1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 58 #include <linux/audit.h> 59 60 #include <net/sock.h> 61 #include <net/netlink.h> 62 #include <linux/skbuff.h> 63 #ifdef CONFIG_SECURITY 64 #include <linux/security.h> 65 #endif 66 #include <linux/freezer.h> 67 #include <linux/tty.h> 68 #include <linux/pid_namespace.h> 69 #include <net/netns/generic.h> 70 71 #include "audit.h" 72 73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 74 * (Initialization happens after skb_init is called.) */ 75 #define AUDIT_DISABLED -1 76 #define AUDIT_UNINITIALIZED 0 77 #define AUDIT_INITIALIZED 1 78 static int audit_initialized; 79 80 #define AUDIT_OFF 0 81 #define AUDIT_ON 1 82 #define AUDIT_LOCKED 2 83 u32 audit_enabled; 84 u32 audit_ever_enabled; 85 86 EXPORT_SYMBOL_GPL(audit_enabled); 87 88 /* Default state when kernel boots without any parameters. */ 89 static u32 audit_default; 90 91 /* If auditing cannot proceed, audit_failure selects what happens. */ 92 static u32 audit_failure = AUDIT_FAIL_PRINTK; 93 94 /* 95 * If audit records are to be written to the netlink socket, audit_pid 96 * contains the pid of the auditd process and audit_nlk_portid contains 97 * the portid to use to send netlink messages to that process. 98 */ 99 int audit_pid; 100 static __u32 audit_nlk_portid; 101 102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 103 * to that number per second. This prevents DoS attacks, but results in 104 * audit records being dropped. */ 105 static u32 audit_rate_limit; 106 107 /* Number of outstanding audit_buffers allowed. 108 * When set to zero, this means unlimited. */ 109 static u32 audit_backlog_limit = 64; 110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME; 112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 113 114 /* The identity of the user shutting down the audit system. */ 115 kuid_t audit_sig_uid = INVALID_UID; 116 pid_t audit_sig_pid = -1; 117 u32 audit_sig_sid = 0; 118 119 /* Records can be lost in several ways: 120 0) [suppressed in audit_alloc] 121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 122 2) out of memory in audit_log_move [alloc_skb] 123 3) suppressed due to audit_rate_limit 124 4) suppressed due to audit_backlog_limit 125 */ 126 static atomic_t audit_lost = ATOMIC_INIT(0); 127 128 /* The netlink socket. */ 129 static struct sock *audit_sock; 130 static int audit_net_id; 131 132 /* Hash for inode-based rules */ 133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 134 135 /* The audit_freelist is a list of pre-allocated audit buffers (if more 136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 137 * being placed on the freelist). */ 138 static DEFINE_SPINLOCK(audit_freelist_lock); 139 static int audit_freelist_count; 140 static LIST_HEAD(audit_freelist); 141 142 static struct sk_buff_head audit_skb_queue; 143 /* queue of skbs to send to auditd when/if it comes back */ 144 static struct sk_buff_head audit_skb_hold_queue; 145 static struct task_struct *kauditd_task; 146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 148 149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 150 .mask = -1, 151 .features = 0, 152 .lock = 0,}; 153 154 static char *audit_feature_names[2] = { 155 "only_unset_loginuid", 156 "loginuid_immutable", 157 }; 158 159 160 /* Serialize requests from userspace. */ 161 DEFINE_MUTEX(audit_cmd_mutex); 162 163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 164 * audit records. Since printk uses a 1024 byte buffer, this buffer 165 * should be at least that large. */ 166 #define AUDIT_BUFSIZ 1024 167 168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 170 #define AUDIT_MAXFREE (2*NR_CPUS) 171 172 /* The audit_buffer is used when formatting an audit record. The caller 173 * locks briefly to get the record off the freelist or to allocate the 174 * buffer, and locks briefly to send the buffer to the netlink layer or 175 * to place it on a transmit queue. Multiple audit_buffers can be in 176 * use simultaneously. */ 177 struct audit_buffer { 178 struct list_head list; 179 struct sk_buff *skb; /* formatted skb ready to send */ 180 struct audit_context *ctx; /* NULL or associated context */ 181 gfp_t gfp_mask; 182 }; 183 184 struct audit_reply { 185 __u32 portid; 186 struct net *net; 187 struct sk_buff *skb; 188 }; 189 190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 191 { 192 if (ab) { 193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 194 nlh->nlmsg_pid = portid; 195 } 196 } 197 198 void audit_panic(const char *message) 199 { 200 switch (audit_failure) { 201 case AUDIT_FAIL_SILENT: 202 break; 203 case AUDIT_FAIL_PRINTK: 204 if (printk_ratelimit()) 205 pr_err("%s\n", message); 206 break; 207 case AUDIT_FAIL_PANIC: 208 /* test audit_pid since printk is always losey, why bother? */ 209 if (audit_pid) 210 panic("audit: %s\n", message); 211 break; 212 } 213 } 214 215 static inline int audit_rate_check(void) 216 { 217 static unsigned long last_check = 0; 218 static int messages = 0; 219 static DEFINE_SPINLOCK(lock); 220 unsigned long flags; 221 unsigned long now; 222 unsigned long elapsed; 223 int retval = 0; 224 225 if (!audit_rate_limit) return 1; 226 227 spin_lock_irqsave(&lock, flags); 228 if (++messages < audit_rate_limit) { 229 retval = 1; 230 } else { 231 now = jiffies; 232 elapsed = now - last_check; 233 if (elapsed > HZ) { 234 last_check = now; 235 messages = 0; 236 retval = 1; 237 } 238 } 239 spin_unlock_irqrestore(&lock, flags); 240 241 return retval; 242 } 243 244 /** 245 * audit_log_lost - conditionally log lost audit message event 246 * @message: the message stating reason for lost audit message 247 * 248 * Emit at least 1 message per second, even if audit_rate_check is 249 * throttling. 250 * Always increment the lost messages counter. 251 */ 252 void audit_log_lost(const char *message) 253 { 254 static unsigned long last_msg = 0; 255 static DEFINE_SPINLOCK(lock); 256 unsigned long flags; 257 unsigned long now; 258 int print; 259 260 atomic_inc(&audit_lost); 261 262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 263 264 if (!print) { 265 spin_lock_irqsave(&lock, flags); 266 now = jiffies; 267 if (now - last_msg > HZ) { 268 print = 1; 269 last_msg = now; 270 } 271 spin_unlock_irqrestore(&lock, flags); 272 } 273 274 if (print) { 275 if (printk_ratelimit()) 276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 277 atomic_read(&audit_lost), 278 audit_rate_limit, 279 audit_backlog_limit); 280 audit_panic(message); 281 } 282 } 283 284 static int audit_log_config_change(char *function_name, u32 new, u32 old, 285 int allow_changes) 286 { 287 struct audit_buffer *ab; 288 int rc = 0; 289 290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 291 if (unlikely(!ab)) 292 return rc; 293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 294 audit_log_session_info(ab); 295 rc = audit_log_task_context(ab); 296 if (rc) 297 allow_changes = 0; /* Something weird, deny request */ 298 audit_log_format(ab, " res=%d", allow_changes); 299 audit_log_end(ab); 300 return rc; 301 } 302 303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 304 { 305 int allow_changes, rc = 0; 306 u32 old = *to_change; 307 308 /* check if we are locked */ 309 if (audit_enabled == AUDIT_LOCKED) 310 allow_changes = 0; 311 else 312 allow_changes = 1; 313 314 if (audit_enabled != AUDIT_OFF) { 315 rc = audit_log_config_change(function_name, new, old, allow_changes); 316 if (rc) 317 allow_changes = 0; 318 } 319 320 /* If we are allowed, make the change */ 321 if (allow_changes == 1) 322 *to_change = new; 323 /* Not allowed, update reason */ 324 else if (rc == 0) 325 rc = -EPERM; 326 return rc; 327 } 328 329 static int audit_set_rate_limit(u32 limit) 330 { 331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 332 } 333 334 static int audit_set_backlog_limit(u32 limit) 335 { 336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 337 } 338 339 static int audit_set_backlog_wait_time(u32 timeout) 340 { 341 return audit_do_config_change("audit_backlog_wait_time", 342 &audit_backlog_wait_time_master, timeout); 343 } 344 345 static int audit_set_enabled(u32 state) 346 { 347 int rc; 348 if (state > AUDIT_LOCKED) 349 return -EINVAL; 350 351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 352 if (!rc) 353 audit_ever_enabled |= !!state; 354 355 return rc; 356 } 357 358 static int audit_set_failure(u32 state) 359 { 360 if (state != AUDIT_FAIL_SILENT 361 && state != AUDIT_FAIL_PRINTK 362 && state != AUDIT_FAIL_PANIC) 363 return -EINVAL; 364 365 return audit_do_config_change("audit_failure", &audit_failure, state); 366 } 367 368 /* 369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 370 * already have been sent via prink/syslog and so if these messages are dropped 371 * it is not a huge concern since we already passed the audit_log_lost() 372 * notification and stuff. This is just nice to get audit messages during 373 * boot before auditd is running or messages generated while auditd is stopped. 374 * This only holds messages is audit_default is set, aka booting with audit=1 375 * or building your kernel that way. 376 */ 377 static void audit_hold_skb(struct sk_buff *skb) 378 { 379 if (audit_default && 380 (!audit_backlog_limit || 381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 382 skb_queue_tail(&audit_skb_hold_queue, skb); 383 else 384 kfree_skb(skb); 385 } 386 387 /* 388 * For one reason or another this nlh isn't getting delivered to the userspace 389 * audit daemon, just send it to printk. 390 */ 391 static void audit_printk_skb(struct sk_buff *skb) 392 { 393 struct nlmsghdr *nlh = nlmsg_hdr(skb); 394 char *data = nlmsg_data(nlh); 395 396 if (nlh->nlmsg_type != AUDIT_EOE) { 397 if (printk_ratelimit()) 398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 399 else 400 audit_log_lost("printk limit exceeded"); 401 } 402 403 audit_hold_skb(skb); 404 } 405 406 static void kauditd_send_skb(struct sk_buff *skb) 407 { 408 int err; 409 int attempts = 0; 410 #define AUDITD_RETRIES 5 411 412 restart: 413 /* take a reference in case we can't send it and we want to hold it */ 414 skb_get(skb); 415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 416 if (err < 0) { 417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n", 418 audit_pid, err); 419 if (audit_pid) { 420 if (err == -ECONNREFUSED || err == -EPERM 421 || ++attempts >= AUDITD_RETRIES) { 422 char s[32]; 423 424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid); 425 audit_log_lost(s); 426 audit_pid = 0; 427 audit_sock = NULL; 428 } else { 429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n", 430 attempts, audit_pid); 431 set_current_state(TASK_INTERRUPTIBLE); 432 schedule(); 433 __set_current_state(TASK_RUNNING); 434 goto restart; 435 } 436 } 437 /* we might get lucky and get this in the next auditd */ 438 audit_hold_skb(skb); 439 } else 440 /* drop the extra reference if sent ok */ 441 consume_skb(skb); 442 } 443 444 /* 445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners 446 * 447 * This function doesn't consume an skb as might be expected since it has to 448 * copy it anyways. 449 */ 450 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask) 451 { 452 struct sk_buff *copy; 453 struct audit_net *aunet = net_generic(&init_net, audit_net_id); 454 struct sock *sock = aunet->nlsk; 455 456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 457 return; 458 459 /* 460 * The seemingly wasteful skb_copy() rather than bumping the refcount 461 * using skb_get() is necessary because non-standard mods are made to 462 * the skb by the original kaudit unicast socket send routine. The 463 * existing auditd daemon assumes this breakage. Fixing this would 464 * require co-ordinating a change in the established protocol between 465 * the kaudit kernel subsystem and the auditd userspace code. There is 466 * no reason for new multicast clients to continue with this 467 * non-compliance. 468 */ 469 copy = skb_copy(skb, gfp_mask); 470 if (!copy) 471 return; 472 473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask); 474 } 475 476 /* 477 * flush_hold_queue - empty the hold queue if auditd appears 478 * 479 * If auditd just started, drain the queue of messages already 480 * sent to syslog/printk. Remember loss here is ok. We already 481 * called audit_log_lost() if it didn't go out normally. so the 482 * race between the skb_dequeue and the next check for audit_pid 483 * doesn't matter. 484 * 485 * If you ever find kauditd to be too slow we can get a perf win 486 * by doing our own locking and keeping better track if there 487 * are messages in this queue. I don't see the need now, but 488 * in 5 years when I want to play with this again I'll see this 489 * note and still have no friggin idea what i'm thinking today. 490 */ 491 static void flush_hold_queue(void) 492 { 493 struct sk_buff *skb; 494 495 if (!audit_default || !audit_pid) 496 return; 497 498 skb = skb_dequeue(&audit_skb_hold_queue); 499 if (likely(!skb)) 500 return; 501 502 while (skb && audit_pid) { 503 kauditd_send_skb(skb); 504 skb = skb_dequeue(&audit_skb_hold_queue); 505 } 506 507 /* 508 * if auditd just disappeared but we 509 * dequeued an skb we need to drop ref 510 */ 511 consume_skb(skb); 512 } 513 514 static int kauditd_thread(void *dummy) 515 { 516 set_freezable(); 517 while (!kthread_should_stop()) { 518 struct sk_buff *skb; 519 520 flush_hold_queue(); 521 522 skb = skb_dequeue(&audit_skb_queue); 523 524 if (skb) { 525 if (!audit_backlog_limit || 526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)) 527 wake_up(&audit_backlog_wait); 528 if (audit_pid) 529 kauditd_send_skb(skb); 530 else 531 audit_printk_skb(skb); 532 continue; 533 } 534 535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue)); 536 } 537 return 0; 538 } 539 540 int audit_send_list(void *_dest) 541 { 542 struct audit_netlink_list *dest = _dest; 543 struct sk_buff *skb; 544 struct net *net = dest->net; 545 struct audit_net *aunet = net_generic(net, audit_net_id); 546 547 /* wait for parent to finish and send an ACK */ 548 mutex_lock(&audit_cmd_mutex); 549 mutex_unlock(&audit_cmd_mutex); 550 551 while ((skb = __skb_dequeue(&dest->q)) != NULL) 552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 553 554 put_net(net); 555 kfree(dest); 556 557 return 0; 558 } 559 560 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 561 int multi, const void *payload, int size) 562 { 563 struct sk_buff *skb; 564 struct nlmsghdr *nlh; 565 void *data; 566 int flags = multi ? NLM_F_MULTI : 0; 567 int t = done ? NLMSG_DONE : type; 568 569 skb = nlmsg_new(size, GFP_KERNEL); 570 if (!skb) 571 return NULL; 572 573 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 574 if (!nlh) 575 goto out_kfree_skb; 576 data = nlmsg_data(nlh); 577 memcpy(data, payload, size); 578 return skb; 579 580 out_kfree_skb: 581 kfree_skb(skb); 582 return NULL; 583 } 584 585 static int audit_send_reply_thread(void *arg) 586 { 587 struct audit_reply *reply = (struct audit_reply *)arg; 588 struct net *net = reply->net; 589 struct audit_net *aunet = net_generic(net, audit_net_id); 590 591 mutex_lock(&audit_cmd_mutex); 592 mutex_unlock(&audit_cmd_mutex); 593 594 /* Ignore failure. It'll only happen if the sender goes away, 595 because our timeout is set to infinite. */ 596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 597 put_net(net); 598 kfree(reply); 599 return 0; 600 } 601 /** 602 * audit_send_reply - send an audit reply message via netlink 603 * @request_skb: skb of request we are replying to (used to target the reply) 604 * @seq: sequence number 605 * @type: audit message type 606 * @done: done (last) flag 607 * @multi: multi-part message flag 608 * @payload: payload data 609 * @size: payload size 610 * 611 * Allocates an skb, builds the netlink message, and sends it to the port id. 612 * No failure notifications. 613 */ 614 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 615 int multi, const void *payload, int size) 616 { 617 u32 portid = NETLINK_CB(request_skb).portid; 618 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 619 struct sk_buff *skb; 620 struct task_struct *tsk; 621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 622 GFP_KERNEL); 623 624 if (!reply) 625 return; 626 627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 628 if (!skb) 629 goto out; 630 631 reply->net = get_net(net); 632 reply->portid = portid; 633 reply->skb = skb; 634 635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 636 if (!IS_ERR(tsk)) 637 return; 638 kfree_skb(skb); 639 out: 640 kfree(reply); 641 } 642 643 /* 644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 645 * control messages. 646 */ 647 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 648 { 649 int err = 0; 650 651 /* Only support initial user namespace for now. */ 652 /* 653 * We return ECONNREFUSED because it tricks userspace into thinking 654 * that audit was not configured into the kernel. Lots of users 655 * configure their PAM stack (because that's what the distro does) 656 * to reject login if unable to send messages to audit. If we return 657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 658 * configured in and will let login proceed. If we return EPERM 659 * userspace will reject all logins. This should be removed when we 660 * support non init namespaces!! 661 */ 662 if (current_user_ns() != &init_user_ns) 663 return -ECONNREFUSED; 664 665 switch (msg_type) { 666 case AUDIT_LIST: 667 case AUDIT_ADD: 668 case AUDIT_DEL: 669 return -EOPNOTSUPP; 670 case AUDIT_GET: 671 case AUDIT_SET: 672 case AUDIT_GET_FEATURE: 673 case AUDIT_SET_FEATURE: 674 case AUDIT_LIST_RULES: 675 case AUDIT_ADD_RULE: 676 case AUDIT_DEL_RULE: 677 case AUDIT_SIGNAL_INFO: 678 case AUDIT_TTY_GET: 679 case AUDIT_TTY_SET: 680 case AUDIT_TRIM: 681 case AUDIT_MAKE_EQUIV: 682 /* Only support auditd and auditctl in initial pid namespace 683 * for now. */ 684 if (task_active_pid_ns(current) != &init_pid_ns) 685 return -EPERM; 686 687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 688 err = -EPERM; 689 break; 690 case AUDIT_USER: 691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 693 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 694 err = -EPERM; 695 break; 696 default: /* bad msg */ 697 err = -EINVAL; 698 } 699 700 return err; 701 } 702 703 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 704 { 705 uid_t uid = from_kuid(&init_user_ns, current_uid()); 706 pid_t pid = task_tgid_nr(current); 707 708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 709 *ab = NULL; 710 return; 711 } 712 713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 714 if (unlikely(!*ab)) 715 return; 716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 717 audit_log_session_info(*ab); 718 audit_log_task_context(*ab); 719 } 720 721 int is_audit_feature_set(int i) 722 { 723 return af.features & AUDIT_FEATURE_TO_MASK(i); 724 } 725 726 727 static int audit_get_feature(struct sk_buff *skb) 728 { 729 u32 seq; 730 731 seq = nlmsg_hdr(skb)->nlmsg_seq; 732 733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 734 735 return 0; 736 } 737 738 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 739 u32 old_lock, u32 new_lock, int res) 740 { 741 struct audit_buffer *ab; 742 743 if (audit_enabled == AUDIT_OFF) 744 return; 745 746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 747 audit_log_task_info(ab, current); 748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 749 audit_feature_names[which], !!old_feature, !!new_feature, 750 !!old_lock, !!new_lock, res); 751 audit_log_end(ab); 752 } 753 754 static int audit_set_feature(struct sk_buff *skb) 755 { 756 struct audit_features *uaf; 757 int i; 758 759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 760 uaf = nlmsg_data(nlmsg_hdr(skb)); 761 762 /* if there is ever a version 2 we should handle that here */ 763 764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 765 u32 feature = AUDIT_FEATURE_TO_MASK(i); 766 u32 old_feature, new_feature, old_lock, new_lock; 767 768 /* if we are not changing this feature, move along */ 769 if (!(feature & uaf->mask)) 770 continue; 771 772 old_feature = af.features & feature; 773 new_feature = uaf->features & feature; 774 new_lock = (uaf->lock | af.lock) & feature; 775 old_lock = af.lock & feature; 776 777 /* are we changing a locked feature? */ 778 if (old_lock && (new_feature != old_feature)) { 779 audit_log_feature_change(i, old_feature, new_feature, 780 old_lock, new_lock, 0); 781 return -EPERM; 782 } 783 } 784 /* nothing invalid, do the changes */ 785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 786 u32 feature = AUDIT_FEATURE_TO_MASK(i); 787 u32 old_feature, new_feature, old_lock, new_lock; 788 789 /* if we are not changing this feature, move along */ 790 if (!(feature & uaf->mask)) 791 continue; 792 793 old_feature = af.features & feature; 794 new_feature = uaf->features & feature; 795 old_lock = af.lock & feature; 796 new_lock = (uaf->lock | af.lock) & feature; 797 798 if (new_feature != old_feature) 799 audit_log_feature_change(i, old_feature, new_feature, 800 old_lock, new_lock, 1); 801 802 if (new_feature) 803 af.features |= feature; 804 else 805 af.features &= ~feature; 806 af.lock |= new_lock; 807 } 808 809 return 0; 810 } 811 812 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 813 { 814 u32 seq; 815 void *data; 816 int err; 817 struct audit_buffer *ab; 818 u16 msg_type = nlh->nlmsg_type; 819 struct audit_sig_info *sig_data; 820 char *ctx = NULL; 821 u32 len; 822 823 err = audit_netlink_ok(skb, msg_type); 824 if (err) 825 return err; 826 827 /* As soon as there's any sign of userspace auditd, 828 * start kauditd to talk to it */ 829 if (!kauditd_task) { 830 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 831 if (IS_ERR(kauditd_task)) { 832 err = PTR_ERR(kauditd_task); 833 kauditd_task = NULL; 834 return err; 835 } 836 } 837 seq = nlh->nlmsg_seq; 838 data = nlmsg_data(nlh); 839 840 switch (msg_type) { 841 case AUDIT_GET: { 842 struct audit_status s; 843 memset(&s, 0, sizeof(s)); 844 s.enabled = audit_enabled; 845 s.failure = audit_failure; 846 s.pid = audit_pid; 847 s.rate_limit = audit_rate_limit; 848 s.backlog_limit = audit_backlog_limit; 849 s.lost = atomic_read(&audit_lost); 850 s.backlog = skb_queue_len(&audit_skb_queue); 851 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 852 s.backlog_wait_time = audit_backlog_wait_time_master; 853 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 854 break; 855 } 856 case AUDIT_SET: { 857 struct audit_status s; 858 memset(&s, 0, sizeof(s)); 859 /* guard against past and future API changes */ 860 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 861 if (s.mask & AUDIT_STATUS_ENABLED) { 862 err = audit_set_enabled(s.enabled); 863 if (err < 0) 864 return err; 865 } 866 if (s.mask & AUDIT_STATUS_FAILURE) { 867 err = audit_set_failure(s.failure); 868 if (err < 0) 869 return err; 870 } 871 if (s.mask & AUDIT_STATUS_PID) { 872 int new_pid = s.pid; 873 874 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 875 return -EACCES; 876 if (audit_enabled != AUDIT_OFF) 877 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 878 audit_pid = new_pid; 879 audit_nlk_portid = NETLINK_CB(skb).portid; 880 audit_sock = skb->sk; 881 } 882 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 883 err = audit_set_rate_limit(s.rate_limit); 884 if (err < 0) 885 return err; 886 } 887 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 888 err = audit_set_backlog_limit(s.backlog_limit); 889 if (err < 0) 890 return err; 891 } 892 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 893 if (sizeof(s) > (size_t)nlh->nlmsg_len) 894 return -EINVAL; 895 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 896 return -EINVAL; 897 err = audit_set_backlog_wait_time(s.backlog_wait_time); 898 if (err < 0) 899 return err; 900 } 901 break; 902 } 903 case AUDIT_GET_FEATURE: 904 err = audit_get_feature(skb); 905 if (err) 906 return err; 907 break; 908 case AUDIT_SET_FEATURE: 909 err = audit_set_feature(skb); 910 if (err) 911 return err; 912 break; 913 case AUDIT_USER: 914 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 915 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 916 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 917 return 0; 918 919 err = audit_filter_user(msg_type); 920 if (err == 1) { /* match or error */ 921 err = 0; 922 if (msg_type == AUDIT_USER_TTY) { 923 err = tty_audit_push(); 924 if (err) 925 break; 926 } 927 mutex_unlock(&audit_cmd_mutex); 928 audit_log_common_recv_msg(&ab, msg_type); 929 if (msg_type != AUDIT_USER_TTY) 930 audit_log_format(ab, " msg='%.*s'", 931 AUDIT_MESSAGE_TEXT_MAX, 932 (char *)data); 933 else { 934 int size; 935 936 audit_log_format(ab, " data="); 937 size = nlmsg_len(nlh); 938 if (size > 0 && 939 ((unsigned char *)data)[size - 1] == '\0') 940 size--; 941 audit_log_n_untrustedstring(ab, data, size); 942 } 943 audit_set_portid(ab, NETLINK_CB(skb).portid); 944 audit_log_end(ab); 945 mutex_lock(&audit_cmd_mutex); 946 } 947 break; 948 case AUDIT_ADD_RULE: 949 case AUDIT_DEL_RULE: 950 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 951 return -EINVAL; 952 if (audit_enabled == AUDIT_LOCKED) { 953 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 954 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 955 audit_log_end(ab); 956 return -EPERM; 957 } 958 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 959 seq, data, nlmsg_len(nlh)); 960 break; 961 case AUDIT_LIST_RULES: 962 err = audit_list_rules_send(skb, seq); 963 break; 964 case AUDIT_TRIM: 965 audit_trim_trees(); 966 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 967 audit_log_format(ab, " op=trim res=1"); 968 audit_log_end(ab); 969 break; 970 case AUDIT_MAKE_EQUIV: { 971 void *bufp = data; 972 u32 sizes[2]; 973 size_t msglen = nlmsg_len(nlh); 974 char *old, *new; 975 976 err = -EINVAL; 977 if (msglen < 2 * sizeof(u32)) 978 break; 979 memcpy(sizes, bufp, 2 * sizeof(u32)); 980 bufp += 2 * sizeof(u32); 981 msglen -= 2 * sizeof(u32); 982 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 983 if (IS_ERR(old)) { 984 err = PTR_ERR(old); 985 break; 986 } 987 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 988 if (IS_ERR(new)) { 989 err = PTR_ERR(new); 990 kfree(old); 991 break; 992 } 993 /* OK, here comes... */ 994 err = audit_tag_tree(old, new); 995 996 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 997 998 audit_log_format(ab, " op=make_equiv old="); 999 audit_log_untrustedstring(ab, old); 1000 audit_log_format(ab, " new="); 1001 audit_log_untrustedstring(ab, new); 1002 audit_log_format(ab, " res=%d", !err); 1003 audit_log_end(ab); 1004 kfree(old); 1005 kfree(new); 1006 break; 1007 } 1008 case AUDIT_SIGNAL_INFO: 1009 len = 0; 1010 if (audit_sig_sid) { 1011 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1012 if (err) 1013 return err; 1014 } 1015 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1016 if (!sig_data) { 1017 if (audit_sig_sid) 1018 security_release_secctx(ctx, len); 1019 return -ENOMEM; 1020 } 1021 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1022 sig_data->pid = audit_sig_pid; 1023 if (audit_sig_sid) { 1024 memcpy(sig_data->ctx, ctx, len); 1025 security_release_secctx(ctx, len); 1026 } 1027 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1028 sig_data, sizeof(*sig_data) + len); 1029 kfree(sig_data); 1030 break; 1031 case AUDIT_TTY_GET: { 1032 struct audit_tty_status s; 1033 unsigned int t; 1034 1035 t = READ_ONCE(current->signal->audit_tty); 1036 s.enabled = t & AUDIT_TTY_ENABLE; 1037 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1038 1039 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1040 break; 1041 } 1042 case AUDIT_TTY_SET: { 1043 struct audit_tty_status s, old; 1044 struct audit_buffer *ab; 1045 unsigned int t; 1046 1047 memset(&s, 0, sizeof(s)); 1048 /* guard against past and future API changes */ 1049 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1050 /* check if new data is valid */ 1051 if ((s.enabled != 0 && s.enabled != 1) || 1052 (s.log_passwd != 0 && s.log_passwd != 1)) 1053 err = -EINVAL; 1054 1055 if (err) 1056 t = READ_ONCE(current->signal->audit_tty); 1057 else { 1058 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1059 t = xchg(¤t->signal->audit_tty, t); 1060 } 1061 old.enabled = t & AUDIT_TTY_ENABLE; 1062 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1063 1064 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1065 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1066 " old-log_passwd=%d new-log_passwd=%d res=%d", 1067 old.enabled, s.enabled, old.log_passwd, 1068 s.log_passwd, !err); 1069 audit_log_end(ab); 1070 break; 1071 } 1072 default: 1073 err = -EINVAL; 1074 break; 1075 } 1076 1077 return err < 0 ? err : 0; 1078 } 1079 1080 /* 1081 * Get message from skb. Each message is processed by audit_receive_msg. 1082 * Malformed skbs with wrong length are discarded silently. 1083 */ 1084 static void audit_receive_skb(struct sk_buff *skb) 1085 { 1086 struct nlmsghdr *nlh; 1087 /* 1088 * len MUST be signed for nlmsg_next to be able to dec it below 0 1089 * if the nlmsg_len was not aligned 1090 */ 1091 int len; 1092 int err; 1093 1094 nlh = nlmsg_hdr(skb); 1095 len = skb->len; 1096 1097 while (nlmsg_ok(nlh, len)) { 1098 err = audit_receive_msg(skb, nlh); 1099 /* if err or if this message says it wants a response */ 1100 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1101 netlink_ack(skb, nlh, err); 1102 1103 nlh = nlmsg_next(nlh, &len); 1104 } 1105 } 1106 1107 /* Receive messages from netlink socket. */ 1108 static void audit_receive(struct sk_buff *skb) 1109 { 1110 mutex_lock(&audit_cmd_mutex); 1111 audit_receive_skb(skb); 1112 mutex_unlock(&audit_cmd_mutex); 1113 } 1114 1115 /* Run custom bind function on netlink socket group connect or bind requests. */ 1116 static int audit_bind(struct net *net, int group) 1117 { 1118 if (!capable(CAP_AUDIT_READ)) 1119 return -EPERM; 1120 1121 return 0; 1122 } 1123 1124 static int __net_init audit_net_init(struct net *net) 1125 { 1126 struct netlink_kernel_cfg cfg = { 1127 .input = audit_receive, 1128 .bind = audit_bind, 1129 .flags = NL_CFG_F_NONROOT_RECV, 1130 .groups = AUDIT_NLGRP_MAX, 1131 }; 1132 1133 struct audit_net *aunet = net_generic(net, audit_net_id); 1134 1135 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1136 if (aunet->nlsk == NULL) { 1137 audit_panic("cannot initialize netlink socket in namespace"); 1138 return -ENOMEM; 1139 } 1140 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1141 return 0; 1142 } 1143 1144 static void __net_exit audit_net_exit(struct net *net) 1145 { 1146 struct audit_net *aunet = net_generic(net, audit_net_id); 1147 struct sock *sock = aunet->nlsk; 1148 if (sock == audit_sock) { 1149 audit_pid = 0; 1150 audit_sock = NULL; 1151 } 1152 1153 RCU_INIT_POINTER(aunet->nlsk, NULL); 1154 synchronize_net(); 1155 netlink_kernel_release(sock); 1156 } 1157 1158 static struct pernet_operations audit_net_ops __net_initdata = { 1159 .init = audit_net_init, 1160 .exit = audit_net_exit, 1161 .id = &audit_net_id, 1162 .size = sizeof(struct audit_net), 1163 }; 1164 1165 /* Initialize audit support at boot time. */ 1166 static int __init audit_init(void) 1167 { 1168 int i; 1169 1170 if (audit_initialized == AUDIT_DISABLED) 1171 return 0; 1172 1173 pr_info("initializing netlink subsys (%s)\n", 1174 audit_default ? "enabled" : "disabled"); 1175 register_pernet_subsys(&audit_net_ops); 1176 1177 skb_queue_head_init(&audit_skb_queue); 1178 skb_queue_head_init(&audit_skb_hold_queue); 1179 audit_initialized = AUDIT_INITIALIZED; 1180 audit_enabled = audit_default; 1181 audit_ever_enabled |= !!audit_default; 1182 1183 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1184 1185 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1186 INIT_LIST_HEAD(&audit_inode_hash[i]); 1187 1188 return 0; 1189 } 1190 __initcall(audit_init); 1191 1192 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1193 static int __init audit_enable(char *str) 1194 { 1195 audit_default = !!simple_strtol(str, NULL, 0); 1196 if (!audit_default) 1197 audit_initialized = AUDIT_DISABLED; 1198 1199 pr_info("%s\n", audit_default ? 1200 "enabled (after initialization)" : "disabled (until reboot)"); 1201 1202 return 1; 1203 } 1204 __setup("audit=", audit_enable); 1205 1206 /* Process kernel command-line parameter at boot time. 1207 * audit_backlog_limit=<n> */ 1208 static int __init audit_backlog_limit_set(char *str) 1209 { 1210 u32 audit_backlog_limit_arg; 1211 1212 pr_info("audit_backlog_limit: "); 1213 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1214 pr_cont("using default of %u, unable to parse %s\n", 1215 audit_backlog_limit, str); 1216 return 1; 1217 } 1218 1219 audit_backlog_limit = audit_backlog_limit_arg; 1220 pr_cont("%d\n", audit_backlog_limit); 1221 1222 return 1; 1223 } 1224 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1225 1226 static void audit_buffer_free(struct audit_buffer *ab) 1227 { 1228 unsigned long flags; 1229 1230 if (!ab) 1231 return; 1232 1233 kfree_skb(ab->skb); 1234 spin_lock_irqsave(&audit_freelist_lock, flags); 1235 if (audit_freelist_count > AUDIT_MAXFREE) 1236 kfree(ab); 1237 else { 1238 audit_freelist_count++; 1239 list_add(&ab->list, &audit_freelist); 1240 } 1241 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1242 } 1243 1244 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1245 gfp_t gfp_mask, int type) 1246 { 1247 unsigned long flags; 1248 struct audit_buffer *ab = NULL; 1249 struct nlmsghdr *nlh; 1250 1251 spin_lock_irqsave(&audit_freelist_lock, flags); 1252 if (!list_empty(&audit_freelist)) { 1253 ab = list_entry(audit_freelist.next, 1254 struct audit_buffer, list); 1255 list_del(&ab->list); 1256 --audit_freelist_count; 1257 } 1258 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1259 1260 if (!ab) { 1261 ab = kmalloc(sizeof(*ab), gfp_mask); 1262 if (!ab) 1263 goto err; 1264 } 1265 1266 ab->ctx = ctx; 1267 ab->gfp_mask = gfp_mask; 1268 1269 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1270 if (!ab->skb) 1271 goto err; 1272 1273 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1274 if (!nlh) 1275 goto out_kfree_skb; 1276 1277 return ab; 1278 1279 out_kfree_skb: 1280 kfree_skb(ab->skb); 1281 ab->skb = NULL; 1282 err: 1283 audit_buffer_free(ab); 1284 return NULL; 1285 } 1286 1287 /** 1288 * audit_serial - compute a serial number for the audit record 1289 * 1290 * Compute a serial number for the audit record. Audit records are 1291 * written to user-space as soon as they are generated, so a complete 1292 * audit record may be written in several pieces. The timestamp of the 1293 * record and this serial number are used by the user-space tools to 1294 * determine which pieces belong to the same audit record. The 1295 * (timestamp,serial) tuple is unique for each syscall and is live from 1296 * syscall entry to syscall exit. 1297 * 1298 * NOTE: Another possibility is to store the formatted records off the 1299 * audit context (for those records that have a context), and emit them 1300 * all at syscall exit. However, this could delay the reporting of 1301 * significant errors until syscall exit (or never, if the system 1302 * halts). 1303 */ 1304 unsigned int audit_serial(void) 1305 { 1306 static atomic_t serial = ATOMIC_INIT(0); 1307 1308 return atomic_add_return(1, &serial); 1309 } 1310 1311 static inline void audit_get_stamp(struct audit_context *ctx, 1312 struct timespec *t, unsigned int *serial) 1313 { 1314 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1315 *t = CURRENT_TIME; 1316 *serial = audit_serial(); 1317 } 1318 } 1319 1320 /* 1321 * Wait for auditd to drain the queue a little 1322 */ 1323 static long wait_for_auditd(long sleep_time) 1324 { 1325 DECLARE_WAITQUEUE(wait, current); 1326 set_current_state(TASK_UNINTERRUPTIBLE); 1327 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1328 1329 if (audit_backlog_limit && 1330 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1331 sleep_time = schedule_timeout(sleep_time); 1332 1333 __set_current_state(TASK_RUNNING); 1334 remove_wait_queue(&audit_backlog_wait, &wait); 1335 1336 return sleep_time; 1337 } 1338 1339 /** 1340 * audit_log_start - obtain an audit buffer 1341 * @ctx: audit_context (may be NULL) 1342 * @gfp_mask: type of allocation 1343 * @type: audit message type 1344 * 1345 * Returns audit_buffer pointer on success or NULL on error. 1346 * 1347 * Obtain an audit buffer. This routine does locking to obtain the 1348 * audit buffer, but then no locking is required for calls to 1349 * audit_log_*format. If the task (ctx) is a task that is currently in a 1350 * syscall, then the syscall is marked as auditable and an audit record 1351 * will be written at syscall exit. If there is no associated task, then 1352 * task context (ctx) should be NULL. 1353 */ 1354 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1355 int type) 1356 { 1357 struct audit_buffer *ab = NULL; 1358 struct timespec t; 1359 unsigned int uninitialized_var(serial); 1360 int reserve = 5; /* Allow atomic callers to go up to five 1361 entries over the normal backlog limit */ 1362 unsigned long timeout_start = jiffies; 1363 1364 if (audit_initialized != AUDIT_INITIALIZED) 1365 return NULL; 1366 1367 if (unlikely(audit_filter_type(type))) 1368 return NULL; 1369 1370 if (gfp_mask & __GFP_DIRECT_RECLAIM) { 1371 if (audit_pid && audit_pid == current->tgid) 1372 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 1373 else 1374 reserve = 0; 1375 } 1376 1377 while (audit_backlog_limit 1378 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1379 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) { 1380 long sleep_time; 1381 1382 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1383 if (sleep_time > 0) { 1384 sleep_time = wait_for_auditd(sleep_time); 1385 if (sleep_time > 0) 1386 continue; 1387 } 1388 } 1389 if (audit_rate_check() && printk_ratelimit()) 1390 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1391 skb_queue_len(&audit_skb_queue), 1392 audit_backlog_limit); 1393 audit_log_lost("backlog limit exceeded"); 1394 audit_backlog_wait_time = 0; 1395 wake_up(&audit_backlog_wait); 1396 return NULL; 1397 } 1398 1399 if (!reserve && !audit_backlog_wait_time) 1400 audit_backlog_wait_time = audit_backlog_wait_time_master; 1401 1402 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1403 if (!ab) { 1404 audit_log_lost("out of memory in audit_log_start"); 1405 return NULL; 1406 } 1407 1408 audit_get_stamp(ab->ctx, &t, &serial); 1409 1410 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1411 t.tv_sec, t.tv_nsec/1000000, serial); 1412 return ab; 1413 } 1414 1415 /** 1416 * audit_expand - expand skb in the audit buffer 1417 * @ab: audit_buffer 1418 * @extra: space to add at tail of the skb 1419 * 1420 * Returns 0 (no space) on failed expansion, or available space if 1421 * successful. 1422 */ 1423 static inline int audit_expand(struct audit_buffer *ab, int extra) 1424 { 1425 struct sk_buff *skb = ab->skb; 1426 int oldtail = skb_tailroom(skb); 1427 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1428 int newtail = skb_tailroom(skb); 1429 1430 if (ret < 0) { 1431 audit_log_lost("out of memory in audit_expand"); 1432 return 0; 1433 } 1434 1435 skb->truesize += newtail - oldtail; 1436 return newtail; 1437 } 1438 1439 /* 1440 * Format an audit message into the audit buffer. If there isn't enough 1441 * room in the audit buffer, more room will be allocated and vsnprint 1442 * will be called a second time. Currently, we assume that a printk 1443 * can't format message larger than 1024 bytes, so we don't either. 1444 */ 1445 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1446 va_list args) 1447 { 1448 int len, avail; 1449 struct sk_buff *skb; 1450 va_list args2; 1451 1452 if (!ab) 1453 return; 1454 1455 BUG_ON(!ab->skb); 1456 skb = ab->skb; 1457 avail = skb_tailroom(skb); 1458 if (avail == 0) { 1459 avail = audit_expand(ab, AUDIT_BUFSIZ); 1460 if (!avail) 1461 goto out; 1462 } 1463 va_copy(args2, args); 1464 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1465 if (len >= avail) { 1466 /* The printk buffer is 1024 bytes long, so if we get 1467 * here and AUDIT_BUFSIZ is at least 1024, then we can 1468 * log everything that printk could have logged. */ 1469 avail = audit_expand(ab, 1470 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1471 if (!avail) 1472 goto out_va_end; 1473 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1474 } 1475 if (len > 0) 1476 skb_put(skb, len); 1477 out_va_end: 1478 va_end(args2); 1479 out: 1480 return; 1481 } 1482 1483 /** 1484 * audit_log_format - format a message into the audit buffer. 1485 * @ab: audit_buffer 1486 * @fmt: format string 1487 * @...: optional parameters matching @fmt string 1488 * 1489 * All the work is done in audit_log_vformat. 1490 */ 1491 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1492 { 1493 va_list args; 1494 1495 if (!ab) 1496 return; 1497 va_start(args, fmt); 1498 audit_log_vformat(ab, fmt, args); 1499 va_end(args); 1500 } 1501 1502 /** 1503 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1504 * @ab: the audit_buffer 1505 * @buf: buffer to convert to hex 1506 * @len: length of @buf to be converted 1507 * 1508 * No return value; failure to expand is silently ignored. 1509 * 1510 * This function will take the passed buf and convert it into a string of 1511 * ascii hex digits. The new string is placed onto the skb. 1512 */ 1513 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1514 size_t len) 1515 { 1516 int i, avail, new_len; 1517 unsigned char *ptr; 1518 struct sk_buff *skb; 1519 1520 if (!ab) 1521 return; 1522 1523 BUG_ON(!ab->skb); 1524 skb = ab->skb; 1525 avail = skb_tailroom(skb); 1526 new_len = len<<1; 1527 if (new_len >= avail) { 1528 /* Round the buffer request up to the next multiple */ 1529 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1530 avail = audit_expand(ab, new_len); 1531 if (!avail) 1532 return; 1533 } 1534 1535 ptr = skb_tail_pointer(skb); 1536 for (i = 0; i < len; i++) 1537 ptr = hex_byte_pack_upper(ptr, buf[i]); 1538 *ptr = 0; 1539 skb_put(skb, len << 1); /* new string is twice the old string */ 1540 } 1541 1542 /* 1543 * Format a string of no more than slen characters into the audit buffer, 1544 * enclosed in quote marks. 1545 */ 1546 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1547 size_t slen) 1548 { 1549 int avail, new_len; 1550 unsigned char *ptr; 1551 struct sk_buff *skb; 1552 1553 if (!ab) 1554 return; 1555 1556 BUG_ON(!ab->skb); 1557 skb = ab->skb; 1558 avail = skb_tailroom(skb); 1559 new_len = slen + 3; /* enclosing quotes + null terminator */ 1560 if (new_len > avail) { 1561 avail = audit_expand(ab, new_len); 1562 if (!avail) 1563 return; 1564 } 1565 ptr = skb_tail_pointer(skb); 1566 *ptr++ = '"'; 1567 memcpy(ptr, string, slen); 1568 ptr += slen; 1569 *ptr++ = '"'; 1570 *ptr = 0; 1571 skb_put(skb, slen + 2); /* don't include null terminator */ 1572 } 1573 1574 /** 1575 * audit_string_contains_control - does a string need to be logged in hex 1576 * @string: string to be checked 1577 * @len: max length of the string to check 1578 */ 1579 bool audit_string_contains_control(const char *string, size_t len) 1580 { 1581 const unsigned char *p; 1582 for (p = string; p < (const unsigned char *)string + len; p++) { 1583 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1584 return true; 1585 } 1586 return false; 1587 } 1588 1589 /** 1590 * audit_log_n_untrustedstring - log a string that may contain random characters 1591 * @ab: audit_buffer 1592 * @len: length of string (not including trailing null) 1593 * @string: string to be logged 1594 * 1595 * This code will escape a string that is passed to it if the string 1596 * contains a control character, unprintable character, double quote mark, 1597 * or a space. Unescaped strings will start and end with a double quote mark. 1598 * Strings that are escaped are printed in hex (2 digits per char). 1599 * 1600 * The caller specifies the number of characters in the string to log, which may 1601 * or may not be the entire string. 1602 */ 1603 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1604 size_t len) 1605 { 1606 if (audit_string_contains_control(string, len)) 1607 audit_log_n_hex(ab, string, len); 1608 else 1609 audit_log_n_string(ab, string, len); 1610 } 1611 1612 /** 1613 * audit_log_untrustedstring - log a string that may contain random characters 1614 * @ab: audit_buffer 1615 * @string: string to be logged 1616 * 1617 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1618 * determine string length. 1619 */ 1620 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1621 { 1622 audit_log_n_untrustedstring(ab, string, strlen(string)); 1623 } 1624 1625 /* This is a helper-function to print the escaped d_path */ 1626 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1627 const struct path *path) 1628 { 1629 char *p, *pathname; 1630 1631 if (prefix) 1632 audit_log_format(ab, "%s", prefix); 1633 1634 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1635 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1636 if (!pathname) { 1637 audit_log_string(ab, "<no_memory>"); 1638 return; 1639 } 1640 p = d_path(path, pathname, PATH_MAX+11); 1641 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1642 /* FIXME: can we save some information here? */ 1643 audit_log_string(ab, "<too_long>"); 1644 } else 1645 audit_log_untrustedstring(ab, p); 1646 kfree(pathname); 1647 } 1648 1649 void audit_log_session_info(struct audit_buffer *ab) 1650 { 1651 unsigned int sessionid = audit_get_sessionid(current); 1652 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1653 1654 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1655 } 1656 1657 void audit_log_key(struct audit_buffer *ab, char *key) 1658 { 1659 audit_log_format(ab, " key="); 1660 if (key) 1661 audit_log_untrustedstring(ab, key); 1662 else 1663 audit_log_format(ab, "(null)"); 1664 } 1665 1666 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1667 { 1668 int i; 1669 1670 audit_log_format(ab, " %s=", prefix); 1671 CAP_FOR_EACH_U32(i) { 1672 audit_log_format(ab, "%08x", 1673 cap->cap[CAP_LAST_U32 - i]); 1674 } 1675 } 1676 1677 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1678 { 1679 kernel_cap_t *perm = &name->fcap.permitted; 1680 kernel_cap_t *inh = &name->fcap.inheritable; 1681 int log = 0; 1682 1683 if (!cap_isclear(*perm)) { 1684 audit_log_cap(ab, "cap_fp", perm); 1685 log = 1; 1686 } 1687 if (!cap_isclear(*inh)) { 1688 audit_log_cap(ab, "cap_fi", inh); 1689 log = 1; 1690 } 1691 1692 if (log) 1693 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1694 name->fcap.fE, name->fcap_ver); 1695 } 1696 1697 static inline int audit_copy_fcaps(struct audit_names *name, 1698 const struct dentry *dentry) 1699 { 1700 struct cpu_vfs_cap_data caps; 1701 int rc; 1702 1703 if (!dentry) 1704 return 0; 1705 1706 rc = get_vfs_caps_from_disk(dentry, &caps); 1707 if (rc) 1708 return rc; 1709 1710 name->fcap.permitted = caps.permitted; 1711 name->fcap.inheritable = caps.inheritable; 1712 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1713 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1714 VFS_CAP_REVISION_SHIFT; 1715 1716 return 0; 1717 } 1718 1719 /* Copy inode data into an audit_names. */ 1720 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1721 struct inode *inode) 1722 { 1723 name->ino = inode->i_ino; 1724 name->dev = inode->i_sb->s_dev; 1725 name->mode = inode->i_mode; 1726 name->uid = inode->i_uid; 1727 name->gid = inode->i_gid; 1728 name->rdev = inode->i_rdev; 1729 security_inode_getsecid(inode, &name->osid); 1730 audit_copy_fcaps(name, dentry); 1731 } 1732 1733 /** 1734 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1735 * @context: audit_context for the task 1736 * @n: audit_names structure with reportable details 1737 * @path: optional path to report instead of audit_names->name 1738 * @record_num: record number to report when handling a list of names 1739 * @call_panic: optional pointer to int that will be updated if secid fails 1740 */ 1741 void audit_log_name(struct audit_context *context, struct audit_names *n, 1742 struct path *path, int record_num, int *call_panic) 1743 { 1744 struct audit_buffer *ab; 1745 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1746 if (!ab) 1747 return; 1748 1749 audit_log_format(ab, "item=%d", record_num); 1750 1751 if (path) 1752 audit_log_d_path(ab, " name=", path); 1753 else if (n->name) { 1754 switch (n->name_len) { 1755 case AUDIT_NAME_FULL: 1756 /* log the full path */ 1757 audit_log_format(ab, " name="); 1758 audit_log_untrustedstring(ab, n->name->name); 1759 break; 1760 case 0: 1761 /* name was specified as a relative path and the 1762 * directory component is the cwd */ 1763 audit_log_d_path(ab, " name=", &context->pwd); 1764 break; 1765 default: 1766 /* log the name's directory component */ 1767 audit_log_format(ab, " name="); 1768 audit_log_n_untrustedstring(ab, n->name->name, 1769 n->name_len); 1770 } 1771 } else 1772 audit_log_format(ab, " name=(null)"); 1773 1774 if (n->ino != AUDIT_INO_UNSET) 1775 audit_log_format(ab, " inode=%lu" 1776 " dev=%02x:%02x mode=%#ho" 1777 " ouid=%u ogid=%u rdev=%02x:%02x", 1778 n->ino, 1779 MAJOR(n->dev), 1780 MINOR(n->dev), 1781 n->mode, 1782 from_kuid(&init_user_ns, n->uid), 1783 from_kgid(&init_user_ns, n->gid), 1784 MAJOR(n->rdev), 1785 MINOR(n->rdev)); 1786 if (n->osid != 0) { 1787 char *ctx = NULL; 1788 u32 len; 1789 if (security_secid_to_secctx( 1790 n->osid, &ctx, &len)) { 1791 audit_log_format(ab, " osid=%u", n->osid); 1792 if (call_panic) 1793 *call_panic = 2; 1794 } else { 1795 audit_log_format(ab, " obj=%s", ctx); 1796 security_release_secctx(ctx, len); 1797 } 1798 } 1799 1800 /* log the audit_names record type */ 1801 audit_log_format(ab, " nametype="); 1802 switch(n->type) { 1803 case AUDIT_TYPE_NORMAL: 1804 audit_log_format(ab, "NORMAL"); 1805 break; 1806 case AUDIT_TYPE_PARENT: 1807 audit_log_format(ab, "PARENT"); 1808 break; 1809 case AUDIT_TYPE_CHILD_DELETE: 1810 audit_log_format(ab, "DELETE"); 1811 break; 1812 case AUDIT_TYPE_CHILD_CREATE: 1813 audit_log_format(ab, "CREATE"); 1814 break; 1815 default: 1816 audit_log_format(ab, "UNKNOWN"); 1817 break; 1818 } 1819 1820 audit_log_fcaps(ab, n); 1821 audit_log_end(ab); 1822 } 1823 1824 int audit_log_task_context(struct audit_buffer *ab) 1825 { 1826 char *ctx = NULL; 1827 unsigned len; 1828 int error; 1829 u32 sid; 1830 1831 security_task_getsecid(current, &sid); 1832 if (!sid) 1833 return 0; 1834 1835 error = security_secid_to_secctx(sid, &ctx, &len); 1836 if (error) { 1837 if (error != -EINVAL) 1838 goto error_path; 1839 return 0; 1840 } 1841 1842 audit_log_format(ab, " subj=%s", ctx); 1843 security_release_secctx(ctx, len); 1844 return 0; 1845 1846 error_path: 1847 audit_panic("error in audit_log_task_context"); 1848 return error; 1849 } 1850 EXPORT_SYMBOL(audit_log_task_context); 1851 1852 void audit_log_d_path_exe(struct audit_buffer *ab, 1853 struct mm_struct *mm) 1854 { 1855 struct file *exe_file; 1856 1857 if (!mm) 1858 goto out_null; 1859 1860 exe_file = get_mm_exe_file(mm); 1861 if (!exe_file) 1862 goto out_null; 1863 1864 audit_log_d_path(ab, " exe=", &exe_file->f_path); 1865 fput(exe_file); 1866 return; 1867 out_null: 1868 audit_log_format(ab, " exe=(null)"); 1869 } 1870 1871 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1872 { 1873 const struct cred *cred; 1874 char comm[sizeof(tsk->comm)]; 1875 char *tty; 1876 1877 if (!ab) 1878 return; 1879 1880 /* tsk == current */ 1881 cred = current_cred(); 1882 1883 spin_lock_irq(&tsk->sighand->siglock); 1884 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1885 tty = tsk->signal->tty->name; 1886 else 1887 tty = "(none)"; 1888 spin_unlock_irq(&tsk->sighand->siglock); 1889 1890 audit_log_format(ab, 1891 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1892 " euid=%u suid=%u fsuid=%u" 1893 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1894 task_ppid_nr(tsk), 1895 task_pid_nr(tsk), 1896 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1897 from_kuid(&init_user_ns, cred->uid), 1898 from_kgid(&init_user_ns, cred->gid), 1899 from_kuid(&init_user_ns, cred->euid), 1900 from_kuid(&init_user_ns, cred->suid), 1901 from_kuid(&init_user_ns, cred->fsuid), 1902 from_kgid(&init_user_ns, cred->egid), 1903 from_kgid(&init_user_ns, cred->sgid), 1904 from_kgid(&init_user_ns, cred->fsgid), 1905 tty, audit_get_sessionid(tsk)); 1906 1907 audit_log_format(ab, " comm="); 1908 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 1909 1910 audit_log_d_path_exe(ab, tsk->mm); 1911 audit_log_task_context(ab); 1912 } 1913 EXPORT_SYMBOL(audit_log_task_info); 1914 1915 /** 1916 * audit_log_link_denied - report a link restriction denial 1917 * @operation: specific link operation 1918 * @link: the path that triggered the restriction 1919 */ 1920 void audit_log_link_denied(const char *operation, struct path *link) 1921 { 1922 struct audit_buffer *ab; 1923 struct audit_names *name; 1924 1925 name = kzalloc(sizeof(*name), GFP_NOFS); 1926 if (!name) 1927 return; 1928 1929 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1930 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1931 AUDIT_ANOM_LINK); 1932 if (!ab) 1933 goto out; 1934 audit_log_format(ab, "op=%s", operation); 1935 audit_log_task_info(ab, current); 1936 audit_log_format(ab, " res=0"); 1937 audit_log_end(ab); 1938 1939 /* Generate AUDIT_PATH record with object. */ 1940 name->type = AUDIT_TYPE_NORMAL; 1941 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 1942 audit_log_name(current->audit_context, name, link, 0, NULL); 1943 out: 1944 kfree(name); 1945 } 1946 1947 /** 1948 * audit_log_end - end one audit record 1949 * @ab: the audit_buffer 1950 * 1951 * netlink_unicast() cannot be called inside an irq context because it blocks 1952 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed 1953 * on a queue and a tasklet is scheduled to remove them from the queue outside 1954 * the irq context. May be called in any context. 1955 */ 1956 void audit_log_end(struct audit_buffer *ab) 1957 { 1958 if (!ab) 1959 return; 1960 if (!audit_rate_check()) { 1961 audit_log_lost("rate limit exceeded"); 1962 } else { 1963 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1964 1965 nlh->nlmsg_len = ab->skb->len; 1966 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask); 1967 1968 /* 1969 * The original kaudit unicast socket sends up messages with 1970 * nlmsg_len set to the payload length rather than the entire 1971 * message length. This breaks the standard set by netlink. 1972 * The existing auditd daemon assumes this breakage. Fixing 1973 * this would require co-ordinating a change in the established 1974 * protocol between the kaudit kernel subsystem and the auditd 1975 * userspace code. 1976 */ 1977 nlh->nlmsg_len -= NLMSG_HDRLEN; 1978 1979 if (audit_pid) { 1980 skb_queue_tail(&audit_skb_queue, ab->skb); 1981 wake_up_interruptible(&kauditd_wait); 1982 } else { 1983 audit_printk_skb(ab->skb); 1984 } 1985 ab->skb = NULL; 1986 } 1987 audit_buffer_free(ab); 1988 } 1989 1990 /** 1991 * audit_log - Log an audit record 1992 * @ctx: audit context 1993 * @gfp_mask: type of allocation 1994 * @type: audit message type 1995 * @fmt: format string to use 1996 * @...: variable parameters matching the format string 1997 * 1998 * This is a convenience function that calls audit_log_start, 1999 * audit_log_vformat, and audit_log_end. It may be called 2000 * in any context. 2001 */ 2002 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2003 const char *fmt, ...) 2004 { 2005 struct audit_buffer *ab; 2006 va_list args; 2007 2008 ab = audit_log_start(ctx, gfp_mask, type); 2009 if (ab) { 2010 va_start(args, fmt); 2011 audit_log_vformat(ab, fmt, args); 2012 va_end(args); 2013 audit_log_end(ab); 2014 } 2015 } 2016 2017 #ifdef CONFIG_SECURITY 2018 /** 2019 * audit_log_secctx - Converts and logs SELinux context 2020 * @ab: audit_buffer 2021 * @secid: security number 2022 * 2023 * This is a helper function that calls security_secid_to_secctx to convert 2024 * secid to secctx and then adds the (converted) SELinux context to the audit 2025 * log by calling audit_log_format, thus also preventing leak of internal secid 2026 * to userspace. If secid cannot be converted audit_panic is called. 2027 */ 2028 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2029 { 2030 u32 len; 2031 char *secctx; 2032 2033 if (security_secid_to_secctx(secid, &secctx, &len)) { 2034 audit_panic("Cannot convert secid to context"); 2035 } else { 2036 audit_log_format(ab, " obj=%s", secctx); 2037 security_release_secctx(secctx, len); 2038 } 2039 } 2040 EXPORT_SYMBOL(audit_log_secctx); 2041 #endif 2042 2043 EXPORT_SYMBOL(audit_log_start); 2044 EXPORT_SYMBOL(audit_log_end); 2045 EXPORT_SYMBOL(audit_log_format); 2046 EXPORT_SYMBOL(audit_log); 2047