1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/config.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/security.h> 51 52 #include <linux/filter.h> 53 54 #include <asm/atomic.h> 55 #include <net/dst.h> 56 #include <net/checksum.h> 57 58 /* 59 * This structure really needs to be cleaned up. 60 * Most of it is for TCP, and not used by any of 61 * the other protocols. 62 */ 63 64 /* Define this to get the SOCK_DBG debugging facility. */ 65 #define SOCK_DEBUGGING 66 #ifdef SOCK_DEBUGGING 67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 68 printk(KERN_DEBUG msg); } while (0) 69 #else 70 #define SOCK_DEBUG(sk, msg...) do { } while (0) 71 #endif 72 73 /* This is the per-socket lock. The spinlock provides a synchronization 74 * between user contexts and software interrupt processing, whereas the 75 * mini-semaphore synchronizes multiple users amongst themselves. 76 */ 77 struct sock_iocb; 78 typedef struct { 79 spinlock_t slock; 80 struct sock_iocb *owner; 81 wait_queue_head_t wq; 82 } socket_lock_t; 83 84 #define sock_lock_init(__sk) \ 85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \ 86 (__sk)->sk_lock.owner = NULL; \ 87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \ 88 } while(0) 89 90 struct sock; 91 struct proto; 92 93 /** 94 * struct sock_common - minimal network layer representation of sockets 95 * @skc_family: network address family 96 * @skc_state: Connection state 97 * @skc_reuse: %SO_REUSEADDR setting 98 * @skc_bound_dev_if: bound device index if != 0 99 * @skc_node: main hash linkage for various protocol lookup tables 100 * @skc_bind_node: bind hash linkage for various protocol lookup tables 101 * @skc_refcnt: reference count 102 * @skc_prot: protocol handlers inside a network family 103 * 104 * This is the minimal network layer representation of sockets, the header 105 * for struct sock and struct inet_timewait_sock. 106 */ 107 struct sock_common { 108 unsigned short skc_family; 109 volatile unsigned char skc_state; 110 unsigned char skc_reuse; 111 int skc_bound_dev_if; 112 struct hlist_node skc_node; 113 struct hlist_node skc_bind_node; 114 atomic_t skc_refcnt; 115 struct proto *skc_prot; 116 }; 117 118 /** 119 * struct sock - network layer representation of sockets 120 * @__sk_common: shared layout with inet_timewait_sock 121 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 122 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 123 * @sk_lock: synchronizer 124 * @sk_rcvbuf: size of receive buffer in bytes 125 * @sk_sleep: sock wait queue 126 * @sk_dst_cache: destination cache 127 * @sk_dst_lock: destination cache lock 128 * @sk_policy: flow policy 129 * @sk_rmem_alloc: receive queue bytes committed 130 * @sk_receive_queue: incoming packets 131 * @sk_wmem_alloc: transmit queue bytes committed 132 * @sk_write_queue: Packet sending queue 133 * @sk_omem_alloc: "o" is "option" or "other" 134 * @sk_wmem_queued: persistent queue size 135 * @sk_forward_alloc: space allocated forward 136 * @sk_allocation: allocation mode 137 * @sk_sndbuf: size of send buffer in bytes 138 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 139 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 140 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 141 * @sk_lingertime: %SO_LINGER l_linger setting 142 * @sk_hashent: hash entry in several tables (e.g. inet_hashinfo.ehash) 143 * @sk_backlog: always used with the per-socket spinlock held 144 * @sk_callback_lock: used with the callbacks in the end of this struct 145 * @sk_error_queue: rarely used 146 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 147 * @sk_err: last error 148 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 149 * @sk_ack_backlog: current listen backlog 150 * @sk_max_ack_backlog: listen backlog set in listen() 151 * @sk_priority: %SO_PRIORITY setting 152 * @sk_type: socket type (%SOCK_STREAM, etc) 153 * @sk_protocol: which protocol this socket belongs in this network family 154 * @sk_peercred: %SO_PEERCRED setting 155 * @sk_rcvlowat: %SO_RCVLOWAT setting 156 * @sk_rcvtimeo: %SO_RCVTIMEO setting 157 * @sk_sndtimeo: %SO_SNDTIMEO setting 158 * @sk_filter: socket filtering instructions 159 * @sk_protinfo: private area, net family specific, when not using slab 160 * @sk_timer: sock cleanup timer 161 * @sk_stamp: time stamp of last packet received 162 * @sk_socket: Identd and reporting IO signals 163 * @sk_user_data: RPC layer private data 164 * @sk_sndmsg_page: cached page for sendmsg 165 * @sk_sndmsg_off: cached offset for sendmsg 166 * @sk_send_head: front of stuff to transmit 167 * @sk_security: used by security modules 168 * @sk_write_pending: a write to stream socket waits to start 169 * @sk_state_change: callback to indicate change in the state of the sock 170 * @sk_data_ready: callback to indicate there is data to be processed 171 * @sk_write_space: callback to indicate there is bf sending space available 172 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 173 * @sk_backlog_rcv: callback to process the backlog 174 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 175 */ 176 struct sock { 177 /* 178 * Now struct inet_timewait_sock also uses sock_common, so please just 179 * don't add nothing before this first member (__sk_common) --acme 180 */ 181 struct sock_common __sk_common; 182 #define sk_family __sk_common.skc_family 183 #define sk_state __sk_common.skc_state 184 #define sk_reuse __sk_common.skc_reuse 185 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 186 #define sk_node __sk_common.skc_node 187 #define sk_bind_node __sk_common.skc_bind_node 188 #define sk_refcnt __sk_common.skc_refcnt 189 #define sk_prot __sk_common.skc_prot 190 unsigned char sk_shutdown : 2, 191 sk_no_check : 2, 192 sk_userlocks : 4; 193 unsigned char sk_protocol; 194 unsigned short sk_type; 195 int sk_rcvbuf; 196 socket_lock_t sk_lock; 197 wait_queue_head_t *sk_sleep; 198 struct dst_entry *sk_dst_cache; 199 struct xfrm_policy *sk_policy[2]; 200 rwlock_t sk_dst_lock; 201 atomic_t sk_rmem_alloc; 202 atomic_t sk_wmem_alloc; 203 atomic_t sk_omem_alloc; 204 struct sk_buff_head sk_receive_queue; 205 struct sk_buff_head sk_write_queue; 206 int sk_wmem_queued; 207 int sk_forward_alloc; 208 unsigned int sk_allocation; 209 int sk_sndbuf; 210 int sk_route_caps; 211 int sk_hashent; 212 unsigned long sk_flags; 213 unsigned long sk_lingertime; 214 /* 215 * The backlog queue is special, it is always used with 216 * the per-socket spinlock held and requires low latency 217 * access. Therefore we special case it's implementation. 218 */ 219 struct { 220 struct sk_buff *head; 221 struct sk_buff *tail; 222 } sk_backlog; 223 struct sk_buff_head sk_error_queue; 224 struct proto *sk_prot_creator; 225 rwlock_t sk_callback_lock; 226 int sk_err, 227 sk_err_soft; 228 unsigned short sk_ack_backlog; 229 unsigned short sk_max_ack_backlog; 230 __u32 sk_priority; 231 struct ucred sk_peercred; 232 int sk_rcvlowat; 233 long sk_rcvtimeo; 234 long sk_sndtimeo; 235 struct sk_filter *sk_filter; 236 void *sk_protinfo; 237 struct timer_list sk_timer; 238 struct timeval sk_stamp; 239 struct socket *sk_socket; 240 void *sk_user_data; 241 struct page *sk_sndmsg_page; 242 struct sk_buff *sk_send_head; 243 __u32 sk_sndmsg_off; 244 int sk_write_pending; 245 void *sk_security; 246 void (*sk_state_change)(struct sock *sk); 247 void (*sk_data_ready)(struct sock *sk, int bytes); 248 void (*sk_write_space)(struct sock *sk); 249 void (*sk_error_report)(struct sock *sk); 250 int (*sk_backlog_rcv)(struct sock *sk, 251 struct sk_buff *skb); 252 void (*sk_destruct)(struct sock *sk); 253 }; 254 255 /* 256 * Hashed lists helper routines 257 */ 258 static inline struct sock *__sk_head(const struct hlist_head *head) 259 { 260 return hlist_entry(head->first, struct sock, sk_node); 261 } 262 263 static inline struct sock *sk_head(const struct hlist_head *head) 264 { 265 return hlist_empty(head) ? NULL : __sk_head(head); 266 } 267 268 static inline struct sock *sk_next(const struct sock *sk) 269 { 270 return sk->sk_node.next ? 271 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 272 } 273 274 static inline int sk_unhashed(const struct sock *sk) 275 { 276 return hlist_unhashed(&sk->sk_node); 277 } 278 279 static inline int sk_hashed(const struct sock *sk) 280 { 281 return sk->sk_node.pprev != NULL; 282 } 283 284 static __inline__ void sk_node_init(struct hlist_node *node) 285 { 286 node->pprev = NULL; 287 } 288 289 static __inline__ void __sk_del_node(struct sock *sk) 290 { 291 __hlist_del(&sk->sk_node); 292 } 293 294 static __inline__ int __sk_del_node_init(struct sock *sk) 295 { 296 if (sk_hashed(sk)) { 297 __sk_del_node(sk); 298 sk_node_init(&sk->sk_node); 299 return 1; 300 } 301 return 0; 302 } 303 304 /* Grab socket reference count. This operation is valid only 305 when sk is ALREADY grabbed f.e. it is found in hash table 306 or a list and the lookup is made under lock preventing hash table 307 modifications. 308 */ 309 310 static inline void sock_hold(struct sock *sk) 311 { 312 atomic_inc(&sk->sk_refcnt); 313 } 314 315 /* Ungrab socket in the context, which assumes that socket refcnt 316 cannot hit zero, f.e. it is true in context of any socketcall. 317 */ 318 static inline void __sock_put(struct sock *sk) 319 { 320 atomic_dec(&sk->sk_refcnt); 321 } 322 323 static __inline__ int sk_del_node_init(struct sock *sk) 324 { 325 int rc = __sk_del_node_init(sk); 326 327 if (rc) { 328 /* paranoid for a while -acme */ 329 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 330 __sock_put(sk); 331 } 332 return rc; 333 } 334 335 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 336 { 337 hlist_add_head(&sk->sk_node, list); 338 } 339 340 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 341 { 342 sock_hold(sk); 343 __sk_add_node(sk, list); 344 } 345 346 static __inline__ void __sk_del_bind_node(struct sock *sk) 347 { 348 __hlist_del(&sk->sk_bind_node); 349 } 350 351 static __inline__ void sk_add_bind_node(struct sock *sk, 352 struct hlist_head *list) 353 { 354 hlist_add_head(&sk->sk_bind_node, list); 355 } 356 357 #define sk_for_each(__sk, node, list) \ 358 hlist_for_each_entry(__sk, node, list, sk_node) 359 #define sk_for_each_from(__sk, node) \ 360 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 361 hlist_for_each_entry_from(__sk, node, sk_node) 362 #define sk_for_each_continue(__sk, node) \ 363 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 364 hlist_for_each_entry_continue(__sk, node, sk_node) 365 #define sk_for_each_safe(__sk, node, tmp, list) \ 366 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 367 #define sk_for_each_bound(__sk, node, list) \ 368 hlist_for_each_entry(__sk, node, list, sk_bind_node) 369 370 /* Sock flags */ 371 enum sock_flags { 372 SOCK_DEAD, 373 SOCK_DONE, 374 SOCK_URGINLINE, 375 SOCK_KEEPOPEN, 376 SOCK_LINGER, 377 SOCK_DESTROY, 378 SOCK_BROADCAST, 379 SOCK_TIMESTAMP, 380 SOCK_ZAPPED, 381 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 382 SOCK_DBG, /* %SO_DEBUG setting */ 383 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 384 SOCK_NO_LARGESEND, /* whether to sent large segments or not */ 385 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 386 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 387 }; 388 389 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 390 { 391 nsk->sk_flags = osk->sk_flags; 392 } 393 394 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 395 { 396 __set_bit(flag, &sk->sk_flags); 397 } 398 399 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 400 { 401 __clear_bit(flag, &sk->sk_flags); 402 } 403 404 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 405 { 406 return test_bit(flag, &sk->sk_flags); 407 } 408 409 static inline void sk_acceptq_removed(struct sock *sk) 410 { 411 sk->sk_ack_backlog--; 412 } 413 414 static inline void sk_acceptq_added(struct sock *sk) 415 { 416 sk->sk_ack_backlog++; 417 } 418 419 static inline int sk_acceptq_is_full(struct sock *sk) 420 { 421 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 422 } 423 424 /* 425 * Compute minimal free write space needed to queue new packets. 426 */ 427 static inline int sk_stream_min_wspace(struct sock *sk) 428 { 429 return sk->sk_wmem_queued / 2; 430 } 431 432 static inline int sk_stream_wspace(struct sock *sk) 433 { 434 return sk->sk_sndbuf - sk->sk_wmem_queued; 435 } 436 437 extern void sk_stream_write_space(struct sock *sk); 438 439 static inline int sk_stream_memory_free(struct sock *sk) 440 { 441 return sk->sk_wmem_queued < sk->sk_sndbuf; 442 } 443 444 extern void sk_stream_rfree(struct sk_buff *skb); 445 446 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 447 { 448 skb->sk = sk; 449 skb->destructor = sk_stream_rfree; 450 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 451 sk->sk_forward_alloc -= skb->truesize; 452 } 453 454 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 455 { 456 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 457 sk->sk_wmem_queued -= skb->truesize; 458 sk->sk_forward_alloc += skb->truesize; 459 __kfree_skb(skb); 460 } 461 462 /* The per-socket spinlock must be held here. */ 463 #define sk_add_backlog(__sk, __skb) \ 464 do { if (!(__sk)->sk_backlog.tail) { \ 465 (__sk)->sk_backlog.head = \ 466 (__sk)->sk_backlog.tail = (__skb); \ 467 } else { \ 468 ((__sk)->sk_backlog.tail)->next = (__skb); \ 469 (__sk)->sk_backlog.tail = (__skb); \ 470 } \ 471 (__skb)->next = NULL; \ 472 } while(0) 473 474 #define sk_wait_event(__sk, __timeo, __condition) \ 475 ({ int rc; \ 476 release_sock(__sk); \ 477 rc = __condition; \ 478 if (!rc) { \ 479 *(__timeo) = schedule_timeout(*(__timeo)); \ 480 rc = __condition; \ 481 } \ 482 lock_sock(__sk); \ 483 rc; \ 484 }) 485 486 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 487 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 488 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 489 extern int sk_stream_error(struct sock *sk, int flags, int err); 490 extern void sk_stream_kill_queues(struct sock *sk); 491 492 extern int sk_wait_data(struct sock *sk, long *timeo); 493 494 struct request_sock_ops; 495 496 /* Networking protocol blocks we attach to sockets. 497 * socket layer -> transport layer interface 498 * transport -> network interface is defined by struct inet_proto 499 */ 500 struct proto { 501 void (*close)(struct sock *sk, 502 long timeout); 503 int (*connect)(struct sock *sk, 504 struct sockaddr *uaddr, 505 int addr_len); 506 int (*disconnect)(struct sock *sk, int flags); 507 508 struct sock * (*accept) (struct sock *sk, int flags, int *err); 509 510 int (*ioctl)(struct sock *sk, int cmd, 511 unsigned long arg); 512 int (*init)(struct sock *sk); 513 int (*destroy)(struct sock *sk); 514 void (*shutdown)(struct sock *sk, int how); 515 int (*setsockopt)(struct sock *sk, int level, 516 int optname, char __user *optval, 517 int optlen); 518 int (*getsockopt)(struct sock *sk, int level, 519 int optname, char __user *optval, 520 int __user *option); 521 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 522 struct msghdr *msg, size_t len); 523 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 524 struct msghdr *msg, 525 size_t len, int noblock, int flags, 526 int *addr_len); 527 int (*sendpage)(struct sock *sk, struct page *page, 528 int offset, size_t size, int flags); 529 int (*bind)(struct sock *sk, 530 struct sockaddr *uaddr, int addr_len); 531 532 int (*backlog_rcv) (struct sock *sk, 533 struct sk_buff *skb); 534 535 /* Keeping track of sk's, looking them up, and port selection methods. */ 536 void (*hash)(struct sock *sk); 537 void (*unhash)(struct sock *sk); 538 int (*get_port)(struct sock *sk, unsigned short snum); 539 540 /* Memory pressure */ 541 void (*enter_memory_pressure)(void); 542 atomic_t *memory_allocated; /* Current allocated memory. */ 543 atomic_t *sockets_allocated; /* Current number of sockets. */ 544 /* 545 * Pressure flag: try to collapse. 546 * Technical note: it is used by multiple contexts non atomically. 547 * All the sk_stream_mem_schedule() is of this nature: accounting 548 * is strict, actions are advisory and have some latency. 549 */ 550 int *memory_pressure; 551 int *sysctl_mem; 552 int *sysctl_wmem; 553 int *sysctl_rmem; 554 int max_header; 555 556 kmem_cache_t *slab; 557 unsigned int obj_size; 558 559 kmem_cache_t *twsk_slab; 560 unsigned int twsk_obj_size; 561 atomic_t *orphan_count; 562 563 struct request_sock_ops *rsk_prot; 564 565 struct module *owner; 566 567 char name[32]; 568 569 struct list_head node; 570 #ifdef SOCK_REFCNT_DEBUG 571 atomic_t socks; 572 #endif 573 struct { 574 int inuse; 575 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 576 } stats[NR_CPUS]; 577 }; 578 579 extern int proto_register(struct proto *prot, int alloc_slab); 580 extern void proto_unregister(struct proto *prot); 581 582 #ifdef SOCK_REFCNT_DEBUG 583 static inline void sk_refcnt_debug_inc(struct sock *sk) 584 { 585 atomic_inc(&sk->sk_prot->socks); 586 } 587 588 static inline void sk_refcnt_debug_dec(struct sock *sk) 589 { 590 atomic_dec(&sk->sk_prot->socks); 591 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 592 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 593 } 594 595 static inline void sk_refcnt_debug_release(const struct sock *sk) 596 { 597 if (atomic_read(&sk->sk_refcnt) != 1) 598 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 599 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 600 } 601 #else /* SOCK_REFCNT_DEBUG */ 602 #define sk_refcnt_debug_inc(sk) do { } while (0) 603 #define sk_refcnt_debug_dec(sk) do { } while (0) 604 #define sk_refcnt_debug_release(sk) do { } while (0) 605 #endif /* SOCK_REFCNT_DEBUG */ 606 607 /* Called with local bh disabled */ 608 static __inline__ void sock_prot_inc_use(struct proto *prot) 609 { 610 prot->stats[smp_processor_id()].inuse++; 611 } 612 613 static __inline__ void sock_prot_dec_use(struct proto *prot) 614 { 615 prot->stats[smp_processor_id()].inuse--; 616 } 617 618 /* With per-bucket locks this operation is not-atomic, so that 619 * this version is not worse. 620 */ 621 static inline void __sk_prot_rehash(struct sock *sk) 622 { 623 sk->sk_prot->unhash(sk); 624 sk->sk_prot->hash(sk); 625 } 626 627 /* About 10 seconds */ 628 #define SOCK_DESTROY_TIME (10*HZ) 629 630 /* Sockets 0-1023 can't be bound to unless you are superuser */ 631 #define PROT_SOCK 1024 632 633 #define SHUTDOWN_MASK 3 634 #define RCV_SHUTDOWN 1 635 #define SEND_SHUTDOWN 2 636 637 #define SOCK_SNDBUF_LOCK 1 638 #define SOCK_RCVBUF_LOCK 2 639 #define SOCK_BINDADDR_LOCK 4 640 #define SOCK_BINDPORT_LOCK 8 641 642 /* sock_iocb: used to kick off async processing of socket ios */ 643 struct sock_iocb { 644 struct list_head list; 645 646 int flags; 647 int size; 648 struct socket *sock; 649 struct sock *sk; 650 struct scm_cookie *scm; 651 struct msghdr *msg, async_msg; 652 struct iovec async_iov; 653 struct kiocb *kiocb; 654 }; 655 656 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 657 { 658 return (struct sock_iocb *)iocb->private; 659 } 660 661 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 662 { 663 return si->kiocb; 664 } 665 666 struct socket_alloc { 667 struct socket socket; 668 struct inode vfs_inode; 669 }; 670 671 static inline struct socket *SOCKET_I(struct inode *inode) 672 { 673 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 674 } 675 676 static inline struct inode *SOCK_INODE(struct socket *socket) 677 { 678 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 679 } 680 681 extern void __sk_stream_mem_reclaim(struct sock *sk); 682 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 683 684 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 685 686 static inline int sk_stream_pages(int amt) 687 { 688 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 689 } 690 691 static inline void sk_stream_mem_reclaim(struct sock *sk) 692 { 693 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 694 __sk_stream_mem_reclaim(sk); 695 } 696 697 static inline void sk_stream_writequeue_purge(struct sock *sk) 698 { 699 struct sk_buff *skb; 700 701 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 702 sk_stream_free_skb(sk, skb); 703 sk_stream_mem_reclaim(sk); 704 } 705 706 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 707 { 708 return (int)skb->truesize <= sk->sk_forward_alloc || 709 sk_stream_mem_schedule(sk, skb->truesize, 1); 710 } 711 712 /* Used by processes to "lock" a socket state, so that 713 * interrupts and bottom half handlers won't change it 714 * from under us. It essentially blocks any incoming 715 * packets, so that we won't get any new data or any 716 * packets that change the state of the socket. 717 * 718 * While locked, BH processing will add new packets to 719 * the backlog queue. This queue is processed by the 720 * owner of the socket lock right before it is released. 721 * 722 * Since ~2.3.5 it is also exclusive sleep lock serializing 723 * accesses from user process context. 724 */ 725 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 726 727 extern void FASTCALL(lock_sock(struct sock *sk)); 728 extern void FASTCALL(release_sock(struct sock *sk)); 729 730 /* BH context may only use the following locking interface. */ 731 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 732 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 733 734 extern struct sock *sk_alloc(int family, 735 unsigned int __nocast priority, 736 struct proto *prot, int zero_it); 737 extern void sk_free(struct sock *sk); 738 extern struct sock *sk_clone(const struct sock *sk, 739 const unsigned int __nocast priority); 740 741 extern struct sk_buff *sock_wmalloc(struct sock *sk, 742 unsigned long size, int force, 743 unsigned int __nocast priority); 744 extern struct sk_buff *sock_rmalloc(struct sock *sk, 745 unsigned long size, int force, 746 unsigned int __nocast priority); 747 extern void sock_wfree(struct sk_buff *skb); 748 extern void sock_rfree(struct sk_buff *skb); 749 750 extern int sock_setsockopt(struct socket *sock, int level, 751 int op, char __user *optval, 752 int optlen); 753 754 extern int sock_getsockopt(struct socket *sock, int level, 755 int op, char __user *optval, 756 int __user *optlen); 757 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 758 unsigned long size, 759 int noblock, 760 int *errcode); 761 extern void *sock_kmalloc(struct sock *sk, int size, 762 unsigned int __nocast priority); 763 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 764 extern void sk_send_sigurg(struct sock *sk); 765 766 /* 767 * Functions to fill in entries in struct proto_ops when a protocol 768 * does not implement a particular function. 769 */ 770 extern int sock_no_bind(struct socket *, 771 struct sockaddr *, int); 772 extern int sock_no_connect(struct socket *, 773 struct sockaddr *, int, int); 774 extern int sock_no_socketpair(struct socket *, 775 struct socket *); 776 extern int sock_no_accept(struct socket *, 777 struct socket *, int); 778 extern int sock_no_getname(struct socket *, 779 struct sockaddr *, int *, int); 780 extern unsigned int sock_no_poll(struct file *, struct socket *, 781 struct poll_table_struct *); 782 extern int sock_no_ioctl(struct socket *, unsigned int, 783 unsigned long); 784 extern int sock_no_listen(struct socket *, int); 785 extern int sock_no_shutdown(struct socket *, int); 786 extern int sock_no_getsockopt(struct socket *, int , int, 787 char __user *, int __user *); 788 extern int sock_no_setsockopt(struct socket *, int, int, 789 char __user *, int); 790 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 791 struct msghdr *, size_t); 792 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 793 struct msghdr *, size_t, int); 794 extern int sock_no_mmap(struct file *file, 795 struct socket *sock, 796 struct vm_area_struct *vma); 797 extern ssize_t sock_no_sendpage(struct socket *sock, 798 struct page *page, 799 int offset, size_t size, 800 int flags); 801 802 /* 803 * Functions to fill in entries in struct proto_ops when a protocol 804 * uses the inet style. 805 */ 806 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 807 char __user *optval, int __user *optlen); 808 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 809 struct msghdr *msg, size_t size, int flags); 810 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 811 char __user *optval, int optlen); 812 813 extern void sk_common_release(struct sock *sk); 814 815 /* 816 * Default socket callbacks and setup code 817 */ 818 819 /* Initialise core socket variables */ 820 extern void sock_init_data(struct socket *sock, struct sock *sk); 821 822 /** 823 * sk_filter - run a packet through a socket filter 824 * @sk: sock associated with &sk_buff 825 * @skb: buffer to filter 826 * @needlock: set to 1 if the sock is not locked by caller. 827 * 828 * Run the filter code and then cut skb->data to correct size returned by 829 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 830 * than pkt_len we keep whole skb->data. This is the socket level 831 * wrapper to sk_run_filter. It returns 0 if the packet should 832 * be accepted or -EPERM if the packet should be tossed. 833 * 834 */ 835 836 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock) 837 { 838 int err; 839 840 err = security_sock_rcv_skb(sk, skb); 841 if (err) 842 return err; 843 844 if (sk->sk_filter) { 845 struct sk_filter *filter; 846 847 if (needlock) 848 bh_lock_sock(sk); 849 850 filter = sk->sk_filter; 851 if (filter) { 852 int pkt_len = sk_run_filter(skb, filter->insns, 853 filter->len); 854 if (!pkt_len) 855 err = -EPERM; 856 else 857 skb_trim(skb, pkt_len); 858 } 859 860 if (needlock) 861 bh_unlock_sock(sk); 862 } 863 return err; 864 } 865 866 /** 867 * sk_filter_release: Release a socket filter 868 * @sk: socket 869 * @fp: filter to remove 870 * 871 * Remove a filter from a socket and release its resources. 872 */ 873 874 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 875 { 876 unsigned int size = sk_filter_len(fp); 877 878 atomic_sub(size, &sk->sk_omem_alloc); 879 880 if (atomic_dec_and_test(&fp->refcnt)) 881 kfree(fp); 882 } 883 884 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 885 { 886 atomic_inc(&fp->refcnt); 887 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 888 } 889 890 /* 891 * Socket reference counting postulates. 892 * 893 * * Each user of socket SHOULD hold a reference count. 894 * * Each access point to socket (an hash table bucket, reference from a list, 895 * running timer, skb in flight MUST hold a reference count. 896 * * When reference count hits 0, it means it will never increase back. 897 * * When reference count hits 0, it means that no references from 898 * outside exist to this socket and current process on current CPU 899 * is last user and may/should destroy this socket. 900 * * sk_free is called from any context: process, BH, IRQ. When 901 * it is called, socket has no references from outside -> sk_free 902 * may release descendant resources allocated by the socket, but 903 * to the time when it is called, socket is NOT referenced by any 904 * hash tables, lists etc. 905 * * Packets, delivered from outside (from network or from another process) 906 * and enqueued on receive/error queues SHOULD NOT grab reference count, 907 * when they sit in queue. Otherwise, packets will leak to hole, when 908 * socket is looked up by one cpu and unhasing is made by another CPU. 909 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 910 * (leak to backlog). Packet socket does all the processing inside 911 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 912 * use separate SMP lock, so that they are prone too. 913 */ 914 915 /* Ungrab socket and destroy it, if it was the last reference. */ 916 static inline void sock_put(struct sock *sk) 917 { 918 if (atomic_dec_and_test(&sk->sk_refcnt)) 919 sk_free(sk); 920 } 921 922 /* Detach socket from process context. 923 * Announce socket dead, detach it from wait queue and inode. 924 * Note that parent inode held reference count on this struct sock, 925 * we do not release it in this function, because protocol 926 * probably wants some additional cleanups or even continuing 927 * to work with this socket (TCP). 928 */ 929 static inline void sock_orphan(struct sock *sk) 930 { 931 write_lock_bh(&sk->sk_callback_lock); 932 sock_set_flag(sk, SOCK_DEAD); 933 sk->sk_socket = NULL; 934 sk->sk_sleep = NULL; 935 write_unlock_bh(&sk->sk_callback_lock); 936 } 937 938 static inline void sock_graft(struct sock *sk, struct socket *parent) 939 { 940 write_lock_bh(&sk->sk_callback_lock); 941 sk->sk_sleep = &parent->wait; 942 parent->sk = sk; 943 sk->sk_socket = parent; 944 write_unlock_bh(&sk->sk_callback_lock); 945 } 946 947 extern int sock_i_uid(struct sock *sk); 948 extern unsigned long sock_i_ino(struct sock *sk); 949 950 static inline struct dst_entry * 951 __sk_dst_get(struct sock *sk) 952 { 953 return sk->sk_dst_cache; 954 } 955 956 static inline struct dst_entry * 957 sk_dst_get(struct sock *sk) 958 { 959 struct dst_entry *dst; 960 961 read_lock(&sk->sk_dst_lock); 962 dst = sk->sk_dst_cache; 963 if (dst) 964 dst_hold(dst); 965 read_unlock(&sk->sk_dst_lock); 966 return dst; 967 } 968 969 static inline void 970 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 971 { 972 struct dst_entry *old_dst; 973 974 old_dst = sk->sk_dst_cache; 975 sk->sk_dst_cache = dst; 976 dst_release(old_dst); 977 } 978 979 static inline void 980 sk_dst_set(struct sock *sk, struct dst_entry *dst) 981 { 982 write_lock(&sk->sk_dst_lock); 983 __sk_dst_set(sk, dst); 984 write_unlock(&sk->sk_dst_lock); 985 } 986 987 static inline void 988 __sk_dst_reset(struct sock *sk) 989 { 990 struct dst_entry *old_dst; 991 992 old_dst = sk->sk_dst_cache; 993 sk->sk_dst_cache = NULL; 994 dst_release(old_dst); 995 } 996 997 static inline void 998 sk_dst_reset(struct sock *sk) 999 { 1000 write_lock(&sk->sk_dst_lock); 1001 __sk_dst_reset(sk); 1002 write_unlock(&sk->sk_dst_lock); 1003 } 1004 1005 static inline struct dst_entry * 1006 __sk_dst_check(struct sock *sk, u32 cookie) 1007 { 1008 struct dst_entry *dst = sk->sk_dst_cache; 1009 1010 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 1011 sk->sk_dst_cache = NULL; 1012 dst_release(dst); 1013 return NULL; 1014 } 1015 1016 return dst; 1017 } 1018 1019 static inline struct dst_entry * 1020 sk_dst_check(struct sock *sk, u32 cookie) 1021 { 1022 struct dst_entry *dst = sk_dst_get(sk); 1023 1024 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 1025 sk_dst_reset(sk); 1026 dst_release(dst); 1027 return NULL; 1028 } 1029 1030 return dst; 1031 } 1032 1033 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1034 { 1035 __sk_dst_set(sk, dst); 1036 sk->sk_route_caps = dst->dev->features; 1037 if (sk->sk_route_caps & NETIF_F_TSO) { 1038 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len) 1039 sk->sk_route_caps &= ~NETIF_F_TSO; 1040 } 1041 } 1042 1043 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1044 { 1045 sk->sk_wmem_queued += skb->truesize; 1046 sk->sk_forward_alloc -= skb->truesize; 1047 } 1048 1049 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1050 struct sk_buff *skb, struct page *page, 1051 int off, int copy) 1052 { 1053 if (skb->ip_summed == CHECKSUM_NONE) { 1054 int err = 0; 1055 unsigned int csum = csum_and_copy_from_user(from, 1056 page_address(page) + off, 1057 copy, 0, &err); 1058 if (err) 1059 return err; 1060 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1061 } else if (copy_from_user(page_address(page) + off, from, copy)) 1062 return -EFAULT; 1063 1064 skb->len += copy; 1065 skb->data_len += copy; 1066 skb->truesize += copy; 1067 sk->sk_wmem_queued += copy; 1068 sk->sk_forward_alloc -= copy; 1069 return 0; 1070 } 1071 1072 /* 1073 * Queue a received datagram if it will fit. Stream and sequenced 1074 * protocols can't normally use this as they need to fit buffers in 1075 * and play with them. 1076 * 1077 * Inlined as it's very short and called for pretty much every 1078 * packet ever received. 1079 */ 1080 1081 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1082 { 1083 sock_hold(sk); 1084 skb->sk = sk; 1085 skb->destructor = sock_wfree; 1086 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1087 } 1088 1089 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1090 { 1091 skb->sk = sk; 1092 skb->destructor = sock_rfree; 1093 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1094 } 1095 1096 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1097 unsigned long expires); 1098 1099 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1100 1101 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1102 { 1103 int err = 0; 1104 int skb_len; 1105 1106 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1107 number of warnings when compiling with -W --ANK 1108 */ 1109 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1110 (unsigned)sk->sk_rcvbuf) { 1111 err = -ENOMEM; 1112 goto out; 1113 } 1114 1115 /* It would be deadlock, if sock_queue_rcv_skb is used 1116 with socket lock! We assume that users of this 1117 function are lock free. 1118 */ 1119 err = sk_filter(sk, skb, 1); 1120 if (err) 1121 goto out; 1122 1123 skb->dev = NULL; 1124 skb_set_owner_r(skb, sk); 1125 1126 /* Cache the SKB length before we tack it onto the receive 1127 * queue. Once it is added it no longer belongs to us and 1128 * may be freed by other threads of control pulling packets 1129 * from the queue. 1130 */ 1131 skb_len = skb->len; 1132 1133 skb_queue_tail(&sk->sk_receive_queue, skb); 1134 1135 if (!sock_flag(sk, SOCK_DEAD)) 1136 sk->sk_data_ready(sk, skb_len); 1137 out: 1138 return err; 1139 } 1140 1141 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1142 { 1143 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1144 number of warnings when compiling with -W --ANK 1145 */ 1146 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1147 (unsigned)sk->sk_rcvbuf) 1148 return -ENOMEM; 1149 skb_set_owner_r(skb, sk); 1150 skb_queue_tail(&sk->sk_error_queue, skb); 1151 if (!sock_flag(sk, SOCK_DEAD)) 1152 sk->sk_data_ready(sk, skb->len); 1153 return 0; 1154 } 1155 1156 /* 1157 * Recover an error report and clear atomically 1158 */ 1159 1160 static inline int sock_error(struct sock *sk) 1161 { 1162 int err = xchg(&sk->sk_err, 0); 1163 return -err; 1164 } 1165 1166 static inline unsigned long sock_wspace(struct sock *sk) 1167 { 1168 int amt = 0; 1169 1170 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1171 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1172 if (amt < 0) 1173 amt = 0; 1174 } 1175 return amt; 1176 } 1177 1178 static inline void sk_wake_async(struct sock *sk, int how, int band) 1179 { 1180 if (sk->sk_socket && sk->sk_socket->fasync_list) 1181 sock_wake_async(sk->sk_socket, how, band); 1182 } 1183 1184 #define SOCK_MIN_SNDBUF 2048 1185 #define SOCK_MIN_RCVBUF 256 1186 1187 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1188 { 1189 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1190 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1191 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1192 } 1193 } 1194 1195 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1196 int size, int mem, 1197 unsigned int __nocast gfp) 1198 { 1199 struct sk_buff *skb; 1200 int hdr_len; 1201 1202 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1203 skb = alloc_skb_fclone(size + hdr_len, gfp); 1204 if (skb) { 1205 skb->truesize += mem; 1206 if (sk->sk_forward_alloc >= (int)skb->truesize || 1207 sk_stream_mem_schedule(sk, skb->truesize, 0)) { 1208 skb_reserve(skb, hdr_len); 1209 return skb; 1210 } 1211 __kfree_skb(skb); 1212 } else { 1213 sk->sk_prot->enter_memory_pressure(); 1214 sk_stream_moderate_sndbuf(sk); 1215 } 1216 return NULL; 1217 } 1218 1219 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1220 int size, 1221 unsigned int __nocast gfp) 1222 { 1223 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1224 } 1225 1226 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1227 { 1228 struct page *page = NULL; 1229 1230 if (sk->sk_forward_alloc >= (int)PAGE_SIZE || 1231 sk_stream_mem_schedule(sk, PAGE_SIZE, 0)) 1232 page = alloc_pages(sk->sk_allocation, 0); 1233 else { 1234 sk->sk_prot->enter_memory_pressure(); 1235 sk_stream_moderate_sndbuf(sk); 1236 } 1237 return page; 1238 } 1239 1240 #define sk_stream_for_retrans_queue(skb, sk) \ 1241 for (skb = (sk)->sk_write_queue.next; \ 1242 (skb != (sk)->sk_send_head) && \ 1243 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1244 skb = skb->next) 1245 1246 /* 1247 * Default write policy as shown to user space via poll/select/SIGIO 1248 */ 1249 static inline int sock_writeable(const struct sock *sk) 1250 { 1251 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1252 } 1253 1254 static inline unsigned int __nocast gfp_any(void) 1255 { 1256 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1257 } 1258 1259 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1260 { 1261 return noblock ? 0 : sk->sk_rcvtimeo; 1262 } 1263 1264 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1265 { 1266 return noblock ? 0 : sk->sk_sndtimeo; 1267 } 1268 1269 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1270 { 1271 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1272 } 1273 1274 /* Alas, with timeout socket operations are not restartable. 1275 * Compare this to poll(). 1276 */ 1277 static inline int sock_intr_errno(long timeo) 1278 { 1279 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1280 } 1281 1282 static __inline__ void 1283 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1284 { 1285 struct timeval stamp; 1286 1287 skb_get_timestamp(skb, &stamp); 1288 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1289 /* Race occurred between timestamp enabling and packet 1290 receiving. Fill in the current time for now. */ 1291 if (stamp.tv_sec == 0) 1292 do_gettimeofday(&stamp); 1293 skb_set_timestamp(skb, &stamp); 1294 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1295 &stamp); 1296 } else 1297 sk->sk_stamp = stamp; 1298 } 1299 1300 /** 1301 * sk_eat_skb - Release a skb if it is no longer needed 1302 * @sk: socket to eat this skb from 1303 * @skb: socket buffer to eat 1304 * 1305 * This routine must be called with interrupts disabled or with the socket 1306 * locked so that the sk_buff queue operation is ok. 1307 */ 1308 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 1309 { 1310 __skb_unlink(skb, &sk->sk_receive_queue); 1311 __kfree_skb(skb); 1312 } 1313 1314 extern void sock_enable_timestamp(struct sock *sk); 1315 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1316 1317 /* 1318 * Enable debug/info messages 1319 */ 1320 1321 #if 0 1322 #define NETDEBUG(fmt, args...) do { } while (0) 1323 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0) 1324 #else 1325 #define NETDEBUG(fmt, args...) printk(fmt,##args) 1326 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0) 1327 #endif 1328 1329 /* 1330 * Macros for sleeping on a socket. Use them like this: 1331 * 1332 * SOCK_SLEEP_PRE(sk) 1333 * if (condition) 1334 * schedule(); 1335 * SOCK_SLEEP_POST(sk) 1336 * 1337 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1338 * and when the last use of them in DECnet has gone, I'm intending to 1339 * remove them. 1340 */ 1341 1342 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1343 DECLARE_WAITQUEUE(wait, tsk); \ 1344 tsk->state = TASK_INTERRUPTIBLE; \ 1345 add_wait_queue((sk)->sk_sleep, &wait); \ 1346 release_sock(sk); 1347 1348 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1349 remove_wait_queue((sk)->sk_sleep, &wait); \ 1350 lock_sock(sk); \ 1351 } 1352 1353 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1354 { 1355 if (valbool) 1356 sock_set_flag(sk, bit); 1357 else 1358 sock_reset_flag(sk, bit); 1359 } 1360 1361 extern __u32 sysctl_wmem_max; 1362 extern __u32 sysctl_rmem_max; 1363 1364 #ifdef CONFIG_NET 1365 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1366 #else 1367 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1368 { 1369 return -ENODEV; 1370 } 1371 #endif 1372 1373 extern void sk_init(void); 1374 1375 #ifdef CONFIG_SYSCTL 1376 extern struct ctl_table core_table[]; 1377 extern int sysctl_optmem_max; 1378 #endif 1379 1380 extern __u32 sysctl_wmem_default; 1381 extern __u32 sysctl_rmem_default; 1382 1383 #endif /* _SOCK_H */ 1384