1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <asm/param.h> /* for HZ */ 5 6 #include <linux/config.h> 7 #include <linux/capability.h> 8 #include <linux/threads.h> 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/timex.h> 12 #include <linux/jiffies.h> 13 #include <linux/rbtree.h> 14 #include <linux/thread_info.h> 15 #include <linux/cpumask.h> 16 #include <linux/errno.h> 17 #include <linux/nodemask.h> 18 19 #include <asm/system.h> 20 #include <asm/semaphore.h> 21 #include <asm/page.h> 22 #include <asm/ptrace.h> 23 #include <asm/mmu.h> 24 #include <asm/cputime.h> 25 26 #include <linux/smp.h> 27 #include <linux/sem.h> 28 #include <linux/signal.h> 29 #include <linux/securebits.h> 30 #include <linux/fs_struct.h> 31 #include <linux/compiler.h> 32 #include <linux/completion.h> 33 #include <linux/pid.h> 34 #include <linux/percpu.h> 35 #include <linux/topology.h> 36 #include <linux/seccomp.h> 37 38 struct exec_domain; 39 40 /* 41 * cloning flags: 42 */ 43 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 44 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 45 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 46 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 47 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 48 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 49 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 50 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 51 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 52 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 53 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 54 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 55 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 56 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 57 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 58 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 59 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 60 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 61 62 /* 63 * List of flags we want to share for kernel threads, 64 * if only because they are not used by them anyway. 65 */ 66 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 67 68 /* 69 * These are the constant used to fake the fixed-point load-average 70 * counting. Some notes: 71 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 72 * a load-average precision of 10 bits integer + 11 bits fractional 73 * - if you want to count load-averages more often, you need more 74 * precision, or rounding will get you. With 2-second counting freq, 75 * the EXP_n values would be 1981, 2034 and 2043 if still using only 76 * 11 bit fractions. 77 */ 78 extern unsigned long avenrun[]; /* Load averages */ 79 80 #define FSHIFT 11 /* nr of bits of precision */ 81 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 82 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 83 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 84 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 85 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 86 87 #define CALC_LOAD(load,exp,n) \ 88 load *= exp; \ 89 load += n*(FIXED_1-exp); \ 90 load >>= FSHIFT; 91 92 extern unsigned long total_forks; 93 extern int nr_threads; 94 extern int last_pid; 95 DECLARE_PER_CPU(unsigned long, process_counts); 96 extern int nr_processes(void); 97 extern unsigned long nr_running(void); 98 extern unsigned long nr_uninterruptible(void); 99 extern unsigned long nr_iowait(void); 100 101 #include <linux/time.h> 102 #include <linux/param.h> 103 #include <linux/resource.h> 104 #include <linux/timer.h> 105 106 #include <asm/processor.h> 107 108 #define TASK_RUNNING 0 109 #define TASK_INTERRUPTIBLE 1 110 #define TASK_UNINTERRUPTIBLE 2 111 #define TASK_STOPPED 4 112 #define TASK_TRACED 8 113 #define EXIT_ZOMBIE 16 114 #define EXIT_DEAD 32 115 116 #define __set_task_state(tsk, state_value) \ 117 do { (tsk)->state = (state_value); } while (0) 118 #define set_task_state(tsk, state_value) \ 119 set_mb((tsk)->state, (state_value)) 120 121 #define __set_current_state(state_value) \ 122 do { current->state = (state_value); } while (0) 123 #define set_current_state(state_value) \ 124 set_mb(current->state, (state_value)) 125 126 /* Task command name length */ 127 #define TASK_COMM_LEN 16 128 129 /* 130 * Scheduling policies 131 */ 132 #define SCHED_NORMAL 0 133 #define SCHED_FIFO 1 134 #define SCHED_RR 2 135 136 struct sched_param { 137 int sched_priority; 138 }; 139 140 #ifdef __KERNEL__ 141 142 #include <linux/spinlock.h> 143 144 /* 145 * This serializes "schedule()" and also protects 146 * the run-queue from deletions/modifications (but 147 * _adding_ to the beginning of the run-queue has 148 * a separate lock). 149 */ 150 extern rwlock_t tasklist_lock; 151 extern spinlock_t mmlist_lock; 152 153 typedef struct task_struct task_t; 154 155 extern void sched_init(void); 156 extern void sched_init_smp(void); 157 extern void init_idle(task_t *idle, int cpu); 158 159 extern cpumask_t nohz_cpu_mask; 160 161 extern void show_state(void); 162 extern void show_regs(struct pt_regs *); 163 164 /* 165 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 166 * task), SP is the stack pointer of the first frame that should be shown in the back 167 * trace (or NULL if the entire call-chain of the task should be shown). 168 */ 169 extern void show_stack(struct task_struct *task, unsigned long *sp); 170 171 void io_schedule(void); 172 long io_schedule_timeout(long timeout); 173 174 extern void cpu_init (void); 175 extern void trap_init(void); 176 extern void update_process_times(int user); 177 extern void scheduler_tick(void); 178 179 /* Attach to any functions which should be ignored in wchan output. */ 180 #define __sched __attribute__((__section__(".sched.text"))) 181 /* Is this address in the __sched functions? */ 182 extern int in_sched_functions(unsigned long addr); 183 184 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 185 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 186 asmlinkage void schedule(void); 187 188 struct namespace; 189 190 /* Maximum number of active map areas.. This is a random (large) number */ 191 #define DEFAULT_MAX_MAP_COUNT 65536 192 193 extern int sysctl_max_map_count; 194 195 #include <linux/aio.h> 196 197 extern unsigned long 198 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 199 unsigned long, unsigned long); 200 extern unsigned long 201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 202 unsigned long len, unsigned long pgoff, 203 unsigned long flags); 204 extern void arch_unmap_area(struct vm_area_struct *area); 205 extern void arch_unmap_area_topdown(struct vm_area_struct *area); 206 207 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 208 #define get_mm_counter(mm, member) ((mm)->_##member) 209 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 210 #define inc_mm_counter(mm, member) (mm)->_##member++ 211 #define dec_mm_counter(mm, member) (mm)->_##member-- 212 typedef unsigned long mm_counter_t; 213 214 struct mm_struct { 215 struct vm_area_struct * mmap; /* list of VMAs */ 216 struct rb_root mm_rb; 217 struct vm_area_struct * mmap_cache; /* last find_vma result */ 218 unsigned long (*get_unmapped_area) (struct file *filp, 219 unsigned long addr, unsigned long len, 220 unsigned long pgoff, unsigned long flags); 221 void (*unmap_area) (struct vm_area_struct *area); 222 unsigned long mmap_base; /* base of mmap area */ 223 unsigned long free_area_cache; /* first hole */ 224 pgd_t * pgd; 225 atomic_t mm_users; /* How many users with user space? */ 226 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 227 int map_count; /* number of VMAs */ 228 struct rw_semaphore mmap_sem; 229 spinlock_t page_table_lock; /* Protects page tables and some counters */ 230 231 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 232 * together off init_mm.mmlist, and are protected 233 * by mmlist_lock 234 */ 235 236 unsigned long start_code, end_code, start_data, end_data; 237 unsigned long start_brk, brk, start_stack; 238 unsigned long arg_start, arg_end, env_start, env_end; 239 unsigned long total_vm, locked_vm, shared_vm; 240 unsigned long exec_vm, stack_vm, reserved_vm, def_flags, nr_ptes; 241 242 /* Special counters protected by the page_table_lock */ 243 mm_counter_t _rss; 244 mm_counter_t _anon_rss; 245 246 unsigned long saved_auxv[42]; /* for /proc/PID/auxv */ 247 248 unsigned dumpable:1; 249 cpumask_t cpu_vm_mask; 250 251 /* Architecture-specific MM context */ 252 mm_context_t context; 253 254 /* Token based thrashing protection. */ 255 unsigned long swap_token_time; 256 char recent_pagein; 257 258 /* coredumping support */ 259 int core_waiters; 260 struct completion *core_startup_done, core_done; 261 262 /* aio bits */ 263 rwlock_t ioctx_list_lock; 264 struct kioctx *ioctx_list; 265 266 struct kioctx default_kioctx; 267 268 unsigned long hiwater_rss; /* High-water RSS usage */ 269 unsigned long hiwater_vm; /* High-water virtual memory usage */ 270 }; 271 272 struct sighand_struct { 273 atomic_t count; 274 struct k_sigaction action[_NSIG]; 275 spinlock_t siglock; 276 }; 277 278 /* 279 * NOTE! "signal_struct" does not have it's own 280 * locking, because a shared signal_struct always 281 * implies a shared sighand_struct, so locking 282 * sighand_struct is always a proper superset of 283 * the locking of signal_struct. 284 */ 285 struct signal_struct { 286 atomic_t count; 287 atomic_t live; 288 289 wait_queue_head_t wait_chldexit; /* for wait4() */ 290 291 /* current thread group signal load-balancing target: */ 292 task_t *curr_target; 293 294 /* shared signal handling: */ 295 struct sigpending shared_pending; 296 297 /* thread group exit support */ 298 int group_exit_code; 299 /* overloaded: 300 * - notify group_exit_task when ->count is equal to notify_count 301 * - everyone except group_exit_task is stopped during signal delivery 302 * of fatal signals, group_exit_task processes the signal. 303 */ 304 struct task_struct *group_exit_task; 305 int notify_count; 306 307 /* thread group stop support, overloads group_exit_code too */ 308 int group_stop_count; 309 unsigned int flags; /* see SIGNAL_* flags below */ 310 311 /* POSIX.1b Interval Timers */ 312 struct list_head posix_timers; 313 314 /* ITIMER_REAL timer for the process */ 315 struct timer_list real_timer; 316 unsigned long it_real_value, it_real_incr; 317 318 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 319 cputime_t it_prof_expires, it_virt_expires; 320 cputime_t it_prof_incr, it_virt_incr; 321 322 /* job control IDs */ 323 pid_t pgrp; 324 pid_t tty_old_pgrp; 325 pid_t session; 326 /* boolean value for session group leader */ 327 int leader; 328 329 struct tty_struct *tty; /* NULL if no tty */ 330 331 /* 332 * Cumulative resource counters for dead threads in the group, 333 * and for reaped dead child processes forked by this group. 334 * Live threads maintain their own counters and add to these 335 * in __exit_signal, except for the group leader. 336 */ 337 cputime_t utime, stime, cutime, cstime; 338 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 339 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 340 341 /* 342 * Cumulative ns of scheduled CPU time for dead threads in the 343 * group, not including a zombie group leader. (This only differs 344 * from jiffies_to_ns(utime + stime) if sched_clock uses something 345 * other than jiffies.) 346 */ 347 unsigned long long sched_time; 348 349 /* 350 * We don't bother to synchronize most readers of this at all, 351 * because there is no reader checking a limit that actually needs 352 * to get both rlim_cur and rlim_max atomically, and either one 353 * alone is a single word that can safely be read normally. 354 * getrlimit/setrlimit use task_lock(current->group_leader) to 355 * protect this instead of the siglock, because they really 356 * have no need to disable irqs. 357 */ 358 struct rlimit rlim[RLIM_NLIMITS]; 359 360 struct list_head cpu_timers[3]; 361 362 /* keep the process-shared keyrings here so that they do the right 363 * thing in threads created with CLONE_THREAD */ 364 #ifdef CONFIG_KEYS 365 struct key *session_keyring; /* keyring inherited over fork */ 366 struct key *process_keyring; /* keyring private to this process */ 367 #endif 368 }; 369 370 /* 371 * Bits in flags field of signal_struct. 372 */ 373 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 374 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 375 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 376 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 377 378 379 /* 380 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 381 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are 382 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values 383 * are inverted: lower p->prio value means higher priority. 384 * 385 * The MAX_USER_RT_PRIO value allows the actual maximum 386 * RT priority to be separate from the value exported to 387 * user-space. This allows kernel threads to set their 388 * priority to a value higher than any user task. Note: 389 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 390 */ 391 392 #define MAX_USER_RT_PRIO 100 393 #define MAX_RT_PRIO MAX_USER_RT_PRIO 394 395 #define MAX_PRIO (MAX_RT_PRIO + 40) 396 397 #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) 398 399 /* 400 * Some day this will be a full-fledged user tracking system.. 401 */ 402 struct user_struct { 403 atomic_t __count; /* reference count */ 404 atomic_t processes; /* How many processes does this user have? */ 405 atomic_t files; /* How many open files does this user have? */ 406 atomic_t sigpending; /* How many pending signals does this user have? */ 407 /* protected by mq_lock */ 408 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 409 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 410 411 #ifdef CONFIG_KEYS 412 struct key *uid_keyring; /* UID specific keyring */ 413 struct key *session_keyring; /* UID's default session keyring */ 414 #endif 415 416 /* Hash table maintenance information */ 417 struct list_head uidhash_list; 418 uid_t uid; 419 }; 420 421 extern struct user_struct *find_user(uid_t); 422 423 extern struct user_struct root_user; 424 #define INIT_USER (&root_user) 425 426 typedef struct prio_array prio_array_t; 427 struct backing_dev_info; 428 struct reclaim_state; 429 430 #ifdef CONFIG_SCHEDSTATS 431 struct sched_info { 432 /* cumulative counters */ 433 unsigned long cpu_time, /* time spent on the cpu */ 434 run_delay, /* time spent waiting on a runqueue */ 435 pcnt; /* # of timeslices run on this cpu */ 436 437 /* timestamps */ 438 unsigned long last_arrival, /* when we last ran on a cpu */ 439 last_queued; /* when we were last queued to run */ 440 }; 441 442 extern struct file_operations proc_schedstat_operations; 443 #endif 444 445 enum idle_type 446 { 447 SCHED_IDLE, 448 NOT_IDLE, 449 NEWLY_IDLE, 450 MAX_IDLE_TYPES 451 }; 452 453 /* 454 * sched-domains (multiprocessor balancing) declarations: 455 */ 456 #ifdef CONFIG_SMP 457 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 458 459 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 460 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 461 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 462 #define SD_WAKE_IDLE 8 /* Wake to idle CPU on task wakeup */ 463 #define SD_WAKE_AFFINE 16 /* Wake task to waking CPU */ 464 #define SD_WAKE_BALANCE 32 /* Perform balancing at task wakeup */ 465 #define SD_SHARE_CPUPOWER 64 /* Domain members share cpu power */ 466 467 struct sched_group { 468 struct sched_group *next; /* Must be a circular list */ 469 cpumask_t cpumask; 470 471 /* 472 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 473 * single CPU. This is read only (except for setup, hotplug CPU). 474 */ 475 unsigned long cpu_power; 476 }; 477 478 struct sched_domain { 479 /* These fields must be setup */ 480 struct sched_domain *parent; /* top domain must be null terminated */ 481 struct sched_group *groups; /* the balancing groups of the domain */ 482 cpumask_t span; /* span of all CPUs in this domain */ 483 unsigned long min_interval; /* Minimum balance interval ms */ 484 unsigned long max_interval; /* Maximum balance interval ms */ 485 unsigned int busy_factor; /* less balancing by factor if busy */ 486 unsigned int imbalance_pct; /* No balance until over watermark */ 487 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 488 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 489 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 490 int flags; /* See SD_* */ 491 492 /* Runtime fields. */ 493 unsigned long last_balance; /* init to jiffies. units in jiffies */ 494 unsigned int balance_interval; /* initialise to 1. units in ms. */ 495 unsigned int nr_balance_failed; /* initialise to 0 */ 496 497 #ifdef CONFIG_SCHEDSTATS 498 /* load_balance() stats */ 499 unsigned long lb_cnt[MAX_IDLE_TYPES]; 500 unsigned long lb_failed[MAX_IDLE_TYPES]; 501 unsigned long lb_balanced[MAX_IDLE_TYPES]; 502 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 503 unsigned long lb_gained[MAX_IDLE_TYPES]; 504 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 505 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 506 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 507 508 /* Active load balancing */ 509 unsigned long alb_cnt; 510 unsigned long alb_failed; 511 unsigned long alb_pushed; 512 513 /* sched_balance_exec() stats */ 514 unsigned long sbe_attempts; 515 unsigned long sbe_pushed; 516 517 /* try_to_wake_up() stats */ 518 unsigned long ttwu_wake_remote; 519 unsigned long ttwu_move_affine; 520 unsigned long ttwu_move_balance; 521 #endif 522 }; 523 524 #ifdef ARCH_HAS_SCHED_DOMAIN 525 /* Useful helpers that arch setup code may use. Defined in kernel/sched.c */ 526 extern cpumask_t cpu_isolated_map; 527 extern void init_sched_build_groups(struct sched_group groups[], 528 cpumask_t span, int (*group_fn)(int cpu)); 529 extern void cpu_attach_domain(struct sched_domain *sd, int cpu); 530 #endif /* ARCH_HAS_SCHED_DOMAIN */ 531 #endif /* CONFIG_SMP */ 532 533 534 struct io_context; /* See blkdev.h */ 535 void exit_io_context(void); 536 struct cpuset; 537 538 #define NGROUPS_SMALL 32 539 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 540 struct group_info { 541 int ngroups; 542 atomic_t usage; 543 gid_t small_block[NGROUPS_SMALL]; 544 int nblocks; 545 gid_t *blocks[0]; 546 }; 547 548 /* 549 * get_group_info() must be called with the owning task locked (via task_lock()) 550 * when task != current. The reason being that the vast majority of callers are 551 * looking at current->group_info, which can not be changed except by the 552 * current task. Changing current->group_info requires the task lock, too. 553 */ 554 #define get_group_info(group_info) do { \ 555 atomic_inc(&(group_info)->usage); \ 556 } while (0) 557 558 #define put_group_info(group_info) do { \ 559 if (atomic_dec_and_test(&(group_info)->usage)) \ 560 groups_free(group_info); \ 561 } while (0) 562 563 struct group_info *groups_alloc(int gidsetsize); 564 void groups_free(struct group_info *group_info); 565 int set_current_groups(struct group_info *group_info); 566 /* access the groups "array" with this macro */ 567 #define GROUP_AT(gi, i) \ 568 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 569 570 571 struct audit_context; /* See audit.c */ 572 struct mempolicy; 573 574 struct task_struct { 575 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 576 struct thread_info *thread_info; 577 atomic_t usage; 578 unsigned long flags; /* per process flags, defined below */ 579 unsigned long ptrace; 580 581 int lock_depth; /* Lock depth */ 582 583 int prio, static_prio; 584 struct list_head run_list; 585 prio_array_t *array; 586 587 unsigned long sleep_avg; 588 unsigned long long timestamp, last_ran; 589 unsigned long long sched_time; /* sched_clock time spent running */ 590 int activated; 591 592 unsigned long policy; 593 cpumask_t cpus_allowed; 594 unsigned int time_slice, first_time_slice; 595 596 #ifdef CONFIG_SCHEDSTATS 597 struct sched_info sched_info; 598 #endif 599 600 struct list_head tasks; 601 /* 602 * ptrace_list/ptrace_children forms the list of my children 603 * that were stolen by a ptracer. 604 */ 605 struct list_head ptrace_children; 606 struct list_head ptrace_list; 607 608 struct mm_struct *mm, *active_mm; 609 610 /* task state */ 611 struct linux_binfmt *binfmt; 612 long exit_state; 613 int exit_code, exit_signal; 614 int pdeath_signal; /* The signal sent when the parent dies */ 615 /* ??? */ 616 unsigned long personality; 617 unsigned did_exec:1; 618 pid_t pid; 619 pid_t tgid; 620 /* 621 * pointers to (original) parent process, youngest child, younger sibling, 622 * older sibling, respectively. (p->father can be replaced with 623 * p->parent->pid) 624 */ 625 struct task_struct *real_parent; /* real parent process (when being debugged) */ 626 struct task_struct *parent; /* parent process */ 627 /* 628 * children/sibling forms the list of my children plus the 629 * tasks I'm ptracing. 630 */ 631 struct list_head children; /* list of my children */ 632 struct list_head sibling; /* linkage in my parent's children list */ 633 struct task_struct *group_leader; /* threadgroup leader */ 634 635 /* PID/PID hash table linkage. */ 636 struct pid pids[PIDTYPE_MAX]; 637 638 struct completion *vfork_done; /* for vfork() */ 639 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 640 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 641 642 unsigned long rt_priority; 643 cputime_t utime, stime; 644 unsigned long nvcsw, nivcsw; /* context switch counts */ 645 struct timespec start_time; 646 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 647 unsigned long min_flt, maj_flt; 648 649 cputime_t it_prof_expires, it_virt_expires; 650 unsigned long long it_sched_expires; 651 struct list_head cpu_timers[3]; 652 653 /* process credentials */ 654 uid_t uid,euid,suid,fsuid; 655 gid_t gid,egid,sgid,fsgid; 656 struct group_info *group_info; 657 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 658 unsigned keep_capabilities:1; 659 struct user_struct *user; 660 #ifdef CONFIG_KEYS 661 struct key *thread_keyring; /* keyring private to this thread */ 662 #endif 663 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 664 char comm[TASK_COMM_LEN]; 665 /* file system info */ 666 int link_count, total_link_count; 667 /* ipc stuff */ 668 struct sysv_sem sysvsem; 669 /* CPU-specific state of this task */ 670 struct thread_struct thread; 671 /* filesystem information */ 672 struct fs_struct *fs; 673 /* open file information */ 674 struct files_struct *files; 675 /* namespace */ 676 struct namespace *namespace; 677 /* signal handlers */ 678 struct signal_struct *signal; 679 struct sighand_struct *sighand; 680 681 sigset_t blocked, real_blocked; 682 struct sigpending pending; 683 684 unsigned long sas_ss_sp; 685 size_t sas_ss_size; 686 int (*notifier)(void *priv); 687 void *notifier_data; 688 sigset_t *notifier_mask; 689 690 void *security; 691 struct audit_context *audit_context; 692 seccomp_t seccomp; 693 694 /* Thread group tracking */ 695 u32 parent_exec_id; 696 u32 self_exec_id; 697 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 698 spinlock_t alloc_lock; 699 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ 700 spinlock_t proc_lock; 701 /* context-switch lock */ 702 spinlock_t switch_lock; 703 704 /* journalling filesystem info */ 705 void *journal_info; 706 707 /* VM state */ 708 struct reclaim_state *reclaim_state; 709 710 struct dentry *proc_dentry; 711 struct backing_dev_info *backing_dev_info; 712 713 struct io_context *io_context; 714 715 unsigned long ptrace_message; 716 siginfo_t *last_siginfo; /* For ptrace use. */ 717 /* 718 * current io wait handle: wait queue entry to use for io waits 719 * If this thread is processing aio, this points at the waitqueue 720 * inside the currently handled kiocb. It may be NULL (i.e. default 721 * to a stack based synchronous wait) if its doing sync IO. 722 */ 723 wait_queue_t *io_wait; 724 /* i/o counters(bytes read/written, #syscalls */ 725 u64 rchar, wchar, syscr, syscw; 726 #if defined(CONFIG_BSD_PROCESS_ACCT) 727 u64 acct_rss_mem1; /* accumulated rss usage */ 728 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 729 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 730 #endif 731 #ifdef CONFIG_NUMA 732 struct mempolicy *mempolicy; 733 short il_next; 734 #endif 735 #ifdef CONFIG_CPUSETS 736 struct cpuset *cpuset; 737 nodemask_t mems_allowed; 738 int cpuset_mems_generation; 739 #endif 740 }; 741 742 static inline pid_t process_group(struct task_struct *tsk) 743 { 744 return tsk->signal->pgrp; 745 } 746 747 /** 748 * pid_alive - check that a task structure is not stale 749 * @p: Task structure to be checked. 750 * 751 * Test if a process is not yet dead (at most zombie state) 752 * If pid_alive fails, then pointers within the task structure 753 * can be stale and must not be dereferenced. 754 */ 755 static inline int pid_alive(struct task_struct *p) 756 { 757 return p->pids[PIDTYPE_PID].nr != 0; 758 } 759 760 extern void free_task(struct task_struct *tsk); 761 extern void __put_task_struct(struct task_struct *tsk); 762 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 763 #define put_task_struct(tsk) \ 764 do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0) 765 766 /* 767 * Per process flags 768 */ 769 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 770 /* Not implemented yet, only for 486*/ 771 #define PF_STARTING 0x00000002 /* being created */ 772 #define PF_EXITING 0x00000004 /* getting shut down */ 773 #define PF_DEAD 0x00000008 /* Dead */ 774 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 775 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 776 #define PF_DUMPCORE 0x00000200 /* dumped core */ 777 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 778 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 779 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 780 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 781 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 782 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 783 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 784 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 785 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 786 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 787 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 788 #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ 789 #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ 790 #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ 791 792 /* 793 * Only the _current_ task can read/write to tsk->flags, but other 794 * tasks can access tsk->flags in readonly mode for example 795 * with tsk_used_math (like during threaded core dumping). 796 * There is however an exception to this rule during ptrace 797 * or during fork: the ptracer task is allowed to write to the 798 * child->flags of its traced child (same goes for fork, the parent 799 * can write to the child->flags), because we're guaranteed the 800 * child is not running and in turn not changing child->flags 801 * at the same time the parent does it. 802 */ 803 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 804 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 805 #define clear_used_math() clear_stopped_child_used_math(current) 806 #define set_used_math() set_stopped_child_used_math(current) 807 #define conditional_stopped_child_used_math(condition, child) \ 808 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 809 #define conditional_used_math(condition) \ 810 conditional_stopped_child_used_math(condition, current) 811 #define copy_to_stopped_child_used_math(child) \ 812 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 813 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 814 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 815 #define used_math() tsk_used_math(current) 816 817 #ifdef CONFIG_SMP 818 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 819 #else 820 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 821 { 822 if (!cpus_intersects(new_mask, cpu_online_map)) 823 return -EINVAL; 824 return 0; 825 } 826 #endif 827 828 extern unsigned long long sched_clock(void); 829 extern unsigned long long current_sched_time(const task_t *current_task); 830 831 /* sched_exec is called by processes performing an exec */ 832 #ifdef CONFIG_SMP 833 extern void sched_exec(void); 834 #else 835 #define sched_exec() {} 836 #endif 837 838 #ifdef CONFIG_HOTPLUG_CPU 839 extern void idle_task_exit(void); 840 #else 841 static inline void idle_task_exit(void) {} 842 #endif 843 844 extern void sched_idle_next(void); 845 extern void set_user_nice(task_t *p, long nice); 846 extern int task_prio(const task_t *p); 847 extern int task_nice(const task_t *p); 848 extern int can_nice(const task_t *p, const int nice); 849 extern int task_curr(const task_t *p); 850 extern int idle_cpu(int cpu); 851 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 852 extern task_t *idle_task(int cpu); 853 854 void yield(void); 855 856 /* 857 * The default (Linux) execution domain. 858 */ 859 extern struct exec_domain default_exec_domain; 860 861 union thread_union { 862 struct thread_info thread_info; 863 unsigned long stack[THREAD_SIZE/sizeof(long)]; 864 }; 865 866 #ifndef __HAVE_ARCH_KSTACK_END 867 static inline int kstack_end(void *addr) 868 { 869 /* Reliable end of stack detection: 870 * Some APM bios versions misalign the stack 871 */ 872 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 873 } 874 #endif 875 876 extern union thread_union init_thread_union; 877 extern struct task_struct init_task; 878 879 extern struct mm_struct init_mm; 880 881 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 882 extern struct task_struct *find_task_by_pid_type(int type, int pid); 883 extern void set_special_pids(pid_t session, pid_t pgrp); 884 extern void __set_special_pids(pid_t session, pid_t pgrp); 885 886 /* per-UID process charging. */ 887 extern struct user_struct * alloc_uid(uid_t); 888 static inline struct user_struct *get_uid(struct user_struct *u) 889 { 890 atomic_inc(&u->__count); 891 return u; 892 } 893 extern void free_uid(struct user_struct *); 894 extern void switch_uid(struct user_struct *); 895 896 #include <asm/current.h> 897 898 extern void do_timer(struct pt_regs *); 899 900 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 901 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 902 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 903 unsigned long clone_flags)); 904 #ifdef CONFIG_SMP 905 extern void kick_process(struct task_struct *tsk); 906 #else 907 static inline void kick_process(struct task_struct *tsk) { } 908 #endif 909 extern void FASTCALL(sched_fork(task_t * p)); 910 extern void FASTCALL(sched_exit(task_t * p)); 911 912 extern int in_group_p(gid_t); 913 extern int in_egroup_p(gid_t); 914 915 extern void proc_caches_init(void); 916 extern void flush_signals(struct task_struct *); 917 extern void flush_signal_handlers(struct task_struct *, int force_default); 918 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 919 920 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 921 { 922 unsigned long flags; 923 int ret; 924 925 spin_lock_irqsave(&tsk->sighand->siglock, flags); 926 ret = dequeue_signal(tsk, mask, info); 927 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 928 929 return ret; 930 } 931 932 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 933 sigset_t *mask); 934 extern void unblock_all_signals(void); 935 extern void release_task(struct task_struct * p); 936 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 937 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 938 extern int force_sigsegv(int, struct task_struct *); 939 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 940 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 941 extern int kill_pg_info(int, struct siginfo *, pid_t); 942 extern int kill_proc_info(int, struct siginfo *, pid_t); 943 extern void do_notify_parent(struct task_struct *, int); 944 extern void force_sig(int, struct task_struct *); 945 extern void force_sig_specific(int, struct task_struct *); 946 extern int send_sig(int, struct task_struct *, int); 947 extern void zap_other_threads(struct task_struct *p); 948 extern int kill_pg(pid_t, int, int); 949 extern int kill_sl(pid_t, int, int); 950 extern int kill_proc(pid_t, int, int); 951 extern struct sigqueue *sigqueue_alloc(void); 952 extern void sigqueue_free(struct sigqueue *); 953 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 954 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 955 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *); 956 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 957 958 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 959 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 960 #define SEND_SIG_PRIV ((struct siginfo *) 1) 961 #define SEND_SIG_FORCED ((struct siginfo *) 2) 962 963 /* True if we are on the alternate signal stack. */ 964 965 static inline int on_sig_stack(unsigned long sp) 966 { 967 return (sp - current->sas_ss_sp < current->sas_ss_size); 968 } 969 970 static inline int sas_ss_flags(unsigned long sp) 971 { 972 return (current->sas_ss_size == 0 ? SS_DISABLE 973 : on_sig_stack(sp) ? SS_ONSTACK : 0); 974 } 975 976 977 #ifdef CONFIG_SECURITY 978 /* code is in security.c */ 979 extern int capable(int cap); 980 #else 981 static inline int capable(int cap) 982 { 983 if (cap_raised(current->cap_effective, cap)) { 984 current->flags |= PF_SUPERPRIV; 985 return 1; 986 } 987 return 0; 988 } 989 #endif 990 991 /* 992 * Routines for handling mm_structs 993 */ 994 extern struct mm_struct * mm_alloc(void); 995 996 /* mmdrop drops the mm and the page tables */ 997 extern void FASTCALL(__mmdrop(struct mm_struct *)); 998 static inline void mmdrop(struct mm_struct * mm) 999 { 1000 if (atomic_dec_and_test(&mm->mm_count)) 1001 __mmdrop(mm); 1002 } 1003 1004 /* mmput gets rid of the mappings and all user-space */ 1005 extern void mmput(struct mm_struct *); 1006 /* Grab a reference to a task's mm, if it is not already going away */ 1007 extern struct mm_struct *get_task_mm(struct task_struct *task); 1008 /* Remove the current tasks stale references to the old mm_struct */ 1009 extern void mm_release(struct task_struct *, struct mm_struct *); 1010 1011 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1012 extern void flush_thread(void); 1013 extern void exit_thread(void); 1014 1015 extern void exit_files(struct task_struct *); 1016 extern void exit_signal(struct task_struct *); 1017 extern void __exit_signal(struct task_struct *); 1018 extern void exit_sighand(struct task_struct *); 1019 extern void __exit_sighand(struct task_struct *); 1020 extern void exit_itimers(struct signal_struct *); 1021 1022 extern NORET_TYPE void do_group_exit(int); 1023 1024 extern void daemonize(const char *, ...); 1025 extern int allow_signal(int); 1026 extern int disallow_signal(int); 1027 extern task_t *child_reaper; 1028 1029 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1030 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1031 task_t *fork_idle(int); 1032 1033 extern void set_task_comm(struct task_struct *tsk, char *from); 1034 extern void get_task_comm(char *to, struct task_struct *tsk); 1035 1036 #ifdef CONFIG_SMP 1037 extern void wait_task_inactive(task_t * p); 1038 #else 1039 #define wait_task_inactive(p) do { } while (0) 1040 #endif 1041 1042 #define remove_parent(p) list_del_init(&(p)->sibling) 1043 #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) 1044 1045 #define REMOVE_LINKS(p) do { \ 1046 if (thread_group_leader(p)) \ 1047 list_del_init(&(p)->tasks); \ 1048 remove_parent(p); \ 1049 } while (0) 1050 1051 #define SET_LINKS(p) do { \ 1052 if (thread_group_leader(p)) \ 1053 list_add_tail(&(p)->tasks,&init_task.tasks); \ 1054 add_parent(p, (p)->parent); \ 1055 } while (0) 1056 1057 #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) 1058 #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) 1059 1060 #define for_each_process(p) \ 1061 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1062 1063 /* 1064 * Careful: do_each_thread/while_each_thread is a double loop so 1065 * 'break' will not work as expected - use goto instead. 1066 */ 1067 #define do_each_thread(g, t) \ 1068 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1069 1070 #define while_each_thread(g, t) \ 1071 while ((t = next_thread(t)) != g) 1072 1073 extern task_t * FASTCALL(next_thread(const task_t *p)); 1074 1075 #define thread_group_leader(p) (p->pid == p->tgid) 1076 1077 static inline int thread_group_empty(task_t *p) 1078 { 1079 return list_empty(&p->pids[PIDTYPE_TGID].pid_list); 1080 } 1081 1082 #define delay_group_leader(p) \ 1083 (thread_group_leader(p) && !thread_group_empty(p)) 1084 1085 extern void unhash_process(struct task_struct *p); 1086 1087 /* 1088 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring 1089 * subscriptions and synchronises with wait4(). Also used in procfs. 1090 * 1091 * Nests both inside and outside of read_lock(&tasklist_lock). 1092 * It must not be nested with write_lock_irq(&tasklist_lock), 1093 * neither inside nor outside. 1094 */ 1095 static inline void task_lock(struct task_struct *p) 1096 { 1097 spin_lock(&p->alloc_lock); 1098 } 1099 1100 static inline void task_unlock(struct task_struct *p) 1101 { 1102 spin_unlock(&p->alloc_lock); 1103 } 1104 1105 /* set thread flags in other task's structures 1106 * - see asm/thread_info.h for TIF_xxxx flags available 1107 */ 1108 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1109 { 1110 set_ti_thread_flag(tsk->thread_info,flag); 1111 } 1112 1113 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1114 { 1115 clear_ti_thread_flag(tsk->thread_info,flag); 1116 } 1117 1118 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1119 { 1120 return test_and_set_ti_thread_flag(tsk->thread_info,flag); 1121 } 1122 1123 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1124 { 1125 return test_and_clear_ti_thread_flag(tsk->thread_info,flag); 1126 } 1127 1128 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1129 { 1130 return test_ti_thread_flag(tsk->thread_info,flag); 1131 } 1132 1133 static inline void set_tsk_need_resched(struct task_struct *tsk) 1134 { 1135 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1136 } 1137 1138 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1139 { 1140 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1141 } 1142 1143 static inline int signal_pending(struct task_struct *p) 1144 { 1145 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1146 } 1147 1148 static inline int need_resched(void) 1149 { 1150 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1151 } 1152 1153 /* 1154 * cond_resched() and cond_resched_lock(): latency reduction via 1155 * explicit rescheduling in places that are safe. The return 1156 * value indicates whether a reschedule was done in fact. 1157 * cond_resched_lock() will drop the spinlock before scheduling, 1158 * cond_resched_softirq() will enable bhs before scheduling. 1159 */ 1160 extern int cond_resched(void); 1161 extern int cond_resched_lock(spinlock_t * lock); 1162 extern int cond_resched_softirq(void); 1163 1164 /* 1165 * Does a critical section need to be broken due to another 1166 * task waiting?: 1167 */ 1168 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1169 # define need_lockbreak(lock) ((lock)->break_lock) 1170 #else 1171 # define need_lockbreak(lock) 0 1172 #endif 1173 1174 /* 1175 * Does a critical section need to be broken due to another 1176 * task waiting or preemption being signalled: 1177 */ 1178 static inline int lock_need_resched(spinlock_t *lock) 1179 { 1180 if (need_lockbreak(lock) || need_resched()) 1181 return 1; 1182 return 0; 1183 } 1184 1185 /* Reevaluate whether the task has signals pending delivery. 1186 This is required every time the blocked sigset_t changes. 1187 callers must hold sighand->siglock. */ 1188 1189 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1190 extern void recalc_sigpending(void); 1191 1192 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1193 1194 /* 1195 * Wrappers for p->thread_info->cpu access. No-op on UP. 1196 */ 1197 #ifdef CONFIG_SMP 1198 1199 static inline unsigned int task_cpu(const struct task_struct *p) 1200 { 1201 return p->thread_info->cpu; 1202 } 1203 1204 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1205 { 1206 p->thread_info->cpu = cpu; 1207 } 1208 1209 #else 1210 1211 static inline unsigned int task_cpu(const struct task_struct *p) 1212 { 1213 return 0; 1214 } 1215 1216 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1217 { 1218 } 1219 1220 #endif /* CONFIG_SMP */ 1221 1222 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1223 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1224 #else 1225 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1226 { 1227 mm->mmap_base = TASK_UNMAPPED_BASE; 1228 mm->get_unmapped_area = arch_get_unmapped_area; 1229 mm->unmap_area = arch_unmap_area; 1230 } 1231 #endif 1232 1233 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1234 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1235 1236 #ifdef CONFIG_MAGIC_SYSRQ 1237 1238 extern void normalize_rt_tasks(void); 1239 1240 #endif 1241 1242 /* try_to_freeze 1243 * 1244 * Checks whether we need to enter the refrigerator 1245 * and returns 1 if we did so. 1246 */ 1247 #ifdef CONFIG_PM 1248 extern void refrigerator(unsigned long); 1249 extern int freeze_processes(void); 1250 extern void thaw_processes(void); 1251 1252 static inline int try_to_freeze(unsigned long refrigerator_flags) 1253 { 1254 if (unlikely(current->flags & PF_FREEZE)) { 1255 refrigerator(refrigerator_flags); 1256 return 1; 1257 } else 1258 return 0; 1259 } 1260 #else 1261 static inline void refrigerator(unsigned long flag) {} 1262 static inline int freeze_processes(void) { BUG(); return 0; } 1263 static inline void thaw_processes(void) {} 1264 1265 static inline int try_to_freeze(unsigned long refrigerator_flags) 1266 { 1267 return 0; 1268 } 1269 #endif /* CONFIG_PM */ 1270 #endif /* __KERNEL__ */ 1271 1272 #endif 1273