1 #ifndef __NET_CFG80211_H 2 #define __NET_CFG80211_H 3 /* 4 * 802.11 device and configuration interface 5 * 6 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright 2015-2016 Intel Deutschland GmbH 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 15 #include <linux/netdevice.h> 16 #include <linux/debugfs.h> 17 #include <linux/list.h> 18 #include <linux/bug.h> 19 #include <linux/netlink.h> 20 #include <linux/skbuff.h> 21 #include <linux/nl80211.h> 22 #include <linux/if_ether.h> 23 #include <linux/ieee80211.h> 24 #include <linux/net.h> 25 #include <net/regulatory.h> 26 27 /** 28 * DOC: Introduction 29 * 30 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges 31 * userspace and drivers, and offers some utility functionality associated 32 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used 33 * by all modern wireless drivers in Linux, so that they offer a consistent 34 * API through nl80211. For backward compatibility, cfg80211 also offers 35 * wireless extensions to userspace, but hides them from drivers completely. 36 * 37 * Additionally, cfg80211 contains code to help enforce regulatory spectrum 38 * use restrictions. 39 */ 40 41 42 /** 43 * DOC: Device registration 44 * 45 * In order for a driver to use cfg80211, it must register the hardware device 46 * with cfg80211. This happens through a number of hardware capability structs 47 * described below. 48 * 49 * The fundamental structure for each device is the 'wiphy', of which each 50 * instance describes a physical wireless device connected to the system. Each 51 * such wiphy can have zero, one, or many virtual interfaces associated with 52 * it, which need to be identified as such by pointing the network interface's 53 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes 54 * the wireless part of the interface, normally this struct is embedded in the 55 * network interface's private data area. Drivers can optionally allow creating 56 * or destroying virtual interfaces on the fly, but without at least one or the 57 * ability to create some the wireless device isn't useful. 58 * 59 * Each wiphy structure contains device capability information, and also has 60 * a pointer to the various operations the driver offers. The definitions and 61 * structures here describe these capabilities in detail. 62 */ 63 64 struct wiphy; 65 66 /* 67 * wireless hardware capability structures 68 */ 69 70 /** 71 * enum ieee80211_channel_flags - channel flags 72 * 73 * Channel flags set by the regulatory control code. 74 * 75 * @IEEE80211_CHAN_DISABLED: This channel is disabled. 76 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes 77 * sending probe requests or beaconing. 78 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel. 79 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel 80 * is not permitted. 81 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel 82 * is not permitted. 83 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel. 84 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band, 85 * this flag indicates that an 80 MHz channel cannot use this 86 * channel as the control or any of the secondary channels. 87 * This may be due to the driver or due to regulatory bandwidth 88 * restrictions. 89 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band, 90 * this flag indicates that an 160 MHz channel cannot use this 91 * channel as the control or any of the secondary channels. 92 * This may be due to the driver or due to regulatory bandwidth 93 * restrictions. 94 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY 95 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT 96 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted 97 * on this channel. 98 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted 99 * on this channel. 100 * 101 */ 102 enum ieee80211_channel_flags { 103 IEEE80211_CHAN_DISABLED = 1<<0, 104 IEEE80211_CHAN_NO_IR = 1<<1, 105 /* hole at 1<<2 */ 106 IEEE80211_CHAN_RADAR = 1<<3, 107 IEEE80211_CHAN_NO_HT40PLUS = 1<<4, 108 IEEE80211_CHAN_NO_HT40MINUS = 1<<5, 109 IEEE80211_CHAN_NO_OFDM = 1<<6, 110 IEEE80211_CHAN_NO_80MHZ = 1<<7, 111 IEEE80211_CHAN_NO_160MHZ = 1<<8, 112 IEEE80211_CHAN_INDOOR_ONLY = 1<<9, 113 IEEE80211_CHAN_IR_CONCURRENT = 1<<10, 114 IEEE80211_CHAN_NO_20MHZ = 1<<11, 115 IEEE80211_CHAN_NO_10MHZ = 1<<12, 116 }; 117 118 #define IEEE80211_CHAN_NO_HT40 \ 119 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS) 120 121 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000 122 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000) 123 124 /** 125 * struct ieee80211_channel - channel definition 126 * 127 * This structure describes a single channel for use 128 * with cfg80211. 129 * 130 * @center_freq: center frequency in MHz 131 * @hw_value: hardware-specific value for the channel 132 * @flags: channel flags from &enum ieee80211_channel_flags. 133 * @orig_flags: channel flags at registration time, used by regulatory 134 * code to support devices with additional restrictions 135 * @band: band this channel belongs to. 136 * @max_antenna_gain: maximum antenna gain in dBi 137 * @max_power: maximum transmission power (in dBm) 138 * @max_reg_power: maximum regulatory transmission power (in dBm) 139 * @beacon_found: helper to regulatory code to indicate when a beacon 140 * has been found on this channel. Use regulatory_hint_found_beacon() 141 * to enable this, this is useful only on 5 GHz band. 142 * @orig_mag: internal use 143 * @orig_mpwr: internal use 144 * @dfs_state: current state of this channel. Only relevant if radar is required 145 * on this channel. 146 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered. 147 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels. 148 */ 149 struct ieee80211_channel { 150 enum nl80211_band band; 151 u16 center_freq; 152 u16 hw_value; 153 u32 flags; 154 int max_antenna_gain; 155 int max_power; 156 int max_reg_power; 157 bool beacon_found; 158 u32 orig_flags; 159 int orig_mag, orig_mpwr; 160 enum nl80211_dfs_state dfs_state; 161 unsigned long dfs_state_entered; 162 unsigned int dfs_cac_ms; 163 }; 164 165 /** 166 * enum ieee80211_rate_flags - rate flags 167 * 168 * Hardware/specification flags for rates. These are structured 169 * in a way that allows using the same bitrate structure for 170 * different bands/PHY modes. 171 * 172 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short 173 * preamble on this bitrate; only relevant in 2.4GHz band and 174 * with CCK rates. 175 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate 176 * when used with 802.11a (on the 5 GHz band); filled by the 177 * core code when registering the wiphy. 178 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate 179 * when used with 802.11b (on the 2.4 GHz band); filled by the 180 * core code when registering the wiphy. 181 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate 182 * when used with 802.11g (on the 2.4 GHz band); filled by the 183 * core code when registering the wiphy. 184 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode. 185 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode 186 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode 187 */ 188 enum ieee80211_rate_flags { 189 IEEE80211_RATE_SHORT_PREAMBLE = 1<<0, 190 IEEE80211_RATE_MANDATORY_A = 1<<1, 191 IEEE80211_RATE_MANDATORY_B = 1<<2, 192 IEEE80211_RATE_MANDATORY_G = 1<<3, 193 IEEE80211_RATE_ERP_G = 1<<4, 194 IEEE80211_RATE_SUPPORTS_5MHZ = 1<<5, 195 IEEE80211_RATE_SUPPORTS_10MHZ = 1<<6, 196 }; 197 198 /** 199 * enum ieee80211_bss_type - BSS type filter 200 * 201 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS 202 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS 203 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS 204 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS 205 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type 206 */ 207 enum ieee80211_bss_type { 208 IEEE80211_BSS_TYPE_ESS, 209 IEEE80211_BSS_TYPE_PBSS, 210 IEEE80211_BSS_TYPE_IBSS, 211 IEEE80211_BSS_TYPE_MBSS, 212 IEEE80211_BSS_TYPE_ANY 213 }; 214 215 /** 216 * enum ieee80211_privacy - BSS privacy filter 217 * 218 * @IEEE80211_PRIVACY_ON: privacy bit set 219 * @IEEE80211_PRIVACY_OFF: privacy bit clear 220 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting 221 */ 222 enum ieee80211_privacy { 223 IEEE80211_PRIVACY_ON, 224 IEEE80211_PRIVACY_OFF, 225 IEEE80211_PRIVACY_ANY 226 }; 227 228 #define IEEE80211_PRIVACY(x) \ 229 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF) 230 231 /** 232 * struct ieee80211_rate - bitrate definition 233 * 234 * This structure describes a bitrate that an 802.11 PHY can 235 * operate with. The two values @hw_value and @hw_value_short 236 * are only for driver use when pointers to this structure are 237 * passed around. 238 * 239 * @flags: rate-specific flags 240 * @bitrate: bitrate in units of 100 Kbps 241 * @hw_value: driver/hardware value for this rate 242 * @hw_value_short: driver/hardware value for this rate when 243 * short preamble is used 244 */ 245 struct ieee80211_rate { 246 u32 flags; 247 u16 bitrate; 248 u16 hw_value, hw_value_short; 249 }; 250 251 /** 252 * struct ieee80211_sta_ht_cap - STA's HT capabilities 253 * 254 * This structure describes most essential parameters needed 255 * to describe 802.11n HT capabilities for an STA. 256 * 257 * @ht_supported: is HT supported by the STA 258 * @cap: HT capabilities map as described in 802.11n spec 259 * @ampdu_factor: Maximum A-MPDU length factor 260 * @ampdu_density: Minimum A-MPDU spacing 261 * @mcs: Supported MCS rates 262 */ 263 struct ieee80211_sta_ht_cap { 264 u16 cap; /* use IEEE80211_HT_CAP_ */ 265 bool ht_supported; 266 u8 ampdu_factor; 267 u8 ampdu_density; 268 struct ieee80211_mcs_info mcs; 269 }; 270 271 /** 272 * struct ieee80211_sta_vht_cap - STA's VHT capabilities 273 * 274 * This structure describes most essential parameters needed 275 * to describe 802.11ac VHT capabilities for an STA. 276 * 277 * @vht_supported: is VHT supported by the STA 278 * @cap: VHT capabilities map as described in 802.11ac spec 279 * @vht_mcs: Supported VHT MCS rates 280 */ 281 struct ieee80211_sta_vht_cap { 282 bool vht_supported; 283 u32 cap; /* use IEEE80211_VHT_CAP_ */ 284 struct ieee80211_vht_mcs_info vht_mcs; 285 }; 286 287 /** 288 * struct ieee80211_supported_band - frequency band definition 289 * 290 * This structure describes a frequency band a wiphy 291 * is able to operate in. 292 * 293 * @channels: Array of channels the hardware can operate in 294 * in this band. 295 * @band: the band this structure represents 296 * @n_channels: Number of channels in @channels 297 * @bitrates: Array of bitrates the hardware can operate with 298 * in this band. Must be sorted to give a valid "supported 299 * rates" IE, i.e. CCK rates first, then OFDM. 300 * @n_bitrates: Number of bitrates in @bitrates 301 * @ht_cap: HT capabilities in this band 302 * @vht_cap: VHT capabilities in this band 303 */ 304 struct ieee80211_supported_band { 305 struct ieee80211_channel *channels; 306 struct ieee80211_rate *bitrates; 307 enum nl80211_band band; 308 int n_channels; 309 int n_bitrates; 310 struct ieee80211_sta_ht_cap ht_cap; 311 struct ieee80211_sta_vht_cap vht_cap; 312 }; 313 314 /* 315 * Wireless hardware/device configuration structures and methods 316 */ 317 318 /** 319 * DOC: Actions and configuration 320 * 321 * Each wireless device and each virtual interface offer a set of configuration 322 * operations and other actions that are invoked by userspace. Each of these 323 * actions is described in the operations structure, and the parameters these 324 * operations use are described separately. 325 * 326 * Additionally, some operations are asynchronous and expect to get status 327 * information via some functions that drivers need to call. 328 * 329 * Scanning and BSS list handling with its associated functionality is described 330 * in a separate chapter. 331 */ 332 333 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\ 334 WLAN_USER_POSITION_LEN) 335 336 /** 337 * struct vif_params - describes virtual interface parameters 338 * @use_4addr: use 4-address frames 339 * @macaddr: address to use for this virtual interface. 340 * If this parameter is set to zero address the driver may 341 * determine the address as needed. 342 * This feature is only fully supported by drivers that enable the 343 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating 344 ** only p2p devices with specified MAC. 345 * @vht_mumimo_groups: MU-MIMO groupID. used for monitoring only 346 * packets belonging to that MU-MIMO groupID. 347 */ 348 struct vif_params { 349 int use_4addr; 350 u8 macaddr[ETH_ALEN]; 351 u8 vht_mumimo_groups[VHT_MUMIMO_GROUPS_DATA_LEN]; 352 }; 353 354 /** 355 * struct key_params - key information 356 * 357 * Information about a key 358 * 359 * @key: key material 360 * @key_len: length of key material 361 * @cipher: cipher suite selector 362 * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used 363 * with the get_key() callback, must be in little endian, 364 * length given by @seq_len. 365 * @seq_len: length of @seq. 366 */ 367 struct key_params { 368 const u8 *key; 369 const u8 *seq; 370 int key_len; 371 int seq_len; 372 u32 cipher; 373 }; 374 375 /** 376 * struct cfg80211_chan_def - channel definition 377 * @chan: the (control) channel 378 * @width: channel width 379 * @center_freq1: center frequency of first segment 380 * @center_freq2: center frequency of second segment 381 * (only with 80+80 MHz) 382 */ 383 struct cfg80211_chan_def { 384 struct ieee80211_channel *chan; 385 enum nl80211_chan_width width; 386 u32 center_freq1; 387 u32 center_freq2; 388 }; 389 390 /** 391 * cfg80211_get_chandef_type - return old channel type from chandef 392 * @chandef: the channel definition 393 * 394 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given 395 * chandef, which must have a bandwidth allowing this conversion. 396 */ 397 static inline enum nl80211_channel_type 398 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef) 399 { 400 switch (chandef->width) { 401 case NL80211_CHAN_WIDTH_20_NOHT: 402 return NL80211_CHAN_NO_HT; 403 case NL80211_CHAN_WIDTH_20: 404 return NL80211_CHAN_HT20; 405 case NL80211_CHAN_WIDTH_40: 406 if (chandef->center_freq1 > chandef->chan->center_freq) 407 return NL80211_CHAN_HT40PLUS; 408 return NL80211_CHAN_HT40MINUS; 409 default: 410 WARN_ON(1); 411 return NL80211_CHAN_NO_HT; 412 } 413 } 414 415 /** 416 * cfg80211_chandef_create - create channel definition using channel type 417 * @chandef: the channel definition struct to fill 418 * @channel: the control channel 419 * @chantype: the channel type 420 * 421 * Given a channel type, create a channel definition. 422 */ 423 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 424 struct ieee80211_channel *channel, 425 enum nl80211_channel_type chantype); 426 427 /** 428 * cfg80211_chandef_identical - check if two channel definitions are identical 429 * @chandef1: first channel definition 430 * @chandef2: second channel definition 431 * 432 * Return: %true if the channels defined by the channel definitions are 433 * identical, %false otherwise. 434 */ 435 static inline bool 436 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1, 437 const struct cfg80211_chan_def *chandef2) 438 { 439 return (chandef1->chan == chandef2->chan && 440 chandef1->width == chandef2->width && 441 chandef1->center_freq1 == chandef2->center_freq1 && 442 chandef1->center_freq2 == chandef2->center_freq2); 443 } 444 445 /** 446 * cfg80211_chandef_compatible - check if two channel definitions are compatible 447 * @chandef1: first channel definition 448 * @chandef2: second channel definition 449 * 450 * Return: %NULL if the given channel definitions are incompatible, 451 * chandef1 or chandef2 otherwise. 452 */ 453 const struct cfg80211_chan_def * 454 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1, 455 const struct cfg80211_chan_def *chandef2); 456 457 /** 458 * cfg80211_chandef_valid - check if a channel definition is valid 459 * @chandef: the channel definition to check 460 * Return: %true if the channel definition is valid. %false otherwise. 461 */ 462 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef); 463 464 /** 465 * cfg80211_chandef_usable - check if secondary channels can be used 466 * @wiphy: the wiphy to validate against 467 * @chandef: the channel definition to check 468 * @prohibited_flags: the regulatory channel flags that must not be set 469 * Return: %true if secondary channels are usable. %false otherwise. 470 */ 471 bool cfg80211_chandef_usable(struct wiphy *wiphy, 472 const struct cfg80211_chan_def *chandef, 473 u32 prohibited_flags); 474 475 /** 476 * cfg80211_chandef_dfs_required - checks if radar detection is required 477 * @wiphy: the wiphy to validate against 478 * @chandef: the channel definition to check 479 * @iftype: the interface type as specified in &enum nl80211_iftype 480 * Returns: 481 * 1 if radar detection is required, 0 if it is not, < 0 on error 482 */ 483 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 484 const struct cfg80211_chan_def *chandef, 485 enum nl80211_iftype iftype); 486 487 /** 488 * ieee80211_chandef_rate_flags - returns rate flags for a channel 489 * 490 * In some channel types, not all rates may be used - for example CCK 491 * rates may not be used in 5/10 MHz channels. 492 * 493 * @chandef: channel definition for the channel 494 * 495 * Returns: rate flags which apply for this channel 496 */ 497 static inline enum ieee80211_rate_flags 498 ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef) 499 { 500 switch (chandef->width) { 501 case NL80211_CHAN_WIDTH_5: 502 return IEEE80211_RATE_SUPPORTS_5MHZ; 503 case NL80211_CHAN_WIDTH_10: 504 return IEEE80211_RATE_SUPPORTS_10MHZ; 505 default: 506 break; 507 } 508 return 0; 509 } 510 511 /** 512 * ieee80211_chandef_max_power - maximum transmission power for the chandef 513 * 514 * In some regulations, the transmit power may depend on the configured channel 515 * bandwidth which may be defined as dBm/MHz. This function returns the actual 516 * max_power for non-standard (20 MHz) channels. 517 * 518 * @chandef: channel definition for the channel 519 * 520 * Returns: maximum allowed transmission power in dBm for the chandef 521 */ 522 static inline int 523 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef) 524 { 525 switch (chandef->width) { 526 case NL80211_CHAN_WIDTH_5: 527 return min(chandef->chan->max_reg_power - 6, 528 chandef->chan->max_power); 529 case NL80211_CHAN_WIDTH_10: 530 return min(chandef->chan->max_reg_power - 3, 531 chandef->chan->max_power); 532 default: 533 break; 534 } 535 return chandef->chan->max_power; 536 } 537 538 /** 539 * enum survey_info_flags - survey information flags 540 * 541 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in 542 * @SURVEY_INFO_IN_USE: channel is currently being used 543 * @SURVEY_INFO_TIME: active time (in ms) was filled in 544 * @SURVEY_INFO_TIME_BUSY: busy time was filled in 545 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in 546 * @SURVEY_INFO_TIME_RX: receive time was filled in 547 * @SURVEY_INFO_TIME_TX: transmit time was filled in 548 * @SURVEY_INFO_TIME_SCAN: scan time was filled in 549 * 550 * Used by the driver to indicate which info in &struct survey_info 551 * it has filled in during the get_survey(). 552 */ 553 enum survey_info_flags { 554 SURVEY_INFO_NOISE_DBM = BIT(0), 555 SURVEY_INFO_IN_USE = BIT(1), 556 SURVEY_INFO_TIME = BIT(2), 557 SURVEY_INFO_TIME_BUSY = BIT(3), 558 SURVEY_INFO_TIME_EXT_BUSY = BIT(4), 559 SURVEY_INFO_TIME_RX = BIT(5), 560 SURVEY_INFO_TIME_TX = BIT(6), 561 SURVEY_INFO_TIME_SCAN = BIT(7), 562 }; 563 564 /** 565 * struct survey_info - channel survey response 566 * 567 * @channel: the channel this survey record reports, may be %NULL for a single 568 * record to report global statistics 569 * @filled: bitflag of flags from &enum survey_info_flags 570 * @noise: channel noise in dBm. This and all following fields are 571 * optional 572 * @time: amount of time in ms the radio was turn on (on the channel) 573 * @time_busy: amount of time the primary channel was sensed busy 574 * @time_ext_busy: amount of time the extension channel was sensed busy 575 * @time_rx: amount of time the radio spent receiving data 576 * @time_tx: amount of time the radio spent transmitting data 577 * @time_scan: amount of time the radio spent for scanning 578 * 579 * Used by dump_survey() to report back per-channel survey information. 580 * 581 * This structure can later be expanded with things like 582 * channel duty cycle etc. 583 */ 584 struct survey_info { 585 struct ieee80211_channel *channel; 586 u64 time; 587 u64 time_busy; 588 u64 time_ext_busy; 589 u64 time_rx; 590 u64 time_tx; 591 u64 time_scan; 592 u32 filled; 593 s8 noise; 594 }; 595 596 #define CFG80211_MAX_WEP_KEYS 4 597 598 /** 599 * struct cfg80211_crypto_settings - Crypto settings 600 * @wpa_versions: indicates which, if any, WPA versions are enabled 601 * (from enum nl80211_wpa_versions) 602 * @cipher_group: group key cipher suite (or 0 if unset) 603 * @n_ciphers_pairwise: number of AP supported unicast ciphers 604 * @ciphers_pairwise: unicast key cipher suites 605 * @n_akm_suites: number of AKM suites 606 * @akm_suites: AKM suites 607 * @control_port: Whether user space controls IEEE 802.1X port, i.e., 608 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 609 * required to assume that the port is unauthorized until authorized by 610 * user space. Otherwise, port is marked authorized by default. 611 * @control_port_ethertype: the control port protocol that should be 612 * allowed through even on unauthorized ports 613 * @control_port_no_encrypt: TRUE to prevent encryption of control port 614 * protocol frames. 615 * @wep_keys: static WEP keys, if not NULL points to an array of 616 * CFG80211_MAX_WEP_KEYS WEP keys 617 * @wep_tx_key: key index (0..3) of the default TX static WEP key 618 */ 619 struct cfg80211_crypto_settings { 620 u32 wpa_versions; 621 u32 cipher_group; 622 int n_ciphers_pairwise; 623 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES]; 624 int n_akm_suites; 625 u32 akm_suites[NL80211_MAX_NR_AKM_SUITES]; 626 bool control_port; 627 __be16 control_port_ethertype; 628 bool control_port_no_encrypt; 629 struct key_params *wep_keys; 630 int wep_tx_key; 631 }; 632 633 /** 634 * struct cfg80211_beacon_data - beacon data 635 * @head: head portion of beacon (before TIM IE) 636 * or %NULL if not changed 637 * @tail: tail portion of beacon (after TIM IE) 638 * or %NULL if not changed 639 * @head_len: length of @head 640 * @tail_len: length of @tail 641 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL 642 * @beacon_ies_len: length of beacon_ies in octets 643 * @proberesp_ies: extra information element(s) to add into Probe Response 644 * frames or %NULL 645 * @proberesp_ies_len: length of proberesp_ies in octets 646 * @assocresp_ies: extra information element(s) to add into (Re)Association 647 * Response frames or %NULL 648 * @assocresp_ies_len: length of assocresp_ies in octets 649 * @probe_resp_len: length of probe response template (@probe_resp) 650 * @probe_resp: probe response template (AP mode only) 651 */ 652 struct cfg80211_beacon_data { 653 const u8 *head, *tail; 654 const u8 *beacon_ies; 655 const u8 *proberesp_ies; 656 const u8 *assocresp_ies; 657 const u8 *probe_resp; 658 659 size_t head_len, tail_len; 660 size_t beacon_ies_len; 661 size_t proberesp_ies_len; 662 size_t assocresp_ies_len; 663 size_t probe_resp_len; 664 }; 665 666 struct mac_address { 667 u8 addr[ETH_ALEN]; 668 }; 669 670 /** 671 * struct cfg80211_acl_data - Access control list data 672 * 673 * @acl_policy: ACL policy to be applied on the station's 674 * entry specified by mac_addr 675 * @n_acl_entries: Number of MAC address entries passed 676 * @mac_addrs: List of MAC addresses of stations to be used for ACL 677 */ 678 struct cfg80211_acl_data { 679 enum nl80211_acl_policy acl_policy; 680 int n_acl_entries; 681 682 /* Keep it last */ 683 struct mac_address mac_addrs[]; 684 }; 685 686 /* 687 * cfg80211_bitrate_mask - masks for bitrate control 688 */ 689 struct cfg80211_bitrate_mask { 690 struct { 691 u32 legacy; 692 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN]; 693 u16 vht_mcs[NL80211_VHT_NSS_MAX]; 694 enum nl80211_txrate_gi gi; 695 } control[NUM_NL80211_BANDS]; 696 }; 697 698 /** 699 * struct cfg80211_ap_settings - AP configuration 700 * 701 * Used to configure an AP interface. 702 * 703 * @chandef: defines the channel to use 704 * @beacon: beacon data 705 * @beacon_interval: beacon interval 706 * @dtim_period: DTIM period 707 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from 708 * user space) 709 * @ssid_len: length of @ssid 710 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames 711 * @crypto: crypto settings 712 * @privacy: the BSS uses privacy 713 * @auth_type: Authentication type (algorithm) 714 * @smps_mode: SMPS mode 715 * @inactivity_timeout: time in seconds to determine station's inactivity. 716 * @p2p_ctwindow: P2P CT Window 717 * @p2p_opp_ps: P2P opportunistic PS 718 * @acl: ACL configuration used by the drivers which has support for 719 * MAC address based access control 720 * @pbss: If set, start as a PCP instead of AP. Relevant for DMG 721 * networks. 722 * @beacon_rate: bitrate to be used for beacons 723 */ 724 struct cfg80211_ap_settings { 725 struct cfg80211_chan_def chandef; 726 727 struct cfg80211_beacon_data beacon; 728 729 int beacon_interval, dtim_period; 730 const u8 *ssid; 731 size_t ssid_len; 732 enum nl80211_hidden_ssid hidden_ssid; 733 struct cfg80211_crypto_settings crypto; 734 bool privacy; 735 enum nl80211_auth_type auth_type; 736 enum nl80211_smps_mode smps_mode; 737 int inactivity_timeout; 738 u8 p2p_ctwindow; 739 bool p2p_opp_ps; 740 const struct cfg80211_acl_data *acl; 741 bool pbss; 742 struct cfg80211_bitrate_mask beacon_rate; 743 }; 744 745 /** 746 * struct cfg80211_csa_settings - channel switch settings 747 * 748 * Used for channel switch 749 * 750 * @chandef: defines the channel to use after the switch 751 * @beacon_csa: beacon data while performing the switch 752 * @counter_offsets_beacon: offsets of the counters within the beacon (tail) 753 * @counter_offsets_presp: offsets of the counters within the probe response 754 * @n_counter_offsets_beacon: number of csa counters the beacon (tail) 755 * @n_counter_offsets_presp: number of csa counters in the probe response 756 * @beacon_after: beacon data to be used on the new channel 757 * @radar_required: whether radar detection is required on the new channel 758 * @block_tx: whether transmissions should be blocked while changing 759 * @count: number of beacons until switch 760 */ 761 struct cfg80211_csa_settings { 762 struct cfg80211_chan_def chandef; 763 struct cfg80211_beacon_data beacon_csa; 764 const u16 *counter_offsets_beacon; 765 const u16 *counter_offsets_presp; 766 unsigned int n_counter_offsets_beacon; 767 unsigned int n_counter_offsets_presp; 768 struct cfg80211_beacon_data beacon_after; 769 bool radar_required; 770 bool block_tx; 771 u8 count; 772 }; 773 774 /** 775 * enum station_parameters_apply_mask - station parameter values to apply 776 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp) 777 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability 778 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state 779 * 780 * Not all station parameters have in-band "no change" signalling, 781 * for those that don't these flags will are used. 782 */ 783 enum station_parameters_apply_mask { 784 STATION_PARAM_APPLY_UAPSD = BIT(0), 785 STATION_PARAM_APPLY_CAPABILITY = BIT(1), 786 STATION_PARAM_APPLY_PLINK_STATE = BIT(2), 787 }; 788 789 /** 790 * struct station_parameters - station parameters 791 * 792 * Used to change and create a new station. 793 * 794 * @vlan: vlan interface station should belong to 795 * @supported_rates: supported rates in IEEE 802.11 format 796 * (or NULL for no change) 797 * @supported_rates_len: number of supported rates 798 * @sta_flags_mask: station flags that changed 799 * (bitmask of BIT(NL80211_STA_FLAG_...)) 800 * @sta_flags_set: station flags values 801 * (bitmask of BIT(NL80211_STA_FLAG_...)) 802 * @listen_interval: listen interval or -1 for no change 803 * @aid: AID or zero for no change 804 * @peer_aid: mesh peer AID or zero for no change 805 * @plink_action: plink action to take 806 * @plink_state: set the peer link state for a station 807 * @ht_capa: HT capabilities of station 808 * @vht_capa: VHT capabilities of station 809 * @uapsd_queues: bitmap of queues configured for uapsd. same format 810 * as the AC bitmap in the QoS info field 811 * @max_sp: max Service Period. same format as the MAX_SP in the 812 * QoS info field (but already shifted down) 813 * @sta_modify_mask: bitmap indicating which parameters changed 814 * (for those that don't have a natural "no change" value), 815 * see &enum station_parameters_apply_mask 816 * @local_pm: local link-specific mesh power save mode (no change when set 817 * to unknown) 818 * @capability: station capability 819 * @ext_capab: extended capabilities of the station 820 * @ext_capab_len: number of extended capabilities 821 * @supported_channels: supported channels in IEEE 802.11 format 822 * @supported_channels_len: number of supported channels 823 * @supported_oper_classes: supported oper classes in IEEE 802.11 format 824 * @supported_oper_classes_len: number of supported operating classes 825 * @opmode_notif: operating mode field from Operating Mode Notification 826 * @opmode_notif_used: information if operating mode field is used 827 * @support_p2p_ps: information if station supports P2P PS mechanism 828 */ 829 struct station_parameters { 830 const u8 *supported_rates; 831 struct net_device *vlan; 832 u32 sta_flags_mask, sta_flags_set; 833 u32 sta_modify_mask; 834 int listen_interval; 835 u16 aid; 836 u16 peer_aid; 837 u8 supported_rates_len; 838 u8 plink_action; 839 u8 plink_state; 840 const struct ieee80211_ht_cap *ht_capa; 841 const struct ieee80211_vht_cap *vht_capa; 842 u8 uapsd_queues; 843 u8 max_sp; 844 enum nl80211_mesh_power_mode local_pm; 845 u16 capability; 846 const u8 *ext_capab; 847 u8 ext_capab_len; 848 const u8 *supported_channels; 849 u8 supported_channels_len; 850 const u8 *supported_oper_classes; 851 u8 supported_oper_classes_len; 852 u8 opmode_notif; 853 bool opmode_notif_used; 854 int support_p2p_ps; 855 }; 856 857 /** 858 * struct station_del_parameters - station deletion parameters 859 * 860 * Used to delete a station entry (or all stations). 861 * 862 * @mac: MAC address of the station to remove or NULL to remove all stations 863 * @subtype: Management frame subtype to use for indicating removal 864 * (10 = Disassociation, 12 = Deauthentication) 865 * @reason_code: Reason code for the Disassociation/Deauthentication frame 866 */ 867 struct station_del_parameters { 868 const u8 *mac; 869 u8 subtype; 870 u16 reason_code; 871 }; 872 873 /** 874 * enum cfg80211_station_type - the type of station being modified 875 * @CFG80211_STA_AP_CLIENT: client of an AP interface 876 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still 877 * unassociated (update properties for this type of client is permitted) 878 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has 879 * the AP MLME in the device 880 * @CFG80211_STA_AP_STA: AP station on managed interface 881 * @CFG80211_STA_IBSS: IBSS station 882 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry 883 * while TDLS setup is in progress, it moves out of this state when 884 * being marked authorized; use this only if TDLS with external setup is 885 * supported/used) 886 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active 887 * entry that is operating, has been marked authorized by userspace) 888 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed) 889 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed) 890 */ 891 enum cfg80211_station_type { 892 CFG80211_STA_AP_CLIENT, 893 CFG80211_STA_AP_CLIENT_UNASSOC, 894 CFG80211_STA_AP_MLME_CLIENT, 895 CFG80211_STA_AP_STA, 896 CFG80211_STA_IBSS, 897 CFG80211_STA_TDLS_PEER_SETUP, 898 CFG80211_STA_TDLS_PEER_ACTIVE, 899 CFG80211_STA_MESH_PEER_KERNEL, 900 CFG80211_STA_MESH_PEER_USER, 901 }; 902 903 /** 904 * cfg80211_check_station_change - validate parameter changes 905 * @wiphy: the wiphy this operates on 906 * @params: the new parameters for a station 907 * @statype: the type of station being modified 908 * 909 * Utility function for the @change_station driver method. Call this function 910 * with the appropriate station type looking up the station (and checking that 911 * it exists). It will verify whether the station change is acceptable, and if 912 * not will return an error code. Note that it may modify the parameters for 913 * backward compatibility reasons, so don't use them before calling this. 914 */ 915 int cfg80211_check_station_change(struct wiphy *wiphy, 916 struct station_parameters *params, 917 enum cfg80211_station_type statype); 918 919 /** 920 * enum station_info_rate_flags - bitrate info flags 921 * 922 * Used by the driver to indicate the specific rate transmission 923 * type for 802.11n transmissions. 924 * 925 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS 926 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS 927 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval 928 * @RATE_INFO_FLAGS_60G: 60GHz MCS 929 */ 930 enum rate_info_flags { 931 RATE_INFO_FLAGS_MCS = BIT(0), 932 RATE_INFO_FLAGS_VHT_MCS = BIT(1), 933 RATE_INFO_FLAGS_SHORT_GI = BIT(2), 934 RATE_INFO_FLAGS_60G = BIT(3), 935 }; 936 937 /** 938 * enum rate_info_bw - rate bandwidth information 939 * 940 * Used by the driver to indicate the rate bandwidth. 941 * 942 * @RATE_INFO_BW_5: 5 MHz bandwidth 943 * @RATE_INFO_BW_10: 10 MHz bandwidth 944 * @RATE_INFO_BW_20: 20 MHz bandwidth 945 * @RATE_INFO_BW_40: 40 MHz bandwidth 946 * @RATE_INFO_BW_80: 80 MHz bandwidth 947 * @RATE_INFO_BW_160: 160 MHz bandwidth 948 */ 949 enum rate_info_bw { 950 RATE_INFO_BW_5, 951 RATE_INFO_BW_10, 952 RATE_INFO_BW_20, 953 RATE_INFO_BW_40, 954 RATE_INFO_BW_80, 955 RATE_INFO_BW_160, 956 }; 957 958 /** 959 * struct rate_info - bitrate information 960 * 961 * Information about a receiving or transmitting bitrate 962 * 963 * @flags: bitflag of flags from &enum rate_info_flags 964 * @mcs: mcs index if struct describes a 802.11n bitrate 965 * @legacy: bitrate in 100kbit/s for 802.11abg 966 * @nss: number of streams (VHT only) 967 * @bw: bandwidth (from &enum rate_info_bw) 968 */ 969 struct rate_info { 970 u8 flags; 971 u8 mcs; 972 u16 legacy; 973 u8 nss; 974 u8 bw; 975 }; 976 977 /** 978 * enum station_info_rate_flags - bitrate info flags 979 * 980 * Used by the driver to indicate the specific rate transmission 981 * type for 802.11n transmissions. 982 * 983 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled 984 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled 985 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled 986 */ 987 enum bss_param_flags { 988 BSS_PARAM_FLAGS_CTS_PROT = 1<<0, 989 BSS_PARAM_FLAGS_SHORT_PREAMBLE = 1<<1, 990 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = 1<<2, 991 }; 992 993 /** 994 * struct sta_bss_parameters - BSS parameters for the attached station 995 * 996 * Information about the currently associated BSS 997 * 998 * @flags: bitflag of flags from &enum bss_param_flags 999 * @dtim_period: DTIM period for the BSS 1000 * @beacon_interval: beacon interval 1001 */ 1002 struct sta_bss_parameters { 1003 u8 flags; 1004 u8 dtim_period; 1005 u16 beacon_interval; 1006 }; 1007 1008 /** 1009 * struct cfg80211_tid_stats - per-TID statistics 1010 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to 1011 * indicate the relevant values in this struct are filled 1012 * @rx_msdu: number of received MSDUs 1013 * @tx_msdu: number of (attempted) transmitted MSDUs 1014 * @tx_msdu_retries: number of retries (not counting the first) for 1015 * transmitted MSDUs 1016 * @tx_msdu_failed: number of failed transmitted MSDUs 1017 */ 1018 struct cfg80211_tid_stats { 1019 u32 filled; 1020 u64 rx_msdu; 1021 u64 tx_msdu; 1022 u64 tx_msdu_retries; 1023 u64 tx_msdu_failed; 1024 }; 1025 1026 #define IEEE80211_MAX_CHAINS 4 1027 1028 /** 1029 * struct station_info - station information 1030 * 1031 * Station information filled by driver for get_station() and dump_station. 1032 * 1033 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to 1034 * indicate the relevant values in this struct for them 1035 * @connected_time: time(in secs) since a station is last connected 1036 * @inactive_time: time since last station activity (tx/rx) in milliseconds 1037 * @rx_bytes: bytes (size of MPDUs) received from this station 1038 * @tx_bytes: bytes (size of MPDUs) transmitted to this station 1039 * @llid: mesh local link id 1040 * @plid: mesh peer link id 1041 * @plink_state: mesh peer link state 1042 * @signal: The signal strength, type depends on the wiphy's signal_type. 1043 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 1044 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type. 1045 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_. 1046 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg 1047 * @chain_signal: per-chain signal strength of last received packet in dBm 1048 * @chain_signal_avg: per-chain signal strength average in dBm 1049 * @txrate: current unicast bitrate from this station 1050 * @rxrate: current unicast bitrate to this station 1051 * @rx_packets: packets (MSDUs & MMPDUs) received from this station 1052 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station 1053 * @tx_retries: cumulative retry counts (MPDUs) 1054 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK) 1055 * @rx_dropped_misc: Dropped for un-specified reason. 1056 * @bss_param: current BSS parameters 1057 * @generation: generation number for nl80211 dumps. 1058 * This number should increase every time the list of stations 1059 * changes, i.e. when a station is added or removed, so that 1060 * userspace can tell whether it got a consistent snapshot. 1061 * @assoc_req_ies: IEs from (Re)Association Request. 1062 * This is used only when in AP mode with drivers that do not use 1063 * user space MLME/SME implementation. The information is provided for 1064 * the cfg80211_new_sta() calls to notify user space of the IEs. 1065 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets. 1066 * @sta_flags: station flags mask & values 1067 * @beacon_loss_count: Number of times beacon loss event has triggered. 1068 * @t_offset: Time offset of the station relative to this host. 1069 * @local_pm: local mesh STA power save mode 1070 * @peer_pm: peer mesh STA power save mode 1071 * @nonpeer_pm: non-peer mesh STA power save mode 1072 * @expected_throughput: expected throughput in kbps (including 802.11 headers) 1073 * towards this station. 1074 * @rx_beacon: number of beacons received from this peer 1075 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received 1076 * from this peer 1077 * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer 1078 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last 1079 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs. 1080 */ 1081 struct station_info { 1082 u64 filled; 1083 u32 connected_time; 1084 u32 inactive_time; 1085 u64 rx_bytes; 1086 u64 tx_bytes; 1087 u16 llid; 1088 u16 plid; 1089 u8 plink_state; 1090 s8 signal; 1091 s8 signal_avg; 1092 1093 u8 chains; 1094 s8 chain_signal[IEEE80211_MAX_CHAINS]; 1095 s8 chain_signal_avg[IEEE80211_MAX_CHAINS]; 1096 1097 struct rate_info txrate; 1098 struct rate_info rxrate; 1099 u32 rx_packets; 1100 u32 tx_packets; 1101 u32 tx_retries; 1102 u32 tx_failed; 1103 u32 rx_dropped_misc; 1104 struct sta_bss_parameters bss_param; 1105 struct nl80211_sta_flag_update sta_flags; 1106 1107 int generation; 1108 1109 const u8 *assoc_req_ies; 1110 size_t assoc_req_ies_len; 1111 1112 u32 beacon_loss_count; 1113 s64 t_offset; 1114 enum nl80211_mesh_power_mode local_pm; 1115 enum nl80211_mesh_power_mode peer_pm; 1116 enum nl80211_mesh_power_mode nonpeer_pm; 1117 1118 u32 expected_throughput; 1119 1120 u64 rx_beacon; 1121 u64 rx_duration; 1122 u8 rx_beacon_signal_avg; 1123 struct cfg80211_tid_stats pertid[IEEE80211_NUM_TIDS + 1]; 1124 }; 1125 1126 #if IS_ENABLED(CONFIG_CFG80211) 1127 /** 1128 * cfg80211_get_station - retrieve information about a given station 1129 * @dev: the device where the station is supposed to be connected to 1130 * @mac_addr: the mac address of the station of interest 1131 * @sinfo: pointer to the structure to fill with the information 1132 * 1133 * Returns 0 on success and sinfo is filled with the available information 1134 * otherwise returns a negative error code and the content of sinfo has to be 1135 * considered undefined. 1136 */ 1137 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1138 struct station_info *sinfo); 1139 #else 1140 static inline int cfg80211_get_station(struct net_device *dev, 1141 const u8 *mac_addr, 1142 struct station_info *sinfo) 1143 { 1144 return -ENOENT; 1145 } 1146 #endif 1147 1148 /** 1149 * enum monitor_flags - monitor flags 1150 * 1151 * Monitor interface configuration flags. Note that these must be the bits 1152 * according to the nl80211 flags. 1153 * 1154 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS 1155 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP 1156 * @MONITOR_FLAG_CONTROL: pass control frames 1157 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering 1158 * @MONITOR_FLAG_COOK_FRAMES: report frames after processing 1159 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address 1160 */ 1161 enum monitor_flags { 1162 MONITOR_FLAG_FCSFAIL = 1<<NL80211_MNTR_FLAG_FCSFAIL, 1163 MONITOR_FLAG_PLCPFAIL = 1<<NL80211_MNTR_FLAG_PLCPFAIL, 1164 MONITOR_FLAG_CONTROL = 1<<NL80211_MNTR_FLAG_CONTROL, 1165 MONITOR_FLAG_OTHER_BSS = 1<<NL80211_MNTR_FLAG_OTHER_BSS, 1166 MONITOR_FLAG_COOK_FRAMES = 1<<NL80211_MNTR_FLAG_COOK_FRAMES, 1167 MONITOR_FLAG_ACTIVE = 1<<NL80211_MNTR_FLAG_ACTIVE, 1168 }; 1169 1170 /** 1171 * enum mpath_info_flags - mesh path information flags 1172 * 1173 * Used by the driver to indicate which info in &struct mpath_info it has filled 1174 * in during get_station() or dump_station(). 1175 * 1176 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled 1177 * @MPATH_INFO_SN: @sn filled 1178 * @MPATH_INFO_METRIC: @metric filled 1179 * @MPATH_INFO_EXPTIME: @exptime filled 1180 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled 1181 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled 1182 * @MPATH_INFO_FLAGS: @flags filled 1183 */ 1184 enum mpath_info_flags { 1185 MPATH_INFO_FRAME_QLEN = BIT(0), 1186 MPATH_INFO_SN = BIT(1), 1187 MPATH_INFO_METRIC = BIT(2), 1188 MPATH_INFO_EXPTIME = BIT(3), 1189 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4), 1190 MPATH_INFO_DISCOVERY_RETRIES = BIT(5), 1191 MPATH_INFO_FLAGS = BIT(6), 1192 }; 1193 1194 /** 1195 * struct mpath_info - mesh path information 1196 * 1197 * Mesh path information filled by driver for get_mpath() and dump_mpath(). 1198 * 1199 * @filled: bitfield of flags from &enum mpath_info_flags 1200 * @frame_qlen: number of queued frames for this destination 1201 * @sn: target sequence number 1202 * @metric: metric (cost) of this mesh path 1203 * @exptime: expiration time for the mesh path from now, in msecs 1204 * @flags: mesh path flags 1205 * @discovery_timeout: total mesh path discovery timeout, in msecs 1206 * @discovery_retries: mesh path discovery retries 1207 * @generation: generation number for nl80211 dumps. 1208 * This number should increase every time the list of mesh paths 1209 * changes, i.e. when a station is added or removed, so that 1210 * userspace can tell whether it got a consistent snapshot. 1211 */ 1212 struct mpath_info { 1213 u32 filled; 1214 u32 frame_qlen; 1215 u32 sn; 1216 u32 metric; 1217 u32 exptime; 1218 u32 discovery_timeout; 1219 u8 discovery_retries; 1220 u8 flags; 1221 1222 int generation; 1223 }; 1224 1225 /** 1226 * struct bss_parameters - BSS parameters 1227 * 1228 * Used to change BSS parameters (mainly for AP mode). 1229 * 1230 * @use_cts_prot: Whether to use CTS protection 1231 * (0 = no, 1 = yes, -1 = do not change) 1232 * @use_short_preamble: Whether the use of short preambles is allowed 1233 * (0 = no, 1 = yes, -1 = do not change) 1234 * @use_short_slot_time: Whether the use of short slot time is allowed 1235 * (0 = no, 1 = yes, -1 = do not change) 1236 * @basic_rates: basic rates in IEEE 802.11 format 1237 * (or NULL for no change) 1238 * @basic_rates_len: number of basic rates 1239 * @ap_isolate: do not forward packets between connected stations 1240 * @ht_opmode: HT Operation mode 1241 * (u16 = opmode, -1 = do not change) 1242 * @p2p_ctwindow: P2P CT Window (-1 = no change) 1243 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change) 1244 */ 1245 struct bss_parameters { 1246 int use_cts_prot; 1247 int use_short_preamble; 1248 int use_short_slot_time; 1249 const u8 *basic_rates; 1250 u8 basic_rates_len; 1251 int ap_isolate; 1252 int ht_opmode; 1253 s8 p2p_ctwindow, p2p_opp_ps; 1254 }; 1255 1256 /** 1257 * struct mesh_config - 802.11s mesh configuration 1258 * 1259 * These parameters can be changed while the mesh is active. 1260 * 1261 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used 1262 * by the Mesh Peering Open message 1263 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units 1264 * used by the Mesh Peering Open message 1265 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by 1266 * the mesh peering management to close a mesh peering 1267 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this 1268 * mesh interface 1269 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can 1270 * be sent to establish a new peer link instance in a mesh 1271 * @dot11MeshTTL: the value of TTL field set at a source mesh STA 1272 * @element_ttl: the value of TTL field set at a mesh STA for path selection 1273 * elements 1274 * @auto_open_plinks: whether we should automatically open peer links when we 1275 * detect compatible mesh peers 1276 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to 1277 * synchronize to for 11s default synchronization method 1278 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ 1279 * that an originator mesh STA can send to a particular path target 1280 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds 1281 * @min_discovery_timeout: the minimum length of time to wait until giving up on 1282 * a path discovery in milliseconds 1283 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs 1284 * receiving a PREQ shall consider the forwarding information from the 1285 * root to be valid. (TU = time unit) 1286 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during 1287 * which a mesh STA can send only one action frame containing a PREQ 1288 * element 1289 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during 1290 * which a mesh STA can send only one Action frame containing a PERR 1291 * element 1292 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that 1293 * it takes for an HWMP information element to propagate across the mesh 1294 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA 1295 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root 1296 * announcements are transmitted 1297 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh 1298 * station has access to a broader network beyond the MBSS. (This is 1299 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true 1300 * only means that the station will announce others it's a mesh gate, but 1301 * not necessarily using the gate announcement protocol. Still keeping the 1302 * same nomenclature to be in sync with the spec) 1303 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding 1304 * entity (default is TRUE - forwarding entity) 1305 * @rssi_threshold: the threshold for average signal strength of candidate 1306 * station to establish a peer link 1307 * @ht_opmode: mesh HT protection mode 1308 * 1309 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs 1310 * receiving a proactive PREQ shall consider the forwarding information to 1311 * the root mesh STA to be valid. 1312 * 1313 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive 1314 * PREQs are transmitted. 1315 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs) 1316 * during which a mesh STA can send only one Action frame containing 1317 * a PREQ element for root path confirmation. 1318 * @power_mode: The default mesh power save mode which will be the initial 1319 * setting for new peer links. 1320 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake 1321 * after transmitting its beacon. 1322 * @plink_timeout: If no tx activity is seen from a STA we've established 1323 * peering with for longer than this time (in seconds), then remove it 1324 * from the STA's list of peers. Default is 30 minutes. 1325 */ 1326 struct mesh_config { 1327 u16 dot11MeshRetryTimeout; 1328 u16 dot11MeshConfirmTimeout; 1329 u16 dot11MeshHoldingTimeout; 1330 u16 dot11MeshMaxPeerLinks; 1331 u8 dot11MeshMaxRetries; 1332 u8 dot11MeshTTL; 1333 u8 element_ttl; 1334 bool auto_open_plinks; 1335 u32 dot11MeshNbrOffsetMaxNeighbor; 1336 u8 dot11MeshHWMPmaxPREQretries; 1337 u32 path_refresh_time; 1338 u16 min_discovery_timeout; 1339 u32 dot11MeshHWMPactivePathTimeout; 1340 u16 dot11MeshHWMPpreqMinInterval; 1341 u16 dot11MeshHWMPperrMinInterval; 1342 u16 dot11MeshHWMPnetDiameterTraversalTime; 1343 u8 dot11MeshHWMPRootMode; 1344 u16 dot11MeshHWMPRannInterval; 1345 bool dot11MeshGateAnnouncementProtocol; 1346 bool dot11MeshForwarding; 1347 s32 rssi_threshold; 1348 u16 ht_opmode; 1349 u32 dot11MeshHWMPactivePathToRootTimeout; 1350 u16 dot11MeshHWMProotInterval; 1351 u16 dot11MeshHWMPconfirmationInterval; 1352 enum nl80211_mesh_power_mode power_mode; 1353 u16 dot11MeshAwakeWindowDuration; 1354 u32 plink_timeout; 1355 }; 1356 1357 /** 1358 * struct mesh_setup - 802.11s mesh setup configuration 1359 * @chandef: defines the channel to use 1360 * @mesh_id: the mesh ID 1361 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes 1362 * @sync_method: which synchronization method to use 1363 * @path_sel_proto: which path selection protocol to use 1364 * @path_metric: which metric to use 1365 * @auth_id: which authentication method this mesh is using 1366 * @ie: vendor information elements (optional) 1367 * @ie_len: length of vendor information elements 1368 * @is_authenticated: this mesh requires authentication 1369 * @is_secure: this mesh uses security 1370 * @user_mpm: userspace handles all MPM functions 1371 * @dtim_period: DTIM period to use 1372 * @beacon_interval: beacon interval to use 1373 * @mcast_rate: multicat rate for Mesh Node [6Mbps is the default for 802.11a] 1374 * @basic_rates: basic rates to use when creating the mesh 1375 * @beacon_rate: bitrate to be used for beacons 1376 * 1377 * These parameters are fixed when the mesh is created. 1378 */ 1379 struct mesh_setup { 1380 struct cfg80211_chan_def chandef; 1381 const u8 *mesh_id; 1382 u8 mesh_id_len; 1383 u8 sync_method; 1384 u8 path_sel_proto; 1385 u8 path_metric; 1386 u8 auth_id; 1387 const u8 *ie; 1388 u8 ie_len; 1389 bool is_authenticated; 1390 bool is_secure; 1391 bool user_mpm; 1392 u8 dtim_period; 1393 u16 beacon_interval; 1394 int mcast_rate[NUM_NL80211_BANDS]; 1395 u32 basic_rates; 1396 struct cfg80211_bitrate_mask beacon_rate; 1397 }; 1398 1399 /** 1400 * struct ocb_setup - 802.11p OCB mode setup configuration 1401 * @chandef: defines the channel to use 1402 * 1403 * These parameters are fixed when connecting to the network 1404 */ 1405 struct ocb_setup { 1406 struct cfg80211_chan_def chandef; 1407 }; 1408 1409 /** 1410 * struct ieee80211_txq_params - TX queue parameters 1411 * @ac: AC identifier 1412 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled 1413 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range 1414 * 1..32767] 1415 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range 1416 * 1..32767] 1417 * @aifs: Arbitration interframe space [0..255] 1418 */ 1419 struct ieee80211_txq_params { 1420 enum nl80211_ac ac; 1421 u16 txop; 1422 u16 cwmin; 1423 u16 cwmax; 1424 u8 aifs; 1425 }; 1426 1427 /** 1428 * DOC: Scanning and BSS list handling 1429 * 1430 * The scanning process itself is fairly simple, but cfg80211 offers quite 1431 * a bit of helper functionality. To start a scan, the scan operation will 1432 * be invoked with a scan definition. This scan definition contains the 1433 * channels to scan, and the SSIDs to send probe requests for (including the 1434 * wildcard, if desired). A passive scan is indicated by having no SSIDs to 1435 * probe. Additionally, a scan request may contain extra information elements 1436 * that should be added to the probe request. The IEs are guaranteed to be 1437 * well-formed, and will not exceed the maximum length the driver advertised 1438 * in the wiphy structure. 1439 * 1440 * When scanning finds a BSS, cfg80211 needs to be notified of that, because 1441 * it is responsible for maintaining the BSS list; the driver should not 1442 * maintain a list itself. For this notification, various functions exist. 1443 * 1444 * Since drivers do not maintain a BSS list, there are also a number of 1445 * functions to search for a BSS and obtain information about it from the 1446 * BSS structure cfg80211 maintains. The BSS list is also made available 1447 * to userspace. 1448 */ 1449 1450 /** 1451 * struct cfg80211_ssid - SSID description 1452 * @ssid: the SSID 1453 * @ssid_len: length of the ssid 1454 */ 1455 struct cfg80211_ssid { 1456 u8 ssid[IEEE80211_MAX_SSID_LEN]; 1457 u8 ssid_len; 1458 }; 1459 1460 /** 1461 * struct cfg80211_scan_info - information about completed scan 1462 * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the 1463 * wireless device that requested the scan is connected to. If this 1464 * information is not available, this field is left zero. 1465 * @tsf_bssid: the BSSID according to which %scan_start_tsf is set. 1466 * @aborted: set to true if the scan was aborted for any reason, 1467 * userspace will be notified of that 1468 */ 1469 struct cfg80211_scan_info { 1470 u64 scan_start_tsf; 1471 u8 tsf_bssid[ETH_ALEN] __aligned(2); 1472 bool aborted; 1473 }; 1474 1475 /** 1476 * struct cfg80211_scan_request - scan request description 1477 * 1478 * @ssids: SSIDs to scan for (active scan only) 1479 * @n_ssids: number of SSIDs 1480 * @channels: channels to scan on. 1481 * @n_channels: total number of channels to scan 1482 * @scan_width: channel width for scanning 1483 * @ie: optional information element(s) to add into Probe Request or %NULL 1484 * @ie_len: length of ie in octets 1485 * @duration: how long to listen on each channel, in TUs. If 1486 * %duration_mandatory is not set, this is the maximum dwell time and 1487 * the actual dwell time may be shorter. 1488 * @duration_mandatory: if set, the scan duration must be as specified by the 1489 * %duration field. 1490 * @flags: bit field of flags controlling operation 1491 * @rates: bitmap of rates to advertise for each band 1492 * @wiphy: the wiphy this was for 1493 * @scan_start: time (in jiffies) when the scan started 1494 * @wdev: the wireless device to scan for 1495 * @info: (internal) information about completed scan 1496 * @notified: (internal) scan request was notified as done or aborted 1497 * @no_cck: used to send probe requests at non CCK rate in 2GHz band 1498 * @mac_addr: MAC address used with randomisation 1499 * @mac_addr_mask: MAC address mask used with randomisation, bits that 1500 * are 0 in the mask should be randomised, bits that are 1 should 1501 * be taken from the @mac_addr 1502 * @bssid: BSSID to scan for (most commonly, the wildcard BSSID) 1503 */ 1504 struct cfg80211_scan_request { 1505 struct cfg80211_ssid *ssids; 1506 int n_ssids; 1507 u32 n_channels; 1508 enum nl80211_bss_scan_width scan_width; 1509 const u8 *ie; 1510 size_t ie_len; 1511 u16 duration; 1512 bool duration_mandatory; 1513 u32 flags; 1514 1515 u32 rates[NUM_NL80211_BANDS]; 1516 1517 struct wireless_dev *wdev; 1518 1519 u8 mac_addr[ETH_ALEN] __aligned(2); 1520 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 1521 u8 bssid[ETH_ALEN] __aligned(2); 1522 1523 /* internal */ 1524 struct wiphy *wiphy; 1525 unsigned long scan_start; 1526 struct cfg80211_scan_info info; 1527 bool notified; 1528 bool no_cck; 1529 1530 /* keep last */ 1531 struct ieee80211_channel *channels[0]; 1532 }; 1533 1534 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask) 1535 { 1536 int i; 1537 1538 get_random_bytes(buf, ETH_ALEN); 1539 for (i = 0; i < ETH_ALEN; i++) { 1540 buf[i] &= ~mask[i]; 1541 buf[i] |= addr[i] & mask[i]; 1542 } 1543 } 1544 1545 /** 1546 * struct cfg80211_match_set - sets of attributes to match 1547 * 1548 * @ssid: SSID to be matched; may be zero-length for no match (RSSI only) 1549 * @rssi_thold: don't report scan results below this threshold (in s32 dBm) 1550 */ 1551 struct cfg80211_match_set { 1552 struct cfg80211_ssid ssid; 1553 s32 rssi_thold; 1554 }; 1555 1556 /** 1557 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan 1558 * 1559 * @interval: interval between scheduled scan iterations. In seconds. 1560 * @iterations: number of scan iterations in this scan plan. Zero means 1561 * infinite loop. 1562 * The last scan plan will always have this parameter set to zero, 1563 * all other scan plans will have a finite number of iterations. 1564 */ 1565 struct cfg80211_sched_scan_plan { 1566 u32 interval; 1567 u32 iterations; 1568 }; 1569 1570 /** 1571 * struct cfg80211_sched_scan_request - scheduled scan request description 1572 * 1573 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans) 1574 * @n_ssids: number of SSIDs 1575 * @n_channels: total number of channels to scan 1576 * @scan_width: channel width for scanning 1577 * @ie: optional information element(s) to add into Probe Request or %NULL 1578 * @ie_len: length of ie in octets 1579 * @flags: bit field of flags controlling operation 1580 * @match_sets: sets of parameters to be matched for a scan result 1581 * entry to be considered valid and to be passed to the host 1582 * (others are filtered out). 1583 * If ommited, all results are passed. 1584 * @n_match_sets: number of match sets 1585 * @wiphy: the wiphy this was for 1586 * @dev: the interface 1587 * @scan_start: start time of the scheduled scan 1588 * @channels: channels to scan 1589 * @min_rssi_thold: for drivers only supporting a single threshold, this 1590 * contains the minimum over all matchsets 1591 * @mac_addr: MAC address used with randomisation 1592 * @mac_addr_mask: MAC address mask used with randomisation, bits that 1593 * are 0 in the mask should be randomised, bits that are 1 should 1594 * be taken from the @mac_addr 1595 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest 1596 * index must be executed first. 1597 * @n_scan_plans: number of scan plans, at least 1. 1598 * @rcu_head: RCU callback used to free the struct 1599 * @owner_nlportid: netlink portid of owner (if this should is a request 1600 * owned by a particular socket) 1601 * @delay: delay in seconds to use before starting the first scan 1602 * cycle. The driver may ignore this parameter and start 1603 * immediately (or at any other time), if this feature is not 1604 * supported. 1605 */ 1606 struct cfg80211_sched_scan_request { 1607 struct cfg80211_ssid *ssids; 1608 int n_ssids; 1609 u32 n_channels; 1610 enum nl80211_bss_scan_width scan_width; 1611 const u8 *ie; 1612 size_t ie_len; 1613 u32 flags; 1614 struct cfg80211_match_set *match_sets; 1615 int n_match_sets; 1616 s32 min_rssi_thold; 1617 u32 delay; 1618 struct cfg80211_sched_scan_plan *scan_plans; 1619 int n_scan_plans; 1620 1621 u8 mac_addr[ETH_ALEN] __aligned(2); 1622 u8 mac_addr_mask[ETH_ALEN] __aligned(2); 1623 1624 /* internal */ 1625 struct wiphy *wiphy; 1626 struct net_device *dev; 1627 unsigned long scan_start; 1628 struct rcu_head rcu_head; 1629 u32 owner_nlportid; 1630 1631 /* keep last */ 1632 struct ieee80211_channel *channels[0]; 1633 }; 1634 1635 /** 1636 * enum cfg80211_signal_type - signal type 1637 * 1638 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available 1639 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm) 1640 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100 1641 */ 1642 enum cfg80211_signal_type { 1643 CFG80211_SIGNAL_TYPE_NONE, 1644 CFG80211_SIGNAL_TYPE_MBM, 1645 CFG80211_SIGNAL_TYPE_UNSPEC, 1646 }; 1647 1648 /** 1649 * struct cfg80211_inform_bss - BSS inform data 1650 * @chan: channel the frame was received on 1651 * @scan_width: scan width that was used 1652 * @signal: signal strength value, according to the wiphy's 1653 * signal type 1654 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was 1655 * received; should match the time when the frame was actually 1656 * received by the device (not just by the host, in case it was 1657 * buffered on the device) and be accurate to about 10ms. 1658 * If the frame isn't buffered, just passing the return value of 1659 * ktime_get_boot_ns() is likely appropriate. 1660 * @parent_tsf: the time at the start of reception of the first octet of the 1661 * timestamp field of the frame. The time is the TSF of the BSS specified 1662 * by %parent_bssid. 1663 * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to 1664 * the BSS that requested the scan in which the beacon/probe was received. 1665 */ 1666 struct cfg80211_inform_bss { 1667 struct ieee80211_channel *chan; 1668 enum nl80211_bss_scan_width scan_width; 1669 s32 signal; 1670 u64 boottime_ns; 1671 u64 parent_tsf; 1672 u8 parent_bssid[ETH_ALEN] __aligned(2); 1673 }; 1674 1675 /** 1676 * struct cfg80211_bss_ies - BSS entry IE data 1677 * @tsf: TSF contained in the frame that carried these IEs 1678 * @rcu_head: internal use, for freeing 1679 * @len: length of the IEs 1680 * @from_beacon: these IEs are known to come from a beacon 1681 * @data: IE data 1682 */ 1683 struct cfg80211_bss_ies { 1684 u64 tsf; 1685 struct rcu_head rcu_head; 1686 int len; 1687 bool from_beacon; 1688 u8 data[]; 1689 }; 1690 1691 /** 1692 * struct cfg80211_bss - BSS description 1693 * 1694 * This structure describes a BSS (which may also be a mesh network) 1695 * for use in scan results and similar. 1696 * 1697 * @channel: channel this BSS is on 1698 * @scan_width: width of the control channel 1699 * @bssid: BSSID of the BSS 1700 * @beacon_interval: the beacon interval as from the frame 1701 * @capability: the capability field in host byte order 1702 * @ies: the information elements (Note that there is no guarantee that these 1703 * are well-formed!); this is a pointer to either the beacon_ies or 1704 * proberesp_ies depending on whether Probe Response frame has been 1705 * received. It is always non-%NULL. 1706 * @beacon_ies: the information elements from the last Beacon frame 1707 * (implementation note: if @hidden_beacon_bss is set this struct doesn't 1708 * own the beacon_ies, but they're just pointers to the ones from the 1709 * @hidden_beacon_bss struct) 1710 * @proberesp_ies: the information elements from the last Probe Response frame 1711 * @hidden_beacon_bss: in case this BSS struct represents a probe response from 1712 * a BSS that hides the SSID in its beacon, this points to the BSS struct 1713 * that holds the beacon data. @beacon_ies is still valid, of course, and 1714 * points to the same data as hidden_beacon_bss->beacon_ies in that case. 1715 * @signal: signal strength value (type depends on the wiphy's signal_type) 1716 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes 1717 */ 1718 struct cfg80211_bss { 1719 struct ieee80211_channel *channel; 1720 enum nl80211_bss_scan_width scan_width; 1721 1722 const struct cfg80211_bss_ies __rcu *ies; 1723 const struct cfg80211_bss_ies __rcu *beacon_ies; 1724 const struct cfg80211_bss_ies __rcu *proberesp_ies; 1725 1726 struct cfg80211_bss *hidden_beacon_bss; 1727 1728 s32 signal; 1729 1730 u16 beacon_interval; 1731 u16 capability; 1732 1733 u8 bssid[ETH_ALEN]; 1734 1735 u8 priv[0] __aligned(sizeof(void *)); 1736 }; 1737 1738 /** 1739 * ieee80211_bss_get_ie - find IE with given ID 1740 * @bss: the bss to search 1741 * @ie: the IE ID 1742 * 1743 * Note that the return value is an RCU-protected pointer, so 1744 * rcu_read_lock() must be held when calling this function. 1745 * Return: %NULL if not found. 1746 */ 1747 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie); 1748 1749 1750 /** 1751 * struct cfg80211_auth_request - Authentication request data 1752 * 1753 * This structure provides information needed to complete IEEE 802.11 1754 * authentication. 1755 * 1756 * @bss: The BSS to authenticate with, the callee must obtain a reference 1757 * to it if it needs to keep it. 1758 * @auth_type: Authentication type (algorithm) 1759 * @ie: Extra IEs to add to Authentication frame or %NULL 1760 * @ie_len: Length of ie buffer in octets 1761 * @key_len: length of WEP key for shared key authentication 1762 * @key_idx: index of WEP key for shared key authentication 1763 * @key: WEP key for shared key authentication 1764 * @sae_data: Non-IE data to use with SAE or %NULL. This starts with 1765 * Authentication transaction sequence number field. 1766 * @sae_data_len: Length of sae_data buffer in octets 1767 */ 1768 struct cfg80211_auth_request { 1769 struct cfg80211_bss *bss; 1770 const u8 *ie; 1771 size_t ie_len; 1772 enum nl80211_auth_type auth_type; 1773 const u8 *key; 1774 u8 key_len, key_idx; 1775 const u8 *sae_data; 1776 size_t sae_data_len; 1777 }; 1778 1779 /** 1780 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association. 1781 * 1782 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n) 1783 * @ASSOC_REQ_DISABLE_VHT: Disable VHT 1784 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association 1785 */ 1786 enum cfg80211_assoc_req_flags { 1787 ASSOC_REQ_DISABLE_HT = BIT(0), 1788 ASSOC_REQ_DISABLE_VHT = BIT(1), 1789 ASSOC_REQ_USE_RRM = BIT(2), 1790 }; 1791 1792 /** 1793 * struct cfg80211_assoc_request - (Re)Association request data 1794 * 1795 * This structure provides information needed to complete IEEE 802.11 1796 * (re)association. 1797 * @bss: The BSS to associate with. If the call is successful the driver is 1798 * given a reference that it must give back to cfg80211_send_rx_assoc() 1799 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new 1800 * association requests while already associating must be rejected. 1801 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL 1802 * @ie_len: Length of ie buffer in octets 1803 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association 1804 * @crypto: crypto settings 1805 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 1806 * to indicate a request to reassociate within the ESS instead of a request 1807 * do the initial association with the ESS. When included, this is set to 1808 * the BSSID of the current association, i.e., to the value that is 1809 * included in the Current AP address field of the Reassociation Request 1810 * frame. 1811 * @flags: See &enum cfg80211_assoc_req_flags 1812 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 1813 * will be used in ht_capa. Un-supported values will be ignored. 1814 * @ht_capa_mask: The bits of ht_capa which are to be used. 1815 * @vht_capa: VHT capability override 1816 * @vht_capa_mask: VHT capability mask indicating which fields to use 1817 */ 1818 struct cfg80211_assoc_request { 1819 struct cfg80211_bss *bss; 1820 const u8 *ie, *prev_bssid; 1821 size_t ie_len; 1822 struct cfg80211_crypto_settings crypto; 1823 bool use_mfp; 1824 u32 flags; 1825 struct ieee80211_ht_cap ht_capa; 1826 struct ieee80211_ht_cap ht_capa_mask; 1827 struct ieee80211_vht_cap vht_capa, vht_capa_mask; 1828 }; 1829 1830 /** 1831 * struct cfg80211_deauth_request - Deauthentication request data 1832 * 1833 * This structure provides information needed to complete IEEE 802.11 1834 * deauthentication. 1835 * 1836 * @bssid: the BSSID of the BSS to deauthenticate from 1837 * @ie: Extra IEs to add to Deauthentication frame or %NULL 1838 * @ie_len: Length of ie buffer in octets 1839 * @reason_code: The reason code for the deauthentication 1840 * @local_state_change: if set, change local state only and 1841 * do not set a deauth frame 1842 */ 1843 struct cfg80211_deauth_request { 1844 const u8 *bssid; 1845 const u8 *ie; 1846 size_t ie_len; 1847 u16 reason_code; 1848 bool local_state_change; 1849 }; 1850 1851 /** 1852 * struct cfg80211_disassoc_request - Disassociation request data 1853 * 1854 * This structure provides information needed to complete IEEE 802.11 1855 * disassocation. 1856 * 1857 * @bss: the BSS to disassociate from 1858 * @ie: Extra IEs to add to Disassociation frame or %NULL 1859 * @ie_len: Length of ie buffer in octets 1860 * @reason_code: The reason code for the disassociation 1861 * @local_state_change: This is a request for a local state only, i.e., no 1862 * Disassociation frame is to be transmitted. 1863 */ 1864 struct cfg80211_disassoc_request { 1865 struct cfg80211_bss *bss; 1866 const u8 *ie; 1867 size_t ie_len; 1868 u16 reason_code; 1869 bool local_state_change; 1870 }; 1871 1872 /** 1873 * struct cfg80211_ibss_params - IBSS parameters 1874 * 1875 * This structure defines the IBSS parameters for the join_ibss() 1876 * method. 1877 * 1878 * @ssid: The SSID, will always be non-null. 1879 * @ssid_len: The length of the SSID, will always be non-zero. 1880 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not 1881 * search for IBSSs with a different BSSID. 1882 * @chandef: defines the channel to use if no other IBSS to join can be found 1883 * @channel_fixed: The channel should be fixed -- do not search for 1884 * IBSSs to join on other channels. 1885 * @ie: information element(s) to include in the beacon 1886 * @ie_len: length of that 1887 * @beacon_interval: beacon interval to use 1888 * @privacy: this is a protected network, keys will be configured 1889 * after joining 1890 * @control_port: whether user space controls IEEE 802.1X port, i.e., 1891 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is 1892 * required to assume that the port is unauthorized until authorized by 1893 * user space. Otherwise, port is marked authorized by default. 1894 * @userspace_handles_dfs: whether user space controls DFS operation, i.e. 1895 * changes the channel when a radar is detected. This is required 1896 * to operate on DFS channels. 1897 * @basic_rates: bitmap of basic rates to use when creating the IBSS 1898 * @mcast_rate: per-band multicast rate index + 1 (0: disabled) 1899 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 1900 * will be used in ht_capa. Un-supported values will be ignored. 1901 * @ht_capa_mask: The bits of ht_capa which are to be used. 1902 */ 1903 struct cfg80211_ibss_params { 1904 const u8 *ssid; 1905 const u8 *bssid; 1906 struct cfg80211_chan_def chandef; 1907 const u8 *ie; 1908 u8 ssid_len, ie_len; 1909 u16 beacon_interval; 1910 u32 basic_rates; 1911 bool channel_fixed; 1912 bool privacy; 1913 bool control_port; 1914 bool userspace_handles_dfs; 1915 int mcast_rate[NUM_NL80211_BANDS]; 1916 struct ieee80211_ht_cap ht_capa; 1917 struct ieee80211_ht_cap ht_capa_mask; 1918 }; 1919 1920 /** 1921 * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment. 1922 * 1923 * @band: band of BSS which should match for RSSI level adjustment. 1924 * @delta: value of RSSI level adjustment. 1925 */ 1926 struct cfg80211_bss_select_adjust { 1927 enum nl80211_band band; 1928 s8 delta; 1929 }; 1930 1931 /** 1932 * struct cfg80211_bss_selection - connection parameters for BSS selection. 1933 * 1934 * @behaviour: requested BSS selection behaviour. 1935 * @param: parameters for requestion behaviour. 1936 * @band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF. 1937 * @adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST. 1938 */ 1939 struct cfg80211_bss_selection { 1940 enum nl80211_bss_select_attr behaviour; 1941 union { 1942 enum nl80211_band band_pref; 1943 struct cfg80211_bss_select_adjust adjust; 1944 } param; 1945 }; 1946 1947 /** 1948 * struct cfg80211_connect_params - Connection parameters 1949 * 1950 * This structure provides information needed to complete IEEE 802.11 1951 * authentication and association. 1952 * 1953 * @channel: The channel to use or %NULL if not specified (auto-select based 1954 * on scan results) 1955 * @channel_hint: The channel of the recommended BSS for initial connection or 1956 * %NULL if not specified 1957 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan 1958 * results) 1959 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or 1960 * %NULL if not specified. Unlike the @bssid parameter, the driver is 1961 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS 1962 * to use. 1963 * @ssid: SSID 1964 * @ssid_len: Length of ssid in octets 1965 * @auth_type: Authentication type (algorithm) 1966 * @ie: IEs for association request 1967 * @ie_len: Length of assoc_ie in octets 1968 * @privacy: indicates whether privacy-enabled APs should be used 1969 * @mfp: indicate whether management frame protection is used 1970 * @crypto: crypto settings 1971 * @key_len: length of WEP key for shared key authentication 1972 * @key_idx: index of WEP key for shared key authentication 1973 * @key: WEP key for shared key authentication 1974 * @flags: See &enum cfg80211_assoc_req_flags 1975 * @bg_scan_period: Background scan period in seconds 1976 * or -1 to indicate that default value is to be used. 1977 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask 1978 * will be used in ht_capa. Un-supported values will be ignored. 1979 * @ht_capa_mask: The bits of ht_capa which are to be used. 1980 * @vht_capa: VHT Capability overrides 1981 * @vht_capa_mask: The bits of vht_capa which are to be used. 1982 * @pbss: if set, connect to a PCP instead of AP. Valid for DMG 1983 * networks. 1984 * @bss_select: criteria to be used for BSS selection. 1985 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used 1986 * to indicate a request to reassociate within the ESS instead of a request 1987 * do the initial association with the ESS. When included, this is set to 1988 * the BSSID of the current association, i.e., to the value that is 1989 * included in the Current AP address field of the Reassociation Request 1990 * frame. 1991 */ 1992 struct cfg80211_connect_params { 1993 struct ieee80211_channel *channel; 1994 struct ieee80211_channel *channel_hint; 1995 const u8 *bssid; 1996 const u8 *bssid_hint; 1997 const u8 *ssid; 1998 size_t ssid_len; 1999 enum nl80211_auth_type auth_type; 2000 const u8 *ie; 2001 size_t ie_len; 2002 bool privacy; 2003 enum nl80211_mfp mfp; 2004 struct cfg80211_crypto_settings crypto; 2005 const u8 *key; 2006 u8 key_len, key_idx; 2007 u32 flags; 2008 int bg_scan_period; 2009 struct ieee80211_ht_cap ht_capa; 2010 struct ieee80211_ht_cap ht_capa_mask; 2011 struct ieee80211_vht_cap vht_capa; 2012 struct ieee80211_vht_cap vht_capa_mask; 2013 bool pbss; 2014 struct cfg80211_bss_selection bss_select; 2015 const u8 *prev_bssid; 2016 }; 2017 2018 /** 2019 * enum wiphy_params_flags - set_wiphy_params bitfield values 2020 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed 2021 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed 2022 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed 2023 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed 2024 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed 2025 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled 2026 */ 2027 enum wiphy_params_flags { 2028 WIPHY_PARAM_RETRY_SHORT = 1 << 0, 2029 WIPHY_PARAM_RETRY_LONG = 1 << 1, 2030 WIPHY_PARAM_FRAG_THRESHOLD = 1 << 2, 2031 WIPHY_PARAM_RTS_THRESHOLD = 1 << 3, 2032 WIPHY_PARAM_COVERAGE_CLASS = 1 << 4, 2033 WIPHY_PARAM_DYN_ACK = 1 << 5, 2034 }; 2035 2036 /** 2037 * struct cfg80211_pmksa - PMK Security Association 2038 * 2039 * This structure is passed to the set/del_pmksa() method for PMKSA 2040 * caching. 2041 * 2042 * @bssid: The AP's BSSID. 2043 * @pmkid: The PMK material itself. 2044 */ 2045 struct cfg80211_pmksa { 2046 const u8 *bssid; 2047 const u8 *pmkid; 2048 }; 2049 2050 /** 2051 * struct cfg80211_pkt_pattern - packet pattern 2052 * @mask: bitmask where to match pattern and where to ignore bytes, 2053 * one bit per byte, in same format as nl80211 2054 * @pattern: bytes to match where bitmask is 1 2055 * @pattern_len: length of pattern (in bytes) 2056 * @pkt_offset: packet offset (in bytes) 2057 * 2058 * Internal note: @mask and @pattern are allocated in one chunk of 2059 * memory, free @mask only! 2060 */ 2061 struct cfg80211_pkt_pattern { 2062 const u8 *mask, *pattern; 2063 int pattern_len; 2064 int pkt_offset; 2065 }; 2066 2067 /** 2068 * struct cfg80211_wowlan_tcp - TCP connection parameters 2069 * 2070 * @sock: (internal) socket for source port allocation 2071 * @src: source IP address 2072 * @dst: destination IP address 2073 * @dst_mac: destination MAC address 2074 * @src_port: source port 2075 * @dst_port: destination port 2076 * @payload_len: data payload length 2077 * @payload: data payload buffer 2078 * @payload_seq: payload sequence stamping configuration 2079 * @data_interval: interval at which to send data packets 2080 * @wake_len: wakeup payload match length 2081 * @wake_data: wakeup payload match data 2082 * @wake_mask: wakeup payload match mask 2083 * @tokens_size: length of the tokens buffer 2084 * @payload_tok: payload token usage configuration 2085 */ 2086 struct cfg80211_wowlan_tcp { 2087 struct socket *sock; 2088 __be32 src, dst; 2089 u16 src_port, dst_port; 2090 u8 dst_mac[ETH_ALEN]; 2091 int payload_len; 2092 const u8 *payload; 2093 struct nl80211_wowlan_tcp_data_seq payload_seq; 2094 u32 data_interval; 2095 u32 wake_len; 2096 const u8 *wake_data, *wake_mask; 2097 u32 tokens_size; 2098 /* must be last, variable member */ 2099 struct nl80211_wowlan_tcp_data_token payload_tok; 2100 }; 2101 2102 /** 2103 * struct cfg80211_wowlan - Wake on Wireless-LAN support info 2104 * 2105 * This structure defines the enabled WoWLAN triggers for the device. 2106 * @any: wake up on any activity -- special trigger if device continues 2107 * operating as normal during suspend 2108 * @disconnect: wake up if getting disconnected 2109 * @magic_pkt: wake up on receiving magic packet 2110 * @patterns: wake up on receiving packet matching a pattern 2111 * @n_patterns: number of patterns 2112 * @gtk_rekey_failure: wake up on GTK rekey failure 2113 * @eap_identity_req: wake up on EAP identity request packet 2114 * @four_way_handshake: wake up on 4-way handshake 2115 * @rfkill_release: wake up when rfkill is released 2116 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h. 2117 * NULL if not configured. 2118 * @nd_config: configuration for the scan to be used for net detect wake. 2119 */ 2120 struct cfg80211_wowlan { 2121 bool any, disconnect, magic_pkt, gtk_rekey_failure, 2122 eap_identity_req, four_way_handshake, 2123 rfkill_release; 2124 struct cfg80211_pkt_pattern *patterns; 2125 struct cfg80211_wowlan_tcp *tcp; 2126 int n_patterns; 2127 struct cfg80211_sched_scan_request *nd_config; 2128 }; 2129 2130 /** 2131 * struct cfg80211_coalesce_rules - Coalesce rule parameters 2132 * 2133 * This structure defines coalesce rule for the device. 2134 * @delay: maximum coalescing delay in msecs. 2135 * @condition: condition for packet coalescence. 2136 * see &enum nl80211_coalesce_condition. 2137 * @patterns: array of packet patterns 2138 * @n_patterns: number of patterns 2139 */ 2140 struct cfg80211_coalesce_rules { 2141 int delay; 2142 enum nl80211_coalesce_condition condition; 2143 struct cfg80211_pkt_pattern *patterns; 2144 int n_patterns; 2145 }; 2146 2147 /** 2148 * struct cfg80211_coalesce - Packet coalescing settings 2149 * 2150 * This structure defines coalescing settings. 2151 * @rules: array of coalesce rules 2152 * @n_rules: number of rules 2153 */ 2154 struct cfg80211_coalesce { 2155 struct cfg80211_coalesce_rules *rules; 2156 int n_rules; 2157 }; 2158 2159 /** 2160 * struct cfg80211_wowlan_nd_match - information about the match 2161 * 2162 * @ssid: SSID of the match that triggered the wake up 2163 * @n_channels: Number of channels where the match occurred. This 2164 * value may be zero if the driver can't report the channels. 2165 * @channels: center frequencies of the channels where a match 2166 * occurred (in MHz) 2167 */ 2168 struct cfg80211_wowlan_nd_match { 2169 struct cfg80211_ssid ssid; 2170 int n_channels; 2171 u32 channels[]; 2172 }; 2173 2174 /** 2175 * struct cfg80211_wowlan_nd_info - net detect wake up information 2176 * 2177 * @n_matches: Number of match information instances provided in 2178 * @matches. This value may be zero if the driver can't provide 2179 * match information. 2180 * @matches: Array of pointers to matches containing information about 2181 * the matches that triggered the wake up. 2182 */ 2183 struct cfg80211_wowlan_nd_info { 2184 int n_matches; 2185 struct cfg80211_wowlan_nd_match *matches[]; 2186 }; 2187 2188 /** 2189 * struct cfg80211_wowlan_wakeup - wakeup report 2190 * @disconnect: woke up by getting disconnected 2191 * @magic_pkt: woke up by receiving magic packet 2192 * @gtk_rekey_failure: woke up by GTK rekey failure 2193 * @eap_identity_req: woke up by EAP identity request packet 2194 * @four_way_handshake: woke up by 4-way handshake 2195 * @rfkill_release: woke up by rfkill being released 2196 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern 2197 * @packet_present_len: copied wakeup packet data 2198 * @packet_len: original wakeup packet length 2199 * @packet: The packet causing the wakeup, if any. 2200 * @packet_80211: For pattern match, magic packet and other data 2201 * frame triggers an 802.3 frame should be reported, for 2202 * disconnect due to deauth 802.11 frame. This indicates which 2203 * it is. 2204 * @tcp_match: TCP wakeup packet received 2205 * @tcp_connlost: TCP connection lost or failed to establish 2206 * @tcp_nomoretokens: TCP data ran out of tokens 2207 * @net_detect: if not %NULL, woke up because of net detect 2208 */ 2209 struct cfg80211_wowlan_wakeup { 2210 bool disconnect, magic_pkt, gtk_rekey_failure, 2211 eap_identity_req, four_way_handshake, 2212 rfkill_release, packet_80211, 2213 tcp_match, tcp_connlost, tcp_nomoretokens; 2214 s32 pattern_idx; 2215 u32 packet_present_len, packet_len; 2216 const void *packet; 2217 struct cfg80211_wowlan_nd_info *net_detect; 2218 }; 2219 2220 /** 2221 * struct cfg80211_gtk_rekey_data - rekey data 2222 * @kek: key encryption key (NL80211_KEK_LEN bytes) 2223 * @kck: key confirmation key (NL80211_KCK_LEN bytes) 2224 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes) 2225 */ 2226 struct cfg80211_gtk_rekey_data { 2227 const u8 *kek, *kck, *replay_ctr; 2228 }; 2229 2230 /** 2231 * struct cfg80211_update_ft_ies_params - FT IE Information 2232 * 2233 * This structure provides information needed to update the fast transition IE 2234 * 2235 * @md: The Mobility Domain ID, 2 Octet value 2236 * @ie: Fast Transition IEs 2237 * @ie_len: Length of ft_ie in octets 2238 */ 2239 struct cfg80211_update_ft_ies_params { 2240 u16 md; 2241 const u8 *ie; 2242 size_t ie_len; 2243 }; 2244 2245 /** 2246 * struct cfg80211_mgmt_tx_params - mgmt tx parameters 2247 * 2248 * This structure provides information needed to transmit a mgmt frame 2249 * 2250 * @chan: channel to use 2251 * @offchan: indicates wether off channel operation is required 2252 * @wait: duration for ROC 2253 * @buf: buffer to transmit 2254 * @len: buffer length 2255 * @no_cck: don't use cck rates for this frame 2256 * @dont_wait_for_ack: tells the low level not to wait for an ack 2257 * @n_csa_offsets: length of csa_offsets array 2258 * @csa_offsets: array of all the csa offsets in the frame 2259 */ 2260 struct cfg80211_mgmt_tx_params { 2261 struct ieee80211_channel *chan; 2262 bool offchan; 2263 unsigned int wait; 2264 const u8 *buf; 2265 size_t len; 2266 bool no_cck; 2267 bool dont_wait_for_ack; 2268 int n_csa_offsets; 2269 const u16 *csa_offsets; 2270 }; 2271 2272 /** 2273 * struct cfg80211_dscp_exception - DSCP exception 2274 * 2275 * @dscp: DSCP value that does not adhere to the user priority range definition 2276 * @up: user priority value to which the corresponding DSCP value belongs 2277 */ 2278 struct cfg80211_dscp_exception { 2279 u8 dscp; 2280 u8 up; 2281 }; 2282 2283 /** 2284 * struct cfg80211_dscp_range - DSCP range definition for user priority 2285 * 2286 * @low: lowest DSCP value of this user priority range, inclusive 2287 * @high: highest DSCP value of this user priority range, inclusive 2288 */ 2289 struct cfg80211_dscp_range { 2290 u8 low; 2291 u8 high; 2292 }; 2293 2294 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */ 2295 #define IEEE80211_QOS_MAP_MAX_EX 21 2296 #define IEEE80211_QOS_MAP_LEN_MIN 16 2297 #define IEEE80211_QOS_MAP_LEN_MAX \ 2298 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX) 2299 2300 /** 2301 * struct cfg80211_qos_map - QoS Map Information 2302 * 2303 * This struct defines the Interworking QoS map setting for DSCP values 2304 * 2305 * @num_des: number of DSCP exceptions (0..21) 2306 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from 2307 * the user priority DSCP range definition 2308 * @up: DSCP range definition for a particular user priority 2309 */ 2310 struct cfg80211_qos_map { 2311 u8 num_des; 2312 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX]; 2313 struct cfg80211_dscp_range up[8]; 2314 }; 2315 2316 /** 2317 * struct cfg80211_nan_conf - NAN configuration 2318 * 2319 * This struct defines NAN configuration parameters 2320 * 2321 * @master_pref: master preference (1 - 255) 2322 * @dual: dual band operation mode, see &enum nl80211_nan_dual_band_conf 2323 */ 2324 struct cfg80211_nan_conf { 2325 u8 master_pref; 2326 u8 dual; 2327 }; 2328 2329 /** 2330 * enum cfg80211_nan_conf_changes - indicates changed fields in NAN 2331 * configuration 2332 * 2333 * @CFG80211_NAN_CONF_CHANGED_PREF: master preference 2334 * @CFG80211_NAN_CONF_CHANGED_DUAL: dual band operation 2335 */ 2336 enum cfg80211_nan_conf_changes { 2337 CFG80211_NAN_CONF_CHANGED_PREF = BIT(0), 2338 CFG80211_NAN_CONF_CHANGED_DUAL = BIT(1), 2339 }; 2340 2341 /** 2342 * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter 2343 * 2344 * @filter: the content of the filter 2345 * @len: the length of the filter 2346 */ 2347 struct cfg80211_nan_func_filter { 2348 const u8 *filter; 2349 u8 len; 2350 }; 2351 2352 /** 2353 * struct cfg80211_nan_func - a NAN function 2354 * 2355 * @type: &enum nl80211_nan_function_type 2356 * @service_id: the service ID of the function 2357 * @publish_type: &nl80211_nan_publish_type 2358 * @close_range: if true, the range should be limited. Threshold is 2359 * implementation specific. 2360 * @publish_bcast: if true, the solicited publish should be broadcasted 2361 * @subscribe_active: if true, the subscribe is active 2362 * @followup_id: the instance ID for follow up 2363 * @followup_reqid: the requestor instance ID for follow up 2364 * @followup_dest: MAC address of the recipient of the follow up 2365 * @ttl: time to live counter in DW. 2366 * @serv_spec_info: Service Specific Info 2367 * @serv_spec_info_len: Service Specific Info length 2368 * @srf_include: if true, SRF is inclusive 2369 * @srf_bf: Bloom Filter 2370 * @srf_bf_len: Bloom Filter length 2371 * @srf_bf_idx: Bloom Filter index 2372 * @srf_macs: SRF MAC addresses 2373 * @srf_num_macs: number of MAC addresses in SRF 2374 * @rx_filters: rx filters that are matched with corresponding peer's tx_filter 2375 * @tx_filters: filters that should be transmitted in the SDF. 2376 * @num_rx_filters: length of &rx_filters. 2377 * @num_tx_filters: length of &tx_filters. 2378 * @instance_id: driver allocated id of the function. 2379 * @cookie: unique NAN function identifier. 2380 */ 2381 struct cfg80211_nan_func { 2382 enum nl80211_nan_function_type type; 2383 u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN]; 2384 u8 publish_type; 2385 bool close_range; 2386 bool publish_bcast; 2387 bool subscribe_active; 2388 u8 followup_id; 2389 u8 followup_reqid; 2390 struct mac_address followup_dest; 2391 u32 ttl; 2392 const u8 *serv_spec_info; 2393 u8 serv_spec_info_len; 2394 bool srf_include; 2395 const u8 *srf_bf; 2396 u8 srf_bf_len; 2397 u8 srf_bf_idx; 2398 struct mac_address *srf_macs; 2399 int srf_num_macs; 2400 struct cfg80211_nan_func_filter *rx_filters; 2401 struct cfg80211_nan_func_filter *tx_filters; 2402 u8 num_tx_filters; 2403 u8 num_rx_filters; 2404 u8 instance_id; 2405 u64 cookie; 2406 }; 2407 2408 /** 2409 * struct cfg80211_ops - backend description for wireless configuration 2410 * 2411 * This struct is registered by fullmac card drivers and/or wireless stacks 2412 * in order to handle configuration requests on their interfaces. 2413 * 2414 * All callbacks except where otherwise noted should return 0 2415 * on success or a negative error code. 2416 * 2417 * All operations are currently invoked under rtnl for consistency with the 2418 * wireless extensions but this is subject to reevaluation as soon as this 2419 * code is used more widely and we have a first user without wext. 2420 * 2421 * @suspend: wiphy device needs to be suspended. The variable @wow will 2422 * be %NULL or contain the enabled Wake-on-Wireless triggers that are 2423 * configured for the device. 2424 * @resume: wiphy device needs to be resumed 2425 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback 2426 * to call device_set_wakeup_enable() to enable/disable wakeup from 2427 * the device. 2428 * 2429 * @add_virtual_intf: create a new virtual interface with the given name, 2430 * must set the struct wireless_dev's iftype. Beware: You must create 2431 * the new netdev in the wiphy's network namespace! Returns the struct 2432 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must 2433 * also set the address member in the wdev. 2434 * 2435 * @del_virtual_intf: remove the virtual interface 2436 * 2437 * @change_virtual_intf: change type/configuration of virtual interface, 2438 * keep the struct wireless_dev's iftype updated. 2439 * 2440 * @add_key: add a key with the given parameters. @mac_addr will be %NULL 2441 * when adding a group key. 2442 * 2443 * @get_key: get information about the key with the given parameters. 2444 * @mac_addr will be %NULL when requesting information for a group 2445 * key. All pointers given to the @callback function need not be valid 2446 * after it returns. This function should return an error if it is 2447 * not possible to retrieve the key, -ENOENT if it doesn't exist. 2448 * 2449 * @del_key: remove a key given the @mac_addr (%NULL for a group key) 2450 * and @key_index, return -ENOENT if the key doesn't exist. 2451 * 2452 * @set_default_key: set the default key on an interface 2453 * 2454 * @set_default_mgmt_key: set the default management frame key on an interface 2455 * 2456 * @set_rekey_data: give the data necessary for GTK rekeying to the driver 2457 * 2458 * @start_ap: Start acting in AP mode defined by the parameters. 2459 * @change_beacon: Change the beacon parameters for an access point mode 2460 * interface. This should reject the call when AP mode wasn't started. 2461 * @stop_ap: Stop being an AP, including stopping beaconing. 2462 * 2463 * @add_station: Add a new station. 2464 * @del_station: Remove a station 2465 * @change_station: Modify a given station. Note that flags changes are not much 2466 * validated in cfg80211, in particular the auth/assoc/authorized flags 2467 * might come to the driver in invalid combinations -- make sure to check 2468 * them, also against the existing state! Drivers must call 2469 * cfg80211_check_station_change() to validate the information. 2470 * @get_station: get station information for the station identified by @mac 2471 * @dump_station: dump station callback -- resume dump at index @idx 2472 * 2473 * @add_mpath: add a fixed mesh path 2474 * @del_mpath: delete a given mesh path 2475 * @change_mpath: change a given mesh path 2476 * @get_mpath: get a mesh path for the given parameters 2477 * @dump_mpath: dump mesh path callback -- resume dump at index @idx 2478 * @get_mpp: get a mesh proxy path for the given parameters 2479 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx 2480 * @join_mesh: join the mesh network with the specified parameters 2481 * (invoked with the wireless_dev mutex held) 2482 * @leave_mesh: leave the current mesh network 2483 * (invoked with the wireless_dev mutex held) 2484 * 2485 * @get_mesh_config: Get the current mesh configuration 2486 * 2487 * @update_mesh_config: Update mesh parameters on a running mesh. 2488 * The mask is a bitfield which tells us which parameters to 2489 * set, and which to leave alone. 2490 * 2491 * @change_bss: Modify parameters for a given BSS. 2492 * 2493 * @set_txq_params: Set TX queue parameters 2494 * 2495 * @libertas_set_mesh_channel: Only for backward compatibility for libertas, 2496 * as it doesn't implement join_mesh and needs to set the channel to 2497 * join the mesh instead. 2498 * 2499 * @set_monitor_channel: Set the monitor mode channel for the device. If other 2500 * interfaces are active this callback should reject the configuration. 2501 * If no interfaces are active or the device is down, the channel should 2502 * be stored for when a monitor interface becomes active. 2503 * 2504 * @scan: Request to do a scan. If returning zero, the scan request is given 2505 * the driver, and will be valid until passed to cfg80211_scan_done(). 2506 * For scan results, call cfg80211_inform_bss(); you can call this outside 2507 * the scan/scan_done bracket too. 2508 * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall 2509 * indicate the status of the scan through cfg80211_scan_done(). 2510 * 2511 * @auth: Request to authenticate with the specified peer 2512 * (invoked with the wireless_dev mutex held) 2513 * @assoc: Request to (re)associate with the specified peer 2514 * (invoked with the wireless_dev mutex held) 2515 * @deauth: Request to deauthenticate from the specified peer 2516 * (invoked with the wireless_dev mutex held) 2517 * @disassoc: Request to disassociate from the specified peer 2518 * (invoked with the wireless_dev mutex held) 2519 * 2520 * @connect: Connect to the ESS with the specified parameters. When connected, 2521 * call cfg80211_connect_result()/cfg80211_connect_bss() with status code 2522 * %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call 2523 * cfg80211_connect_result()/cfg80211_connect_bss() with the status code 2524 * from the AP or cfg80211_connect_timeout() if no frame with status code 2525 * was received. 2526 * The driver is allowed to roam to other BSSes within the ESS when the 2527 * other BSS matches the connect parameters. When such roaming is initiated 2528 * by the driver, the driver is expected to verify that the target matches 2529 * the configured security parameters and to use Reassociation Request 2530 * frame instead of Association Request frame. 2531 * The connect function can also be used to request the driver to perform a 2532 * specific roam when connected to an ESS. In that case, the prev_bssid 2533 * parameter is set to the BSSID of the currently associated BSS as an 2534 * indication of requesting reassociation. 2535 * In both the driver-initiated and new connect() call initiated roaming 2536 * cases, the result of roaming is indicated with a call to 2537 * cfg80211_roamed() or cfg80211_roamed_bss(). 2538 * (invoked with the wireless_dev mutex held) 2539 * @disconnect: Disconnect from the BSS/ESS. Once done, call 2540 * cfg80211_disconnected(). 2541 * (invoked with the wireless_dev mutex held) 2542 * 2543 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call 2544 * cfg80211_ibss_joined(), also call that function when changing BSSID due 2545 * to a merge. 2546 * (invoked with the wireless_dev mutex held) 2547 * @leave_ibss: Leave the IBSS. 2548 * (invoked with the wireless_dev mutex held) 2549 * 2550 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or 2551 * MESH mode) 2552 * 2553 * @set_wiphy_params: Notify that wiphy parameters have changed; 2554 * @changed bitfield (see &enum wiphy_params_flags) describes which values 2555 * have changed. The actual parameter values are available in 2556 * struct wiphy. If returning an error, no value should be changed. 2557 * 2558 * @set_tx_power: set the transmit power according to the parameters, 2559 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The 2560 * wdev may be %NULL if power was set for the wiphy, and will 2561 * always be %NULL unless the driver supports per-vif TX power 2562 * (as advertised by the nl80211 feature flag.) 2563 * @get_tx_power: store the current TX power into the dbm variable; 2564 * return 0 if successful 2565 * 2566 * @set_wds_peer: set the WDS peer for a WDS interface 2567 * 2568 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting 2569 * functions to adjust rfkill hw state 2570 * 2571 * @dump_survey: get site survey information. 2572 * 2573 * @remain_on_channel: Request the driver to remain awake on the specified 2574 * channel for the specified duration to complete an off-channel 2575 * operation (e.g., public action frame exchange). When the driver is 2576 * ready on the requested channel, it must indicate this with an event 2577 * notification by calling cfg80211_ready_on_channel(). 2578 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation. 2579 * This allows the operation to be terminated prior to timeout based on 2580 * the duration value. 2581 * @mgmt_tx: Transmit a management frame. 2582 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management 2583 * frame on another channel 2584 * 2585 * @testmode_cmd: run a test mode command; @wdev may be %NULL 2586 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be 2587 * used by the function, but 0 and 1 must not be touched. Additionally, 2588 * return error codes other than -ENOBUFS and -ENOENT will terminate the 2589 * dump and return to userspace with an error, so be careful. If any data 2590 * was passed in from userspace then the data/len arguments will be present 2591 * and point to the data contained in %NL80211_ATTR_TESTDATA. 2592 * 2593 * @set_bitrate_mask: set the bitrate mask configuration 2594 * 2595 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac 2596 * devices running firmwares capable of generating the (re) association 2597 * RSN IE. It allows for faster roaming between WPA2 BSSIDs. 2598 * @del_pmksa: Delete a cached PMKID. 2599 * @flush_pmksa: Flush all cached PMKIDs. 2600 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1 2601 * allows the driver to adjust the dynamic ps timeout value. 2602 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold. 2603 * After configuration, the driver should (soon) send an event indicating 2604 * the current level is above/below the configured threshold; this may 2605 * need some care when the configuration is changed (without first being 2606 * disabled.) 2607 * @set_cqm_txe_config: Configure connection quality monitor TX error 2608 * thresholds. 2609 * @sched_scan_start: Tell the driver to start a scheduled scan. 2610 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan. This 2611 * call must stop the scheduled scan and be ready for starting a new one 2612 * before it returns, i.e. @sched_scan_start may be called immediately 2613 * after that again and should not fail in that case. The driver should 2614 * not call cfg80211_sched_scan_stopped() for a requested stop (when this 2615 * method returns 0.) 2616 * 2617 * @mgmt_frame_register: Notify driver that a management frame type was 2618 * registered. The callback is allowed to sleep. 2619 * 2620 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. 2621 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may 2622 * reject TX/RX mask combinations they cannot support by returning -EINVAL 2623 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). 2624 * 2625 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). 2626 * 2627 * @tdls_mgmt: Transmit a TDLS management frame. 2628 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup). 2629 * 2630 * @probe_client: probe an associated client, must return a cookie that it 2631 * later passes to cfg80211_probe_status(). 2632 * 2633 * @set_noack_map: Set the NoAck Map for the TIDs. 2634 * 2635 * @get_channel: Get the current operating channel for the virtual interface. 2636 * For monitor interfaces, it should return %NULL unless there's a single 2637 * current monitoring channel. 2638 * 2639 * @start_p2p_device: Start the given P2P device. 2640 * @stop_p2p_device: Stop the given P2P device. 2641 * 2642 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode. 2643 * Parameters include ACL policy, an array of MAC address of stations 2644 * and the number of MAC addresses. If there is already a list in driver 2645 * this new list replaces the existing one. Driver has to clear its ACL 2646 * when number of MAC addresses entries is passed as 0. Drivers which 2647 * advertise the support for MAC based ACL have to implement this callback. 2648 * 2649 * @start_radar_detection: Start radar detection in the driver. 2650 * 2651 * @update_ft_ies: Provide updated Fast BSS Transition information to the 2652 * driver. If the SME is in the driver/firmware, this information can be 2653 * used in building Authentication and Reassociation Request frames. 2654 * 2655 * @crit_proto_start: Indicates a critical protocol needs more link reliability 2656 * for a given duration (milliseconds). The protocol is provided so the 2657 * driver can take the most appropriate actions. 2658 * @crit_proto_stop: Indicates critical protocol no longer needs increased link 2659 * reliability. This operation can not fail. 2660 * @set_coalesce: Set coalesce parameters. 2661 * 2662 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is 2663 * responsible for veryfing if the switch is possible. Since this is 2664 * inherently tricky driver may decide to disconnect an interface later 2665 * with cfg80211_stop_iface(). This doesn't mean driver can accept 2666 * everything. It should do it's best to verify requests and reject them 2667 * as soon as possible. 2668 * 2669 * @set_qos_map: Set QoS mapping information to the driver 2670 * 2671 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the 2672 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width 2673 * changes during the lifetime of the BSS. 2674 * 2675 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device 2676 * with the given parameters; action frame exchange has been handled by 2677 * userspace so this just has to modify the TX path to take the TS into 2678 * account. 2679 * If the admitted time is 0 just validate the parameters to make sure 2680 * the session can be created at all; it is valid to just always return 2681 * success for that but that may result in inefficient behaviour (handshake 2682 * with the peer followed by immediate teardown when the addition is later 2683 * rejected) 2684 * @del_tx_ts: remove an existing TX TS 2685 * 2686 * @join_ocb: join the OCB network with the specified parameters 2687 * (invoked with the wireless_dev mutex held) 2688 * @leave_ocb: leave the current OCB network 2689 * (invoked with the wireless_dev mutex held) 2690 * 2691 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver 2692 * is responsible for continually initiating channel-switching operations 2693 * and returning to the base channel for communication with the AP. 2694 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both 2695 * peers must be on the base channel when the call completes. 2696 * @start_nan: Start the NAN interface. 2697 * @stop_nan: Stop the NAN interface. 2698 * @add_nan_func: Add a NAN function. Returns negative value on failure. 2699 * On success @nan_func ownership is transferred to the driver and 2700 * it may access it outside of the scope of this function. The driver 2701 * should free the @nan_func when no longer needed by calling 2702 * cfg80211_free_nan_func(). 2703 * On success the driver should assign an instance_id in the 2704 * provided @nan_func. 2705 * @del_nan_func: Delete a NAN function. 2706 * @nan_change_conf: changes NAN configuration. The changed parameters must 2707 * be specified in @changes (using &enum cfg80211_nan_conf_changes); 2708 * All other parameters must be ignored. 2709 */ 2710 struct cfg80211_ops { 2711 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow); 2712 int (*resume)(struct wiphy *wiphy); 2713 void (*set_wakeup)(struct wiphy *wiphy, bool enabled); 2714 2715 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy, 2716 const char *name, 2717 unsigned char name_assign_type, 2718 enum nl80211_iftype type, 2719 u32 *flags, 2720 struct vif_params *params); 2721 int (*del_virtual_intf)(struct wiphy *wiphy, 2722 struct wireless_dev *wdev); 2723 int (*change_virtual_intf)(struct wiphy *wiphy, 2724 struct net_device *dev, 2725 enum nl80211_iftype type, u32 *flags, 2726 struct vif_params *params); 2727 2728 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, 2729 u8 key_index, bool pairwise, const u8 *mac_addr, 2730 struct key_params *params); 2731 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev, 2732 u8 key_index, bool pairwise, const u8 *mac_addr, 2733 void *cookie, 2734 void (*callback)(void *cookie, struct key_params*)); 2735 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, 2736 u8 key_index, bool pairwise, const u8 *mac_addr); 2737 int (*set_default_key)(struct wiphy *wiphy, 2738 struct net_device *netdev, 2739 u8 key_index, bool unicast, bool multicast); 2740 int (*set_default_mgmt_key)(struct wiphy *wiphy, 2741 struct net_device *netdev, 2742 u8 key_index); 2743 2744 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev, 2745 struct cfg80211_ap_settings *settings); 2746 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev, 2747 struct cfg80211_beacon_data *info); 2748 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev); 2749 2750 2751 int (*add_station)(struct wiphy *wiphy, struct net_device *dev, 2752 const u8 *mac, 2753 struct station_parameters *params); 2754 int (*del_station)(struct wiphy *wiphy, struct net_device *dev, 2755 struct station_del_parameters *params); 2756 int (*change_station)(struct wiphy *wiphy, struct net_device *dev, 2757 const u8 *mac, 2758 struct station_parameters *params); 2759 int (*get_station)(struct wiphy *wiphy, struct net_device *dev, 2760 const u8 *mac, struct station_info *sinfo); 2761 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, 2762 int idx, u8 *mac, struct station_info *sinfo); 2763 2764 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, 2765 const u8 *dst, const u8 *next_hop); 2766 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, 2767 const u8 *dst); 2768 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, 2769 const u8 *dst, const u8 *next_hop); 2770 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, 2771 u8 *dst, u8 *next_hop, struct mpath_info *pinfo); 2772 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev, 2773 int idx, u8 *dst, u8 *next_hop, 2774 struct mpath_info *pinfo); 2775 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev, 2776 u8 *dst, u8 *mpp, struct mpath_info *pinfo); 2777 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev, 2778 int idx, u8 *dst, u8 *mpp, 2779 struct mpath_info *pinfo); 2780 int (*get_mesh_config)(struct wiphy *wiphy, 2781 struct net_device *dev, 2782 struct mesh_config *conf); 2783 int (*update_mesh_config)(struct wiphy *wiphy, 2784 struct net_device *dev, u32 mask, 2785 const struct mesh_config *nconf); 2786 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev, 2787 const struct mesh_config *conf, 2788 const struct mesh_setup *setup); 2789 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev); 2790 2791 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev, 2792 struct ocb_setup *setup); 2793 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev); 2794 2795 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, 2796 struct bss_parameters *params); 2797 2798 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev, 2799 struct ieee80211_txq_params *params); 2800 2801 int (*libertas_set_mesh_channel)(struct wiphy *wiphy, 2802 struct net_device *dev, 2803 struct ieee80211_channel *chan); 2804 2805 int (*set_monitor_channel)(struct wiphy *wiphy, 2806 struct cfg80211_chan_def *chandef); 2807 2808 int (*scan)(struct wiphy *wiphy, 2809 struct cfg80211_scan_request *request); 2810 void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev); 2811 2812 int (*auth)(struct wiphy *wiphy, struct net_device *dev, 2813 struct cfg80211_auth_request *req); 2814 int (*assoc)(struct wiphy *wiphy, struct net_device *dev, 2815 struct cfg80211_assoc_request *req); 2816 int (*deauth)(struct wiphy *wiphy, struct net_device *dev, 2817 struct cfg80211_deauth_request *req); 2818 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, 2819 struct cfg80211_disassoc_request *req); 2820 2821 int (*connect)(struct wiphy *wiphy, struct net_device *dev, 2822 struct cfg80211_connect_params *sme); 2823 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, 2824 u16 reason_code); 2825 2826 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, 2827 struct cfg80211_ibss_params *params); 2828 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev); 2829 2830 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev, 2831 int rate[NUM_NL80211_BANDS]); 2832 2833 int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed); 2834 2835 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 2836 enum nl80211_tx_power_setting type, int mbm); 2837 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, 2838 int *dbm); 2839 2840 int (*set_wds_peer)(struct wiphy *wiphy, struct net_device *dev, 2841 const u8 *addr); 2842 2843 void (*rfkill_poll)(struct wiphy *wiphy); 2844 2845 #ifdef CONFIG_NL80211_TESTMODE 2846 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev, 2847 void *data, int len); 2848 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb, 2849 struct netlink_callback *cb, 2850 void *data, int len); 2851 #endif 2852 2853 int (*set_bitrate_mask)(struct wiphy *wiphy, 2854 struct net_device *dev, 2855 const u8 *peer, 2856 const struct cfg80211_bitrate_mask *mask); 2857 2858 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev, 2859 int idx, struct survey_info *info); 2860 2861 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 2862 struct cfg80211_pmksa *pmksa); 2863 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev, 2864 struct cfg80211_pmksa *pmksa); 2865 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev); 2866 2867 int (*remain_on_channel)(struct wiphy *wiphy, 2868 struct wireless_dev *wdev, 2869 struct ieee80211_channel *chan, 2870 unsigned int duration, 2871 u64 *cookie); 2872 int (*cancel_remain_on_channel)(struct wiphy *wiphy, 2873 struct wireless_dev *wdev, 2874 u64 cookie); 2875 2876 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev, 2877 struct cfg80211_mgmt_tx_params *params, 2878 u64 *cookie); 2879 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy, 2880 struct wireless_dev *wdev, 2881 u64 cookie); 2882 2883 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev, 2884 bool enabled, int timeout); 2885 2886 int (*set_cqm_rssi_config)(struct wiphy *wiphy, 2887 struct net_device *dev, 2888 s32 rssi_thold, u32 rssi_hyst); 2889 2890 int (*set_cqm_txe_config)(struct wiphy *wiphy, 2891 struct net_device *dev, 2892 u32 rate, u32 pkts, u32 intvl); 2893 2894 void (*mgmt_frame_register)(struct wiphy *wiphy, 2895 struct wireless_dev *wdev, 2896 u16 frame_type, bool reg); 2897 2898 int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant); 2899 int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant); 2900 2901 int (*sched_scan_start)(struct wiphy *wiphy, 2902 struct net_device *dev, 2903 struct cfg80211_sched_scan_request *request); 2904 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev); 2905 2906 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev, 2907 struct cfg80211_gtk_rekey_data *data); 2908 2909 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev, 2910 const u8 *peer, u8 action_code, u8 dialog_token, 2911 u16 status_code, u32 peer_capability, 2912 bool initiator, const u8 *buf, size_t len); 2913 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev, 2914 const u8 *peer, enum nl80211_tdls_operation oper); 2915 2916 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev, 2917 const u8 *peer, u64 *cookie); 2918 2919 int (*set_noack_map)(struct wiphy *wiphy, 2920 struct net_device *dev, 2921 u16 noack_map); 2922 2923 int (*get_channel)(struct wiphy *wiphy, 2924 struct wireless_dev *wdev, 2925 struct cfg80211_chan_def *chandef); 2926 2927 int (*start_p2p_device)(struct wiphy *wiphy, 2928 struct wireless_dev *wdev); 2929 void (*stop_p2p_device)(struct wiphy *wiphy, 2930 struct wireless_dev *wdev); 2931 2932 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev, 2933 const struct cfg80211_acl_data *params); 2934 2935 int (*start_radar_detection)(struct wiphy *wiphy, 2936 struct net_device *dev, 2937 struct cfg80211_chan_def *chandef, 2938 u32 cac_time_ms); 2939 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev, 2940 struct cfg80211_update_ft_ies_params *ftie); 2941 int (*crit_proto_start)(struct wiphy *wiphy, 2942 struct wireless_dev *wdev, 2943 enum nl80211_crit_proto_id protocol, 2944 u16 duration); 2945 void (*crit_proto_stop)(struct wiphy *wiphy, 2946 struct wireless_dev *wdev); 2947 int (*set_coalesce)(struct wiphy *wiphy, 2948 struct cfg80211_coalesce *coalesce); 2949 2950 int (*channel_switch)(struct wiphy *wiphy, 2951 struct net_device *dev, 2952 struct cfg80211_csa_settings *params); 2953 2954 int (*set_qos_map)(struct wiphy *wiphy, 2955 struct net_device *dev, 2956 struct cfg80211_qos_map *qos_map); 2957 2958 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev, 2959 struct cfg80211_chan_def *chandef); 2960 2961 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 2962 u8 tsid, const u8 *peer, u8 user_prio, 2963 u16 admitted_time); 2964 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev, 2965 u8 tsid, const u8 *peer); 2966 2967 int (*tdls_channel_switch)(struct wiphy *wiphy, 2968 struct net_device *dev, 2969 const u8 *addr, u8 oper_class, 2970 struct cfg80211_chan_def *chandef); 2971 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy, 2972 struct net_device *dev, 2973 const u8 *addr); 2974 int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev, 2975 struct cfg80211_nan_conf *conf); 2976 void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev); 2977 int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 2978 struct cfg80211_nan_func *nan_func); 2979 void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, 2980 u64 cookie); 2981 int (*nan_change_conf)(struct wiphy *wiphy, 2982 struct wireless_dev *wdev, 2983 struct cfg80211_nan_conf *conf, 2984 u32 changes); 2985 }; 2986 2987 /* 2988 * wireless hardware and networking interfaces structures 2989 * and registration/helper functions 2990 */ 2991 2992 /** 2993 * enum wiphy_flags - wiphy capability flags 2994 * 2995 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this 2996 * wiphy at all 2997 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled 2998 * by default -- this flag will be set depending on the kernel's default 2999 * on wiphy_new(), but can be changed by the driver if it has a good 3000 * reason to override the default 3001 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station 3002 * on a VLAN interface) 3003 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station 3004 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the 3005 * control port protocol ethertype. The device also honours the 3006 * control_port_no_encrypt flag. 3007 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN. 3008 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing 3009 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH. 3010 * @WIPHY_FLAG_SUPPORTS_SCHED_SCAN: The device supports scheduled scans. 3011 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the 3012 * firmware. 3013 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP. 3014 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation. 3015 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z) 3016 * link setup/discovery operations internally. Setup, discovery and 3017 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT 3018 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be 3019 * used for asking the driver/firmware to perform a TDLS operation. 3020 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME 3021 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes 3022 * when there are virtual interfaces in AP mode by calling 3023 * cfg80211_report_obss_beacon(). 3024 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device 3025 * responds to probe-requests in hardware. 3026 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX. 3027 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call. 3028 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels. 3029 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in 3030 * beaconing mode (AP, IBSS, Mesh, ...). 3031 * @WIPHY_FLAG_HAS_STATIC_WEP: The device supports static WEP key installation 3032 * before connection. 3033 */ 3034 enum wiphy_flags { 3035 /* use hole at 0 */ 3036 /* use hole at 1 */ 3037 /* use hole at 2 */ 3038 WIPHY_FLAG_NETNS_OK = BIT(3), 3039 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4), 3040 WIPHY_FLAG_4ADDR_AP = BIT(5), 3041 WIPHY_FLAG_4ADDR_STATION = BIT(6), 3042 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7), 3043 WIPHY_FLAG_IBSS_RSN = BIT(8), 3044 WIPHY_FLAG_MESH_AUTH = BIT(10), 3045 WIPHY_FLAG_SUPPORTS_SCHED_SCAN = BIT(11), 3046 /* use hole at 12 */ 3047 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13), 3048 WIPHY_FLAG_AP_UAPSD = BIT(14), 3049 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15), 3050 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16), 3051 WIPHY_FLAG_HAVE_AP_SME = BIT(17), 3052 WIPHY_FLAG_REPORTS_OBSS = BIT(18), 3053 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19), 3054 WIPHY_FLAG_OFFCHAN_TX = BIT(20), 3055 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21), 3056 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22), 3057 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23), 3058 WIPHY_FLAG_HAS_STATIC_WEP = BIT(24), 3059 }; 3060 3061 /** 3062 * struct ieee80211_iface_limit - limit on certain interface types 3063 * @max: maximum number of interfaces of these types 3064 * @types: interface types (bits) 3065 */ 3066 struct ieee80211_iface_limit { 3067 u16 max; 3068 u16 types; 3069 }; 3070 3071 /** 3072 * struct ieee80211_iface_combination - possible interface combination 3073 * @limits: limits for the given interface types 3074 * @n_limits: number of limitations 3075 * @num_different_channels: can use up to this many different channels 3076 * @max_interfaces: maximum number of interfaces in total allowed in this 3077 * group 3078 * @beacon_int_infra_match: In this combination, the beacon intervals 3079 * between infrastructure and AP types must match. This is required 3080 * only in special cases. 3081 * @radar_detect_widths: bitmap of channel widths supported for radar detection 3082 * @radar_detect_regions: bitmap of regions supported for radar detection 3083 * 3084 * With this structure the driver can describe which interface 3085 * combinations it supports concurrently. 3086 * 3087 * Examples: 3088 * 3089 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total: 3090 * 3091 * struct ieee80211_iface_limit limits1[] = { 3092 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 3093 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP}, }, 3094 * }; 3095 * struct ieee80211_iface_combination combination1 = { 3096 * .limits = limits1, 3097 * .n_limits = ARRAY_SIZE(limits1), 3098 * .max_interfaces = 2, 3099 * .beacon_int_infra_match = true, 3100 * }; 3101 * 3102 * 3103 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total: 3104 * 3105 * struct ieee80211_iface_limit limits2[] = { 3106 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) | 3107 * BIT(NL80211_IFTYPE_P2P_GO), }, 3108 * }; 3109 * struct ieee80211_iface_combination combination2 = { 3110 * .limits = limits2, 3111 * .n_limits = ARRAY_SIZE(limits2), 3112 * .max_interfaces = 8, 3113 * .num_different_channels = 1, 3114 * }; 3115 * 3116 * 3117 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total. 3118 * 3119 * This allows for an infrastructure connection and three P2P connections. 3120 * 3121 * struct ieee80211_iface_limit limits3[] = { 3122 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, 3123 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) | 3124 * BIT(NL80211_IFTYPE_P2P_CLIENT), }, 3125 * }; 3126 * struct ieee80211_iface_combination combination3 = { 3127 * .limits = limits3, 3128 * .n_limits = ARRAY_SIZE(limits3), 3129 * .max_interfaces = 4, 3130 * .num_different_channels = 2, 3131 * }; 3132 */ 3133 struct ieee80211_iface_combination { 3134 const struct ieee80211_iface_limit *limits; 3135 u32 num_different_channels; 3136 u16 max_interfaces; 3137 u8 n_limits; 3138 bool beacon_int_infra_match; 3139 u8 radar_detect_widths; 3140 u8 radar_detect_regions; 3141 }; 3142 3143 struct ieee80211_txrx_stypes { 3144 u16 tx, rx; 3145 }; 3146 3147 /** 3148 * enum wiphy_wowlan_support_flags - WoWLAN support flags 3149 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any" 3150 * trigger that keeps the device operating as-is and 3151 * wakes up the host on any activity, for example a 3152 * received packet that passed filtering; note that the 3153 * packet should be preserved in that case 3154 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet 3155 * (see nl80211.h) 3156 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect 3157 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep 3158 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure 3159 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request 3160 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure 3161 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release 3162 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection 3163 */ 3164 enum wiphy_wowlan_support_flags { 3165 WIPHY_WOWLAN_ANY = BIT(0), 3166 WIPHY_WOWLAN_MAGIC_PKT = BIT(1), 3167 WIPHY_WOWLAN_DISCONNECT = BIT(2), 3168 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3), 3169 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4), 3170 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5), 3171 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6), 3172 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7), 3173 WIPHY_WOWLAN_NET_DETECT = BIT(8), 3174 }; 3175 3176 struct wiphy_wowlan_tcp_support { 3177 const struct nl80211_wowlan_tcp_data_token_feature *tok; 3178 u32 data_payload_max; 3179 u32 data_interval_max; 3180 u32 wake_payload_max; 3181 bool seq; 3182 }; 3183 3184 /** 3185 * struct wiphy_wowlan_support - WoWLAN support data 3186 * @flags: see &enum wiphy_wowlan_support_flags 3187 * @n_patterns: number of supported wakeup patterns 3188 * (see nl80211.h for the pattern definition) 3189 * @pattern_max_len: maximum length of each pattern 3190 * @pattern_min_len: minimum length of each pattern 3191 * @max_pkt_offset: maximum Rx packet offset 3192 * @max_nd_match_sets: maximum number of matchsets for net-detect, 3193 * similar, but not necessarily identical, to max_match_sets for 3194 * scheduled scans. 3195 * See &struct cfg80211_sched_scan_request.@match_sets for more 3196 * details. 3197 * @tcp: TCP wakeup support information 3198 */ 3199 struct wiphy_wowlan_support { 3200 u32 flags; 3201 int n_patterns; 3202 int pattern_max_len; 3203 int pattern_min_len; 3204 int max_pkt_offset; 3205 int max_nd_match_sets; 3206 const struct wiphy_wowlan_tcp_support *tcp; 3207 }; 3208 3209 /** 3210 * struct wiphy_coalesce_support - coalesce support data 3211 * @n_rules: maximum number of coalesce rules 3212 * @max_delay: maximum supported coalescing delay in msecs 3213 * @n_patterns: number of supported patterns in a rule 3214 * (see nl80211.h for the pattern definition) 3215 * @pattern_max_len: maximum length of each pattern 3216 * @pattern_min_len: minimum length of each pattern 3217 * @max_pkt_offset: maximum Rx packet offset 3218 */ 3219 struct wiphy_coalesce_support { 3220 int n_rules; 3221 int max_delay; 3222 int n_patterns; 3223 int pattern_max_len; 3224 int pattern_min_len; 3225 int max_pkt_offset; 3226 }; 3227 3228 /** 3229 * enum wiphy_vendor_command_flags - validation flags for vendor commands 3230 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev 3231 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev 3232 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running 3233 * (must be combined with %_WDEV or %_NETDEV) 3234 */ 3235 enum wiphy_vendor_command_flags { 3236 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0), 3237 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1), 3238 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2), 3239 }; 3240 3241 /** 3242 * struct wiphy_vendor_command - vendor command definition 3243 * @info: vendor command identifying information, as used in nl80211 3244 * @flags: flags, see &enum wiphy_vendor_command_flags 3245 * @doit: callback for the operation, note that wdev is %NULL if the 3246 * flags didn't ask for a wdev and non-%NULL otherwise; the data 3247 * pointer may be %NULL if userspace provided no data at all 3248 * @dumpit: dump callback, for transferring bigger/multiple items. The 3249 * @storage points to cb->args[5], ie. is preserved over the multiple 3250 * dumpit calls. 3251 * It's recommended to not have the same sub command with both @doit and 3252 * @dumpit, so that userspace can assume certain ones are get and others 3253 * are used with dump requests. 3254 */ 3255 struct wiphy_vendor_command { 3256 struct nl80211_vendor_cmd_info info; 3257 u32 flags; 3258 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev, 3259 const void *data, int data_len); 3260 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev, 3261 struct sk_buff *skb, const void *data, int data_len, 3262 unsigned long *storage); 3263 }; 3264 3265 /** 3266 * struct wiphy_iftype_ext_capab - extended capabilities per interface type 3267 * @iftype: interface type 3268 * @extended_capabilities: extended capabilities supported by the driver, 3269 * additional capabilities might be supported by userspace; these are the 3270 * 802.11 extended capabilities ("Extended Capabilities element") and are 3271 * in the same format as in the information element. See IEEE Std 3272 * 802.11-2012 8.4.2.29 for the defined fields. 3273 * @extended_capabilities_mask: mask of the valid values 3274 * @extended_capabilities_len: length of the extended capabilities 3275 */ 3276 struct wiphy_iftype_ext_capab { 3277 enum nl80211_iftype iftype; 3278 const u8 *extended_capabilities; 3279 const u8 *extended_capabilities_mask; 3280 u8 extended_capabilities_len; 3281 }; 3282 3283 /** 3284 * struct wiphy - wireless hardware description 3285 * @reg_notifier: the driver's regulatory notification callback, 3286 * note that if your driver uses wiphy_apply_custom_regulatory() 3287 * the reg_notifier's request can be passed as NULL 3288 * @regd: the driver's regulatory domain, if one was requested via 3289 * the regulatory_hint() API. This can be used by the driver 3290 * on the reg_notifier() if it chooses to ignore future 3291 * regulatory domain changes caused by other drivers. 3292 * @signal_type: signal type reported in &struct cfg80211_bss. 3293 * @cipher_suites: supported cipher suites 3294 * @n_cipher_suites: number of supported cipher suites 3295 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit) 3296 * @retry_long: Retry limit for long frames (dot11LongRetryLimit) 3297 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold); 3298 * -1 = fragmentation disabled, only odd values >= 256 used 3299 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled 3300 * @_net: the network namespace this wiphy currently lives in 3301 * @perm_addr: permanent MAC address of this device 3302 * @addr_mask: If the device supports multiple MAC addresses by masking, 3303 * set this to a mask with variable bits set to 1, e.g. if the last 3304 * four bits are variable then set it to 00-00-00-00-00-0f. The actual 3305 * variable bits shall be determined by the interfaces added, with 3306 * interfaces not matching the mask being rejected to be brought up. 3307 * @n_addresses: number of addresses in @addresses. 3308 * @addresses: If the device has more than one address, set this pointer 3309 * to a list of addresses (6 bytes each). The first one will be used 3310 * by default for perm_addr. In this case, the mask should be set to 3311 * all-zeroes. In this case it is assumed that the device can handle 3312 * the same number of arbitrary MAC addresses. 3313 * @registered: protects ->resume and ->suspend sysfs callbacks against 3314 * unregister hardware 3315 * @debugfsdir: debugfs directory used for this wiphy, will be renamed 3316 * automatically on wiphy renames 3317 * @dev: (virtual) struct device for this wiphy 3318 * @registered: helps synchronize suspend/resume with wiphy unregister 3319 * @wext: wireless extension handlers 3320 * @priv: driver private data (sized according to wiphy_new() parameter) 3321 * @interface_modes: bitmask of interfaces types valid for this wiphy, 3322 * must be set by driver 3323 * @iface_combinations: Valid interface combinations array, should not 3324 * list single interface types. 3325 * @n_iface_combinations: number of entries in @iface_combinations array. 3326 * @software_iftypes: bitmask of software interface types, these are not 3327 * subject to any restrictions since they are purely managed in SW. 3328 * @flags: wiphy flags, see &enum wiphy_flags 3329 * @regulatory_flags: wiphy regulatory flags, see 3330 * &enum ieee80211_regulatory_flags 3331 * @features: features advertised to nl80211, see &enum nl80211_feature_flags. 3332 * @ext_features: extended features advertised to nl80211, see 3333 * &enum nl80211_ext_feature_index. 3334 * @bss_priv_size: each BSS struct has private data allocated with it, 3335 * this variable determines its size 3336 * @max_scan_ssids: maximum number of SSIDs the device can scan for in 3337 * any given scan 3338 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan 3339 * for in any given scheduled scan 3340 * @max_match_sets: maximum number of match sets the device can handle 3341 * when performing a scheduled scan, 0 if filtering is not 3342 * supported. 3343 * @max_scan_ie_len: maximum length of user-controlled IEs device can 3344 * add to probe request frames transmitted during a scan, must not 3345 * include fixed IEs like supported rates 3346 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled 3347 * scans 3348 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number 3349 * of iterations) for scheduled scan supported by the device. 3350 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a 3351 * single scan plan supported by the device. 3352 * @max_sched_scan_plan_iterations: maximum number of iterations for a single 3353 * scan plan supported by the device. 3354 * @coverage_class: current coverage class 3355 * @fw_version: firmware version for ethtool reporting 3356 * @hw_version: hardware version for ethtool reporting 3357 * @max_num_pmkids: maximum number of PMKIDs supported by device 3358 * @privid: a pointer that drivers can use to identify if an arbitrary 3359 * wiphy is theirs, e.g. in global notifiers 3360 * @bands: information about bands/channels supported by this device 3361 * 3362 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or 3363 * transmitted through nl80211, points to an array indexed by interface 3364 * type 3365 * 3366 * @available_antennas_tx: bitmap of antennas which are available to be 3367 * configured as TX antennas. Antenna configuration commands will be 3368 * rejected unless this or @available_antennas_rx is set. 3369 * 3370 * @available_antennas_rx: bitmap of antennas which are available to be 3371 * configured as RX antennas. Antenna configuration commands will be 3372 * rejected unless this or @available_antennas_tx is set. 3373 * 3374 * @probe_resp_offload: 3375 * Bitmap of supported protocols for probe response offloading. 3376 * See &enum nl80211_probe_resp_offload_support_attr. Only valid 3377 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set. 3378 * 3379 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation 3380 * may request, if implemented. 3381 * 3382 * @wowlan: WoWLAN support information 3383 * @wowlan_config: current WoWLAN configuration; this should usually not be 3384 * used since access to it is necessarily racy, use the parameter passed 3385 * to the suspend() operation instead. 3386 * 3387 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features. 3388 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden. 3389 * If null, then none can be over-ridden. 3390 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden. 3391 * If null, then none can be over-ridden. 3392 * 3393 * @wdev_list: the list of associated (virtual) interfaces; this list must 3394 * not be modified by the driver, but can be read with RTNL/RCU protection. 3395 * 3396 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device 3397 * supports for ACL. 3398 * 3399 * @extended_capabilities: extended capabilities supported by the driver, 3400 * additional capabilities might be supported by userspace; these are 3401 * the 802.11 extended capabilities ("Extended Capabilities element") 3402 * and are in the same format as in the information element. See 3403 * 802.11-2012 8.4.2.29 for the defined fields. These are the default 3404 * extended capabilities to be used if the capabilities are not specified 3405 * for a specific interface type in iftype_ext_capab. 3406 * @extended_capabilities_mask: mask of the valid values 3407 * @extended_capabilities_len: length of the extended capabilities 3408 * @iftype_ext_capab: array of extended capabilities per interface type 3409 * @num_iftype_ext_capab: number of interface types for which extended 3410 * capabilities are specified separately. 3411 * @coalesce: packet coalescing support information 3412 * 3413 * @vendor_commands: array of vendor commands supported by the hardware 3414 * @n_vendor_commands: number of vendor commands 3415 * @vendor_events: array of vendor events supported by the hardware 3416 * @n_vendor_events: number of vendor events 3417 * 3418 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode 3419 * (including P2P GO) or 0 to indicate no such limit is advertised. The 3420 * driver is allowed to advertise a theoretical limit that it can reach in 3421 * some cases, but may not always reach. 3422 * 3423 * @max_num_csa_counters: Number of supported csa_counters in beacons 3424 * and probe responses. This value should be set if the driver 3425 * wishes to limit the number of csa counters. Default (0) means 3426 * infinite. 3427 * @max_adj_channel_rssi_comp: max offset of between the channel on which the 3428 * frame was sent and the channel on which the frame was heard for which 3429 * the reported rssi is still valid. If a driver is able to compensate the 3430 * low rssi when a frame is heard on different channel, then it should set 3431 * this variable to the maximal offset for which it can compensate. 3432 * This value should be set in MHz. 3433 * @bss_select_support: bitmask indicating the BSS selection criteria supported 3434 * by the driver in the .connect() callback. The bit position maps to the 3435 * attribute indices defined in &enum nl80211_bss_select_attr. 3436 * 3437 * @cookie_counter: unique generic cookie counter, used to identify objects. 3438 */ 3439 struct wiphy { 3440 /* assign these fields before you register the wiphy */ 3441 3442 /* permanent MAC address(es) */ 3443 u8 perm_addr[ETH_ALEN]; 3444 u8 addr_mask[ETH_ALEN]; 3445 3446 struct mac_address *addresses; 3447 3448 const struct ieee80211_txrx_stypes *mgmt_stypes; 3449 3450 const struct ieee80211_iface_combination *iface_combinations; 3451 int n_iface_combinations; 3452 u16 software_iftypes; 3453 3454 u16 n_addresses; 3455 3456 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */ 3457 u16 interface_modes; 3458 3459 u16 max_acl_mac_addrs; 3460 3461 u32 flags, regulatory_flags, features; 3462 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)]; 3463 3464 u32 ap_sme_capa; 3465 3466 enum cfg80211_signal_type signal_type; 3467 3468 int bss_priv_size; 3469 u8 max_scan_ssids; 3470 u8 max_sched_scan_ssids; 3471 u8 max_match_sets; 3472 u16 max_scan_ie_len; 3473 u16 max_sched_scan_ie_len; 3474 u32 max_sched_scan_plans; 3475 u32 max_sched_scan_plan_interval; 3476 u32 max_sched_scan_plan_iterations; 3477 3478 int n_cipher_suites; 3479 const u32 *cipher_suites; 3480 3481 u8 retry_short; 3482 u8 retry_long; 3483 u32 frag_threshold; 3484 u32 rts_threshold; 3485 u8 coverage_class; 3486 3487 char fw_version[ETHTOOL_FWVERS_LEN]; 3488 u32 hw_version; 3489 3490 #ifdef CONFIG_PM 3491 const struct wiphy_wowlan_support *wowlan; 3492 struct cfg80211_wowlan *wowlan_config; 3493 #endif 3494 3495 u16 max_remain_on_channel_duration; 3496 3497 u8 max_num_pmkids; 3498 3499 u32 available_antennas_tx; 3500 u32 available_antennas_rx; 3501 3502 /* 3503 * Bitmap of supported protocols for probe response offloading 3504 * see &enum nl80211_probe_resp_offload_support_attr. Only valid 3505 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set. 3506 */ 3507 u32 probe_resp_offload; 3508 3509 const u8 *extended_capabilities, *extended_capabilities_mask; 3510 u8 extended_capabilities_len; 3511 3512 const struct wiphy_iftype_ext_capab *iftype_ext_capab; 3513 unsigned int num_iftype_ext_capab; 3514 3515 /* If multiple wiphys are registered and you're handed e.g. 3516 * a regular netdev with assigned ieee80211_ptr, you won't 3517 * know whether it points to a wiphy your driver has registered 3518 * or not. Assign this to something global to your driver to 3519 * help determine whether you own this wiphy or not. */ 3520 const void *privid; 3521 3522 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS]; 3523 3524 /* Lets us get back the wiphy on the callback */ 3525 void (*reg_notifier)(struct wiphy *wiphy, 3526 struct regulatory_request *request); 3527 3528 /* fields below are read-only, assigned by cfg80211 */ 3529 3530 const struct ieee80211_regdomain __rcu *regd; 3531 3532 /* the item in /sys/class/ieee80211/ points to this, 3533 * you need use set_wiphy_dev() (see below) */ 3534 struct device dev; 3535 3536 /* protects ->resume, ->suspend sysfs callbacks against unregister hw */ 3537 bool registered; 3538 3539 /* dir in debugfs: ieee80211/<wiphyname> */ 3540 struct dentry *debugfsdir; 3541 3542 const struct ieee80211_ht_cap *ht_capa_mod_mask; 3543 const struct ieee80211_vht_cap *vht_capa_mod_mask; 3544 3545 struct list_head wdev_list; 3546 3547 /* the network namespace this phy lives in currently */ 3548 possible_net_t _net; 3549 3550 #ifdef CONFIG_CFG80211_WEXT 3551 const struct iw_handler_def *wext; 3552 #endif 3553 3554 const struct wiphy_coalesce_support *coalesce; 3555 3556 const struct wiphy_vendor_command *vendor_commands; 3557 const struct nl80211_vendor_cmd_info *vendor_events; 3558 int n_vendor_commands, n_vendor_events; 3559 3560 u16 max_ap_assoc_sta; 3561 3562 u8 max_num_csa_counters; 3563 u8 max_adj_channel_rssi_comp; 3564 3565 u32 bss_select_support; 3566 3567 u64 cookie_counter; 3568 3569 char priv[0] __aligned(NETDEV_ALIGN); 3570 }; 3571 3572 static inline struct net *wiphy_net(struct wiphy *wiphy) 3573 { 3574 return read_pnet(&wiphy->_net); 3575 } 3576 3577 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net) 3578 { 3579 write_pnet(&wiphy->_net, net); 3580 } 3581 3582 /** 3583 * wiphy_priv - return priv from wiphy 3584 * 3585 * @wiphy: the wiphy whose priv pointer to return 3586 * Return: The priv of @wiphy. 3587 */ 3588 static inline void *wiphy_priv(struct wiphy *wiphy) 3589 { 3590 BUG_ON(!wiphy); 3591 return &wiphy->priv; 3592 } 3593 3594 /** 3595 * priv_to_wiphy - return the wiphy containing the priv 3596 * 3597 * @priv: a pointer previously returned by wiphy_priv 3598 * Return: The wiphy of @priv. 3599 */ 3600 static inline struct wiphy *priv_to_wiphy(void *priv) 3601 { 3602 BUG_ON(!priv); 3603 return container_of(priv, struct wiphy, priv); 3604 } 3605 3606 /** 3607 * set_wiphy_dev - set device pointer for wiphy 3608 * 3609 * @wiphy: The wiphy whose device to bind 3610 * @dev: The device to parent it to 3611 */ 3612 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev) 3613 { 3614 wiphy->dev.parent = dev; 3615 } 3616 3617 /** 3618 * wiphy_dev - get wiphy dev pointer 3619 * 3620 * @wiphy: The wiphy whose device struct to look up 3621 * Return: The dev of @wiphy. 3622 */ 3623 static inline struct device *wiphy_dev(struct wiphy *wiphy) 3624 { 3625 return wiphy->dev.parent; 3626 } 3627 3628 /** 3629 * wiphy_name - get wiphy name 3630 * 3631 * @wiphy: The wiphy whose name to return 3632 * Return: The name of @wiphy. 3633 */ 3634 static inline const char *wiphy_name(const struct wiphy *wiphy) 3635 { 3636 return dev_name(&wiphy->dev); 3637 } 3638 3639 /** 3640 * wiphy_new_nm - create a new wiphy for use with cfg80211 3641 * 3642 * @ops: The configuration operations for this device 3643 * @sizeof_priv: The size of the private area to allocate 3644 * @requested_name: Request a particular name. 3645 * NULL is valid value, and means use the default phy%d naming. 3646 * 3647 * Create a new wiphy and associate the given operations with it. 3648 * @sizeof_priv bytes are allocated for private use. 3649 * 3650 * Return: A pointer to the new wiphy. This pointer must be 3651 * assigned to each netdev's ieee80211_ptr for proper operation. 3652 */ 3653 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv, 3654 const char *requested_name); 3655 3656 /** 3657 * wiphy_new - create a new wiphy for use with cfg80211 3658 * 3659 * @ops: The configuration operations for this device 3660 * @sizeof_priv: The size of the private area to allocate 3661 * 3662 * Create a new wiphy and associate the given operations with it. 3663 * @sizeof_priv bytes are allocated for private use. 3664 * 3665 * Return: A pointer to the new wiphy. This pointer must be 3666 * assigned to each netdev's ieee80211_ptr for proper operation. 3667 */ 3668 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops, 3669 int sizeof_priv) 3670 { 3671 return wiphy_new_nm(ops, sizeof_priv, NULL); 3672 } 3673 3674 /** 3675 * wiphy_register - register a wiphy with cfg80211 3676 * 3677 * @wiphy: The wiphy to register. 3678 * 3679 * Return: A non-negative wiphy index or a negative error code. 3680 */ 3681 int wiphy_register(struct wiphy *wiphy); 3682 3683 /** 3684 * wiphy_unregister - deregister a wiphy from cfg80211 3685 * 3686 * @wiphy: The wiphy to unregister. 3687 * 3688 * After this call, no more requests can be made with this priv 3689 * pointer, but the call may sleep to wait for an outstanding 3690 * request that is being handled. 3691 */ 3692 void wiphy_unregister(struct wiphy *wiphy); 3693 3694 /** 3695 * wiphy_free - free wiphy 3696 * 3697 * @wiphy: The wiphy to free 3698 */ 3699 void wiphy_free(struct wiphy *wiphy); 3700 3701 /* internal structs */ 3702 struct cfg80211_conn; 3703 struct cfg80211_internal_bss; 3704 struct cfg80211_cached_keys; 3705 3706 /** 3707 * struct wireless_dev - wireless device state 3708 * 3709 * For netdevs, this structure must be allocated by the driver 3710 * that uses the ieee80211_ptr field in struct net_device (this 3711 * is intentional so it can be allocated along with the netdev.) 3712 * It need not be registered then as netdev registration will 3713 * be intercepted by cfg80211 to see the new wireless device. 3714 * 3715 * For non-netdev uses, it must also be allocated by the driver 3716 * in response to the cfg80211 callbacks that require it, as 3717 * there's no netdev registration in that case it may not be 3718 * allocated outside of callback operations that return it. 3719 * 3720 * @wiphy: pointer to hardware description 3721 * @iftype: interface type 3722 * @list: (private) Used to collect the interfaces 3723 * @netdev: (private) Used to reference back to the netdev, may be %NULL 3724 * @identifier: (private) Identifier used in nl80211 to identify this 3725 * wireless device if it has no netdev 3726 * @current_bss: (private) Used by the internal configuration code 3727 * @chandef: (private) Used by the internal configuration code to track 3728 * the user-set channel definition. 3729 * @preset_chandef: (private) Used by the internal configuration code to 3730 * track the channel to be used for AP later 3731 * @bssid: (private) Used by the internal configuration code 3732 * @ssid: (private) Used by the internal configuration code 3733 * @ssid_len: (private) Used by the internal configuration code 3734 * @mesh_id_len: (private) Used by the internal configuration code 3735 * @mesh_id_up_len: (private) Used by the internal configuration code 3736 * @wext: (private) Used by the internal wireless extensions compat code 3737 * @use_4addr: indicates 4addr mode is used on this interface, must be 3738 * set by driver (if supported) on add_interface BEFORE registering the 3739 * netdev and may otherwise be used by driver read-only, will be update 3740 * by cfg80211 on change_interface 3741 * @mgmt_registrations: list of registrations for management frames 3742 * @mgmt_registrations_lock: lock for the list 3743 * @mtx: mutex used to lock data in this struct, may be used by drivers 3744 * and some API functions require it held 3745 * @beacon_interval: beacon interval used on this device for transmitting 3746 * beacons, 0 when not valid 3747 * @address: The address for this device, valid only if @netdev is %NULL 3748 * @p2p_started: true if this is a P2P Device that has been started 3749 * @nan_started: true if this is a NAN interface that has been started 3750 * @cac_started: true if DFS channel availability check has been started 3751 * @cac_start_time: timestamp (jiffies) when the dfs state was entered. 3752 * @cac_time_ms: CAC time in ms 3753 * @ps: powersave mode is enabled 3754 * @ps_timeout: dynamic powersave timeout 3755 * @ap_unexpected_nlportid: (private) netlink port ID of application 3756 * registered for unexpected class 3 frames (AP mode) 3757 * @conn: (private) cfg80211 software SME connection state machine data 3758 * @connect_keys: (private) keys to set after connection is established 3759 * @conn_bss_type: connecting/connected BSS type 3760 * @ibss_fixed: (private) IBSS is using fixed BSSID 3761 * @ibss_dfs_possible: (private) IBSS may change to a DFS channel 3762 * @event_list: (private) list for internal event processing 3763 * @event_lock: (private) lock for event list 3764 * @owner_nlportid: (private) owner socket port ID 3765 */ 3766 struct wireless_dev { 3767 struct wiphy *wiphy; 3768 enum nl80211_iftype iftype; 3769 3770 /* the remainder of this struct should be private to cfg80211 */ 3771 struct list_head list; 3772 struct net_device *netdev; 3773 3774 u32 identifier; 3775 3776 struct list_head mgmt_registrations; 3777 spinlock_t mgmt_registrations_lock; 3778 3779 struct mutex mtx; 3780 3781 bool use_4addr, p2p_started, nan_started; 3782 3783 u8 address[ETH_ALEN] __aligned(sizeof(u16)); 3784 3785 /* currently used for IBSS and SME - might be rearranged later */ 3786 u8 ssid[IEEE80211_MAX_SSID_LEN]; 3787 u8 ssid_len, mesh_id_len, mesh_id_up_len; 3788 struct cfg80211_conn *conn; 3789 struct cfg80211_cached_keys *connect_keys; 3790 enum ieee80211_bss_type conn_bss_type; 3791 3792 struct list_head event_list; 3793 spinlock_t event_lock; 3794 3795 struct cfg80211_internal_bss *current_bss; /* associated / joined */ 3796 struct cfg80211_chan_def preset_chandef; 3797 struct cfg80211_chan_def chandef; 3798 3799 bool ibss_fixed; 3800 bool ibss_dfs_possible; 3801 3802 bool ps; 3803 int ps_timeout; 3804 3805 int beacon_interval; 3806 3807 u32 ap_unexpected_nlportid; 3808 3809 bool cac_started; 3810 unsigned long cac_start_time; 3811 unsigned int cac_time_ms; 3812 3813 u32 owner_nlportid; 3814 3815 #ifdef CONFIG_CFG80211_WEXT 3816 /* wext data */ 3817 struct { 3818 struct cfg80211_ibss_params ibss; 3819 struct cfg80211_connect_params connect; 3820 struct cfg80211_cached_keys *keys; 3821 const u8 *ie; 3822 size_t ie_len; 3823 u8 bssid[ETH_ALEN], prev_bssid[ETH_ALEN]; 3824 u8 ssid[IEEE80211_MAX_SSID_LEN]; 3825 s8 default_key, default_mgmt_key; 3826 bool prev_bssid_valid; 3827 } wext; 3828 #endif 3829 }; 3830 3831 static inline u8 *wdev_address(struct wireless_dev *wdev) 3832 { 3833 if (wdev->netdev) 3834 return wdev->netdev->dev_addr; 3835 return wdev->address; 3836 } 3837 3838 /** 3839 * wdev_priv - return wiphy priv from wireless_dev 3840 * 3841 * @wdev: The wireless device whose wiphy's priv pointer to return 3842 * Return: The wiphy priv of @wdev. 3843 */ 3844 static inline void *wdev_priv(struct wireless_dev *wdev) 3845 { 3846 BUG_ON(!wdev); 3847 return wiphy_priv(wdev->wiphy); 3848 } 3849 3850 /** 3851 * DOC: Utility functions 3852 * 3853 * cfg80211 offers a number of utility functions that can be useful. 3854 */ 3855 3856 /** 3857 * ieee80211_channel_to_frequency - convert channel number to frequency 3858 * @chan: channel number 3859 * @band: band, necessary due to channel number overlap 3860 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed. 3861 */ 3862 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band); 3863 3864 /** 3865 * ieee80211_frequency_to_channel - convert frequency to channel number 3866 * @freq: center frequency 3867 * Return: The corresponding channel, or 0 if the conversion failed. 3868 */ 3869 int ieee80211_frequency_to_channel(int freq); 3870 3871 /* 3872 * Name indirection necessary because the ieee80211 code also has 3873 * a function named "ieee80211_get_channel", so if you include 3874 * cfg80211's header file you get cfg80211's version, if you try 3875 * to include both header files you'll (rightfully!) get a symbol 3876 * clash. 3877 */ 3878 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 3879 int freq); 3880 /** 3881 * ieee80211_get_channel - get channel struct from wiphy for specified frequency 3882 * @wiphy: the struct wiphy to get the channel for 3883 * @freq: the center frequency of the channel 3884 * Return: The channel struct from @wiphy at @freq. 3885 */ 3886 static inline struct ieee80211_channel * 3887 ieee80211_get_channel(struct wiphy *wiphy, int freq) 3888 { 3889 return __ieee80211_get_channel(wiphy, freq); 3890 } 3891 3892 /** 3893 * ieee80211_get_response_rate - get basic rate for a given rate 3894 * 3895 * @sband: the band to look for rates in 3896 * @basic_rates: bitmap of basic rates 3897 * @bitrate: the bitrate for which to find the basic rate 3898 * 3899 * Return: The basic rate corresponding to a given bitrate, that 3900 * is the next lower bitrate contained in the basic rate map, 3901 * which is, for this function, given as a bitmap of indices of 3902 * rates in the band's bitrate table. 3903 */ 3904 struct ieee80211_rate * 3905 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 3906 u32 basic_rates, int bitrate); 3907 3908 /** 3909 * ieee80211_mandatory_rates - get mandatory rates for a given band 3910 * @sband: the band to look for rates in 3911 * @scan_width: width of the control channel 3912 * 3913 * This function returns a bitmap of the mandatory rates for the given 3914 * band, bits are set according to the rate position in the bitrates array. 3915 */ 3916 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 3917 enum nl80211_bss_scan_width scan_width); 3918 3919 /* 3920 * Radiotap parsing functions -- for controlled injection support 3921 * 3922 * Implemented in net/wireless/radiotap.c 3923 * Documentation in Documentation/networking/radiotap-headers.txt 3924 */ 3925 3926 struct radiotap_align_size { 3927 uint8_t align:4, size:4; 3928 }; 3929 3930 struct ieee80211_radiotap_namespace { 3931 const struct radiotap_align_size *align_size; 3932 int n_bits; 3933 uint32_t oui; 3934 uint8_t subns; 3935 }; 3936 3937 struct ieee80211_radiotap_vendor_namespaces { 3938 const struct ieee80211_radiotap_namespace *ns; 3939 int n_ns; 3940 }; 3941 3942 /** 3943 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args 3944 * @this_arg_index: index of current arg, valid after each successful call 3945 * to ieee80211_radiotap_iterator_next() 3946 * @this_arg: pointer to current radiotap arg; it is valid after each 3947 * call to ieee80211_radiotap_iterator_next() but also after 3948 * ieee80211_radiotap_iterator_init() where it will point to 3949 * the beginning of the actual data portion 3950 * @this_arg_size: length of the current arg, for convenience 3951 * @current_namespace: pointer to the current namespace definition 3952 * (or internally %NULL if the current namespace is unknown) 3953 * @is_radiotap_ns: indicates whether the current namespace is the default 3954 * radiotap namespace or not 3955 * 3956 * @_rtheader: pointer to the radiotap header we are walking through 3957 * @_max_length: length of radiotap header in cpu byte ordering 3958 * @_arg_index: next argument index 3959 * @_arg: next argument pointer 3960 * @_next_bitmap: internal pointer to next present u32 3961 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present 3962 * @_vns: vendor namespace definitions 3963 * @_next_ns_data: beginning of the next namespace's data 3964 * @_reset_on_ext: internal; reset the arg index to 0 when going to the 3965 * next bitmap word 3966 * 3967 * Describes the radiotap parser state. Fields prefixed with an underscore 3968 * must not be used by users of the parser, only by the parser internally. 3969 */ 3970 3971 struct ieee80211_radiotap_iterator { 3972 struct ieee80211_radiotap_header *_rtheader; 3973 const struct ieee80211_radiotap_vendor_namespaces *_vns; 3974 const struct ieee80211_radiotap_namespace *current_namespace; 3975 3976 unsigned char *_arg, *_next_ns_data; 3977 __le32 *_next_bitmap; 3978 3979 unsigned char *this_arg; 3980 int this_arg_index; 3981 int this_arg_size; 3982 3983 int is_radiotap_ns; 3984 3985 int _max_length; 3986 int _arg_index; 3987 uint32_t _bitmap_shifter; 3988 int _reset_on_ext; 3989 }; 3990 3991 int 3992 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator, 3993 struct ieee80211_radiotap_header *radiotap_header, 3994 int max_length, 3995 const struct ieee80211_radiotap_vendor_namespaces *vns); 3996 3997 int 3998 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator); 3999 4000 4001 extern const unsigned char rfc1042_header[6]; 4002 extern const unsigned char bridge_tunnel_header[6]; 4003 4004 /** 4005 * ieee80211_get_hdrlen_from_skb - get header length from data 4006 * 4007 * @skb: the frame 4008 * 4009 * Given an skb with a raw 802.11 header at the data pointer this function 4010 * returns the 802.11 header length. 4011 * 4012 * Return: The 802.11 header length in bytes (not including encryption 4013 * headers). Or 0 if the data in the sk_buff is too short to contain a valid 4014 * 802.11 header. 4015 */ 4016 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); 4017 4018 /** 4019 * ieee80211_hdrlen - get header length in bytes from frame control 4020 * @fc: frame control field in little-endian format 4021 * Return: The header length in bytes. 4022 */ 4023 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc); 4024 4025 /** 4026 * ieee80211_get_mesh_hdrlen - get mesh extension header length 4027 * @meshhdr: the mesh extension header, only the flags field 4028 * (first byte) will be accessed 4029 * Return: The length of the extension header, which is always at 4030 * least 6 bytes and at most 18 if address 5 and 6 are present. 4031 */ 4032 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr); 4033 4034 /** 4035 * DOC: Data path helpers 4036 * 4037 * In addition to generic utilities, cfg80211 also offers 4038 * functions that help implement the data path for devices 4039 * that do not do the 802.11/802.3 conversion on the device. 4040 */ 4041 4042 /** 4043 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3 4044 * @skb: the 802.11 data frame 4045 * @addr: the device MAC address 4046 * @iftype: the virtual interface type 4047 * Return: 0 on success. Non-zero on error. 4048 */ 4049 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 4050 enum nl80211_iftype iftype); 4051 4052 /** 4053 * ieee80211_data_from_8023 - convert an 802.3 frame to 802.11 4054 * @skb: the 802.3 frame 4055 * @addr: the device MAC address 4056 * @iftype: the virtual interface type 4057 * @bssid: the network bssid (used only for iftype STATION and ADHOC) 4058 * @qos: build 802.11 QoS data frame 4059 * Return: 0 on success, or a negative error code. 4060 */ 4061 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 4062 enum nl80211_iftype iftype, const u8 *bssid, 4063 bool qos); 4064 4065 /** 4066 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame 4067 * 4068 * Decode an IEEE 802.11n A-MSDU frame and convert it to a list of 4069 * 802.3 frames. The @list will be empty if the decode fails. The 4070 * @skb is consumed after the function returns. 4071 * 4072 * @skb: The input IEEE 802.11n A-MSDU frame. 4073 * @list: The output list of 802.3 frames. It must be allocated and 4074 * initialized by by the caller. 4075 * @addr: The device MAC address. 4076 * @iftype: The device interface type. 4077 * @extra_headroom: The hardware extra headroom for SKBs in the @list. 4078 * @has_80211_header: Set it true if SKB is with IEEE 802.11 header. 4079 */ 4080 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 4081 const u8 *addr, enum nl80211_iftype iftype, 4082 const unsigned int extra_headroom, 4083 bool has_80211_header); 4084 4085 /** 4086 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame 4087 * @skb: the data frame 4088 * @qos_map: Interworking QoS mapping or %NULL if not in use 4089 * Return: The 802.1p/1d tag. 4090 */ 4091 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 4092 struct cfg80211_qos_map *qos_map); 4093 4094 /** 4095 * cfg80211_find_ie_match - match information element and byte array in data 4096 * 4097 * @eid: element ID 4098 * @ies: data consisting of IEs 4099 * @len: length of data 4100 * @match: byte array to match 4101 * @match_len: number of bytes in the match array 4102 * @match_offset: offset in the IE where the byte array should match. 4103 * If match_len is zero, this must also be set to zero. 4104 * Otherwise this must be set to 2 or more, because the first 4105 * byte is the element id, which is already compared to eid, and 4106 * the second byte is the IE length. 4107 * 4108 * Return: %NULL if the element ID could not be found or if 4109 * the element is invalid (claims to be longer than the given 4110 * data) or if the byte array doesn't match, or a pointer to the first 4111 * byte of the requested element, that is the byte containing the 4112 * element ID. 4113 * 4114 * Note: There are no checks on the element length other than 4115 * having to fit into the given data and being large enough for the 4116 * byte array to match. 4117 */ 4118 const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len, 4119 const u8 *match, int match_len, 4120 int match_offset); 4121 4122 /** 4123 * cfg80211_find_ie - find information element in data 4124 * 4125 * @eid: element ID 4126 * @ies: data consisting of IEs 4127 * @len: length of data 4128 * 4129 * Return: %NULL if the element ID could not be found or if 4130 * the element is invalid (claims to be longer than the given 4131 * data), or a pointer to the first byte of the requested 4132 * element, that is the byte containing the element ID. 4133 * 4134 * Note: There are no checks on the element length other than 4135 * having to fit into the given data. 4136 */ 4137 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len) 4138 { 4139 return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0); 4140 } 4141 4142 /** 4143 * cfg80211_find_vendor_ie - find vendor specific information element in data 4144 * 4145 * @oui: vendor OUI 4146 * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any 4147 * @ies: data consisting of IEs 4148 * @len: length of data 4149 * 4150 * Return: %NULL if the vendor specific element ID could not be found or if the 4151 * element is invalid (claims to be longer than the given data), or a pointer to 4152 * the first byte of the requested element, that is the byte containing the 4153 * element ID. 4154 * 4155 * Note: There are no checks on the element length other than having to fit into 4156 * the given data. 4157 */ 4158 const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type, 4159 const u8 *ies, int len); 4160 4161 /** 4162 * DOC: Regulatory enforcement infrastructure 4163 * 4164 * TODO 4165 */ 4166 4167 /** 4168 * regulatory_hint - driver hint to the wireless core a regulatory domain 4169 * @wiphy: the wireless device giving the hint (used only for reporting 4170 * conflicts) 4171 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain 4172 * should be in. If @rd is set this should be NULL. Note that if you 4173 * set this to NULL you should still set rd->alpha2 to some accepted 4174 * alpha2. 4175 * 4176 * Wireless drivers can use this function to hint to the wireless core 4177 * what it believes should be the current regulatory domain by 4178 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory 4179 * domain should be in or by providing a completely build regulatory domain. 4180 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried 4181 * for a regulatory domain structure for the respective country. 4182 * 4183 * The wiphy must have been registered to cfg80211 prior to this call. 4184 * For cfg80211 drivers this means you must first use wiphy_register(), 4185 * for mac80211 drivers you must first use ieee80211_register_hw(). 4186 * 4187 * Drivers should check the return value, its possible you can get 4188 * an -ENOMEM. 4189 * 4190 * Return: 0 on success. -ENOMEM. 4191 */ 4192 int regulatory_hint(struct wiphy *wiphy, const char *alpha2); 4193 4194 /** 4195 * regulatory_set_wiphy_regd - set regdom info for self managed drivers 4196 * @wiphy: the wireless device we want to process the regulatory domain on 4197 * @rd: the regulatory domain informatoin to use for this wiphy 4198 * 4199 * Set the regulatory domain information for self-managed wiphys, only they 4200 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more 4201 * information. 4202 * 4203 * Return: 0 on success. -EINVAL, -EPERM 4204 */ 4205 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4206 struct ieee80211_regdomain *rd); 4207 4208 /** 4209 * regulatory_set_wiphy_regd_sync_rtnl - set regdom for self-managed drivers 4210 * @wiphy: the wireless device we want to process the regulatory domain on 4211 * @rd: the regulatory domain information to use for this wiphy 4212 * 4213 * This functions requires the RTNL to be held and applies the new regdomain 4214 * synchronously to this wiphy. For more details see 4215 * regulatory_set_wiphy_regd(). 4216 * 4217 * Return: 0 on success. -EINVAL, -EPERM 4218 */ 4219 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 4220 struct ieee80211_regdomain *rd); 4221 4222 /** 4223 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain 4224 * @wiphy: the wireless device we want to process the regulatory domain on 4225 * @regd: the custom regulatory domain to use for this wiphy 4226 * 4227 * Drivers can sometimes have custom regulatory domains which do not apply 4228 * to a specific country. Drivers can use this to apply such custom regulatory 4229 * domains. This routine must be called prior to wiphy registration. The 4230 * custom regulatory domain will be trusted completely and as such previous 4231 * default channel settings will be disregarded. If no rule is found for a 4232 * channel on the regulatory domain the channel will be disabled. 4233 * Drivers using this for a wiphy should also set the wiphy flag 4234 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy 4235 * that called this helper. 4236 */ 4237 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 4238 const struct ieee80211_regdomain *regd); 4239 4240 /** 4241 * freq_reg_info - get regulatory information for the given frequency 4242 * @wiphy: the wiphy for which we want to process this rule for 4243 * @center_freq: Frequency in KHz for which we want regulatory information for 4244 * 4245 * Use this function to get the regulatory rule for a specific frequency on 4246 * a given wireless device. If the device has a specific regulatory domain 4247 * it wants to follow we respect that unless a country IE has been received 4248 * and processed already. 4249 * 4250 * Return: A valid pointer, or, when an error occurs, for example if no rule 4251 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to 4252 * check and PTR_ERR() to obtain the numeric return value. The numeric return 4253 * value will be -ERANGE if we determine the given center_freq does not even 4254 * have a regulatory rule for a frequency range in the center_freq's band. 4255 * See freq_in_rule_band() for our current definition of a band -- this is 4256 * purely subjective and right now it's 802.11 specific. 4257 */ 4258 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 4259 u32 center_freq); 4260 4261 /** 4262 * reg_initiator_name - map regulatory request initiator enum to name 4263 * @initiator: the regulatory request initiator 4264 * 4265 * You can use this to map the regulatory request initiator enum to a 4266 * proper string representation. 4267 */ 4268 const char *reg_initiator_name(enum nl80211_reg_initiator initiator); 4269 4270 /* 4271 * callbacks for asynchronous cfg80211 methods, notification 4272 * functions and BSS handling helpers 4273 */ 4274 4275 /** 4276 * cfg80211_scan_done - notify that scan finished 4277 * 4278 * @request: the corresponding scan request 4279 * @info: information about the completed scan 4280 */ 4281 void cfg80211_scan_done(struct cfg80211_scan_request *request, 4282 struct cfg80211_scan_info *info); 4283 4284 /** 4285 * cfg80211_sched_scan_results - notify that new scan results are available 4286 * 4287 * @wiphy: the wiphy which got scheduled scan results 4288 */ 4289 void cfg80211_sched_scan_results(struct wiphy *wiphy); 4290 4291 /** 4292 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped 4293 * 4294 * @wiphy: the wiphy on which the scheduled scan stopped 4295 * 4296 * The driver can call this function to inform cfg80211 that the 4297 * scheduled scan had to be stopped, for whatever reason. The driver 4298 * is then called back via the sched_scan_stop operation when done. 4299 */ 4300 void cfg80211_sched_scan_stopped(struct wiphy *wiphy); 4301 4302 /** 4303 * cfg80211_sched_scan_stopped_rtnl - notify that the scheduled scan has stopped 4304 * 4305 * @wiphy: the wiphy on which the scheduled scan stopped 4306 * 4307 * The driver can call this function to inform cfg80211 that the 4308 * scheduled scan had to be stopped, for whatever reason. The driver 4309 * is then called back via the sched_scan_stop operation when done. 4310 * This function should be called with rtnl locked. 4311 */ 4312 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy); 4313 4314 /** 4315 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame 4316 * @wiphy: the wiphy reporting the BSS 4317 * @data: the BSS metadata 4318 * @mgmt: the management frame (probe response or beacon) 4319 * @len: length of the management frame 4320 * @gfp: context flags 4321 * 4322 * This informs cfg80211 that BSS information was found and 4323 * the BSS should be updated/added. 4324 * 4325 * Return: A referenced struct, must be released with cfg80211_put_bss()! 4326 * Or %NULL on error. 4327 */ 4328 struct cfg80211_bss * __must_check 4329 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 4330 struct cfg80211_inform_bss *data, 4331 struct ieee80211_mgmt *mgmt, size_t len, 4332 gfp_t gfp); 4333 4334 static inline struct cfg80211_bss * __must_check 4335 cfg80211_inform_bss_width_frame(struct wiphy *wiphy, 4336 struct ieee80211_channel *rx_channel, 4337 enum nl80211_bss_scan_width scan_width, 4338 struct ieee80211_mgmt *mgmt, size_t len, 4339 s32 signal, gfp_t gfp) 4340 { 4341 struct cfg80211_inform_bss data = { 4342 .chan = rx_channel, 4343 .scan_width = scan_width, 4344 .signal = signal, 4345 }; 4346 4347 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp); 4348 } 4349 4350 static inline struct cfg80211_bss * __must_check 4351 cfg80211_inform_bss_frame(struct wiphy *wiphy, 4352 struct ieee80211_channel *rx_channel, 4353 struct ieee80211_mgmt *mgmt, size_t len, 4354 s32 signal, gfp_t gfp) 4355 { 4356 struct cfg80211_inform_bss data = { 4357 .chan = rx_channel, 4358 .scan_width = NL80211_BSS_CHAN_WIDTH_20, 4359 .signal = signal, 4360 }; 4361 4362 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp); 4363 } 4364 4365 /** 4366 * enum cfg80211_bss_frame_type - frame type that the BSS data came from 4367 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is 4368 * from a beacon or probe response 4369 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon 4370 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response 4371 */ 4372 enum cfg80211_bss_frame_type { 4373 CFG80211_BSS_FTYPE_UNKNOWN, 4374 CFG80211_BSS_FTYPE_BEACON, 4375 CFG80211_BSS_FTYPE_PRESP, 4376 }; 4377 4378 /** 4379 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS 4380 * 4381 * @wiphy: the wiphy reporting the BSS 4382 * @data: the BSS metadata 4383 * @ftype: frame type (if known) 4384 * @bssid: the BSSID of the BSS 4385 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0) 4386 * @capability: the capability field sent by the peer 4387 * @beacon_interval: the beacon interval announced by the peer 4388 * @ie: additional IEs sent by the peer 4389 * @ielen: length of the additional IEs 4390 * @gfp: context flags 4391 * 4392 * This informs cfg80211 that BSS information was found and 4393 * the BSS should be updated/added. 4394 * 4395 * Return: A referenced struct, must be released with cfg80211_put_bss()! 4396 * Or %NULL on error. 4397 */ 4398 struct cfg80211_bss * __must_check 4399 cfg80211_inform_bss_data(struct wiphy *wiphy, 4400 struct cfg80211_inform_bss *data, 4401 enum cfg80211_bss_frame_type ftype, 4402 const u8 *bssid, u64 tsf, u16 capability, 4403 u16 beacon_interval, const u8 *ie, size_t ielen, 4404 gfp_t gfp); 4405 4406 static inline struct cfg80211_bss * __must_check 4407 cfg80211_inform_bss_width(struct wiphy *wiphy, 4408 struct ieee80211_channel *rx_channel, 4409 enum nl80211_bss_scan_width scan_width, 4410 enum cfg80211_bss_frame_type ftype, 4411 const u8 *bssid, u64 tsf, u16 capability, 4412 u16 beacon_interval, const u8 *ie, size_t ielen, 4413 s32 signal, gfp_t gfp) 4414 { 4415 struct cfg80211_inform_bss data = { 4416 .chan = rx_channel, 4417 .scan_width = scan_width, 4418 .signal = signal, 4419 }; 4420 4421 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf, 4422 capability, beacon_interval, ie, ielen, 4423 gfp); 4424 } 4425 4426 static inline struct cfg80211_bss * __must_check 4427 cfg80211_inform_bss(struct wiphy *wiphy, 4428 struct ieee80211_channel *rx_channel, 4429 enum cfg80211_bss_frame_type ftype, 4430 const u8 *bssid, u64 tsf, u16 capability, 4431 u16 beacon_interval, const u8 *ie, size_t ielen, 4432 s32 signal, gfp_t gfp) 4433 { 4434 struct cfg80211_inform_bss data = { 4435 .chan = rx_channel, 4436 .scan_width = NL80211_BSS_CHAN_WIDTH_20, 4437 .signal = signal, 4438 }; 4439 4440 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf, 4441 capability, beacon_interval, ie, ielen, 4442 gfp); 4443 } 4444 4445 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 4446 struct ieee80211_channel *channel, 4447 const u8 *bssid, 4448 const u8 *ssid, size_t ssid_len, 4449 enum ieee80211_bss_type bss_type, 4450 enum ieee80211_privacy); 4451 static inline struct cfg80211_bss * 4452 cfg80211_get_ibss(struct wiphy *wiphy, 4453 struct ieee80211_channel *channel, 4454 const u8 *ssid, size_t ssid_len) 4455 { 4456 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len, 4457 IEEE80211_BSS_TYPE_IBSS, 4458 IEEE80211_PRIVACY_ANY); 4459 } 4460 4461 /** 4462 * cfg80211_ref_bss - reference BSS struct 4463 * @wiphy: the wiphy this BSS struct belongs to 4464 * @bss: the BSS struct to reference 4465 * 4466 * Increments the refcount of the given BSS struct. 4467 */ 4468 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 4469 4470 /** 4471 * cfg80211_put_bss - unref BSS struct 4472 * @wiphy: the wiphy this BSS struct belongs to 4473 * @bss: the BSS struct 4474 * 4475 * Decrements the refcount of the given BSS struct. 4476 */ 4477 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 4478 4479 /** 4480 * cfg80211_unlink_bss - unlink BSS from internal data structures 4481 * @wiphy: the wiphy 4482 * @bss: the bss to remove 4483 * 4484 * This function removes the given BSS from the internal data structures 4485 * thereby making it no longer show up in scan results etc. Use this 4486 * function when you detect a BSS is gone. Normally BSSes will also time 4487 * out, so it is not necessary to use this function at all. 4488 */ 4489 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss); 4490 4491 static inline enum nl80211_bss_scan_width 4492 cfg80211_chandef_to_scan_width(const struct cfg80211_chan_def *chandef) 4493 { 4494 switch (chandef->width) { 4495 case NL80211_CHAN_WIDTH_5: 4496 return NL80211_BSS_CHAN_WIDTH_5; 4497 case NL80211_CHAN_WIDTH_10: 4498 return NL80211_BSS_CHAN_WIDTH_10; 4499 default: 4500 return NL80211_BSS_CHAN_WIDTH_20; 4501 } 4502 } 4503 4504 /** 4505 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame 4506 * @dev: network device 4507 * @buf: authentication frame (header + body) 4508 * @len: length of the frame data 4509 * 4510 * This function is called whenever an authentication, disassociation or 4511 * deauthentication frame has been received and processed in station mode. 4512 * After being asked to authenticate via cfg80211_ops::auth() the driver must 4513 * call either this function or cfg80211_auth_timeout(). 4514 * After being asked to associate via cfg80211_ops::assoc() the driver must 4515 * call either this function or cfg80211_auth_timeout(). 4516 * While connected, the driver must calls this for received and processed 4517 * disassociation and deauthentication frames. If the frame couldn't be used 4518 * because it was unprotected, the driver must call the function 4519 * cfg80211_rx_unprot_mlme_mgmt() instead. 4520 * 4521 * This function may sleep. The caller must hold the corresponding wdev's mutex. 4522 */ 4523 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); 4524 4525 /** 4526 * cfg80211_auth_timeout - notification of timed out authentication 4527 * @dev: network device 4528 * @addr: The MAC address of the device with which the authentication timed out 4529 * 4530 * This function may sleep. The caller must hold the corresponding wdev's 4531 * mutex. 4532 */ 4533 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr); 4534 4535 /** 4536 * cfg80211_rx_assoc_resp - notification of processed association response 4537 * @dev: network device 4538 * @bss: the BSS that association was requested with, ownership of the pointer 4539 * moves to cfg80211 in this call 4540 * @buf: authentication frame (header + body) 4541 * @len: length of the frame data 4542 * @uapsd_queues: bitmap of ACs configured to uapsd. -1 if n/a. 4543 * 4544 * After being asked to associate via cfg80211_ops::assoc() the driver must 4545 * call either this function or cfg80211_auth_timeout(). 4546 * 4547 * This function may sleep. The caller must hold the corresponding wdev's mutex. 4548 */ 4549 void cfg80211_rx_assoc_resp(struct net_device *dev, 4550 struct cfg80211_bss *bss, 4551 const u8 *buf, size_t len, 4552 int uapsd_queues); 4553 4554 /** 4555 * cfg80211_assoc_timeout - notification of timed out association 4556 * @dev: network device 4557 * @bss: The BSS entry with which association timed out. 4558 * 4559 * This function may sleep. The caller must hold the corresponding wdev's mutex. 4560 */ 4561 void cfg80211_assoc_timeout(struct net_device *dev, struct cfg80211_bss *bss); 4562 4563 /** 4564 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame 4565 * @dev: network device 4566 * @buf: 802.11 frame (header + body) 4567 * @len: length of the frame data 4568 * 4569 * This function is called whenever deauthentication has been processed in 4570 * station mode. This includes both received deauthentication frames and 4571 * locally generated ones. This function may sleep. The caller must hold the 4572 * corresponding wdev's mutex. 4573 */ 4574 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len); 4575 4576 /** 4577 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame 4578 * @dev: network device 4579 * @buf: deauthentication frame (header + body) 4580 * @len: length of the frame data 4581 * 4582 * This function is called whenever a received deauthentication or dissassoc 4583 * frame has been dropped in station mode because of MFP being used but the 4584 * frame was not protected. This function may sleep. 4585 */ 4586 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev, 4587 const u8 *buf, size_t len); 4588 4589 /** 4590 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP) 4591 * @dev: network device 4592 * @addr: The source MAC address of the frame 4593 * @key_type: The key type that the received frame used 4594 * @key_id: Key identifier (0..3). Can be -1 if missing. 4595 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets) 4596 * @gfp: allocation flags 4597 * 4598 * This function is called whenever the local MAC detects a MIC failure in a 4599 * received frame. This matches with MLME-MICHAELMICFAILURE.indication() 4600 * primitive. 4601 */ 4602 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr, 4603 enum nl80211_key_type key_type, int key_id, 4604 const u8 *tsc, gfp_t gfp); 4605 4606 /** 4607 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS 4608 * 4609 * @dev: network device 4610 * @bssid: the BSSID of the IBSS joined 4611 * @channel: the channel of the IBSS joined 4612 * @gfp: allocation flags 4613 * 4614 * This function notifies cfg80211 that the device joined an IBSS or 4615 * switched to a different BSSID. Before this function can be called, 4616 * either a beacon has to have been received from the IBSS, or one of 4617 * the cfg80211_inform_bss{,_frame} functions must have been called 4618 * with the locally generated beacon -- this guarantees that there is 4619 * always a scan result for this IBSS. cfg80211 will handle the rest. 4620 */ 4621 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, 4622 struct ieee80211_channel *channel, gfp_t gfp); 4623 4624 /** 4625 * cfg80211_notify_new_candidate - notify cfg80211 of a new mesh peer candidate 4626 * 4627 * @dev: network device 4628 * @macaddr: the MAC address of the new candidate 4629 * @ie: information elements advertised by the peer candidate 4630 * @ie_len: lenght of the information elements buffer 4631 * @gfp: allocation flags 4632 * 4633 * This function notifies cfg80211 that the mesh peer candidate has been 4634 * detected, most likely via a beacon or, less likely, via a probe response. 4635 * cfg80211 then sends a notification to userspace. 4636 */ 4637 void cfg80211_notify_new_peer_candidate(struct net_device *dev, 4638 const u8 *macaddr, const u8 *ie, u8 ie_len, gfp_t gfp); 4639 4640 /** 4641 * DOC: RFkill integration 4642 * 4643 * RFkill integration in cfg80211 is almost invisible to drivers, 4644 * as cfg80211 automatically registers an rfkill instance for each 4645 * wireless device it knows about. Soft kill is also translated 4646 * into disconnecting and turning all interfaces off, drivers are 4647 * expected to turn off the device when all interfaces are down. 4648 * 4649 * However, devices may have a hard RFkill line, in which case they 4650 * also need to interact with the rfkill subsystem, via cfg80211. 4651 * They can do this with a few helper functions documented here. 4652 */ 4653 4654 /** 4655 * wiphy_rfkill_set_hw_state - notify cfg80211 about hw block state 4656 * @wiphy: the wiphy 4657 * @blocked: block status 4658 */ 4659 void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked); 4660 4661 /** 4662 * wiphy_rfkill_start_polling - start polling rfkill 4663 * @wiphy: the wiphy 4664 */ 4665 void wiphy_rfkill_start_polling(struct wiphy *wiphy); 4666 4667 /** 4668 * wiphy_rfkill_stop_polling - stop polling rfkill 4669 * @wiphy: the wiphy 4670 */ 4671 void wiphy_rfkill_stop_polling(struct wiphy *wiphy); 4672 4673 /** 4674 * DOC: Vendor commands 4675 * 4676 * Occasionally, there are special protocol or firmware features that 4677 * can't be implemented very openly. For this and similar cases, the 4678 * vendor command functionality allows implementing the features with 4679 * (typically closed-source) userspace and firmware, using nl80211 as 4680 * the configuration mechanism. 4681 * 4682 * A driver supporting vendor commands must register them as an array 4683 * in struct wiphy, with handlers for each one, each command has an 4684 * OUI and sub command ID to identify it. 4685 * 4686 * Note that this feature should not be (ab)used to implement protocol 4687 * features that could openly be shared across drivers. In particular, 4688 * it must never be required to use vendor commands to implement any 4689 * "normal" functionality that higher-level userspace like connection 4690 * managers etc. need. 4691 */ 4692 4693 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy, 4694 enum nl80211_commands cmd, 4695 enum nl80211_attrs attr, 4696 int approxlen); 4697 4698 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy, 4699 struct wireless_dev *wdev, 4700 enum nl80211_commands cmd, 4701 enum nl80211_attrs attr, 4702 int vendor_event_idx, 4703 int approxlen, gfp_t gfp); 4704 4705 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp); 4706 4707 /** 4708 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply 4709 * @wiphy: the wiphy 4710 * @approxlen: an upper bound of the length of the data that will 4711 * be put into the skb 4712 * 4713 * This function allocates and pre-fills an skb for a reply to 4714 * a vendor command. Since it is intended for a reply, calling 4715 * it outside of a vendor command's doit() operation is invalid. 4716 * 4717 * The returned skb is pre-filled with some identifying data in 4718 * a way that any data that is put into the skb (with skb_put(), 4719 * nla_put() or similar) will end up being within the 4720 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done 4721 * with the skb is adding data for the corresponding userspace tool 4722 * which can then read that data out of the vendor data attribute. 4723 * You must not modify the skb in any other way. 4724 * 4725 * When done, call cfg80211_vendor_cmd_reply() with the skb and return 4726 * its error code as the result of the doit() operation. 4727 * 4728 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 4729 */ 4730 static inline struct sk_buff * 4731 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 4732 { 4733 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR, 4734 NL80211_ATTR_VENDOR_DATA, approxlen); 4735 } 4736 4737 /** 4738 * cfg80211_vendor_cmd_reply - send the reply skb 4739 * @skb: The skb, must have been allocated with 4740 * cfg80211_vendor_cmd_alloc_reply_skb() 4741 * 4742 * Since calling this function will usually be the last thing 4743 * before returning from the vendor command doit() you should 4744 * return the error code. Note that this function consumes the 4745 * skb regardless of the return value. 4746 * 4747 * Return: An error code or 0 on success. 4748 */ 4749 int cfg80211_vendor_cmd_reply(struct sk_buff *skb); 4750 4751 /** 4752 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb 4753 * @wiphy: the wiphy 4754 * @wdev: the wireless device 4755 * @event_idx: index of the vendor event in the wiphy's vendor_events 4756 * @approxlen: an upper bound of the length of the data that will 4757 * be put into the skb 4758 * @gfp: allocation flags 4759 * 4760 * This function allocates and pre-fills an skb for an event on the 4761 * vendor-specific multicast group. 4762 * 4763 * If wdev != NULL, both the ifindex and identifier of the specified 4764 * wireless device are added to the event message before the vendor data 4765 * attribute. 4766 * 4767 * When done filling the skb, call cfg80211_vendor_event() with the 4768 * skb to send the event. 4769 * 4770 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 4771 */ 4772 static inline struct sk_buff * 4773 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev, 4774 int approxlen, int event_idx, gfp_t gfp) 4775 { 4776 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR, 4777 NL80211_ATTR_VENDOR_DATA, 4778 event_idx, approxlen, gfp); 4779 } 4780 4781 /** 4782 * cfg80211_vendor_event - send the event 4783 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc() 4784 * @gfp: allocation flags 4785 * 4786 * This function sends the given @skb, which must have been allocated 4787 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it. 4788 */ 4789 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp) 4790 { 4791 __cfg80211_send_event_skb(skb, gfp); 4792 } 4793 4794 #ifdef CONFIG_NL80211_TESTMODE 4795 /** 4796 * DOC: Test mode 4797 * 4798 * Test mode is a set of utility functions to allow drivers to 4799 * interact with driver-specific tools to aid, for instance, 4800 * factory programming. 4801 * 4802 * This chapter describes how drivers interact with it, for more 4803 * information see the nl80211 book's chapter on it. 4804 */ 4805 4806 /** 4807 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply 4808 * @wiphy: the wiphy 4809 * @approxlen: an upper bound of the length of the data that will 4810 * be put into the skb 4811 * 4812 * This function allocates and pre-fills an skb for a reply to 4813 * the testmode command. Since it is intended for a reply, calling 4814 * it outside of the @testmode_cmd operation is invalid. 4815 * 4816 * The returned skb is pre-filled with the wiphy index and set up in 4817 * a way that any data that is put into the skb (with skb_put(), 4818 * nla_put() or similar) will end up being within the 4819 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done 4820 * with the skb is adding data for the corresponding userspace tool 4821 * which can then read that data out of the testdata attribute. You 4822 * must not modify the skb in any other way. 4823 * 4824 * When done, call cfg80211_testmode_reply() with the skb and return 4825 * its error code as the result of the @testmode_cmd operation. 4826 * 4827 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 4828 */ 4829 static inline struct sk_buff * 4830 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen) 4831 { 4832 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE, 4833 NL80211_ATTR_TESTDATA, approxlen); 4834 } 4835 4836 /** 4837 * cfg80211_testmode_reply - send the reply skb 4838 * @skb: The skb, must have been allocated with 4839 * cfg80211_testmode_alloc_reply_skb() 4840 * 4841 * Since calling this function will usually be the last thing 4842 * before returning from the @testmode_cmd you should return 4843 * the error code. Note that this function consumes the skb 4844 * regardless of the return value. 4845 * 4846 * Return: An error code or 0 on success. 4847 */ 4848 static inline int cfg80211_testmode_reply(struct sk_buff *skb) 4849 { 4850 return cfg80211_vendor_cmd_reply(skb); 4851 } 4852 4853 /** 4854 * cfg80211_testmode_alloc_event_skb - allocate testmode event 4855 * @wiphy: the wiphy 4856 * @approxlen: an upper bound of the length of the data that will 4857 * be put into the skb 4858 * @gfp: allocation flags 4859 * 4860 * This function allocates and pre-fills an skb for an event on the 4861 * testmode multicast group. 4862 * 4863 * The returned skb is set up in the same way as with 4864 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As 4865 * there, you should simply add data to it that will then end up in the 4866 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb 4867 * in any other way. 4868 * 4869 * When done filling the skb, call cfg80211_testmode_event() with the 4870 * skb to send the event. 4871 * 4872 * Return: An allocated and pre-filled skb. %NULL if any errors happen. 4873 */ 4874 static inline struct sk_buff * 4875 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp) 4876 { 4877 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE, 4878 NL80211_ATTR_TESTDATA, -1, 4879 approxlen, gfp); 4880 } 4881 4882 /** 4883 * cfg80211_testmode_event - send the event 4884 * @skb: The skb, must have been allocated with 4885 * cfg80211_testmode_alloc_event_skb() 4886 * @gfp: allocation flags 4887 * 4888 * This function sends the given @skb, which must have been allocated 4889 * by cfg80211_testmode_alloc_event_skb(), as an event. It always 4890 * consumes it. 4891 */ 4892 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp) 4893 { 4894 __cfg80211_send_event_skb(skb, gfp); 4895 } 4896 4897 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd), 4898 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd), 4899 #else 4900 #define CFG80211_TESTMODE_CMD(cmd) 4901 #define CFG80211_TESTMODE_DUMP(cmd) 4902 #endif 4903 4904 /** 4905 * cfg80211_connect_bss - notify cfg80211 of connection result 4906 * 4907 * @dev: network device 4908 * @bssid: the BSSID of the AP 4909 * @bss: entry of bss to which STA got connected to, can be obtained 4910 * through cfg80211_get_bss (may be %NULL) 4911 * @req_ie: association request IEs (maybe be %NULL) 4912 * @req_ie_len: association request IEs length 4913 * @resp_ie: association response IEs (may be %NULL) 4914 * @resp_ie_len: assoc response IEs length 4915 * @status: status code, 0 for successful connection, use 4916 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 4917 * the real status code for failures. 4918 * @gfp: allocation flags 4919 * 4920 * It should be called by the underlying driver whenever connect() has 4921 * succeeded. This is similar to cfg80211_connect_result(), but with the 4922 * option of identifying the exact bss entry for the connection. Only one of 4923 * these functions should be called. 4924 */ 4925 void cfg80211_connect_bss(struct net_device *dev, const u8 *bssid, 4926 struct cfg80211_bss *bss, const u8 *req_ie, 4927 size_t req_ie_len, const u8 *resp_ie, 4928 size_t resp_ie_len, int status, gfp_t gfp); 4929 4930 /** 4931 * cfg80211_connect_result - notify cfg80211 of connection result 4932 * 4933 * @dev: network device 4934 * @bssid: the BSSID of the AP 4935 * @req_ie: association request IEs (maybe be %NULL) 4936 * @req_ie_len: association request IEs length 4937 * @resp_ie: association response IEs (may be %NULL) 4938 * @resp_ie_len: assoc response IEs length 4939 * @status: status code, 0 for successful connection, use 4940 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you 4941 * the real status code for failures. 4942 * @gfp: allocation flags 4943 * 4944 * It should be called by the underlying driver whenever connect() has 4945 * succeeded. 4946 */ 4947 static inline void 4948 cfg80211_connect_result(struct net_device *dev, const u8 *bssid, 4949 const u8 *req_ie, size_t req_ie_len, 4950 const u8 *resp_ie, size_t resp_ie_len, 4951 u16 status, gfp_t gfp) 4952 { 4953 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie, 4954 resp_ie_len, status, gfp); 4955 } 4956 4957 /** 4958 * cfg80211_connect_timeout - notify cfg80211 of connection timeout 4959 * 4960 * @dev: network device 4961 * @bssid: the BSSID of the AP 4962 * @req_ie: association request IEs (maybe be %NULL) 4963 * @req_ie_len: association request IEs length 4964 * @gfp: allocation flags 4965 * 4966 * It should be called by the underlying driver whenever connect() has failed 4967 * in a sequence where no explicit authentication/association rejection was 4968 * received from the AP. This could happen, e.g., due to not being able to send 4969 * out the Authentication or Association Request frame or timing out while 4970 * waiting for the response. 4971 */ 4972 static inline void 4973 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid, 4974 const u8 *req_ie, size_t req_ie_len, gfp_t gfp) 4975 { 4976 cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1, 4977 gfp); 4978 } 4979 4980 /** 4981 * cfg80211_roamed - notify cfg80211 of roaming 4982 * 4983 * @dev: network device 4984 * @channel: the channel of the new AP 4985 * @bssid: the BSSID of the new AP 4986 * @req_ie: association request IEs (maybe be %NULL) 4987 * @req_ie_len: association request IEs length 4988 * @resp_ie: association response IEs (may be %NULL) 4989 * @resp_ie_len: assoc response IEs length 4990 * @gfp: allocation flags 4991 * 4992 * It should be called by the underlying driver whenever it roamed 4993 * from one AP to another while connected. 4994 */ 4995 void cfg80211_roamed(struct net_device *dev, 4996 struct ieee80211_channel *channel, 4997 const u8 *bssid, 4998 const u8 *req_ie, size_t req_ie_len, 4999 const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp); 5000 5001 /** 5002 * cfg80211_roamed_bss - notify cfg80211 of roaming 5003 * 5004 * @dev: network device 5005 * @bss: entry of bss to which STA got roamed 5006 * @req_ie: association request IEs (maybe be %NULL) 5007 * @req_ie_len: association request IEs length 5008 * @resp_ie: association response IEs (may be %NULL) 5009 * @resp_ie_len: assoc response IEs length 5010 * @gfp: allocation flags 5011 * 5012 * This is just a wrapper to notify cfg80211 of roaming event with driver 5013 * passing bss to avoid a race in timeout of the bss entry. It should be 5014 * called by the underlying driver whenever it roamed from one AP to another 5015 * while connected. Drivers which have roaming implemented in firmware 5016 * may use this function to avoid a race in bss entry timeout where the bss 5017 * entry of the new AP is seen in the driver, but gets timed out by the time 5018 * it is accessed in __cfg80211_roamed() due to delay in scheduling 5019 * rdev->event_work. In case of any failures, the reference is released 5020 * either in cfg80211_roamed_bss() or in __cfg80211_romed(), Otherwise, 5021 * it will be released while diconneting from the current bss. 5022 */ 5023 void cfg80211_roamed_bss(struct net_device *dev, struct cfg80211_bss *bss, 5024 const u8 *req_ie, size_t req_ie_len, 5025 const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp); 5026 5027 /** 5028 * cfg80211_disconnected - notify cfg80211 that connection was dropped 5029 * 5030 * @dev: network device 5031 * @ie: information elements of the deauth/disassoc frame (may be %NULL) 5032 * @ie_len: length of IEs 5033 * @reason: reason code for the disconnection, set it to 0 if unknown 5034 * @locally_generated: disconnection was requested locally 5035 * @gfp: allocation flags 5036 * 5037 * After it calls this function, the driver should enter an idle state 5038 * and not try to connect to any AP any more. 5039 */ 5040 void cfg80211_disconnected(struct net_device *dev, u16 reason, 5041 const u8 *ie, size_t ie_len, 5042 bool locally_generated, gfp_t gfp); 5043 5044 /** 5045 * cfg80211_ready_on_channel - notification of remain_on_channel start 5046 * @wdev: wireless device 5047 * @cookie: the request cookie 5048 * @chan: The current channel (from remain_on_channel request) 5049 * @duration: Duration in milliseconds that the driver intents to remain on the 5050 * channel 5051 * @gfp: allocation flags 5052 */ 5053 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie, 5054 struct ieee80211_channel *chan, 5055 unsigned int duration, gfp_t gfp); 5056 5057 /** 5058 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired 5059 * @wdev: wireless device 5060 * @cookie: the request cookie 5061 * @chan: The current channel (from remain_on_channel request) 5062 * @gfp: allocation flags 5063 */ 5064 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie, 5065 struct ieee80211_channel *chan, 5066 gfp_t gfp); 5067 5068 5069 /** 5070 * cfg80211_new_sta - notify userspace about station 5071 * 5072 * @dev: the netdev 5073 * @mac_addr: the station's address 5074 * @sinfo: the station information 5075 * @gfp: allocation flags 5076 */ 5077 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr, 5078 struct station_info *sinfo, gfp_t gfp); 5079 5080 /** 5081 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station 5082 * @dev: the netdev 5083 * @mac_addr: the station's address 5084 * @sinfo: the station information/statistics 5085 * @gfp: allocation flags 5086 */ 5087 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr, 5088 struct station_info *sinfo, gfp_t gfp); 5089 5090 /** 5091 * cfg80211_del_sta - notify userspace about deletion of a station 5092 * 5093 * @dev: the netdev 5094 * @mac_addr: the station's address 5095 * @gfp: allocation flags 5096 */ 5097 static inline void cfg80211_del_sta(struct net_device *dev, 5098 const u8 *mac_addr, gfp_t gfp) 5099 { 5100 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp); 5101 } 5102 5103 /** 5104 * cfg80211_conn_failed - connection request failed notification 5105 * 5106 * @dev: the netdev 5107 * @mac_addr: the station's address 5108 * @reason: the reason for connection failure 5109 * @gfp: allocation flags 5110 * 5111 * Whenever a station tries to connect to an AP and if the station 5112 * could not connect to the AP as the AP has rejected the connection 5113 * for some reasons, this function is called. 5114 * 5115 * The reason for connection failure can be any of the value from 5116 * nl80211_connect_failed_reason enum 5117 */ 5118 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr, 5119 enum nl80211_connect_failed_reason reason, 5120 gfp_t gfp); 5121 5122 /** 5123 * cfg80211_rx_mgmt - notification of received, unprocessed management frame 5124 * @wdev: wireless device receiving the frame 5125 * @freq: Frequency on which the frame was received in MHz 5126 * @sig_dbm: signal strength in mBm, or 0 if unknown 5127 * @buf: Management frame (header + body) 5128 * @len: length of the frame data 5129 * @flags: flags, as defined in enum nl80211_rxmgmt_flags 5130 * 5131 * This function is called whenever an Action frame is received for a station 5132 * mode interface, but is not processed in kernel. 5133 * 5134 * Return: %true if a user space application has registered for this frame. 5135 * For action frames, that makes it responsible for rejecting unrecognized 5136 * action frames; %false otherwise, in which case for action frames the 5137 * driver is responsible for rejecting the frame. 5138 */ 5139 bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, int sig_dbm, 5140 const u8 *buf, size_t len, u32 flags); 5141 5142 /** 5143 * cfg80211_mgmt_tx_status - notification of TX status for management frame 5144 * @wdev: wireless device receiving the frame 5145 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx() 5146 * @buf: Management frame (header + body) 5147 * @len: length of the frame data 5148 * @ack: Whether frame was acknowledged 5149 * @gfp: context flags 5150 * 5151 * This function is called whenever a management frame was requested to be 5152 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the 5153 * transmission attempt. 5154 */ 5155 void cfg80211_mgmt_tx_status(struct wireless_dev *wdev, u64 cookie, 5156 const u8 *buf, size_t len, bool ack, gfp_t gfp); 5157 5158 5159 /** 5160 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event 5161 * @dev: network device 5162 * @rssi_event: the triggered RSSI event 5163 * @gfp: context flags 5164 * 5165 * This function is called when a configured connection quality monitoring 5166 * rssi threshold reached event occurs. 5167 */ 5168 void cfg80211_cqm_rssi_notify(struct net_device *dev, 5169 enum nl80211_cqm_rssi_threshold_event rssi_event, 5170 gfp_t gfp); 5171 5172 /** 5173 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer 5174 * @dev: network device 5175 * @peer: peer's MAC address 5176 * @num_packets: how many packets were lost -- should be a fixed threshold 5177 * but probably no less than maybe 50, or maybe a throughput dependent 5178 * threshold (to account for temporary interference) 5179 * @gfp: context flags 5180 */ 5181 void cfg80211_cqm_pktloss_notify(struct net_device *dev, 5182 const u8 *peer, u32 num_packets, gfp_t gfp); 5183 5184 /** 5185 * cfg80211_cqm_txe_notify - TX error rate event 5186 * @dev: network device 5187 * @peer: peer's MAC address 5188 * @num_packets: how many packets were lost 5189 * @rate: % of packets which failed transmission 5190 * @intvl: interval (in s) over which the TX failure threshold was breached. 5191 * @gfp: context flags 5192 * 5193 * Notify userspace when configured % TX failures over number of packets in a 5194 * given interval is exceeded. 5195 */ 5196 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer, 5197 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp); 5198 5199 /** 5200 * cfg80211_cqm_beacon_loss_notify - beacon loss event 5201 * @dev: network device 5202 * @gfp: context flags 5203 * 5204 * Notify userspace about beacon loss from the connected AP. 5205 */ 5206 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp); 5207 5208 /** 5209 * cfg80211_radar_event - radar detection event 5210 * @wiphy: the wiphy 5211 * @chandef: chandef for the current channel 5212 * @gfp: context flags 5213 * 5214 * This function is called when a radar is detected on the current chanenl. 5215 */ 5216 void cfg80211_radar_event(struct wiphy *wiphy, 5217 struct cfg80211_chan_def *chandef, gfp_t gfp); 5218 5219 /** 5220 * cfg80211_cac_event - Channel availability check (CAC) event 5221 * @netdev: network device 5222 * @chandef: chandef for the current channel 5223 * @event: type of event 5224 * @gfp: context flags 5225 * 5226 * This function is called when a Channel availability check (CAC) is finished 5227 * or aborted. This must be called to notify the completion of a CAC process, 5228 * also by full-MAC drivers. 5229 */ 5230 void cfg80211_cac_event(struct net_device *netdev, 5231 const struct cfg80211_chan_def *chandef, 5232 enum nl80211_radar_event event, gfp_t gfp); 5233 5234 5235 /** 5236 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying 5237 * @dev: network device 5238 * @bssid: BSSID of AP (to avoid races) 5239 * @replay_ctr: new replay counter 5240 * @gfp: allocation flags 5241 */ 5242 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid, 5243 const u8 *replay_ctr, gfp_t gfp); 5244 5245 /** 5246 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate 5247 * @dev: network device 5248 * @index: candidate index (the smaller the index, the higher the priority) 5249 * @bssid: BSSID of AP 5250 * @preauth: Whether AP advertises support for RSN pre-authentication 5251 * @gfp: allocation flags 5252 */ 5253 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index, 5254 const u8 *bssid, bool preauth, gfp_t gfp); 5255 5256 /** 5257 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame 5258 * @dev: The device the frame matched to 5259 * @addr: the transmitter address 5260 * @gfp: context flags 5261 * 5262 * This function is used in AP mode (only!) to inform userspace that 5263 * a spurious class 3 frame was received, to be able to deauth the 5264 * sender. 5265 * Return: %true if the frame was passed to userspace (or this failed 5266 * for a reason other than not having a subscription.) 5267 */ 5268 bool cfg80211_rx_spurious_frame(struct net_device *dev, 5269 const u8 *addr, gfp_t gfp); 5270 5271 /** 5272 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame 5273 * @dev: The device the frame matched to 5274 * @addr: the transmitter address 5275 * @gfp: context flags 5276 * 5277 * This function is used in AP mode (only!) to inform userspace that 5278 * an associated station sent a 4addr frame but that wasn't expected. 5279 * It is allowed and desirable to send this event only once for each 5280 * station to avoid event flooding. 5281 * Return: %true if the frame was passed to userspace (or this failed 5282 * for a reason other than not having a subscription.) 5283 */ 5284 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev, 5285 const u8 *addr, gfp_t gfp); 5286 5287 /** 5288 * cfg80211_probe_status - notify userspace about probe status 5289 * @dev: the device the probe was sent on 5290 * @addr: the address of the peer 5291 * @cookie: the cookie filled in @probe_client previously 5292 * @acked: indicates whether probe was acked or not 5293 * @gfp: allocation flags 5294 */ 5295 void cfg80211_probe_status(struct net_device *dev, const u8 *addr, 5296 u64 cookie, bool acked, gfp_t gfp); 5297 5298 /** 5299 * cfg80211_report_obss_beacon - report beacon from other APs 5300 * @wiphy: The wiphy that received the beacon 5301 * @frame: the frame 5302 * @len: length of the frame 5303 * @freq: frequency the frame was received on 5304 * @sig_dbm: signal strength in mBm, or 0 if unknown 5305 * 5306 * Use this function to report to userspace when a beacon was 5307 * received. It is not useful to call this when there is no 5308 * netdev that is in AP/GO mode. 5309 */ 5310 void cfg80211_report_obss_beacon(struct wiphy *wiphy, 5311 const u8 *frame, size_t len, 5312 int freq, int sig_dbm); 5313 5314 /** 5315 * cfg80211_reg_can_beacon - check if beaconing is allowed 5316 * @wiphy: the wiphy 5317 * @chandef: the channel definition 5318 * @iftype: interface type 5319 * 5320 * Return: %true if there is no secondary channel or the secondary channel(s) 5321 * can be used for beaconing (i.e. is not a radar channel etc.) 5322 */ 5323 bool cfg80211_reg_can_beacon(struct wiphy *wiphy, 5324 struct cfg80211_chan_def *chandef, 5325 enum nl80211_iftype iftype); 5326 5327 /** 5328 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation 5329 * @wiphy: the wiphy 5330 * @chandef: the channel definition 5331 * @iftype: interface type 5332 * 5333 * Return: %true if there is no secondary channel or the secondary channel(s) 5334 * can be used for beaconing (i.e. is not a radar channel etc.). This version 5335 * also checks if IR-relaxation conditions apply, to allow beaconing under 5336 * more permissive conditions. 5337 * 5338 * Requires the RTNL to be held. 5339 */ 5340 bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, 5341 struct cfg80211_chan_def *chandef, 5342 enum nl80211_iftype iftype); 5343 5344 /* 5345 * cfg80211_ch_switch_notify - update wdev channel and notify userspace 5346 * @dev: the device which switched channels 5347 * @chandef: the new channel definition 5348 * 5349 * Caller must acquire wdev_lock, therefore must only be called from sleepable 5350 * driver context! 5351 */ 5352 void cfg80211_ch_switch_notify(struct net_device *dev, 5353 struct cfg80211_chan_def *chandef); 5354 5355 /* 5356 * cfg80211_ch_switch_started_notify - notify channel switch start 5357 * @dev: the device on which the channel switch started 5358 * @chandef: the future channel definition 5359 * @count: the number of TBTTs until the channel switch happens 5360 * 5361 * Inform the userspace about the channel switch that has just 5362 * started, so that it can take appropriate actions (eg. starting 5363 * channel switch on other vifs), if necessary. 5364 */ 5365 void cfg80211_ch_switch_started_notify(struct net_device *dev, 5366 struct cfg80211_chan_def *chandef, 5367 u8 count); 5368 5369 /** 5370 * ieee80211_operating_class_to_band - convert operating class to band 5371 * 5372 * @operating_class: the operating class to convert 5373 * @band: band pointer to fill 5374 * 5375 * Returns %true if the conversion was successful, %false otherwise. 5376 */ 5377 bool ieee80211_operating_class_to_band(u8 operating_class, 5378 enum nl80211_band *band); 5379 5380 /** 5381 * ieee80211_chandef_to_operating_class - convert chandef to operation class 5382 * 5383 * @chandef: the chandef to convert 5384 * @op_class: a pointer to the resulting operating class 5385 * 5386 * Returns %true if the conversion was successful, %false otherwise. 5387 */ 5388 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 5389 u8 *op_class); 5390 5391 /* 5392 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation 5393 * @dev: the device on which the operation is requested 5394 * @peer: the MAC address of the peer device 5395 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or 5396 * NL80211_TDLS_TEARDOWN) 5397 * @reason_code: the reason code for teardown request 5398 * @gfp: allocation flags 5399 * 5400 * This function is used to request userspace to perform TDLS operation that 5401 * requires knowledge of keys, i.e., link setup or teardown when the AP 5402 * connection uses encryption. This is optional mechanism for the driver to use 5403 * if it can automatically determine when a TDLS link could be useful (e.g., 5404 * based on traffic and signal strength for a peer). 5405 */ 5406 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer, 5407 enum nl80211_tdls_operation oper, 5408 u16 reason_code, gfp_t gfp); 5409 5410 /* 5411 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units) 5412 * @rate: given rate_info to calculate bitrate from 5413 * 5414 * return 0 if MCS index >= 32 5415 */ 5416 u32 cfg80211_calculate_bitrate(struct rate_info *rate); 5417 5418 /** 5419 * cfg80211_unregister_wdev - remove the given wdev 5420 * @wdev: struct wireless_dev to remove 5421 * 5422 * Call this function only for wdevs that have no netdev assigned, 5423 * e.g. P2P Devices. It removes the device from the list so that 5424 * it can no longer be used. It is necessary to call this function 5425 * even when cfg80211 requests the removal of the interface by 5426 * calling the del_virtual_intf() callback. The function must also 5427 * be called when the driver wishes to unregister the wdev, e.g. 5428 * when the device is unbound from the driver. 5429 * 5430 * Requires the RTNL to be held. 5431 */ 5432 void cfg80211_unregister_wdev(struct wireless_dev *wdev); 5433 5434 /** 5435 * struct cfg80211_ft_event - FT Information Elements 5436 * @ies: FT IEs 5437 * @ies_len: length of the FT IE in bytes 5438 * @target_ap: target AP's MAC address 5439 * @ric_ies: RIC IE 5440 * @ric_ies_len: length of the RIC IE in bytes 5441 */ 5442 struct cfg80211_ft_event_params { 5443 const u8 *ies; 5444 size_t ies_len; 5445 const u8 *target_ap; 5446 const u8 *ric_ies; 5447 size_t ric_ies_len; 5448 }; 5449 5450 /** 5451 * cfg80211_ft_event - notify userspace about FT IE and RIC IE 5452 * @netdev: network device 5453 * @ft_event: IE information 5454 */ 5455 void cfg80211_ft_event(struct net_device *netdev, 5456 struct cfg80211_ft_event_params *ft_event); 5457 5458 /** 5459 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer 5460 * @ies: the input IE buffer 5461 * @len: the input length 5462 * @attr: the attribute ID to find 5463 * @buf: output buffer, can be %NULL if the data isn't needed, e.g. 5464 * if the function is only called to get the needed buffer size 5465 * @bufsize: size of the output buffer 5466 * 5467 * The function finds a given P2P attribute in the (vendor) IEs and 5468 * copies its contents to the given buffer. 5469 * 5470 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is 5471 * malformed or the attribute can't be found (respectively), or the 5472 * length of the found attribute (which can be zero). 5473 */ 5474 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 5475 enum ieee80211_p2p_attr_id attr, 5476 u8 *buf, unsigned int bufsize); 5477 5478 /** 5479 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC) 5480 * @ies: the IE buffer 5481 * @ielen: the length of the IE buffer 5482 * @ids: an array with element IDs that are allowed before 5483 * the split 5484 * @n_ids: the size of the element ID array 5485 * @after_ric: array IE types that come after the RIC element 5486 * @n_after_ric: size of the @after_ric array 5487 * @offset: offset where to start splitting in the buffer 5488 * 5489 * This function splits an IE buffer by updating the @offset 5490 * variable to point to the location where the buffer should be 5491 * split. 5492 * 5493 * It assumes that the given IE buffer is well-formed, this 5494 * has to be guaranteed by the caller! 5495 * 5496 * It also assumes that the IEs in the buffer are ordered 5497 * correctly, if not the result of using this function will not 5498 * be ordered correctly either, i.e. it does no reordering. 5499 * 5500 * The function returns the offset where the next part of the 5501 * buffer starts, which may be @ielen if the entire (remainder) 5502 * of the buffer should be used. 5503 */ 5504 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 5505 const u8 *ids, int n_ids, 5506 const u8 *after_ric, int n_after_ric, 5507 size_t offset); 5508 5509 /** 5510 * ieee80211_ie_split - split an IE buffer according to ordering 5511 * @ies: the IE buffer 5512 * @ielen: the length of the IE buffer 5513 * @ids: an array with element IDs that are allowed before 5514 * the split 5515 * @n_ids: the size of the element ID array 5516 * @offset: offset where to start splitting in the buffer 5517 * 5518 * This function splits an IE buffer by updating the @offset 5519 * variable to point to the location where the buffer should be 5520 * split. 5521 * 5522 * It assumes that the given IE buffer is well-formed, this 5523 * has to be guaranteed by the caller! 5524 * 5525 * It also assumes that the IEs in the buffer are ordered 5526 * correctly, if not the result of using this function will not 5527 * be ordered correctly either, i.e. it does no reordering. 5528 * 5529 * The function returns the offset where the next part of the 5530 * buffer starts, which may be @ielen if the entire (remainder) 5531 * of the buffer should be used. 5532 */ 5533 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen, 5534 const u8 *ids, int n_ids, size_t offset) 5535 { 5536 return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset); 5537 } 5538 5539 /** 5540 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN 5541 * @wdev: the wireless device reporting the wakeup 5542 * @wakeup: the wakeup report 5543 * @gfp: allocation flags 5544 * 5545 * This function reports that the given device woke up. If it 5546 * caused the wakeup, report the reason(s), otherwise you may 5547 * pass %NULL as the @wakeup parameter to advertise that something 5548 * else caused the wakeup. 5549 */ 5550 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev, 5551 struct cfg80211_wowlan_wakeup *wakeup, 5552 gfp_t gfp); 5553 5554 /** 5555 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver. 5556 * 5557 * @wdev: the wireless device for which critical protocol is stopped. 5558 * @gfp: allocation flags 5559 * 5560 * This function can be called by the driver to indicate it has reverted 5561 * operation back to normal. One reason could be that the duration given 5562 * by .crit_proto_start() has expired. 5563 */ 5564 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp); 5565 5566 /** 5567 * ieee80211_get_num_supported_channels - get number of channels device has 5568 * @wiphy: the wiphy 5569 * 5570 * Return: the number of channels supported by the device. 5571 */ 5572 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy); 5573 5574 /** 5575 * cfg80211_check_combinations - check interface combinations 5576 * 5577 * @wiphy: the wiphy 5578 * @num_different_channels: the number of different channels we want 5579 * to use for verification 5580 * @radar_detect: a bitmap where each bit corresponds to a channel 5581 * width where radar detection is needed, as in the definition of 5582 * &struct ieee80211_iface_combination.@radar_detect_widths 5583 * @iftype_num: array with the numbers of interfaces of each interface 5584 * type. The index is the interface type as specified in &enum 5585 * nl80211_iftype. 5586 * 5587 * This function can be called by the driver to check whether a 5588 * combination of interfaces and their types are allowed according to 5589 * the interface combinations. 5590 */ 5591 int cfg80211_check_combinations(struct wiphy *wiphy, 5592 const int num_different_channels, 5593 const u8 radar_detect, 5594 const int iftype_num[NUM_NL80211_IFTYPES]); 5595 5596 /** 5597 * cfg80211_iter_combinations - iterate over matching combinations 5598 * 5599 * @wiphy: the wiphy 5600 * @num_different_channels: the number of different channels we want 5601 * to use for verification 5602 * @radar_detect: a bitmap where each bit corresponds to a channel 5603 * width where radar detection is needed, as in the definition of 5604 * &struct ieee80211_iface_combination.@radar_detect_widths 5605 * @iftype_num: array with the numbers of interfaces of each interface 5606 * type. The index is the interface type as specified in &enum 5607 * nl80211_iftype. 5608 * @iter: function to call for each matching combination 5609 * @data: pointer to pass to iter function 5610 * 5611 * This function can be called by the driver to check what possible 5612 * combinations it fits in at a given moment, e.g. for channel switching 5613 * purposes. 5614 */ 5615 int cfg80211_iter_combinations(struct wiphy *wiphy, 5616 const int num_different_channels, 5617 const u8 radar_detect, 5618 const int iftype_num[NUM_NL80211_IFTYPES], 5619 void (*iter)(const struct ieee80211_iface_combination *c, 5620 void *data), 5621 void *data); 5622 5623 /* 5624 * cfg80211_stop_iface - trigger interface disconnection 5625 * 5626 * @wiphy: the wiphy 5627 * @wdev: wireless device 5628 * @gfp: context flags 5629 * 5630 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA 5631 * disconnected. 5632 * 5633 * Note: This doesn't need any locks and is asynchronous. 5634 */ 5635 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev, 5636 gfp_t gfp); 5637 5638 /** 5639 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy 5640 * @wiphy: the wiphy to shut down 5641 * 5642 * This function shuts down all interfaces belonging to this wiphy by 5643 * calling dev_close() (and treating non-netdev interfaces as needed). 5644 * It shouldn't really be used unless there are some fatal device errors 5645 * that really can't be recovered in any other way. 5646 * 5647 * Callers must hold the RTNL and be able to deal with callbacks into 5648 * the driver while the function is running. 5649 */ 5650 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy); 5651 5652 /** 5653 * wiphy_ext_feature_set - set the extended feature flag 5654 * 5655 * @wiphy: the wiphy to modify. 5656 * @ftidx: extended feature bit index. 5657 * 5658 * The extended features are flagged in multiple bytes (see 5659 * &struct wiphy.@ext_features) 5660 */ 5661 static inline void wiphy_ext_feature_set(struct wiphy *wiphy, 5662 enum nl80211_ext_feature_index ftidx) 5663 { 5664 u8 *ft_byte; 5665 5666 ft_byte = &wiphy->ext_features[ftidx / 8]; 5667 *ft_byte |= BIT(ftidx % 8); 5668 } 5669 5670 /** 5671 * wiphy_ext_feature_isset - check the extended feature flag 5672 * 5673 * @wiphy: the wiphy to modify. 5674 * @ftidx: extended feature bit index. 5675 * 5676 * The extended features are flagged in multiple bytes (see 5677 * &struct wiphy.@ext_features) 5678 */ 5679 static inline bool 5680 wiphy_ext_feature_isset(struct wiphy *wiphy, 5681 enum nl80211_ext_feature_index ftidx) 5682 { 5683 u8 ft_byte; 5684 5685 ft_byte = wiphy->ext_features[ftidx / 8]; 5686 return (ft_byte & BIT(ftidx % 8)) != 0; 5687 } 5688 5689 /** 5690 * cfg80211_free_nan_func - free NAN function 5691 * @f: NAN function that should be freed 5692 * 5693 * Frees all the NAN function and all it's allocated members. 5694 */ 5695 void cfg80211_free_nan_func(struct cfg80211_nan_func *f); 5696 5697 /** 5698 * struct cfg80211_nan_match_params - NAN match parameters 5699 * @type: the type of the function that triggered a match. If it is 5700 * %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber. 5701 * If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery 5702 * result. 5703 * If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up. 5704 * @inst_id: the local instance id 5705 * @peer_inst_id: the instance id of the peer's function 5706 * @addr: the MAC address of the peer 5707 * @info_len: the length of the &info 5708 * @info: the Service Specific Info from the peer (if any) 5709 * @cookie: unique identifier of the corresponding function 5710 */ 5711 struct cfg80211_nan_match_params { 5712 enum nl80211_nan_function_type type; 5713 u8 inst_id; 5714 u8 peer_inst_id; 5715 const u8 *addr; 5716 u8 info_len; 5717 const u8 *info; 5718 u64 cookie; 5719 }; 5720 5721 /** 5722 * cfg80211_nan_match - report a match for a NAN function. 5723 * @wdev: the wireless device reporting the match 5724 * @match: match notification parameters 5725 * @gfp: allocation flags 5726 * 5727 * This function reports that the a NAN function had a match. This 5728 * can be a subscribe that had a match or a solicited publish that 5729 * was sent. It can also be a follow up that was received. 5730 */ 5731 void cfg80211_nan_match(struct wireless_dev *wdev, 5732 struct cfg80211_nan_match_params *match, gfp_t gfp); 5733 5734 /** 5735 * cfg80211_nan_func_terminated - notify about NAN function termination. 5736 * 5737 * @wdev: the wireless device reporting the match 5738 * @inst_id: the local instance id 5739 * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*) 5740 * @cookie: unique NAN function identifier 5741 * @gfp: allocation flags 5742 * 5743 * This function reports that the a NAN function is terminated. 5744 */ 5745 void cfg80211_nan_func_terminated(struct wireless_dev *wdev, 5746 u8 inst_id, 5747 enum nl80211_nan_func_term_reason reason, 5748 u64 cookie, gfp_t gfp); 5749 5750 /* ethtool helper */ 5751 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info); 5752 5753 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5754 5755 /* wiphy_printk helpers, similar to dev_printk */ 5756 5757 #define wiphy_printk(level, wiphy, format, args...) \ 5758 dev_printk(level, &(wiphy)->dev, format, ##args) 5759 #define wiphy_emerg(wiphy, format, args...) \ 5760 dev_emerg(&(wiphy)->dev, format, ##args) 5761 #define wiphy_alert(wiphy, format, args...) \ 5762 dev_alert(&(wiphy)->dev, format, ##args) 5763 #define wiphy_crit(wiphy, format, args...) \ 5764 dev_crit(&(wiphy)->dev, format, ##args) 5765 #define wiphy_err(wiphy, format, args...) \ 5766 dev_err(&(wiphy)->dev, format, ##args) 5767 #define wiphy_warn(wiphy, format, args...) \ 5768 dev_warn(&(wiphy)->dev, format, ##args) 5769 #define wiphy_notice(wiphy, format, args...) \ 5770 dev_notice(&(wiphy)->dev, format, ##args) 5771 #define wiphy_info(wiphy, format, args...) \ 5772 dev_info(&(wiphy)->dev, format, ##args) 5773 5774 #define wiphy_debug(wiphy, format, args...) \ 5775 wiphy_printk(KERN_DEBUG, wiphy, format, ##args) 5776 5777 #define wiphy_dbg(wiphy, format, args...) \ 5778 dev_dbg(&(wiphy)->dev, format, ##args) 5779 5780 #if defined(VERBOSE_DEBUG) 5781 #define wiphy_vdbg wiphy_dbg 5782 #else 5783 #define wiphy_vdbg(wiphy, format, args...) \ 5784 ({ \ 5785 if (0) \ 5786 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \ 5787 0; \ 5788 }) 5789 #endif 5790 5791 /* 5792 * wiphy_WARN() acts like wiphy_printk(), but with the key difference 5793 * of using a WARN/WARN_ON to get the message out, including the 5794 * file/line information and a backtrace. 5795 */ 5796 #define wiphy_WARN(wiphy, format, args...) \ 5797 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args); 5798 5799 #endif /* __NET_CFG80211_H */ 5800