1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/signal_types.h> 29 #include <linux/psi_types.h> 30 #include <linux/mm_types_task.h> 31 #include <linux/task_io_accounting.h> 32 #include <linux/rseq.h> 33 34 /* task_struct member predeclarations (sorted alphabetically): */ 35 struct audit_context; 36 struct backing_dev_info; 37 struct bio_list; 38 struct blk_plug; 39 struct cfs_rq; 40 struct fs_struct; 41 struct futex_pi_state; 42 struct io_context; 43 struct mempolicy; 44 struct nameidata; 45 struct nsproxy; 46 struct perf_event_context; 47 struct pid_namespace; 48 struct pipe_inode_info; 49 struct rcu_node; 50 struct reclaim_state; 51 struct capture_control; 52 struct robust_list_head; 53 struct sched_attr; 54 struct sched_param; 55 struct seq_file; 56 struct sighand_struct; 57 struct signal_struct; 58 struct task_delay_info; 59 struct task_group; 60 61 /* 62 * Task state bitmask. NOTE! These bits are also 63 * encoded in fs/proc/array.c: get_task_state(). 64 * 65 * We have two separate sets of flags: task->state 66 * is about runnability, while task->exit_state are 67 * about the task exiting. Confusing, but this way 68 * modifying one set can't modify the other one by 69 * mistake. 70 */ 71 72 /* Used in tsk->state: */ 73 #define TASK_RUNNING 0x0000 74 #define TASK_INTERRUPTIBLE 0x0001 75 #define TASK_UNINTERRUPTIBLE 0x0002 76 #define __TASK_STOPPED 0x0004 77 #define __TASK_TRACED 0x0008 78 /* Used in tsk->exit_state: */ 79 #define EXIT_DEAD 0x0010 80 #define EXIT_ZOMBIE 0x0020 81 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 82 /* Used in tsk->state again: */ 83 #define TASK_PARKED 0x0040 84 #define TASK_DEAD 0x0080 85 #define TASK_WAKEKILL 0x0100 86 #define TASK_WAKING 0x0200 87 #define TASK_NOLOAD 0x0400 88 #define TASK_NEW 0x0800 89 #define TASK_STATE_MAX 0x1000 90 91 /* Convenience macros for the sake of set_current_state: */ 92 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 93 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 94 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 95 96 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 97 98 /* Convenience macros for the sake of wake_up(): */ 99 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 100 101 /* get_task_state(): */ 102 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 103 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 104 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 105 TASK_PARKED) 106 107 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 108 109 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 110 111 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 112 113 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 114 (task->flags & PF_FROZEN) == 0 && \ 115 (task->state & TASK_NOLOAD) == 0) 116 117 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 118 119 /* 120 * Special states are those that do not use the normal wait-loop pattern. See 121 * the comment with set_special_state(). 122 */ 123 #define is_special_task_state(state) \ 124 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 125 126 #define __set_current_state(state_value) \ 127 do { \ 128 WARN_ON_ONCE(is_special_task_state(state_value));\ 129 current->task_state_change = _THIS_IP_; \ 130 current->state = (state_value); \ 131 } while (0) 132 133 #define set_current_state(state_value) \ 134 do { \ 135 WARN_ON_ONCE(is_special_task_state(state_value));\ 136 current->task_state_change = _THIS_IP_; \ 137 smp_store_mb(current->state, (state_value)); \ 138 } while (0) 139 140 #define set_special_state(state_value) \ 141 do { \ 142 unsigned long flags; /* may shadow */ \ 143 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 144 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 145 current->task_state_change = _THIS_IP_; \ 146 current->state = (state_value); \ 147 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 148 } while (0) 149 #else 150 /* 151 * set_current_state() includes a barrier so that the write of current->state 152 * is correctly serialised wrt the caller's subsequent test of whether to 153 * actually sleep: 154 * 155 * for (;;) { 156 * set_current_state(TASK_UNINTERRUPTIBLE); 157 * if (!need_sleep) 158 * break; 159 * 160 * schedule(); 161 * } 162 * __set_current_state(TASK_RUNNING); 163 * 164 * If the caller does not need such serialisation (because, for instance, the 165 * condition test and condition change and wakeup are under the same lock) then 166 * use __set_current_state(). 167 * 168 * The above is typically ordered against the wakeup, which does: 169 * 170 * need_sleep = false; 171 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 172 * 173 * where wake_up_state() executes a full memory barrier before accessing the 174 * task state. 175 * 176 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 177 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 178 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 179 * 180 * However, with slightly different timing the wakeup TASK_RUNNING store can 181 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 182 * a problem either because that will result in one extra go around the loop 183 * and our @cond test will save the day. 184 * 185 * Also see the comments of try_to_wake_up(). 186 */ 187 #define __set_current_state(state_value) \ 188 current->state = (state_value) 189 190 #define set_current_state(state_value) \ 191 smp_store_mb(current->state, (state_value)) 192 193 /* 194 * set_special_state() should be used for those states when the blocking task 195 * can not use the regular condition based wait-loop. In that case we must 196 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 197 * will not collide with our state change. 198 */ 199 #define set_special_state(state_value) \ 200 do { \ 201 unsigned long flags; /* may shadow */ \ 202 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 203 current->state = (state_value); \ 204 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 205 } while (0) 206 207 #endif 208 209 /* Task command name length: */ 210 #define TASK_COMM_LEN 16 211 212 extern void scheduler_tick(void); 213 214 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 215 216 extern long schedule_timeout(long timeout); 217 extern long schedule_timeout_interruptible(long timeout); 218 extern long schedule_timeout_killable(long timeout); 219 extern long schedule_timeout_uninterruptible(long timeout); 220 extern long schedule_timeout_idle(long timeout); 221 asmlinkage void schedule(void); 222 extern void schedule_preempt_disabled(void); 223 224 extern int __must_check io_schedule_prepare(void); 225 extern void io_schedule_finish(int token); 226 extern long io_schedule_timeout(long timeout); 227 extern void io_schedule(void); 228 229 /** 230 * struct prev_cputime - snapshot of system and user cputime 231 * @utime: time spent in user mode 232 * @stime: time spent in system mode 233 * @lock: protects the above two fields 234 * 235 * Stores previous user/system time values such that we can guarantee 236 * monotonicity. 237 */ 238 struct prev_cputime { 239 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 240 u64 utime; 241 u64 stime; 242 raw_spinlock_t lock; 243 #endif 244 }; 245 246 /** 247 * struct task_cputime - collected CPU time counts 248 * @utime: time spent in user mode, in nanoseconds 249 * @stime: time spent in kernel mode, in nanoseconds 250 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 251 * 252 * This structure groups together three kinds of CPU time that are tracked for 253 * threads and thread groups. Most things considering CPU time want to group 254 * these counts together and treat all three of them in parallel. 255 */ 256 struct task_cputime { 257 u64 utime; 258 u64 stime; 259 unsigned long long sum_exec_runtime; 260 }; 261 262 /* Alternate field names when used on cache expirations: */ 263 #define virt_exp utime 264 #define prof_exp stime 265 #define sched_exp sum_exec_runtime 266 267 enum vtime_state { 268 /* Task is sleeping or running in a CPU with VTIME inactive: */ 269 VTIME_INACTIVE = 0, 270 /* Task runs in userspace in a CPU with VTIME active: */ 271 VTIME_USER, 272 /* Task runs in kernelspace in a CPU with VTIME active: */ 273 VTIME_SYS, 274 }; 275 276 struct vtime { 277 seqcount_t seqcount; 278 unsigned long long starttime; 279 enum vtime_state state; 280 u64 utime; 281 u64 stime; 282 u64 gtime; 283 }; 284 285 struct sched_info { 286 #ifdef CONFIG_SCHED_INFO 287 /* Cumulative counters: */ 288 289 /* # of times we have run on this CPU: */ 290 unsigned long pcount; 291 292 /* Time spent waiting on a runqueue: */ 293 unsigned long long run_delay; 294 295 /* Timestamps: */ 296 297 /* When did we last run on a CPU? */ 298 unsigned long long last_arrival; 299 300 /* When were we last queued to run? */ 301 unsigned long long last_queued; 302 303 #endif /* CONFIG_SCHED_INFO */ 304 }; 305 306 /* 307 * Integer metrics need fixed point arithmetic, e.g., sched/fair 308 * has a few: load, load_avg, util_avg, freq, and capacity. 309 * 310 * We define a basic fixed point arithmetic range, and then formalize 311 * all these metrics based on that basic range. 312 */ 313 # define SCHED_FIXEDPOINT_SHIFT 10 314 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 315 316 struct load_weight { 317 unsigned long weight; 318 u32 inv_weight; 319 }; 320 321 /** 322 * struct util_est - Estimation utilization of FAIR tasks 323 * @enqueued: instantaneous estimated utilization of a task/cpu 324 * @ewma: the Exponential Weighted Moving Average (EWMA) 325 * utilization of a task 326 * 327 * Support data structure to track an Exponential Weighted Moving Average 328 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 329 * average each time a task completes an activation. Sample's weight is chosen 330 * so that the EWMA will be relatively insensitive to transient changes to the 331 * task's workload. 332 * 333 * The enqueued attribute has a slightly different meaning for tasks and cpus: 334 * - task: the task's util_avg at last task dequeue time 335 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 336 * Thus, the util_est.enqueued of a task represents the contribution on the 337 * estimated utilization of the CPU where that task is currently enqueued. 338 * 339 * Only for tasks we track a moving average of the past instantaneous 340 * estimated utilization. This allows to absorb sporadic drops in utilization 341 * of an otherwise almost periodic task. 342 */ 343 struct util_est { 344 unsigned int enqueued; 345 unsigned int ewma; 346 #define UTIL_EST_WEIGHT_SHIFT 2 347 } __attribute__((__aligned__(sizeof(u64)))); 348 349 /* 350 * The load_avg/util_avg accumulates an infinite geometric series 351 * (see __update_load_avg() in kernel/sched/fair.c). 352 * 353 * [load_avg definition] 354 * 355 * load_avg = runnable% * scale_load_down(load) 356 * 357 * where runnable% is the time ratio that a sched_entity is runnable. 358 * For cfs_rq, it is the aggregated load_avg of all runnable and 359 * blocked sched_entities. 360 * 361 * [util_avg definition] 362 * 363 * util_avg = running% * SCHED_CAPACITY_SCALE 364 * 365 * where running% is the time ratio that a sched_entity is running on 366 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 367 * and blocked sched_entities. 368 * 369 * load_avg and util_avg don't direcly factor frequency scaling and CPU 370 * capacity scaling. The scaling is done through the rq_clock_pelt that 371 * is used for computing those signals (see update_rq_clock_pelt()) 372 * 373 * N.B., the above ratios (runnable% and running%) themselves are in the 374 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 375 * to as large a range as necessary. This is for example reflected by 376 * util_avg's SCHED_CAPACITY_SCALE. 377 * 378 * [Overflow issue] 379 * 380 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 381 * with the highest load (=88761), always runnable on a single cfs_rq, 382 * and should not overflow as the number already hits PID_MAX_LIMIT. 383 * 384 * For all other cases (including 32-bit kernels), struct load_weight's 385 * weight will overflow first before we do, because: 386 * 387 * Max(load_avg) <= Max(load.weight) 388 * 389 * Then it is the load_weight's responsibility to consider overflow 390 * issues. 391 */ 392 struct sched_avg { 393 u64 last_update_time; 394 u64 load_sum; 395 u64 runnable_load_sum; 396 u32 util_sum; 397 u32 period_contrib; 398 unsigned long load_avg; 399 unsigned long runnable_load_avg; 400 unsigned long util_avg; 401 struct util_est util_est; 402 } ____cacheline_aligned; 403 404 struct sched_statistics { 405 #ifdef CONFIG_SCHEDSTATS 406 u64 wait_start; 407 u64 wait_max; 408 u64 wait_count; 409 u64 wait_sum; 410 u64 iowait_count; 411 u64 iowait_sum; 412 413 u64 sleep_start; 414 u64 sleep_max; 415 s64 sum_sleep_runtime; 416 417 u64 block_start; 418 u64 block_max; 419 u64 exec_max; 420 u64 slice_max; 421 422 u64 nr_migrations_cold; 423 u64 nr_failed_migrations_affine; 424 u64 nr_failed_migrations_running; 425 u64 nr_failed_migrations_hot; 426 u64 nr_forced_migrations; 427 428 u64 nr_wakeups; 429 u64 nr_wakeups_sync; 430 u64 nr_wakeups_migrate; 431 u64 nr_wakeups_local; 432 u64 nr_wakeups_remote; 433 u64 nr_wakeups_affine; 434 u64 nr_wakeups_affine_attempts; 435 u64 nr_wakeups_passive; 436 u64 nr_wakeups_idle; 437 #endif 438 }; 439 440 struct sched_entity { 441 /* For load-balancing: */ 442 struct load_weight load; 443 unsigned long runnable_weight; 444 struct rb_node run_node; 445 struct list_head group_node; 446 unsigned int on_rq; 447 448 u64 exec_start; 449 u64 sum_exec_runtime; 450 u64 vruntime; 451 u64 prev_sum_exec_runtime; 452 453 u64 nr_migrations; 454 455 struct sched_statistics statistics; 456 457 #ifdef CONFIG_FAIR_GROUP_SCHED 458 int depth; 459 struct sched_entity *parent; 460 /* rq on which this entity is (to be) queued: */ 461 struct cfs_rq *cfs_rq; 462 /* rq "owned" by this entity/group: */ 463 struct cfs_rq *my_q; 464 #endif 465 466 #ifdef CONFIG_SMP 467 /* 468 * Per entity load average tracking. 469 * 470 * Put into separate cache line so it does not 471 * collide with read-mostly values above. 472 */ 473 struct sched_avg avg; 474 #endif 475 }; 476 477 struct sched_rt_entity { 478 struct list_head run_list; 479 unsigned long timeout; 480 unsigned long watchdog_stamp; 481 unsigned int time_slice; 482 unsigned short on_rq; 483 unsigned short on_list; 484 485 struct sched_rt_entity *back; 486 #ifdef CONFIG_RT_GROUP_SCHED 487 struct sched_rt_entity *parent; 488 /* rq on which this entity is (to be) queued: */ 489 struct rt_rq *rt_rq; 490 /* rq "owned" by this entity/group: */ 491 struct rt_rq *my_q; 492 #endif 493 } __randomize_layout; 494 495 struct sched_dl_entity { 496 struct rb_node rb_node; 497 498 /* 499 * Original scheduling parameters. Copied here from sched_attr 500 * during sched_setattr(), they will remain the same until 501 * the next sched_setattr(). 502 */ 503 u64 dl_runtime; /* Maximum runtime for each instance */ 504 u64 dl_deadline; /* Relative deadline of each instance */ 505 u64 dl_period; /* Separation of two instances (period) */ 506 u64 dl_bw; /* dl_runtime / dl_period */ 507 u64 dl_density; /* dl_runtime / dl_deadline */ 508 509 /* 510 * Actual scheduling parameters. Initialized with the values above, 511 * they are continuously updated during task execution. Note that 512 * the remaining runtime could be < 0 in case we are in overrun. 513 */ 514 s64 runtime; /* Remaining runtime for this instance */ 515 u64 deadline; /* Absolute deadline for this instance */ 516 unsigned int flags; /* Specifying the scheduler behaviour */ 517 518 /* 519 * Some bool flags: 520 * 521 * @dl_throttled tells if we exhausted the runtime. If so, the 522 * task has to wait for a replenishment to be performed at the 523 * next firing of dl_timer. 524 * 525 * @dl_boosted tells if we are boosted due to DI. If so we are 526 * outside bandwidth enforcement mechanism (but only until we 527 * exit the critical section); 528 * 529 * @dl_yielded tells if task gave up the CPU before consuming 530 * all its available runtime during the last job. 531 * 532 * @dl_non_contending tells if the task is inactive while still 533 * contributing to the active utilization. In other words, it 534 * indicates if the inactive timer has been armed and its handler 535 * has not been executed yet. This flag is useful to avoid race 536 * conditions between the inactive timer handler and the wakeup 537 * code. 538 * 539 * @dl_overrun tells if the task asked to be informed about runtime 540 * overruns. 541 */ 542 unsigned int dl_throttled : 1; 543 unsigned int dl_boosted : 1; 544 unsigned int dl_yielded : 1; 545 unsigned int dl_non_contending : 1; 546 unsigned int dl_overrun : 1; 547 548 /* 549 * Bandwidth enforcement timer. Each -deadline task has its 550 * own bandwidth to be enforced, thus we need one timer per task. 551 */ 552 struct hrtimer dl_timer; 553 554 /* 555 * Inactive timer, responsible for decreasing the active utilization 556 * at the "0-lag time". When a -deadline task blocks, it contributes 557 * to GRUB's active utilization until the "0-lag time", hence a 558 * timer is needed to decrease the active utilization at the correct 559 * time. 560 */ 561 struct hrtimer inactive_timer; 562 }; 563 564 union rcu_special { 565 struct { 566 u8 blocked; 567 u8 need_qs; 568 u8 exp_hint; /* Hint for performance. */ 569 u8 pad; /* No garbage from compiler! */ 570 } b; /* Bits. */ 571 u32 s; /* Set of bits. */ 572 }; 573 574 enum perf_event_task_context { 575 perf_invalid_context = -1, 576 perf_hw_context = 0, 577 perf_sw_context, 578 perf_nr_task_contexts, 579 }; 580 581 struct wake_q_node { 582 struct wake_q_node *next; 583 }; 584 585 struct task_struct { 586 #ifdef CONFIG_THREAD_INFO_IN_TASK 587 /* 588 * For reasons of header soup (see current_thread_info()), this 589 * must be the first element of task_struct. 590 */ 591 struct thread_info thread_info; 592 #endif 593 /* -1 unrunnable, 0 runnable, >0 stopped: */ 594 volatile long state; 595 596 /* 597 * This begins the randomizable portion of task_struct. Only 598 * scheduling-critical items should be added above here. 599 */ 600 randomized_struct_fields_start 601 602 void *stack; 603 refcount_t usage; 604 /* Per task flags (PF_*), defined further below: */ 605 unsigned int flags; 606 unsigned int ptrace; 607 608 #ifdef CONFIG_SMP 609 struct llist_node wake_entry; 610 int on_cpu; 611 #ifdef CONFIG_THREAD_INFO_IN_TASK 612 /* Current CPU: */ 613 unsigned int cpu; 614 #endif 615 unsigned int wakee_flips; 616 unsigned long wakee_flip_decay_ts; 617 struct task_struct *last_wakee; 618 619 /* 620 * recent_used_cpu is initially set as the last CPU used by a task 621 * that wakes affine another task. Waker/wakee relationships can 622 * push tasks around a CPU where each wakeup moves to the next one. 623 * Tracking a recently used CPU allows a quick search for a recently 624 * used CPU that may be idle. 625 */ 626 int recent_used_cpu; 627 int wake_cpu; 628 #endif 629 int on_rq; 630 631 int prio; 632 int static_prio; 633 int normal_prio; 634 unsigned int rt_priority; 635 636 const struct sched_class *sched_class; 637 struct sched_entity se; 638 struct sched_rt_entity rt; 639 #ifdef CONFIG_CGROUP_SCHED 640 struct task_group *sched_task_group; 641 #endif 642 struct sched_dl_entity dl; 643 644 #ifdef CONFIG_PREEMPT_NOTIFIERS 645 /* List of struct preempt_notifier: */ 646 struct hlist_head preempt_notifiers; 647 #endif 648 649 #ifdef CONFIG_BLK_DEV_IO_TRACE 650 unsigned int btrace_seq; 651 #endif 652 653 unsigned int policy; 654 int nr_cpus_allowed; 655 cpumask_t cpus_allowed; 656 657 #ifdef CONFIG_PREEMPT_RCU 658 int rcu_read_lock_nesting; 659 union rcu_special rcu_read_unlock_special; 660 struct list_head rcu_node_entry; 661 struct rcu_node *rcu_blocked_node; 662 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 663 664 #ifdef CONFIG_TASKS_RCU 665 unsigned long rcu_tasks_nvcsw; 666 u8 rcu_tasks_holdout; 667 u8 rcu_tasks_idx; 668 int rcu_tasks_idle_cpu; 669 struct list_head rcu_tasks_holdout_list; 670 #endif /* #ifdef CONFIG_TASKS_RCU */ 671 672 struct sched_info sched_info; 673 674 struct list_head tasks; 675 #ifdef CONFIG_SMP 676 struct plist_node pushable_tasks; 677 struct rb_node pushable_dl_tasks; 678 #endif 679 680 struct mm_struct *mm; 681 struct mm_struct *active_mm; 682 683 /* Per-thread vma caching: */ 684 struct vmacache vmacache; 685 686 #ifdef SPLIT_RSS_COUNTING 687 struct task_rss_stat rss_stat; 688 #endif 689 int exit_state; 690 int exit_code; 691 int exit_signal; 692 /* The signal sent when the parent dies: */ 693 int pdeath_signal; 694 /* JOBCTL_*, siglock protected: */ 695 unsigned long jobctl; 696 697 /* Used for emulating ABI behavior of previous Linux versions: */ 698 unsigned int personality; 699 700 /* Scheduler bits, serialized by scheduler locks: */ 701 unsigned sched_reset_on_fork:1; 702 unsigned sched_contributes_to_load:1; 703 unsigned sched_migrated:1; 704 unsigned sched_remote_wakeup:1; 705 #ifdef CONFIG_PSI 706 unsigned sched_psi_wake_requeue:1; 707 #endif 708 709 /* Force alignment to the next boundary: */ 710 unsigned :0; 711 712 /* Unserialized, strictly 'current' */ 713 714 /* Bit to tell LSMs we're in execve(): */ 715 unsigned in_execve:1; 716 unsigned in_iowait:1; 717 #ifndef TIF_RESTORE_SIGMASK 718 unsigned restore_sigmask:1; 719 #endif 720 #ifdef CONFIG_MEMCG 721 unsigned in_user_fault:1; 722 #endif 723 #ifdef CONFIG_COMPAT_BRK 724 unsigned brk_randomized:1; 725 #endif 726 #ifdef CONFIG_CGROUPS 727 /* disallow userland-initiated cgroup migration */ 728 unsigned no_cgroup_migration:1; 729 #endif 730 #ifdef CONFIG_BLK_CGROUP 731 /* to be used once the psi infrastructure lands upstream. */ 732 unsigned use_memdelay:1; 733 #endif 734 735 unsigned long atomic_flags; /* Flags requiring atomic access. */ 736 737 struct restart_block restart_block; 738 739 pid_t pid; 740 pid_t tgid; 741 742 #ifdef CONFIG_STACKPROTECTOR 743 /* Canary value for the -fstack-protector GCC feature: */ 744 unsigned long stack_canary; 745 #endif 746 /* 747 * Pointers to the (original) parent process, youngest child, younger sibling, 748 * older sibling, respectively. (p->father can be replaced with 749 * p->real_parent->pid) 750 */ 751 752 /* Real parent process: */ 753 struct task_struct __rcu *real_parent; 754 755 /* Recipient of SIGCHLD, wait4() reports: */ 756 struct task_struct __rcu *parent; 757 758 /* 759 * Children/sibling form the list of natural children: 760 */ 761 struct list_head children; 762 struct list_head sibling; 763 struct task_struct *group_leader; 764 765 /* 766 * 'ptraced' is the list of tasks this task is using ptrace() on. 767 * 768 * This includes both natural children and PTRACE_ATTACH targets. 769 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 770 */ 771 struct list_head ptraced; 772 struct list_head ptrace_entry; 773 774 /* PID/PID hash table linkage. */ 775 struct pid *thread_pid; 776 struct hlist_node pid_links[PIDTYPE_MAX]; 777 struct list_head thread_group; 778 struct list_head thread_node; 779 780 struct completion *vfork_done; 781 782 /* CLONE_CHILD_SETTID: */ 783 int __user *set_child_tid; 784 785 /* CLONE_CHILD_CLEARTID: */ 786 int __user *clear_child_tid; 787 788 u64 utime; 789 u64 stime; 790 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 791 u64 utimescaled; 792 u64 stimescaled; 793 #endif 794 u64 gtime; 795 struct prev_cputime prev_cputime; 796 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 797 struct vtime vtime; 798 #endif 799 800 #ifdef CONFIG_NO_HZ_FULL 801 atomic_t tick_dep_mask; 802 #endif 803 /* Context switch counts: */ 804 unsigned long nvcsw; 805 unsigned long nivcsw; 806 807 /* Monotonic time in nsecs: */ 808 u64 start_time; 809 810 /* Boot based time in nsecs: */ 811 u64 real_start_time; 812 813 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 814 unsigned long min_flt; 815 unsigned long maj_flt; 816 817 #ifdef CONFIG_POSIX_TIMERS 818 struct task_cputime cputime_expires; 819 struct list_head cpu_timers[3]; 820 #endif 821 822 /* Process credentials: */ 823 824 /* Tracer's credentials at attach: */ 825 const struct cred __rcu *ptracer_cred; 826 827 /* Objective and real subjective task credentials (COW): */ 828 const struct cred __rcu *real_cred; 829 830 /* Effective (overridable) subjective task credentials (COW): */ 831 const struct cred __rcu *cred; 832 833 /* 834 * executable name, excluding path. 835 * 836 * - normally initialized setup_new_exec() 837 * - access it with [gs]et_task_comm() 838 * - lock it with task_lock() 839 */ 840 char comm[TASK_COMM_LEN]; 841 842 struct nameidata *nameidata; 843 844 #ifdef CONFIG_SYSVIPC 845 struct sysv_sem sysvsem; 846 struct sysv_shm sysvshm; 847 #endif 848 #ifdef CONFIG_DETECT_HUNG_TASK 849 unsigned long last_switch_count; 850 unsigned long last_switch_time; 851 #endif 852 /* Filesystem information: */ 853 struct fs_struct *fs; 854 855 /* Open file information: */ 856 struct files_struct *files; 857 858 /* Namespaces: */ 859 struct nsproxy *nsproxy; 860 861 /* Signal handlers: */ 862 struct signal_struct *signal; 863 struct sighand_struct *sighand; 864 sigset_t blocked; 865 sigset_t real_blocked; 866 /* Restored if set_restore_sigmask() was used: */ 867 sigset_t saved_sigmask; 868 struct sigpending pending; 869 unsigned long sas_ss_sp; 870 size_t sas_ss_size; 871 unsigned int sas_ss_flags; 872 873 struct callback_head *task_works; 874 875 struct audit_context *audit_context; 876 #ifdef CONFIG_AUDITSYSCALL 877 kuid_t loginuid; 878 unsigned int sessionid; 879 #endif 880 struct seccomp seccomp; 881 882 /* Thread group tracking: */ 883 u32 parent_exec_id; 884 u32 self_exec_id; 885 886 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 887 spinlock_t alloc_lock; 888 889 /* Protection of the PI data structures: */ 890 raw_spinlock_t pi_lock; 891 892 struct wake_q_node wake_q; 893 894 #ifdef CONFIG_RT_MUTEXES 895 /* PI waiters blocked on a rt_mutex held by this task: */ 896 struct rb_root_cached pi_waiters; 897 /* Updated under owner's pi_lock and rq lock */ 898 struct task_struct *pi_top_task; 899 /* Deadlock detection and priority inheritance handling: */ 900 struct rt_mutex_waiter *pi_blocked_on; 901 #endif 902 903 #ifdef CONFIG_DEBUG_MUTEXES 904 /* Mutex deadlock detection: */ 905 struct mutex_waiter *blocked_on; 906 #endif 907 908 #ifdef CONFIG_TRACE_IRQFLAGS 909 unsigned int irq_events; 910 unsigned long hardirq_enable_ip; 911 unsigned long hardirq_disable_ip; 912 unsigned int hardirq_enable_event; 913 unsigned int hardirq_disable_event; 914 int hardirqs_enabled; 915 int hardirq_context; 916 unsigned long softirq_disable_ip; 917 unsigned long softirq_enable_ip; 918 unsigned int softirq_disable_event; 919 unsigned int softirq_enable_event; 920 int softirqs_enabled; 921 int softirq_context; 922 #endif 923 924 #ifdef CONFIG_LOCKDEP 925 # define MAX_LOCK_DEPTH 48UL 926 u64 curr_chain_key; 927 int lockdep_depth; 928 unsigned int lockdep_recursion; 929 struct held_lock held_locks[MAX_LOCK_DEPTH]; 930 #endif 931 932 #ifdef CONFIG_UBSAN 933 unsigned int in_ubsan; 934 #endif 935 936 /* Journalling filesystem info: */ 937 void *journal_info; 938 939 /* Stacked block device info: */ 940 struct bio_list *bio_list; 941 942 #ifdef CONFIG_BLOCK 943 /* Stack plugging: */ 944 struct blk_plug *plug; 945 #endif 946 947 /* VM state: */ 948 struct reclaim_state *reclaim_state; 949 950 struct backing_dev_info *backing_dev_info; 951 952 struct io_context *io_context; 953 954 #ifdef CONFIG_COMPACTION 955 struct capture_control *capture_control; 956 #endif 957 /* Ptrace state: */ 958 unsigned long ptrace_message; 959 kernel_siginfo_t *last_siginfo; 960 961 struct task_io_accounting ioac; 962 #ifdef CONFIG_PSI 963 /* Pressure stall state */ 964 unsigned int psi_flags; 965 #endif 966 #ifdef CONFIG_TASK_XACCT 967 /* Accumulated RSS usage: */ 968 u64 acct_rss_mem1; 969 /* Accumulated virtual memory usage: */ 970 u64 acct_vm_mem1; 971 /* stime + utime since last update: */ 972 u64 acct_timexpd; 973 #endif 974 #ifdef CONFIG_CPUSETS 975 /* Protected by ->alloc_lock: */ 976 nodemask_t mems_allowed; 977 /* Seqence number to catch updates: */ 978 seqcount_t mems_allowed_seq; 979 int cpuset_mem_spread_rotor; 980 int cpuset_slab_spread_rotor; 981 #endif 982 #ifdef CONFIG_CGROUPS 983 /* Control Group info protected by css_set_lock: */ 984 struct css_set __rcu *cgroups; 985 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 986 struct list_head cg_list; 987 #endif 988 #ifdef CONFIG_X86_CPU_RESCTRL 989 u32 closid; 990 u32 rmid; 991 #endif 992 #ifdef CONFIG_FUTEX 993 struct robust_list_head __user *robust_list; 994 #ifdef CONFIG_COMPAT 995 struct compat_robust_list_head __user *compat_robust_list; 996 #endif 997 struct list_head pi_state_list; 998 struct futex_pi_state *pi_state_cache; 999 #endif 1000 #ifdef CONFIG_PERF_EVENTS 1001 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1002 struct mutex perf_event_mutex; 1003 struct list_head perf_event_list; 1004 #endif 1005 #ifdef CONFIG_DEBUG_PREEMPT 1006 unsigned long preempt_disable_ip; 1007 #endif 1008 #ifdef CONFIG_NUMA 1009 /* Protected by alloc_lock: */ 1010 struct mempolicy *mempolicy; 1011 short il_prev; 1012 short pref_node_fork; 1013 #endif 1014 #ifdef CONFIG_NUMA_BALANCING 1015 int numa_scan_seq; 1016 unsigned int numa_scan_period; 1017 unsigned int numa_scan_period_max; 1018 int numa_preferred_nid; 1019 unsigned long numa_migrate_retry; 1020 /* Migration stamp: */ 1021 u64 node_stamp; 1022 u64 last_task_numa_placement; 1023 u64 last_sum_exec_runtime; 1024 struct callback_head numa_work; 1025 1026 struct numa_group *numa_group; 1027 1028 /* 1029 * numa_faults is an array split into four regions: 1030 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1031 * in this precise order. 1032 * 1033 * faults_memory: Exponential decaying average of faults on a per-node 1034 * basis. Scheduling placement decisions are made based on these 1035 * counts. The values remain static for the duration of a PTE scan. 1036 * faults_cpu: Track the nodes the process was running on when a NUMA 1037 * hinting fault was incurred. 1038 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1039 * during the current scan window. When the scan completes, the counts 1040 * in faults_memory and faults_cpu decay and these values are copied. 1041 */ 1042 unsigned long *numa_faults; 1043 unsigned long total_numa_faults; 1044 1045 /* 1046 * numa_faults_locality tracks if faults recorded during the last 1047 * scan window were remote/local or failed to migrate. The task scan 1048 * period is adapted based on the locality of the faults with different 1049 * weights depending on whether they were shared or private faults 1050 */ 1051 unsigned long numa_faults_locality[3]; 1052 1053 unsigned long numa_pages_migrated; 1054 #endif /* CONFIG_NUMA_BALANCING */ 1055 1056 #ifdef CONFIG_RSEQ 1057 struct rseq __user *rseq; 1058 u32 rseq_len; 1059 u32 rseq_sig; 1060 /* 1061 * RmW on rseq_event_mask must be performed atomically 1062 * with respect to preemption. 1063 */ 1064 unsigned long rseq_event_mask; 1065 #endif 1066 1067 struct tlbflush_unmap_batch tlb_ubc; 1068 1069 struct rcu_head rcu; 1070 1071 /* Cache last used pipe for splice(): */ 1072 struct pipe_inode_info *splice_pipe; 1073 1074 struct page_frag task_frag; 1075 1076 #ifdef CONFIG_TASK_DELAY_ACCT 1077 struct task_delay_info *delays; 1078 #endif 1079 1080 #ifdef CONFIG_FAULT_INJECTION 1081 int make_it_fail; 1082 unsigned int fail_nth; 1083 #endif 1084 /* 1085 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1086 * balance_dirty_pages() for a dirty throttling pause: 1087 */ 1088 int nr_dirtied; 1089 int nr_dirtied_pause; 1090 /* Start of a write-and-pause period: */ 1091 unsigned long dirty_paused_when; 1092 1093 #ifdef CONFIG_LATENCYTOP 1094 int latency_record_count; 1095 struct latency_record latency_record[LT_SAVECOUNT]; 1096 #endif 1097 /* 1098 * Time slack values; these are used to round up poll() and 1099 * select() etc timeout values. These are in nanoseconds. 1100 */ 1101 u64 timer_slack_ns; 1102 u64 default_timer_slack_ns; 1103 1104 #ifdef CONFIG_KASAN 1105 unsigned int kasan_depth; 1106 #endif 1107 1108 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1109 /* Index of current stored address in ret_stack: */ 1110 int curr_ret_stack; 1111 int curr_ret_depth; 1112 1113 /* Stack of return addresses for return function tracing: */ 1114 struct ftrace_ret_stack *ret_stack; 1115 1116 /* Timestamp for last schedule: */ 1117 unsigned long long ftrace_timestamp; 1118 1119 /* 1120 * Number of functions that haven't been traced 1121 * because of depth overrun: 1122 */ 1123 atomic_t trace_overrun; 1124 1125 /* Pause tracing: */ 1126 atomic_t tracing_graph_pause; 1127 #endif 1128 1129 #ifdef CONFIG_TRACING 1130 /* State flags for use by tracers: */ 1131 unsigned long trace; 1132 1133 /* Bitmask and counter of trace recursion: */ 1134 unsigned long trace_recursion; 1135 #endif /* CONFIG_TRACING */ 1136 1137 #ifdef CONFIG_KCOV 1138 /* Coverage collection mode enabled for this task (0 if disabled): */ 1139 unsigned int kcov_mode; 1140 1141 /* Size of the kcov_area: */ 1142 unsigned int kcov_size; 1143 1144 /* Buffer for coverage collection: */ 1145 void *kcov_area; 1146 1147 /* KCOV descriptor wired with this task or NULL: */ 1148 struct kcov *kcov; 1149 #endif 1150 1151 #ifdef CONFIG_MEMCG 1152 struct mem_cgroup *memcg_in_oom; 1153 gfp_t memcg_oom_gfp_mask; 1154 int memcg_oom_order; 1155 1156 /* Number of pages to reclaim on returning to userland: */ 1157 unsigned int memcg_nr_pages_over_high; 1158 1159 /* Used by memcontrol for targeted memcg charge: */ 1160 struct mem_cgroup *active_memcg; 1161 #endif 1162 1163 #ifdef CONFIG_BLK_CGROUP 1164 struct request_queue *throttle_queue; 1165 #endif 1166 1167 #ifdef CONFIG_UPROBES 1168 struct uprobe_task *utask; 1169 #endif 1170 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1171 unsigned int sequential_io; 1172 unsigned int sequential_io_avg; 1173 #endif 1174 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1175 unsigned long task_state_change; 1176 #endif 1177 int pagefault_disabled; 1178 #ifdef CONFIG_MMU 1179 struct task_struct *oom_reaper_list; 1180 #endif 1181 #ifdef CONFIG_VMAP_STACK 1182 struct vm_struct *stack_vm_area; 1183 #endif 1184 #ifdef CONFIG_THREAD_INFO_IN_TASK 1185 /* A live task holds one reference: */ 1186 refcount_t stack_refcount; 1187 #endif 1188 #ifdef CONFIG_LIVEPATCH 1189 int patch_state; 1190 #endif 1191 #ifdef CONFIG_SECURITY 1192 /* Used by LSM modules for access restriction: */ 1193 void *security; 1194 #endif 1195 1196 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1197 unsigned long lowest_stack; 1198 unsigned long prev_lowest_stack; 1199 #endif 1200 1201 /* 1202 * New fields for task_struct should be added above here, so that 1203 * they are included in the randomized portion of task_struct. 1204 */ 1205 randomized_struct_fields_end 1206 1207 /* CPU-specific state of this task: */ 1208 struct thread_struct thread; 1209 1210 /* 1211 * WARNING: on x86, 'thread_struct' contains a variable-sized 1212 * structure. It *MUST* be at the end of 'task_struct'. 1213 * 1214 * Do not put anything below here! 1215 */ 1216 }; 1217 1218 static inline struct pid *task_pid(struct task_struct *task) 1219 { 1220 return task->thread_pid; 1221 } 1222 1223 /* 1224 * the helpers to get the task's different pids as they are seen 1225 * from various namespaces 1226 * 1227 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1228 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1229 * current. 1230 * task_xid_nr_ns() : id seen from the ns specified; 1231 * 1232 * see also pid_nr() etc in include/linux/pid.h 1233 */ 1234 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1235 1236 static inline pid_t task_pid_nr(struct task_struct *tsk) 1237 { 1238 return tsk->pid; 1239 } 1240 1241 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1242 { 1243 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1244 } 1245 1246 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1247 { 1248 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1249 } 1250 1251 1252 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1253 { 1254 return tsk->tgid; 1255 } 1256 1257 /** 1258 * pid_alive - check that a task structure is not stale 1259 * @p: Task structure to be checked. 1260 * 1261 * Test if a process is not yet dead (at most zombie state) 1262 * If pid_alive fails, then pointers within the task structure 1263 * can be stale and must not be dereferenced. 1264 * 1265 * Return: 1 if the process is alive. 0 otherwise. 1266 */ 1267 static inline int pid_alive(const struct task_struct *p) 1268 { 1269 return p->thread_pid != NULL; 1270 } 1271 1272 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1273 { 1274 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1275 } 1276 1277 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1278 { 1279 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1280 } 1281 1282 1283 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1284 { 1285 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1286 } 1287 1288 static inline pid_t task_session_vnr(struct task_struct *tsk) 1289 { 1290 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1291 } 1292 1293 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1294 { 1295 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1296 } 1297 1298 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1299 { 1300 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1301 } 1302 1303 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1304 { 1305 pid_t pid = 0; 1306 1307 rcu_read_lock(); 1308 if (pid_alive(tsk)) 1309 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1310 rcu_read_unlock(); 1311 1312 return pid; 1313 } 1314 1315 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1316 { 1317 return task_ppid_nr_ns(tsk, &init_pid_ns); 1318 } 1319 1320 /* Obsolete, do not use: */ 1321 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1322 { 1323 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1324 } 1325 1326 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1327 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1328 1329 static inline unsigned int task_state_index(struct task_struct *tsk) 1330 { 1331 unsigned int tsk_state = READ_ONCE(tsk->state); 1332 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1333 1334 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1335 1336 if (tsk_state == TASK_IDLE) 1337 state = TASK_REPORT_IDLE; 1338 1339 return fls(state); 1340 } 1341 1342 static inline char task_index_to_char(unsigned int state) 1343 { 1344 static const char state_char[] = "RSDTtXZPI"; 1345 1346 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1347 1348 return state_char[state]; 1349 } 1350 1351 static inline char task_state_to_char(struct task_struct *tsk) 1352 { 1353 return task_index_to_char(task_state_index(tsk)); 1354 } 1355 1356 /** 1357 * is_global_init - check if a task structure is init. Since init 1358 * is free to have sub-threads we need to check tgid. 1359 * @tsk: Task structure to be checked. 1360 * 1361 * Check if a task structure is the first user space task the kernel created. 1362 * 1363 * Return: 1 if the task structure is init. 0 otherwise. 1364 */ 1365 static inline int is_global_init(struct task_struct *tsk) 1366 { 1367 return task_tgid_nr(tsk) == 1; 1368 } 1369 1370 extern struct pid *cad_pid; 1371 1372 /* 1373 * Per process flags 1374 */ 1375 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1376 #define PF_EXITING 0x00000004 /* Getting shut down */ 1377 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1378 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1379 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1380 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1381 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1382 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1383 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1384 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1385 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1386 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1387 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1388 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1389 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1390 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1391 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1392 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1393 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1394 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1395 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1396 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1397 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1398 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1399 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1400 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1401 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1402 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1403 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1404 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1405 1406 /* 1407 * Only the _current_ task can read/write to tsk->flags, but other 1408 * tasks can access tsk->flags in readonly mode for example 1409 * with tsk_used_math (like during threaded core dumping). 1410 * There is however an exception to this rule during ptrace 1411 * or during fork: the ptracer task is allowed to write to the 1412 * child->flags of its traced child (same goes for fork, the parent 1413 * can write to the child->flags), because we're guaranteed the 1414 * child is not running and in turn not changing child->flags 1415 * at the same time the parent does it. 1416 */ 1417 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1418 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1419 #define clear_used_math() clear_stopped_child_used_math(current) 1420 #define set_used_math() set_stopped_child_used_math(current) 1421 1422 #define conditional_stopped_child_used_math(condition, child) \ 1423 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1424 1425 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1426 1427 #define copy_to_stopped_child_used_math(child) \ 1428 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1429 1430 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1431 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1432 #define used_math() tsk_used_math(current) 1433 1434 static inline bool is_percpu_thread(void) 1435 { 1436 #ifdef CONFIG_SMP 1437 return (current->flags & PF_NO_SETAFFINITY) && 1438 (current->nr_cpus_allowed == 1); 1439 #else 1440 return true; 1441 #endif 1442 } 1443 1444 /* Per-process atomic flags. */ 1445 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1446 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1447 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1448 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1449 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1450 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1451 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1452 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1453 1454 #define TASK_PFA_TEST(name, func) \ 1455 static inline bool task_##func(struct task_struct *p) \ 1456 { return test_bit(PFA_##name, &p->atomic_flags); } 1457 1458 #define TASK_PFA_SET(name, func) \ 1459 static inline void task_set_##func(struct task_struct *p) \ 1460 { set_bit(PFA_##name, &p->atomic_flags); } 1461 1462 #define TASK_PFA_CLEAR(name, func) \ 1463 static inline void task_clear_##func(struct task_struct *p) \ 1464 { clear_bit(PFA_##name, &p->atomic_flags); } 1465 1466 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1467 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1468 1469 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1470 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1471 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1472 1473 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1474 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1475 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1476 1477 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1478 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1479 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1480 1481 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1482 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1483 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1484 1485 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1486 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1487 1488 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1489 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1490 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1491 1492 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1493 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1494 1495 static inline void 1496 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1497 { 1498 current->flags &= ~flags; 1499 current->flags |= orig_flags & flags; 1500 } 1501 1502 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1503 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1504 #ifdef CONFIG_SMP 1505 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1506 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1507 #else 1508 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1509 { 1510 } 1511 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1512 { 1513 if (!cpumask_test_cpu(0, new_mask)) 1514 return -EINVAL; 1515 return 0; 1516 } 1517 #endif 1518 1519 #ifndef cpu_relax_yield 1520 #define cpu_relax_yield() cpu_relax() 1521 #endif 1522 1523 extern int yield_to(struct task_struct *p, bool preempt); 1524 extern void set_user_nice(struct task_struct *p, long nice); 1525 extern int task_prio(const struct task_struct *p); 1526 1527 /** 1528 * task_nice - return the nice value of a given task. 1529 * @p: the task in question. 1530 * 1531 * Return: The nice value [ -20 ... 0 ... 19 ]. 1532 */ 1533 static inline int task_nice(const struct task_struct *p) 1534 { 1535 return PRIO_TO_NICE((p)->static_prio); 1536 } 1537 1538 extern int can_nice(const struct task_struct *p, const int nice); 1539 extern int task_curr(const struct task_struct *p); 1540 extern int idle_cpu(int cpu); 1541 extern int available_idle_cpu(int cpu); 1542 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1543 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1544 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1545 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1546 extern struct task_struct *idle_task(int cpu); 1547 1548 /** 1549 * is_idle_task - is the specified task an idle task? 1550 * @p: the task in question. 1551 * 1552 * Return: 1 if @p is an idle task. 0 otherwise. 1553 */ 1554 static inline bool is_idle_task(const struct task_struct *p) 1555 { 1556 return !!(p->flags & PF_IDLE); 1557 } 1558 1559 extern struct task_struct *curr_task(int cpu); 1560 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1561 1562 void yield(void); 1563 1564 union thread_union { 1565 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1566 struct task_struct task; 1567 #endif 1568 #ifndef CONFIG_THREAD_INFO_IN_TASK 1569 struct thread_info thread_info; 1570 #endif 1571 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1572 }; 1573 1574 #ifndef CONFIG_THREAD_INFO_IN_TASK 1575 extern struct thread_info init_thread_info; 1576 #endif 1577 1578 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1579 1580 #ifdef CONFIG_THREAD_INFO_IN_TASK 1581 static inline struct thread_info *task_thread_info(struct task_struct *task) 1582 { 1583 return &task->thread_info; 1584 } 1585 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1586 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1587 #endif 1588 1589 /* 1590 * find a task by one of its numerical ids 1591 * 1592 * find_task_by_pid_ns(): 1593 * finds a task by its pid in the specified namespace 1594 * find_task_by_vpid(): 1595 * finds a task by its virtual pid 1596 * 1597 * see also find_vpid() etc in include/linux/pid.h 1598 */ 1599 1600 extern struct task_struct *find_task_by_vpid(pid_t nr); 1601 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1602 1603 /* 1604 * find a task by its virtual pid and get the task struct 1605 */ 1606 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1607 1608 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1609 extern int wake_up_process(struct task_struct *tsk); 1610 extern void wake_up_new_task(struct task_struct *tsk); 1611 1612 #ifdef CONFIG_SMP 1613 extern void kick_process(struct task_struct *tsk); 1614 #else 1615 static inline void kick_process(struct task_struct *tsk) { } 1616 #endif 1617 1618 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1619 1620 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1621 { 1622 __set_task_comm(tsk, from, false); 1623 } 1624 1625 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1626 #define get_task_comm(buf, tsk) ({ \ 1627 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1628 __get_task_comm(buf, sizeof(buf), tsk); \ 1629 }) 1630 1631 #ifdef CONFIG_SMP 1632 void scheduler_ipi(void); 1633 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1634 #else 1635 static inline void scheduler_ipi(void) { } 1636 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1637 { 1638 return 1; 1639 } 1640 #endif 1641 1642 /* 1643 * Set thread flags in other task's structures. 1644 * See asm/thread_info.h for TIF_xxxx flags available: 1645 */ 1646 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1647 { 1648 set_ti_thread_flag(task_thread_info(tsk), flag); 1649 } 1650 1651 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1652 { 1653 clear_ti_thread_flag(task_thread_info(tsk), flag); 1654 } 1655 1656 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1657 bool value) 1658 { 1659 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1660 } 1661 1662 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1663 { 1664 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1665 } 1666 1667 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1668 { 1669 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1670 } 1671 1672 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1673 { 1674 return test_ti_thread_flag(task_thread_info(tsk), flag); 1675 } 1676 1677 static inline void set_tsk_need_resched(struct task_struct *tsk) 1678 { 1679 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1680 } 1681 1682 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1683 { 1684 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1685 } 1686 1687 static inline int test_tsk_need_resched(struct task_struct *tsk) 1688 { 1689 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1690 } 1691 1692 /* 1693 * cond_resched() and cond_resched_lock(): latency reduction via 1694 * explicit rescheduling in places that are safe. The return 1695 * value indicates whether a reschedule was done in fact. 1696 * cond_resched_lock() will drop the spinlock before scheduling, 1697 */ 1698 #ifndef CONFIG_PREEMPT 1699 extern int _cond_resched(void); 1700 #else 1701 static inline int _cond_resched(void) { return 0; } 1702 #endif 1703 1704 #define cond_resched() ({ \ 1705 ___might_sleep(__FILE__, __LINE__, 0); \ 1706 _cond_resched(); \ 1707 }) 1708 1709 extern int __cond_resched_lock(spinlock_t *lock); 1710 1711 #define cond_resched_lock(lock) ({ \ 1712 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1713 __cond_resched_lock(lock); \ 1714 }) 1715 1716 static inline void cond_resched_rcu(void) 1717 { 1718 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1719 rcu_read_unlock(); 1720 cond_resched(); 1721 rcu_read_lock(); 1722 #endif 1723 } 1724 1725 /* 1726 * Does a critical section need to be broken due to another 1727 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1728 * but a general need for low latency) 1729 */ 1730 static inline int spin_needbreak(spinlock_t *lock) 1731 { 1732 #ifdef CONFIG_PREEMPT 1733 return spin_is_contended(lock); 1734 #else 1735 return 0; 1736 #endif 1737 } 1738 1739 static __always_inline bool need_resched(void) 1740 { 1741 return unlikely(tif_need_resched()); 1742 } 1743 1744 /* 1745 * Wrappers for p->thread_info->cpu access. No-op on UP. 1746 */ 1747 #ifdef CONFIG_SMP 1748 1749 static inline unsigned int task_cpu(const struct task_struct *p) 1750 { 1751 #ifdef CONFIG_THREAD_INFO_IN_TASK 1752 return READ_ONCE(p->cpu); 1753 #else 1754 return READ_ONCE(task_thread_info(p)->cpu); 1755 #endif 1756 } 1757 1758 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1759 1760 #else 1761 1762 static inline unsigned int task_cpu(const struct task_struct *p) 1763 { 1764 return 0; 1765 } 1766 1767 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1768 { 1769 } 1770 1771 #endif /* CONFIG_SMP */ 1772 1773 /* 1774 * In order to reduce various lock holder preemption latencies provide an 1775 * interface to see if a vCPU is currently running or not. 1776 * 1777 * This allows us to terminate optimistic spin loops and block, analogous to 1778 * the native optimistic spin heuristic of testing if the lock owner task is 1779 * running or not. 1780 */ 1781 #ifndef vcpu_is_preempted 1782 # define vcpu_is_preempted(cpu) false 1783 #endif 1784 1785 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1786 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1787 1788 #ifndef TASK_SIZE_OF 1789 #define TASK_SIZE_OF(tsk) TASK_SIZE 1790 #endif 1791 1792 #ifdef CONFIG_RSEQ 1793 1794 /* 1795 * Map the event mask on the user-space ABI enum rseq_cs_flags 1796 * for direct mask checks. 1797 */ 1798 enum rseq_event_mask_bits { 1799 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1800 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1801 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1802 }; 1803 1804 enum rseq_event_mask { 1805 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1806 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1807 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1808 }; 1809 1810 static inline void rseq_set_notify_resume(struct task_struct *t) 1811 { 1812 if (t->rseq) 1813 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1814 } 1815 1816 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1817 1818 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1819 struct pt_regs *regs) 1820 { 1821 if (current->rseq) 1822 __rseq_handle_notify_resume(ksig, regs); 1823 } 1824 1825 static inline void rseq_signal_deliver(struct ksignal *ksig, 1826 struct pt_regs *regs) 1827 { 1828 preempt_disable(); 1829 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1830 preempt_enable(); 1831 rseq_handle_notify_resume(ksig, regs); 1832 } 1833 1834 /* rseq_preempt() requires preemption to be disabled. */ 1835 static inline void rseq_preempt(struct task_struct *t) 1836 { 1837 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1838 rseq_set_notify_resume(t); 1839 } 1840 1841 /* rseq_migrate() requires preemption to be disabled. */ 1842 static inline void rseq_migrate(struct task_struct *t) 1843 { 1844 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1845 rseq_set_notify_resume(t); 1846 } 1847 1848 /* 1849 * If parent process has a registered restartable sequences area, the 1850 * child inherits. Only applies when forking a process, not a thread. 1851 */ 1852 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1853 { 1854 if (clone_flags & CLONE_THREAD) { 1855 t->rseq = NULL; 1856 t->rseq_len = 0; 1857 t->rseq_sig = 0; 1858 t->rseq_event_mask = 0; 1859 } else { 1860 t->rseq = current->rseq; 1861 t->rseq_len = current->rseq_len; 1862 t->rseq_sig = current->rseq_sig; 1863 t->rseq_event_mask = current->rseq_event_mask; 1864 } 1865 } 1866 1867 static inline void rseq_execve(struct task_struct *t) 1868 { 1869 t->rseq = NULL; 1870 t->rseq_len = 0; 1871 t->rseq_sig = 0; 1872 t->rseq_event_mask = 0; 1873 } 1874 1875 #else 1876 1877 static inline void rseq_set_notify_resume(struct task_struct *t) 1878 { 1879 } 1880 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1881 struct pt_regs *regs) 1882 { 1883 } 1884 static inline void rseq_signal_deliver(struct ksignal *ksig, 1885 struct pt_regs *regs) 1886 { 1887 } 1888 static inline void rseq_preempt(struct task_struct *t) 1889 { 1890 } 1891 static inline void rseq_migrate(struct task_struct *t) 1892 { 1893 } 1894 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1895 { 1896 } 1897 static inline void rseq_execve(struct task_struct *t) 1898 { 1899 } 1900 1901 #endif 1902 1903 void __exit_umh(struct task_struct *tsk); 1904 1905 static inline void exit_umh(struct task_struct *tsk) 1906 { 1907 if (unlikely(tsk->flags & PF_UMH)) 1908 __exit_umh(tsk); 1909 } 1910 1911 #ifdef CONFIG_DEBUG_RSEQ 1912 1913 void rseq_syscall(struct pt_regs *regs); 1914 1915 #else 1916 1917 static inline void rseq_syscall(struct pt_regs *regs) 1918 { 1919 } 1920 1921 #endif 1922 1923 #endif 1924