1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/list.h> 44 #include <linux/timer.h> 45 #include <linux/cache.h> 46 #include <linux/module.h> 47 #include <linux/lockdep.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/mm.h> 51 #include <linux/security.h> 52 53 #include <linux/filter.h> 54 55 #include <asm/atomic.h> 56 #include <net/dst.h> 57 #include <net/checksum.h> 58 59 /* 60 * This structure really needs to be cleaned up. 61 * Most of it is for TCP, and not used by any of 62 * the other protocols. 63 */ 64 65 /* Define this to get the SOCK_DBG debugging facility. */ 66 #define SOCK_DEBUGGING 67 #ifdef SOCK_DEBUGGING 68 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 69 printk(KERN_DEBUG msg); } while (0) 70 #else 71 #define SOCK_DEBUG(sk, msg...) do { } while (0) 72 #endif 73 74 /* This is the per-socket lock. The spinlock provides a synchronization 75 * between user contexts and software interrupt processing, whereas the 76 * mini-semaphore synchronizes multiple users amongst themselves. 77 */ 78 struct sock_iocb; 79 typedef struct { 80 spinlock_t slock; 81 struct sock_iocb *owner; 82 wait_queue_head_t wq; 83 /* 84 * We express the mutex-alike socket_lock semantics 85 * to the lock validator by explicitly managing 86 * the slock as a lock variant (in addition to 87 * the slock itself): 88 */ 89 #ifdef CONFIG_DEBUG_LOCK_ALLOC 90 struct lockdep_map dep_map; 91 #endif 92 } socket_lock_t; 93 94 struct sock; 95 struct proto; 96 97 /** 98 * struct sock_common - minimal network layer representation of sockets 99 * @skc_family: network address family 100 * @skc_state: Connection state 101 * @skc_reuse: %SO_REUSEADDR setting 102 * @skc_bound_dev_if: bound device index if != 0 103 * @skc_node: main hash linkage for various protocol lookup tables 104 * @skc_bind_node: bind hash linkage for various protocol lookup tables 105 * @skc_refcnt: reference count 106 * @skc_hash: hash value used with various protocol lookup tables 107 * @skc_prot: protocol handlers inside a network family 108 * 109 * This is the minimal network layer representation of sockets, the header 110 * for struct sock and struct inet_timewait_sock. 111 */ 112 struct sock_common { 113 unsigned short skc_family; 114 volatile unsigned char skc_state; 115 unsigned char skc_reuse; 116 int skc_bound_dev_if; 117 struct hlist_node skc_node; 118 struct hlist_node skc_bind_node; 119 atomic_t skc_refcnt; 120 unsigned int skc_hash; 121 struct proto *skc_prot; 122 }; 123 124 /** 125 * struct sock - network layer representation of sockets 126 * @__sk_common: shared layout with inet_timewait_sock 127 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 128 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 129 * @sk_lock: synchronizer 130 * @sk_rcvbuf: size of receive buffer in bytes 131 * @sk_sleep: sock wait queue 132 * @sk_dst_cache: destination cache 133 * @sk_dst_lock: destination cache lock 134 * @sk_policy: flow policy 135 * @sk_rmem_alloc: receive queue bytes committed 136 * @sk_receive_queue: incoming packets 137 * @sk_wmem_alloc: transmit queue bytes committed 138 * @sk_write_queue: Packet sending queue 139 * @sk_async_wait_queue: DMA copied packets 140 * @sk_omem_alloc: "o" is "option" or "other" 141 * @sk_wmem_queued: persistent queue size 142 * @sk_forward_alloc: space allocated forward 143 * @sk_allocation: allocation mode 144 * @sk_sndbuf: size of send buffer in bytes 145 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 146 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 147 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 148 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 149 * @sk_lingertime: %SO_LINGER l_linger setting 150 * @sk_backlog: always used with the per-socket spinlock held 151 * @sk_callback_lock: used with the callbacks in the end of this struct 152 * @sk_error_queue: rarely used 153 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 154 * @sk_err: last error 155 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 156 * @sk_ack_backlog: current listen backlog 157 * @sk_max_ack_backlog: listen backlog set in listen() 158 * @sk_priority: %SO_PRIORITY setting 159 * @sk_type: socket type (%SOCK_STREAM, etc) 160 * @sk_protocol: which protocol this socket belongs in this network family 161 * @sk_peercred: %SO_PEERCRED setting 162 * @sk_rcvlowat: %SO_RCVLOWAT setting 163 * @sk_rcvtimeo: %SO_RCVTIMEO setting 164 * @sk_sndtimeo: %SO_SNDTIMEO setting 165 * @sk_filter: socket filtering instructions 166 * @sk_protinfo: private area, net family specific, when not using slab 167 * @sk_timer: sock cleanup timer 168 * @sk_stamp: time stamp of last packet received 169 * @sk_socket: Identd and reporting IO signals 170 * @sk_user_data: RPC layer private data 171 * @sk_sndmsg_page: cached page for sendmsg 172 * @sk_sndmsg_off: cached offset for sendmsg 173 * @sk_send_head: front of stuff to transmit 174 * @sk_security: used by security modules 175 * @sk_write_pending: a write to stream socket waits to start 176 * @sk_state_change: callback to indicate change in the state of the sock 177 * @sk_data_ready: callback to indicate there is data to be processed 178 * @sk_write_space: callback to indicate there is bf sending space available 179 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 180 * @sk_backlog_rcv: callback to process the backlog 181 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 182 */ 183 struct sock { 184 /* 185 * Now struct inet_timewait_sock also uses sock_common, so please just 186 * don't add nothing before this first member (__sk_common) --acme 187 */ 188 struct sock_common __sk_common; 189 #define sk_family __sk_common.skc_family 190 #define sk_state __sk_common.skc_state 191 #define sk_reuse __sk_common.skc_reuse 192 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 193 #define sk_node __sk_common.skc_node 194 #define sk_bind_node __sk_common.skc_bind_node 195 #define sk_refcnt __sk_common.skc_refcnt 196 #define sk_hash __sk_common.skc_hash 197 #define sk_prot __sk_common.skc_prot 198 unsigned char sk_shutdown : 2, 199 sk_no_check : 2, 200 sk_userlocks : 4; 201 unsigned char sk_protocol; 202 unsigned short sk_type; 203 int sk_rcvbuf; 204 socket_lock_t sk_lock; 205 wait_queue_head_t *sk_sleep; 206 struct dst_entry *sk_dst_cache; 207 struct xfrm_policy *sk_policy[2]; 208 rwlock_t sk_dst_lock; 209 atomic_t sk_rmem_alloc; 210 atomic_t sk_wmem_alloc; 211 atomic_t sk_omem_alloc; 212 struct sk_buff_head sk_receive_queue; 213 struct sk_buff_head sk_write_queue; 214 struct sk_buff_head sk_async_wait_queue; 215 int sk_wmem_queued; 216 int sk_forward_alloc; 217 gfp_t sk_allocation; 218 int sk_sndbuf; 219 int sk_route_caps; 220 int sk_gso_type; 221 int sk_rcvlowat; 222 unsigned long sk_flags; 223 unsigned long sk_lingertime; 224 /* 225 * The backlog queue is special, it is always used with 226 * the per-socket spinlock held and requires low latency 227 * access. Therefore we special case it's implementation. 228 */ 229 struct { 230 struct sk_buff *head; 231 struct sk_buff *tail; 232 } sk_backlog; 233 struct sk_buff_head sk_error_queue; 234 struct proto *sk_prot_creator; 235 rwlock_t sk_callback_lock; 236 int sk_err, 237 sk_err_soft; 238 unsigned short sk_ack_backlog; 239 unsigned short sk_max_ack_backlog; 240 __u32 sk_priority; 241 struct ucred sk_peercred; 242 long sk_rcvtimeo; 243 long sk_sndtimeo; 244 struct sk_filter *sk_filter; 245 void *sk_protinfo; 246 struct timer_list sk_timer; 247 struct timeval sk_stamp; 248 struct socket *sk_socket; 249 void *sk_user_data; 250 struct page *sk_sndmsg_page; 251 struct sk_buff *sk_send_head; 252 __u32 sk_sndmsg_off; 253 int sk_write_pending; 254 void *sk_security; 255 void (*sk_state_change)(struct sock *sk); 256 void (*sk_data_ready)(struct sock *sk, int bytes); 257 void (*sk_write_space)(struct sock *sk); 258 void (*sk_error_report)(struct sock *sk); 259 int (*sk_backlog_rcv)(struct sock *sk, 260 struct sk_buff *skb); 261 void (*sk_destruct)(struct sock *sk); 262 }; 263 264 /* 265 * Hashed lists helper routines 266 */ 267 static inline struct sock *__sk_head(const struct hlist_head *head) 268 { 269 return hlist_entry(head->first, struct sock, sk_node); 270 } 271 272 static inline struct sock *sk_head(const struct hlist_head *head) 273 { 274 return hlist_empty(head) ? NULL : __sk_head(head); 275 } 276 277 static inline struct sock *sk_next(const struct sock *sk) 278 { 279 return sk->sk_node.next ? 280 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 281 } 282 283 static inline int sk_unhashed(const struct sock *sk) 284 { 285 return hlist_unhashed(&sk->sk_node); 286 } 287 288 static inline int sk_hashed(const struct sock *sk) 289 { 290 return !sk_unhashed(sk); 291 } 292 293 static __inline__ void sk_node_init(struct hlist_node *node) 294 { 295 node->pprev = NULL; 296 } 297 298 static __inline__ void __sk_del_node(struct sock *sk) 299 { 300 __hlist_del(&sk->sk_node); 301 } 302 303 static __inline__ int __sk_del_node_init(struct sock *sk) 304 { 305 if (sk_hashed(sk)) { 306 __sk_del_node(sk); 307 sk_node_init(&sk->sk_node); 308 return 1; 309 } 310 return 0; 311 } 312 313 /* Grab socket reference count. This operation is valid only 314 when sk is ALREADY grabbed f.e. it is found in hash table 315 or a list and the lookup is made under lock preventing hash table 316 modifications. 317 */ 318 319 static inline void sock_hold(struct sock *sk) 320 { 321 atomic_inc(&sk->sk_refcnt); 322 } 323 324 /* Ungrab socket in the context, which assumes that socket refcnt 325 cannot hit zero, f.e. it is true in context of any socketcall. 326 */ 327 static inline void __sock_put(struct sock *sk) 328 { 329 atomic_dec(&sk->sk_refcnt); 330 } 331 332 static __inline__ int sk_del_node_init(struct sock *sk) 333 { 334 int rc = __sk_del_node_init(sk); 335 336 if (rc) { 337 /* paranoid for a while -acme */ 338 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 339 __sock_put(sk); 340 } 341 return rc; 342 } 343 344 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 345 { 346 hlist_add_head(&sk->sk_node, list); 347 } 348 349 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 350 { 351 sock_hold(sk); 352 __sk_add_node(sk, list); 353 } 354 355 static __inline__ void __sk_del_bind_node(struct sock *sk) 356 { 357 __hlist_del(&sk->sk_bind_node); 358 } 359 360 static __inline__ void sk_add_bind_node(struct sock *sk, 361 struct hlist_head *list) 362 { 363 hlist_add_head(&sk->sk_bind_node, list); 364 } 365 366 #define sk_for_each(__sk, node, list) \ 367 hlist_for_each_entry(__sk, node, list, sk_node) 368 #define sk_for_each_from(__sk, node) \ 369 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 370 hlist_for_each_entry_from(__sk, node, sk_node) 371 #define sk_for_each_continue(__sk, node) \ 372 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 373 hlist_for_each_entry_continue(__sk, node, sk_node) 374 #define sk_for_each_safe(__sk, node, tmp, list) \ 375 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 376 #define sk_for_each_bound(__sk, node, list) \ 377 hlist_for_each_entry(__sk, node, list, sk_bind_node) 378 379 /* Sock flags */ 380 enum sock_flags { 381 SOCK_DEAD, 382 SOCK_DONE, 383 SOCK_URGINLINE, 384 SOCK_KEEPOPEN, 385 SOCK_LINGER, 386 SOCK_DESTROY, 387 SOCK_BROADCAST, 388 SOCK_TIMESTAMP, 389 SOCK_ZAPPED, 390 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 391 SOCK_DBG, /* %SO_DEBUG setting */ 392 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 393 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 394 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 395 }; 396 397 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 398 { 399 nsk->sk_flags = osk->sk_flags; 400 } 401 402 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 403 { 404 __set_bit(flag, &sk->sk_flags); 405 } 406 407 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 408 { 409 __clear_bit(flag, &sk->sk_flags); 410 } 411 412 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 413 { 414 return test_bit(flag, &sk->sk_flags); 415 } 416 417 static inline void sk_acceptq_removed(struct sock *sk) 418 { 419 sk->sk_ack_backlog--; 420 } 421 422 static inline void sk_acceptq_added(struct sock *sk) 423 { 424 sk->sk_ack_backlog++; 425 } 426 427 static inline int sk_acceptq_is_full(struct sock *sk) 428 { 429 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 430 } 431 432 /* 433 * Compute minimal free write space needed to queue new packets. 434 */ 435 static inline int sk_stream_min_wspace(struct sock *sk) 436 { 437 return sk->sk_wmem_queued / 2; 438 } 439 440 static inline int sk_stream_wspace(struct sock *sk) 441 { 442 return sk->sk_sndbuf - sk->sk_wmem_queued; 443 } 444 445 extern void sk_stream_write_space(struct sock *sk); 446 447 static inline int sk_stream_memory_free(struct sock *sk) 448 { 449 return sk->sk_wmem_queued < sk->sk_sndbuf; 450 } 451 452 extern void sk_stream_rfree(struct sk_buff *skb); 453 454 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 455 { 456 skb->sk = sk; 457 skb->destructor = sk_stream_rfree; 458 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 459 sk->sk_forward_alloc -= skb->truesize; 460 } 461 462 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 463 { 464 skb_truesize_check(skb); 465 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 466 sk->sk_wmem_queued -= skb->truesize; 467 sk->sk_forward_alloc += skb->truesize; 468 __kfree_skb(skb); 469 } 470 471 /* The per-socket spinlock must be held here. */ 472 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 473 { 474 if (!sk->sk_backlog.tail) { 475 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 476 } else { 477 sk->sk_backlog.tail->next = skb; 478 sk->sk_backlog.tail = skb; 479 } 480 skb->next = NULL; 481 } 482 483 #define sk_wait_event(__sk, __timeo, __condition) \ 484 ({ int rc; \ 485 release_sock(__sk); \ 486 rc = __condition; \ 487 if (!rc) { \ 488 *(__timeo) = schedule_timeout(*(__timeo)); \ 489 } \ 490 lock_sock(__sk); \ 491 rc = __condition; \ 492 rc; \ 493 }) 494 495 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 496 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 497 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 498 extern int sk_stream_error(struct sock *sk, int flags, int err); 499 extern void sk_stream_kill_queues(struct sock *sk); 500 501 extern int sk_wait_data(struct sock *sk, long *timeo); 502 503 struct request_sock_ops; 504 struct timewait_sock_ops; 505 506 /* Networking protocol blocks we attach to sockets. 507 * socket layer -> transport layer interface 508 * transport -> network interface is defined by struct inet_proto 509 */ 510 struct proto { 511 void (*close)(struct sock *sk, 512 long timeout); 513 int (*connect)(struct sock *sk, 514 struct sockaddr *uaddr, 515 int addr_len); 516 int (*disconnect)(struct sock *sk, int flags); 517 518 struct sock * (*accept) (struct sock *sk, int flags, int *err); 519 520 int (*ioctl)(struct sock *sk, int cmd, 521 unsigned long arg); 522 int (*init)(struct sock *sk); 523 int (*destroy)(struct sock *sk); 524 void (*shutdown)(struct sock *sk, int how); 525 int (*setsockopt)(struct sock *sk, int level, 526 int optname, char __user *optval, 527 int optlen); 528 int (*getsockopt)(struct sock *sk, int level, 529 int optname, char __user *optval, 530 int __user *option); 531 int (*compat_setsockopt)(struct sock *sk, 532 int level, 533 int optname, char __user *optval, 534 int optlen); 535 int (*compat_getsockopt)(struct sock *sk, 536 int level, 537 int optname, char __user *optval, 538 int __user *option); 539 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 540 struct msghdr *msg, size_t len); 541 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 542 struct msghdr *msg, 543 size_t len, int noblock, int flags, 544 int *addr_len); 545 int (*sendpage)(struct sock *sk, struct page *page, 546 int offset, size_t size, int flags); 547 int (*bind)(struct sock *sk, 548 struct sockaddr *uaddr, int addr_len); 549 550 int (*backlog_rcv) (struct sock *sk, 551 struct sk_buff *skb); 552 553 /* Keeping track of sk's, looking them up, and port selection methods. */ 554 void (*hash)(struct sock *sk); 555 void (*unhash)(struct sock *sk); 556 int (*get_port)(struct sock *sk, unsigned short snum); 557 558 /* Memory pressure */ 559 void (*enter_memory_pressure)(void); 560 atomic_t *memory_allocated; /* Current allocated memory. */ 561 atomic_t *sockets_allocated; /* Current number of sockets. */ 562 /* 563 * Pressure flag: try to collapse. 564 * Technical note: it is used by multiple contexts non atomically. 565 * All the sk_stream_mem_schedule() is of this nature: accounting 566 * is strict, actions are advisory and have some latency. 567 */ 568 int *memory_pressure; 569 int *sysctl_mem; 570 int *sysctl_wmem; 571 int *sysctl_rmem; 572 int max_header; 573 574 struct kmem_cache *slab; 575 unsigned int obj_size; 576 577 atomic_t *orphan_count; 578 579 struct request_sock_ops *rsk_prot; 580 struct timewait_sock_ops *twsk_prot; 581 582 struct module *owner; 583 584 char name[32]; 585 586 struct list_head node; 587 #ifdef SOCK_REFCNT_DEBUG 588 atomic_t socks; 589 #endif 590 struct { 591 int inuse; 592 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 593 } stats[NR_CPUS]; 594 }; 595 596 extern int proto_register(struct proto *prot, int alloc_slab); 597 extern void proto_unregister(struct proto *prot); 598 599 #ifdef SOCK_REFCNT_DEBUG 600 static inline void sk_refcnt_debug_inc(struct sock *sk) 601 { 602 atomic_inc(&sk->sk_prot->socks); 603 } 604 605 static inline void sk_refcnt_debug_dec(struct sock *sk) 606 { 607 atomic_dec(&sk->sk_prot->socks); 608 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 609 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 610 } 611 612 static inline void sk_refcnt_debug_release(const struct sock *sk) 613 { 614 if (atomic_read(&sk->sk_refcnt) != 1) 615 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 616 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 617 } 618 #else /* SOCK_REFCNT_DEBUG */ 619 #define sk_refcnt_debug_inc(sk) do { } while (0) 620 #define sk_refcnt_debug_dec(sk) do { } while (0) 621 #define sk_refcnt_debug_release(sk) do { } while (0) 622 #endif /* SOCK_REFCNT_DEBUG */ 623 624 /* Called with local bh disabled */ 625 static __inline__ void sock_prot_inc_use(struct proto *prot) 626 { 627 prot->stats[smp_processor_id()].inuse++; 628 } 629 630 static __inline__ void sock_prot_dec_use(struct proto *prot) 631 { 632 prot->stats[smp_processor_id()].inuse--; 633 } 634 635 /* With per-bucket locks this operation is not-atomic, so that 636 * this version is not worse. 637 */ 638 static inline void __sk_prot_rehash(struct sock *sk) 639 { 640 sk->sk_prot->unhash(sk); 641 sk->sk_prot->hash(sk); 642 } 643 644 /* About 10 seconds */ 645 #define SOCK_DESTROY_TIME (10*HZ) 646 647 /* Sockets 0-1023 can't be bound to unless you are superuser */ 648 #define PROT_SOCK 1024 649 650 #define SHUTDOWN_MASK 3 651 #define RCV_SHUTDOWN 1 652 #define SEND_SHUTDOWN 2 653 654 #define SOCK_SNDBUF_LOCK 1 655 #define SOCK_RCVBUF_LOCK 2 656 #define SOCK_BINDADDR_LOCK 4 657 #define SOCK_BINDPORT_LOCK 8 658 659 /* sock_iocb: used to kick off async processing of socket ios */ 660 struct sock_iocb { 661 struct list_head list; 662 663 int flags; 664 int size; 665 struct socket *sock; 666 struct sock *sk; 667 struct scm_cookie *scm; 668 struct msghdr *msg, async_msg; 669 struct kiocb *kiocb; 670 }; 671 672 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 673 { 674 return (struct sock_iocb *)iocb->private; 675 } 676 677 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 678 { 679 return si->kiocb; 680 } 681 682 struct socket_alloc { 683 struct socket socket; 684 struct inode vfs_inode; 685 }; 686 687 static inline struct socket *SOCKET_I(struct inode *inode) 688 { 689 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 690 } 691 692 static inline struct inode *SOCK_INODE(struct socket *socket) 693 { 694 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 695 } 696 697 extern void __sk_stream_mem_reclaim(struct sock *sk); 698 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 699 700 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 701 702 static inline int sk_stream_pages(int amt) 703 { 704 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 705 } 706 707 static inline void sk_stream_mem_reclaim(struct sock *sk) 708 { 709 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 710 __sk_stream_mem_reclaim(sk); 711 } 712 713 static inline void sk_stream_writequeue_purge(struct sock *sk) 714 { 715 struct sk_buff *skb; 716 717 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 718 sk_stream_free_skb(sk, skb); 719 sk_stream_mem_reclaim(sk); 720 } 721 722 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 723 { 724 return (int)skb->truesize <= sk->sk_forward_alloc || 725 sk_stream_mem_schedule(sk, skb->truesize, 1); 726 } 727 728 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 729 { 730 return size <= sk->sk_forward_alloc || 731 sk_stream_mem_schedule(sk, size, 0); 732 } 733 734 /* Used by processes to "lock" a socket state, so that 735 * interrupts and bottom half handlers won't change it 736 * from under us. It essentially blocks any incoming 737 * packets, so that we won't get any new data or any 738 * packets that change the state of the socket. 739 * 740 * While locked, BH processing will add new packets to 741 * the backlog queue. This queue is processed by the 742 * owner of the socket lock right before it is released. 743 * 744 * Since ~2.3.5 it is also exclusive sleep lock serializing 745 * accesses from user process context. 746 */ 747 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 748 749 /* 750 * Macro so as to not evaluate some arguments when 751 * lockdep is not enabled. 752 * 753 * Mark both the sk_lock and the sk_lock.slock as a 754 * per-address-family lock class. 755 */ 756 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 757 do { \ 758 sk->sk_lock.owner = NULL; \ 759 init_waitqueue_head(&sk->sk_lock.wq); \ 760 spin_lock_init(&(sk)->sk_lock.slock); \ 761 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 762 sizeof((sk)->sk_lock)); \ 763 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 764 (skey), (sname)); \ 765 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 766 } while (0) 767 768 extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass)); 769 770 static inline void lock_sock(struct sock *sk) 771 { 772 lock_sock_nested(sk, 0); 773 } 774 775 extern void FASTCALL(release_sock(struct sock *sk)); 776 777 /* BH context may only use the following locking interface. */ 778 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 779 #define bh_lock_sock_nested(__sk) \ 780 spin_lock_nested(&((__sk)->sk_lock.slock), \ 781 SINGLE_DEPTH_NESTING) 782 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 783 784 extern struct sock *sk_alloc(int family, 785 gfp_t priority, 786 struct proto *prot, int zero_it); 787 extern void sk_free(struct sock *sk); 788 extern struct sock *sk_clone(const struct sock *sk, 789 const gfp_t priority); 790 791 extern struct sk_buff *sock_wmalloc(struct sock *sk, 792 unsigned long size, int force, 793 gfp_t priority); 794 extern struct sk_buff *sock_rmalloc(struct sock *sk, 795 unsigned long size, int force, 796 gfp_t priority); 797 extern void sock_wfree(struct sk_buff *skb); 798 extern void sock_rfree(struct sk_buff *skb); 799 800 extern int sock_setsockopt(struct socket *sock, int level, 801 int op, char __user *optval, 802 int optlen); 803 804 extern int sock_getsockopt(struct socket *sock, int level, 805 int op, char __user *optval, 806 int __user *optlen); 807 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 808 unsigned long size, 809 int noblock, 810 int *errcode); 811 extern void *sock_kmalloc(struct sock *sk, int size, 812 gfp_t priority); 813 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 814 extern void sk_send_sigurg(struct sock *sk); 815 816 /* 817 * Functions to fill in entries in struct proto_ops when a protocol 818 * does not implement a particular function. 819 */ 820 extern int sock_no_bind(struct socket *, 821 struct sockaddr *, int); 822 extern int sock_no_connect(struct socket *, 823 struct sockaddr *, int, int); 824 extern int sock_no_socketpair(struct socket *, 825 struct socket *); 826 extern int sock_no_accept(struct socket *, 827 struct socket *, int); 828 extern int sock_no_getname(struct socket *, 829 struct sockaddr *, int *, int); 830 extern unsigned int sock_no_poll(struct file *, struct socket *, 831 struct poll_table_struct *); 832 extern int sock_no_ioctl(struct socket *, unsigned int, 833 unsigned long); 834 extern int sock_no_listen(struct socket *, int); 835 extern int sock_no_shutdown(struct socket *, int); 836 extern int sock_no_getsockopt(struct socket *, int , int, 837 char __user *, int __user *); 838 extern int sock_no_setsockopt(struct socket *, int, int, 839 char __user *, int); 840 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 841 struct msghdr *, size_t); 842 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 843 struct msghdr *, size_t, int); 844 extern int sock_no_mmap(struct file *file, 845 struct socket *sock, 846 struct vm_area_struct *vma); 847 extern ssize_t sock_no_sendpage(struct socket *sock, 848 struct page *page, 849 int offset, size_t size, 850 int flags); 851 852 /* 853 * Functions to fill in entries in struct proto_ops when a protocol 854 * uses the inet style. 855 */ 856 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 857 char __user *optval, int __user *optlen); 858 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 859 struct msghdr *msg, size_t size, int flags); 860 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 861 char __user *optval, int optlen); 862 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 863 int optname, char __user *optval, int __user *optlen); 864 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 865 int optname, char __user *optval, int optlen); 866 867 extern void sk_common_release(struct sock *sk); 868 869 /* 870 * Default socket callbacks and setup code 871 */ 872 873 /* Initialise core socket variables */ 874 extern void sock_init_data(struct socket *sock, struct sock *sk); 875 876 /** 877 * sk_filter - run a packet through a socket filter 878 * @sk: sock associated with &sk_buff 879 * @skb: buffer to filter 880 * @needlock: set to 1 if the sock is not locked by caller. 881 * 882 * Run the filter code and then cut skb->data to correct size returned by 883 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 884 * than pkt_len we keep whole skb->data. This is the socket level 885 * wrapper to sk_run_filter. It returns 0 if the packet should 886 * be accepted or -EPERM if the packet should be tossed. 887 * 888 */ 889 890 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 891 { 892 int err; 893 struct sk_filter *filter; 894 895 err = security_sock_rcv_skb(sk, skb); 896 if (err) 897 return err; 898 899 rcu_read_lock_bh(); 900 filter = sk->sk_filter; 901 if (filter) { 902 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 903 filter->len); 904 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; 905 } 906 rcu_read_unlock_bh(); 907 908 return err; 909 } 910 911 /** 912 * sk_filter_rcu_free: Free a socket filter 913 * @rcu: rcu_head that contains the sk_filter to free 914 */ 915 static inline void sk_filter_rcu_free(struct rcu_head *rcu) 916 { 917 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); 918 kfree(fp); 919 } 920 921 /** 922 * sk_filter_release: Release a socket filter 923 * @sk: socket 924 * @fp: filter to remove 925 * 926 * Remove a filter from a socket and release its resources. 927 */ 928 929 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 930 { 931 unsigned int size = sk_filter_len(fp); 932 933 atomic_sub(size, &sk->sk_omem_alloc); 934 935 if (atomic_dec_and_test(&fp->refcnt)) 936 call_rcu_bh(&fp->rcu, sk_filter_rcu_free); 937 } 938 939 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 940 { 941 atomic_inc(&fp->refcnt); 942 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 943 } 944 945 /* 946 * Socket reference counting postulates. 947 * 948 * * Each user of socket SHOULD hold a reference count. 949 * * Each access point to socket (an hash table bucket, reference from a list, 950 * running timer, skb in flight MUST hold a reference count. 951 * * When reference count hits 0, it means it will never increase back. 952 * * When reference count hits 0, it means that no references from 953 * outside exist to this socket and current process on current CPU 954 * is last user and may/should destroy this socket. 955 * * sk_free is called from any context: process, BH, IRQ. When 956 * it is called, socket has no references from outside -> sk_free 957 * may release descendant resources allocated by the socket, but 958 * to the time when it is called, socket is NOT referenced by any 959 * hash tables, lists etc. 960 * * Packets, delivered from outside (from network or from another process) 961 * and enqueued on receive/error queues SHOULD NOT grab reference count, 962 * when they sit in queue. Otherwise, packets will leak to hole, when 963 * socket is looked up by one cpu and unhasing is made by another CPU. 964 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 965 * (leak to backlog). Packet socket does all the processing inside 966 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 967 * use separate SMP lock, so that they are prone too. 968 */ 969 970 /* Ungrab socket and destroy it, if it was the last reference. */ 971 static inline void sock_put(struct sock *sk) 972 { 973 if (atomic_dec_and_test(&sk->sk_refcnt)) 974 sk_free(sk); 975 } 976 977 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 978 const int nested); 979 980 /* Detach socket from process context. 981 * Announce socket dead, detach it from wait queue and inode. 982 * Note that parent inode held reference count on this struct sock, 983 * we do not release it in this function, because protocol 984 * probably wants some additional cleanups or even continuing 985 * to work with this socket (TCP). 986 */ 987 static inline void sock_orphan(struct sock *sk) 988 { 989 write_lock_bh(&sk->sk_callback_lock); 990 sock_set_flag(sk, SOCK_DEAD); 991 sk->sk_socket = NULL; 992 sk->sk_sleep = NULL; 993 write_unlock_bh(&sk->sk_callback_lock); 994 } 995 996 static inline void sock_graft(struct sock *sk, struct socket *parent) 997 { 998 write_lock_bh(&sk->sk_callback_lock); 999 sk->sk_sleep = &parent->wait; 1000 parent->sk = sk; 1001 sk->sk_socket = parent; 1002 security_sock_graft(sk, parent); 1003 write_unlock_bh(&sk->sk_callback_lock); 1004 } 1005 1006 static inline void sock_copy(struct sock *nsk, const struct sock *osk) 1007 { 1008 #ifdef CONFIG_SECURITY_NETWORK 1009 void *sptr = nsk->sk_security; 1010 #endif 1011 1012 memcpy(nsk, osk, osk->sk_prot->obj_size); 1013 #ifdef CONFIG_SECURITY_NETWORK 1014 nsk->sk_security = sptr; 1015 security_sk_clone(osk, nsk); 1016 #endif 1017 } 1018 1019 extern int sock_i_uid(struct sock *sk); 1020 extern unsigned long sock_i_ino(struct sock *sk); 1021 1022 static inline struct dst_entry * 1023 __sk_dst_get(struct sock *sk) 1024 { 1025 return sk->sk_dst_cache; 1026 } 1027 1028 static inline struct dst_entry * 1029 sk_dst_get(struct sock *sk) 1030 { 1031 struct dst_entry *dst; 1032 1033 read_lock(&sk->sk_dst_lock); 1034 dst = sk->sk_dst_cache; 1035 if (dst) 1036 dst_hold(dst); 1037 read_unlock(&sk->sk_dst_lock); 1038 return dst; 1039 } 1040 1041 static inline void 1042 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1043 { 1044 struct dst_entry *old_dst; 1045 1046 old_dst = sk->sk_dst_cache; 1047 sk->sk_dst_cache = dst; 1048 dst_release(old_dst); 1049 } 1050 1051 static inline void 1052 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1053 { 1054 write_lock(&sk->sk_dst_lock); 1055 __sk_dst_set(sk, dst); 1056 write_unlock(&sk->sk_dst_lock); 1057 } 1058 1059 static inline void 1060 __sk_dst_reset(struct sock *sk) 1061 { 1062 struct dst_entry *old_dst; 1063 1064 old_dst = sk->sk_dst_cache; 1065 sk->sk_dst_cache = NULL; 1066 dst_release(old_dst); 1067 } 1068 1069 static inline void 1070 sk_dst_reset(struct sock *sk) 1071 { 1072 write_lock(&sk->sk_dst_lock); 1073 __sk_dst_reset(sk); 1074 write_unlock(&sk->sk_dst_lock); 1075 } 1076 1077 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1078 1079 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1080 1081 static inline int sk_can_gso(const struct sock *sk) 1082 { 1083 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1084 } 1085 1086 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1087 { 1088 __sk_dst_set(sk, dst); 1089 sk->sk_route_caps = dst->dev->features; 1090 if (sk->sk_route_caps & NETIF_F_GSO) 1091 sk->sk_route_caps |= NETIF_F_GSO_MASK; 1092 if (sk_can_gso(sk)) { 1093 if (dst->header_len) 1094 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1095 else 1096 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1097 } 1098 } 1099 1100 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1101 { 1102 sk->sk_wmem_queued += skb->truesize; 1103 sk->sk_forward_alloc -= skb->truesize; 1104 } 1105 1106 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1107 struct sk_buff *skb, struct page *page, 1108 int off, int copy) 1109 { 1110 if (skb->ip_summed == CHECKSUM_NONE) { 1111 int err = 0; 1112 __wsum csum = csum_and_copy_from_user(from, 1113 page_address(page) + off, 1114 copy, 0, &err); 1115 if (err) 1116 return err; 1117 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1118 } else if (copy_from_user(page_address(page) + off, from, copy)) 1119 return -EFAULT; 1120 1121 skb->len += copy; 1122 skb->data_len += copy; 1123 skb->truesize += copy; 1124 sk->sk_wmem_queued += copy; 1125 sk->sk_forward_alloc -= copy; 1126 return 0; 1127 } 1128 1129 /* 1130 * Queue a received datagram if it will fit. Stream and sequenced 1131 * protocols can't normally use this as they need to fit buffers in 1132 * and play with them. 1133 * 1134 * Inlined as it's very short and called for pretty much every 1135 * packet ever received. 1136 */ 1137 1138 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1139 { 1140 sock_hold(sk); 1141 skb->sk = sk; 1142 skb->destructor = sock_wfree; 1143 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1144 } 1145 1146 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1147 { 1148 skb->sk = sk; 1149 skb->destructor = sock_rfree; 1150 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1151 } 1152 1153 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1154 unsigned long expires); 1155 1156 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1157 1158 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1159 1160 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1161 { 1162 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1163 number of warnings when compiling with -W --ANK 1164 */ 1165 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1166 (unsigned)sk->sk_rcvbuf) 1167 return -ENOMEM; 1168 skb_set_owner_r(skb, sk); 1169 skb_queue_tail(&sk->sk_error_queue, skb); 1170 if (!sock_flag(sk, SOCK_DEAD)) 1171 sk->sk_data_ready(sk, skb->len); 1172 return 0; 1173 } 1174 1175 /* 1176 * Recover an error report and clear atomically 1177 */ 1178 1179 static inline int sock_error(struct sock *sk) 1180 { 1181 int err; 1182 if (likely(!sk->sk_err)) 1183 return 0; 1184 err = xchg(&sk->sk_err, 0); 1185 return -err; 1186 } 1187 1188 static inline unsigned long sock_wspace(struct sock *sk) 1189 { 1190 int amt = 0; 1191 1192 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1193 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1194 if (amt < 0) 1195 amt = 0; 1196 } 1197 return amt; 1198 } 1199 1200 static inline void sk_wake_async(struct sock *sk, int how, int band) 1201 { 1202 if (sk->sk_socket && sk->sk_socket->fasync_list) 1203 sock_wake_async(sk->sk_socket, how, band); 1204 } 1205 1206 #define SOCK_MIN_SNDBUF 2048 1207 #define SOCK_MIN_RCVBUF 256 1208 1209 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1210 { 1211 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1212 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1213 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1214 } 1215 } 1216 1217 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1218 int size, int mem, 1219 gfp_t gfp) 1220 { 1221 struct sk_buff *skb; 1222 int hdr_len; 1223 1224 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1225 skb = alloc_skb_fclone(size + hdr_len, gfp); 1226 if (skb) { 1227 skb->truesize += mem; 1228 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1229 skb_reserve(skb, hdr_len); 1230 return skb; 1231 } 1232 __kfree_skb(skb); 1233 } else { 1234 sk->sk_prot->enter_memory_pressure(); 1235 sk_stream_moderate_sndbuf(sk); 1236 } 1237 return NULL; 1238 } 1239 1240 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1241 int size, 1242 gfp_t gfp) 1243 { 1244 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1245 } 1246 1247 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1248 { 1249 struct page *page = NULL; 1250 1251 page = alloc_pages(sk->sk_allocation, 0); 1252 if (!page) { 1253 sk->sk_prot->enter_memory_pressure(); 1254 sk_stream_moderate_sndbuf(sk); 1255 } 1256 return page; 1257 } 1258 1259 #define sk_stream_for_retrans_queue(skb, sk) \ 1260 for (skb = (sk)->sk_write_queue.next; \ 1261 (skb != (sk)->sk_send_head) && \ 1262 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1263 skb = skb->next) 1264 1265 /*from STCP for fast SACK Process*/ 1266 #define sk_stream_for_retrans_queue_from(skb, sk) \ 1267 for (; (skb != (sk)->sk_send_head) && \ 1268 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1269 skb = skb->next) 1270 1271 /* 1272 * Default write policy as shown to user space via poll/select/SIGIO 1273 */ 1274 static inline int sock_writeable(const struct sock *sk) 1275 { 1276 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1277 } 1278 1279 static inline gfp_t gfp_any(void) 1280 { 1281 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL; 1282 } 1283 1284 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1285 { 1286 return noblock ? 0 : sk->sk_rcvtimeo; 1287 } 1288 1289 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1290 { 1291 return noblock ? 0 : sk->sk_sndtimeo; 1292 } 1293 1294 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1295 { 1296 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1297 } 1298 1299 /* Alas, with timeout socket operations are not restartable. 1300 * Compare this to poll(). 1301 */ 1302 static inline int sock_intr_errno(long timeo) 1303 { 1304 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1305 } 1306 1307 static __inline__ void 1308 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1309 { 1310 struct timeval stamp; 1311 1312 skb_get_timestamp(skb, &stamp); 1313 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1314 /* Race occurred between timestamp enabling and packet 1315 receiving. Fill in the current time for now. */ 1316 if (stamp.tv_sec == 0) 1317 do_gettimeofday(&stamp); 1318 skb_set_timestamp(skb, &stamp); 1319 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1320 &stamp); 1321 } else 1322 sk->sk_stamp = stamp; 1323 } 1324 1325 /** 1326 * sk_eat_skb - Release a skb if it is no longer needed 1327 * @sk: socket to eat this skb from 1328 * @skb: socket buffer to eat 1329 * @copied_early: flag indicating whether DMA operations copied this data early 1330 * 1331 * This routine must be called with interrupts disabled or with the socket 1332 * locked so that the sk_buff queue operation is ok. 1333 */ 1334 #ifdef CONFIG_NET_DMA 1335 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1336 { 1337 __skb_unlink(skb, &sk->sk_receive_queue); 1338 if (!copied_early) 1339 __kfree_skb(skb); 1340 else 1341 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1342 } 1343 #else 1344 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1345 { 1346 __skb_unlink(skb, &sk->sk_receive_queue); 1347 __kfree_skb(skb); 1348 } 1349 #endif 1350 1351 extern void sock_enable_timestamp(struct sock *sk); 1352 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1353 1354 /* 1355 * Enable debug/info messages 1356 */ 1357 1358 #ifdef CONFIG_NETDEBUG 1359 #define NETDEBUG(fmt, args...) printk(fmt,##args) 1360 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0) 1361 #else 1362 #define NETDEBUG(fmt, args...) do { } while (0) 1363 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0) 1364 #endif 1365 1366 /* 1367 * Macros for sleeping on a socket. Use them like this: 1368 * 1369 * SOCK_SLEEP_PRE(sk) 1370 * if (condition) 1371 * schedule(); 1372 * SOCK_SLEEP_POST(sk) 1373 * 1374 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1375 * and when the last use of them in DECnet has gone, I'm intending to 1376 * remove them. 1377 */ 1378 1379 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1380 DECLARE_WAITQUEUE(wait, tsk); \ 1381 tsk->state = TASK_INTERRUPTIBLE; \ 1382 add_wait_queue((sk)->sk_sleep, &wait); \ 1383 release_sock(sk); 1384 1385 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1386 remove_wait_queue((sk)->sk_sleep, &wait); \ 1387 lock_sock(sk); \ 1388 } 1389 1390 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1391 { 1392 if (valbool) 1393 sock_set_flag(sk, bit); 1394 else 1395 sock_reset_flag(sk, bit); 1396 } 1397 1398 extern __u32 sysctl_wmem_max; 1399 extern __u32 sysctl_rmem_max; 1400 1401 #ifdef CONFIG_NET 1402 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1403 #else 1404 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1405 { 1406 return -ENODEV; 1407 } 1408 #endif 1409 1410 extern void sk_init(void); 1411 1412 #ifdef CONFIG_SYSCTL 1413 extern struct ctl_table core_table[]; 1414 #endif 1415 1416 extern int sysctl_optmem_max; 1417 1418 extern __u32 sysctl_wmem_default; 1419 extern __u32 sysctl_rmem_default; 1420 1421 #endif /* _SOCK_H */ 1422