xref: /linux/io_uring/io_uring.h (revision bfb921b2a9d5d1123d1d10b196a39db629ddef87)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "io-wq.h"
12 #include "slist.h"
13 #include "filetable.h"
14 
15 #ifndef CREATE_TRACE_POINTS
16 #include <trace/events/io_uring.h>
17 #endif
18 
19 enum {
20 	IOU_OK			= 0,
21 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
22 
23 	/*
24 	 * Requeue the task_work to restart operations on this request. The
25 	 * actual value isn't important, should just be not an otherwise
26 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
27 	 */
28 	IOU_REQUEUE		= -3072,
29 
30 	/*
31 	 * Intended only when both IO_URING_F_MULTISHOT is passed
32 	 * to indicate to the poll runner that multishot should be
33 	 * removed and the result is set on req->cqe.res.
34 	 */
35 	IOU_STOP_MULTISHOT	= -ECANCELED,
36 };
37 
38 struct io_wait_queue {
39 	struct wait_queue_entry wq;
40 	struct io_ring_ctx *ctx;
41 	unsigned cq_tail;
42 	unsigned nr_timeouts;
43 	ktime_t timeout;
44 
45 #ifdef CONFIG_NET_RX_BUSY_POLL
46 	unsigned int napi_busy_poll_to;
47 	bool napi_prefer_busy_poll;
48 #endif
49 };
50 
51 static inline bool io_should_wake(struct io_wait_queue *iowq)
52 {
53 	struct io_ring_ctx *ctx = iowq->ctx;
54 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
55 
56 	/*
57 	 * Wake up if we have enough events, or if a timeout occurred since we
58 	 * started waiting. For timeouts, we always want to return to userspace,
59 	 * regardless of event count.
60 	 */
61 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
62 }
63 
64 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
65 int io_run_task_work_sig(struct io_ring_ctx *ctx);
66 void io_req_defer_failed(struct io_kiocb *req, s32 res);
67 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
68 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
69 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
70 
71 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
72 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
73 			       unsigned issue_flags);
74 
75 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
76 bool io_alloc_async_data(struct io_kiocb *req);
77 void io_req_task_queue(struct io_kiocb *req);
78 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
79 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
80 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
81 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
82 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
83 void tctx_task_work(struct callback_head *cb);
84 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
85 int io_uring_alloc_task_context(struct task_struct *task,
86 				struct io_ring_ctx *ctx);
87 
88 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
89 				     int start, int end);
90 
91 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
92 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
93 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
94 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
95 
96 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
97 void io_wq_submit_work(struct io_wq_work *work);
98 
99 void io_free_req(struct io_kiocb *req);
100 void io_queue_next(struct io_kiocb *req);
101 void io_task_refs_refill(struct io_uring_task *tctx);
102 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
103 
104 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
105 			bool cancel_all);
106 
107 enum {
108 	IO_EVENTFD_OP_SIGNAL_BIT,
109 	IO_EVENTFD_OP_FREE_BIT,
110 };
111 
112 void io_eventfd_ops(struct rcu_head *rcu);
113 void io_activate_pollwq(struct io_ring_ctx *ctx);
114 
115 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
116 {
117 #if defined(CONFIG_PROVE_LOCKING)
118 	lockdep_assert(in_task());
119 
120 	if (ctx->flags & IORING_SETUP_IOPOLL) {
121 		lockdep_assert_held(&ctx->uring_lock);
122 	} else if (!ctx->task_complete) {
123 		lockdep_assert_held(&ctx->completion_lock);
124 	} else if (ctx->submitter_task) {
125 		/*
126 		 * ->submitter_task may be NULL and we can still post a CQE,
127 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
128 		 * Not from an SQE, as those cannot be submitted, but via
129 		 * updating tagged resources.
130 		 */
131 		if (ctx->submitter_task->flags & PF_EXITING)
132 			lockdep_assert(current_work());
133 		else
134 			lockdep_assert(current == ctx->submitter_task);
135 	}
136 #endif
137 }
138 
139 static inline void io_req_task_work_add(struct io_kiocb *req)
140 {
141 	__io_req_task_work_add(req, 0);
142 }
143 
144 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
145 {
146 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
147 	    ctx->submit_state.cq_flush)
148 		__io_submit_flush_completions(ctx);
149 }
150 
151 #define io_for_each_link(pos, head) \
152 	for (pos = (head); pos; pos = pos->link)
153 
154 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
155 					struct io_uring_cqe **ret,
156 					bool overflow)
157 {
158 	io_lockdep_assert_cq_locked(ctx);
159 
160 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
161 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
162 			return false;
163 	}
164 	*ret = ctx->cqe_cached;
165 	ctx->cached_cq_tail++;
166 	ctx->cqe_cached++;
167 	if (ctx->flags & IORING_SETUP_CQE32)
168 		ctx->cqe_cached++;
169 	return true;
170 }
171 
172 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
173 {
174 	return io_get_cqe_overflow(ctx, ret, false);
175 }
176 
177 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
178 					    struct io_kiocb *req)
179 {
180 	struct io_uring_cqe *cqe;
181 
182 	/*
183 	 * If we can't get a cq entry, userspace overflowed the
184 	 * submission (by quite a lot). Increment the overflow count in
185 	 * the ring.
186 	 */
187 	if (unlikely(!io_get_cqe(ctx, &cqe)))
188 		return false;
189 
190 	if (trace_io_uring_complete_enabled())
191 		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
192 					req->cqe.res, req->cqe.flags,
193 					req->big_cqe.extra1, req->big_cqe.extra2);
194 
195 	memcpy(cqe, &req->cqe, sizeof(*cqe));
196 	if (ctx->flags & IORING_SETUP_CQE32) {
197 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
198 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
199 	}
200 	return true;
201 }
202 
203 static inline void req_set_fail(struct io_kiocb *req)
204 {
205 	req->flags |= REQ_F_FAIL;
206 	if (req->flags & REQ_F_CQE_SKIP) {
207 		req->flags &= ~REQ_F_CQE_SKIP;
208 		req->flags |= REQ_F_SKIP_LINK_CQES;
209 	}
210 }
211 
212 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
213 {
214 	req->cqe.res = res;
215 	req->cqe.flags = cflags;
216 }
217 
218 static inline bool req_has_async_data(struct io_kiocb *req)
219 {
220 	return req->flags & REQ_F_ASYNC_DATA;
221 }
222 
223 static inline void io_put_file(struct io_kiocb *req)
224 {
225 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
226 		fput(req->file);
227 }
228 
229 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
230 					 unsigned issue_flags)
231 {
232 	lockdep_assert_held(&ctx->uring_lock);
233 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
234 		mutex_unlock(&ctx->uring_lock);
235 }
236 
237 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
238 				       unsigned issue_flags)
239 {
240 	/*
241 	 * "Normal" inline submissions always hold the uring_lock, since we
242 	 * grab it from the system call. Same is true for the SQPOLL offload.
243 	 * The only exception is when we've detached the request and issue it
244 	 * from an async worker thread, grab the lock for that case.
245 	 */
246 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
247 		mutex_lock(&ctx->uring_lock);
248 	lockdep_assert_held(&ctx->uring_lock);
249 }
250 
251 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
252 {
253 	/* order cqe stores with ring update */
254 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
255 }
256 
257 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
258 {
259 	if (wq_has_sleeper(&ctx->poll_wq))
260 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
261 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
262 }
263 
264 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
265 {
266 	/*
267 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
268 	 * won't necessarily wake up all the tasks, io_should_wake() will make
269 	 * that decision.
270 	 *
271 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
272 	 * set in the mask so that if we recurse back into our own poll
273 	 * waitqueue handlers, we know we have a dependency between eventfd or
274 	 * epoll and should terminate multishot poll at that point.
275 	 */
276 	if (wq_has_sleeper(&ctx->cq_wait))
277 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
278 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
279 }
280 
281 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
282 {
283 	struct io_rings *r = ctx->rings;
284 
285 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
286 }
287 
288 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
289 {
290 	struct io_rings *rings = ctx->rings;
291 	unsigned int entries;
292 
293 	/* make sure SQ entry isn't read before tail */
294 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
295 	return min(entries, ctx->sq_entries);
296 }
297 
298 static inline int io_run_task_work(void)
299 {
300 	bool ret = false;
301 
302 	/*
303 	 * Always check-and-clear the task_work notification signal. With how
304 	 * signaling works for task_work, we can find it set with nothing to
305 	 * run. We need to clear it for that case, like get_signal() does.
306 	 */
307 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
308 		clear_notify_signal();
309 	/*
310 	 * PF_IO_WORKER never returns to userspace, so check here if we have
311 	 * notify work that needs processing.
312 	 */
313 	if (current->flags & PF_IO_WORKER) {
314 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
315 			__set_current_state(TASK_RUNNING);
316 			resume_user_mode_work(NULL);
317 		}
318 		if (current->io_uring) {
319 			unsigned int count = 0;
320 
321 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
322 			if (count)
323 				ret = true;
324 		}
325 	}
326 	if (task_work_pending(current)) {
327 		__set_current_state(TASK_RUNNING);
328 		task_work_run();
329 		ret = true;
330 	}
331 
332 	return ret;
333 }
334 
335 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
336 {
337 	return task_work_pending(current) || !llist_empty(&ctx->work_llist);
338 }
339 
340 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
341 {
342 	lockdep_assert_held(&ctx->uring_lock);
343 }
344 
345 /*
346  * Don't complete immediately but use deferred completion infrastructure.
347  * Protected by ->uring_lock and can only be used either with
348  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
349  */
350 static inline void io_req_complete_defer(struct io_kiocb *req)
351 	__must_hold(&req->ctx->uring_lock)
352 {
353 	struct io_submit_state *state = &req->ctx->submit_state;
354 
355 	lockdep_assert_held(&req->ctx->uring_lock);
356 
357 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
358 }
359 
360 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
361 {
362 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
363 		     ctx->has_evfd || ctx->poll_activated))
364 		__io_commit_cqring_flush(ctx);
365 }
366 
367 static inline void io_get_task_refs(int nr)
368 {
369 	struct io_uring_task *tctx = current->io_uring;
370 
371 	tctx->cached_refs -= nr;
372 	if (unlikely(tctx->cached_refs < 0))
373 		io_task_refs_refill(tctx);
374 }
375 
376 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
377 {
378 	return !ctx->submit_state.free_list.next;
379 }
380 
381 extern struct kmem_cache *req_cachep;
382 extern struct kmem_cache *io_buf_cachep;
383 
384 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
385 {
386 	struct io_kiocb *req;
387 
388 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
389 	wq_stack_extract(&ctx->submit_state.free_list);
390 	return req;
391 }
392 
393 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
394 {
395 	if (unlikely(io_req_cache_empty(ctx))) {
396 		if (!__io_alloc_req_refill(ctx))
397 			return false;
398 	}
399 	*req = io_extract_req(ctx);
400 	return true;
401 }
402 
403 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
404 {
405 	return likely(ctx->submitter_task == current);
406 }
407 
408 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
409 {
410 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
411 		      ctx->submitter_task == current);
412 }
413 
414 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
415 {
416 	io_req_set_res(req, res, 0);
417 	req->io_task_work.func = io_req_task_complete;
418 	io_req_task_work_add(req);
419 }
420 
421 /*
422  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
423  * slot.
424  */
425 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
426 {
427 	if (ctx->flags & IORING_SETUP_SQE128)
428 		return 2 * sizeof(struct io_uring_sqe);
429 	return sizeof(struct io_uring_sqe);
430 }
431 
432 static inline bool io_file_can_poll(struct io_kiocb *req)
433 {
434 	if (req->flags & REQ_F_CAN_POLL)
435 		return true;
436 	if (file_can_poll(req->file)) {
437 		req->flags |= REQ_F_CAN_POLL;
438 		return true;
439 	}
440 	return false;
441 }
442 
443 enum {
444 	IO_CHECK_CQ_OVERFLOW_BIT,
445 	IO_CHECK_CQ_DROPPED_BIT,
446 };
447 
448 static inline bool io_has_work(struct io_ring_ctx *ctx)
449 {
450 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
451 	       !llist_empty(&ctx->work_llist);
452 }
453 #endif
454