xref: /linux/include/net/tcp.h (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
101 				 * when active opening a connection.
102 				 * RFC1122 says the minimum retry MUST
103 				 * be at least 180secs.  Nevertheless
104 				 * this value is corresponding to
105 				 * 63secs of retransmission with the
106 				 * current initial RTO.
107 				 */
108 
109 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
110 				 * when passive opening a connection.
111 				 * This is corresponding to 31secs of
112 				 * retransmission with the current
113 				 * initial RTO.
114 				 */
115 
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 				  * state, about 60 seconds	*/
118 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
119                                  /* BSD style FIN_WAIT2 deadlock breaker.
120 				  * It used to be 3min, new value is 60sec,
121 				  * to combine FIN-WAIT-2 timeout with
122 				  * TIME-WAIT timer.
123 				  */
124 
125 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN	((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN	4U
131 #define TCP_ATO_MIN	4U
132 #endif
133 #define TCP_RTO_MAX	((unsigned)(120*HZ))
134 #define TCP_RTO_MIN	((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
137 						 * used as a fallback RTO for the
138 						 * initial data transmission if no
139 						 * valid RTT sample has been acquired,
140 						 * most likely due to retrans in 3WHS.
141 						 */
142 
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 					                 * for local resources.
145 					                 */
146 
147 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
148 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
149 #define TCP_KEEPALIVE_INTVL	(75*HZ)
150 
151 #define MAX_TCP_KEEPIDLE	32767
152 #define MAX_TCP_KEEPINTVL	32767
153 #define MAX_TCP_KEEPCNT		127
154 #define MAX_TCP_SYNCNT		127
155 
156 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
157 
158 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
159 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
160 					 * after this time. It should be equal
161 					 * (or greater than) TCP_TIMEWAIT_LEN
162 					 * to provide reliability equal to one
163 					 * provided by timewait state.
164 					 */
165 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
166 					 * timestamps. It must be less than
167 					 * minimal timewait lifetime.
168 					 */
169 /*
170  *	TCP option
171  */
172 
173 #define TCPOPT_NOP		1	/* Padding */
174 #define TCPOPT_EOL		0	/* End of options */
175 #define TCPOPT_MSS		2	/* Segment size negotiating */
176 #define TCPOPT_WINDOW		3	/* Window scaling */
177 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
178 #define TCPOPT_SACK             5       /* SACK Block */
179 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
180 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
181 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
182 #define TCPOPT_EXP		254	/* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185  */
186 #define TCPOPT_FASTOPEN_MAGIC	0xF989
187 
188 /*
189  *     TCP option lengths
190  */
191 
192 #define TCPOLEN_MSS            4
193 #define TCPOLEN_WINDOW         3
194 #define TCPOLEN_SACK_PERM      2
195 #define TCPOLEN_TIMESTAMP      10
196 #define TCPOLEN_MD5SIG         18
197 #define TCPOLEN_FASTOPEN_BASE  2
198 #define TCPOLEN_EXP_FASTOPEN_BASE  4
199 
200 /* But this is what stacks really send out. */
201 #define TCPOLEN_TSTAMP_ALIGNED		12
202 #define TCPOLEN_WSCALE_ALIGNED		4
203 #define TCPOLEN_SACKPERM_ALIGNED	4
204 #define TCPOLEN_SACK_BASE		2
205 #define TCPOLEN_SACK_BASE_ALIGNED	4
206 #define TCPOLEN_SACK_PERBLOCK		8
207 #define TCPOLEN_MD5SIG_ALIGNED		20
208 #define TCPOLEN_MSS_ALIGNED		4
209 
210 /* Flags in tp->nonagle */
211 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
212 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
213 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
214 
215 /* TCP thin-stream limits */
216 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
217 
218 /* TCP initial congestion window as per rfc6928 */
219 #define TCP_INIT_CWND		10
220 
221 /* Bit Flags for sysctl_tcp_fastopen */
222 #define	TFO_CLIENT_ENABLE	1
223 #define	TFO_SERVER_ENABLE	2
224 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
225 
226 /* Accept SYN data w/o any cookie option */
227 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
228 
229 /* Force enable TFO on all listeners, i.e., not requiring the
230  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
231  */
232 #define	TFO_SERVER_WO_SOCKOPT1	0x400
233 #define	TFO_SERVER_WO_SOCKOPT2	0x800
234 
235 extern struct inet_timewait_death_row tcp_death_row;
236 
237 /* sysctl variables for tcp */
238 extern int sysctl_tcp_timestamps;
239 extern int sysctl_tcp_window_scaling;
240 extern int sysctl_tcp_sack;
241 extern int sysctl_tcp_fin_timeout;
242 extern int sysctl_tcp_syn_retries;
243 extern int sysctl_tcp_synack_retries;
244 extern int sysctl_tcp_retries1;
245 extern int sysctl_tcp_retries2;
246 extern int sysctl_tcp_orphan_retries;
247 extern int sysctl_tcp_syncookies;
248 extern int sysctl_tcp_fastopen;
249 extern int sysctl_tcp_retrans_collapse;
250 extern int sysctl_tcp_stdurg;
251 extern int sysctl_tcp_rfc1337;
252 extern int sysctl_tcp_abort_on_overflow;
253 extern int sysctl_tcp_max_orphans;
254 extern int sysctl_tcp_fack;
255 extern int sysctl_tcp_reordering;
256 extern int sysctl_tcp_max_reordering;
257 extern int sysctl_tcp_dsack;
258 extern long sysctl_tcp_mem[3];
259 extern int sysctl_tcp_wmem[3];
260 extern int sysctl_tcp_rmem[3];
261 extern int sysctl_tcp_app_win;
262 extern int sysctl_tcp_adv_win_scale;
263 extern int sysctl_tcp_tw_reuse;
264 extern int sysctl_tcp_frto;
265 extern int sysctl_tcp_low_latency;
266 extern int sysctl_tcp_nometrics_save;
267 extern int sysctl_tcp_moderate_rcvbuf;
268 extern int sysctl_tcp_tso_win_divisor;
269 extern int sysctl_tcp_workaround_signed_windows;
270 extern int sysctl_tcp_slow_start_after_idle;
271 extern int sysctl_tcp_thin_linear_timeouts;
272 extern int sysctl_tcp_thin_dupack;
273 extern int sysctl_tcp_early_retrans;
274 extern int sysctl_tcp_limit_output_bytes;
275 extern int sysctl_tcp_challenge_ack_limit;
276 extern unsigned int sysctl_tcp_notsent_lowat;
277 extern int sysctl_tcp_min_tso_segs;
278 extern int sysctl_tcp_min_rtt_wlen;
279 extern int sysctl_tcp_autocorking;
280 extern int sysctl_tcp_invalid_ratelimit;
281 extern int sysctl_tcp_pacing_ss_ratio;
282 extern int sysctl_tcp_pacing_ca_ratio;
283 
284 extern atomic_long_t tcp_memory_allocated;
285 extern struct percpu_counter tcp_sockets_allocated;
286 extern int tcp_memory_pressure;
287 
288 /* optimized version of sk_under_memory_pressure() for TCP sockets */
289 static inline bool tcp_under_memory_pressure(const struct sock *sk)
290 {
291 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
292 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
293 		return true;
294 
295 	return tcp_memory_pressure;
296 }
297 /*
298  * The next routines deal with comparing 32 bit unsigned ints
299  * and worry about wraparound (automatic with unsigned arithmetic).
300  */
301 
302 static inline bool before(__u32 seq1, __u32 seq2)
303 {
304         return (__s32)(seq1-seq2) < 0;
305 }
306 #define after(seq2, seq1) 	before(seq1, seq2)
307 
308 /* is s2<=s1<=s3 ? */
309 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
310 {
311 	return seq3 - seq2 >= seq1 - seq2;
312 }
313 
314 static inline bool tcp_out_of_memory(struct sock *sk)
315 {
316 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
317 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
318 		return true;
319 	return false;
320 }
321 
322 void sk_forced_mem_schedule(struct sock *sk, int size);
323 
324 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
325 {
326 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
327 	int orphans = percpu_counter_read_positive(ocp);
328 
329 	if (orphans << shift > sysctl_tcp_max_orphans) {
330 		orphans = percpu_counter_sum_positive(ocp);
331 		if (orphans << shift > sysctl_tcp_max_orphans)
332 			return true;
333 	}
334 	return false;
335 }
336 
337 bool tcp_check_oom(struct sock *sk, int shift);
338 
339 
340 extern struct proto tcp_prot;
341 
342 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
343 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
344 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
345 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
346 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
347 
348 void tcp_tasklet_init(void);
349 
350 void tcp_v4_err(struct sk_buff *skb, u32);
351 
352 void tcp_shutdown(struct sock *sk, int how);
353 
354 void tcp_v4_early_demux(struct sk_buff *skb);
355 int tcp_v4_rcv(struct sk_buff *skb);
356 
357 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
358 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
359 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
360 		 int flags);
361 void tcp_release_cb(struct sock *sk);
362 void tcp_wfree(struct sk_buff *skb);
363 void tcp_write_timer_handler(struct sock *sk);
364 void tcp_delack_timer_handler(struct sock *sk);
365 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
366 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
367 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
368 			 const struct tcphdr *th, unsigned int len);
369 void tcp_rcv_space_adjust(struct sock *sk);
370 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
371 void tcp_twsk_destructor(struct sock *sk);
372 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
373 			struct pipe_inode_info *pipe, size_t len,
374 			unsigned int flags);
375 
376 static inline void tcp_dec_quickack_mode(struct sock *sk,
377 					 const unsigned int pkts)
378 {
379 	struct inet_connection_sock *icsk = inet_csk(sk);
380 
381 	if (icsk->icsk_ack.quick) {
382 		if (pkts >= icsk->icsk_ack.quick) {
383 			icsk->icsk_ack.quick = 0;
384 			/* Leaving quickack mode we deflate ATO. */
385 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
386 		} else
387 			icsk->icsk_ack.quick -= pkts;
388 	}
389 }
390 
391 #define	TCP_ECN_OK		1
392 #define	TCP_ECN_QUEUE_CWR	2
393 #define	TCP_ECN_DEMAND_CWR	4
394 #define	TCP_ECN_SEEN		8
395 
396 enum tcp_tw_status {
397 	TCP_TW_SUCCESS = 0,
398 	TCP_TW_RST = 1,
399 	TCP_TW_ACK = 2,
400 	TCP_TW_SYN = 3
401 };
402 
403 
404 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
405 					      struct sk_buff *skb,
406 					      const struct tcphdr *th);
407 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
408 			   struct request_sock *req, bool fastopen);
409 int tcp_child_process(struct sock *parent, struct sock *child,
410 		      struct sk_buff *skb);
411 void tcp_enter_loss(struct sock *sk);
412 void tcp_clear_retrans(struct tcp_sock *tp);
413 void tcp_update_metrics(struct sock *sk);
414 void tcp_init_metrics(struct sock *sk);
415 void tcp_metrics_init(void);
416 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
417 			bool paws_check, bool timestamps);
418 bool tcp_remember_stamp(struct sock *sk);
419 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
420 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
421 void tcp_disable_fack(struct tcp_sock *tp);
422 void tcp_close(struct sock *sk, long timeout);
423 void tcp_init_sock(struct sock *sk);
424 unsigned int tcp_poll(struct file *file, struct socket *sock,
425 		      struct poll_table_struct *wait);
426 int tcp_getsockopt(struct sock *sk, int level, int optname,
427 		   char __user *optval, int __user *optlen);
428 int tcp_setsockopt(struct sock *sk, int level, int optname,
429 		   char __user *optval, unsigned int optlen);
430 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 			  char __user *optval, int __user *optlen);
432 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 			  char __user *optval, unsigned int optlen);
434 void tcp_set_keepalive(struct sock *sk, int val);
435 void tcp_syn_ack_timeout(const struct request_sock *req);
436 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
437 		int flags, int *addr_len);
438 void tcp_parse_options(const struct sk_buff *skb,
439 		       struct tcp_options_received *opt_rx,
440 		       int estab, struct tcp_fastopen_cookie *foc);
441 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442 
443 /*
444  *	TCP v4 functions exported for the inet6 API
445  */
446 
447 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 void tcp_v4_mtu_reduced(struct sock *sk);
449 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
450 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
451 struct sock *tcp_create_openreq_child(const struct sock *sk,
452 				      struct request_sock *req,
453 				      struct sk_buff *skb);
454 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
455 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
456 				  struct request_sock *req,
457 				  struct dst_entry *dst,
458 				  struct request_sock *req_unhash,
459 				  bool *own_req);
460 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
461 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
462 int tcp_connect(struct sock *sk);
463 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
464 				struct request_sock *req,
465 				struct tcp_fastopen_cookie *foc,
466 				bool attach_req);
467 int tcp_disconnect(struct sock *sk, int flags);
468 
469 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
470 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
471 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
472 
473 /* From syncookies.c */
474 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
475 				 struct request_sock *req,
476 				 struct dst_entry *dst);
477 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
478 		      u32 cookie);
479 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
480 #ifdef CONFIG_SYN_COOKIES
481 
482 /* Syncookies use a monotonic timer which increments every 60 seconds.
483  * This counter is used both as a hash input and partially encoded into
484  * the cookie value.  A cookie is only validated further if the delta
485  * between the current counter value and the encoded one is less than this,
486  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
487  * the counter advances immediately after a cookie is generated).
488  */
489 #define MAX_SYNCOOKIE_AGE	2
490 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
491 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
492 
493 /* syncookies: remember time of last synqueue overflow
494  * But do not dirty this field too often (once per second is enough)
495  * It is racy as we do not hold a lock, but race is very minor.
496  */
497 static inline void tcp_synq_overflow(const struct sock *sk)
498 {
499 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
500 	unsigned long now = jiffies;
501 
502 	if (time_after(now, last_overflow + HZ))
503 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
504 }
505 
506 /* syncookies: no recent synqueue overflow on this listening socket? */
507 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
508 {
509 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
510 
511 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
512 }
513 
514 static inline u32 tcp_cookie_time(void)
515 {
516 	u64 val = get_jiffies_64();
517 
518 	do_div(val, TCP_SYNCOOKIE_PERIOD);
519 	return val;
520 }
521 
522 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
523 			      u16 *mssp);
524 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
525 __u32 cookie_init_timestamp(struct request_sock *req);
526 bool cookie_timestamp_decode(struct tcp_options_received *opt);
527 bool cookie_ecn_ok(const struct tcp_options_received *opt,
528 		   const struct net *net, const struct dst_entry *dst);
529 
530 /* From net/ipv6/syncookies.c */
531 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
532 		      u32 cookie);
533 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
534 
535 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
536 			      const struct tcphdr *th, u16 *mssp);
537 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
538 #endif
539 /* tcp_output.c */
540 
541 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
542 			       int nonagle);
543 bool tcp_may_send_now(struct sock *sk);
544 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
545 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
546 void tcp_retransmit_timer(struct sock *sk);
547 void tcp_xmit_retransmit_queue(struct sock *);
548 void tcp_simple_retransmit(struct sock *);
549 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
550 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
551 
552 void tcp_send_probe0(struct sock *);
553 void tcp_send_partial(struct sock *);
554 int tcp_write_wakeup(struct sock *, int mib);
555 void tcp_send_fin(struct sock *sk);
556 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
557 int tcp_send_synack(struct sock *);
558 void tcp_push_one(struct sock *, unsigned int mss_now);
559 void tcp_send_ack(struct sock *sk);
560 void tcp_send_delayed_ack(struct sock *sk);
561 void tcp_send_loss_probe(struct sock *sk);
562 bool tcp_schedule_loss_probe(struct sock *sk);
563 
564 /* tcp_input.c */
565 void tcp_resume_early_retransmit(struct sock *sk);
566 void tcp_rearm_rto(struct sock *sk);
567 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
568 void tcp_reset(struct sock *sk);
569 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
570 
571 /* tcp_timer.c */
572 void tcp_init_xmit_timers(struct sock *);
573 static inline void tcp_clear_xmit_timers(struct sock *sk)
574 {
575 	inet_csk_clear_xmit_timers(sk);
576 }
577 
578 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
579 unsigned int tcp_current_mss(struct sock *sk);
580 
581 /* Bound MSS / TSO packet size with the half of the window */
582 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
583 {
584 	int cutoff;
585 
586 	/* When peer uses tiny windows, there is no use in packetizing
587 	 * to sub-MSS pieces for the sake of SWS or making sure there
588 	 * are enough packets in the pipe for fast recovery.
589 	 *
590 	 * On the other hand, for extremely large MSS devices, handling
591 	 * smaller than MSS windows in this way does make sense.
592 	 */
593 	if (tp->max_window >= 512)
594 		cutoff = (tp->max_window >> 1);
595 	else
596 		cutoff = tp->max_window;
597 
598 	if (cutoff && pktsize > cutoff)
599 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
600 	else
601 		return pktsize;
602 }
603 
604 /* tcp.c */
605 void tcp_get_info(struct sock *, struct tcp_info *);
606 
607 /* Read 'sendfile()'-style from a TCP socket */
608 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
609 				unsigned int, size_t);
610 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
611 		  sk_read_actor_t recv_actor);
612 
613 void tcp_initialize_rcv_mss(struct sock *sk);
614 
615 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
616 int tcp_mss_to_mtu(struct sock *sk, int mss);
617 void tcp_mtup_init(struct sock *sk);
618 void tcp_init_buffer_space(struct sock *sk);
619 
620 static inline void tcp_bound_rto(const struct sock *sk)
621 {
622 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
623 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
624 }
625 
626 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
627 {
628 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
629 }
630 
631 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
632 {
633 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
634 			       ntohl(TCP_FLAG_ACK) |
635 			       snd_wnd);
636 }
637 
638 static inline void tcp_fast_path_on(struct tcp_sock *tp)
639 {
640 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
641 }
642 
643 static inline void tcp_fast_path_check(struct sock *sk)
644 {
645 	struct tcp_sock *tp = tcp_sk(sk);
646 
647 	if (skb_queue_empty(&tp->out_of_order_queue) &&
648 	    tp->rcv_wnd &&
649 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
650 	    !tp->urg_data)
651 		tcp_fast_path_on(tp);
652 }
653 
654 /* Compute the actual rto_min value */
655 static inline u32 tcp_rto_min(struct sock *sk)
656 {
657 	const struct dst_entry *dst = __sk_dst_get(sk);
658 	u32 rto_min = TCP_RTO_MIN;
659 
660 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
661 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
662 	return rto_min;
663 }
664 
665 static inline u32 tcp_rto_min_us(struct sock *sk)
666 {
667 	return jiffies_to_usecs(tcp_rto_min(sk));
668 }
669 
670 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
671 {
672 	return dst_metric_locked(dst, RTAX_CC_ALGO);
673 }
674 
675 /* Minimum RTT in usec. ~0 means not available. */
676 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
677 {
678 	return tp->rtt_min[0].rtt;
679 }
680 
681 /* Compute the actual receive window we are currently advertising.
682  * Rcv_nxt can be after the window if our peer push more data
683  * than the offered window.
684  */
685 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
686 {
687 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
688 
689 	if (win < 0)
690 		win = 0;
691 	return (u32) win;
692 }
693 
694 /* Choose a new window, without checks for shrinking, and without
695  * scaling applied to the result.  The caller does these things
696  * if necessary.  This is a "raw" window selection.
697  */
698 u32 __tcp_select_window(struct sock *sk);
699 
700 void tcp_send_window_probe(struct sock *sk);
701 
702 /* TCP timestamps are only 32-bits, this causes a slight
703  * complication on 64-bit systems since we store a snapshot
704  * of jiffies in the buffer control blocks below.  We decided
705  * to use only the low 32-bits of jiffies and hide the ugly
706  * casts with the following macro.
707  */
708 #define tcp_time_stamp		((__u32)(jiffies))
709 
710 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
711 {
712 	return skb->skb_mstamp.stamp_jiffies;
713 }
714 
715 
716 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
717 
718 #define TCPHDR_FIN 0x01
719 #define TCPHDR_SYN 0x02
720 #define TCPHDR_RST 0x04
721 #define TCPHDR_PSH 0x08
722 #define TCPHDR_ACK 0x10
723 #define TCPHDR_URG 0x20
724 #define TCPHDR_ECE 0x40
725 #define TCPHDR_CWR 0x80
726 
727 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
728 
729 /* This is what the send packet queuing engine uses to pass
730  * TCP per-packet control information to the transmission code.
731  * We also store the host-order sequence numbers in here too.
732  * This is 44 bytes if IPV6 is enabled.
733  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
734  */
735 struct tcp_skb_cb {
736 	__u32		seq;		/* Starting sequence number	*/
737 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
738 	union {
739 		/* Note : tcp_tw_isn is used in input path only
740 		 *	  (isn chosen by tcp_timewait_state_process())
741 		 *
742 		 * 	  tcp_gso_segs/size are used in write queue only,
743 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
744 		 */
745 		__u32		tcp_tw_isn;
746 		struct {
747 			u16	tcp_gso_segs;
748 			u16	tcp_gso_size;
749 		};
750 	};
751 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
752 
753 	__u8		sacked;		/* State flags for SACK/FACK.	*/
754 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
755 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
756 #define TCPCB_LOST		0x04	/* SKB is lost			*/
757 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
758 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
759 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
760 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
761 				TCPCB_REPAIRED)
762 
763 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
764 	/* 1 byte hole */
765 	__u32		ack_seq;	/* Sequence number ACK'd	*/
766 	union {
767 		struct inet_skb_parm	h4;
768 #if IS_ENABLED(CONFIG_IPV6)
769 		struct inet6_skb_parm	h6;
770 #endif
771 	} header;	/* For incoming frames		*/
772 };
773 
774 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
775 
776 
777 #if IS_ENABLED(CONFIG_IPV6)
778 /* This is the variant of inet6_iif() that must be used by TCP,
779  * as TCP moves IP6CB into a different location in skb->cb[]
780  */
781 static inline int tcp_v6_iif(const struct sk_buff *skb)
782 {
783 	return TCP_SKB_CB(skb)->header.h6.iif;
784 }
785 #endif
786 
787 /* Due to TSO, an SKB can be composed of multiple actual
788  * packets.  To keep these tracked properly, we use this.
789  */
790 static inline int tcp_skb_pcount(const struct sk_buff *skb)
791 {
792 	return TCP_SKB_CB(skb)->tcp_gso_segs;
793 }
794 
795 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
796 {
797 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
798 }
799 
800 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
801 {
802 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
803 }
804 
805 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
806 static inline int tcp_skb_mss(const struct sk_buff *skb)
807 {
808 	return TCP_SKB_CB(skb)->tcp_gso_size;
809 }
810 
811 /* Events passed to congestion control interface */
812 enum tcp_ca_event {
813 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
814 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
815 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
816 	CA_EVENT_LOSS,		/* loss timeout */
817 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
818 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
819 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
820 	CA_EVENT_NON_DELAYED_ACK,
821 };
822 
823 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
824 enum tcp_ca_ack_event_flags {
825 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
826 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
827 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
828 };
829 
830 /*
831  * Interface for adding new TCP congestion control handlers
832  */
833 #define TCP_CA_NAME_MAX	16
834 #define TCP_CA_MAX	128
835 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
836 
837 #define TCP_CA_UNSPEC	0
838 
839 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
840 #define TCP_CONG_NON_RESTRICTED 0x1
841 /* Requires ECN/ECT set on all packets */
842 #define TCP_CONG_NEEDS_ECN	0x2
843 
844 union tcp_cc_info;
845 
846 struct tcp_congestion_ops {
847 	struct list_head	list;
848 	u32 key;
849 	u32 flags;
850 
851 	/* initialize private data (optional) */
852 	void (*init)(struct sock *sk);
853 	/* cleanup private data  (optional) */
854 	void (*release)(struct sock *sk);
855 
856 	/* return slow start threshold (required) */
857 	u32 (*ssthresh)(struct sock *sk);
858 	/* do new cwnd calculation (required) */
859 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
860 	/* call before changing ca_state (optional) */
861 	void (*set_state)(struct sock *sk, u8 new_state);
862 	/* call when cwnd event occurs (optional) */
863 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
864 	/* call when ack arrives (optional) */
865 	void (*in_ack_event)(struct sock *sk, u32 flags);
866 	/* new value of cwnd after loss (optional) */
867 	u32  (*undo_cwnd)(struct sock *sk);
868 	/* hook for packet ack accounting (optional) */
869 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
870 	/* get info for inet_diag (optional) */
871 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
872 			   union tcp_cc_info *info);
873 
874 	char 		name[TCP_CA_NAME_MAX];
875 	struct module 	*owner;
876 };
877 
878 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
879 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
880 
881 void tcp_assign_congestion_control(struct sock *sk);
882 void tcp_init_congestion_control(struct sock *sk);
883 void tcp_cleanup_congestion_control(struct sock *sk);
884 int tcp_set_default_congestion_control(const char *name);
885 void tcp_get_default_congestion_control(char *name);
886 void tcp_get_available_congestion_control(char *buf, size_t len);
887 void tcp_get_allowed_congestion_control(char *buf, size_t len);
888 int tcp_set_allowed_congestion_control(char *allowed);
889 int tcp_set_congestion_control(struct sock *sk, const char *name);
890 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
891 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
892 
893 u32 tcp_reno_ssthresh(struct sock *sk);
894 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
895 extern struct tcp_congestion_ops tcp_reno;
896 
897 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
898 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
899 #ifdef CONFIG_INET
900 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
901 #else
902 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
903 {
904 	return NULL;
905 }
906 #endif
907 
908 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
909 {
910 	const struct inet_connection_sock *icsk = inet_csk(sk);
911 
912 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
913 }
914 
915 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
916 {
917 	struct inet_connection_sock *icsk = inet_csk(sk);
918 
919 	if (icsk->icsk_ca_ops->set_state)
920 		icsk->icsk_ca_ops->set_state(sk, ca_state);
921 	icsk->icsk_ca_state = ca_state;
922 }
923 
924 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
925 {
926 	const struct inet_connection_sock *icsk = inet_csk(sk);
927 
928 	if (icsk->icsk_ca_ops->cwnd_event)
929 		icsk->icsk_ca_ops->cwnd_event(sk, event);
930 }
931 
932 /* These functions determine how the current flow behaves in respect of SACK
933  * handling. SACK is negotiated with the peer, and therefore it can vary
934  * between different flows.
935  *
936  * tcp_is_sack - SACK enabled
937  * tcp_is_reno - No SACK
938  * tcp_is_fack - FACK enabled, implies SACK enabled
939  */
940 static inline int tcp_is_sack(const struct tcp_sock *tp)
941 {
942 	return tp->rx_opt.sack_ok;
943 }
944 
945 static inline bool tcp_is_reno(const struct tcp_sock *tp)
946 {
947 	return !tcp_is_sack(tp);
948 }
949 
950 static inline bool tcp_is_fack(const struct tcp_sock *tp)
951 {
952 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
953 }
954 
955 static inline void tcp_enable_fack(struct tcp_sock *tp)
956 {
957 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
958 }
959 
960 /* TCP early-retransmit (ER) is similar to but more conservative than
961  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
962  */
963 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
964 {
965 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
966 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
967 		sysctl_tcp_reordering == 3;
968 }
969 
970 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
971 {
972 	tp->do_early_retrans = 0;
973 }
974 
975 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
976 {
977 	return tp->sacked_out + tp->lost_out;
978 }
979 
980 /* This determines how many packets are "in the network" to the best
981  * of our knowledge.  In many cases it is conservative, but where
982  * detailed information is available from the receiver (via SACK
983  * blocks etc.) we can make more aggressive calculations.
984  *
985  * Use this for decisions involving congestion control, use just
986  * tp->packets_out to determine if the send queue is empty or not.
987  *
988  * Read this equation as:
989  *
990  *	"Packets sent once on transmission queue" MINUS
991  *	"Packets left network, but not honestly ACKed yet" PLUS
992  *	"Packets fast retransmitted"
993  */
994 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
995 {
996 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
997 }
998 
999 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1000 
1001 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1002 {
1003 	return tp->snd_cwnd < tp->snd_ssthresh;
1004 }
1005 
1006 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1007 {
1008 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1009 }
1010 
1011 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1012 {
1013 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1014 	       (1 << inet_csk(sk)->icsk_ca_state);
1015 }
1016 
1017 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1018  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1019  * ssthresh.
1020  */
1021 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1022 {
1023 	const struct tcp_sock *tp = tcp_sk(sk);
1024 
1025 	if (tcp_in_cwnd_reduction(sk))
1026 		return tp->snd_ssthresh;
1027 	else
1028 		return max(tp->snd_ssthresh,
1029 			   ((tp->snd_cwnd >> 1) +
1030 			    (tp->snd_cwnd >> 2)));
1031 }
1032 
1033 /* Use define here intentionally to get WARN_ON location shown at the caller */
1034 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1035 
1036 void tcp_enter_cwr(struct sock *sk);
1037 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1038 
1039 /* The maximum number of MSS of available cwnd for which TSO defers
1040  * sending if not using sysctl_tcp_tso_win_divisor.
1041  */
1042 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1043 {
1044 	return 3;
1045 }
1046 
1047 /* Slow start with delack produces 3 packets of burst, so that
1048  * it is safe "de facto".  This will be the default - same as
1049  * the default reordering threshold - but if reordering increases,
1050  * we must be able to allow cwnd to burst at least this much in order
1051  * to not pull it back when holes are filled.
1052  */
1053 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1054 {
1055 	return tp->reordering;
1056 }
1057 
1058 /* Returns end sequence number of the receiver's advertised window */
1059 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1060 {
1061 	return tp->snd_una + tp->snd_wnd;
1062 }
1063 
1064 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1065  * flexible approach. The RFC suggests cwnd should not be raised unless
1066  * it was fully used previously. And that's exactly what we do in
1067  * congestion avoidance mode. But in slow start we allow cwnd to grow
1068  * as long as the application has used half the cwnd.
1069  * Example :
1070  *    cwnd is 10 (IW10), but application sends 9 frames.
1071  *    We allow cwnd to reach 18 when all frames are ACKed.
1072  * This check is safe because it's as aggressive as slow start which already
1073  * risks 100% overshoot. The advantage is that we discourage application to
1074  * either send more filler packets or data to artificially blow up the cwnd
1075  * usage, and allow application-limited process to probe bw more aggressively.
1076  */
1077 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1078 {
1079 	const struct tcp_sock *tp = tcp_sk(sk);
1080 
1081 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1082 	if (tcp_in_slow_start(tp))
1083 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1084 
1085 	return tp->is_cwnd_limited;
1086 }
1087 
1088 /* Something is really bad, we could not queue an additional packet,
1089  * because qdisc is full or receiver sent a 0 window.
1090  * We do not want to add fuel to the fire, or abort too early,
1091  * so make sure the timer we arm now is at least 200ms in the future,
1092  * regardless of current icsk_rto value (as it could be ~2ms)
1093  */
1094 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1095 {
1096 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1097 }
1098 
1099 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1100 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1101 					    unsigned long max_when)
1102 {
1103 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1104 
1105 	return (unsigned long)min_t(u64, when, max_when);
1106 }
1107 
1108 static inline void tcp_check_probe_timer(struct sock *sk)
1109 {
1110 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1111 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1112 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1113 }
1114 
1115 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1116 {
1117 	tp->snd_wl1 = seq;
1118 }
1119 
1120 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1121 {
1122 	tp->snd_wl1 = seq;
1123 }
1124 
1125 /*
1126  * Calculate(/check) TCP checksum
1127  */
1128 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1129 				   __be32 daddr, __wsum base)
1130 {
1131 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1132 }
1133 
1134 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1135 {
1136 	return __skb_checksum_complete(skb);
1137 }
1138 
1139 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1140 {
1141 	return !skb_csum_unnecessary(skb) &&
1142 		__tcp_checksum_complete(skb);
1143 }
1144 
1145 /* Prequeue for VJ style copy to user, combined with checksumming. */
1146 
1147 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1148 {
1149 	tp->ucopy.task = NULL;
1150 	tp->ucopy.len = 0;
1151 	tp->ucopy.memory = 0;
1152 	skb_queue_head_init(&tp->ucopy.prequeue);
1153 }
1154 
1155 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1156 
1157 #undef STATE_TRACE
1158 
1159 #ifdef STATE_TRACE
1160 static const char *statename[]={
1161 	"Unused","Established","Syn Sent","Syn Recv",
1162 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1163 	"Close Wait","Last ACK","Listen","Closing"
1164 };
1165 #endif
1166 void tcp_set_state(struct sock *sk, int state);
1167 
1168 void tcp_done(struct sock *sk);
1169 
1170 int tcp_abort(struct sock *sk, int err);
1171 
1172 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1173 {
1174 	rx_opt->dsack = 0;
1175 	rx_opt->num_sacks = 0;
1176 }
1177 
1178 u32 tcp_default_init_rwnd(u32 mss);
1179 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1180 
1181 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1182 {
1183 	struct tcp_sock *tp = tcp_sk(sk);
1184 	s32 delta;
1185 
1186 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1187 		return;
1188 	delta = tcp_time_stamp - tp->lsndtime;
1189 	if (delta > inet_csk(sk)->icsk_rto)
1190 		tcp_cwnd_restart(sk, delta);
1191 }
1192 
1193 /* Determine a window scaling and initial window to offer. */
1194 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1195 			       __u32 *window_clamp, int wscale_ok,
1196 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1197 
1198 static inline int tcp_win_from_space(int space)
1199 {
1200 	return sysctl_tcp_adv_win_scale<=0 ?
1201 		(space>>(-sysctl_tcp_adv_win_scale)) :
1202 		space - (space>>sysctl_tcp_adv_win_scale);
1203 }
1204 
1205 /* Note: caller must be prepared to deal with negative returns */
1206 static inline int tcp_space(const struct sock *sk)
1207 {
1208 	return tcp_win_from_space(sk->sk_rcvbuf -
1209 				  atomic_read(&sk->sk_rmem_alloc));
1210 }
1211 
1212 static inline int tcp_full_space(const struct sock *sk)
1213 {
1214 	return tcp_win_from_space(sk->sk_rcvbuf);
1215 }
1216 
1217 extern void tcp_openreq_init_rwin(struct request_sock *req,
1218 				  const struct sock *sk_listener,
1219 				  const struct dst_entry *dst);
1220 
1221 void tcp_enter_memory_pressure(struct sock *sk);
1222 
1223 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1224 {
1225 	struct net *net = sock_net((struct sock *)tp);
1226 
1227 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1228 }
1229 
1230 static inline int keepalive_time_when(const struct tcp_sock *tp)
1231 {
1232 	struct net *net = sock_net((struct sock *)tp);
1233 
1234 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1235 }
1236 
1237 static inline int keepalive_probes(const struct tcp_sock *tp)
1238 {
1239 	struct net *net = sock_net((struct sock *)tp);
1240 
1241 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1242 }
1243 
1244 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1245 {
1246 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1247 
1248 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1249 			  tcp_time_stamp - tp->rcv_tstamp);
1250 }
1251 
1252 static inline int tcp_fin_time(const struct sock *sk)
1253 {
1254 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1255 	const int rto = inet_csk(sk)->icsk_rto;
1256 
1257 	if (fin_timeout < (rto << 2) - (rto >> 1))
1258 		fin_timeout = (rto << 2) - (rto >> 1);
1259 
1260 	return fin_timeout;
1261 }
1262 
1263 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1264 				  int paws_win)
1265 {
1266 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1267 		return true;
1268 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1269 		return true;
1270 	/*
1271 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1272 	 * then following tcp messages have valid values. Ignore 0 value,
1273 	 * or else 'negative' tsval might forbid us to accept their packets.
1274 	 */
1275 	if (!rx_opt->ts_recent)
1276 		return true;
1277 	return false;
1278 }
1279 
1280 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1281 				   int rst)
1282 {
1283 	if (tcp_paws_check(rx_opt, 0))
1284 		return false;
1285 
1286 	/* RST segments are not recommended to carry timestamp,
1287 	   and, if they do, it is recommended to ignore PAWS because
1288 	   "their cleanup function should take precedence over timestamps."
1289 	   Certainly, it is mistake. It is necessary to understand the reasons
1290 	   of this constraint to relax it: if peer reboots, clock may go
1291 	   out-of-sync and half-open connections will not be reset.
1292 	   Actually, the problem would be not existing if all
1293 	   the implementations followed draft about maintaining clock
1294 	   via reboots. Linux-2.2 DOES NOT!
1295 
1296 	   However, we can relax time bounds for RST segments to MSL.
1297 	 */
1298 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1299 		return false;
1300 	return true;
1301 }
1302 
1303 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1304 			  int mib_idx, u32 *last_oow_ack_time);
1305 
1306 static inline void tcp_mib_init(struct net *net)
1307 {
1308 	/* See RFC 2012 */
1309 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1310 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1311 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1312 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1313 }
1314 
1315 /* from STCP */
1316 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1317 {
1318 	tp->lost_skb_hint = NULL;
1319 }
1320 
1321 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1322 {
1323 	tcp_clear_retrans_hints_partial(tp);
1324 	tp->retransmit_skb_hint = NULL;
1325 }
1326 
1327 union tcp_md5_addr {
1328 	struct in_addr  a4;
1329 #if IS_ENABLED(CONFIG_IPV6)
1330 	struct in6_addr	a6;
1331 #endif
1332 };
1333 
1334 /* - key database */
1335 struct tcp_md5sig_key {
1336 	struct hlist_node	node;
1337 	u8			keylen;
1338 	u8			family; /* AF_INET or AF_INET6 */
1339 	union tcp_md5_addr	addr;
1340 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1341 	struct rcu_head		rcu;
1342 };
1343 
1344 /* - sock block */
1345 struct tcp_md5sig_info {
1346 	struct hlist_head	head;
1347 	struct rcu_head		rcu;
1348 };
1349 
1350 /* - pseudo header */
1351 struct tcp4_pseudohdr {
1352 	__be32		saddr;
1353 	__be32		daddr;
1354 	__u8		pad;
1355 	__u8		protocol;
1356 	__be16		len;
1357 };
1358 
1359 struct tcp6_pseudohdr {
1360 	struct in6_addr	saddr;
1361 	struct in6_addr daddr;
1362 	__be32		len;
1363 	__be32		protocol;	/* including padding */
1364 };
1365 
1366 union tcp_md5sum_block {
1367 	struct tcp4_pseudohdr ip4;
1368 #if IS_ENABLED(CONFIG_IPV6)
1369 	struct tcp6_pseudohdr ip6;
1370 #endif
1371 };
1372 
1373 /* - pool: digest algorithm, hash description and scratch buffer */
1374 struct tcp_md5sig_pool {
1375 	struct ahash_request	*md5_req;
1376 	union tcp_md5sum_block	md5_blk;
1377 };
1378 
1379 /* - functions */
1380 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1381 			const struct sock *sk, const struct sk_buff *skb);
1382 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1383 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1384 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1385 		   int family);
1386 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1387 					 const struct sock *addr_sk);
1388 
1389 #ifdef CONFIG_TCP_MD5SIG
1390 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1391 					 const union tcp_md5_addr *addr,
1392 					 int family);
1393 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1394 #else
1395 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1396 					 const union tcp_md5_addr *addr,
1397 					 int family)
1398 {
1399 	return NULL;
1400 }
1401 #define tcp_twsk_md5_key(twsk)	NULL
1402 #endif
1403 
1404 bool tcp_alloc_md5sig_pool(void);
1405 
1406 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1407 static inline void tcp_put_md5sig_pool(void)
1408 {
1409 	local_bh_enable();
1410 }
1411 
1412 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1413 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1414 			  unsigned int header_len);
1415 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1416 		     const struct tcp_md5sig_key *key);
1417 
1418 /* From tcp_fastopen.c */
1419 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1420 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1421 			    unsigned long *last_syn_loss);
1422 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1423 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1424 			    u16 try_exp);
1425 struct tcp_fastopen_request {
1426 	/* Fast Open cookie. Size 0 means a cookie request */
1427 	struct tcp_fastopen_cookie	cookie;
1428 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1429 	size_t				size;
1430 	int				copied;	/* queued in tcp_connect() */
1431 };
1432 void tcp_free_fastopen_req(struct tcp_sock *tp);
1433 
1434 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1435 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1436 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1437 			      struct request_sock *req,
1438 			      struct tcp_fastopen_cookie *foc,
1439 			      struct dst_entry *dst);
1440 void tcp_fastopen_init_key_once(bool publish);
1441 #define TCP_FASTOPEN_KEY_LENGTH 16
1442 
1443 /* Fastopen key context */
1444 struct tcp_fastopen_context {
1445 	struct crypto_cipher	*tfm;
1446 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1447 	struct rcu_head		rcu;
1448 };
1449 
1450 /* write queue abstraction */
1451 static inline void tcp_write_queue_purge(struct sock *sk)
1452 {
1453 	struct sk_buff *skb;
1454 
1455 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1456 		sk_wmem_free_skb(sk, skb);
1457 	sk_mem_reclaim(sk);
1458 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1459 }
1460 
1461 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1462 {
1463 	return skb_peek(&sk->sk_write_queue);
1464 }
1465 
1466 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1467 {
1468 	return skb_peek_tail(&sk->sk_write_queue);
1469 }
1470 
1471 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1472 						   const struct sk_buff *skb)
1473 {
1474 	return skb_queue_next(&sk->sk_write_queue, skb);
1475 }
1476 
1477 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1478 						   const struct sk_buff *skb)
1479 {
1480 	return skb_queue_prev(&sk->sk_write_queue, skb);
1481 }
1482 
1483 #define tcp_for_write_queue(skb, sk)					\
1484 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1485 
1486 #define tcp_for_write_queue_from(skb, sk)				\
1487 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1488 
1489 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1490 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1491 
1492 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1493 {
1494 	return sk->sk_send_head;
1495 }
1496 
1497 static inline bool tcp_skb_is_last(const struct sock *sk,
1498 				   const struct sk_buff *skb)
1499 {
1500 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1501 }
1502 
1503 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1504 {
1505 	if (tcp_skb_is_last(sk, skb))
1506 		sk->sk_send_head = NULL;
1507 	else
1508 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1509 }
1510 
1511 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1512 {
1513 	if (sk->sk_send_head == skb_unlinked)
1514 		sk->sk_send_head = NULL;
1515 }
1516 
1517 static inline void tcp_init_send_head(struct sock *sk)
1518 {
1519 	sk->sk_send_head = NULL;
1520 }
1521 
1522 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1523 {
1524 	__skb_queue_tail(&sk->sk_write_queue, skb);
1525 }
1526 
1527 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1528 {
1529 	__tcp_add_write_queue_tail(sk, skb);
1530 
1531 	/* Queue it, remembering where we must start sending. */
1532 	if (sk->sk_send_head == NULL) {
1533 		sk->sk_send_head = skb;
1534 
1535 		if (tcp_sk(sk)->highest_sack == NULL)
1536 			tcp_sk(sk)->highest_sack = skb;
1537 	}
1538 }
1539 
1540 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1541 {
1542 	__skb_queue_head(&sk->sk_write_queue, skb);
1543 }
1544 
1545 /* Insert buff after skb on the write queue of sk.  */
1546 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1547 						struct sk_buff *buff,
1548 						struct sock *sk)
1549 {
1550 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1551 }
1552 
1553 /* Insert new before skb on the write queue of sk.  */
1554 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1555 						  struct sk_buff *skb,
1556 						  struct sock *sk)
1557 {
1558 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1559 
1560 	if (sk->sk_send_head == skb)
1561 		sk->sk_send_head = new;
1562 }
1563 
1564 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1565 {
1566 	__skb_unlink(skb, &sk->sk_write_queue);
1567 }
1568 
1569 static inline bool tcp_write_queue_empty(struct sock *sk)
1570 {
1571 	return skb_queue_empty(&sk->sk_write_queue);
1572 }
1573 
1574 static inline void tcp_push_pending_frames(struct sock *sk)
1575 {
1576 	if (tcp_send_head(sk)) {
1577 		struct tcp_sock *tp = tcp_sk(sk);
1578 
1579 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1580 	}
1581 }
1582 
1583 /* Start sequence of the skb just after the highest skb with SACKed
1584  * bit, valid only if sacked_out > 0 or when the caller has ensured
1585  * validity by itself.
1586  */
1587 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1588 {
1589 	if (!tp->sacked_out)
1590 		return tp->snd_una;
1591 
1592 	if (tp->highest_sack == NULL)
1593 		return tp->snd_nxt;
1594 
1595 	return TCP_SKB_CB(tp->highest_sack)->seq;
1596 }
1597 
1598 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1599 {
1600 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1601 						tcp_write_queue_next(sk, skb);
1602 }
1603 
1604 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1605 {
1606 	return tcp_sk(sk)->highest_sack;
1607 }
1608 
1609 static inline void tcp_highest_sack_reset(struct sock *sk)
1610 {
1611 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1612 }
1613 
1614 /* Called when old skb is about to be deleted (to be combined with new skb) */
1615 static inline void tcp_highest_sack_combine(struct sock *sk,
1616 					    struct sk_buff *old,
1617 					    struct sk_buff *new)
1618 {
1619 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1620 		tcp_sk(sk)->highest_sack = new;
1621 }
1622 
1623 /* This helper checks if socket has IP_TRANSPARENT set */
1624 static inline bool inet_sk_transparent(const struct sock *sk)
1625 {
1626 	switch (sk->sk_state) {
1627 	case TCP_TIME_WAIT:
1628 		return inet_twsk(sk)->tw_transparent;
1629 	case TCP_NEW_SYN_RECV:
1630 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1631 	}
1632 	return inet_sk(sk)->transparent;
1633 }
1634 
1635 /* Determines whether this is a thin stream (which may suffer from
1636  * increased latency). Used to trigger latency-reducing mechanisms.
1637  */
1638 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1639 {
1640 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1641 }
1642 
1643 /* /proc */
1644 enum tcp_seq_states {
1645 	TCP_SEQ_STATE_LISTENING,
1646 	TCP_SEQ_STATE_ESTABLISHED,
1647 };
1648 
1649 int tcp_seq_open(struct inode *inode, struct file *file);
1650 
1651 struct tcp_seq_afinfo {
1652 	char				*name;
1653 	sa_family_t			family;
1654 	const struct file_operations	*seq_fops;
1655 	struct seq_operations		seq_ops;
1656 };
1657 
1658 struct tcp_iter_state {
1659 	struct seq_net_private	p;
1660 	sa_family_t		family;
1661 	enum tcp_seq_states	state;
1662 	struct sock		*syn_wait_sk;
1663 	int			bucket, offset, sbucket, num;
1664 	loff_t			last_pos;
1665 };
1666 
1667 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1668 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1669 
1670 extern struct request_sock_ops tcp_request_sock_ops;
1671 extern struct request_sock_ops tcp6_request_sock_ops;
1672 
1673 void tcp_v4_destroy_sock(struct sock *sk);
1674 
1675 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1676 				netdev_features_t features);
1677 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1678 int tcp_gro_complete(struct sk_buff *skb);
1679 
1680 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1681 
1682 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1683 {
1684 	return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1685 }
1686 
1687 static inline bool tcp_stream_memory_free(const struct sock *sk)
1688 {
1689 	const struct tcp_sock *tp = tcp_sk(sk);
1690 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1691 
1692 	return notsent_bytes < tcp_notsent_lowat(tp);
1693 }
1694 
1695 #ifdef CONFIG_PROC_FS
1696 int tcp4_proc_init(void);
1697 void tcp4_proc_exit(void);
1698 #endif
1699 
1700 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1701 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1702 		     const struct tcp_request_sock_ops *af_ops,
1703 		     struct sock *sk, struct sk_buff *skb);
1704 
1705 /* TCP af-specific functions */
1706 struct tcp_sock_af_ops {
1707 #ifdef CONFIG_TCP_MD5SIG
1708 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1709 						const struct sock *addr_sk);
1710 	int		(*calc_md5_hash)(char *location,
1711 					 const struct tcp_md5sig_key *md5,
1712 					 const struct sock *sk,
1713 					 const struct sk_buff *skb);
1714 	int		(*md5_parse)(struct sock *sk,
1715 				     char __user *optval,
1716 				     int optlen);
1717 #endif
1718 };
1719 
1720 struct tcp_request_sock_ops {
1721 	u16 mss_clamp;
1722 #ifdef CONFIG_TCP_MD5SIG
1723 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1724 						 const struct sock *addr_sk);
1725 	int		(*calc_md5_hash) (char *location,
1726 					  const struct tcp_md5sig_key *md5,
1727 					  const struct sock *sk,
1728 					  const struct sk_buff *skb);
1729 #endif
1730 	void (*init_req)(struct request_sock *req,
1731 			 const struct sock *sk_listener,
1732 			 struct sk_buff *skb);
1733 #ifdef CONFIG_SYN_COOKIES
1734 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1735 				 __u16 *mss);
1736 #endif
1737 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1738 				       const struct request_sock *req,
1739 				       bool *strict);
1740 	__u32 (*init_seq)(const struct sk_buff *skb);
1741 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1742 			   struct flowi *fl, struct request_sock *req,
1743 			   struct tcp_fastopen_cookie *foc,
1744 			   bool attach_req);
1745 };
1746 
1747 #ifdef CONFIG_SYN_COOKIES
1748 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1749 					 const struct sock *sk, struct sk_buff *skb,
1750 					 __u16 *mss)
1751 {
1752 	tcp_synq_overflow(sk);
1753 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1754 	return ops->cookie_init_seq(skb, mss);
1755 }
1756 #else
1757 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1758 					 const struct sock *sk, struct sk_buff *skb,
1759 					 __u16 *mss)
1760 {
1761 	return 0;
1762 }
1763 #endif
1764 
1765 int tcpv4_offload_init(void);
1766 
1767 void tcp_v4_init(void);
1768 void tcp_init(void);
1769 
1770 /* tcp_recovery.c */
1771 
1772 /* Flags to enable various loss recovery features. See below */
1773 extern int sysctl_tcp_recovery;
1774 
1775 /* Use TCP RACK to detect (some) tail and retransmit losses */
1776 #define TCP_RACK_LOST_RETRANS  0x1
1777 
1778 extern int tcp_rack_mark_lost(struct sock *sk);
1779 
1780 extern void tcp_rack_advance(struct tcp_sock *tp,
1781 			     const struct skb_mstamp *xmit_time, u8 sacked);
1782 
1783 /*
1784  * Save and compile IPv4 options, return a pointer to it
1785  */
1786 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1787 {
1788 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1789 	struct ip_options_rcu *dopt = NULL;
1790 
1791 	if (opt->optlen) {
1792 		int opt_size = sizeof(*dopt) + opt->optlen;
1793 
1794 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1795 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1796 			kfree(dopt);
1797 			dopt = NULL;
1798 		}
1799 	}
1800 	return dopt;
1801 }
1802 
1803 /* locally generated TCP pure ACKs have skb->truesize == 2
1804  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1805  * This is much faster than dissecting the packet to find out.
1806  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1807  */
1808 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1809 {
1810 	return skb->truesize == 2;
1811 }
1812 
1813 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1814 {
1815 	skb->truesize = 2;
1816 }
1817 
1818 #endif	/* _TCP_H */
1819