1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): 7 * This code underwent a massive rewrite in order to solve some problems 8 * with the original code. In particular the original code failed to 9 * wake up processes that were waiting for semval to go to 0 if the 10 * value went to 0 and was then incremented rapidly enough. In solving 11 * this problem I have also modified the implementation so that it 12 * processes pending operations in a FIFO manner, thus give a guarantee 13 * that processes waiting for a lock on the semaphore won't starve 14 * unless another locking process fails to unlock. 15 * In addition the following two changes in behavior have been introduced: 16 * - The original implementation of semop returned the value 17 * last semaphore element examined on success. This does not 18 * match the manual page specifications, and effectively 19 * allows the user to read the semaphore even if they do not 20 * have read permissions. The implementation now returns 0 21 * on success as stated in the manual page. 22 * - There is some confusion over whether the set of undo adjustments 23 * to be performed at exit should be done in an atomic manner. 24 * That is, if we are attempting to decrement the semval should we queue 25 * up and wait until we can do so legally? 26 * The original implementation attempted to do this. 27 * The current implementation does not do so. This is because I don't 28 * think it is the right thing (TM) to do, and because I couldn't 29 * see a clean way to get the old behavior with the new design. 30 * The POSIX standard and SVID should be consulted to determine 31 * what behavior is mandated. 32 * 33 * Further notes on refinement (Christoph Rohland, December 1998): 34 * - The POSIX standard says, that the undo adjustments simply should 35 * redo. So the current implementation is o.K. 36 * - The previous code had two flaws: 37 * 1) It actively gave the semaphore to the next waiting process 38 * sleeping on the semaphore. Since this process did not have the 39 * cpu this led to many unnecessary context switches and bad 40 * performance. Now we only check which process should be able to 41 * get the semaphore and if this process wants to reduce some 42 * semaphore value we simply wake it up without doing the 43 * operation. So it has to try to get it later. Thus e.g. the 44 * running process may reacquire the semaphore during the current 45 * time slice. If it only waits for zero or increases the semaphore, 46 * we do the operation in advance and wake it up. 47 * 2) It did not wake up all zero waiting processes. We try to do 48 * better but only get the semops right which only wait for zero or 49 * increase. If there are decrement operations in the operations 50 * array we do the same as before. 51 * 52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform 53 * check/retry algorithm for waking up blocked processes as the new scheduler 54 * is better at handling thread switch than the old one. 55 * 56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 57 * 58 * SMP-threaded, sysctl's added 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 60 * Enforced range limit on SEM_UNDO 61 * (c) 2001 Red Hat Inc <alan@redhat.com> 62 * Lockless wakeup 63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 64 * 65 * support for audit of ipc object properties and permission changes 66 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 67 * 68 * namespaces support 69 * OpenVZ, SWsoft Inc. 70 * Pavel Emelianov <xemul@openvz.org> 71 */ 72 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/init.h> 76 #include <linux/proc_fs.h> 77 #include <linux/time.h> 78 #include <linux/smp_lock.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/audit.h> 82 #include <linux/capability.h> 83 #include <linux/seq_file.h> 84 #include <linux/mutex.h> 85 #include <linux/nsproxy.h> 86 87 #include <asm/uaccess.h> 88 #include "util.h" 89 90 #define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS])) 91 92 #define sem_lock(ns, id) ((struct sem_array*)ipc_lock(&sem_ids(ns), id)) 93 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 94 #define sem_rmid(ns, id) ((struct sem_array*)ipc_rmid(&sem_ids(ns), id)) 95 #define sem_checkid(ns, sma, semid) \ 96 ipc_checkid(&sem_ids(ns),&sma->sem_perm,semid) 97 #define sem_buildid(ns, id, seq) \ 98 ipc_buildid(&sem_ids(ns), id, seq) 99 100 static struct ipc_ids init_sem_ids; 101 102 static int newary(struct ipc_namespace *, key_t, int, int); 103 static void freeary(struct ipc_namespace *ns, struct sem_array *sma, int id); 104 #ifdef CONFIG_PROC_FS 105 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 106 #endif 107 108 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 109 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 110 111 /* 112 * linked list protection: 113 * sem_undo.id_next, 114 * sem_array.sem_pending{,last}, 115 * sem_array.sem_undo: sem_lock() for read/write 116 * sem_undo.proc_next: only "current" is allowed to read/write that field. 117 * 118 */ 119 120 #define sc_semmsl sem_ctls[0] 121 #define sc_semmns sem_ctls[1] 122 #define sc_semopm sem_ctls[2] 123 #define sc_semmni sem_ctls[3] 124 125 static void __ipc_init __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids) 126 { 127 ns->ids[IPC_SEM_IDS] = ids; 128 ns->sc_semmsl = SEMMSL; 129 ns->sc_semmns = SEMMNS; 130 ns->sc_semopm = SEMOPM; 131 ns->sc_semmni = SEMMNI; 132 ns->used_sems = 0; 133 ipc_init_ids(ids, ns->sc_semmni); 134 } 135 136 #ifdef CONFIG_IPC_NS 137 int sem_init_ns(struct ipc_namespace *ns) 138 { 139 struct ipc_ids *ids; 140 141 ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL); 142 if (ids == NULL) 143 return -ENOMEM; 144 145 __sem_init_ns(ns, ids); 146 return 0; 147 } 148 149 void sem_exit_ns(struct ipc_namespace *ns) 150 { 151 int i; 152 struct sem_array *sma; 153 154 mutex_lock(&sem_ids(ns).mutex); 155 for (i = 0; i <= sem_ids(ns).max_id; i++) { 156 sma = sem_lock(ns, i); 157 if (sma == NULL) 158 continue; 159 160 freeary(ns, sma, i); 161 } 162 mutex_unlock(&sem_ids(ns).mutex); 163 164 ipc_fini_ids(ns->ids[IPC_SEM_IDS]); 165 kfree(ns->ids[IPC_SEM_IDS]); 166 ns->ids[IPC_SEM_IDS] = NULL; 167 } 168 #endif 169 170 void __init sem_init (void) 171 { 172 __sem_init_ns(&init_ipc_ns, &init_sem_ids); 173 ipc_init_proc_interface("sysvipc/sem", 174 " key semid perms nsems uid gid cuid cgid otime ctime\n", 175 IPC_SEM_IDS, sysvipc_sem_proc_show); 176 } 177 178 /* 179 * Lockless wakeup algorithm: 180 * Without the check/retry algorithm a lockless wakeup is possible: 181 * - queue.status is initialized to -EINTR before blocking. 182 * - wakeup is performed by 183 * * unlinking the queue entry from sma->sem_pending 184 * * setting queue.status to IN_WAKEUP 185 * This is the notification for the blocked thread that a 186 * result value is imminent. 187 * * call wake_up_process 188 * * set queue.status to the final value. 189 * - the previously blocked thread checks queue.status: 190 * * if it's IN_WAKEUP, then it must wait until the value changes 191 * * if it's not -EINTR, then the operation was completed by 192 * update_queue. semtimedop can return queue.status without 193 * performing any operation on the sem array. 194 * * otherwise it must acquire the spinlock and check what's up. 195 * 196 * The two-stage algorithm is necessary to protect against the following 197 * races: 198 * - if queue.status is set after wake_up_process, then the woken up idle 199 * thread could race forward and try (and fail) to acquire sma->lock 200 * before update_queue had a chance to set queue.status 201 * - if queue.status is written before wake_up_process and if the 202 * blocked process is woken up by a signal between writing 203 * queue.status and the wake_up_process, then the woken up 204 * process could return from semtimedop and die by calling 205 * sys_exit before wake_up_process is called. Then wake_up_process 206 * will oops, because the task structure is already invalid. 207 * (yes, this happened on s390 with sysv msg). 208 * 209 */ 210 #define IN_WAKEUP 1 211 212 static int newary (struct ipc_namespace *ns, key_t key, int nsems, int semflg) 213 { 214 int id; 215 int retval; 216 struct sem_array *sma; 217 int size; 218 219 if (!nsems) 220 return -EINVAL; 221 if (ns->used_sems + nsems > ns->sc_semmns) 222 return -ENOSPC; 223 224 size = sizeof (*sma) + nsems * sizeof (struct sem); 225 sma = ipc_rcu_alloc(size); 226 if (!sma) { 227 return -ENOMEM; 228 } 229 memset (sma, 0, size); 230 231 sma->sem_perm.mode = (semflg & S_IRWXUGO); 232 sma->sem_perm.key = key; 233 234 sma->sem_perm.security = NULL; 235 retval = security_sem_alloc(sma); 236 if (retval) { 237 ipc_rcu_putref(sma); 238 return retval; 239 } 240 241 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 242 if(id == -1) { 243 security_sem_free(sma); 244 ipc_rcu_putref(sma); 245 return -ENOSPC; 246 } 247 ns->used_sems += nsems; 248 249 sma->sem_id = sem_buildid(ns, id, sma->sem_perm.seq); 250 sma->sem_base = (struct sem *) &sma[1]; 251 /* sma->sem_pending = NULL; */ 252 sma->sem_pending_last = &sma->sem_pending; 253 /* sma->undo = NULL; */ 254 sma->sem_nsems = nsems; 255 sma->sem_ctime = get_seconds(); 256 sem_unlock(sma); 257 258 return sma->sem_id; 259 } 260 261 asmlinkage long sys_semget (key_t key, int nsems, int semflg) 262 { 263 int id, err = -EINVAL; 264 struct sem_array *sma; 265 struct ipc_namespace *ns; 266 267 ns = current->nsproxy->ipc_ns; 268 269 if (nsems < 0 || nsems > ns->sc_semmsl) 270 return -EINVAL; 271 mutex_lock(&sem_ids(ns).mutex); 272 273 if (key == IPC_PRIVATE) { 274 err = newary(ns, key, nsems, semflg); 275 } else if ((id = ipc_findkey(&sem_ids(ns), key)) == -1) { /* key not used */ 276 if (!(semflg & IPC_CREAT)) 277 err = -ENOENT; 278 else 279 err = newary(ns, key, nsems, semflg); 280 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) { 281 err = -EEXIST; 282 } else { 283 sma = sem_lock(ns, id); 284 BUG_ON(sma==NULL); 285 if (nsems > sma->sem_nsems) 286 err = -EINVAL; 287 else if (ipcperms(&sma->sem_perm, semflg)) 288 err = -EACCES; 289 else { 290 int semid = sem_buildid(ns, id, sma->sem_perm.seq); 291 err = security_sem_associate(sma, semflg); 292 if (!err) 293 err = semid; 294 } 295 sem_unlock(sma); 296 } 297 298 mutex_unlock(&sem_ids(ns).mutex); 299 return err; 300 } 301 302 /* Manage the doubly linked list sma->sem_pending as a FIFO: 303 * insert new queue elements at the tail sma->sem_pending_last. 304 */ 305 static inline void append_to_queue (struct sem_array * sma, 306 struct sem_queue * q) 307 { 308 *(q->prev = sma->sem_pending_last) = q; 309 *(sma->sem_pending_last = &q->next) = NULL; 310 } 311 312 static inline void prepend_to_queue (struct sem_array * sma, 313 struct sem_queue * q) 314 { 315 q->next = sma->sem_pending; 316 *(q->prev = &sma->sem_pending) = q; 317 if (q->next) 318 q->next->prev = &q->next; 319 else /* sma->sem_pending_last == &sma->sem_pending */ 320 sma->sem_pending_last = &q->next; 321 } 322 323 static inline void remove_from_queue (struct sem_array * sma, 324 struct sem_queue * q) 325 { 326 *(q->prev) = q->next; 327 if (q->next) 328 q->next->prev = q->prev; 329 else /* sma->sem_pending_last == &q->next */ 330 sma->sem_pending_last = q->prev; 331 q->prev = NULL; /* mark as removed */ 332 } 333 334 /* 335 * Determine whether a sequence of semaphore operations would succeed 336 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 337 */ 338 339 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 340 int nsops, struct sem_undo *un, int pid) 341 { 342 int result, sem_op; 343 struct sembuf *sop; 344 struct sem * curr; 345 346 for (sop = sops; sop < sops + nsops; sop++) { 347 curr = sma->sem_base + sop->sem_num; 348 sem_op = sop->sem_op; 349 result = curr->semval; 350 351 if (!sem_op && result) 352 goto would_block; 353 354 result += sem_op; 355 if (result < 0) 356 goto would_block; 357 if (result > SEMVMX) 358 goto out_of_range; 359 if (sop->sem_flg & SEM_UNDO) { 360 int undo = un->semadj[sop->sem_num] - sem_op; 361 /* 362 * Exceeding the undo range is an error. 363 */ 364 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 365 goto out_of_range; 366 } 367 curr->semval = result; 368 } 369 370 sop--; 371 while (sop >= sops) { 372 sma->sem_base[sop->sem_num].sempid = pid; 373 if (sop->sem_flg & SEM_UNDO) 374 un->semadj[sop->sem_num] -= sop->sem_op; 375 sop--; 376 } 377 378 sma->sem_otime = get_seconds(); 379 return 0; 380 381 out_of_range: 382 result = -ERANGE; 383 goto undo; 384 385 would_block: 386 if (sop->sem_flg & IPC_NOWAIT) 387 result = -EAGAIN; 388 else 389 result = 1; 390 391 undo: 392 sop--; 393 while (sop >= sops) { 394 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 395 sop--; 396 } 397 398 return result; 399 } 400 401 /* Go through the pending queue for the indicated semaphore 402 * looking for tasks that can be completed. 403 */ 404 static void update_queue (struct sem_array * sma) 405 { 406 int error; 407 struct sem_queue * q; 408 409 q = sma->sem_pending; 410 while(q) { 411 error = try_atomic_semop(sma, q->sops, q->nsops, 412 q->undo, q->pid); 413 414 /* Does q->sleeper still need to sleep? */ 415 if (error <= 0) { 416 struct sem_queue *n; 417 remove_from_queue(sma,q); 418 q->status = IN_WAKEUP; 419 /* 420 * Continue scanning. The next operation 421 * that must be checked depends on the type of the 422 * completed operation: 423 * - if the operation modified the array, then 424 * restart from the head of the queue and 425 * check for threads that might be waiting 426 * for semaphore values to become 0. 427 * - if the operation didn't modify the array, 428 * then just continue. 429 */ 430 if (q->alter) 431 n = sma->sem_pending; 432 else 433 n = q->next; 434 wake_up_process(q->sleeper); 435 /* hands-off: q will disappear immediately after 436 * writing q->status. 437 */ 438 smp_wmb(); 439 q->status = error; 440 q = n; 441 } else { 442 q = q->next; 443 } 444 } 445 } 446 447 /* The following counts are associated to each semaphore: 448 * semncnt number of tasks waiting on semval being nonzero 449 * semzcnt number of tasks waiting on semval being zero 450 * This model assumes that a task waits on exactly one semaphore. 451 * Since semaphore operations are to be performed atomically, tasks actually 452 * wait on a whole sequence of semaphores simultaneously. 453 * The counts we return here are a rough approximation, but still 454 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 455 */ 456 static int count_semncnt (struct sem_array * sma, ushort semnum) 457 { 458 int semncnt; 459 struct sem_queue * q; 460 461 semncnt = 0; 462 for (q = sma->sem_pending; q; q = q->next) { 463 struct sembuf * sops = q->sops; 464 int nsops = q->nsops; 465 int i; 466 for (i = 0; i < nsops; i++) 467 if (sops[i].sem_num == semnum 468 && (sops[i].sem_op < 0) 469 && !(sops[i].sem_flg & IPC_NOWAIT)) 470 semncnt++; 471 } 472 return semncnt; 473 } 474 static int count_semzcnt (struct sem_array * sma, ushort semnum) 475 { 476 int semzcnt; 477 struct sem_queue * q; 478 479 semzcnt = 0; 480 for (q = sma->sem_pending; q; q = q->next) { 481 struct sembuf * sops = q->sops; 482 int nsops = q->nsops; 483 int i; 484 for (i = 0; i < nsops; i++) 485 if (sops[i].sem_num == semnum 486 && (sops[i].sem_op == 0) 487 && !(sops[i].sem_flg & IPC_NOWAIT)) 488 semzcnt++; 489 } 490 return semzcnt; 491 } 492 493 /* Free a semaphore set. freeary() is called with sem_ids.mutex locked and 494 * the spinlock for this semaphore set hold. sem_ids.mutex remains locked 495 * on exit. 496 */ 497 static void freeary (struct ipc_namespace *ns, struct sem_array *sma, int id) 498 { 499 struct sem_undo *un; 500 struct sem_queue *q; 501 int size; 502 503 /* Invalidate the existing undo structures for this semaphore set. 504 * (They will be freed without any further action in exit_sem() 505 * or during the next semop.) 506 */ 507 for (un = sma->undo; un; un = un->id_next) 508 un->semid = -1; 509 510 /* Wake up all pending processes and let them fail with EIDRM. */ 511 q = sma->sem_pending; 512 while(q) { 513 struct sem_queue *n; 514 /* lazy remove_from_queue: we are killing the whole queue */ 515 q->prev = NULL; 516 n = q->next; 517 q->status = IN_WAKEUP; 518 wake_up_process(q->sleeper); /* doesn't sleep */ 519 smp_wmb(); 520 q->status = -EIDRM; /* hands-off q */ 521 q = n; 522 } 523 524 /* Remove the semaphore set from the ID array*/ 525 sma = sem_rmid(ns, id); 526 sem_unlock(sma); 527 528 ns->used_sems -= sma->sem_nsems; 529 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem); 530 security_sem_free(sma); 531 ipc_rcu_putref(sma); 532 } 533 534 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 535 { 536 switch(version) { 537 case IPC_64: 538 return copy_to_user(buf, in, sizeof(*in)); 539 case IPC_OLD: 540 { 541 struct semid_ds out; 542 543 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 544 545 out.sem_otime = in->sem_otime; 546 out.sem_ctime = in->sem_ctime; 547 out.sem_nsems = in->sem_nsems; 548 549 return copy_to_user(buf, &out, sizeof(out)); 550 } 551 default: 552 return -EINVAL; 553 } 554 } 555 556 static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum, 557 int cmd, int version, union semun arg) 558 { 559 int err = -EINVAL; 560 struct sem_array *sma; 561 562 switch(cmd) { 563 case IPC_INFO: 564 case SEM_INFO: 565 { 566 struct seminfo seminfo; 567 int max_id; 568 569 err = security_sem_semctl(NULL, cmd); 570 if (err) 571 return err; 572 573 memset(&seminfo,0,sizeof(seminfo)); 574 seminfo.semmni = ns->sc_semmni; 575 seminfo.semmns = ns->sc_semmns; 576 seminfo.semmsl = ns->sc_semmsl; 577 seminfo.semopm = ns->sc_semopm; 578 seminfo.semvmx = SEMVMX; 579 seminfo.semmnu = SEMMNU; 580 seminfo.semmap = SEMMAP; 581 seminfo.semume = SEMUME; 582 mutex_lock(&sem_ids(ns).mutex); 583 if (cmd == SEM_INFO) { 584 seminfo.semusz = sem_ids(ns).in_use; 585 seminfo.semaem = ns->used_sems; 586 } else { 587 seminfo.semusz = SEMUSZ; 588 seminfo.semaem = SEMAEM; 589 } 590 max_id = sem_ids(ns).max_id; 591 mutex_unlock(&sem_ids(ns).mutex); 592 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 593 return -EFAULT; 594 return (max_id < 0) ? 0: max_id; 595 } 596 case SEM_STAT: 597 { 598 struct semid64_ds tbuf; 599 int id; 600 601 if(semid >= sem_ids(ns).entries->size) 602 return -EINVAL; 603 604 memset(&tbuf,0,sizeof(tbuf)); 605 606 sma = sem_lock(ns, semid); 607 if(sma == NULL) 608 return -EINVAL; 609 610 err = -EACCES; 611 if (ipcperms (&sma->sem_perm, S_IRUGO)) 612 goto out_unlock; 613 614 err = security_sem_semctl(sma, cmd); 615 if (err) 616 goto out_unlock; 617 618 id = sem_buildid(ns, semid, sma->sem_perm.seq); 619 620 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 621 tbuf.sem_otime = sma->sem_otime; 622 tbuf.sem_ctime = sma->sem_ctime; 623 tbuf.sem_nsems = sma->sem_nsems; 624 sem_unlock(sma); 625 if (copy_semid_to_user (arg.buf, &tbuf, version)) 626 return -EFAULT; 627 return id; 628 } 629 default: 630 return -EINVAL; 631 } 632 return err; 633 out_unlock: 634 sem_unlock(sma); 635 return err; 636 } 637 638 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 639 int cmd, int version, union semun arg) 640 { 641 struct sem_array *sma; 642 struct sem* curr; 643 int err; 644 ushort fast_sem_io[SEMMSL_FAST]; 645 ushort* sem_io = fast_sem_io; 646 int nsems; 647 648 sma = sem_lock(ns, semid); 649 if(sma==NULL) 650 return -EINVAL; 651 652 nsems = sma->sem_nsems; 653 654 err=-EIDRM; 655 if (sem_checkid(ns,sma,semid)) 656 goto out_unlock; 657 658 err = -EACCES; 659 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 660 goto out_unlock; 661 662 err = security_sem_semctl(sma, cmd); 663 if (err) 664 goto out_unlock; 665 666 err = -EACCES; 667 switch (cmd) { 668 case GETALL: 669 { 670 ushort __user *array = arg.array; 671 int i; 672 673 if(nsems > SEMMSL_FAST) { 674 ipc_rcu_getref(sma); 675 sem_unlock(sma); 676 677 sem_io = ipc_alloc(sizeof(ushort)*nsems); 678 if(sem_io == NULL) { 679 ipc_lock_by_ptr(&sma->sem_perm); 680 ipc_rcu_putref(sma); 681 sem_unlock(sma); 682 return -ENOMEM; 683 } 684 685 ipc_lock_by_ptr(&sma->sem_perm); 686 ipc_rcu_putref(sma); 687 if (sma->sem_perm.deleted) { 688 sem_unlock(sma); 689 err = -EIDRM; 690 goto out_free; 691 } 692 } 693 694 for (i = 0; i < sma->sem_nsems; i++) 695 sem_io[i] = sma->sem_base[i].semval; 696 sem_unlock(sma); 697 err = 0; 698 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 699 err = -EFAULT; 700 goto out_free; 701 } 702 case SETALL: 703 { 704 int i; 705 struct sem_undo *un; 706 707 ipc_rcu_getref(sma); 708 sem_unlock(sma); 709 710 if(nsems > SEMMSL_FAST) { 711 sem_io = ipc_alloc(sizeof(ushort)*nsems); 712 if(sem_io == NULL) { 713 ipc_lock_by_ptr(&sma->sem_perm); 714 ipc_rcu_putref(sma); 715 sem_unlock(sma); 716 return -ENOMEM; 717 } 718 } 719 720 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 721 ipc_lock_by_ptr(&sma->sem_perm); 722 ipc_rcu_putref(sma); 723 sem_unlock(sma); 724 err = -EFAULT; 725 goto out_free; 726 } 727 728 for (i = 0; i < nsems; i++) { 729 if (sem_io[i] > SEMVMX) { 730 ipc_lock_by_ptr(&sma->sem_perm); 731 ipc_rcu_putref(sma); 732 sem_unlock(sma); 733 err = -ERANGE; 734 goto out_free; 735 } 736 } 737 ipc_lock_by_ptr(&sma->sem_perm); 738 ipc_rcu_putref(sma); 739 if (sma->sem_perm.deleted) { 740 sem_unlock(sma); 741 err = -EIDRM; 742 goto out_free; 743 } 744 745 for (i = 0; i < nsems; i++) 746 sma->sem_base[i].semval = sem_io[i]; 747 for (un = sma->undo; un; un = un->id_next) 748 for (i = 0; i < nsems; i++) 749 un->semadj[i] = 0; 750 sma->sem_ctime = get_seconds(); 751 /* maybe some queued-up processes were waiting for this */ 752 update_queue(sma); 753 err = 0; 754 goto out_unlock; 755 } 756 case IPC_STAT: 757 { 758 struct semid64_ds tbuf; 759 memset(&tbuf,0,sizeof(tbuf)); 760 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 761 tbuf.sem_otime = sma->sem_otime; 762 tbuf.sem_ctime = sma->sem_ctime; 763 tbuf.sem_nsems = sma->sem_nsems; 764 sem_unlock(sma); 765 if (copy_semid_to_user (arg.buf, &tbuf, version)) 766 return -EFAULT; 767 return 0; 768 } 769 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 770 } 771 err = -EINVAL; 772 if(semnum < 0 || semnum >= nsems) 773 goto out_unlock; 774 775 curr = &sma->sem_base[semnum]; 776 777 switch (cmd) { 778 case GETVAL: 779 err = curr->semval; 780 goto out_unlock; 781 case GETPID: 782 err = curr->sempid; 783 goto out_unlock; 784 case GETNCNT: 785 err = count_semncnt(sma,semnum); 786 goto out_unlock; 787 case GETZCNT: 788 err = count_semzcnt(sma,semnum); 789 goto out_unlock; 790 case SETVAL: 791 { 792 int val = arg.val; 793 struct sem_undo *un; 794 err = -ERANGE; 795 if (val > SEMVMX || val < 0) 796 goto out_unlock; 797 798 for (un = sma->undo; un; un = un->id_next) 799 un->semadj[semnum] = 0; 800 curr->semval = val; 801 curr->sempid = current->tgid; 802 sma->sem_ctime = get_seconds(); 803 /* maybe some queued-up processes were waiting for this */ 804 update_queue(sma); 805 err = 0; 806 goto out_unlock; 807 } 808 } 809 out_unlock: 810 sem_unlock(sma); 811 out_free: 812 if(sem_io != fast_sem_io) 813 ipc_free(sem_io, sizeof(ushort)*nsems); 814 return err; 815 } 816 817 struct sem_setbuf { 818 uid_t uid; 819 gid_t gid; 820 mode_t mode; 821 }; 822 823 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version) 824 { 825 switch(version) { 826 case IPC_64: 827 { 828 struct semid64_ds tbuf; 829 830 if(copy_from_user(&tbuf, buf, sizeof(tbuf))) 831 return -EFAULT; 832 833 out->uid = tbuf.sem_perm.uid; 834 out->gid = tbuf.sem_perm.gid; 835 out->mode = tbuf.sem_perm.mode; 836 837 return 0; 838 } 839 case IPC_OLD: 840 { 841 struct semid_ds tbuf_old; 842 843 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 844 return -EFAULT; 845 846 out->uid = tbuf_old.sem_perm.uid; 847 out->gid = tbuf_old.sem_perm.gid; 848 out->mode = tbuf_old.sem_perm.mode; 849 850 return 0; 851 } 852 default: 853 return -EINVAL; 854 } 855 } 856 857 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum, 858 int cmd, int version, union semun arg) 859 { 860 struct sem_array *sma; 861 int err; 862 struct sem_setbuf setbuf; 863 struct kern_ipc_perm *ipcp; 864 865 if(cmd == IPC_SET) { 866 if(copy_semid_from_user (&setbuf, arg.buf, version)) 867 return -EFAULT; 868 } 869 sma = sem_lock(ns, semid); 870 if(sma==NULL) 871 return -EINVAL; 872 873 if (sem_checkid(ns,sma,semid)) { 874 err=-EIDRM; 875 goto out_unlock; 876 } 877 ipcp = &sma->sem_perm; 878 879 err = audit_ipc_obj(ipcp); 880 if (err) 881 goto out_unlock; 882 883 if (cmd == IPC_SET) { 884 err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode); 885 if (err) 886 goto out_unlock; 887 } 888 if (current->euid != ipcp->cuid && 889 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) { 890 err=-EPERM; 891 goto out_unlock; 892 } 893 894 err = security_sem_semctl(sma, cmd); 895 if (err) 896 goto out_unlock; 897 898 switch(cmd){ 899 case IPC_RMID: 900 freeary(ns, sma, semid); 901 err = 0; 902 break; 903 case IPC_SET: 904 ipcp->uid = setbuf.uid; 905 ipcp->gid = setbuf.gid; 906 ipcp->mode = (ipcp->mode & ~S_IRWXUGO) 907 | (setbuf.mode & S_IRWXUGO); 908 sma->sem_ctime = get_seconds(); 909 sem_unlock(sma); 910 err = 0; 911 break; 912 default: 913 sem_unlock(sma); 914 err = -EINVAL; 915 break; 916 } 917 return err; 918 919 out_unlock: 920 sem_unlock(sma); 921 return err; 922 } 923 924 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) 925 { 926 int err = -EINVAL; 927 int version; 928 struct ipc_namespace *ns; 929 930 if (semid < 0) 931 return -EINVAL; 932 933 version = ipc_parse_version(&cmd); 934 ns = current->nsproxy->ipc_ns; 935 936 switch(cmd) { 937 case IPC_INFO: 938 case SEM_INFO: 939 case SEM_STAT: 940 err = semctl_nolock(ns,semid,semnum,cmd,version,arg); 941 return err; 942 case GETALL: 943 case GETVAL: 944 case GETPID: 945 case GETNCNT: 946 case GETZCNT: 947 case IPC_STAT: 948 case SETVAL: 949 case SETALL: 950 err = semctl_main(ns,semid,semnum,cmd,version,arg); 951 return err; 952 case IPC_RMID: 953 case IPC_SET: 954 mutex_lock(&sem_ids(ns).mutex); 955 err = semctl_down(ns,semid,semnum,cmd,version,arg); 956 mutex_unlock(&sem_ids(ns).mutex); 957 return err; 958 default: 959 return -EINVAL; 960 } 961 } 962 963 static inline void lock_semundo(void) 964 { 965 struct sem_undo_list *undo_list; 966 967 undo_list = current->sysvsem.undo_list; 968 if (undo_list) 969 spin_lock(&undo_list->lock); 970 } 971 972 /* This code has an interaction with copy_semundo(). 973 * Consider; two tasks are sharing the undo_list. task1 974 * acquires the undo_list lock in lock_semundo(). If task2 now 975 * exits before task1 releases the lock (by calling 976 * unlock_semundo()), then task1 will never call spin_unlock(). 977 * This leave the sem_undo_list in a locked state. If task1 now creats task3 978 * and once again shares the sem_undo_list, the sem_undo_list will still be 979 * locked, and future SEM_UNDO operations will deadlock. This case is 980 * dealt with in copy_semundo() by having it reinitialize the spin lock when 981 * the refcnt goes from 1 to 2. 982 */ 983 static inline void unlock_semundo(void) 984 { 985 struct sem_undo_list *undo_list; 986 987 undo_list = current->sysvsem.undo_list; 988 if (undo_list) 989 spin_unlock(&undo_list->lock); 990 } 991 992 993 /* If the task doesn't already have a undo_list, then allocate one 994 * here. We guarantee there is only one thread using this undo list, 995 * and current is THE ONE 996 * 997 * If this allocation and assignment succeeds, but later 998 * portions of this code fail, there is no need to free the sem_undo_list. 999 * Just let it stay associated with the task, and it'll be freed later 1000 * at exit time. 1001 * 1002 * This can block, so callers must hold no locks. 1003 */ 1004 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1005 { 1006 struct sem_undo_list *undo_list; 1007 1008 undo_list = current->sysvsem.undo_list; 1009 if (!undo_list) { 1010 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1011 if (undo_list == NULL) 1012 return -ENOMEM; 1013 spin_lock_init(&undo_list->lock); 1014 atomic_set(&undo_list->refcnt, 1); 1015 current->sysvsem.undo_list = undo_list; 1016 } 1017 *undo_listp = undo_list; 1018 return 0; 1019 } 1020 1021 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1022 { 1023 struct sem_undo **last, *un; 1024 1025 last = &ulp->proc_list; 1026 un = *last; 1027 while(un != NULL) { 1028 if(un->semid==semid) 1029 break; 1030 if(un->semid==-1) { 1031 *last=un->proc_next; 1032 kfree(un); 1033 } else { 1034 last=&un->proc_next; 1035 } 1036 un=*last; 1037 } 1038 return un; 1039 } 1040 1041 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid) 1042 { 1043 struct sem_array *sma; 1044 struct sem_undo_list *ulp; 1045 struct sem_undo *un, *new; 1046 int nsems; 1047 int error; 1048 1049 error = get_undo_list(&ulp); 1050 if (error) 1051 return ERR_PTR(error); 1052 1053 lock_semundo(); 1054 un = lookup_undo(ulp, semid); 1055 unlock_semundo(); 1056 if (likely(un!=NULL)) 1057 goto out; 1058 1059 /* no undo structure around - allocate one. */ 1060 sma = sem_lock(ns, semid); 1061 un = ERR_PTR(-EINVAL); 1062 if(sma==NULL) 1063 goto out; 1064 un = ERR_PTR(-EIDRM); 1065 if (sem_checkid(ns,sma,semid)) { 1066 sem_unlock(sma); 1067 goto out; 1068 } 1069 nsems = sma->sem_nsems; 1070 ipc_rcu_getref(sma); 1071 sem_unlock(sma); 1072 1073 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1074 if (!new) { 1075 ipc_lock_by_ptr(&sma->sem_perm); 1076 ipc_rcu_putref(sma); 1077 sem_unlock(sma); 1078 return ERR_PTR(-ENOMEM); 1079 } 1080 new->semadj = (short *) &new[1]; 1081 new->semid = semid; 1082 1083 lock_semundo(); 1084 un = lookup_undo(ulp, semid); 1085 if (un) { 1086 unlock_semundo(); 1087 kfree(new); 1088 ipc_lock_by_ptr(&sma->sem_perm); 1089 ipc_rcu_putref(sma); 1090 sem_unlock(sma); 1091 goto out; 1092 } 1093 ipc_lock_by_ptr(&sma->sem_perm); 1094 ipc_rcu_putref(sma); 1095 if (sma->sem_perm.deleted) { 1096 sem_unlock(sma); 1097 unlock_semundo(); 1098 kfree(new); 1099 un = ERR_PTR(-EIDRM); 1100 goto out; 1101 } 1102 new->proc_next = ulp->proc_list; 1103 ulp->proc_list = new; 1104 new->id_next = sma->undo; 1105 sma->undo = new; 1106 sem_unlock(sma); 1107 un = new; 1108 unlock_semundo(); 1109 out: 1110 return un; 1111 } 1112 1113 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, 1114 unsigned nsops, const struct timespec __user *timeout) 1115 { 1116 int error = -EINVAL; 1117 struct sem_array *sma; 1118 struct sembuf fast_sops[SEMOPM_FAST]; 1119 struct sembuf* sops = fast_sops, *sop; 1120 struct sem_undo *un; 1121 int undos = 0, alter = 0, max; 1122 struct sem_queue queue; 1123 unsigned long jiffies_left = 0; 1124 struct ipc_namespace *ns; 1125 1126 ns = current->nsproxy->ipc_ns; 1127 1128 if (nsops < 1 || semid < 0) 1129 return -EINVAL; 1130 if (nsops > ns->sc_semopm) 1131 return -E2BIG; 1132 if(nsops > SEMOPM_FAST) { 1133 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1134 if(sops==NULL) 1135 return -ENOMEM; 1136 } 1137 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1138 error=-EFAULT; 1139 goto out_free; 1140 } 1141 if (timeout) { 1142 struct timespec _timeout; 1143 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1144 error = -EFAULT; 1145 goto out_free; 1146 } 1147 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1148 _timeout.tv_nsec >= 1000000000L) { 1149 error = -EINVAL; 1150 goto out_free; 1151 } 1152 jiffies_left = timespec_to_jiffies(&_timeout); 1153 } 1154 max = 0; 1155 for (sop = sops; sop < sops + nsops; sop++) { 1156 if (sop->sem_num >= max) 1157 max = sop->sem_num; 1158 if (sop->sem_flg & SEM_UNDO) 1159 undos = 1; 1160 if (sop->sem_op != 0) 1161 alter = 1; 1162 } 1163 1164 retry_undos: 1165 if (undos) { 1166 un = find_undo(ns, semid); 1167 if (IS_ERR(un)) { 1168 error = PTR_ERR(un); 1169 goto out_free; 1170 } 1171 } else 1172 un = NULL; 1173 1174 sma = sem_lock(ns, semid); 1175 error=-EINVAL; 1176 if(sma==NULL) 1177 goto out_free; 1178 error = -EIDRM; 1179 if (sem_checkid(ns,sma,semid)) 1180 goto out_unlock_free; 1181 /* 1182 * semid identifies are not unique - find_undo may have 1183 * allocated an undo structure, it was invalidated by an RMID 1184 * and now a new array with received the same id. Check and retry. 1185 */ 1186 if (un && un->semid == -1) { 1187 sem_unlock(sma); 1188 goto retry_undos; 1189 } 1190 error = -EFBIG; 1191 if (max >= sma->sem_nsems) 1192 goto out_unlock_free; 1193 1194 error = -EACCES; 1195 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1196 goto out_unlock_free; 1197 1198 error = security_sem_semop(sma, sops, nsops, alter); 1199 if (error) 1200 goto out_unlock_free; 1201 1202 error = try_atomic_semop (sma, sops, nsops, un, current->tgid); 1203 if (error <= 0) { 1204 if (alter && error == 0) 1205 update_queue (sma); 1206 goto out_unlock_free; 1207 } 1208 1209 /* We need to sleep on this operation, so we put the current 1210 * task into the pending queue and go to sleep. 1211 */ 1212 1213 queue.sma = sma; 1214 queue.sops = sops; 1215 queue.nsops = nsops; 1216 queue.undo = un; 1217 queue.pid = current->tgid; 1218 queue.id = semid; 1219 queue.alter = alter; 1220 if (alter) 1221 append_to_queue(sma ,&queue); 1222 else 1223 prepend_to_queue(sma ,&queue); 1224 1225 queue.status = -EINTR; 1226 queue.sleeper = current; 1227 current->state = TASK_INTERRUPTIBLE; 1228 sem_unlock(sma); 1229 1230 if (timeout) 1231 jiffies_left = schedule_timeout(jiffies_left); 1232 else 1233 schedule(); 1234 1235 error = queue.status; 1236 while(unlikely(error == IN_WAKEUP)) { 1237 cpu_relax(); 1238 error = queue.status; 1239 } 1240 1241 if (error != -EINTR) { 1242 /* fast path: update_queue already obtained all requested 1243 * resources */ 1244 goto out_free; 1245 } 1246 1247 sma = sem_lock(ns, semid); 1248 if(sma==NULL) { 1249 BUG_ON(queue.prev != NULL); 1250 error = -EIDRM; 1251 goto out_free; 1252 } 1253 1254 /* 1255 * If queue.status != -EINTR we are woken up by another process 1256 */ 1257 error = queue.status; 1258 if (error != -EINTR) { 1259 goto out_unlock_free; 1260 } 1261 1262 /* 1263 * If an interrupt occurred we have to clean up the queue 1264 */ 1265 if (timeout && jiffies_left == 0) 1266 error = -EAGAIN; 1267 remove_from_queue(sma,&queue); 1268 goto out_unlock_free; 1269 1270 out_unlock_free: 1271 sem_unlock(sma); 1272 out_free: 1273 if(sops != fast_sops) 1274 kfree(sops); 1275 return error; 1276 } 1277 1278 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) 1279 { 1280 return sys_semtimedop(semid, tsops, nsops, NULL); 1281 } 1282 1283 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1284 * parent and child tasks. 1285 * 1286 * See the notes above unlock_semundo() regarding the spin_lock_init() 1287 * in this code. Initialize the undo_list->lock here instead of get_undo_list() 1288 * because of the reasoning in the comment above unlock_semundo. 1289 */ 1290 1291 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1292 { 1293 struct sem_undo_list *undo_list; 1294 int error; 1295 1296 if (clone_flags & CLONE_SYSVSEM) { 1297 error = get_undo_list(&undo_list); 1298 if (error) 1299 return error; 1300 atomic_inc(&undo_list->refcnt); 1301 tsk->sysvsem.undo_list = undo_list; 1302 } else 1303 tsk->sysvsem.undo_list = NULL; 1304 1305 return 0; 1306 } 1307 1308 /* 1309 * add semadj values to semaphores, free undo structures. 1310 * undo structures are not freed when semaphore arrays are destroyed 1311 * so some of them may be out of date. 1312 * IMPLEMENTATION NOTE: There is some confusion over whether the 1313 * set of adjustments that needs to be done should be done in an atomic 1314 * manner or not. That is, if we are attempting to decrement the semval 1315 * should we queue up and wait until we can do so legally? 1316 * The original implementation attempted to do this (queue and wait). 1317 * The current implementation does not do so. The POSIX standard 1318 * and SVID should be consulted to determine what behavior is mandated. 1319 */ 1320 void exit_sem(struct task_struct *tsk) 1321 { 1322 struct sem_undo_list *undo_list; 1323 struct sem_undo *u, **up; 1324 struct ipc_namespace *ns; 1325 1326 undo_list = tsk->sysvsem.undo_list; 1327 if (!undo_list) 1328 return; 1329 1330 if (!atomic_dec_and_test(&undo_list->refcnt)) 1331 return; 1332 1333 ns = tsk->nsproxy->ipc_ns; 1334 /* There's no need to hold the semundo list lock, as current 1335 * is the last task exiting for this undo list. 1336 */ 1337 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) { 1338 struct sem_array *sma; 1339 int nsems, i; 1340 struct sem_undo *un, **unp; 1341 int semid; 1342 1343 semid = u->semid; 1344 1345 if(semid == -1) 1346 continue; 1347 sma = sem_lock(ns, semid); 1348 if (sma == NULL) 1349 continue; 1350 1351 if (u->semid == -1) 1352 goto next_entry; 1353 1354 BUG_ON(sem_checkid(ns,sma,u->semid)); 1355 1356 /* remove u from the sma->undo list */ 1357 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { 1358 if (u == un) 1359 goto found; 1360 } 1361 printk ("exit_sem undo list error id=%d\n", u->semid); 1362 goto next_entry; 1363 found: 1364 *unp = un->id_next; 1365 /* perform adjustments registered in u */ 1366 nsems = sma->sem_nsems; 1367 for (i = 0; i < nsems; i++) { 1368 struct sem * semaphore = &sma->sem_base[i]; 1369 if (u->semadj[i]) { 1370 semaphore->semval += u->semadj[i]; 1371 /* 1372 * Range checks of the new semaphore value, 1373 * not defined by sus: 1374 * - Some unices ignore the undo entirely 1375 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1376 * - some cap the value (e.g. FreeBSD caps 1377 * at 0, but doesn't enforce SEMVMX) 1378 * 1379 * Linux caps the semaphore value, both at 0 1380 * and at SEMVMX. 1381 * 1382 * Manfred <manfred@colorfullife.com> 1383 */ 1384 if (semaphore->semval < 0) 1385 semaphore->semval = 0; 1386 if (semaphore->semval > SEMVMX) 1387 semaphore->semval = SEMVMX; 1388 semaphore->sempid = current->tgid; 1389 } 1390 } 1391 sma->sem_otime = get_seconds(); 1392 /* maybe some queued-up processes were waiting for this */ 1393 update_queue(sma); 1394 next_entry: 1395 sem_unlock(sma); 1396 } 1397 kfree(undo_list); 1398 } 1399 1400 #ifdef CONFIG_PROC_FS 1401 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1402 { 1403 struct sem_array *sma = it; 1404 1405 return seq_printf(s, 1406 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", 1407 sma->sem_perm.key, 1408 sma->sem_id, 1409 sma->sem_perm.mode, 1410 sma->sem_nsems, 1411 sma->sem_perm.uid, 1412 sma->sem_perm.gid, 1413 sma->sem_perm.cuid, 1414 sma->sem_perm.cgid, 1415 sma->sem_otime, 1416 sma->sem_ctime); 1417 } 1418 #endif 1419