xref: /linux/ipc/sem.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7  * This code underwent a massive rewrite in order to solve some problems
8  * with the original code. In particular the original code failed to
9  * wake up processes that were waiting for semval to go to 0 if the
10  * value went to 0 and was then incremented rapidly enough. In solving
11  * this problem I have also modified the implementation so that it
12  * processes pending operations in a FIFO manner, thus give a guarantee
13  * that processes waiting for a lock on the semaphore won't starve
14  * unless another locking process fails to unlock.
15  * In addition the following two changes in behavior have been introduced:
16  * - The original implementation of semop returned the value
17  *   last semaphore element examined on success. This does not
18  *   match the manual page specifications, and effectively
19  *   allows the user to read the semaphore even if they do not
20  *   have read permissions. The implementation now returns 0
21  *   on success as stated in the manual page.
22  * - There is some confusion over whether the set of undo adjustments
23  *   to be performed at exit should be done in an atomic manner.
24  *   That is, if we are attempting to decrement the semval should we queue
25  *   up and wait until we can do so legally?
26  *   The original implementation attempted to do this.
27  *   The current implementation does not do so. This is because I don't
28  *   think it is the right thing (TM) to do, and because I couldn't
29  *   see a clean way to get the old behavior with the new design.
30  *   The POSIX standard and SVID should be consulted to determine
31  *   what behavior is mandated.
32  *
33  * Further notes on refinement (Christoph Rohland, December 1998):
34  * - The POSIX standard says, that the undo adjustments simply should
35  *   redo. So the current implementation is o.K.
36  * - The previous code had two flaws:
37  *   1) It actively gave the semaphore to the next waiting process
38  *      sleeping on the semaphore. Since this process did not have the
39  *      cpu this led to many unnecessary context switches and bad
40  *      performance. Now we only check which process should be able to
41  *      get the semaphore and if this process wants to reduce some
42  *      semaphore value we simply wake it up without doing the
43  *      operation. So it has to try to get it later. Thus e.g. the
44  *      running process may reacquire the semaphore during the current
45  *      time slice. If it only waits for zero or increases the semaphore,
46  *      we do the operation in advance and wake it up.
47  *   2) It did not wake up all zero waiting processes. We try to do
48  *      better but only get the semops right which only wait for zero or
49  *      increase. If there are decrement operations in the operations
50  *      array we do the same as before.
51  *
52  * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53  * check/retry algorithm for waking up blocked processes as the new scheduler
54  * is better at handling thread switch than the old one.
55  *
56  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57  *
58  * SMP-threaded, sysctl's added
59  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60  * Enforced range limit on SEM_UNDO
61  * (c) 2001 Red Hat Inc <alan@redhat.com>
62  * Lockless wakeup
63  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64  *
65  * support for audit of ipc object properties and permission changes
66  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67  *
68  * namespaces support
69  * OpenVZ, SWsoft Inc.
70  * Pavel Emelianov <xemul@openvz.org>
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/smp_lock.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/mutex.h>
85 #include <linux/nsproxy.h>
86 
87 #include <asm/uaccess.h>
88 #include "util.h"
89 
90 #define sem_ids(ns)	(*((ns)->ids[IPC_SEM_IDS]))
91 
92 #define sem_lock(ns, id)	((struct sem_array*)ipc_lock(&sem_ids(ns), id))
93 #define sem_unlock(sma)		ipc_unlock(&(sma)->sem_perm)
94 #define sem_rmid(ns, id)	((struct sem_array*)ipc_rmid(&sem_ids(ns), id))
95 #define sem_checkid(ns, sma, semid)	\
96 	ipc_checkid(&sem_ids(ns),&sma->sem_perm,semid)
97 #define sem_buildid(ns, id, seq) \
98 	ipc_buildid(&sem_ids(ns), id, seq)
99 
100 static struct ipc_ids init_sem_ids;
101 
102 static int newary(struct ipc_namespace *, key_t, int, int);
103 static void freeary(struct ipc_namespace *ns, struct sem_array *sma, int id);
104 #ifdef CONFIG_PROC_FS
105 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
106 #endif
107 
108 #define SEMMSL_FAST	256 /* 512 bytes on stack */
109 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
110 
111 /*
112  * linked list protection:
113  *	sem_undo.id_next,
114  *	sem_array.sem_pending{,last},
115  *	sem_array.sem_undo: sem_lock() for read/write
116  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
117  *
118  */
119 
120 #define sc_semmsl	sem_ctls[0]
121 #define sc_semmns	sem_ctls[1]
122 #define sc_semopm	sem_ctls[2]
123 #define sc_semmni	sem_ctls[3]
124 
125 static void __ipc_init __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
126 {
127 	ns->ids[IPC_SEM_IDS] = ids;
128 	ns->sc_semmsl = SEMMSL;
129 	ns->sc_semmns = SEMMNS;
130 	ns->sc_semopm = SEMOPM;
131 	ns->sc_semmni = SEMMNI;
132 	ns->used_sems = 0;
133 	ipc_init_ids(ids, ns->sc_semmni);
134 }
135 
136 #ifdef CONFIG_IPC_NS
137 int sem_init_ns(struct ipc_namespace *ns)
138 {
139 	struct ipc_ids *ids;
140 
141 	ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
142 	if (ids == NULL)
143 		return -ENOMEM;
144 
145 	__sem_init_ns(ns, ids);
146 	return 0;
147 }
148 
149 void sem_exit_ns(struct ipc_namespace *ns)
150 {
151 	int i;
152 	struct sem_array *sma;
153 
154 	mutex_lock(&sem_ids(ns).mutex);
155 	for (i = 0; i <= sem_ids(ns).max_id; i++) {
156 		sma = sem_lock(ns, i);
157 		if (sma == NULL)
158 			continue;
159 
160 		freeary(ns, sma, i);
161 	}
162 	mutex_unlock(&sem_ids(ns).mutex);
163 
164 	ipc_fini_ids(ns->ids[IPC_SEM_IDS]);
165 	kfree(ns->ids[IPC_SEM_IDS]);
166 	ns->ids[IPC_SEM_IDS] = NULL;
167 }
168 #endif
169 
170 void __init sem_init (void)
171 {
172 	__sem_init_ns(&init_ipc_ns, &init_sem_ids);
173 	ipc_init_proc_interface("sysvipc/sem",
174 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
175 				IPC_SEM_IDS, sysvipc_sem_proc_show);
176 }
177 
178 /*
179  * Lockless wakeup algorithm:
180  * Without the check/retry algorithm a lockless wakeup is possible:
181  * - queue.status is initialized to -EINTR before blocking.
182  * - wakeup is performed by
183  *	* unlinking the queue entry from sma->sem_pending
184  *	* setting queue.status to IN_WAKEUP
185  *	  This is the notification for the blocked thread that a
186  *	  result value is imminent.
187  *	* call wake_up_process
188  *	* set queue.status to the final value.
189  * - the previously blocked thread checks queue.status:
190  *   	* if it's IN_WAKEUP, then it must wait until the value changes
191  *   	* if it's not -EINTR, then the operation was completed by
192  *   	  update_queue. semtimedop can return queue.status without
193  *   	  performing any operation on the sem array.
194  *   	* otherwise it must acquire the spinlock and check what's up.
195  *
196  * The two-stage algorithm is necessary to protect against the following
197  * races:
198  * - if queue.status is set after wake_up_process, then the woken up idle
199  *   thread could race forward and try (and fail) to acquire sma->lock
200  *   before update_queue had a chance to set queue.status
201  * - if queue.status is written before wake_up_process and if the
202  *   blocked process is woken up by a signal between writing
203  *   queue.status and the wake_up_process, then the woken up
204  *   process could return from semtimedop and die by calling
205  *   sys_exit before wake_up_process is called. Then wake_up_process
206  *   will oops, because the task structure is already invalid.
207  *   (yes, this happened on s390 with sysv msg).
208  *
209  */
210 #define IN_WAKEUP	1
211 
212 static int newary (struct ipc_namespace *ns, key_t key, int nsems, int semflg)
213 {
214 	int id;
215 	int retval;
216 	struct sem_array *sma;
217 	int size;
218 
219 	if (!nsems)
220 		return -EINVAL;
221 	if (ns->used_sems + nsems > ns->sc_semmns)
222 		return -ENOSPC;
223 
224 	size = sizeof (*sma) + nsems * sizeof (struct sem);
225 	sma = ipc_rcu_alloc(size);
226 	if (!sma) {
227 		return -ENOMEM;
228 	}
229 	memset (sma, 0, size);
230 
231 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
232 	sma->sem_perm.key = key;
233 
234 	sma->sem_perm.security = NULL;
235 	retval = security_sem_alloc(sma);
236 	if (retval) {
237 		ipc_rcu_putref(sma);
238 		return retval;
239 	}
240 
241 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
242 	if(id == -1) {
243 		security_sem_free(sma);
244 		ipc_rcu_putref(sma);
245 		return -ENOSPC;
246 	}
247 	ns->used_sems += nsems;
248 
249 	sma->sem_id = sem_buildid(ns, id, sma->sem_perm.seq);
250 	sma->sem_base = (struct sem *) &sma[1];
251 	/* sma->sem_pending = NULL; */
252 	sma->sem_pending_last = &sma->sem_pending;
253 	/* sma->undo = NULL; */
254 	sma->sem_nsems = nsems;
255 	sma->sem_ctime = get_seconds();
256 	sem_unlock(sma);
257 
258 	return sma->sem_id;
259 }
260 
261 asmlinkage long sys_semget (key_t key, int nsems, int semflg)
262 {
263 	int id, err = -EINVAL;
264 	struct sem_array *sma;
265 	struct ipc_namespace *ns;
266 
267 	ns = current->nsproxy->ipc_ns;
268 
269 	if (nsems < 0 || nsems > ns->sc_semmsl)
270 		return -EINVAL;
271 	mutex_lock(&sem_ids(ns).mutex);
272 
273 	if (key == IPC_PRIVATE) {
274 		err = newary(ns, key, nsems, semflg);
275 	} else if ((id = ipc_findkey(&sem_ids(ns), key)) == -1) {  /* key not used */
276 		if (!(semflg & IPC_CREAT))
277 			err = -ENOENT;
278 		else
279 			err = newary(ns, key, nsems, semflg);
280 	} else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
281 		err = -EEXIST;
282 	} else {
283 		sma = sem_lock(ns, id);
284 		BUG_ON(sma==NULL);
285 		if (nsems > sma->sem_nsems)
286 			err = -EINVAL;
287 		else if (ipcperms(&sma->sem_perm, semflg))
288 			err = -EACCES;
289 		else {
290 			int semid = sem_buildid(ns, id, sma->sem_perm.seq);
291 			err = security_sem_associate(sma, semflg);
292 			if (!err)
293 				err = semid;
294 		}
295 		sem_unlock(sma);
296 	}
297 
298 	mutex_unlock(&sem_ids(ns).mutex);
299 	return err;
300 }
301 
302 /* Manage the doubly linked list sma->sem_pending as a FIFO:
303  * insert new queue elements at the tail sma->sem_pending_last.
304  */
305 static inline void append_to_queue (struct sem_array * sma,
306 				    struct sem_queue * q)
307 {
308 	*(q->prev = sma->sem_pending_last) = q;
309 	*(sma->sem_pending_last = &q->next) = NULL;
310 }
311 
312 static inline void prepend_to_queue (struct sem_array * sma,
313 				     struct sem_queue * q)
314 {
315 	q->next = sma->sem_pending;
316 	*(q->prev = &sma->sem_pending) = q;
317 	if (q->next)
318 		q->next->prev = &q->next;
319 	else /* sma->sem_pending_last == &sma->sem_pending */
320 		sma->sem_pending_last = &q->next;
321 }
322 
323 static inline void remove_from_queue (struct sem_array * sma,
324 				      struct sem_queue * q)
325 {
326 	*(q->prev) = q->next;
327 	if (q->next)
328 		q->next->prev = q->prev;
329 	else /* sma->sem_pending_last == &q->next */
330 		sma->sem_pending_last = q->prev;
331 	q->prev = NULL; /* mark as removed */
332 }
333 
334 /*
335  * Determine whether a sequence of semaphore operations would succeed
336  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
337  */
338 
339 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
340 			     int nsops, struct sem_undo *un, int pid)
341 {
342 	int result, sem_op;
343 	struct sembuf *sop;
344 	struct sem * curr;
345 
346 	for (sop = sops; sop < sops + nsops; sop++) {
347 		curr = sma->sem_base + sop->sem_num;
348 		sem_op = sop->sem_op;
349 		result = curr->semval;
350 
351 		if (!sem_op && result)
352 			goto would_block;
353 
354 		result += sem_op;
355 		if (result < 0)
356 			goto would_block;
357 		if (result > SEMVMX)
358 			goto out_of_range;
359 		if (sop->sem_flg & SEM_UNDO) {
360 			int undo = un->semadj[sop->sem_num] - sem_op;
361 			/*
362 	 		 *	Exceeding the undo range is an error.
363 			 */
364 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
365 				goto out_of_range;
366 		}
367 		curr->semval = result;
368 	}
369 
370 	sop--;
371 	while (sop >= sops) {
372 		sma->sem_base[sop->sem_num].sempid = pid;
373 		if (sop->sem_flg & SEM_UNDO)
374 			un->semadj[sop->sem_num] -= sop->sem_op;
375 		sop--;
376 	}
377 
378 	sma->sem_otime = get_seconds();
379 	return 0;
380 
381 out_of_range:
382 	result = -ERANGE;
383 	goto undo;
384 
385 would_block:
386 	if (sop->sem_flg & IPC_NOWAIT)
387 		result = -EAGAIN;
388 	else
389 		result = 1;
390 
391 undo:
392 	sop--;
393 	while (sop >= sops) {
394 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
395 		sop--;
396 	}
397 
398 	return result;
399 }
400 
401 /* Go through the pending queue for the indicated semaphore
402  * looking for tasks that can be completed.
403  */
404 static void update_queue (struct sem_array * sma)
405 {
406 	int error;
407 	struct sem_queue * q;
408 
409 	q = sma->sem_pending;
410 	while(q) {
411 		error = try_atomic_semop(sma, q->sops, q->nsops,
412 					 q->undo, q->pid);
413 
414 		/* Does q->sleeper still need to sleep? */
415 		if (error <= 0) {
416 			struct sem_queue *n;
417 			remove_from_queue(sma,q);
418 			q->status = IN_WAKEUP;
419 			/*
420 			 * Continue scanning. The next operation
421 			 * that must be checked depends on the type of the
422 			 * completed operation:
423 			 * - if the operation modified the array, then
424 			 *   restart from the head of the queue and
425 			 *   check for threads that might be waiting
426 			 *   for semaphore values to become 0.
427 			 * - if the operation didn't modify the array,
428 			 *   then just continue.
429 			 */
430 			if (q->alter)
431 				n = sma->sem_pending;
432 			else
433 				n = q->next;
434 			wake_up_process(q->sleeper);
435 			/* hands-off: q will disappear immediately after
436 			 * writing q->status.
437 			 */
438 			smp_wmb();
439 			q->status = error;
440 			q = n;
441 		} else {
442 			q = q->next;
443 		}
444 	}
445 }
446 
447 /* The following counts are associated to each semaphore:
448  *   semncnt        number of tasks waiting on semval being nonzero
449  *   semzcnt        number of tasks waiting on semval being zero
450  * This model assumes that a task waits on exactly one semaphore.
451  * Since semaphore operations are to be performed atomically, tasks actually
452  * wait on a whole sequence of semaphores simultaneously.
453  * The counts we return here are a rough approximation, but still
454  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
455  */
456 static int count_semncnt (struct sem_array * sma, ushort semnum)
457 {
458 	int semncnt;
459 	struct sem_queue * q;
460 
461 	semncnt = 0;
462 	for (q = sma->sem_pending; q; q = q->next) {
463 		struct sembuf * sops = q->sops;
464 		int nsops = q->nsops;
465 		int i;
466 		for (i = 0; i < nsops; i++)
467 			if (sops[i].sem_num == semnum
468 			    && (sops[i].sem_op < 0)
469 			    && !(sops[i].sem_flg & IPC_NOWAIT))
470 				semncnt++;
471 	}
472 	return semncnt;
473 }
474 static int count_semzcnt (struct sem_array * sma, ushort semnum)
475 {
476 	int semzcnt;
477 	struct sem_queue * q;
478 
479 	semzcnt = 0;
480 	for (q = sma->sem_pending; q; q = q->next) {
481 		struct sembuf * sops = q->sops;
482 		int nsops = q->nsops;
483 		int i;
484 		for (i = 0; i < nsops; i++)
485 			if (sops[i].sem_num == semnum
486 			    && (sops[i].sem_op == 0)
487 			    && !(sops[i].sem_flg & IPC_NOWAIT))
488 				semzcnt++;
489 	}
490 	return semzcnt;
491 }
492 
493 /* Free a semaphore set. freeary() is called with sem_ids.mutex locked and
494  * the spinlock for this semaphore set hold. sem_ids.mutex remains locked
495  * on exit.
496  */
497 static void freeary (struct ipc_namespace *ns, struct sem_array *sma, int id)
498 {
499 	struct sem_undo *un;
500 	struct sem_queue *q;
501 	int size;
502 
503 	/* Invalidate the existing undo structures for this semaphore set.
504 	 * (They will be freed without any further action in exit_sem()
505 	 * or during the next semop.)
506 	 */
507 	for (un = sma->undo; un; un = un->id_next)
508 		un->semid = -1;
509 
510 	/* Wake up all pending processes and let them fail with EIDRM. */
511 	q = sma->sem_pending;
512 	while(q) {
513 		struct sem_queue *n;
514 		/* lazy remove_from_queue: we are killing the whole queue */
515 		q->prev = NULL;
516 		n = q->next;
517 		q->status = IN_WAKEUP;
518 		wake_up_process(q->sleeper); /* doesn't sleep */
519 		smp_wmb();
520 		q->status = -EIDRM;	/* hands-off q */
521 		q = n;
522 	}
523 
524 	/* Remove the semaphore set from the ID array*/
525 	sma = sem_rmid(ns, id);
526 	sem_unlock(sma);
527 
528 	ns->used_sems -= sma->sem_nsems;
529 	size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
530 	security_sem_free(sma);
531 	ipc_rcu_putref(sma);
532 }
533 
534 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
535 {
536 	switch(version) {
537 	case IPC_64:
538 		return copy_to_user(buf, in, sizeof(*in));
539 	case IPC_OLD:
540 	    {
541 		struct semid_ds out;
542 
543 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
544 
545 		out.sem_otime	= in->sem_otime;
546 		out.sem_ctime	= in->sem_ctime;
547 		out.sem_nsems	= in->sem_nsems;
548 
549 		return copy_to_user(buf, &out, sizeof(out));
550 	    }
551 	default:
552 		return -EINVAL;
553 	}
554 }
555 
556 static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
557 		int cmd, int version, union semun arg)
558 {
559 	int err = -EINVAL;
560 	struct sem_array *sma;
561 
562 	switch(cmd) {
563 	case IPC_INFO:
564 	case SEM_INFO:
565 	{
566 		struct seminfo seminfo;
567 		int max_id;
568 
569 		err = security_sem_semctl(NULL, cmd);
570 		if (err)
571 			return err;
572 
573 		memset(&seminfo,0,sizeof(seminfo));
574 		seminfo.semmni = ns->sc_semmni;
575 		seminfo.semmns = ns->sc_semmns;
576 		seminfo.semmsl = ns->sc_semmsl;
577 		seminfo.semopm = ns->sc_semopm;
578 		seminfo.semvmx = SEMVMX;
579 		seminfo.semmnu = SEMMNU;
580 		seminfo.semmap = SEMMAP;
581 		seminfo.semume = SEMUME;
582 		mutex_lock(&sem_ids(ns).mutex);
583 		if (cmd == SEM_INFO) {
584 			seminfo.semusz = sem_ids(ns).in_use;
585 			seminfo.semaem = ns->used_sems;
586 		} else {
587 			seminfo.semusz = SEMUSZ;
588 			seminfo.semaem = SEMAEM;
589 		}
590 		max_id = sem_ids(ns).max_id;
591 		mutex_unlock(&sem_ids(ns).mutex);
592 		if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
593 			return -EFAULT;
594 		return (max_id < 0) ? 0: max_id;
595 	}
596 	case SEM_STAT:
597 	{
598 		struct semid64_ds tbuf;
599 		int id;
600 
601 		if(semid >= sem_ids(ns).entries->size)
602 			return -EINVAL;
603 
604 		memset(&tbuf,0,sizeof(tbuf));
605 
606 		sma = sem_lock(ns, semid);
607 		if(sma == NULL)
608 			return -EINVAL;
609 
610 		err = -EACCES;
611 		if (ipcperms (&sma->sem_perm, S_IRUGO))
612 			goto out_unlock;
613 
614 		err = security_sem_semctl(sma, cmd);
615 		if (err)
616 			goto out_unlock;
617 
618 		id = sem_buildid(ns, semid, sma->sem_perm.seq);
619 
620 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
621 		tbuf.sem_otime  = sma->sem_otime;
622 		tbuf.sem_ctime  = sma->sem_ctime;
623 		tbuf.sem_nsems  = sma->sem_nsems;
624 		sem_unlock(sma);
625 		if (copy_semid_to_user (arg.buf, &tbuf, version))
626 			return -EFAULT;
627 		return id;
628 	}
629 	default:
630 		return -EINVAL;
631 	}
632 	return err;
633 out_unlock:
634 	sem_unlock(sma);
635 	return err;
636 }
637 
638 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
639 		int cmd, int version, union semun arg)
640 {
641 	struct sem_array *sma;
642 	struct sem* curr;
643 	int err;
644 	ushort fast_sem_io[SEMMSL_FAST];
645 	ushort* sem_io = fast_sem_io;
646 	int nsems;
647 
648 	sma = sem_lock(ns, semid);
649 	if(sma==NULL)
650 		return -EINVAL;
651 
652 	nsems = sma->sem_nsems;
653 
654 	err=-EIDRM;
655 	if (sem_checkid(ns,sma,semid))
656 		goto out_unlock;
657 
658 	err = -EACCES;
659 	if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
660 		goto out_unlock;
661 
662 	err = security_sem_semctl(sma, cmd);
663 	if (err)
664 		goto out_unlock;
665 
666 	err = -EACCES;
667 	switch (cmd) {
668 	case GETALL:
669 	{
670 		ushort __user *array = arg.array;
671 		int i;
672 
673 		if(nsems > SEMMSL_FAST) {
674 			ipc_rcu_getref(sma);
675 			sem_unlock(sma);
676 
677 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
678 			if(sem_io == NULL) {
679 				ipc_lock_by_ptr(&sma->sem_perm);
680 				ipc_rcu_putref(sma);
681 				sem_unlock(sma);
682 				return -ENOMEM;
683 			}
684 
685 			ipc_lock_by_ptr(&sma->sem_perm);
686 			ipc_rcu_putref(sma);
687 			if (sma->sem_perm.deleted) {
688 				sem_unlock(sma);
689 				err = -EIDRM;
690 				goto out_free;
691 			}
692 		}
693 
694 		for (i = 0; i < sma->sem_nsems; i++)
695 			sem_io[i] = sma->sem_base[i].semval;
696 		sem_unlock(sma);
697 		err = 0;
698 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
699 			err = -EFAULT;
700 		goto out_free;
701 	}
702 	case SETALL:
703 	{
704 		int i;
705 		struct sem_undo *un;
706 
707 		ipc_rcu_getref(sma);
708 		sem_unlock(sma);
709 
710 		if(nsems > SEMMSL_FAST) {
711 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
712 			if(sem_io == NULL) {
713 				ipc_lock_by_ptr(&sma->sem_perm);
714 				ipc_rcu_putref(sma);
715 				sem_unlock(sma);
716 				return -ENOMEM;
717 			}
718 		}
719 
720 		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
721 			ipc_lock_by_ptr(&sma->sem_perm);
722 			ipc_rcu_putref(sma);
723 			sem_unlock(sma);
724 			err = -EFAULT;
725 			goto out_free;
726 		}
727 
728 		for (i = 0; i < nsems; i++) {
729 			if (sem_io[i] > SEMVMX) {
730 				ipc_lock_by_ptr(&sma->sem_perm);
731 				ipc_rcu_putref(sma);
732 				sem_unlock(sma);
733 				err = -ERANGE;
734 				goto out_free;
735 			}
736 		}
737 		ipc_lock_by_ptr(&sma->sem_perm);
738 		ipc_rcu_putref(sma);
739 		if (sma->sem_perm.deleted) {
740 			sem_unlock(sma);
741 			err = -EIDRM;
742 			goto out_free;
743 		}
744 
745 		for (i = 0; i < nsems; i++)
746 			sma->sem_base[i].semval = sem_io[i];
747 		for (un = sma->undo; un; un = un->id_next)
748 			for (i = 0; i < nsems; i++)
749 				un->semadj[i] = 0;
750 		sma->sem_ctime = get_seconds();
751 		/* maybe some queued-up processes were waiting for this */
752 		update_queue(sma);
753 		err = 0;
754 		goto out_unlock;
755 	}
756 	case IPC_STAT:
757 	{
758 		struct semid64_ds tbuf;
759 		memset(&tbuf,0,sizeof(tbuf));
760 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
761 		tbuf.sem_otime  = sma->sem_otime;
762 		tbuf.sem_ctime  = sma->sem_ctime;
763 		tbuf.sem_nsems  = sma->sem_nsems;
764 		sem_unlock(sma);
765 		if (copy_semid_to_user (arg.buf, &tbuf, version))
766 			return -EFAULT;
767 		return 0;
768 	}
769 	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
770 	}
771 	err = -EINVAL;
772 	if(semnum < 0 || semnum >= nsems)
773 		goto out_unlock;
774 
775 	curr = &sma->sem_base[semnum];
776 
777 	switch (cmd) {
778 	case GETVAL:
779 		err = curr->semval;
780 		goto out_unlock;
781 	case GETPID:
782 		err = curr->sempid;
783 		goto out_unlock;
784 	case GETNCNT:
785 		err = count_semncnt(sma,semnum);
786 		goto out_unlock;
787 	case GETZCNT:
788 		err = count_semzcnt(sma,semnum);
789 		goto out_unlock;
790 	case SETVAL:
791 	{
792 		int val = arg.val;
793 		struct sem_undo *un;
794 		err = -ERANGE;
795 		if (val > SEMVMX || val < 0)
796 			goto out_unlock;
797 
798 		for (un = sma->undo; un; un = un->id_next)
799 			un->semadj[semnum] = 0;
800 		curr->semval = val;
801 		curr->sempid = current->tgid;
802 		sma->sem_ctime = get_seconds();
803 		/* maybe some queued-up processes were waiting for this */
804 		update_queue(sma);
805 		err = 0;
806 		goto out_unlock;
807 	}
808 	}
809 out_unlock:
810 	sem_unlock(sma);
811 out_free:
812 	if(sem_io != fast_sem_io)
813 		ipc_free(sem_io, sizeof(ushort)*nsems);
814 	return err;
815 }
816 
817 struct sem_setbuf {
818 	uid_t	uid;
819 	gid_t	gid;
820 	mode_t	mode;
821 };
822 
823 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
824 {
825 	switch(version) {
826 	case IPC_64:
827 	    {
828 		struct semid64_ds tbuf;
829 
830 		if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
831 			return -EFAULT;
832 
833 		out->uid	= tbuf.sem_perm.uid;
834 		out->gid	= tbuf.sem_perm.gid;
835 		out->mode	= tbuf.sem_perm.mode;
836 
837 		return 0;
838 	    }
839 	case IPC_OLD:
840 	    {
841 		struct semid_ds tbuf_old;
842 
843 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
844 			return -EFAULT;
845 
846 		out->uid	= tbuf_old.sem_perm.uid;
847 		out->gid	= tbuf_old.sem_perm.gid;
848 		out->mode	= tbuf_old.sem_perm.mode;
849 
850 		return 0;
851 	    }
852 	default:
853 		return -EINVAL;
854 	}
855 }
856 
857 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
858 		int cmd, int version, union semun arg)
859 {
860 	struct sem_array *sma;
861 	int err;
862 	struct sem_setbuf setbuf;
863 	struct kern_ipc_perm *ipcp;
864 
865 	if(cmd == IPC_SET) {
866 		if(copy_semid_from_user (&setbuf, arg.buf, version))
867 			return -EFAULT;
868 	}
869 	sma = sem_lock(ns, semid);
870 	if(sma==NULL)
871 		return -EINVAL;
872 
873 	if (sem_checkid(ns,sma,semid)) {
874 		err=-EIDRM;
875 		goto out_unlock;
876 	}
877 	ipcp = &sma->sem_perm;
878 
879 	err = audit_ipc_obj(ipcp);
880 	if (err)
881 		goto out_unlock;
882 
883 	if (cmd == IPC_SET) {
884 		err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
885 		if (err)
886 			goto out_unlock;
887 	}
888 	if (current->euid != ipcp->cuid &&
889 	    current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
890 	    	err=-EPERM;
891 		goto out_unlock;
892 	}
893 
894 	err = security_sem_semctl(sma, cmd);
895 	if (err)
896 		goto out_unlock;
897 
898 	switch(cmd){
899 	case IPC_RMID:
900 		freeary(ns, sma, semid);
901 		err = 0;
902 		break;
903 	case IPC_SET:
904 		ipcp->uid = setbuf.uid;
905 		ipcp->gid = setbuf.gid;
906 		ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
907 				| (setbuf.mode & S_IRWXUGO);
908 		sma->sem_ctime = get_seconds();
909 		sem_unlock(sma);
910 		err = 0;
911 		break;
912 	default:
913 		sem_unlock(sma);
914 		err = -EINVAL;
915 		break;
916 	}
917 	return err;
918 
919 out_unlock:
920 	sem_unlock(sma);
921 	return err;
922 }
923 
924 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
925 {
926 	int err = -EINVAL;
927 	int version;
928 	struct ipc_namespace *ns;
929 
930 	if (semid < 0)
931 		return -EINVAL;
932 
933 	version = ipc_parse_version(&cmd);
934 	ns = current->nsproxy->ipc_ns;
935 
936 	switch(cmd) {
937 	case IPC_INFO:
938 	case SEM_INFO:
939 	case SEM_STAT:
940 		err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
941 		return err;
942 	case GETALL:
943 	case GETVAL:
944 	case GETPID:
945 	case GETNCNT:
946 	case GETZCNT:
947 	case IPC_STAT:
948 	case SETVAL:
949 	case SETALL:
950 		err = semctl_main(ns,semid,semnum,cmd,version,arg);
951 		return err;
952 	case IPC_RMID:
953 	case IPC_SET:
954 		mutex_lock(&sem_ids(ns).mutex);
955 		err = semctl_down(ns,semid,semnum,cmd,version,arg);
956 		mutex_unlock(&sem_ids(ns).mutex);
957 		return err;
958 	default:
959 		return -EINVAL;
960 	}
961 }
962 
963 static inline void lock_semundo(void)
964 {
965 	struct sem_undo_list *undo_list;
966 
967 	undo_list = current->sysvsem.undo_list;
968 	if (undo_list)
969 		spin_lock(&undo_list->lock);
970 }
971 
972 /* This code has an interaction with copy_semundo().
973  * Consider; two tasks are sharing the undo_list. task1
974  * acquires the undo_list lock in lock_semundo().  If task2 now
975  * exits before task1 releases the lock (by calling
976  * unlock_semundo()), then task1 will never call spin_unlock().
977  * This leave the sem_undo_list in a locked state.  If task1 now creats task3
978  * and once again shares the sem_undo_list, the sem_undo_list will still be
979  * locked, and future SEM_UNDO operations will deadlock.  This case is
980  * dealt with in copy_semundo() by having it reinitialize the spin lock when
981  * the refcnt goes from 1 to 2.
982  */
983 static inline void unlock_semundo(void)
984 {
985 	struct sem_undo_list *undo_list;
986 
987 	undo_list = current->sysvsem.undo_list;
988 	if (undo_list)
989 		spin_unlock(&undo_list->lock);
990 }
991 
992 
993 /* If the task doesn't already have a undo_list, then allocate one
994  * here.  We guarantee there is only one thread using this undo list,
995  * and current is THE ONE
996  *
997  * If this allocation and assignment succeeds, but later
998  * portions of this code fail, there is no need to free the sem_undo_list.
999  * Just let it stay associated with the task, and it'll be freed later
1000  * at exit time.
1001  *
1002  * This can block, so callers must hold no locks.
1003  */
1004 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1005 {
1006 	struct sem_undo_list *undo_list;
1007 
1008 	undo_list = current->sysvsem.undo_list;
1009 	if (!undo_list) {
1010 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1011 		if (undo_list == NULL)
1012 			return -ENOMEM;
1013 		spin_lock_init(&undo_list->lock);
1014 		atomic_set(&undo_list->refcnt, 1);
1015 		current->sysvsem.undo_list = undo_list;
1016 	}
1017 	*undo_listp = undo_list;
1018 	return 0;
1019 }
1020 
1021 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1022 {
1023 	struct sem_undo **last, *un;
1024 
1025 	last = &ulp->proc_list;
1026 	un = *last;
1027 	while(un != NULL) {
1028 		if(un->semid==semid)
1029 			break;
1030 		if(un->semid==-1) {
1031 			*last=un->proc_next;
1032 			kfree(un);
1033 		} else {
1034 			last=&un->proc_next;
1035 		}
1036 		un=*last;
1037 	}
1038 	return un;
1039 }
1040 
1041 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1042 {
1043 	struct sem_array *sma;
1044 	struct sem_undo_list *ulp;
1045 	struct sem_undo *un, *new;
1046 	int nsems;
1047 	int error;
1048 
1049 	error = get_undo_list(&ulp);
1050 	if (error)
1051 		return ERR_PTR(error);
1052 
1053 	lock_semundo();
1054 	un = lookup_undo(ulp, semid);
1055 	unlock_semundo();
1056 	if (likely(un!=NULL))
1057 		goto out;
1058 
1059 	/* no undo structure around - allocate one. */
1060 	sma = sem_lock(ns, semid);
1061 	un = ERR_PTR(-EINVAL);
1062 	if(sma==NULL)
1063 		goto out;
1064 	un = ERR_PTR(-EIDRM);
1065 	if (sem_checkid(ns,sma,semid)) {
1066 		sem_unlock(sma);
1067 		goto out;
1068 	}
1069 	nsems = sma->sem_nsems;
1070 	ipc_rcu_getref(sma);
1071 	sem_unlock(sma);
1072 
1073 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1074 	if (!new) {
1075 		ipc_lock_by_ptr(&sma->sem_perm);
1076 		ipc_rcu_putref(sma);
1077 		sem_unlock(sma);
1078 		return ERR_PTR(-ENOMEM);
1079 	}
1080 	new->semadj = (short *) &new[1];
1081 	new->semid = semid;
1082 
1083 	lock_semundo();
1084 	un = lookup_undo(ulp, semid);
1085 	if (un) {
1086 		unlock_semundo();
1087 		kfree(new);
1088 		ipc_lock_by_ptr(&sma->sem_perm);
1089 		ipc_rcu_putref(sma);
1090 		sem_unlock(sma);
1091 		goto out;
1092 	}
1093 	ipc_lock_by_ptr(&sma->sem_perm);
1094 	ipc_rcu_putref(sma);
1095 	if (sma->sem_perm.deleted) {
1096 		sem_unlock(sma);
1097 		unlock_semundo();
1098 		kfree(new);
1099 		un = ERR_PTR(-EIDRM);
1100 		goto out;
1101 	}
1102 	new->proc_next = ulp->proc_list;
1103 	ulp->proc_list = new;
1104 	new->id_next = sma->undo;
1105 	sma->undo = new;
1106 	sem_unlock(sma);
1107 	un = new;
1108 	unlock_semundo();
1109 out:
1110 	return un;
1111 }
1112 
1113 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1114 			unsigned nsops, const struct timespec __user *timeout)
1115 {
1116 	int error = -EINVAL;
1117 	struct sem_array *sma;
1118 	struct sembuf fast_sops[SEMOPM_FAST];
1119 	struct sembuf* sops = fast_sops, *sop;
1120 	struct sem_undo *un;
1121 	int undos = 0, alter = 0, max;
1122 	struct sem_queue queue;
1123 	unsigned long jiffies_left = 0;
1124 	struct ipc_namespace *ns;
1125 
1126 	ns = current->nsproxy->ipc_ns;
1127 
1128 	if (nsops < 1 || semid < 0)
1129 		return -EINVAL;
1130 	if (nsops > ns->sc_semopm)
1131 		return -E2BIG;
1132 	if(nsops > SEMOPM_FAST) {
1133 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1134 		if(sops==NULL)
1135 			return -ENOMEM;
1136 	}
1137 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1138 		error=-EFAULT;
1139 		goto out_free;
1140 	}
1141 	if (timeout) {
1142 		struct timespec _timeout;
1143 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1144 			error = -EFAULT;
1145 			goto out_free;
1146 		}
1147 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1148 			_timeout.tv_nsec >= 1000000000L) {
1149 			error = -EINVAL;
1150 			goto out_free;
1151 		}
1152 		jiffies_left = timespec_to_jiffies(&_timeout);
1153 	}
1154 	max = 0;
1155 	for (sop = sops; sop < sops + nsops; sop++) {
1156 		if (sop->sem_num >= max)
1157 			max = sop->sem_num;
1158 		if (sop->sem_flg & SEM_UNDO)
1159 			undos = 1;
1160 		if (sop->sem_op != 0)
1161 			alter = 1;
1162 	}
1163 
1164 retry_undos:
1165 	if (undos) {
1166 		un = find_undo(ns, semid);
1167 		if (IS_ERR(un)) {
1168 			error = PTR_ERR(un);
1169 			goto out_free;
1170 		}
1171 	} else
1172 		un = NULL;
1173 
1174 	sma = sem_lock(ns, semid);
1175 	error=-EINVAL;
1176 	if(sma==NULL)
1177 		goto out_free;
1178 	error = -EIDRM;
1179 	if (sem_checkid(ns,sma,semid))
1180 		goto out_unlock_free;
1181 	/*
1182 	 * semid identifies are not unique - find_undo may have
1183 	 * allocated an undo structure, it was invalidated by an RMID
1184 	 * and now a new array with received the same id. Check and retry.
1185 	 */
1186 	if (un && un->semid == -1) {
1187 		sem_unlock(sma);
1188 		goto retry_undos;
1189 	}
1190 	error = -EFBIG;
1191 	if (max >= sma->sem_nsems)
1192 		goto out_unlock_free;
1193 
1194 	error = -EACCES;
1195 	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1196 		goto out_unlock_free;
1197 
1198 	error = security_sem_semop(sma, sops, nsops, alter);
1199 	if (error)
1200 		goto out_unlock_free;
1201 
1202 	error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1203 	if (error <= 0) {
1204 		if (alter && error == 0)
1205 			update_queue (sma);
1206 		goto out_unlock_free;
1207 	}
1208 
1209 	/* We need to sleep on this operation, so we put the current
1210 	 * task into the pending queue and go to sleep.
1211 	 */
1212 
1213 	queue.sma = sma;
1214 	queue.sops = sops;
1215 	queue.nsops = nsops;
1216 	queue.undo = un;
1217 	queue.pid = current->tgid;
1218 	queue.id = semid;
1219 	queue.alter = alter;
1220 	if (alter)
1221 		append_to_queue(sma ,&queue);
1222 	else
1223 		prepend_to_queue(sma ,&queue);
1224 
1225 	queue.status = -EINTR;
1226 	queue.sleeper = current;
1227 	current->state = TASK_INTERRUPTIBLE;
1228 	sem_unlock(sma);
1229 
1230 	if (timeout)
1231 		jiffies_left = schedule_timeout(jiffies_left);
1232 	else
1233 		schedule();
1234 
1235 	error = queue.status;
1236 	while(unlikely(error == IN_WAKEUP)) {
1237 		cpu_relax();
1238 		error = queue.status;
1239 	}
1240 
1241 	if (error != -EINTR) {
1242 		/* fast path: update_queue already obtained all requested
1243 		 * resources */
1244 		goto out_free;
1245 	}
1246 
1247 	sma = sem_lock(ns, semid);
1248 	if(sma==NULL) {
1249 		BUG_ON(queue.prev != NULL);
1250 		error = -EIDRM;
1251 		goto out_free;
1252 	}
1253 
1254 	/*
1255 	 * If queue.status != -EINTR we are woken up by another process
1256 	 */
1257 	error = queue.status;
1258 	if (error != -EINTR) {
1259 		goto out_unlock_free;
1260 	}
1261 
1262 	/*
1263 	 * If an interrupt occurred we have to clean up the queue
1264 	 */
1265 	if (timeout && jiffies_left == 0)
1266 		error = -EAGAIN;
1267 	remove_from_queue(sma,&queue);
1268 	goto out_unlock_free;
1269 
1270 out_unlock_free:
1271 	sem_unlock(sma);
1272 out_free:
1273 	if(sops != fast_sops)
1274 		kfree(sops);
1275 	return error;
1276 }
1277 
1278 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1279 {
1280 	return sys_semtimedop(semid, tsops, nsops, NULL);
1281 }
1282 
1283 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1284  * parent and child tasks.
1285  *
1286  * See the notes above unlock_semundo() regarding the spin_lock_init()
1287  * in this code.  Initialize the undo_list->lock here instead of get_undo_list()
1288  * because of the reasoning in the comment above unlock_semundo.
1289  */
1290 
1291 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1292 {
1293 	struct sem_undo_list *undo_list;
1294 	int error;
1295 
1296 	if (clone_flags & CLONE_SYSVSEM) {
1297 		error = get_undo_list(&undo_list);
1298 		if (error)
1299 			return error;
1300 		atomic_inc(&undo_list->refcnt);
1301 		tsk->sysvsem.undo_list = undo_list;
1302 	} else
1303 		tsk->sysvsem.undo_list = NULL;
1304 
1305 	return 0;
1306 }
1307 
1308 /*
1309  * add semadj values to semaphores, free undo structures.
1310  * undo structures are not freed when semaphore arrays are destroyed
1311  * so some of them may be out of date.
1312  * IMPLEMENTATION NOTE: There is some confusion over whether the
1313  * set of adjustments that needs to be done should be done in an atomic
1314  * manner or not. That is, if we are attempting to decrement the semval
1315  * should we queue up and wait until we can do so legally?
1316  * The original implementation attempted to do this (queue and wait).
1317  * The current implementation does not do so. The POSIX standard
1318  * and SVID should be consulted to determine what behavior is mandated.
1319  */
1320 void exit_sem(struct task_struct *tsk)
1321 {
1322 	struct sem_undo_list *undo_list;
1323 	struct sem_undo *u, **up;
1324 	struct ipc_namespace *ns;
1325 
1326 	undo_list = tsk->sysvsem.undo_list;
1327 	if (!undo_list)
1328 		return;
1329 
1330 	if (!atomic_dec_and_test(&undo_list->refcnt))
1331 		return;
1332 
1333 	ns = tsk->nsproxy->ipc_ns;
1334 	/* There's no need to hold the semundo list lock, as current
1335          * is the last task exiting for this undo list.
1336 	 */
1337 	for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1338 		struct sem_array *sma;
1339 		int nsems, i;
1340 		struct sem_undo *un, **unp;
1341 		int semid;
1342 
1343 		semid = u->semid;
1344 
1345 		if(semid == -1)
1346 			continue;
1347 		sma = sem_lock(ns, semid);
1348 		if (sma == NULL)
1349 			continue;
1350 
1351 		if (u->semid == -1)
1352 			goto next_entry;
1353 
1354 		BUG_ON(sem_checkid(ns,sma,u->semid));
1355 
1356 		/* remove u from the sma->undo list */
1357 		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1358 			if (u == un)
1359 				goto found;
1360 		}
1361 		printk ("exit_sem undo list error id=%d\n", u->semid);
1362 		goto next_entry;
1363 found:
1364 		*unp = un->id_next;
1365 		/* perform adjustments registered in u */
1366 		nsems = sma->sem_nsems;
1367 		for (i = 0; i < nsems; i++) {
1368 			struct sem * semaphore = &sma->sem_base[i];
1369 			if (u->semadj[i]) {
1370 				semaphore->semval += u->semadj[i];
1371 				/*
1372 				 * Range checks of the new semaphore value,
1373 				 * not defined by sus:
1374 				 * - Some unices ignore the undo entirely
1375 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1376 				 * - some cap the value (e.g. FreeBSD caps
1377 				 *   at 0, but doesn't enforce SEMVMX)
1378 				 *
1379 				 * Linux caps the semaphore value, both at 0
1380 				 * and at SEMVMX.
1381 				 *
1382 				 * 	Manfred <manfred@colorfullife.com>
1383 				 */
1384 				if (semaphore->semval < 0)
1385 					semaphore->semval = 0;
1386 				if (semaphore->semval > SEMVMX)
1387 					semaphore->semval = SEMVMX;
1388 				semaphore->sempid = current->tgid;
1389 			}
1390 		}
1391 		sma->sem_otime = get_seconds();
1392 		/* maybe some queued-up processes were waiting for this */
1393 		update_queue(sma);
1394 next_entry:
1395 		sem_unlock(sma);
1396 	}
1397 	kfree(undo_list);
1398 }
1399 
1400 #ifdef CONFIG_PROC_FS
1401 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1402 {
1403 	struct sem_array *sma = it;
1404 
1405 	return seq_printf(s,
1406 			  "%10d %10d  %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1407 			  sma->sem_perm.key,
1408 			  sma->sem_id,
1409 			  sma->sem_perm.mode,
1410 			  sma->sem_nsems,
1411 			  sma->sem_perm.uid,
1412 			  sma->sem_perm.gid,
1413 			  sma->sem_perm.cuid,
1414 			  sma->sem_perm.cgid,
1415 			  sma->sem_otime,
1416 			  sma->sem_ctime);
1417 }
1418 #endif
1419