1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt_mask.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 62 #include <asm/processor.h> 63 64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 65 66 /* 67 * Extended scheduling parameters data structure. 68 * 69 * This is needed because the original struct sched_param can not be 70 * altered without introducing ABI issues with legacy applications 71 * (e.g., in sched_getparam()). 72 * 73 * However, the possibility of specifying more than just a priority for 74 * the tasks may be useful for a wide variety of application fields, e.g., 75 * multimedia, streaming, automation and control, and many others. 76 * 77 * This variant (sched_attr) is meant at describing a so-called 78 * sporadic time-constrained task. In such model a task is specified by: 79 * - the activation period or minimum instance inter-arrival time; 80 * - the maximum (or average, depending on the actual scheduling 81 * discipline) computation time of all instances, a.k.a. runtime; 82 * - the deadline (relative to the actual activation time) of each 83 * instance. 84 * Very briefly, a periodic (sporadic) task asks for the execution of 85 * some specific computation --which is typically called an instance-- 86 * (at most) every period. Moreover, each instance typically lasts no more 87 * than the runtime and must be completed by time instant t equal to 88 * the instance activation time + the deadline. 89 * 90 * This is reflected by the actual fields of the sched_attr structure: 91 * 92 * @size size of the structure, for fwd/bwd compat. 93 * 94 * @sched_policy task's scheduling policy 95 * @sched_flags for customizing the scheduler behaviour 96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 97 * @sched_priority task's static priority (SCHED_FIFO/RR) 98 * @sched_deadline representative of the task's deadline 99 * @sched_runtime representative of the task's runtime 100 * @sched_period representative of the task's period 101 * 102 * Given this task model, there are a multiplicity of scheduling algorithms 103 * and policies, that can be used to ensure all the tasks will make their 104 * timing constraints. 105 * 106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 107 * only user of this new interface. More information about the algorithm 108 * available in the scheduling class file or in Documentation/. 109 */ 110 struct sched_attr { 111 u32 size; 112 113 u32 sched_policy; 114 u64 sched_flags; 115 116 /* SCHED_NORMAL, SCHED_BATCH */ 117 s32 sched_nice; 118 119 /* SCHED_FIFO, SCHED_RR */ 120 u32 sched_priority; 121 122 /* SCHED_DEADLINE */ 123 u64 sched_runtime; 124 u64 sched_deadline; 125 u64 sched_period; 126 }; 127 128 struct exec_domain; 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 137 #define VMACACHE_BITS 2 138 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 139 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 140 141 /* 142 * These are the constant used to fake the fixed-point load-average 143 * counting. Some notes: 144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 145 * a load-average precision of 10 bits integer + 11 bits fractional 146 * - if you want to count load-averages more often, you need more 147 * precision, or rounding will get you. With 2-second counting freq, 148 * the EXP_n values would be 1981, 2034 and 2043 if still using only 149 * 11 bit fractions. 150 */ 151 extern unsigned long avenrun[]; /* Load averages */ 152 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 153 154 #define FSHIFT 11 /* nr of bits of precision */ 155 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 156 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 157 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 158 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 159 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 160 161 #define CALC_LOAD(load,exp,n) \ 162 load *= exp; \ 163 load += n*(FIXED_1-exp); \ 164 load >>= FSHIFT; 165 166 extern unsigned long total_forks; 167 extern int nr_threads; 168 DECLARE_PER_CPU(unsigned long, process_counts); 169 extern int nr_processes(void); 170 extern unsigned long nr_running(void); 171 extern bool single_task_running(void); 172 extern unsigned long nr_iowait(void); 173 extern unsigned long nr_iowait_cpu(int cpu); 174 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 175 176 extern void calc_global_load(unsigned long ticks); 177 extern void update_cpu_load_nohz(void); 178 179 extern unsigned long get_parent_ip(unsigned long addr); 180 181 extern void dump_cpu_task(int cpu); 182 183 struct seq_file; 184 struct cfs_rq; 185 struct task_group; 186 #ifdef CONFIG_SCHED_DEBUG 187 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 188 extern void proc_sched_set_task(struct task_struct *p); 189 extern void 190 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 191 #endif 192 193 /* 194 * Task state bitmask. NOTE! These bits are also 195 * encoded in fs/proc/array.c: get_task_state(). 196 * 197 * We have two separate sets of flags: task->state 198 * is about runnability, while task->exit_state are 199 * about the task exiting. Confusing, but this way 200 * modifying one set can't modify the other one by 201 * mistake. 202 */ 203 #define TASK_RUNNING 0 204 #define TASK_INTERRUPTIBLE 1 205 #define TASK_UNINTERRUPTIBLE 2 206 #define __TASK_STOPPED 4 207 #define __TASK_TRACED 8 208 /* in tsk->exit_state */ 209 #define EXIT_DEAD 16 210 #define EXIT_ZOMBIE 32 211 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 212 /* in tsk->state again */ 213 #define TASK_DEAD 64 214 #define TASK_WAKEKILL 128 215 #define TASK_WAKING 256 216 #define TASK_PARKED 512 217 #define TASK_STATE_MAX 1024 218 219 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP" 220 221 extern char ___assert_task_state[1 - 2*!!( 222 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 223 224 /* Convenience macros for the sake of set_task_state */ 225 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 226 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 227 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 228 229 /* Convenience macros for the sake of wake_up */ 230 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 231 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 232 233 /* get_task_state() */ 234 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 235 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 236 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 237 238 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 239 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 240 #define task_is_stopped_or_traced(task) \ 241 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 242 #define task_contributes_to_load(task) \ 243 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 244 (task->flags & PF_FROZEN) == 0) 245 246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 247 248 #define __set_task_state(tsk, state_value) \ 249 do { \ 250 (tsk)->task_state_change = _THIS_IP_; \ 251 (tsk)->state = (state_value); \ 252 } while (0) 253 #define set_task_state(tsk, state_value) \ 254 do { \ 255 (tsk)->task_state_change = _THIS_IP_; \ 256 set_mb((tsk)->state, (state_value)); \ 257 } while (0) 258 259 /* 260 * set_current_state() includes a barrier so that the write of current->state 261 * is correctly serialised wrt the caller's subsequent test of whether to 262 * actually sleep: 263 * 264 * set_current_state(TASK_UNINTERRUPTIBLE); 265 * if (do_i_need_to_sleep()) 266 * schedule(); 267 * 268 * If the caller does not need such serialisation then use __set_current_state() 269 */ 270 #define __set_current_state(state_value) \ 271 do { \ 272 current->task_state_change = _THIS_IP_; \ 273 current->state = (state_value); \ 274 } while (0) 275 #define set_current_state(state_value) \ 276 do { \ 277 current->task_state_change = _THIS_IP_; \ 278 set_mb(current->state, (state_value)); \ 279 } while (0) 280 281 #else 282 283 #define __set_task_state(tsk, state_value) \ 284 do { (tsk)->state = (state_value); } while (0) 285 #define set_task_state(tsk, state_value) \ 286 set_mb((tsk)->state, (state_value)) 287 288 /* 289 * set_current_state() includes a barrier so that the write of current->state 290 * is correctly serialised wrt the caller's subsequent test of whether to 291 * actually sleep: 292 * 293 * set_current_state(TASK_UNINTERRUPTIBLE); 294 * if (do_i_need_to_sleep()) 295 * schedule(); 296 * 297 * If the caller does not need such serialisation then use __set_current_state() 298 */ 299 #define __set_current_state(state_value) \ 300 do { current->state = (state_value); } while (0) 301 #define set_current_state(state_value) \ 302 set_mb(current->state, (state_value)) 303 304 #endif 305 306 /* Task command name length */ 307 #define TASK_COMM_LEN 16 308 309 #include <linux/spinlock.h> 310 311 /* 312 * This serializes "schedule()" and also protects 313 * the run-queue from deletions/modifications (but 314 * _adding_ to the beginning of the run-queue has 315 * a separate lock). 316 */ 317 extern rwlock_t tasklist_lock; 318 extern spinlock_t mmlist_lock; 319 320 struct task_struct; 321 322 #ifdef CONFIG_PROVE_RCU 323 extern int lockdep_tasklist_lock_is_held(void); 324 #endif /* #ifdef CONFIG_PROVE_RCU */ 325 326 extern void sched_init(void); 327 extern void sched_init_smp(void); 328 extern asmlinkage void schedule_tail(struct task_struct *prev); 329 extern void init_idle(struct task_struct *idle, int cpu); 330 extern void init_idle_bootup_task(struct task_struct *idle); 331 332 extern int runqueue_is_locked(int cpu); 333 334 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 335 extern void nohz_balance_enter_idle(int cpu); 336 extern void set_cpu_sd_state_idle(void); 337 extern int get_nohz_timer_target(int pinned); 338 #else 339 static inline void nohz_balance_enter_idle(int cpu) { } 340 static inline void set_cpu_sd_state_idle(void) { } 341 static inline int get_nohz_timer_target(int pinned) 342 { 343 return smp_processor_id(); 344 } 345 #endif 346 347 /* 348 * Only dump TASK_* tasks. (0 for all tasks) 349 */ 350 extern void show_state_filter(unsigned long state_filter); 351 352 static inline void show_state(void) 353 { 354 show_state_filter(0); 355 } 356 357 extern void show_regs(struct pt_regs *); 358 359 /* 360 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 361 * task), SP is the stack pointer of the first frame that should be shown in the back 362 * trace (or NULL if the entire call-chain of the task should be shown). 363 */ 364 extern void show_stack(struct task_struct *task, unsigned long *sp); 365 366 void io_schedule(void); 367 long io_schedule_timeout(long timeout); 368 369 extern void cpu_init (void); 370 extern void trap_init(void); 371 extern void update_process_times(int user); 372 extern void scheduler_tick(void); 373 374 extern void sched_show_task(struct task_struct *p); 375 376 #ifdef CONFIG_LOCKUP_DETECTOR 377 extern void touch_softlockup_watchdog(void); 378 extern void touch_softlockup_watchdog_sync(void); 379 extern void touch_all_softlockup_watchdogs(void); 380 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 381 void __user *buffer, 382 size_t *lenp, loff_t *ppos); 383 extern unsigned int softlockup_panic; 384 void lockup_detector_init(void); 385 #else 386 static inline void touch_softlockup_watchdog(void) 387 { 388 } 389 static inline void touch_softlockup_watchdog_sync(void) 390 { 391 } 392 static inline void touch_all_softlockup_watchdogs(void) 393 { 394 } 395 static inline void lockup_detector_init(void) 396 { 397 } 398 #endif 399 400 #ifdef CONFIG_DETECT_HUNG_TASK 401 void reset_hung_task_detector(void); 402 #else 403 static inline void reset_hung_task_detector(void) 404 { 405 } 406 #endif 407 408 /* Attach to any functions which should be ignored in wchan output. */ 409 #define __sched __attribute__((__section__(".sched.text"))) 410 411 /* Linker adds these: start and end of __sched functions */ 412 extern char __sched_text_start[], __sched_text_end[]; 413 414 /* Is this address in the __sched functions? */ 415 extern int in_sched_functions(unsigned long addr); 416 417 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 418 extern signed long schedule_timeout(signed long timeout); 419 extern signed long schedule_timeout_interruptible(signed long timeout); 420 extern signed long schedule_timeout_killable(signed long timeout); 421 extern signed long schedule_timeout_uninterruptible(signed long timeout); 422 asmlinkage void schedule(void); 423 extern void schedule_preempt_disabled(void); 424 425 struct nsproxy; 426 struct user_namespace; 427 428 #ifdef CONFIG_MMU 429 extern void arch_pick_mmap_layout(struct mm_struct *mm); 430 extern unsigned long 431 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 432 unsigned long, unsigned long); 433 extern unsigned long 434 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 435 unsigned long len, unsigned long pgoff, 436 unsigned long flags); 437 #else 438 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 439 #endif 440 441 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 442 #define SUID_DUMP_USER 1 /* Dump as user of process */ 443 #define SUID_DUMP_ROOT 2 /* Dump as root */ 444 445 /* mm flags */ 446 447 /* for SUID_DUMP_* above */ 448 #define MMF_DUMPABLE_BITS 2 449 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 450 451 extern void set_dumpable(struct mm_struct *mm, int value); 452 /* 453 * This returns the actual value of the suid_dumpable flag. For things 454 * that are using this for checking for privilege transitions, it must 455 * test against SUID_DUMP_USER rather than treating it as a boolean 456 * value. 457 */ 458 static inline int __get_dumpable(unsigned long mm_flags) 459 { 460 return mm_flags & MMF_DUMPABLE_MASK; 461 } 462 463 static inline int get_dumpable(struct mm_struct *mm) 464 { 465 return __get_dumpable(mm->flags); 466 } 467 468 /* coredump filter bits */ 469 #define MMF_DUMP_ANON_PRIVATE 2 470 #define MMF_DUMP_ANON_SHARED 3 471 #define MMF_DUMP_MAPPED_PRIVATE 4 472 #define MMF_DUMP_MAPPED_SHARED 5 473 #define MMF_DUMP_ELF_HEADERS 6 474 #define MMF_DUMP_HUGETLB_PRIVATE 7 475 #define MMF_DUMP_HUGETLB_SHARED 8 476 477 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 478 #define MMF_DUMP_FILTER_BITS 7 479 #define MMF_DUMP_FILTER_MASK \ 480 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 481 #define MMF_DUMP_FILTER_DEFAULT \ 482 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 483 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 484 485 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 486 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 487 #else 488 # define MMF_DUMP_MASK_DEFAULT_ELF 0 489 #endif 490 /* leave room for more dump flags */ 491 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 492 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 493 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 494 495 #define MMF_HAS_UPROBES 19 /* has uprobes */ 496 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 497 498 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 499 500 struct sighand_struct { 501 atomic_t count; 502 struct k_sigaction action[_NSIG]; 503 spinlock_t siglock; 504 wait_queue_head_t signalfd_wqh; 505 }; 506 507 struct pacct_struct { 508 int ac_flag; 509 long ac_exitcode; 510 unsigned long ac_mem; 511 cputime_t ac_utime, ac_stime; 512 unsigned long ac_minflt, ac_majflt; 513 }; 514 515 struct cpu_itimer { 516 cputime_t expires; 517 cputime_t incr; 518 u32 error; 519 u32 incr_error; 520 }; 521 522 /** 523 * struct cputime - snaphsot of system and user cputime 524 * @utime: time spent in user mode 525 * @stime: time spent in system mode 526 * 527 * Gathers a generic snapshot of user and system time. 528 */ 529 struct cputime { 530 cputime_t utime; 531 cputime_t stime; 532 }; 533 534 /** 535 * struct task_cputime - collected CPU time counts 536 * @utime: time spent in user mode, in &cputime_t units 537 * @stime: time spent in kernel mode, in &cputime_t units 538 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 539 * 540 * This is an extension of struct cputime that includes the total runtime 541 * spent by the task from the scheduler point of view. 542 * 543 * As a result, this structure groups together three kinds of CPU time 544 * that are tracked for threads and thread groups. Most things considering 545 * CPU time want to group these counts together and treat all three 546 * of them in parallel. 547 */ 548 struct task_cputime { 549 cputime_t utime; 550 cputime_t stime; 551 unsigned long long sum_exec_runtime; 552 }; 553 /* Alternate field names when used to cache expirations. */ 554 #define prof_exp stime 555 #define virt_exp utime 556 #define sched_exp sum_exec_runtime 557 558 #define INIT_CPUTIME \ 559 (struct task_cputime) { \ 560 .utime = 0, \ 561 .stime = 0, \ 562 .sum_exec_runtime = 0, \ 563 } 564 565 #ifdef CONFIG_PREEMPT_COUNT 566 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 567 #else 568 #define PREEMPT_DISABLED PREEMPT_ENABLED 569 #endif 570 571 /* 572 * Disable preemption until the scheduler is running. 573 * Reset by start_kernel()->sched_init()->init_idle(). 574 * 575 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 576 * before the scheduler is active -- see should_resched(). 577 */ 578 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 579 580 /** 581 * struct thread_group_cputimer - thread group interval timer counts 582 * @cputime: thread group interval timers. 583 * @running: non-zero when there are timers running and 584 * @cputime receives updates. 585 * @lock: lock for fields in this struct. 586 * 587 * This structure contains the version of task_cputime, above, that is 588 * used for thread group CPU timer calculations. 589 */ 590 struct thread_group_cputimer { 591 struct task_cputime cputime; 592 int running; 593 raw_spinlock_t lock; 594 }; 595 596 #include <linux/rwsem.h> 597 struct autogroup; 598 599 /* 600 * NOTE! "signal_struct" does not have its own 601 * locking, because a shared signal_struct always 602 * implies a shared sighand_struct, so locking 603 * sighand_struct is always a proper superset of 604 * the locking of signal_struct. 605 */ 606 struct signal_struct { 607 atomic_t sigcnt; 608 atomic_t live; 609 int nr_threads; 610 struct list_head thread_head; 611 612 wait_queue_head_t wait_chldexit; /* for wait4() */ 613 614 /* current thread group signal load-balancing target: */ 615 struct task_struct *curr_target; 616 617 /* shared signal handling: */ 618 struct sigpending shared_pending; 619 620 /* thread group exit support */ 621 int group_exit_code; 622 /* overloaded: 623 * - notify group_exit_task when ->count is equal to notify_count 624 * - everyone except group_exit_task is stopped during signal delivery 625 * of fatal signals, group_exit_task processes the signal. 626 */ 627 int notify_count; 628 struct task_struct *group_exit_task; 629 630 /* thread group stop support, overloads group_exit_code too */ 631 int group_stop_count; 632 unsigned int flags; /* see SIGNAL_* flags below */ 633 634 /* 635 * PR_SET_CHILD_SUBREAPER marks a process, like a service 636 * manager, to re-parent orphan (double-forking) child processes 637 * to this process instead of 'init'. The service manager is 638 * able to receive SIGCHLD signals and is able to investigate 639 * the process until it calls wait(). All children of this 640 * process will inherit a flag if they should look for a 641 * child_subreaper process at exit. 642 */ 643 unsigned int is_child_subreaper:1; 644 unsigned int has_child_subreaper:1; 645 646 /* POSIX.1b Interval Timers */ 647 int posix_timer_id; 648 struct list_head posix_timers; 649 650 /* ITIMER_REAL timer for the process */ 651 struct hrtimer real_timer; 652 struct pid *leader_pid; 653 ktime_t it_real_incr; 654 655 /* 656 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 657 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 658 * values are defined to 0 and 1 respectively 659 */ 660 struct cpu_itimer it[2]; 661 662 /* 663 * Thread group totals for process CPU timers. 664 * See thread_group_cputimer(), et al, for details. 665 */ 666 struct thread_group_cputimer cputimer; 667 668 /* Earliest-expiration cache. */ 669 struct task_cputime cputime_expires; 670 671 struct list_head cpu_timers[3]; 672 673 struct pid *tty_old_pgrp; 674 675 /* boolean value for session group leader */ 676 int leader; 677 678 struct tty_struct *tty; /* NULL if no tty */ 679 680 #ifdef CONFIG_SCHED_AUTOGROUP 681 struct autogroup *autogroup; 682 #endif 683 /* 684 * Cumulative resource counters for dead threads in the group, 685 * and for reaped dead child processes forked by this group. 686 * Live threads maintain their own counters and add to these 687 * in __exit_signal, except for the group leader. 688 */ 689 seqlock_t stats_lock; 690 cputime_t utime, stime, cutime, cstime; 691 cputime_t gtime; 692 cputime_t cgtime; 693 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 694 struct cputime prev_cputime; 695 #endif 696 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 697 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 698 unsigned long inblock, oublock, cinblock, coublock; 699 unsigned long maxrss, cmaxrss; 700 struct task_io_accounting ioac; 701 702 /* 703 * Cumulative ns of schedule CPU time fo dead threads in the 704 * group, not including a zombie group leader, (This only differs 705 * from jiffies_to_ns(utime + stime) if sched_clock uses something 706 * other than jiffies.) 707 */ 708 unsigned long long sum_sched_runtime; 709 710 /* 711 * We don't bother to synchronize most readers of this at all, 712 * because there is no reader checking a limit that actually needs 713 * to get both rlim_cur and rlim_max atomically, and either one 714 * alone is a single word that can safely be read normally. 715 * getrlimit/setrlimit use task_lock(current->group_leader) to 716 * protect this instead of the siglock, because they really 717 * have no need to disable irqs. 718 */ 719 struct rlimit rlim[RLIM_NLIMITS]; 720 721 #ifdef CONFIG_BSD_PROCESS_ACCT 722 struct pacct_struct pacct; /* per-process accounting information */ 723 #endif 724 #ifdef CONFIG_TASKSTATS 725 struct taskstats *stats; 726 #endif 727 #ifdef CONFIG_AUDIT 728 unsigned audit_tty; 729 unsigned audit_tty_log_passwd; 730 struct tty_audit_buf *tty_audit_buf; 731 #endif 732 #ifdef CONFIG_CGROUPS 733 /* 734 * group_rwsem prevents new tasks from entering the threadgroup and 735 * member tasks from exiting,a more specifically, setting of 736 * PF_EXITING. fork and exit paths are protected with this rwsem 737 * using threadgroup_change_begin/end(). Users which require 738 * threadgroup to remain stable should use threadgroup_[un]lock() 739 * which also takes care of exec path. Currently, cgroup is the 740 * only user. 741 */ 742 struct rw_semaphore group_rwsem; 743 #endif 744 745 oom_flags_t oom_flags; 746 short oom_score_adj; /* OOM kill score adjustment */ 747 short oom_score_adj_min; /* OOM kill score adjustment min value. 748 * Only settable by CAP_SYS_RESOURCE. */ 749 750 struct mutex cred_guard_mutex; /* guard against foreign influences on 751 * credential calculations 752 * (notably. ptrace) */ 753 }; 754 755 /* 756 * Bits in flags field of signal_struct. 757 */ 758 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 759 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 760 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 761 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 762 /* 763 * Pending notifications to parent. 764 */ 765 #define SIGNAL_CLD_STOPPED 0x00000010 766 #define SIGNAL_CLD_CONTINUED 0x00000020 767 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 768 769 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 770 771 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 772 static inline int signal_group_exit(const struct signal_struct *sig) 773 { 774 return (sig->flags & SIGNAL_GROUP_EXIT) || 775 (sig->group_exit_task != NULL); 776 } 777 778 /* 779 * Some day this will be a full-fledged user tracking system.. 780 */ 781 struct user_struct { 782 atomic_t __count; /* reference count */ 783 atomic_t processes; /* How many processes does this user have? */ 784 atomic_t sigpending; /* How many pending signals does this user have? */ 785 #ifdef CONFIG_INOTIFY_USER 786 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 787 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 788 #endif 789 #ifdef CONFIG_FANOTIFY 790 atomic_t fanotify_listeners; 791 #endif 792 #ifdef CONFIG_EPOLL 793 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 794 #endif 795 #ifdef CONFIG_POSIX_MQUEUE 796 /* protected by mq_lock */ 797 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 798 #endif 799 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 800 801 #ifdef CONFIG_KEYS 802 struct key *uid_keyring; /* UID specific keyring */ 803 struct key *session_keyring; /* UID's default session keyring */ 804 #endif 805 806 /* Hash table maintenance information */ 807 struct hlist_node uidhash_node; 808 kuid_t uid; 809 810 #ifdef CONFIG_PERF_EVENTS 811 atomic_long_t locked_vm; 812 #endif 813 }; 814 815 extern int uids_sysfs_init(void); 816 817 extern struct user_struct *find_user(kuid_t); 818 819 extern struct user_struct root_user; 820 #define INIT_USER (&root_user) 821 822 823 struct backing_dev_info; 824 struct reclaim_state; 825 826 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 827 struct sched_info { 828 /* cumulative counters */ 829 unsigned long pcount; /* # of times run on this cpu */ 830 unsigned long long run_delay; /* time spent waiting on a runqueue */ 831 832 /* timestamps */ 833 unsigned long long last_arrival,/* when we last ran on a cpu */ 834 last_queued; /* when we were last queued to run */ 835 }; 836 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 837 838 #ifdef CONFIG_TASK_DELAY_ACCT 839 struct task_delay_info { 840 spinlock_t lock; 841 unsigned int flags; /* Private per-task flags */ 842 843 /* For each stat XXX, add following, aligned appropriately 844 * 845 * struct timespec XXX_start, XXX_end; 846 * u64 XXX_delay; 847 * u32 XXX_count; 848 * 849 * Atomicity of updates to XXX_delay, XXX_count protected by 850 * single lock above (split into XXX_lock if contention is an issue). 851 */ 852 853 /* 854 * XXX_count is incremented on every XXX operation, the delay 855 * associated with the operation is added to XXX_delay. 856 * XXX_delay contains the accumulated delay time in nanoseconds. 857 */ 858 u64 blkio_start; /* Shared by blkio, swapin */ 859 u64 blkio_delay; /* wait for sync block io completion */ 860 u64 swapin_delay; /* wait for swapin block io completion */ 861 u32 blkio_count; /* total count of the number of sync block */ 862 /* io operations performed */ 863 u32 swapin_count; /* total count of the number of swapin block */ 864 /* io operations performed */ 865 866 u64 freepages_start; 867 u64 freepages_delay; /* wait for memory reclaim */ 868 u32 freepages_count; /* total count of memory reclaim */ 869 }; 870 #endif /* CONFIG_TASK_DELAY_ACCT */ 871 872 static inline int sched_info_on(void) 873 { 874 #ifdef CONFIG_SCHEDSTATS 875 return 1; 876 #elif defined(CONFIG_TASK_DELAY_ACCT) 877 extern int delayacct_on; 878 return delayacct_on; 879 #else 880 return 0; 881 #endif 882 } 883 884 enum cpu_idle_type { 885 CPU_IDLE, 886 CPU_NOT_IDLE, 887 CPU_NEWLY_IDLE, 888 CPU_MAX_IDLE_TYPES 889 }; 890 891 /* 892 * Increase resolution of cpu_capacity calculations 893 */ 894 #define SCHED_CAPACITY_SHIFT 10 895 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 896 897 /* 898 * sched-domains (multiprocessor balancing) declarations: 899 */ 900 #ifdef CONFIG_SMP 901 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 902 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 903 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 904 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 905 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 906 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 907 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 908 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 909 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 910 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 911 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 912 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 913 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 914 #define SD_NUMA 0x4000 /* cross-node balancing */ 915 916 #ifdef CONFIG_SCHED_SMT 917 static inline int cpu_smt_flags(void) 918 { 919 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 920 } 921 #endif 922 923 #ifdef CONFIG_SCHED_MC 924 static inline int cpu_core_flags(void) 925 { 926 return SD_SHARE_PKG_RESOURCES; 927 } 928 #endif 929 930 #ifdef CONFIG_NUMA 931 static inline int cpu_numa_flags(void) 932 { 933 return SD_NUMA; 934 } 935 #endif 936 937 struct sched_domain_attr { 938 int relax_domain_level; 939 }; 940 941 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 942 .relax_domain_level = -1, \ 943 } 944 945 extern int sched_domain_level_max; 946 947 struct sched_group; 948 949 struct sched_domain { 950 /* These fields must be setup */ 951 struct sched_domain *parent; /* top domain must be null terminated */ 952 struct sched_domain *child; /* bottom domain must be null terminated */ 953 struct sched_group *groups; /* the balancing groups of the domain */ 954 unsigned long min_interval; /* Minimum balance interval ms */ 955 unsigned long max_interval; /* Maximum balance interval ms */ 956 unsigned int busy_factor; /* less balancing by factor if busy */ 957 unsigned int imbalance_pct; /* No balance until over watermark */ 958 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 959 unsigned int busy_idx; 960 unsigned int idle_idx; 961 unsigned int newidle_idx; 962 unsigned int wake_idx; 963 unsigned int forkexec_idx; 964 unsigned int smt_gain; 965 966 int nohz_idle; /* NOHZ IDLE status */ 967 int flags; /* See SD_* */ 968 int level; 969 970 /* Runtime fields. */ 971 unsigned long last_balance; /* init to jiffies. units in jiffies */ 972 unsigned int balance_interval; /* initialise to 1. units in ms. */ 973 unsigned int nr_balance_failed; /* initialise to 0 */ 974 975 /* idle_balance() stats */ 976 u64 max_newidle_lb_cost; 977 unsigned long next_decay_max_lb_cost; 978 979 #ifdef CONFIG_SCHEDSTATS 980 /* load_balance() stats */ 981 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 982 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 983 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 984 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 985 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 986 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 987 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 988 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 989 990 /* Active load balancing */ 991 unsigned int alb_count; 992 unsigned int alb_failed; 993 unsigned int alb_pushed; 994 995 /* SD_BALANCE_EXEC stats */ 996 unsigned int sbe_count; 997 unsigned int sbe_balanced; 998 unsigned int sbe_pushed; 999 1000 /* SD_BALANCE_FORK stats */ 1001 unsigned int sbf_count; 1002 unsigned int sbf_balanced; 1003 unsigned int sbf_pushed; 1004 1005 /* try_to_wake_up() stats */ 1006 unsigned int ttwu_wake_remote; 1007 unsigned int ttwu_move_affine; 1008 unsigned int ttwu_move_balance; 1009 #endif 1010 #ifdef CONFIG_SCHED_DEBUG 1011 char *name; 1012 #endif 1013 union { 1014 void *private; /* used during construction */ 1015 struct rcu_head rcu; /* used during destruction */ 1016 }; 1017 1018 unsigned int span_weight; 1019 /* 1020 * Span of all CPUs in this domain. 1021 * 1022 * NOTE: this field is variable length. (Allocated dynamically 1023 * by attaching extra space to the end of the structure, 1024 * depending on how many CPUs the kernel has booted up with) 1025 */ 1026 unsigned long span[0]; 1027 }; 1028 1029 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1030 { 1031 return to_cpumask(sd->span); 1032 } 1033 1034 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1035 struct sched_domain_attr *dattr_new); 1036 1037 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1038 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1039 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1040 1041 bool cpus_share_cache(int this_cpu, int that_cpu); 1042 1043 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1044 typedef int (*sched_domain_flags_f)(void); 1045 1046 #define SDTL_OVERLAP 0x01 1047 1048 struct sd_data { 1049 struct sched_domain **__percpu sd; 1050 struct sched_group **__percpu sg; 1051 struct sched_group_capacity **__percpu sgc; 1052 }; 1053 1054 struct sched_domain_topology_level { 1055 sched_domain_mask_f mask; 1056 sched_domain_flags_f sd_flags; 1057 int flags; 1058 int numa_level; 1059 struct sd_data data; 1060 #ifdef CONFIG_SCHED_DEBUG 1061 char *name; 1062 #endif 1063 }; 1064 1065 extern struct sched_domain_topology_level *sched_domain_topology; 1066 1067 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1068 extern void wake_up_if_idle(int cpu); 1069 1070 #ifdef CONFIG_SCHED_DEBUG 1071 # define SD_INIT_NAME(type) .name = #type 1072 #else 1073 # define SD_INIT_NAME(type) 1074 #endif 1075 1076 #else /* CONFIG_SMP */ 1077 1078 struct sched_domain_attr; 1079 1080 static inline void 1081 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1082 struct sched_domain_attr *dattr_new) 1083 { 1084 } 1085 1086 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1087 { 1088 return true; 1089 } 1090 1091 #endif /* !CONFIG_SMP */ 1092 1093 1094 struct io_context; /* See blkdev.h */ 1095 1096 1097 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1098 extern void prefetch_stack(struct task_struct *t); 1099 #else 1100 static inline void prefetch_stack(struct task_struct *t) { } 1101 #endif 1102 1103 struct audit_context; /* See audit.c */ 1104 struct mempolicy; 1105 struct pipe_inode_info; 1106 struct uts_namespace; 1107 1108 struct load_weight { 1109 unsigned long weight; 1110 u32 inv_weight; 1111 }; 1112 1113 struct sched_avg { 1114 /* 1115 * These sums represent an infinite geometric series and so are bound 1116 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1117 * choices of y < 1-2^(-32)*1024. 1118 */ 1119 u32 runnable_avg_sum, runnable_avg_period; 1120 u64 last_runnable_update; 1121 s64 decay_count; 1122 unsigned long load_avg_contrib; 1123 }; 1124 1125 #ifdef CONFIG_SCHEDSTATS 1126 struct sched_statistics { 1127 u64 wait_start; 1128 u64 wait_max; 1129 u64 wait_count; 1130 u64 wait_sum; 1131 u64 iowait_count; 1132 u64 iowait_sum; 1133 1134 u64 sleep_start; 1135 u64 sleep_max; 1136 s64 sum_sleep_runtime; 1137 1138 u64 block_start; 1139 u64 block_max; 1140 u64 exec_max; 1141 u64 slice_max; 1142 1143 u64 nr_migrations_cold; 1144 u64 nr_failed_migrations_affine; 1145 u64 nr_failed_migrations_running; 1146 u64 nr_failed_migrations_hot; 1147 u64 nr_forced_migrations; 1148 1149 u64 nr_wakeups; 1150 u64 nr_wakeups_sync; 1151 u64 nr_wakeups_migrate; 1152 u64 nr_wakeups_local; 1153 u64 nr_wakeups_remote; 1154 u64 nr_wakeups_affine; 1155 u64 nr_wakeups_affine_attempts; 1156 u64 nr_wakeups_passive; 1157 u64 nr_wakeups_idle; 1158 }; 1159 #endif 1160 1161 struct sched_entity { 1162 struct load_weight load; /* for load-balancing */ 1163 struct rb_node run_node; 1164 struct list_head group_node; 1165 unsigned int on_rq; 1166 1167 u64 exec_start; 1168 u64 sum_exec_runtime; 1169 u64 vruntime; 1170 u64 prev_sum_exec_runtime; 1171 1172 u64 nr_migrations; 1173 1174 #ifdef CONFIG_SCHEDSTATS 1175 struct sched_statistics statistics; 1176 #endif 1177 1178 #ifdef CONFIG_FAIR_GROUP_SCHED 1179 int depth; 1180 struct sched_entity *parent; 1181 /* rq on which this entity is (to be) queued: */ 1182 struct cfs_rq *cfs_rq; 1183 /* rq "owned" by this entity/group: */ 1184 struct cfs_rq *my_q; 1185 #endif 1186 1187 #ifdef CONFIG_SMP 1188 /* Per-entity load-tracking */ 1189 struct sched_avg avg; 1190 #endif 1191 }; 1192 1193 struct sched_rt_entity { 1194 struct list_head run_list; 1195 unsigned long timeout; 1196 unsigned long watchdog_stamp; 1197 unsigned int time_slice; 1198 1199 struct sched_rt_entity *back; 1200 #ifdef CONFIG_RT_GROUP_SCHED 1201 struct sched_rt_entity *parent; 1202 /* rq on which this entity is (to be) queued: */ 1203 struct rt_rq *rt_rq; 1204 /* rq "owned" by this entity/group: */ 1205 struct rt_rq *my_q; 1206 #endif 1207 }; 1208 1209 struct sched_dl_entity { 1210 struct rb_node rb_node; 1211 1212 /* 1213 * Original scheduling parameters. Copied here from sched_attr 1214 * during sched_setattr(), they will remain the same until 1215 * the next sched_setattr(). 1216 */ 1217 u64 dl_runtime; /* maximum runtime for each instance */ 1218 u64 dl_deadline; /* relative deadline of each instance */ 1219 u64 dl_period; /* separation of two instances (period) */ 1220 u64 dl_bw; /* dl_runtime / dl_deadline */ 1221 1222 /* 1223 * Actual scheduling parameters. Initialized with the values above, 1224 * they are continously updated during task execution. Note that 1225 * the remaining runtime could be < 0 in case we are in overrun. 1226 */ 1227 s64 runtime; /* remaining runtime for this instance */ 1228 u64 deadline; /* absolute deadline for this instance */ 1229 unsigned int flags; /* specifying the scheduler behaviour */ 1230 1231 /* 1232 * Some bool flags: 1233 * 1234 * @dl_throttled tells if we exhausted the runtime. If so, the 1235 * task has to wait for a replenishment to be performed at the 1236 * next firing of dl_timer. 1237 * 1238 * @dl_new tells if a new instance arrived. If so we must 1239 * start executing it with full runtime and reset its absolute 1240 * deadline; 1241 * 1242 * @dl_boosted tells if we are boosted due to DI. If so we are 1243 * outside bandwidth enforcement mechanism (but only until we 1244 * exit the critical section); 1245 * 1246 * @dl_yielded tells if task gave up the cpu before consuming 1247 * all its available runtime during the last job. 1248 */ 1249 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1250 1251 /* 1252 * Bandwidth enforcement timer. Each -deadline task has its 1253 * own bandwidth to be enforced, thus we need one timer per task. 1254 */ 1255 struct hrtimer dl_timer; 1256 }; 1257 1258 union rcu_special { 1259 struct { 1260 bool blocked; 1261 bool need_qs; 1262 } b; 1263 short s; 1264 }; 1265 struct rcu_node; 1266 1267 enum perf_event_task_context { 1268 perf_invalid_context = -1, 1269 perf_hw_context = 0, 1270 perf_sw_context, 1271 perf_nr_task_contexts, 1272 }; 1273 1274 struct task_struct { 1275 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1276 void *stack; 1277 atomic_t usage; 1278 unsigned int flags; /* per process flags, defined below */ 1279 unsigned int ptrace; 1280 1281 #ifdef CONFIG_SMP 1282 struct llist_node wake_entry; 1283 int on_cpu; 1284 struct task_struct *last_wakee; 1285 unsigned long wakee_flips; 1286 unsigned long wakee_flip_decay_ts; 1287 1288 int wake_cpu; 1289 #endif 1290 int on_rq; 1291 1292 int prio, static_prio, normal_prio; 1293 unsigned int rt_priority; 1294 const struct sched_class *sched_class; 1295 struct sched_entity se; 1296 struct sched_rt_entity rt; 1297 #ifdef CONFIG_CGROUP_SCHED 1298 struct task_group *sched_task_group; 1299 #endif 1300 struct sched_dl_entity dl; 1301 1302 #ifdef CONFIG_PREEMPT_NOTIFIERS 1303 /* list of struct preempt_notifier: */ 1304 struct hlist_head preempt_notifiers; 1305 #endif 1306 1307 #ifdef CONFIG_BLK_DEV_IO_TRACE 1308 unsigned int btrace_seq; 1309 #endif 1310 1311 unsigned int policy; 1312 int nr_cpus_allowed; 1313 cpumask_t cpus_allowed; 1314 1315 #ifdef CONFIG_PREEMPT_RCU 1316 int rcu_read_lock_nesting; 1317 union rcu_special rcu_read_unlock_special; 1318 struct list_head rcu_node_entry; 1319 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1320 #ifdef CONFIG_PREEMPT_RCU 1321 struct rcu_node *rcu_blocked_node; 1322 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1323 #ifdef CONFIG_TASKS_RCU 1324 unsigned long rcu_tasks_nvcsw; 1325 bool rcu_tasks_holdout; 1326 struct list_head rcu_tasks_holdout_list; 1327 int rcu_tasks_idle_cpu; 1328 #endif /* #ifdef CONFIG_TASKS_RCU */ 1329 1330 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1331 struct sched_info sched_info; 1332 #endif 1333 1334 struct list_head tasks; 1335 #ifdef CONFIG_SMP 1336 struct plist_node pushable_tasks; 1337 struct rb_node pushable_dl_tasks; 1338 #endif 1339 1340 struct mm_struct *mm, *active_mm; 1341 #ifdef CONFIG_COMPAT_BRK 1342 unsigned brk_randomized:1; 1343 #endif 1344 /* per-thread vma caching */ 1345 u32 vmacache_seqnum; 1346 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1347 #if defined(SPLIT_RSS_COUNTING) 1348 struct task_rss_stat rss_stat; 1349 #endif 1350 /* task state */ 1351 int exit_state; 1352 int exit_code, exit_signal; 1353 int pdeath_signal; /* The signal sent when the parent dies */ 1354 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1355 1356 /* Used for emulating ABI behavior of previous Linux versions */ 1357 unsigned int personality; 1358 1359 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1360 * execve */ 1361 unsigned in_iowait:1; 1362 1363 /* Revert to default priority/policy when forking */ 1364 unsigned sched_reset_on_fork:1; 1365 unsigned sched_contributes_to_load:1; 1366 1367 #ifdef CONFIG_MEMCG_KMEM 1368 unsigned memcg_kmem_skip_account:1; 1369 #endif 1370 1371 unsigned long atomic_flags; /* Flags needing atomic access. */ 1372 1373 pid_t pid; 1374 pid_t tgid; 1375 1376 #ifdef CONFIG_CC_STACKPROTECTOR 1377 /* Canary value for the -fstack-protector gcc feature */ 1378 unsigned long stack_canary; 1379 #endif 1380 /* 1381 * pointers to (original) parent process, youngest child, younger sibling, 1382 * older sibling, respectively. (p->father can be replaced with 1383 * p->real_parent->pid) 1384 */ 1385 struct task_struct __rcu *real_parent; /* real parent process */ 1386 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1387 /* 1388 * children/sibling forms the list of my natural children 1389 */ 1390 struct list_head children; /* list of my children */ 1391 struct list_head sibling; /* linkage in my parent's children list */ 1392 struct task_struct *group_leader; /* threadgroup leader */ 1393 1394 /* 1395 * ptraced is the list of tasks this task is using ptrace on. 1396 * This includes both natural children and PTRACE_ATTACH targets. 1397 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1398 */ 1399 struct list_head ptraced; 1400 struct list_head ptrace_entry; 1401 1402 /* PID/PID hash table linkage. */ 1403 struct pid_link pids[PIDTYPE_MAX]; 1404 struct list_head thread_group; 1405 struct list_head thread_node; 1406 1407 struct completion *vfork_done; /* for vfork() */ 1408 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1409 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1410 1411 cputime_t utime, stime, utimescaled, stimescaled; 1412 cputime_t gtime; 1413 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1414 struct cputime prev_cputime; 1415 #endif 1416 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1417 seqlock_t vtime_seqlock; 1418 unsigned long long vtime_snap; 1419 enum { 1420 VTIME_SLEEPING = 0, 1421 VTIME_USER, 1422 VTIME_SYS, 1423 } vtime_snap_whence; 1424 #endif 1425 unsigned long nvcsw, nivcsw; /* context switch counts */ 1426 u64 start_time; /* monotonic time in nsec */ 1427 u64 real_start_time; /* boot based time in nsec */ 1428 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1429 unsigned long min_flt, maj_flt; 1430 1431 struct task_cputime cputime_expires; 1432 struct list_head cpu_timers[3]; 1433 1434 /* process credentials */ 1435 const struct cred __rcu *real_cred; /* objective and real subjective task 1436 * credentials (COW) */ 1437 const struct cred __rcu *cred; /* effective (overridable) subjective task 1438 * credentials (COW) */ 1439 char comm[TASK_COMM_LEN]; /* executable name excluding path 1440 - access with [gs]et_task_comm (which lock 1441 it with task_lock()) 1442 - initialized normally by setup_new_exec */ 1443 /* file system info */ 1444 int link_count, total_link_count; 1445 #ifdef CONFIG_SYSVIPC 1446 /* ipc stuff */ 1447 struct sysv_sem sysvsem; 1448 struct sysv_shm sysvshm; 1449 #endif 1450 #ifdef CONFIG_DETECT_HUNG_TASK 1451 /* hung task detection */ 1452 unsigned long last_switch_count; 1453 #endif 1454 /* CPU-specific state of this task */ 1455 struct thread_struct thread; 1456 /* filesystem information */ 1457 struct fs_struct *fs; 1458 /* open file information */ 1459 struct files_struct *files; 1460 /* namespaces */ 1461 struct nsproxy *nsproxy; 1462 /* signal handlers */ 1463 struct signal_struct *signal; 1464 struct sighand_struct *sighand; 1465 1466 sigset_t blocked, real_blocked; 1467 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1468 struct sigpending pending; 1469 1470 unsigned long sas_ss_sp; 1471 size_t sas_ss_size; 1472 int (*notifier)(void *priv); 1473 void *notifier_data; 1474 sigset_t *notifier_mask; 1475 struct callback_head *task_works; 1476 1477 struct audit_context *audit_context; 1478 #ifdef CONFIG_AUDITSYSCALL 1479 kuid_t loginuid; 1480 unsigned int sessionid; 1481 #endif 1482 struct seccomp seccomp; 1483 1484 /* Thread group tracking */ 1485 u32 parent_exec_id; 1486 u32 self_exec_id; 1487 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1488 * mempolicy */ 1489 spinlock_t alloc_lock; 1490 1491 /* Protection of the PI data structures: */ 1492 raw_spinlock_t pi_lock; 1493 1494 #ifdef CONFIG_RT_MUTEXES 1495 /* PI waiters blocked on a rt_mutex held by this task */ 1496 struct rb_root pi_waiters; 1497 struct rb_node *pi_waiters_leftmost; 1498 /* Deadlock detection and priority inheritance handling */ 1499 struct rt_mutex_waiter *pi_blocked_on; 1500 #endif 1501 1502 #ifdef CONFIG_DEBUG_MUTEXES 1503 /* mutex deadlock detection */ 1504 struct mutex_waiter *blocked_on; 1505 #endif 1506 #ifdef CONFIG_TRACE_IRQFLAGS 1507 unsigned int irq_events; 1508 unsigned long hardirq_enable_ip; 1509 unsigned long hardirq_disable_ip; 1510 unsigned int hardirq_enable_event; 1511 unsigned int hardirq_disable_event; 1512 int hardirqs_enabled; 1513 int hardirq_context; 1514 unsigned long softirq_disable_ip; 1515 unsigned long softirq_enable_ip; 1516 unsigned int softirq_disable_event; 1517 unsigned int softirq_enable_event; 1518 int softirqs_enabled; 1519 int softirq_context; 1520 #endif 1521 #ifdef CONFIG_LOCKDEP 1522 # define MAX_LOCK_DEPTH 48UL 1523 u64 curr_chain_key; 1524 int lockdep_depth; 1525 unsigned int lockdep_recursion; 1526 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1527 gfp_t lockdep_reclaim_gfp; 1528 #endif 1529 1530 /* journalling filesystem info */ 1531 void *journal_info; 1532 1533 /* stacked block device info */ 1534 struct bio_list *bio_list; 1535 1536 #ifdef CONFIG_BLOCK 1537 /* stack plugging */ 1538 struct blk_plug *plug; 1539 #endif 1540 1541 /* VM state */ 1542 struct reclaim_state *reclaim_state; 1543 1544 struct backing_dev_info *backing_dev_info; 1545 1546 struct io_context *io_context; 1547 1548 unsigned long ptrace_message; 1549 siginfo_t *last_siginfo; /* For ptrace use. */ 1550 struct task_io_accounting ioac; 1551 #if defined(CONFIG_TASK_XACCT) 1552 u64 acct_rss_mem1; /* accumulated rss usage */ 1553 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1554 cputime_t acct_timexpd; /* stime + utime since last update */ 1555 #endif 1556 #ifdef CONFIG_CPUSETS 1557 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1558 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1559 int cpuset_mem_spread_rotor; 1560 int cpuset_slab_spread_rotor; 1561 #endif 1562 #ifdef CONFIG_CGROUPS 1563 /* Control Group info protected by css_set_lock */ 1564 struct css_set __rcu *cgroups; 1565 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1566 struct list_head cg_list; 1567 #endif 1568 #ifdef CONFIG_FUTEX 1569 struct robust_list_head __user *robust_list; 1570 #ifdef CONFIG_COMPAT 1571 struct compat_robust_list_head __user *compat_robust_list; 1572 #endif 1573 struct list_head pi_state_list; 1574 struct futex_pi_state *pi_state_cache; 1575 #endif 1576 #ifdef CONFIG_PERF_EVENTS 1577 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1578 struct mutex perf_event_mutex; 1579 struct list_head perf_event_list; 1580 #endif 1581 #ifdef CONFIG_DEBUG_PREEMPT 1582 unsigned long preempt_disable_ip; 1583 #endif 1584 #ifdef CONFIG_NUMA 1585 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1586 short il_next; 1587 short pref_node_fork; 1588 #endif 1589 #ifdef CONFIG_NUMA_BALANCING 1590 int numa_scan_seq; 1591 unsigned int numa_scan_period; 1592 unsigned int numa_scan_period_max; 1593 int numa_preferred_nid; 1594 unsigned long numa_migrate_retry; 1595 u64 node_stamp; /* migration stamp */ 1596 u64 last_task_numa_placement; 1597 u64 last_sum_exec_runtime; 1598 struct callback_head numa_work; 1599 1600 struct list_head numa_entry; 1601 struct numa_group *numa_group; 1602 1603 /* 1604 * numa_faults is an array split into four regions: 1605 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1606 * in this precise order. 1607 * 1608 * faults_memory: Exponential decaying average of faults on a per-node 1609 * basis. Scheduling placement decisions are made based on these 1610 * counts. The values remain static for the duration of a PTE scan. 1611 * faults_cpu: Track the nodes the process was running on when a NUMA 1612 * hinting fault was incurred. 1613 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1614 * during the current scan window. When the scan completes, the counts 1615 * in faults_memory and faults_cpu decay and these values are copied. 1616 */ 1617 unsigned long *numa_faults; 1618 unsigned long total_numa_faults; 1619 1620 /* 1621 * numa_faults_locality tracks if faults recorded during the last 1622 * scan window were remote/local. The task scan period is adapted 1623 * based on the locality of the faults with different weights 1624 * depending on whether they were shared or private faults 1625 */ 1626 unsigned long numa_faults_locality[2]; 1627 1628 unsigned long numa_pages_migrated; 1629 #endif /* CONFIG_NUMA_BALANCING */ 1630 1631 struct rcu_head rcu; 1632 1633 /* 1634 * cache last used pipe for splice 1635 */ 1636 struct pipe_inode_info *splice_pipe; 1637 1638 struct page_frag task_frag; 1639 1640 #ifdef CONFIG_TASK_DELAY_ACCT 1641 struct task_delay_info *delays; 1642 #endif 1643 #ifdef CONFIG_FAULT_INJECTION 1644 int make_it_fail; 1645 #endif 1646 /* 1647 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1648 * balance_dirty_pages() for some dirty throttling pause 1649 */ 1650 int nr_dirtied; 1651 int nr_dirtied_pause; 1652 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1653 1654 #ifdef CONFIG_LATENCYTOP 1655 int latency_record_count; 1656 struct latency_record latency_record[LT_SAVECOUNT]; 1657 #endif 1658 /* 1659 * time slack values; these are used to round up poll() and 1660 * select() etc timeout values. These are in nanoseconds. 1661 */ 1662 unsigned long timer_slack_ns; 1663 unsigned long default_timer_slack_ns; 1664 1665 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1666 /* Index of current stored address in ret_stack */ 1667 int curr_ret_stack; 1668 /* Stack of return addresses for return function tracing */ 1669 struct ftrace_ret_stack *ret_stack; 1670 /* time stamp for last schedule */ 1671 unsigned long long ftrace_timestamp; 1672 /* 1673 * Number of functions that haven't been traced 1674 * because of depth overrun. 1675 */ 1676 atomic_t trace_overrun; 1677 /* Pause for the tracing */ 1678 atomic_t tracing_graph_pause; 1679 #endif 1680 #ifdef CONFIG_TRACING 1681 /* state flags for use by tracers */ 1682 unsigned long trace; 1683 /* bitmask and counter of trace recursion */ 1684 unsigned long trace_recursion; 1685 #endif /* CONFIG_TRACING */ 1686 #ifdef CONFIG_MEMCG 1687 struct memcg_oom_info { 1688 struct mem_cgroup *memcg; 1689 gfp_t gfp_mask; 1690 int order; 1691 unsigned int may_oom:1; 1692 } memcg_oom; 1693 #endif 1694 #ifdef CONFIG_UPROBES 1695 struct uprobe_task *utask; 1696 #endif 1697 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1698 unsigned int sequential_io; 1699 unsigned int sequential_io_avg; 1700 #endif 1701 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1702 unsigned long task_state_change; 1703 #endif 1704 }; 1705 1706 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1707 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1708 1709 #define TNF_MIGRATED 0x01 1710 #define TNF_NO_GROUP 0x02 1711 #define TNF_SHARED 0x04 1712 #define TNF_FAULT_LOCAL 0x08 1713 1714 #ifdef CONFIG_NUMA_BALANCING 1715 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1716 extern pid_t task_numa_group_id(struct task_struct *p); 1717 extern void set_numabalancing_state(bool enabled); 1718 extern void task_numa_free(struct task_struct *p); 1719 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1720 int src_nid, int dst_cpu); 1721 #else 1722 static inline void task_numa_fault(int last_node, int node, int pages, 1723 int flags) 1724 { 1725 } 1726 static inline pid_t task_numa_group_id(struct task_struct *p) 1727 { 1728 return 0; 1729 } 1730 static inline void set_numabalancing_state(bool enabled) 1731 { 1732 } 1733 static inline void task_numa_free(struct task_struct *p) 1734 { 1735 } 1736 static inline bool should_numa_migrate_memory(struct task_struct *p, 1737 struct page *page, int src_nid, int dst_cpu) 1738 { 1739 return true; 1740 } 1741 #endif 1742 1743 static inline struct pid *task_pid(struct task_struct *task) 1744 { 1745 return task->pids[PIDTYPE_PID].pid; 1746 } 1747 1748 static inline struct pid *task_tgid(struct task_struct *task) 1749 { 1750 return task->group_leader->pids[PIDTYPE_PID].pid; 1751 } 1752 1753 /* 1754 * Without tasklist or rcu lock it is not safe to dereference 1755 * the result of task_pgrp/task_session even if task == current, 1756 * we can race with another thread doing sys_setsid/sys_setpgid. 1757 */ 1758 static inline struct pid *task_pgrp(struct task_struct *task) 1759 { 1760 return task->group_leader->pids[PIDTYPE_PGID].pid; 1761 } 1762 1763 static inline struct pid *task_session(struct task_struct *task) 1764 { 1765 return task->group_leader->pids[PIDTYPE_SID].pid; 1766 } 1767 1768 struct pid_namespace; 1769 1770 /* 1771 * the helpers to get the task's different pids as they are seen 1772 * from various namespaces 1773 * 1774 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1775 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1776 * current. 1777 * task_xid_nr_ns() : id seen from the ns specified; 1778 * 1779 * set_task_vxid() : assigns a virtual id to a task; 1780 * 1781 * see also pid_nr() etc in include/linux/pid.h 1782 */ 1783 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1784 struct pid_namespace *ns); 1785 1786 static inline pid_t task_pid_nr(struct task_struct *tsk) 1787 { 1788 return tsk->pid; 1789 } 1790 1791 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1792 struct pid_namespace *ns) 1793 { 1794 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1795 } 1796 1797 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1798 { 1799 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1800 } 1801 1802 1803 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1804 { 1805 return tsk->tgid; 1806 } 1807 1808 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1809 1810 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1811 { 1812 return pid_vnr(task_tgid(tsk)); 1813 } 1814 1815 1816 static inline int pid_alive(const struct task_struct *p); 1817 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1818 { 1819 pid_t pid = 0; 1820 1821 rcu_read_lock(); 1822 if (pid_alive(tsk)) 1823 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1824 rcu_read_unlock(); 1825 1826 return pid; 1827 } 1828 1829 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1830 { 1831 return task_ppid_nr_ns(tsk, &init_pid_ns); 1832 } 1833 1834 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1835 struct pid_namespace *ns) 1836 { 1837 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1838 } 1839 1840 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1841 { 1842 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1843 } 1844 1845 1846 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1847 struct pid_namespace *ns) 1848 { 1849 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1850 } 1851 1852 static inline pid_t task_session_vnr(struct task_struct *tsk) 1853 { 1854 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1855 } 1856 1857 /* obsolete, do not use */ 1858 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1859 { 1860 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1861 } 1862 1863 /** 1864 * pid_alive - check that a task structure is not stale 1865 * @p: Task structure to be checked. 1866 * 1867 * Test if a process is not yet dead (at most zombie state) 1868 * If pid_alive fails, then pointers within the task structure 1869 * can be stale and must not be dereferenced. 1870 * 1871 * Return: 1 if the process is alive. 0 otherwise. 1872 */ 1873 static inline int pid_alive(const struct task_struct *p) 1874 { 1875 return p->pids[PIDTYPE_PID].pid != NULL; 1876 } 1877 1878 /** 1879 * is_global_init - check if a task structure is init 1880 * @tsk: Task structure to be checked. 1881 * 1882 * Check if a task structure is the first user space task the kernel created. 1883 * 1884 * Return: 1 if the task structure is init. 0 otherwise. 1885 */ 1886 static inline int is_global_init(struct task_struct *tsk) 1887 { 1888 return tsk->pid == 1; 1889 } 1890 1891 extern struct pid *cad_pid; 1892 1893 extern void free_task(struct task_struct *tsk); 1894 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1895 1896 extern void __put_task_struct(struct task_struct *t); 1897 1898 static inline void put_task_struct(struct task_struct *t) 1899 { 1900 if (atomic_dec_and_test(&t->usage)) 1901 __put_task_struct(t); 1902 } 1903 1904 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1905 extern void task_cputime(struct task_struct *t, 1906 cputime_t *utime, cputime_t *stime); 1907 extern void task_cputime_scaled(struct task_struct *t, 1908 cputime_t *utimescaled, cputime_t *stimescaled); 1909 extern cputime_t task_gtime(struct task_struct *t); 1910 #else 1911 static inline void task_cputime(struct task_struct *t, 1912 cputime_t *utime, cputime_t *stime) 1913 { 1914 if (utime) 1915 *utime = t->utime; 1916 if (stime) 1917 *stime = t->stime; 1918 } 1919 1920 static inline void task_cputime_scaled(struct task_struct *t, 1921 cputime_t *utimescaled, 1922 cputime_t *stimescaled) 1923 { 1924 if (utimescaled) 1925 *utimescaled = t->utimescaled; 1926 if (stimescaled) 1927 *stimescaled = t->stimescaled; 1928 } 1929 1930 static inline cputime_t task_gtime(struct task_struct *t) 1931 { 1932 return t->gtime; 1933 } 1934 #endif 1935 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1936 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1937 1938 /* 1939 * Per process flags 1940 */ 1941 #define PF_EXITING 0x00000004 /* getting shut down */ 1942 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1943 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1944 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1945 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1946 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1947 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1948 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1949 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1950 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1951 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1952 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1953 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1954 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1955 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1956 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1957 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1958 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1959 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1960 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1961 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1962 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1963 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1964 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1965 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1966 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1967 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1968 1969 /* 1970 * Only the _current_ task can read/write to tsk->flags, but other 1971 * tasks can access tsk->flags in readonly mode for example 1972 * with tsk_used_math (like during threaded core dumping). 1973 * There is however an exception to this rule during ptrace 1974 * or during fork: the ptracer task is allowed to write to the 1975 * child->flags of its traced child (same goes for fork, the parent 1976 * can write to the child->flags), because we're guaranteed the 1977 * child is not running and in turn not changing child->flags 1978 * at the same time the parent does it. 1979 */ 1980 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1981 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1982 #define clear_used_math() clear_stopped_child_used_math(current) 1983 #define set_used_math() set_stopped_child_used_math(current) 1984 #define conditional_stopped_child_used_math(condition, child) \ 1985 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1986 #define conditional_used_math(condition) \ 1987 conditional_stopped_child_used_math(condition, current) 1988 #define copy_to_stopped_child_used_math(child) \ 1989 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1990 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1991 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1992 #define used_math() tsk_used_math(current) 1993 1994 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 1995 * __GFP_FS is also cleared as it implies __GFP_IO. 1996 */ 1997 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1998 { 1999 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2000 flags &= ~(__GFP_IO | __GFP_FS); 2001 return flags; 2002 } 2003 2004 static inline unsigned int memalloc_noio_save(void) 2005 { 2006 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2007 current->flags |= PF_MEMALLOC_NOIO; 2008 return flags; 2009 } 2010 2011 static inline void memalloc_noio_restore(unsigned int flags) 2012 { 2013 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2014 } 2015 2016 /* Per-process atomic flags. */ 2017 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2018 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2019 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2020 2021 2022 #define TASK_PFA_TEST(name, func) \ 2023 static inline bool task_##func(struct task_struct *p) \ 2024 { return test_bit(PFA_##name, &p->atomic_flags); } 2025 #define TASK_PFA_SET(name, func) \ 2026 static inline void task_set_##func(struct task_struct *p) \ 2027 { set_bit(PFA_##name, &p->atomic_flags); } 2028 #define TASK_PFA_CLEAR(name, func) \ 2029 static inline void task_clear_##func(struct task_struct *p) \ 2030 { clear_bit(PFA_##name, &p->atomic_flags); } 2031 2032 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2033 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2034 2035 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2036 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2037 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2038 2039 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2040 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2041 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2042 2043 /* 2044 * task->jobctl flags 2045 */ 2046 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2047 2048 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2049 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2050 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2051 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2052 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2053 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2054 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2055 2056 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 2057 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 2058 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 2059 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 2060 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 2061 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 2062 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 2063 2064 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2065 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2066 2067 extern bool task_set_jobctl_pending(struct task_struct *task, 2068 unsigned int mask); 2069 extern void task_clear_jobctl_trapping(struct task_struct *task); 2070 extern void task_clear_jobctl_pending(struct task_struct *task, 2071 unsigned int mask); 2072 2073 static inline void rcu_copy_process(struct task_struct *p) 2074 { 2075 #ifdef CONFIG_PREEMPT_RCU 2076 p->rcu_read_lock_nesting = 0; 2077 p->rcu_read_unlock_special.s = 0; 2078 p->rcu_blocked_node = NULL; 2079 INIT_LIST_HEAD(&p->rcu_node_entry); 2080 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2081 #ifdef CONFIG_TASKS_RCU 2082 p->rcu_tasks_holdout = false; 2083 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2084 p->rcu_tasks_idle_cpu = -1; 2085 #endif /* #ifdef CONFIG_TASKS_RCU */ 2086 } 2087 2088 static inline void tsk_restore_flags(struct task_struct *task, 2089 unsigned long orig_flags, unsigned long flags) 2090 { 2091 task->flags &= ~flags; 2092 task->flags |= orig_flags & flags; 2093 } 2094 2095 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2096 const struct cpumask *trial); 2097 extern int task_can_attach(struct task_struct *p, 2098 const struct cpumask *cs_cpus_allowed); 2099 #ifdef CONFIG_SMP 2100 extern void do_set_cpus_allowed(struct task_struct *p, 2101 const struct cpumask *new_mask); 2102 2103 extern int set_cpus_allowed_ptr(struct task_struct *p, 2104 const struct cpumask *new_mask); 2105 #else 2106 static inline void do_set_cpus_allowed(struct task_struct *p, 2107 const struct cpumask *new_mask) 2108 { 2109 } 2110 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2111 const struct cpumask *new_mask) 2112 { 2113 if (!cpumask_test_cpu(0, new_mask)) 2114 return -EINVAL; 2115 return 0; 2116 } 2117 #endif 2118 2119 #ifdef CONFIG_NO_HZ_COMMON 2120 void calc_load_enter_idle(void); 2121 void calc_load_exit_idle(void); 2122 #else 2123 static inline void calc_load_enter_idle(void) { } 2124 static inline void calc_load_exit_idle(void) { } 2125 #endif /* CONFIG_NO_HZ_COMMON */ 2126 2127 #ifndef CONFIG_CPUMASK_OFFSTACK 2128 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2129 { 2130 return set_cpus_allowed_ptr(p, &new_mask); 2131 } 2132 #endif 2133 2134 /* 2135 * Do not use outside of architecture code which knows its limitations. 2136 * 2137 * sched_clock() has no promise of monotonicity or bounded drift between 2138 * CPUs, use (which you should not) requires disabling IRQs. 2139 * 2140 * Please use one of the three interfaces below. 2141 */ 2142 extern unsigned long long notrace sched_clock(void); 2143 /* 2144 * See the comment in kernel/sched/clock.c 2145 */ 2146 extern u64 cpu_clock(int cpu); 2147 extern u64 local_clock(void); 2148 extern u64 sched_clock_cpu(int cpu); 2149 2150 2151 extern void sched_clock_init(void); 2152 2153 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2154 static inline void sched_clock_tick(void) 2155 { 2156 } 2157 2158 static inline void sched_clock_idle_sleep_event(void) 2159 { 2160 } 2161 2162 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2163 { 2164 } 2165 #else 2166 /* 2167 * Architectures can set this to 1 if they have specified 2168 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2169 * but then during bootup it turns out that sched_clock() 2170 * is reliable after all: 2171 */ 2172 extern int sched_clock_stable(void); 2173 extern void set_sched_clock_stable(void); 2174 extern void clear_sched_clock_stable(void); 2175 2176 extern void sched_clock_tick(void); 2177 extern void sched_clock_idle_sleep_event(void); 2178 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2179 #endif 2180 2181 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2182 /* 2183 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2184 * The reason for this explicit opt-in is not to have perf penalty with 2185 * slow sched_clocks. 2186 */ 2187 extern void enable_sched_clock_irqtime(void); 2188 extern void disable_sched_clock_irqtime(void); 2189 #else 2190 static inline void enable_sched_clock_irqtime(void) {} 2191 static inline void disable_sched_clock_irqtime(void) {} 2192 #endif 2193 2194 extern unsigned long long 2195 task_sched_runtime(struct task_struct *task); 2196 2197 /* sched_exec is called by processes performing an exec */ 2198 #ifdef CONFIG_SMP 2199 extern void sched_exec(void); 2200 #else 2201 #define sched_exec() {} 2202 #endif 2203 2204 extern void sched_clock_idle_sleep_event(void); 2205 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2206 2207 #ifdef CONFIG_HOTPLUG_CPU 2208 extern void idle_task_exit(void); 2209 #else 2210 static inline void idle_task_exit(void) {} 2211 #endif 2212 2213 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2214 extern void wake_up_nohz_cpu(int cpu); 2215 #else 2216 static inline void wake_up_nohz_cpu(int cpu) { } 2217 #endif 2218 2219 #ifdef CONFIG_NO_HZ_FULL 2220 extern bool sched_can_stop_tick(void); 2221 extern u64 scheduler_tick_max_deferment(void); 2222 #else 2223 static inline bool sched_can_stop_tick(void) { return false; } 2224 #endif 2225 2226 #ifdef CONFIG_SCHED_AUTOGROUP 2227 extern void sched_autogroup_create_attach(struct task_struct *p); 2228 extern void sched_autogroup_detach(struct task_struct *p); 2229 extern void sched_autogroup_fork(struct signal_struct *sig); 2230 extern void sched_autogroup_exit(struct signal_struct *sig); 2231 #ifdef CONFIG_PROC_FS 2232 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2233 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2234 #endif 2235 #else 2236 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2237 static inline void sched_autogroup_detach(struct task_struct *p) { } 2238 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2239 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2240 #endif 2241 2242 extern int yield_to(struct task_struct *p, bool preempt); 2243 extern void set_user_nice(struct task_struct *p, long nice); 2244 extern int task_prio(const struct task_struct *p); 2245 /** 2246 * task_nice - return the nice value of a given task. 2247 * @p: the task in question. 2248 * 2249 * Return: The nice value [ -20 ... 0 ... 19 ]. 2250 */ 2251 static inline int task_nice(const struct task_struct *p) 2252 { 2253 return PRIO_TO_NICE((p)->static_prio); 2254 } 2255 extern int can_nice(const struct task_struct *p, const int nice); 2256 extern int task_curr(const struct task_struct *p); 2257 extern int idle_cpu(int cpu); 2258 extern int sched_setscheduler(struct task_struct *, int, 2259 const struct sched_param *); 2260 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2261 const struct sched_param *); 2262 extern int sched_setattr(struct task_struct *, 2263 const struct sched_attr *); 2264 extern struct task_struct *idle_task(int cpu); 2265 /** 2266 * is_idle_task - is the specified task an idle task? 2267 * @p: the task in question. 2268 * 2269 * Return: 1 if @p is an idle task. 0 otherwise. 2270 */ 2271 static inline bool is_idle_task(const struct task_struct *p) 2272 { 2273 return p->pid == 0; 2274 } 2275 extern struct task_struct *curr_task(int cpu); 2276 extern void set_curr_task(int cpu, struct task_struct *p); 2277 2278 void yield(void); 2279 2280 /* 2281 * The default (Linux) execution domain. 2282 */ 2283 extern struct exec_domain default_exec_domain; 2284 2285 union thread_union { 2286 struct thread_info thread_info; 2287 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2288 }; 2289 2290 #ifndef __HAVE_ARCH_KSTACK_END 2291 static inline int kstack_end(void *addr) 2292 { 2293 /* Reliable end of stack detection: 2294 * Some APM bios versions misalign the stack 2295 */ 2296 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2297 } 2298 #endif 2299 2300 extern union thread_union init_thread_union; 2301 extern struct task_struct init_task; 2302 2303 extern struct mm_struct init_mm; 2304 2305 extern struct pid_namespace init_pid_ns; 2306 2307 /* 2308 * find a task by one of its numerical ids 2309 * 2310 * find_task_by_pid_ns(): 2311 * finds a task by its pid in the specified namespace 2312 * find_task_by_vpid(): 2313 * finds a task by its virtual pid 2314 * 2315 * see also find_vpid() etc in include/linux/pid.h 2316 */ 2317 2318 extern struct task_struct *find_task_by_vpid(pid_t nr); 2319 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2320 struct pid_namespace *ns); 2321 2322 /* per-UID process charging. */ 2323 extern struct user_struct * alloc_uid(kuid_t); 2324 static inline struct user_struct *get_uid(struct user_struct *u) 2325 { 2326 atomic_inc(&u->__count); 2327 return u; 2328 } 2329 extern void free_uid(struct user_struct *); 2330 2331 #include <asm/current.h> 2332 2333 extern void xtime_update(unsigned long ticks); 2334 2335 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2336 extern int wake_up_process(struct task_struct *tsk); 2337 extern void wake_up_new_task(struct task_struct *tsk); 2338 #ifdef CONFIG_SMP 2339 extern void kick_process(struct task_struct *tsk); 2340 #else 2341 static inline void kick_process(struct task_struct *tsk) { } 2342 #endif 2343 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2344 extern void sched_dead(struct task_struct *p); 2345 2346 extern void proc_caches_init(void); 2347 extern void flush_signals(struct task_struct *); 2348 extern void __flush_signals(struct task_struct *); 2349 extern void ignore_signals(struct task_struct *); 2350 extern void flush_signal_handlers(struct task_struct *, int force_default); 2351 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2352 2353 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2354 { 2355 unsigned long flags; 2356 int ret; 2357 2358 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2359 ret = dequeue_signal(tsk, mask, info); 2360 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2361 2362 return ret; 2363 } 2364 2365 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2366 sigset_t *mask); 2367 extern void unblock_all_signals(void); 2368 extern void release_task(struct task_struct * p); 2369 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2370 extern int force_sigsegv(int, struct task_struct *); 2371 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2372 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2373 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2374 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2375 const struct cred *, u32); 2376 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2377 extern int kill_pid(struct pid *pid, int sig, int priv); 2378 extern int kill_proc_info(int, struct siginfo *, pid_t); 2379 extern __must_check bool do_notify_parent(struct task_struct *, int); 2380 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2381 extern void force_sig(int, struct task_struct *); 2382 extern int send_sig(int, struct task_struct *, int); 2383 extern int zap_other_threads(struct task_struct *p); 2384 extern struct sigqueue *sigqueue_alloc(void); 2385 extern void sigqueue_free(struct sigqueue *); 2386 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2387 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2388 2389 static inline void restore_saved_sigmask(void) 2390 { 2391 if (test_and_clear_restore_sigmask()) 2392 __set_current_blocked(¤t->saved_sigmask); 2393 } 2394 2395 static inline sigset_t *sigmask_to_save(void) 2396 { 2397 sigset_t *res = ¤t->blocked; 2398 if (unlikely(test_restore_sigmask())) 2399 res = ¤t->saved_sigmask; 2400 return res; 2401 } 2402 2403 static inline int kill_cad_pid(int sig, int priv) 2404 { 2405 return kill_pid(cad_pid, sig, priv); 2406 } 2407 2408 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2409 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2410 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2411 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2412 2413 /* 2414 * True if we are on the alternate signal stack. 2415 */ 2416 static inline int on_sig_stack(unsigned long sp) 2417 { 2418 #ifdef CONFIG_STACK_GROWSUP 2419 return sp >= current->sas_ss_sp && 2420 sp - current->sas_ss_sp < current->sas_ss_size; 2421 #else 2422 return sp > current->sas_ss_sp && 2423 sp - current->sas_ss_sp <= current->sas_ss_size; 2424 #endif 2425 } 2426 2427 static inline int sas_ss_flags(unsigned long sp) 2428 { 2429 if (!current->sas_ss_size) 2430 return SS_DISABLE; 2431 2432 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2433 } 2434 2435 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2436 { 2437 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2438 #ifdef CONFIG_STACK_GROWSUP 2439 return current->sas_ss_sp; 2440 #else 2441 return current->sas_ss_sp + current->sas_ss_size; 2442 #endif 2443 return sp; 2444 } 2445 2446 /* 2447 * Routines for handling mm_structs 2448 */ 2449 extern struct mm_struct * mm_alloc(void); 2450 2451 /* mmdrop drops the mm and the page tables */ 2452 extern void __mmdrop(struct mm_struct *); 2453 static inline void mmdrop(struct mm_struct * mm) 2454 { 2455 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2456 __mmdrop(mm); 2457 } 2458 2459 /* mmput gets rid of the mappings and all user-space */ 2460 extern void mmput(struct mm_struct *); 2461 /* Grab a reference to a task's mm, if it is not already going away */ 2462 extern struct mm_struct *get_task_mm(struct task_struct *task); 2463 /* 2464 * Grab a reference to a task's mm, if it is not already going away 2465 * and ptrace_may_access with the mode parameter passed to it 2466 * succeeds. 2467 */ 2468 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2469 /* Remove the current tasks stale references to the old mm_struct */ 2470 extern void mm_release(struct task_struct *, struct mm_struct *); 2471 2472 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2473 struct task_struct *); 2474 extern void flush_thread(void); 2475 extern void exit_thread(void); 2476 2477 extern void exit_files(struct task_struct *); 2478 extern void __cleanup_sighand(struct sighand_struct *); 2479 2480 extern void exit_itimers(struct signal_struct *); 2481 extern void flush_itimer_signals(void); 2482 2483 extern void do_group_exit(int); 2484 2485 extern int do_execve(struct filename *, 2486 const char __user * const __user *, 2487 const char __user * const __user *); 2488 extern int do_execveat(int, struct filename *, 2489 const char __user * const __user *, 2490 const char __user * const __user *, 2491 int); 2492 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2493 struct task_struct *fork_idle(int); 2494 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2495 2496 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2497 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2498 { 2499 __set_task_comm(tsk, from, false); 2500 } 2501 extern char *get_task_comm(char *to, struct task_struct *tsk); 2502 2503 #ifdef CONFIG_SMP 2504 void scheduler_ipi(void); 2505 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2506 #else 2507 static inline void scheduler_ipi(void) { } 2508 static inline unsigned long wait_task_inactive(struct task_struct *p, 2509 long match_state) 2510 { 2511 return 1; 2512 } 2513 #endif 2514 2515 #define next_task(p) \ 2516 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2517 2518 #define for_each_process(p) \ 2519 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2520 2521 extern bool current_is_single_threaded(void); 2522 2523 /* 2524 * Careful: do_each_thread/while_each_thread is a double loop so 2525 * 'break' will not work as expected - use goto instead. 2526 */ 2527 #define do_each_thread(g, t) \ 2528 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2529 2530 #define while_each_thread(g, t) \ 2531 while ((t = next_thread(t)) != g) 2532 2533 #define __for_each_thread(signal, t) \ 2534 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2535 2536 #define for_each_thread(p, t) \ 2537 __for_each_thread((p)->signal, t) 2538 2539 /* Careful: this is a double loop, 'break' won't work as expected. */ 2540 #define for_each_process_thread(p, t) \ 2541 for_each_process(p) for_each_thread(p, t) 2542 2543 static inline int get_nr_threads(struct task_struct *tsk) 2544 { 2545 return tsk->signal->nr_threads; 2546 } 2547 2548 static inline bool thread_group_leader(struct task_struct *p) 2549 { 2550 return p->exit_signal >= 0; 2551 } 2552 2553 /* Do to the insanities of de_thread it is possible for a process 2554 * to have the pid of the thread group leader without actually being 2555 * the thread group leader. For iteration through the pids in proc 2556 * all we care about is that we have a task with the appropriate 2557 * pid, we don't actually care if we have the right task. 2558 */ 2559 static inline bool has_group_leader_pid(struct task_struct *p) 2560 { 2561 return task_pid(p) == p->signal->leader_pid; 2562 } 2563 2564 static inline 2565 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2566 { 2567 return p1->signal == p2->signal; 2568 } 2569 2570 static inline struct task_struct *next_thread(const struct task_struct *p) 2571 { 2572 return list_entry_rcu(p->thread_group.next, 2573 struct task_struct, thread_group); 2574 } 2575 2576 static inline int thread_group_empty(struct task_struct *p) 2577 { 2578 return list_empty(&p->thread_group); 2579 } 2580 2581 #define delay_group_leader(p) \ 2582 (thread_group_leader(p) && !thread_group_empty(p)) 2583 2584 /* 2585 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2586 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2587 * pins the final release of task.io_context. Also protects ->cpuset and 2588 * ->cgroup.subsys[]. And ->vfork_done. 2589 * 2590 * Nests both inside and outside of read_lock(&tasklist_lock). 2591 * It must not be nested with write_lock_irq(&tasklist_lock), 2592 * neither inside nor outside. 2593 */ 2594 static inline void task_lock(struct task_struct *p) 2595 { 2596 spin_lock(&p->alloc_lock); 2597 } 2598 2599 static inline void task_unlock(struct task_struct *p) 2600 { 2601 spin_unlock(&p->alloc_lock); 2602 } 2603 2604 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2605 unsigned long *flags); 2606 2607 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2608 unsigned long *flags) 2609 { 2610 struct sighand_struct *ret; 2611 2612 ret = __lock_task_sighand(tsk, flags); 2613 (void)__cond_lock(&tsk->sighand->siglock, ret); 2614 return ret; 2615 } 2616 2617 static inline void unlock_task_sighand(struct task_struct *tsk, 2618 unsigned long *flags) 2619 { 2620 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2621 } 2622 2623 #ifdef CONFIG_CGROUPS 2624 static inline void threadgroup_change_begin(struct task_struct *tsk) 2625 { 2626 down_read(&tsk->signal->group_rwsem); 2627 } 2628 static inline void threadgroup_change_end(struct task_struct *tsk) 2629 { 2630 up_read(&tsk->signal->group_rwsem); 2631 } 2632 2633 /** 2634 * threadgroup_lock - lock threadgroup 2635 * @tsk: member task of the threadgroup to lock 2636 * 2637 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2638 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2639 * change ->group_leader/pid. This is useful for cases where the threadgroup 2640 * needs to stay stable across blockable operations. 2641 * 2642 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2643 * synchronization. While held, no new task will be added to threadgroup 2644 * and no existing live task will have its PF_EXITING set. 2645 * 2646 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2647 * sub-thread becomes a new leader. 2648 */ 2649 static inline void threadgroup_lock(struct task_struct *tsk) 2650 { 2651 down_write(&tsk->signal->group_rwsem); 2652 } 2653 2654 /** 2655 * threadgroup_unlock - unlock threadgroup 2656 * @tsk: member task of the threadgroup to unlock 2657 * 2658 * Reverse threadgroup_lock(). 2659 */ 2660 static inline void threadgroup_unlock(struct task_struct *tsk) 2661 { 2662 up_write(&tsk->signal->group_rwsem); 2663 } 2664 #else 2665 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2666 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2667 static inline void threadgroup_lock(struct task_struct *tsk) {} 2668 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2669 #endif 2670 2671 #ifndef __HAVE_THREAD_FUNCTIONS 2672 2673 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2674 #define task_stack_page(task) ((task)->stack) 2675 2676 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2677 { 2678 *task_thread_info(p) = *task_thread_info(org); 2679 task_thread_info(p)->task = p; 2680 } 2681 2682 /* 2683 * Return the address of the last usable long on the stack. 2684 * 2685 * When the stack grows down, this is just above the thread 2686 * info struct. Going any lower will corrupt the threadinfo. 2687 * 2688 * When the stack grows up, this is the highest address. 2689 * Beyond that position, we corrupt data on the next page. 2690 */ 2691 static inline unsigned long *end_of_stack(struct task_struct *p) 2692 { 2693 #ifdef CONFIG_STACK_GROWSUP 2694 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2695 #else 2696 return (unsigned long *)(task_thread_info(p) + 1); 2697 #endif 2698 } 2699 2700 #endif 2701 #define task_stack_end_corrupted(task) \ 2702 (*(end_of_stack(task)) != STACK_END_MAGIC) 2703 2704 static inline int object_is_on_stack(void *obj) 2705 { 2706 void *stack = task_stack_page(current); 2707 2708 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2709 } 2710 2711 extern void thread_info_cache_init(void); 2712 2713 #ifdef CONFIG_DEBUG_STACK_USAGE 2714 static inline unsigned long stack_not_used(struct task_struct *p) 2715 { 2716 unsigned long *n = end_of_stack(p); 2717 2718 do { /* Skip over canary */ 2719 n++; 2720 } while (!*n); 2721 2722 return (unsigned long)n - (unsigned long)end_of_stack(p); 2723 } 2724 #endif 2725 extern void set_task_stack_end_magic(struct task_struct *tsk); 2726 2727 /* set thread flags in other task's structures 2728 * - see asm/thread_info.h for TIF_xxxx flags available 2729 */ 2730 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2731 { 2732 set_ti_thread_flag(task_thread_info(tsk), flag); 2733 } 2734 2735 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2736 { 2737 clear_ti_thread_flag(task_thread_info(tsk), flag); 2738 } 2739 2740 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2741 { 2742 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2743 } 2744 2745 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2746 { 2747 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2748 } 2749 2750 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2751 { 2752 return test_ti_thread_flag(task_thread_info(tsk), flag); 2753 } 2754 2755 static inline void set_tsk_need_resched(struct task_struct *tsk) 2756 { 2757 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2758 } 2759 2760 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2761 { 2762 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2763 } 2764 2765 static inline int test_tsk_need_resched(struct task_struct *tsk) 2766 { 2767 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2768 } 2769 2770 static inline int restart_syscall(void) 2771 { 2772 set_tsk_thread_flag(current, TIF_SIGPENDING); 2773 return -ERESTARTNOINTR; 2774 } 2775 2776 static inline int signal_pending(struct task_struct *p) 2777 { 2778 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2779 } 2780 2781 static inline int __fatal_signal_pending(struct task_struct *p) 2782 { 2783 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2784 } 2785 2786 static inline int fatal_signal_pending(struct task_struct *p) 2787 { 2788 return signal_pending(p) && __fatal_signal_pending(p); 2789 } 2790 2791 static inline int signal_pending_state(long state, struct task_struct *p) 2792 { 2793 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2794 return 0; 2795 if (!signal_pending(p)) 2796 return 0; 2797 2798 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2799 } 2800 2801 /* 2802 * cond_resched() and cond_resched_lock(): latency reduction via 2803 * explicit rescheduling in places that are safe. The return 2804 * value indicates whether a reschedule was done in fact. 2805 * cond_resched_lock() will drop the spinlock before scheduling, 2806 * cond_resched_softirq() will enable bhs before scheduling. 2807 */ 2808 extern int _cond_resched(void); 2809 2810 #define cond_resched() ({ \ 2811 ___might_sleep(__FILE__, __LINE__, 0); \ 2812 _cond_resched(); \ 2813 }) 2814 2815 extern int __cond_resched_lock(spinlock_t *lock); 2816 2817 #ifdef CONFIG_PREEMPT_COUNT 2818 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2819 #else 2820 #define PREEMPT_LOCK_OFFSET 0 2821 #endif 2822 2823 #define cond_resched_lock(lock) ({ \ 2824 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2825 __cond_resched_lock(lock); \ 2826 }) 2827 2828 extern int __cond_resched_softirq(void); 2829 2830 #define cond_resched_softirq() ({ \ 2831 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2832 __cond_resched_softirq(); \ 2833 }) 2834 2835 static inline void cond_resched_rcu(void) 2836 { 2837 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2838 rcu_read_unlock(); 2839 cond_resched(); 2840 rcu_read_lock(); 2841 #endif 2842 } 2843 2844 /* 2845 * Does a critical section need to be broken due to another 2846 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2847 * but a general need for low latency) 2848 */ 2849 static inline int spin_needbreak(spinlock_t *lock) 2850 { 2851 #ifdef CONFIG_PREEMPT 2852 return spin_is_contended(lock); 2853 #else 2854 return 0; 2855 #endif 2856 } 2857 2858 /* 2859 * Idle thread specific functions to determine the need_resched 2860 * polling state. 2861 */ 2862 #ifdef TIF_POLLING_NRFLAG 2863 static inline int tsk_is_polling(struct task_struct *p) 2864 { 2865 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2866 } 2867 2868 static inline void __current_set_polling(void) 2869 { 2870 set_thread_flag(TIF_POLLING_NRFLAG); 2871 } 2872 2873 static inline bool __must_check current_set_polling_and_test(void) 2874 { 2875 __current_set_polling(); 2876 2877 /* 2878 * Polling state must be visible before we test NEED_RESCHED, 2879 * paired by resched_curr() 2880 */ 2881 smp_mb__after_atomic(); 2882 2883 return unlikely(tif_need_resched()); 2884 } 2885 2886 static inline void __current_clr_polling(void) 2887 { 2888 clear_thread_flag(TIF_POLLING_NRFLAG); 2889 } 2890 2891 static inline bool __must_check current_clr_polling_and_test(void) 2892 { 2893 __current_clr_polling(); 2894 2895 /* 2896 * Polling state must be visible before we test NEED_RESCHED, 2897 * paired by resched_curr() 2898 */ 2899 smp_mb__after_atomic(); 2900 2901 return unlikely(tif_need_resched()); 2902 } 2903 2904 #else 2905 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2906 static inline void __current_set_polling(void) { } 2907 static inline void __current_clr_polling(void) { } 2908 2909 static inline bool __must_check current_set_polling_and_test(void) 2910 { 2911 return unlikely(tif_need_resched()); 2912 } 2913 static inline bool __must_check current_clr_polling_and_test(void) 2914 { 2915 return unlikely(tif_need_resched()); 2916 } 2917 #endif 2918 2919 static inline void current_clr_polling(void) 2920 { 2921 __current_clr_polling(); 2922 2923 /* 2924 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2925 * Once the bit is cleared, we'll get IPIs with every new 2926 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2927 * fold. 2928 */ 2929 smp_mb(); /* paired with resched_curr() */ 2930 2931 preempt_fold_need_resched(); 2932 } 2933 2934 static __always_inline bool need_resched(void) 2935 { 2936 return unlikely(tif_need_resched()); 2937 } 2938 2939 /* 2940 * Thread group CPU time accounting. 2941 */ 2942 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2943 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2944 2945 static inline void thread_group_cputime_init(struct signal_struct *sig) 2946 { 2947 raw_spin_lock_init(&sig->cputimer.lock); 2948 } 2949 2950 /* 2951 * Reevaluate whether the task has signals pending delivery. 2952 * Wake the task if so. 2953 * This is required every time the blocked sigset_t changes. 2954 * callers must hold sighand->siglock. 2955 */ 2956 extern void recalc_sigpending_and_wake(struct task_struct *t); 2957 extern void recalc_sigpending(void); 2958 2959 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2960 2961 static inline void signal_wake_up(struct task_struct *t, bool resume) 2962 { 2963 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2964 } 2965 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2966 { 2967 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2968 } 2969 2970 /* 2971 * Wrappers for p->thread_info->cpu access. No-op on UP. 2972 */ 2973 #ifdef CONFIG_SMP 2974 2975 static inline unsigned int task_cpu(const struct task_struct *p) 2976 { 2977 return task_thread_info(p)->cpu; 2978 } 2979 2980 static inline int task_node(const struct task_struct *p) 2981 { 2982 return cpu_to_node(task_cpu(p)); 2983 } 2984 2985 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2986 2987 #else 2988 2989 static inline unsigned int task_cpu(const struct task_struct *p) 2990 { 2991 return 0; 2992 } 2993 2994 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2995 { 2996 } 2997 2998 #endif /* CONFIG_SMP */ 2999 3000 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3001 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3002 3003 #ifdef CONFIG_CGROUP_SCHED 3004 extern struct task_group root_task_group; 3005 #endif /* CONFIG_CGROUP_SCHED */ 3006 3007 extern int task_can_switch_user(struct user_struct *up, 3008 struct task_struct *tsk); 3009 3010 #ifdef CONFIG_TASK_XACCT 3011 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3012 { 3013 tsk->ioac.rchar += amt; 3014 } 3015 3016 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3017 { 3018 tsk->ioac.wchar += amt; 3019 } 3020 3021 static inline void inc_syscr(struct task_struct *tsk) 3022 { 3023 tsk->ioac.syscr++; 3024 } 3025 3026 static inline void inc_syscw(struct task_struct *tsk) 3027 { 3028 tsk->ioac.syscw++; 3029 } 3030 #else 3031 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3032 { 3033 } 3034 3035 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3036 { 3037 } 3038 3039 static inline void inc_syscr(struct task_struct *tsk) 3040 { 3041 } 3042 3043 static inline void inc_syscw(struct task_struct *tsk) 3044 { 3045 } 3046 #endif 3047 3048 #ifndef TASK_SIZE_OF 3049 #define TASK_SIZE_OF(tsk) TASK_SIZE 3050 #endif 3051 3052 #ifdef CONFIG_MEMCG 3053 extern void mm_update_next_owner(struct mm_struct *mm); 3054 #else 3055 static inline void mm_update_next_owner(struct mm_struct *mm) 3056 { 3057 } 3058 #endif /* CONFIG_MEMCG */ 3059 3060 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3061 unsigned int limit) 3062 { 3063 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 3064 } 3065 3066 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3067 unsigned int limit) 3068 { 3069 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 3070 } 3071 3072 static inline unsigned long rlimit(unsigned int limit) 3073 { 3074 return task_rlimit(current, limit); 3075 } 3076 3077 static inline unsigned long rlimit_max(unsigned int limit) 3078 { 3079 return task_rlimit_max(current, limit); 3080 } 3081 3082 #endif 3083