1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 5 6 /* 7 * cloning flags: 8 */ 9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 17 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 29 30 /* 31 * Scheduling policies 32 */ 33 #define SCHED_NORMAL 0 34 #define SCHED_FIFO 1 35 #define SCHED_RR 2 36 #define SCHED_BATCH 3 37 38 #ifdef __KERNEL__ 39 40 struct sched_param { 41 int sched_priority; 42 }; 43 44 #include <asm/param.h> /* for HZ */ 45 46 #include <linux/capability.h> 47 #include <linux/threads.h> 48 #include <linux/kernel.h> 49 #include <linux/types.h> 50 #include <linux/timex.h> 51 #include <linux/jiffies.h> 52 #include <linux/rbtree.h> 53 #include <linux/thread_info.h> 54 #include <linux/cpumask.h> 55 #include <linux/errno.h> 56 #include <linux/nodemask.h> 57 58 #include <asm/system.h> 59 #include <asm/semaphore.h> 60 #include <asm/page.h> 61 #include <asm/ptrace.h> 62 #include <asm/mmu.h> 63 #include <asm/cputime.h> 64 65 #include <linux/smp.h> 66 #include <linux/sem.h> 67 #include <linux/signal.h> 68 #include <linux/securebits.h> 69 #include <linux/fs_struct.h> 70 #include <linux/compiler.h> 71 #include <linux/completion.h> 72 #include <linux/pid.h> 73 #include <linux/percpu.h> 74 #include <linux/topology.h> 75 #include <linux/seccomp.h> 76 #include <linux/rcupdate.h> 77 #include <linux/futex.h> 78 #include <linux/rtmutex.h> 79 80 #include <linux/time.h> 81 #include <linux/param.h> 82 #include <linux/resource.h> 83 #include <linux/timer.h> 84 #include <linux/hrtimer.h> 85 #include <linux/task_io_accounting.h> 86 87 #include <asm/processor.h> 88 89 struct exec_domain; 90 struct futex_pi_state; 91 92 /* 93 * List of flags we want to share for kernel threads, 94 * if only because they are not used by them anyway. 95 */ 96 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 97 98 /* 99 * These are the constant used to fake the fixed-point load-average 100 * counting. Some notes: 101 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 102 * a load-average precision of 10 bits integer + 11 bits fractional 103 * - if you want to count load-averages more often, you need more 104 * precision, or rounding will get you. With 2-second counting freq, 105 * the EXP_n values would be 1981, 2034 and 2043 if still using only 106 * 11 bit fractions. 107 */ 108 extern unsigned long avenrun[]; /* Load averages */ 109 110 #define FSHIFT 11 /* nr of bits of precision */ 111 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 112 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 113 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 114 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 115 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 116 117 #define CALC_LOAD(load,exp,n) \ 118 load *= exp; \ 119 load += n*(FIXED_1-exp); \ 120 load >>= FSHIFT; 121 122 extern unsigned long total_forks; 123 extern int nr_threads; 124 DECLARE_PER_CPU(unsigned long, process_counts); 125 extern int nr_processes(void); 126 extern unsigned long nr_running(void); 127 extern unsigned long nr_uninterruptible(void); 128 extern unsigned long nr_active(void); 129 extern unsigned long nr_iowait(void); 130 extern unsigned long weighted_cpuload(const int cpu); 131 132 133 /* 134 * Task state bitmask. NOTE! These bits are also 135 * encoded in fs/proc/array.c: get_task_state(). 136 * 137 * We have two separate sets of flags: task->state 138 * is about runnability, while task->exit_state are 139 * about the task exiting. Confusing, but this way 140 * modifying one set can't modify the other one by 141 * mistake. 142 */ 143 #define TASK_RUNNING 0 144 #define TASK_INTERRUPTIBLE 1 145 #define TASK_UNINTERRUPTIBLE 2 146 #define TASK_STOPPED 4 147 #define TASK_TRACED 8 148 /* in tsk->exit_state */ 149 #define EXIT_ZOMBIE 16 150 #define EXIT_DEAD 32 151 /* in tsk->state again */ 152 #define TASK_NONINTERACTIVE 64 153 #define TASK_DEAD 128 154 155 #define __set_task_state(tsk, state_value) \ 156 do { (tsk)->state = (state_value); } while (0) 157 #define set_task_state(tsk, state_value) \ 158 set_mb((tsk)->state, (state_value)) 159 160 /* 161 * set_current_state() includes a barrier so that the write of current->state 162 * is correctly serialised wrt the caller's subsequent test of whether to 163 * actually sleep: 164 * 165 * set_current_state(TASK_UNINTERRUPTIBLE); 166 * if (do_i_need_to_sleep()) 167 * schedule(); 168 * 169 * If the caller does not need such serialisation then use __set_current_state() 170 */ 171 #define __set_current_state(state_value) \ 172 do { current->state = (state_value); } while (0) 173 #define set_current_state(state_value) \ 174 set_mb(current->state, (state_value)) 175 176 /* Task command name length */ 177 #define TASK_COMM_LEN 16 178 179 #include <linux/spinlock.h> 180 181 /* 182 * This serializes "schedule()" and also protects 183 * the run-queue from deletions/modifications (but 184 * _adding_ to the beginning of the run-queue has 185 * a separate lock). 186 */ 187 extern rwlock_t tasklist_lock; 188 extern spinlock_t mmlist_lock; 189 190 struct task_struct; 191 192 extern void sched_init(void); 193 extern void sched_init_smp(void); 194 extern void init_idle(struct task_struct *idle, int cpu); 195 196 extern cpumask_t nohz_cpu_mask; 197 198 /* 199 * Only dump TASK_* tasks. (-1 for all tasks) 200 */ 201 extern void show_state_filter(unsigned long state_filter); 202 203 static inline void show_state(void) 204 { 205 show_state_filter(-1); 206 } 207 208 extern void show_regs(struct pt_regs *); 209 210 /* 211 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 212 * task), SP is the stack pointer of the first frame that should be shown in the back 213 * trace (or NULL if the entire call-chain of the task should be shown). 214 */ 215 extern void show_stack(struct task_struct *task, unsigned long *sp); 216 217 void io_schedule(void); 218 long io_schedule_timeout(long timeout); 219 220 extern void cpu_init (void); 221 extern void trap_init(void); 222 extern void update_process_times(int user); 223 extern void scheduler_tick(void); 224 225 #ifdef CONFIG_DETECT_SOFTLOCKUP 226 extern void softlockup_tick(void); 227 extern void spawn_softlockup_task(void); 228 extern void touch_softlockup_watchdog(void); 229 #else 230 static inline void softlockup_tick(void) 231 { 232 } 233 static inline void spawn_softlockup_task(void) 234 { 235 } 236 static inline void touch_softlockup_watchdog(void) 237 { 238 } 239 #endif 240 241 242 /* Attach to any functions which should be ignored in wchan output. */ 243 #define __sched __attribute__((__section__(".sched.text"))) 244 /* Is this address in the __sched functions? */ 245 extern int in_sched_functions(unsigned long addr); 246 247 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 248 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 249 extern signed long schedule_timeout_interruptible(signed long timeout); 250 extern signed long schedule_timeout_uninterruptible(signed long timeout); 251 asmlinkage void schedule(void); 252 253 struct nsproxy; 254 255 /* Maximum number of active map areas.. This is a random (large) number */ 256 #define DEFAULT_MAX_MAP_COUNT 65536 257 258 extern int sysctl_max_map_count; 259 260 #include <linux/aio.h> 261 262 extern unsigned long 263 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 264 unsigned long, unsigned long); 265 extern unsigned long 266 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 267 unsigned long len, unsigned long pgoff, 268 unsigned long flags); 269 extern void arch_unmap_area(struct mm_struct *, unsigned long); 270 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 271 272 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 273 /* 274 * The mm counters are not protected by its page_table_lock, 275 * so must be incremented atomically. 276 */ 277 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 278 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 279 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 280 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 281 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 282 typedef atomic_long_t mm_counter_t; 283 284 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 285 /* 286 * The mm counters are protected by its page_table_lock, 287 * so can be incremented directly. 288 */ 289 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 290 #define get_mm_counter(mm, member) ((mm)->_##member) 291 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 292 #define inc_mm_counter(mm, member) (mm)->_##member++ 293 #define dec_mm_counter(mm, member) (mm)->_##member-- 294 typedef unsigned long mm_counter_t; 295 296 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 297 298 #define get_mm_rss(mm) \ 299 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 300 #define update_hiwater_rss(mm) do { \ 301 unsigned long _rss = get_mm_rss(mm); \ 302 if ((mm)->hiwater_rss < _rss) \ 303 (mm)->hiwater_rss = _rss; \ 304 } while (0) 305 #define update_hiwater_vm(mm) do { \ 306 if ((mm)->hiwater_vm < (mm)->total_vm) \ 307 (mm)->hiwater_vm = (mm)->total_vm; \ 308 } while (0) 309 310 struct mm_struct { 311 struct vm_area_struct * mmap; /* list of VMAs */ 312 struct rb_root mm_rb; 313 struct vm_area_struct * mmap_cache; /* last find_vma result */ 314 unsigned long (*get_unmapped_area) (struct file *filp, 315 unsigned long addr, unsigned long len, 316 unsigned long pgoff, unsigned long flags); 317 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 318 unsigned long mmap_base; /* base of mmap area */ 319 unsigned long task_size; /* size of task vm space */ 320 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 321 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 322 pgd_t * pgd; 323 atomic_t mm_users; /* How many users with user space? */ 324 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 325 int map_count; /* number of VMAs */ 326 struct rw_semaphore mmap_sem; 327 spinlock_t page_table_lock; /* Protects page tables and some counters */ 328 329 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 330 * together off init_mm.mmlist, and are protected 331 * by mmlist_lock 332 */ 333 334 /* Special counters, in some configurations protected by the 335 * page_table_lock, in other configurations by being atomic. 336 */ 337 mm_counter_t _file_rss; 338 mm_counter_t _anon_rss; 339 340 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 341 unsigned long hiwater_vm; /* High-water virtual memory usage */ 342 343 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 344 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 345 unsigned long start_code, end_code, start_data, end_data; 346 unsigned long start_brk, brk, start_stack; 347 unsigned long arg_start, arg_end, env_start, env_end; 348 349 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 350 351 cpumask_t cpu_vm_mask; 352 353 /* Architecture-specific MM context */ 354 mm_context_t context; 355 356 /* Swap token stuff */ 357 /* 358 * Last value of global fault stamp as seen by this process. 359 * In other words, this value gives an indication of how long 360 * it has been since this task got the token. 361 * Look at mm/thrash.c 362 */ 363 unsigned int faultstamp; 364 unsigned int token_priority; 365 unsigned int last_interval; 366 367 unsigned char dumpable:2; 368 369 /* coredumping support */ 370 int core_waiters; 371 struct completion *core_startup_done, core_done; 372 373 /* aio bits */ 374 rwlock_t ioctx_list_lock; 375 struct kioctx *ioctx_list; 376 }; 377 378 struct sighand_struct { 379 atomic_t count; 380 struct k_sigaction action[_NSIG]; 381 spinlock_t siglock; 382 }; 383 384 struct pacct_struct { 385 int ac_flag; 386 long ac_exitcode; 387 unsigned long ac_mem; 388 cputime_t ac_utime, ac_stime; 389 unsigned long ac_minflt, ac_majflt; 390 }; 391 392 /* 393 * NOTE! "signal_struct" does not have it's own 394 * locking, because a shared signal_struct always 395 * implies a shared sighand_struct, so locking 396 * sighand_struct is always a proper superset of 397 * the locking of signal_struct. 398 */ 399 struct signal_struct { 400 atomic_t count; 401 atomic_t live; 402 403 wait_queue_head_t wait_chldexit; /* for wait4() */ 404 405 /* current thread group signal load-balancing target: */ 406 struct task_struct *curr_target; 407 408 /* shared signal handling: */ 409 struct sigpending shared_pending; 410 411 /* thread group exit support */ 412 int group_exit_code; 413 /* overloaded: 414 * - notify group_exit_task when ->count is equal to notify_count 415 * - everyone except group_exit_task is stopped during signal delivery 416 * of fatal signals, group_exit_task processes the signal. 417 */ 418 struct task_struct *group_exit_task; 419 int notify_count; 420 421 /* thread group stop support, overloads group_exit_code too */ 422 int group_stop_count; 423 unsigned int flags; /* see SIGNAL_* flags below */ 424 425 /* POSIX.1b Interval Timers */ 426 struct list_head posix_timers; 427 428 /* ITIMER_REAL timer for the process */ 429 struct hrtimer real_timer; 430 struct task_struct *tsk; 431 ktime_t it_real_incr; 432 433 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 434 cputime_t it_prof_expires, it_virt_expires; 435 cputime_t it_prof_incr, it_virt_incr; 436 437 /* job control IDs */ 438 pid_t pgrp; 439 struct pid *tty_old_pgrp; 440 441 union { 442 pid_t session __deprecated; 443 pid_t __session; 444 }; 445 446 /* boolean value for session group leader */ 447 int leader; 448 449 struct tty_struct *tty; /* NULL if no tty */ 450 451 /* 452 * Cumulative resource counters for dead threads in the group, 453 * and for reaped dead child processes forked by this group. 454 * Live threads maintain their own counters and add to these 455 * in __exit_signal, except for the group leader. 456 */ 457 cputime_t utime, stime, cutime, cstime; 458 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 459 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 460 461 /* 462 * Cumulative ns of scheduled CPU time for dead threads in the 463 * group, not including a zombie group leader. (This only differs 464 * from jiffies_to_ns(utime + stime) if sched_clock uses something 465 * other than jiffies.) 466 */ 467 unsigned long long sched_time; 468 469 /* 470 * We don't bother to synchronize most readers of this at all, 471 * because there is no reader checking a limit that actually needs 472 * to get both rlim_cur and rlim_max atomically, and either one 473 * alone is a single word that can safely be read normally. 474 * getrlimit/setrlimit use task_lock(current->group_leader) to 475 * protect this instead of the siglock, because they really 476 * have no need to disable irqs. 477 */ 478 struct rlimit rlim[RLIM_NLIMITS]; 479 480 struct list_head cpu_timers[3]; 481 482 /* keep the process-shared keyrings here so that they do the right 483 * thing in threads created with CLONE_THREAD */ 484 #ifdef CONFIG_KEYS 485 struct key *session_keyring; /* keyring inherited over fork */ 486 struct key *process_keyring; /* keyring private to this process */ 487 #endif 488 #ifdef CONFIG_BSD_PROCESS_ACCT 489 struct pacct_struct pacct; /* per-process accounting information */ 490 #endif 491 #ifdef CONFIG_TASKSTATS 492 struct taskstats *stats; 493 #endif 494 }; 495 496 /* Context switch must be unlocked if interrupts are to be enabled */ 497 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 498 # define __ARCH_WANT_UNLOCKED_CTXSW 499 #endif 500 501 /* 502 * Bits in flags field of signal_struct. 503 */ 504 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 505 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 506 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 507 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 508 509 510 /* 511 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 512 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 513 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 514 * values are inverted: lower p->prio value means higher priority. 515 * 516 * The MAX_USER_RT_PRIO value allows the actual maximum 517 * RT priority to be separate from the value exported to 518 * user-space. This allows kernel threads to set their 519 * priority to a value higher than any user task. Note: 520 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 521 */ 522 523 #define MAX_USER_RT_PRIO 100 524 #define MAX_RT_PRIO MAX_USER_RT_PRIO 525 526 #define MAX_PRIO (MAX_RT_PRIO + 40) 527 528 #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) 529 #define rt_task(p) rt_prio((p)->prio) 530 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) 531 #define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH) 532 #define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) 533 534 /* 535 * Some day this will be a full-fledged user tracking system.. 536 */ 537 struct user_struct { 538 atomic_t __count; /* reference count */ 539 atomic_t processes; /* How many processes does this user have? */ 540 atomic_t files; /* How many open files does this user have? */ 541 atomic_t sigpending; /* How many pending signals does this user have? */ 542 #ifdef CONFIG_INOTIFY_USER 543 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 544 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 545 #endif 546 /* protected by mq_lock */ 547 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 548 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 549 550 #ifdef CONFIG_KEYS 551 struct key *uid_keyring; /* UID specific keyring */ 552 struct key *session_keyring; /* UID's default session keyring */ 553 #endif 554 555 /* Hash table maintenance information */ 556 struct list_head uidhash_list; 557 uid_t uid; 558 }; 559 560 extern struct user_struct *find_user(uid_t); 561 562 extern struct user_struct root_user; 563 #define INIT_USER (&root_user) 564 565 struct backing_dev_info; 566 struct reclaim_state; 567 568 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 569 struct sched_info { 570 /* cumulative counters */ 571 unsigned long cpu_time, /* time spent on the cpu */ 572 run_delay, /* time spent waiting on a runqueue */ 573 pcnt; /* # of timeslices run on this cpu */ 574 575 /* timestamps */ 576 unsigned long last_arrival, /* when we last ran on a cpu */ 577 last_queued; /* when we were last queued to run */ 578 }; 579 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 580 581 #ifdef CONFIG_SCHEDSTATS 582 extern const struct file_operations proc_schedstat_operations; 583 #endif /* CONFIG_SCHEDSTATS */ 584 585 #ifdef CONFIG_TASK_DELAY_ACCT 586 struct task_delay_info { 587 spinlock_t lock; 588 unsigned int flags; /* Private per-task flags */ 589 590 /* For each stat XXX, add following, aligned appropriately 591 * 592 * struct timespec XXX_start, XXX_end; 593 * u64 XXX_delay; 594 * u32 XXX_count; 595 * 596 * Atomicity of updates to XXX_delay, XXX_count protected by 597 * single lock above (split into XXX_lock if contention is an issue). 598 */ 599 600 /* 601 * XXX_count is incremented on every XXX operation, the delay 602 * associated with the operation is added to XXX_delay. 603 * XXX_delay contains the accumulated delay time in nanoseconds. 604 */ 605 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 606 u64 blkio_delay; /* wait for sync block io completion */ 607 u64 swapin_delay; /* wait for swapin block io completion */ 608 u32 blkio_count; /* total count of the number of sync block */ 609 /* io operations performed */ 610 u32 swapin_count; /* total count of the number of swapin block */ 611 /* io operations performed */ 612 }; 613 #endif /* CONFIG_TASK_DELAY_ACCT */ 614 615 static inline int sched_info_on(void) 616 { 617 #ifdef CONFIG_SCHEDSTATS 618 return 1; 619 #elif defined(CONFIG_TASK_DELAY_ACCT) 620 extern int delayacct_on; 621 return delayacct_on; 622 #else 623 return 0; 624 #endif 625 } 626 627 enum idle_type 628 { 629 SCHED_IDLE, 630 NOT_IDLE, 631 NEWLY_IDLE, 632 MAX_IDLE_TYPES 633 }; 634 635 /* 636 * sched-domains (multiprocessor balancing) declarations: 637 */ 638 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 639 640 #ifdef CONFIG_SMP 641 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 642 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 643 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 644 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 645 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 646 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 647 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 648 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 649 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 650 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 651 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 652 653 #define BALANCE_FOR_MC_POWER \ 654 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 655 656 #define BALANCE_FOR_PKG_POWER \ 657 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 658 SD_POWERSAVINGS_BALANCE : 0) 659 660 #define test_sd_parent(sd, flag) ((sd->parent && \ 661 (sd->parent->flags & flag)) ? 1 : 0) 662 663 664 struct sched_group { 665 struct sched_group *next; /* Must be a circular list */ 666 cpumask_t cpumask; 667 668 /* 669 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 670 * single CPU. This is read only (except for setup, hotplug CPU). 671 */ 672 unsigned long cpu_power; 673 }; 674 675 struct sched_domain { 676 /* These fields must be setup */ 677 struct sched_domain *parent; /* top domain must be null terminated */ 678 struct sched_domain *child; /* bottom domain must be null terminated */ 679 struct sched_group *groups; /* the balancing groups of the domain */ 680 cpumask_t span; /* span of all CPUs in this domain */ 681 unsigned long min_interval; /* Minimum balance interval ms */ 682 unsigned long max_interval; /* Maximum balance interval ms */ 683 unsigned int busy_factor; /* less balancing by factor if busy */ 684 unsigned int imbalance_pct; /* No balance until over watermark */ 685 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 686 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 687 unsigned int busy_idx; 688 unsigned int idle_idx; 689 unsigned int newidle_idx; 690 unsigned int wake_idx; 691 unsigned int forkexec_idx; 692 int flags; /* See SD_* */ 693 694 /* Runtime fields. */ 695 unsigned long last_balance; /* init to jiffies. units in jiffies */ 696 unsigned int balance_interval; /* initialise to 1. units in ms. */ 697 unsigned int nr_balance_failed; /* initialise to 0 */ 698 699 #ifdef CONFIG_SCHEDSTATS 700 /* load_balance() stats */ 701 unsigned long lb_cnt[MAX_IDLE_TYPES]; 702 unsigned long lb_failed[MAX_IDLE_TYPES]; 703 unsigned long lb_balanced[MAX_IDLE_TYPES]; 704 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 705 unsigned long lb_gained[MAX_IDLE_TYPES]; 706 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 707 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 708 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 709 710 /* Active load balancing */ 711 unsigned long alb_cnt; 712 unsigned long alb_failed; 713 unsigned long alb_pushed; 714 715 /* SD_BALANCE_EXEC stats */ 716 unsigned long sbe_cnt; 717 unsigned long sbe_balanced; 718 unsigned long sbe_pushed; 719 720 /* SD_BALANCE_FORK stats */ 721 unsigned long sbf_cnt; 722 unsigned long sbf_balanced; 723 unsigned long sbf_pushed; 724 725 /* try_to_wake_up() stats */ 726 unsigned long ttwu_wake_remote; 727 unsigned long ttwu_move_affine; 728 unsigned long ttwu_move_balance; 729 #endif 730 }; 731 732 extern int partition_sched_domains(cpumask_t *partition1, 733 cpumask_t *partition2); 734 735 /* 736 * Maximum cache size the migration-costs auto-tuning code will 737 * search from: 738 */ 739 extern unsigned int max_cache_size; 740 741 #endif /* CONFIG_SMP */ 742 743 744 struct io_context; /* See blkdev.h */ 745 struct cpuset; 746 747 #define NGROUPS_SMALL 32 748 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 749 struct group_info { 750 int ngroups; 751 atomic_t usage; 752 gid_t small_block[NGROUPS_SMALL]; 753 int nblocks; 754 gid_t *blocks[0]; 755 }; 756 757 /* 758 * get_group_info() must be called with the owning task locked (via task_lock()) 759 * when task != current. The reason being that the vast majority of callers are 760 * looking at current->group_info, which can not be changed except by the 761 * current task. Changing current->group_info requires the task lock, too. 762 */ 763 #define get_group_info(group_info) do { \ 764 atomic_inc(&(group_info)->usage); \ 765 } while (0) 766 767 #define put_group_info(group_info) do { \ 768 if (atomic_dec_and_test(&(group_info)->usage)) \ 769 groups_free(group_info); \ 770 } while (0) 771 772 extern struct group_info *groups_alloc(int gidsetsize); 773 extern void groups_free(struct group_info *group_info); 774 extern int set_current_groups(struct group_info *group_info); 775 extern int groups_search(struct group_info *group_info, gid_t grp); 776 /* access the groups "array" with this macro */ 777 #define GROUP_AT(gi, i) \ 778 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 779 780 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 781 extern void prefetch_stack(struct task_struct *t); 782 #else 783 static inline void prefetch_stack(struct task_struct *t) { } 784 #endif 785 786 struct audit_context; /* See audit.c */ 787 struct mempolicy; 788 struct pipe_inode_info; 789 struct uts_namespace; 790 791 enum sleep_type { 792 SLEEP_NORMAL, 793 SLEEP_NONINTERACTIVE, 794 SLEEP_INTERACTIVE, 795 SLEEP_INTERRUPTED, 796 }; 797 798 struct prio_array; 799 800 struct task_struct { 801 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 802 struct thread_info *thread_info; 803 atomic_t usage; 804 unsigned long flags; /* per process flags, defined below */ 805 unsigned long ptrace; 806 807 int lock_depth; /* BKL lock depth */ 808 809 #ifdef CONFIG_SMP 810 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 811 int oncpu; 812 #endif 813 #endif 814 int load_weight; /* for niceness load balancing purposes */ 815 int prio, static_prio, normal_prio; 816 struct list_head run_list; 817 struct prio_array *array; 818 819 unsigned short ioprio; 820 #ifdef CONFIG_BLK_DEV_IO_TRACE 821 unsigned int btrace_seq; 822 #endif 823 unsigned long sleep_avg; 824 unsigned long long timestamp, last_ran; 825 unsigned long long sched_time; /* sched_clock time spent running */ 826 enum sleep_type sleep_type; 827 828 unsigned long policy; 829 cpumask_t cpus_allowed; 830 unsigned int time_slice, first_time_slice; 831 832 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 833 struct sched_info sched_info; 834 #endif 835 836 struct list_head tasks; 837 /* 838 * ptrace_list/ptrace_children forms the list of my children 839 * that were stolen by a ptracer. 840 */ 841 struct list_head ptrace_children; 842 struct list_head ptrace_list; 843 844 struct mm_struct *mm, *active_mm; 845 846 /* task state */ 847 struct linux_binfmt *binfmt; 848 long exit_state; 849 int exit_code, exit_signal; 850 int pdeath_signal; /* The signal sent when the parent dies */ 851 /* ??? */ 852 unsigned long personality; 853 unsigned did_exec:1; 854 pid_t pid; 855 pid_t tgid; 856 857 #ifdef CONFIG_CC_STACKPROTECTOR 858 /* Canary value for the -fstack-protector gcc feature */ 859 unsigned long stack_canary; 860 #endif 861 /* 862 * pointers to (original) parent process, youngest child, younger sibling, 863 * older sibling, respectively. (p->father can be replaced with 864 * p->parent->pid) 865 */ 866 struct task_struct *real_parent; /* real parent process (when being debugged) */ 867 struct task_struct *parent; /* parent process */ 868 /* 869 * children/sibling forms the list of my children plus the 870 * tasks I'm ptracing. 871 */ 872 struct list_head children; /* list of my children */ 873 struct list_head sibling; /* linkage in my parent's children list */ 874 struct task_struct *group_leader; /* threadgroup leader */ 875 876 /* PID/PID hash table linkage. */ 877 struct pid_link pids[PIDTYPE_MAX]; 878 struct list_head thread_group; 879 880 struct completion *vfork_done; /* for vfork() */ 881 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 882 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 883 884 unsigned long rt_priority; 885 cputime_t utime, stime; 886 unsigned long nvcsw, nivcsw; /* context switch counts */ 887 struct timespec start_time; 888 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 889 unsigned long min_flt, maj_flt; 890 891 cputime_t it_prof_expires, it_virt_expires; 892 unsigned long long it_sched_expires; 893 struct list_head cpu_timers[3]; 894 895 /* process credentials */ 896 uid_t uid,euid,suid,fsuid; 897 gid_t gid,egid,sgid,fsgid; 898 struct group_info *group_info; 899 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 900 unsigned keep_capabilities:1; 901 struct user_struct *user; 902 #ifdef CONFIG_KEYS 903 struct key *request_key_auth; /* assumed request_key authority */ 904 struct key *thread_keyring; /* keyring private to this thread */ 905 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 906 #endif 907 /* 908 * fpu_counter contains the number of consecutive context switches 909 * that the FPU is used. If this is over a threshold, the lazy fpu 910 * saving becomes unlazy to save the trap. This is an unsigned char 911 * so that after 256 times the counter wraps and the behavior turns 912 * lazy again; this to deal with bursty apps that only use FPU for 913 * a short time 914 */ 915 unsigned char fpu_counter; 916 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 917 char comm[TASK_COMM_LEN]; /* executable name excluding path 918 - access with [gs]et_task_comm (which lock 919 it with task_lock()) 920 - initialized normally by flush_old_exec */ 921 /* file system info */ 922 int link_count, total_link_count; 923 #ifdef CONFIG_SYSVIPC 924 /* ipc stuff */ 925 struct sysv_sem sysvsem; 926 #endif 927 /* CPU-specific state of this task */ 928 struct thread_struct thread; 929 /* filesystem information */ 930 struct fs_struct *fs; 931 /* open file information */ 932 struct files_struct *files; 933 /* namespaces */ 934 struct nsproxy *nsproxy; 935 /* signal handlers */ 936 struct signal_struct *signal; 937 struct sighand_struct *sighand; 938 939 sigset_t blocked, real_blocked; 940 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 941 struct sigpending pending; 942 943 unsigned long sas_ss_sp; 944 size_t sas_ss_size; 945 int (*notifier)(void *priv); 946 void *notifier_data; 947 sigset_t *notifier_mask; 948 949 void *security; 950 struct audit_context *audit_context; 951 seccomp_t seccomp; 952 953 /* Thread group tracking */ 954 u32 parent_exec_id; 955 u32 self_exec_id; 956 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 957 spinlock_t alloc_lock; 958 959 /* Protection of the PI data structures: */ 960 spinlock_t pi_lock; 961 962 #ifdef CONFIG_RT_MUTEXES 963 /* PI waiters blocked on a rt_mutex held by this task */ 964 struct plist_head pi_waiters; 965 /* Deadlock detection and priority inheritance handling */ 966 struct rt_mutex_waiter *pi_blocked_on; 967 #endif 968 969 #ifdef CONFIG_DEBUG_MUTEXES 970 /* mutex deadlock detection */ 971 struct mutex_waiter *blocked_on; 972 #endif 973 #ifdef CONFIG_TRACE_IRQFLAGS 974 unsigned int irq_events; 975 int hardirqs_enabled; 976 unsigned long hardirq_enable_ip; 977 unsigned int hardirq_enable_event; 978 unsigned long hardirq_disable_ip; 979 unsigned int hardirq_disable_event; 980 int softirqs_enabled; 981 unsigned long softirq_disable_ip; 982 unsigned int softirq_disable_event; 983 unsigned long softirq_enable_ip; 984 unsigned int softirq_enable_event; 985 int hardirq_context; 986 int softirq_context; 987 #endif 988 #ifdef CONFIG_LOCKDEP 989 # define MAX_LOCK_DEPTH 30UL 990 u64 curr_chain_key; 991 int lockdep_depth; 992 struct held_lock held_locks[MAX_LOCK_DEPTH]; 993 unsigned int lockdep_recursion; 994 #endif 995 996 /* journalling filesystem info */ 997 void *journal_info; 998 999 /* VM state */ 1000 struct reclaim_state *reclaim_state; 1001 1002 struct backing_dev_info *backing_dev_info; 1003 1004 struct io_context *io_context; 1005 1006 unsigned long ptrace_message; 1007 siginfo_t *last_siginfo; /* For ptrace use. */ 1008 /* 1009 * current io wait handle: wait queue entry to use for io waits 1010 * If this thread is processing aio, this points at the waitqueue 1011 * inside the currently handled kiocb. It may be NULL (i.e. default 1012 * to a stack based synchronous wait) if its doing sync IO. 1013 */ 1014 wait_queue_t *io_wait; 1015 #ifdef CONFIG_TASK_XACCT 1016 /* i/o counters(bytes read/written, #syscalls */ 1017 u64 rchar, wchar, syscr, syscw; 1018 #endif 1019 struct task_io_accounting ioac; 1020 #if defined(CONFIG_TASK_XACCT) 1021 u64 acct_rss_mem1; /* accumulated rss usage */ 1022 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1023 cputime_t acct_stimexpd;/* stime since last update */ 1024 #endif 1025 #ifdef CONFIG_NUMA 1026 struct mempolicy *mempolicy; 1027 short il_next; 1028 #endif 1029 #ifdef CONFIG_CPUSETS 1030 struct cpuset *cpuset; 1031 nodemask_t mems_allowed; 1032 int cpuset_mems_generation; 1033 int cpuset_mem_spread_rotor; 1034 #endif 1035 struct robust_list_head __user *robust_list; 1036 #ifdef CONFIG_COMPAT 1037 struct compat_robust_list_head __user *compat_robust_list; 1038 #endif 1039 struct list_head pi_state_list; 1040 struct futex_pi_state *pi_state_cache; 1041 1042 atomic_t fs_excl; /* holding fs exclusive resources */ 1043 struct rcu_head rcu; 1044 1045 /* 1046 * cache last used pipe for splice 1047 */ 1048 struct pipe_inode_info *splice_pipe; 1049 #ifdef CONFIG_TASK_DELAY_ACCT 1050 struct task_delay_info *delays; 1051 #endif 1052 #ifdef CONFIG_FAULT_INJECTION 1053 int make_it_fail; 1054 #endif 1055 }; 1056 1057 static inline pid_t process_group(struct task_struct *tsk) 1058 { 1059 return tsk->signal->pgrp; 1060 } 1061 1062 static inline pid_t signal_session(struct signal_struct *sig) 1063 { 1064 return sig->__session; 1065 } 1066 1067 static inline pid_t process_session(struct task_struct *tsk) 1068 { 1069 return signal_session(tsk->signal); 1070 } 1071 1072 static inline void set_signal_session(struct signal_struct *sig, pid_t session) 1073 { 1074 sig->__session = session; 1075 } 1076 1077 static inline struct pid *task_pid(struct task_struct *task) 1078 { 1079 return task->pids[PIDTYPE_PID].pid; 1080 } 1081 1082 static inline struct pid *task_tgid(struct task_struct *task) 1083 { 1084 return task->group_leader->pids[PIDTYPE_PID].pid; 1085 } 1086 1087 static inline struct pid *task_pgrp(struct task_struct *task) 1088 { 1089 return task->group_leader->pids[PIDTYPE_PGID].pid; 1090 } 1091 1092 static inline struct pid *task_session(struct task_struct *task) 1093 { 1094 return task->group_leader->pids[PIDTYPE_SID].pid; 1095 } 1096 1097 /** 1098 * pid_alive - check that a task structure is not stale 1099 * @p: Task structure to be checked. 1100 * 1101 * Test if a process is not yet dead (at most zombie state) 1102 * If pid_alive fails, then pointers within the task structure 1103 * can be stale and must not be dereferenced. 1104 */ 1105 static inline int pid_alive(struct task_struct *p) 1106 { 1107 return p->pids[PIDTYPE_PID].pid != NULL; 1108 } 1109 1110 /** 1111 * is_init - check if a task structure is init 1112 * @tsk: Task structure to be checked. 1113 * 1114 * Check if a task structure is the first user space task the kernel created. 1115 */ 1116 static inline int is_init(struct task_struct *tsk) 1117 { 1118 return tsk->pid == 1; 1119 } 1120 1121 extern struct pid *cad_pid; 1122 1123 extern void free_task(struct task_struct *tsk); 1124 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1125 1126 extern void __put_task_struct(struct task_struct *t); 1127 1128 static inline void put_task_struct(struct task_struct *t) 1129 { 1130 if (atomic_dec_and_test(&t->usage)) 1131 __put_task_struct(t); 1132 } 1133 1134 /* 1135 * Per process flags 1136 */ 1137 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1138 /* Not implemented yet, only for 486*/ 1139 #define PF_STARTING 0x00000002 /* being created */ 1140 #define PF_EXITING 0x00000004 /* getting shut down */ 1141 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1142 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1143 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1144 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1145 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1146 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1147 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1148 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1149 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1150 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1151 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1152 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1153 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1154 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1155 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1156 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1157 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1158 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1159 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1160 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1161 1162 /* 1163 * Only the _current_ task can read/write to tsk->flags, but other 1164 * tasks can access tsk->flags in readonly mode for example 1165 * with tsk_used_math (like during threaded core dumping). 1166 * There is however an exception to this rule during ptrace 1167 * or during fork: the ptracer task is allowed to write to the 1168 * child->flags of its traced child (same goes for fork, the parent 1169 * can write to the child->flags), because we're guaranteed the 1170 * child is not running and in turn not changing child->flags 1171 * at the same time the parent does it. 1172 */ 1173 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1174 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1175 #define clear_used_math() clear_stopped_child_used_math(current) 1176 #define set_used_math() set_stopped_child_used_math(current) 1177 #define conditional_stopped_child_used_math(condition, child) \ 1178 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1179 #define conditional_used_math(condition) \ 1180 conditional_stopped_child_used_math(condition, current) 1181 #define copy_to_stopped_child_used_math(child) \ 1182 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1183 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1184 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1185 #define used_math() tsk_used_math(current) 1186 1187 #ifdef CONFIG_SMP 1188 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1189 #else 1190 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1191 { 1192 if (!cpu_isset(0, new_mask)) 1193 return -EINVAL; 1194 return 0; 1195 } 1196 #endif 1197 1198 extern unsigned long long sched_clock(void); 1199 extern unsigned long long 1200 current_sched_time(const struct task_struct *current_task); 1201 1202 /* sched_exec is called by processes performing an exec */ 1203 #ifdef CONFIG_SMP 1204 extern void sched_exec(void); 1205 #else 1206 #define sched_exec() {} 1207 #endif 1208 1209 #ifdef CONFIG_HOTPLUG_CPU 1210 extern void idle_task_exit(void); 1211 #else 1212 static inline void idle_task_exit(void) {} 1213 #endif 1214 1215 extern void sched_idle_next(void); 1216 1217 #ifdef CONFIG_RT_MUTEXES 1218 extern int rt_mutex_getprio(struct task_struct *p); 1219 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1220 extern void rt_mutex_adjust_pi(struct task_struct *p); 1221 #else 1222 static inline int rt_mutex_getprio(struct task_struct *p) 1223 { 1224 return p->normal_prio; 1225 } 1226 # define rt_mutex_adjust_pi(p) do { } while (0) 1227 #endif 1228 1229 extern void set_user_nice(struct task_struct *p, long nice); 1230 extern int task_prio(const struct task_struct *p); 1231 extern int task_nice(const struct task_struct *p); 1232 extern int can_nice(const struct task_struct *p, const int nice); 1233 extern int task_curr(const struct task_struct *p); 1234 extern int idle_cpu(int cpu); 1235 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1236 extern struct task_struct *idle_task(int cpu); 1237 extern struct task_struct *curr_task(int cpu); 1238 extern void set_curr_task(int cpu, struct task_struct *p); 1239 1240 void yield(void); 1241 1242 /* 1243 * The default (Linux) execution domain. 1244 */ 1245 extern struct exec_domain default_exec_domain; 1246 1247 union thread_union { 1248 struct thread_info thread_info; 1249 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1250 }; 1251 1252 #ifndef __HAVE_ARCH_KSTACK_END 1253 static inline int kstack_end(void *addr) 1254 { 1255 /* Reliable end of stack detection: 1256 * Some APM bios versions misalign the stack 1257 */ 1258 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1259 } 1260 #endif 1261 1262 extern union thread_union init_thread_union; 1263 extern struct task_struct init_task; 1264 1265 extern struct mm_struct init_mm; 1266 1267 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1268 extern struct task_struct *find_task_by_pid_type(int type, int pid); 1269 extern void __set_special_pids(pid_t session, pid_t pgrp); 1270 1271 /* per-UID process charging. */ 1272 extern struct user_struct * alloc_uid(uid_t); 1273 static inline struct user_struct *get_uid(struct user_struct *u) 1274 { 1275 atomic_inc(&u->__count); 1276 return u; 1277 } 1278 extern void free_uid(struct user_struct *); 1279 extern void switch_uid(struct user_struct *); 1280 1281 #include <asm/current.h> 1282 1283 extern void do_timer(unsigned long ticks); 1284 1285 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1286 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1287 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1288 unsigned long clone_flags)); 1289 #ifdef CONFIG_SMP 1290 extern void kick_process(struct task_struct *tsk); 1291 #else 1292 static inline void kick_process(struct task_struct *tsk) { } 1293 #endif 1294 extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags)); 1295 extern void FASTCALL(sched_exit(struct task_struct * p)); 1296 1297 extern int in_group_p(gid_t); 1298 extern int in_egroup_p(gid_t); 1299 1300 extern void proc_caches_init(void); 1301 extern void flush_signals(struct task_struct *); 1302 extern void flush_signal_handlers(struct task_struct *, int force_default); 1303 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1304 1305 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1306 { 1307 unsigned long flags; 1308 int ret; 1309 1310 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1311 ret = dequeue_signal(tsk, mask, info); 1312 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1313 1314 return ret; 1315 } 1316 1317 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1318 sigset_t *mask); 1319 extern void unblock_all_signals(void); 1320 extern void release_task(struct task_struct * p); 1321 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1322 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1323 extern int force_sigsegv(int, struct task_struct *); 1324 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1325 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1326 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1327 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1328 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1329 extern int kill_pgrp(struct pid *pid, int sig, int priv); 1330 extern int kill_pid(struct pid *pid, int sig, int priv); 1331 extern int kill_proc_info(int, struct siginfo *, pid_t); 1332 extern void do_notify_parent(struct task_struct *, int); 1333 extern void force_sig(int, struct task_struct *); 1334 extern void force_sig_specific(int, struct task_struct *); 1335 extern int send_sig(int, struct task_struct *, int); 1336 extern void zap_other_threads(struct task_struct *p); 1337 extern int kill_proc(pid_t, int, int); 1338 extern struct sigqueue *sigqueue_alloc(void); 1339 extern void sigqueue_free(struct sigqueue *); 1340 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1341 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1342 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1343 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1344 1345 static inline int kill_cad_pid(int sig, int priv) 1346 { 1347 return kill_pid(cad_pid, sig, priv); 1348 } 1349 1350 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1351 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1352 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1353 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1354 1355 static inline int is_si_special(const struct siginfo *info) 1356 { 1357 return info <= SEND_SIG_FORCED; 1358 } 1359 1360 /* True if we are on the alternate signal stack. */ 1361 1362 static inline int on_sig_stack(unsigned long sp) 1363 { 1364 return (sp - current->sas_ss_sp < current->sas_ss_size); 1365 } 1366 1367 static inline int sas_ss_flags(unsigned long sp) 1368 { 1369 return (current->sas_ss_size == 0 ? SS_DISABLE 1370 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1371 } 1372 1373 /* 1374 * Routines for handling mm_structs 1375 */ 1376 extern struct mm_struct * mm_alloc(void); 1377 1378 /* mmdrop drops the mm and the page tables */ 1379 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1380 static inline void mmdrop(struct mm_struct * mm) 1381 { 1382 if (atomic_dec_and_test(&mm->mm_count)) 1383 __mmdrop(mm); 1384 } 1385 1386 /* mmput gets rid of the mappings and all user-space */ 1387 extern void mmput(struct mm_struct *); 1388 /* Grab a reference to a task's mm, if it is not already going away */ 1389 extern struct mm_struct *get_task_mm(struct task_struct *task); 1390 /* Remove the current tasks stale references to the old mm_struct */ 1391 extern void mm_release(struct task_struct *, struct mm_struct *); 1392 1393 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1394 extern void flush_thread(void); 1395 extern void exit_thread(void); 1396 1397 extern void exit_files(struct task_struct *); 1398 extern void __cleanup_signal(struct signal_struct *); 1399 extern void __cleanup_sighand(struct sighand_struct *); 1400 extern void exit_itimers(struct signal_struct *); 1401 1402 extern NORET_TYPE void do_group_exit(int); 1403 1404 extern void daemonize(const char *, ...); 1405 extern int allow_signal(int); 1406 extern int disallow_signal(int); 1407 1408 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1409 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1410 struct task_struct *fork_idle(int); 1411 1412 extern void set_task_comm(struct task_struct *tsk, char *from); 1413 extern void get_task_comm(char *to, struct task_struct *tsk); 1414 1415 #ifdef CONFIG_SMP 1416 extern void wait_task_inactive(struct task_struct * p); 1417 #else 1418 #define wait_task_inactive(p) do { } while (0) 1419 #endif 1420 1421 #define remove_parent(p) list_del_init(&(p)->sibling) 1422 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1423 1424 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1425 1426 #define for_each_process(p) \ 1427 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1428 1429 /* 1430 * Careful: do_each_thread/while_each_thread is a double loop so 1431 * 'break' will not work as expected - use goto instead. 1432 */ 1433 #define do_each_thread(g, t) \ 1434 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1435 1436 #define while_each_thread(g, t) \ 1437 while ((t = next_thread(t)) != g) 1438 1439 /* de_thread depends on thread_group_leader not being a pid based check */ 1440 #define thread_group_leader(p) (p == p->group_leader) 1441 1442 /* Do to the insanities of de_thread it is possible for a process 1443 * to have the pid of the thread group leader without actually being 1444 * the thread group leader. For iteration through the pids in proc 1445 * all we care about is that we have a task with the appropriate 1446 * pid, we don't actually care if we have the right task. 1447 */ 1448 static inline int has_group_leader_pid(struct task_struct *p) 1449 { 1450 return p->pid == p->tgid; 1451 } 1452 1453 static inline struct task_struct *next_thread(const struct task_struct *p) 1454 { 1455 return list_entry(rcu_dereference(p->thread_group.next), 1456 struct task_struct, thread_group); 1457 } 1458 1459 static inline int thread_group_empty(struct task_struct *p) 1460 { 1461 return list_empty(&p->thread_group); 1462 } 1463 1464 #define delay_group_leader(p) \ 1465 (thread_group_leader(p) && !thread_group_empty(p)) 1466 1467 /* 1468 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1469 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1470 * pins the final release of task.io_context. Also protects ->cpuset. 1471 * 1472 * Nests both inside and outside of read_lock(&tasklist_lock). 1473 * It must not be nested with write_lock_irq(&tasklist_lock), 1474 * neither inside nor outside. 1475 */ 1476 static inline void task_lock(struct task_struct *p) 1477 { 1478 spin_lock(&p->alloc_lock); 1479 } 1480 1481 static inline void task_unlock(struct task_struct *p) 1482 { 1483 spin_unlock(&p->alloc_lock); 1484 } 1485 1486 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1487 unsigned long *flags); 1488 1489 static inline void unlock_task_sighand(struct task_struct *tsk, 1490 unsigned long *flags) 1491 { 1492 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1493 } 1494 1495 #ifndef __HAVE_THREAD_FUNCTIONS 1496 1497 #define task_thread_info(task) (task)->thread_info 1498 #define task_stack_page(task) ((void*)((task)->thread_info)) 1499 1500 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1501 { 1502 *task_thread_info(p) = *task_thread_info(org); 1503 task_thread_info(p)->task = p; 1504 } 1505 1506 static inline unsigned long *end_of_stack(struct task_struct *p) 1507 { 1508 return (unsigned long *)(p->thread_info + 1); 1509 } 1510 1511 #endif 1512 1513 /* set thread flags in other task's structures 1514 * - see asm/thread_info.h for TIF_xxxx flags available 1515 */ 1516 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1517 { 1518 set_ti_thread_flag(task_thread_info(tsk), flag); 1519 } 1520 1521 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1522 { 1523 clear_ti_thread_flag(task_thread_info(tsk), flag); 1524 } 1525 1526 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1527 { 1528 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1529 } 1530 1531 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1532 { 1533 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1534 } 1535 1536 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1537 { 1538 return test_ti_thread_flag(task_thread_info(tsk), flag); 1539 } 1540 1541 static inline void set_tsk_need_resched(struct task_struct *tsk) 1542 { 1543 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1544 } 1545 1546 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1547 { 1548 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1549 } 1550 1551 static inline int signal_pending(struct task_struct *p) 1552 { 1553 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1554 } 1555 1556 static inline int need_resched(void) 1557 { 1558 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1559 } 1560 1561 /* 1562 * cond_resched() and cond_resched_lock(): latency reduction via 1563 * explicit rescheduling in places that are safe. The return 1564 * value indicates whether a reschedule was done in fact. 1565 * cond_resched_lock() will drop the spinlock before scheduling, 1566 * cond_resched_softirq() will enable bhs before scheduling. 1567 */ 1568 extern int cond_resched(void); 1569 extern int cond_resched_lock(spinlock_t * lock); 1570 extern int cond_resched_softirq(void); 1571 1572 /* 1573 * Does a critical section need to be broken due to another 1574 * task waiting?: 1575 */ 1576 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1577 # define need_lockbreak(lock) ((lock)->break_lock) 1578 #else 1579 # define need_lockbreak(lock) 0 1580 #endif 1581 1582 /* 1583 * Does a critical section need to be broken due to another 1584 * task waiting or preemption being signalled: 1585 */ 1586 static inline int lock_need_resched(spinlock_t *lock) 1587 { 1588 if (need_lockbreak(lock) || need_resched()) 1589 return 1; 1590 return 0; 1591 } 1592 1593 /* Reevaluate whether the task has signals pending delivery. 1594 This is required every time the blocked sigset_t changes. 1595 callers must hold sighand->siglock. */ 1596 1597 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1598 extern void recalc_sigpending(void); 1599 1600 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1601 1602 /* 1603 * Wrappers for p->thread_info->cpu access. No-op on UP. 1604 */ 1605 #ifdef CONFIG_SMP 1606 1607 static inline unsigned int task_cpu(const struct task_struct *p) 1608 { 1609 return task_thread_info(p)->cpu; 1610 } 1611 1612 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1613 { 1614 task_thread_info(p)->cpu = cpu; 1615 } 1616 1617 #else 1618 1619 static inline unsigned int task_cpu(const struct task_struct *p) 1620 { 1621 return 0; 1622 } 1623 1624 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1625 { 1626 } 1627 1628 #endif /* CONFIG_SMP */ 1629 1630 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1631 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1632 #else 1633 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1634 { 1635 mm->mmap_base = TASK_UNMAPPED_BASE; 1636 mm->get_unmapped_area = arch_get_unmapped_area; 1637 mm->unmap_area = arch_unmap_area; 1638 } 1639 #endif 1640 1641 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1642 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1643 1644 #include <linux/sysdev.h> 1645 extern int sched_mc_power_savings, sched_smt_power_savings; 1646 extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings; 1647 extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls); 1648 1649 extern void normalize_rt_tasks(void); 1650 1651 #ifdef CONFIG_TASK_XACCT 1652 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 1653 { 1654 tsk->rchar += amt; 1655 } 1656 1657 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 1658 { 1659 tsk->wchar += amt; 1660 } 1661 1662 static inline void inc_syscr(struct task_struct *tsk) 1663 { 1664 tsk->syscr++; 1665 } 1666 1667 static inline void inc_syscw(struct task_struct *tsk) 1668 { 1669 tsk->syscw++; 1670 } 1671 #else 1672 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 1673 { 1674 } 1675 1676 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 1677 { 1678 } 1679 1680 static inline void inc_syscr(struct task_struct *tsk) 1681 { 1682 } 1683 1684 static inline void inc_syscw(struct task_struct *tsk) 1685 { 1686 } 1687 #endif 1688 1689 #endif /* __KERNEL__ */ 1690 1691 #endif 1692