loginuid(t); 2258 ctx->target_uid = t_uid; 2259 ctx->target_sessionid = audit_get_sessionid(t); 2260 security_task_getsecid(t, &ctx->target_sid); 2261 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2262 return 0; 2263 } 2264 2265 axp = (void *)ctx->aux_pids; 2266 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2267 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2268 if (!axp) 2269 return -ENOMEM; 2270 2271 axp->d.type = AUDIT_OBJ_PID; 2272 axp->d.next = ctx->aux_pids; 2273 ctx->aux_pids = (void *)axp; 2274 } 2275 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2276 2277 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2278 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2279 axp->target_uid[axp->pid_count] = t_uid; 2280 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2281 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2282 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2283 axp->pid_count++; 2284 2285 return 0; 2286 } 2287 2288 /** 2289 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2290 * @bprm: pointer to the bprm being processed 2291 * @new: the proposed new credentials 2292 * @old: the old credentials 2293 * 2294 * Simply check if the proc already has the caps given by the file and if not 2295 * store the priv escalation info for later auditing at the end of the syscall 2296 * 2297 * -Eric 2298 */ 2299 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2300 const struct cred *new, const struct cred *old) 2301 { 2302 struct audit_aux_data_bprm_fcaps *ax; 2303 struct audit_context *context = current->audit_context; 2304 struct cpu_vfs_cap_data vcaps; 2305 2306 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2307 if (!ax) 2308 return -ENOMEM; 2309 2310 ax->d.type = AUDIT_BPRM_FCAPS; 2311 ax->d.next = context->aux; 2312 context->aux = (void *)ax; 2313 2314 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2315 2316 ax->fcap.permitted = vcaps.permitted; 2317 ax->fcap.inheritable = vcaps.inheritable; 2318 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2319 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2320 2321 ax->old_pcap.permitted = old->cap_permitted; 2322 ax->old_pcap.inheritable = old->cap_inheritable; 2323 ax->old_pcap.effective = old->cap_effective; 2324 2325 ax->new_pcap.permitted = new->cap_permitted; 2326 ax->new_pcap.inheritable = new->cap_inheritable; 2327 ax->new_pcap.effective = new->cap_effective; 2328 return 0; 2329 } 2330 2331 /** 2332 * __audit_log_capset - store information about the arguments to the capset syscall 2333 * @new: the new credentials 2334 * @old: the old (current) credentials 2335 * 2336 * Record the arguments userspace sent to sys_capset for later printing by the 2337 * audit system if applicable 2338 */ 2339 void __audit_log_capset(const struct cred *new, const struct cred *old) 2340 { 2341 struct audit_context *context = current->audit_context; 2342 context->capset.pid = task_pid_nr(current); 2343 context->capset.cap.effective = new->cap_effective; 2344 context->capset.cap.inheritable = new->cap_effective; 2345 context->capset.cap.permitted = new->cap_permitted; 2346 context->type = AUDIT_CAPSET; 2347 } 2348 2349 void __audit_mmap_fd(int fd, int flags) 2350 { 2351 struct audit_context *context = current->audit_context; 2352 context->mmap.fd = fd; 2353 context->mmap.flags = flags; 2354 context->type = AUDIT_MMAP; 2355 } 2356 2357 static void audit_log_task(struct audit_buffer *ab) 2358 { 2359 kuid_t auid, uid; 2360 kgid_t gid; 2361 unsigned int sessionid; 2362 char comm[sizeof(current->comm)]; 2363 2364 auid = audit_get_loginuid(current); 2365 sessionid = audit_get_sessionid(current); 2366 current_uid_gid(&uid, &gid); 2367 2368 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2369 from_kuid(&init_user_ns, auid), 2370 from_kuid(&init_user_ns, uid), 2371 from_kgid(&init_user_ns, gid), 2372 sessionid); 2373 audit_log_task_context(ab); 2374 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2375 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2376 audit_log_d_path_exe(ab, current->mm); 2377 } 2378 2379 /** 2380 * audit_core_dumps - record information about processes that end abnormally 2381 * @signr: signal value 2382 * 2383 * If a process ends with a core dump, something fishy is going on and we 2384 * should record the event for investigation. 2385 */ 2386 void audit_core_dumps(long signr) 2387 { 2388 struct audit_buffer *ab; 2389 2390 if (!audit_enabled) 2391 return; 2392 2393 if (signr == SIGQUIT) /* don't care for those */ 2394 return; 2395 2396 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2397 if (unlikely(!ab)) 2398 return; 2399 audit_log_task(ab); 2400 audit_log_format(ab, " sig=%ld", signr); 2401 audit_log_end(ab); 2402 } 2403 2404 void __audit_seccomp(unsigned long syscall, long signr, int code) 2405 { 2406 struct audit_buffer *ab; 2407 2408 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2409 if (unlikely(!ab)) 2410 return; 2411 audit_log_task(ab); 2412 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2413 signr, syscall_get_arch(), syscall, is_compat_task(), 2414 KSTK_EIP(current), code); 2415 audit_log_end(ab); 2416 } 2417 2418 struct list_head *audit_killed_trees(void) 2419 { 2420 struct audit_context *ctx = current->audit_context; 2421 if (likely(!ctx || !ctx->in_syscall)) 2422 return NULL; 2423 return &ctx->killed_trees; 2424 } 2425